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Abstract 

The aim of this thesis is to develop a SPICE circuit model for 

semiconductor lasers, which simultaneously incorporates the effects of the 

carrier and lattice heating. The objective of this thesis is to perform 

numerical simulations for the dc, ac and transient responses of this circuit 

model. The circuit model is transformed from the rate equations that 

govern the dynamics of carrier density, photon density, electron 
temperature, hole temperature and lattice temperature in the active region 

of semiconductor lasers. SPICE codes are exactly developed according to 

this circuit model. The results from this work should not only demonstrate 

the capacity and versatility of the SPICE circuits in simulating the 

complicated carrier and lattice heating processes for semiconductor lasers 

but eventually lead to the simulations of optoelectronic systems comprising 

electronic circuits and devices, all by SPICE circuit models. 
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CHAPTER1 

INTRODUCTION 

1.1 Background 

Traditionally, the physical properties of semiconductor lasers have 

been satisfactorily explained by rate equations. In fact, the rate equations 
for carrier density and photon density have become a 'textbook' standard to 
describe many static and dynamic properties of semiconductor lasers. Such 

rate-equation approach certainly implies that the spatial distributions of 

physical quantities can either be neglected or averaged. Taking account of 
this assumption, it has been proved that such rate equations can 

characterise many physical properties of semiconductor lasers. However, 

for some devices such as laser diodes working at high frequencies, the 

simplified approach may not be applicable or acceptable. 

In addition, a laser diode is seldom used as a 'stand-alone' device. It 
is always used with other electronic devices. Since most of the electronic 
devices have their own circuit models developed for simulation purposes, it 

can be anticipated that developing circuit models for semiconductor lasers 

is desirable. As a result, moving from the rate equation representing of 

semiconductor lasers to circuit models is becoming a demanding task but 
has great practical potential. 

Developing circuit models for semiconductor lasers certainly has 

many advantages if they can then be used alongside other circuit models 
for design purposes. Computer-aided design (CAD) tools are gradually 
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becoming indispensable for designing electronic processes, devices, 

circuits and systems, and in achieving the goal of electronic design 

automation (EDA) [1]. With thousands or even millions of transistors in a 

single chip, it is almost impossible to design electronic circuits or 

electronic systems using analytical methods without the help of CAD 

simulations. In a comparative manner, it is thus predictable that CAD tools 

for optoelectronic devices and systems will become critically important in 

the future. Through numerous efforts over more than three decades, CAD 

tools for electronic processes, devices, circuits and systems have been well 
developed. Several simulation packages have been commercialised, for 

example, SUPREM for processes, MEDICI and ATLAS for devices. Some 

of the simulation languages have become industrial standards, such as 
SPICE for analogue circuits [2]-[6], and VHDL or Verilog for digital 

circuits. Despite such success, it is surprising to fmd that the development 

of CAD tools for optoelectronic devices or systems is still not fully 

explored and as yet, no standard associated with them has emerged. 

Generally, compared to their electronic counterparts, developing 

CAD tools for optoelectronic devices and systems is still in its infancy and 

currently lacks a commonly accepted standard. As a result, the approach to 

develop any simulation tool is either by establishing a new one or 

accommodating the well-established ones. For optoelectronic devices, 

especially optical transmitters, receivers converting electronic and optical 

signals, used in conjunction with other electronic devices, the latter seems a 

viable choice. Especially, for semiconductor lasers used in fibre optic 

communication systems as electronic driving circuits provide their 

electronic signals. As SPICE circuit simulation is widely used to design the 

driving circuits of semiconductor lasers, it is logical to develop SPICE 
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circuit models for these devices. This has 'the advantage of using 

established software tools in an integrated systems approach. 

Unlike electronic devices that are usually characterised by current 

and voltage, while optoelectronic devices are normally characterised by 

light intensity and current. Since light intensity cannot be represented by 

any physical circuit quantities, modelling optoelectronic devices by SPICE 

circuit model is certainly not physically transparent and should be 

implemented with caution. Nevertheless, if the circuit model is well 

constructed to take account of the realistic physical models and sufficiently 

represents the physical properties of the optoelectronic device, it will 

certainly bring great benefit for designing the optoelectronic module 

working within an electronic system such as optical transmitter and 

receiver. This approach avoids modelling optoelectronic devices by stand- 

alone tools or languages 

Although the tools for electronic design automation have been highly 
developed and become almost indispensable in designing and optimising 
the electronic devices, circuits and systems [1][7], commercialised design 

tools for semiconductor lasers or optoelectronic devices in general, is still 
in its infancy. In addition, integrating the optoelectronic simulation 

programs and tools into existing electronic ones is an important task that 
has not received the deserved attention. This provides the motivation for 

undertaking the work of this thesis. 
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1.2 Semiconductor Lasers 

The first step in developing any theoretical model or any circuit 

model for semiconductor lasers is to understand their basic structure and 

working principles. In this section, a brief introduction on semiconductor 
lasers is given. 

Semiconductor lasers are one of the most important groups of 
devices in optoelectronic systems [8]-[l 1]. When a current is injected into 

the device, which emits lasing light and provide the function of converting 

electrical signals into coherent light signals. The basic structure of a 

semiconductor laser is shown as Fig. 1.1. Basically, a semiconductor laser 

is composed of three parts, the p-type region, active region (i is used to 
denote the intrinsic material) and n-type region. For example, a 

semiconductor laser can have p-Al,, Gal, As as the p-type region, i-GaAs as 
the active region, and n-AIGal-. As as the n-type region. Normally, two 

cleaved mirrors in which the sharp refractive index difference between the 

crystal and the surrounding air, acting as the reflectors surround the active 
region. When a current is applied to the laser, the hole current is injected 

from the p-type region and the electron current is injected from the n-type 

region respectively, into the active i-region. Some of the carriers, that is, 

holes and electrons, may combine in the active region and produce photons 
(that is, by a radiative recombination such as spontaneous emission or 
stimulated emission), while some carriers may recombine non-radiatively 
(such as by Shockley-Read-Hall recombination or Auger recombination). 
The active region, usually intrinsic type (that is, without intentional doping), 

provides a platform for electrons and holes to recombine and produce 
photon, (that is, generate light. ) 
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Fig. 1.1. Schematic diagram of a semiconductor laser. 
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The first working semiconductor laser was demonstrated in 1962. 

Since then, enormous progresses have been made in both experimental and 
theoretical work to understand and optimise the physical properties and the 

characteristics of semiconductor lasers. However, the physical and 
theoretical models for characterising the physical properties of 
semiconductor lasers are still in development. Some of the physical 

properties, for example, frequency chirping [12] and physical parameters 

such as nonlinear gain coefficient [13][14] of semiconductor lasers are still 
not fully understood. 

1.3 Existing Models for Semiconductor Lasers 

The first step towards characterising or designing the properties of 

semiconductor lasers is to find a suitable physical model for the devices. 

Therefore, in this section, the existing theoretical models for semiconductor 
lasers, which are justified using the rate-equation approach, are surveyed. 
Obviously, any circuit model proposed for a device should be based on the 

physical model, that is, it should be physically-based, and to be free from 

unnecessary or arbitrary assumptions, and this is a prime objective in this 

work. 

Although there are many different structures for semiconductor 
lasers, the physics of their basic working principles are rather similar. 
Generally, a semiconductor laser is a p-J-n semiconductor device in which 

electrons are injected from the n-type material and holes are injected from 

the p-type material into the active region of the i-type material. An electron 

and a hole might recombine with each other in the active region to generate 
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a photon. This photon circulates inside the laser cavity formed by two 

cleaved, etched or grating mirrors and provides an additional photon source 

to stimulate other electron-hole recombinations. A proportion of the 

photons circulate inside the laser cavity will leak through the mirror due to 

its fn-dte reflectivity and produce the output laser light. The p-i-n structures 
in semiconductor lasers are constructed from heterostructure materials, 

such as Al,, Gal-,, As/GaAs, in which the i-type materials have lower energy 
band-gap and higher optical refractivity than those of the n-type and p-type 

materials. Therefore, the i-type material, such as GaAs in a Al,, Gal- 

. As/GaAs laser, will not only provide a function of carrier confinement 

where the trapped electrons and holes can recombine and generate photons, 
but also present a function of photon confinement where the heterostructure 

becomes a waveguide. 

Although the basic working principles of a semiconductor laser can 

roughly be explained by previous description, detailed physical models are 

certainly required to quantitatively understand its physical properties. The 

importance of the theoretical models for the development of any 

semiconductor device is definitely beyond doubt. In fact, theoretical 

models for semiconductor devices have been well developed; and several 

popular commercial packages, such as MEDICI, ATLAS and DESSIS, 

have been widely used by industrial and academic institutions [1]. 

Basically, any theoretical models for electronic devices should be able to 
describe the behaviour of electrons inside the devices. Theoretical models 

used for simulating the electronic devices can be categorised into three 
different methods based on the assumed nature of the carrier transport in 

the devices [15]. 'Me comparisons of the complexity among three different 

numerical methods, the Monte Carlo analysis, partial differential equation 
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(PDE) or balance equation, and ordinary differential equation (ODE) or 

rate equation, are illustrated in Fig. 1.2. For each carrier, electron or hole, 

in a device, three parameters are needed to fully characterise its movement 
inside the device: time (1), space (r) and momentum (k). The Boltzmann 

equation is used to describe the motions of all of the carriers inside the 

devices. Since it is almost impossible to analytically solve the Boltzmann 

equation even for a very simple and artificially defmed case, a numerical 

method, such as the Monte Carlo method, is commonly implemented to 

solve the distribution of carriers in the (1, r, k) domain. Although, this 

method includes all the details of device physics, its simulation is rather 

complicated and time-consuming. In most cases, it does not provide a 

transparent explanation for the physical properties of the device. 

Alternatively, if the dynamics in the k-coordinate can be calculated 
by first principles or represented by average quantifies (such as density, 

momentum and energy relaxation times), then the Boltzmann equations can 
be established by partial differential equations or balance equations. These 

balance equations can describe the carrier distribution (for exarnple, density 

and temperature) in the temporal (1) and spatial (r) domains. Since the 

numerical methods for solving PDE equations are highly developed, 

simulating the devices' properties by solving such balance equations are 

certainly tractable. This is the reason why such PDE balance equations are 
implemented in all the major simulation packages for electronic devices. 

However, since the measurable physical quantities such as current 

and voltage are only functions of time, this implies that all the spatial 

effects, such as carrier density and temperature distributions in the spatial 
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Fig. 1.2. Comparisons of the complexity among three numerical methods, 

the Monte Carlo analysis, partial differential equation or balance equation, 

and ordinary differential equation or rate equation. 
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domain, that affect the output current or voltage can be further simplified if 

they can be represented by some average quantities. They can totally be 

neglected if such spatial effects are insignificant. Averaging or neglecting 
the physical quantities in the spatial domain can fin-ther simplify the 

original PDE balance equations into the ODE rate equations. This 

dramatically simplifies the theoretical models and numerical procedures for 

device simulations. However, it should be noted that the approach is only 

valid if the spatial effect of carrier distribution can really be treated as an 

average quantity or totally neglected. 

Since carrier transport in semiconductor lasers is rather similar to 

other electronic devices, therefore all the theoretical models discussed for 

electronic devices are applicable to semiconductor lasers. In fact, the 

physical processes occurring in the active region, where electrons and holes 

recombine and generate photons, almost determining all the physical 

properties of semiconductor lasers. As a result, the spatial effects can 

usually be ignored (except the spectral-hole-burning effect in DFB lasers) 

and rate equations employed. This explains why rate equations are widely 
implemented for simulating the physical properties of semiconductor lasers. 

Although many commercial simulation packages use PDE balance 

equations, for example, PISOD, the method of rate equations is the most 

popular theoretical approach indeed for modelling semiconductor lasers. 

Basically, all the major physical properties such as L-1 relationship, 
linewidth, modulation response, chirp and noise can successfully be 

characterised by rate equations. Therefore, the rate-equation approach is 

used in this work. The details of the rate equations are discussed in Chapter 
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2. The SPICE circuit model proposed in this work is exactly achieved from 

the rate equations. 

1.4 Literature Review - SPICE Circuit Models for Semiconductor 

Lasers 

As discussed, it can be anticipated that developing SPICE models is 

invaluable for realising the EDA of optoelectronic devices, which are used 
in conjunction with electronic devices or systems. Following such a strong 

anticipation of future need, several SPICE models for semiconductor lasers 

have been proposed [16]-[27]. The circuit models for bulk semiconductor 
lasers, that is, heterostructure, derived from the carrier-photon rate 

equations were first proposed by Tucker [16][17]. Based on this model, 
Lu et al. developed a SPICE circuit model for quantum-well lasers by 

incorporating additional effects of carrier transport [18][19]. In contrast, 
instead of concentrating on the carrier transport effects which only became 

important in the high-speed modulation mode, the Xu group proposed 
SPICE circuit models for quantum well lasers particularly emphasising on 

the heating effects [20][21]. This is based on the fact that the nonlinearity 
in the L-I relationship of any semiconductor laser can satisfactorily be 

explained by considering the heating effect. Tsou et al. also proposed a 
SPICE circuit model for quantum-well lasers including the carrier-transport 

effect [22]. In addition, the effect of the coulomb enhancement on the gain 

coefficient and thus the properties of the high-speed modulation were 
investigated using their SPICE model [23]. 
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t. A more evolved SPICE model including the carrier-transport effect 

was proposed by Rossi et al. [24]. They used their SPICE model to analyse 

and design 1.55 pm quantum-well lasers for improving the high-speed 

performance. Madhan et al. proposed a SPICE circuit model for the 

multimode lasers and investigated the bistable behaviour of the devices 

[25]. Czotscher et al. produced an approach in which they combined their 

circuit model with the physical models of optical fibres and photodetectors 
to simulate the intensity modulation and chirp in a fibre optic 

conu-nunication system [26]. Recognising that heating has a paramount 

effect on the properties of vertical-cavity surface-emitting lasers (VCSELs), 

Mena et al. proposed a SPICE circuit model with heating effects for 

VCSELs [27]. Mena et al. used their model to fit experimental data and 
thereby extracted the related physical parameters of the device. However, it 

should be noted that heating effects in their model and in the model of the 
Xu group are only referred to the lattice heating. Carrier heating effects are 

neither included nor discussed in their models. 

From the foregoing it is seen that the temperature-dependent 

performance characteristics of devices are well established in SPICE circuit 

models. Consequently, physical quantities such as resistance and 

capacitance are assigned to a function of temperature (. TEMP) in the 

SPICE codes. Therefore, it is widely accepted that SPICE circuit models 
for semiconductor lasers should represent this temperature-dependent 

feature in order to finther integrate their implementation into electronic 

circuits and increase their accuracy in predicting performance. In fact, the 
heating problem is well recognised as one of the most important factors 

influencing both the static and dynamic performance of semiconductor 
lasers [28]-[32]. However, all the published SPICE models, which include 
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heating effects in semiconductor lasers, solely refer to the lattice heating 

while the direct effect of the carrier heating has totally been neglected. It 

should be noted that the injection current supplies energy to carriers, which 

then release their energy to lattice via phonon emission. This is 

schematically illustrated in Fig. 1.3. Since the injection current supplies 

energy directly to electrons and holes, not directly to lattice in a 

semiconductor laser, any issue regarding the lattice heating in 

semiconductor lasers will inevitably involve the issue of the carrier heating. 

Consequently, theoretical models used for predicting the heating effects on 

the performance of semiconductor lasers are thus anticipated to be able to 

simultaneously accommodate the physical mechanisms of the carrier and 
lattice heating. This certainly implies that any attempt to establish the 

temperature-dependent feature for SPICE circuit models of semiconductor 
lasers should be able to incorporate the features of the carrier and lattice 

heating in the same model, not just the lattice heating alone. 

1.5 Heating Models for Semiconductor Lasers 

Although many physical factors affect the properties and 

characteristics of semiconductor lasers, the heating problem which 
including both the carrier and lattice heating, is well known as one of the 

most important factors influencing the static and dynamic properties of 

semiconductor lasers. The details of such an influence have extensively 
been discussed in many textbooks and literature [ 1] [8]- [14], and will not be 

restated here for simplicity. The most obvious example is that the threshold 

current will exponentially increase with the linearly increasing 
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Fig. 1.3. Schematic diagram of energy transfer in semiconductor lasers. 
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heat-sink temperature. In addition, heating will cause the nonlinearity in the 
light-current relationship, that is, L-I curve, of a semiconductor laser. The 

physical reason that heating affects the physical properties of 

semiconductor lasers is because it influences the following major physical 

quantities: 1) the optical gain or loss, 2) the index of refractivity, which will 

not be discussed in this work, 3) the Auger process, and 4) the leakage 

current. These are the very physical quantities that determine the properties 

of semiconductor lasers. The details of such heating effects are discussed in 

the main part of this thesis. Nevertheless, it will demonstrate that heating 

has significant effects in determining certain physical properties of 

semiconductor lasers. It will be shown in this work that including heating 

effects for SPICE circuit models is actually required to satisfactorily 

explain many characteristics of semiconductor lasers, such as the L-I 

nonlinearity. 

1.6 The Weaknesses in Previous Circuit Models and the Carrier 

Heating in SPICE Circuit Models for Semiconductor Lasers 

Although heating is one of the most important factors determining 

the physical properties of semiconductor lasers, the difference between the 

carrier heating and lattice heating is not carefully discussed or investigated 

by most of the existing literature. Since the injection current supplies 

energy to carriers, which then release their energy to lattice, that is, 

phonons, by phonon emission. It can be expected that both the carrier 
heating and lattice heating should be presented in semiconductor lasers 

although their effects in influencing the properties of semiconductor lasers 

may totally be different. As a result, any theoretical attempt to model the 
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heating in semiconductor lasers is expected to be able to simultaneously 

simulate the carrier and lattice heating effects separately. 

The SPICE models proposed by the Xu group and Mena et al. have 

incorporated the lattice heating, but the carrier heating is totally neglected 
in their models. Such an approach has several shortcomings: 

1) Since the carrier heating is neglected, the heating source of the lattice 

heating by the carrier energy relaxation, both intraband and interband 

phonons, cannot be included into their models. To circumvent such 

an obvious problem, a phenomenological lattice-heating source 
I-V-P was heuristically defined to represent the total thermal 

power dissipated in the whole device, where I and V denote the 

external applied current and voltage onto the device and P denotes 

the output optical power. Intuitively, the total power injected from 

the current will either be dissipated as the thermal power or be 

emitted as the optical power. Although such a definition is rather 

straightforward, it should carefully be noted that I-V-P represents 

the thermal power dissipated in the whole device. Consequently, 

using I-V-P to represent the lattice-heating source and averaging 
I-V-P to the volume of the device implies the whole device has a 

uniform distribution of the lattice temperature. This assumption is 

totally unacceptable for semiconductor lasers because all the major 
heating sources are concentrated on the active region where electrons 

and holes may recombine. As a result, using I-V-P to model the 

lattice-heating source cannot represent the realistic heating 

distribution in the device and its validity is obviously questionable. 
2) Neglecting the carrier heating in semiconductor lasers certainly 

implies that the magnitude of the carrier heating is negligible 
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compared to the magnitude of the lattice heating. However, such an 

assumption has not been verified for semiconductor lasers by 

experimental or theoretical methods. In practice, it is almost 
impossible to directly measure the carrier and lattice temperatures 

within the device. Since the carrier heating and lattice heating 

simultaneously exist within the device, it is almost impossible to 

distinguish their effects and contributions if their relative 

significance cannot be determined. Despite this, the SPICE models 

proposed by the Xu group and Mena et al. are claimed to be able to 

accurately fit the experimental L-I curves even though they ignore 

the possible contribution by the carrier heating. Unless it can be 

proved in the future that the carrier heating is indeed insignificant, 

attributing all the heating effects only to the lattice heating is 

questionable. In addition, if the models give acceptable results it is 

because they contain compensating errors. 
3) In fact, some physical processes only affected by the carrier heating, 

for example, the leakage current and Auger process, while other 

physical processes only influenced by the lattice heating, for 

example, the thermal conduction. Attributing all heating effects only 

to the lattice heating certainly does not satisfy the realistic physical 

models. For example, the temperature-dependent threshold current 
level in a semiconductor laser is mostly determined by the Auger 

process and leakage current, which are closely determined by the 

carrier temperature. In other words, the carrier temperature mostly 
determines the threshold current level. Fitting threshold current by 

using a model only with lattice heating does not correspond to the 

realistic physical situations and could even cause conceptual 

confusion and misunderstanding. 
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As discussed, it is apparent that attributing all heating effects just to 

the lattice heating is not only physically unrealistic but also numerically 

questionable. Incorporating the carrier heating into the heating model, 

which appears necessary and indispensable if realistic physical models are 

to be established. It is emphasised that accurately fitting experimental data 

is not the most important criterion by which to judge the success of a 
SPICE model for semiconductor lasers. Usually, there are hundreds of 

undetermined parameters in SPICE circuit models. Therefore, it is not 
difficult to fit a set of experimental data by adjusting these parameters. It is 

not surprising that even a primitive SPICE circuit model can accurately fit 

a set of experimental data without too much difficulty. Judging the merit of 

a SPICE circuit model only by the ability of data fitting is certainly 

misleading. It is more appropriate to value the merit of a SPICE model by 

assessing its physical correctness. 

1.7 Methodologies for Incorporating the Carrier Heating into the 

SPICE Circuit Model 

As discussed, it can be concluded that incorporating the carrier 

heating is certainly desirable if the heating problem in semiconductor lasers 

is to be investigated. To do this it is necessary to be able to simultaneously 

simulate the carrier and lattice temperatures in a device if the temperature- 

related properties of semiconductor lasers are to be understood. Otherwise, 

it is almost impossible to determine whether the carrier temperature or the 
lattice temperature causes the temperature-related properties. In addition to 

aid design and perform any quantitative numerical simulations to predict 
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the temperature-related characteristics of semiconductor lasers accurate 

models are required. 

The first task for achieving this goal is to establish a realistic 

physical model with both the carrier and lattice heating. After the realistic 

physical model with carrier and lattice heating is established, then this 

physical model needs to be transformed into a circuit model without any 
further simplification. Once the circuit model has been transformed from 

the physical model, the SPICE codes can then be implemented in 

accordance with the circuit model. Following the development of the 

SPICE codes, predictions of performance can proceed. As mentioned, for a 

SPICE circuit model with ten or more adjustable parameters, it will be very 

easy to accurately fit a set of experimental data. However, such accuracy 
does not necessarily imply that the model is robust in other cases. 
Therefore, a more acceptable justification of success may be that a more 

physically realistic model needs to be incorporated in SPICE codes. 
Generally, it can be stated that a SPICE circuit model with more physical 

bases and more parameters has a greater ability to fit more data sets. 

Therefore, there is always a trade-off between the circuit complication and 

data-fitting ability. Nevertheless, it should be emphasised that 

incorporating the carrier heating is seen as a necessity rather than an option 

for modelling the heating effects presented in semiconductor lasers. 
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1.8 SPICE Circuit Models 

The first task in transforming the rate equations of semiconductor 
lasers into the circuit models is to select an appropriate computing language 

for the circuits. Unlike simulation languages for digital circuits, which 

apparently lack any standard at present despite the existence of popular 
languages such as Verilog and VHDL, SPICE is well recognised as the 

standard simulation language for analogue electronics. Tberefore, instead 

of developing a new simulation language, which will not be compatible 

with other electronic circuit models, it was decided to implement the circuit 

models for semiconductor lasers using the SPICE language. 

SPICE is widely used in the academic and industrial worlds to 

simulate the operation of various electronic circuits and devices [33]. It was 
developed in the University of California and initially used on mainframe 

computers. The successor to the original version, SPICE2, is more 

powerful. Later versions are designed to operate on PCs, Macintoshes and 

minicomputers. One of them is the PSPICE from the MicroSim 

Corporation. PSPICE designed to mainly be used in PCs. 

In order to simulate any circuit input file with PSPICE, standard 
MICE codes must first be written. This can be done using any suitable 
text editor. Using the built-in text editor, Textedit. exe, in PSPICE, can 

easily do this. The PSPICE codes created by using the Texteditexe can be 

saved into a circuit file with the file extension *. cir, for example, laser. cir. 
The compiler of the PSPICE language is in the Pspiceadexe, which can be 

called to compile the input circuit file laser. cir. The compiled result, 

whether containing errors or not, is stored in an output file called laser. out. 
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In MICE, a facility called Probe can be used to check the results of 

simulation by opening a graphic window. A simple. PROBE statement in 

the PSPICE codes can call the function of the Probe. Calling YROBE in 

PSPICE in fact creates another output file with the file extension *. dat, for 

example, YROBE will create the laser. dat for the laser. cir. 

The procedures for downloading, installing, creating, compiling, 

probing and plotting relating to the MicroSim PSPICE evaluation package 
is explained in APPENDIX A and schematically illustrated in Fig. 1.4. A 

summary of the syntaxes in the PSPICE language is listed in APPENDIX 

B. It should be noted that the evaluation package of MicroSim PSPICE has 

almost the same functions as the vendor one, except in the capacities for 

handling circuit elements in the schematic drawing and the library of circuit 

elements. Since the work in this thesis includes developing PSPICE codes, 

the PSPICE complier provided in the evaluation package is adequate for 

this task. 

1.9 The Aim and Objectives of the Thesis 

The aim of this thesis is to develop a SPICE circuit model for 

semiconductor lasers that incorporating the effects of the carrier and lattice 

heating. This SPICE circuit model is to be able to simulate the de, ac and 

transient characteristics of semiconductor lasers. 

The objectives are to: 
1) Review and establish the physically-based rate-equations that can 

satisfactorily model the carrier and lattice heating in 
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semiconductor lasers. These rate equations should not have any 
heuristic or phenomenological definition on the physical origin of 
the heating mechanisms in semiconductor lasers. Consequently, 

all the physical processes in these rate equations will be carefully 

and individually examined. These rate equations and their 

associated physical processes will be reviewed in Chapter 2 of 

this thesis. 

2) Transform the rate equations into a suitable circuit model without 

any unnecessary simplification. Each physical quantity in the rate 

equations, such as carrier density, photon density, carrier 

temperature or lattice temperature, will be represented by a 

correspondent circuit quantity, such as voltage and current. In 

addition, each physical process in the rate equations, such as 

carrier recombination, photon loss or heating mechanism, will be 

represented by a correspondent circuit element, such as resistor, 

capacitor or current source. The derivation of the circuit model 

from the rate equations will be presented in Chapter 3 of this 

thesis. 

3) Develop the SPICE codes for the circuit model. A SPICE 

simulation package, MicroSim PSPICE, will be used to write, 
debug and simulate the SPICE codes developed from the circuit 

model. The SPICE codes developed in this thesis are attached in 

Appendix C of this thesis. 

4) Simulate the heating mechanisms and their effects in 

semiconductor lasers by using the SPICE simulation software. In 

order to verify the ability of the new proposed circuit models 

when dealing with the carrier and lattice heating effects in 

semiconductor lasers, the effect of the lattice heating on the 
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nonlinearity of the light-current (L-1) relationship and the time 

variation of the carrier temperature in the transient response in 

semiconductor lasers will be simulated and demonstrated. Such 

simulations will be presented in Chapter 4 of this thesis. 

In summary, a new proposed SPICE circuit model will be developed 

in this work, which will meet the following requirements: 
1) The new proposed circuit model should be applicable for 

semiconductor lasers under different operating conditions, which 
include the dc, ac (that is, small-signal modulation) and transient 

(that is, large-signal modulation) responses. The conventional 

approach of developing separate and different dc, small-signal and 
large-signal circuit models for a single electron device is to be 

avoided. In short, this circuit model is to universally be applicable 
for predicting the physical properties of semiconductor lasers for all 
different operating conditions. 

2) The new proposed circuit model should be achieved by a physically- 
based theoretical model without any heuristic and phenomenological 

arguments. In addition, the circuit model should be physically robust 
free from any quantitative uncertain, unnecessary and 

phenomenological definitions. Consequently, all the physical 

processes relating to the circuit model should be directly calculable 

without assigning any arbitrary values. For example, the 

conventional approach of heuristically assigning the lattice-heating 

source is considered unacceptable. 

3) The new proposed circuit model should be flexible enough to further 

accommodate expansions if more physical effects are incorporated. 

Of course, it is almost impossible to develop any circuit model that 
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can include all the physical processes and all the physical properties 

of semiconductor lasers. Although, the circuit model will emphasise 

the carrier and lattice heating effects in semiconductor lasers, this 

circuit model should be developed to consider further possible 

expansions and be able to accommodate other physical processes as 

well. In general, a circuit model cannot be viewed as a 'good' circuit 

model if it is only designed to account for certain effects. 
4) The new proposed circuit model should be able to be used with 

circuit models representing other electronic devices and systems. 
Semiconductor lasers are usually used with other electronic devices 

in real working systems, such as transmitter modules in fibre optic 

communication systems. Since most of the electronic devices have 

equivalent SPICE circuit models developed for the purpose of 

simulation, it is certainly anticipated that the development of a 
SPICE circuit model for semiconductor lasers to be used in 

conjunction with these electronic devices is of practical value. 
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CHAPTER 2 

RATE EQUATIONS FOR SENUCONDUCTOR LASERS 

2.1 Rate Equations 

It has been well recognised that the conventional carrier-photon rate 

equations can successfully describe many static and dynamic properties of 

semiconductor lasers. Therefore, any theoretical model that is proposed for 

fin-ther refinement should be able to accommodate these rate equations. 

Theoretical models for semiconductor lasers based on such a rate-equation 

approach certainly implies that the spatial effects of physical quantities will 
be either averaged or neglected. For example, the optical confinement 
factor is an average quantity characterising the overlap of the optical field 

with the carriers in the active region. The injection efficiency is an average 

quantity describing the percentage of current goes into the active region. 

The behaviours; of the carrier and lattice heating outside the active region 

were neglected. The validities of such assumptions can be found in a paper 
by Tsai et al. [ 15]. 

In order to incorporate the effects of the carrier and lattice heating, 

additional rate equations are needed to supplement the conventional carrier- 

photon rate equations. In this work, rate equations governing the carrier 
density n, photon density s, electron temperature T, hole temperature Th 

and lattice temperature TL will be used, that is, the five rate equations 

shown in Fig. 2.1 are used to describe the time variation of the carrier 
density n, photon density s, electron temperature T, hole temperature Th 
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Fig. 2.1. Rate equations for semiconductor lasers. 
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and lattice temperature TL. Each rate equation is schematically illustrated 

in Figs. 2.2,2.3,2.4,2.5 and 2.6, respectively. 

The conventional carrier-photon rate equations for carrier density n 

and photon density s are given by 

dn 
- 

17iny .I ini * -I leak- RsRH - Rp,, - RA. 
g - VgGs 

dt eV 
ds 

= rogGs -s+ rBR., 
Pon dt 'r. 

(2.2) 

where n only denotes the carrier density in the active region, e is the unit 

of electron charge, V is the volume of the active region, Iinj represents the 

external in ection current, 77inj represents the percentage of the injection 

current that reaches the active region, is the leakage current RsRff 

R, 
r,, n, RA,, g,,, and ugGs represent the carrier recombination rates (i. e., loss 

rates) due to the Shockley-Read-Hall (SRH) recombination, spontaneous- 

emission recombination, Auger recombination and stimulated-emission 
recombination, s is the photon density of the lasing light inside the cavity, 

I-, vg, G and r, are confinement factor, group velocity, gain coefficient 

and photon lifetime, respectively, and 8 is the percentage of photons 

emitted by spontaneous emission coupling into the stimulated emission. 

The physical meanings of these carrier-photon rate equations are more 

understandable if they are rewritten as 
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Fig. 2.2 Rate equation for the change rate of the carrier density. 
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Fig. 2.3. Rate equation for the change rate of the photon density. 
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where 

ds 1 i 1 1 
= di 

ý (d 

t . l) di 
) 

+(d (2.4) 
stim 

dn y 77in iini 

- 
) 

- (2.5) 
dt jnj eV 

(dn) 
_ 

Ikak 
(2.6) 

dt kak eV 

dn ) 
-RSRH (2.7) 

dt SRH 

dn ) 
-Rspon (2.8) 

dt 
spon 

(dn ) 
= -RAug (2.9) 

dt 
A ug 

A 
= -vgGs (2.10) 

dt 

ds ) 
= I-vgGs (2.11) 

dt 
,,, I. 

ds ) ( s (2.12) 
dt) ,,,.,, - 
ds ) 

= T, 8R., Von (2.13) 
7t 

) 

spon 

Apparently, the injection current supplies carriers into the active 

region, while the leakage, SRH, spontaneous emission, Auger and 

stimulated emission processes annihilate carriers in the active region. 
Similarly, the stimulated emission and the coupling of the spontaneous 

34 



emission supply the lasing photons, while the losses due to the internal loss 

and the mirror loss deplete the photons inside the cavity. 

In order to characterise the time variation of the carrier and lattice 

temperatures in the active region, rate equations for the electron 

temperature T, hole temperature Th and lattice temperature TL are given 

by 

dTe 
= 

(LUe 
e niinj - leak e 

-1 [(AE 

Ij) 
77' 

+ (AE,, 
ti. 

)vgGs 
dt a Te in eV 

ee + (AE;. 
g)R;. g + (AEý,,,, )vgaý,,, s (2.14) 

U, (T, ) - U, (TL) U, (T, 
re-L 

dTh OUh 
h Y, inj - leak h 

-1 [(AE 
) l7in 

+ (AEslim)vgGs 
di aTh 

) 

in 
eV 

hhhh 
+ (AEýug)RýUg + (AE 

fca 
) 

Og afca S (2.15) 

Uh(Th)- Uh(TL) 
+ 

Uh(Th)-Uh(Te) 

rh-L re-h 

I 

dTL 
= 

TL - 
THS I U, (T, ) - U, (TL) 

dt 'rk CL PL 
- 

re-L 
(2.16) 

+ 
Uh 

(Th )- 
Uh (TL 

+ (EF, - Efl, )RSRv 

rh-L 

I 

where u, (T), c=e or h, is the carrier energy density'at temperature T, 

ac is the coefficient of the free-carrier absorption, 
(AEP'rocess ) 

process fca 

in slim, Aug and Jca is the average energy change per carrier due to the Y 

processes of the injection, stimulated-recombination, Auger recombination 

and free-carrier-absorption heatingp THs is the temperature of the heat sink, 

35 



CL is the specific heat capacity of lattice, and pL is the material density of 

lattice. In these rate equations, there are four time constants: r,, is the 

thermal conduction time, re-L is the electron-lattice energy relaxation time, 

rh-L is the hole-lattice energy relaxation time and -re-h is the electron-hole 

energy relaxation time. These time constants govern the overall energy 

exchange rates between electrons, holes and lattice. Their physical 

meanings are discussed in the following sections. 

Similarly, the three rate equations governing the time variation of the 

electron temperature T, hole temperature Th and lattice temperature TL are 

more understandable if they are rewritten in the following fonnat: 

dT, dT, dT, dT, 
di .( dt 

) 
+( 

) 

inj dt 
+( 

)Aug 

stim 
di 

(2.17) 
'e ýý T Ie ýT dTe 

+( 
dt 

)fi 
+( 

ca 
dt 

)e 
+( 

_L 
di 

)e-h 

dTh dT dTh dTh 
dt ý( 

) 

di in 
+( 

v di 

) 
+( 

Stim 
dt 

) 

Aug 
(2.18) 

dTh dTh dT h +( 
t d 

+( 
fca d dt h-L 

( ) 

e-h 

dTL 
. 

(dTL ) 
+ +( 

') dTZ 
+ 

(dTL 
tt. (2.19) 

) 

dt di thenw, 
conducfion 

dt 
e-L 

dt dt SRH h-L 

where 

ýI= ýu 77i"j I IIJ - Ikak 
(2.20) 

),, 

c eV dt ja Tc 
T 

(dTc ) ýuc 
=(C v Gs (2.21) 

dt 
stim 

aTc 9 
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T" (ALýug )RAug (2.22) 
dt 

Aug a 
T (AEý,,, )vga` 

s fca (2.23) 
dt aT, f, 

dTc ) aul = -( 
-1 UC (TC) - Uc (TL ) 

(2.24) 
dt )c-L aTc 'rc-L 

dT, (ýLTh 
=- 

) 
ýýC_ Ue (Te) - Ue (Th) 

(2.25) 
dt dt 

e-h e-h 
aTc re-h 

(dTL )=- TL - 
THS 

(2.26) 
dt thertnal 

conduction 

I U"(T,, )-u, (TL) 
(2.27) T 

dtL 

)c-L 

CLPL rc-L 

(dTL )I 
(EF,, - 

EFh ) RSRH (2.28) 
di SRH CL PL 

From these equations it can be seen that, the electron temperature 

will increase due to the injection heating (2.20), stimulated-recombination 
heating (2.21), Auger-recombination heating (2.22) and free-carrier- 

absorption heating (2.23); and it will decrease due to the electrons releasing 
their energy to lattice and holes as they relax. In the same manner the hole 

temperature will increase due to the same heating mechanisms and the 

receiving of electron energy. Similarly, it will decrease due to the holes 

releasing their energy to lattice. The lattice temperature will increase as it 

obtains energy from the electrons and holes via the intraband energy 

relaxation and the interband SRH process with multiple-phonon emission. 
This effect will be discussed in Section 2.2. 
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The detailed physical meaning of each effect described in the rate 

equations is discussed in the following sections. In this work, a typical 
Al,, Gal.,, As/GaAs heterostructure laser is used as an example because many 

physical parameters presented are well characterised for the 
AI, Gal.,, As/GaAs material and are not so readily available for other 

material systems. An example to illustrate this point is the energy 

relaxation times. 

In the following section, all the physical terms in the rate equations 

will be explained in details, and their related formulas for implementing in 

the new proposed SPICE circuit models will be given. 

2.2 Parameters for Carrier Processes 

The carrier density n, is defined as the carrier numbers per unit 

volume. Higher carrier density means more carrier numbers within a unit 

volume. This can schematically be visualised shown in Fig. 2.7. In the 
following discussion, the sub-index c=e denotes electrons and c=h 
represents holes. From the principle of statistical physics, carrier density 

can be characterised by the Fermi-Dirac distribution, and the value of 

carrier density is determined by the quasi-Fermi energy jiF, and carrier 

temperature T, If the carrier system is assumed to maintain the quasi- 

equilibrium condition, nc can be calculated by 

n, = Nc FI/2 
Pfc- E, (2.29) 

( 

kBTc 
) 

where N, is the effective density of states 
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Fig. 2.7. Schematic diagram of the carrier distributed at (a) low carrier 

density and (b) high carrier density. 

39 



N,, = 2(m, 
kBTc )3/2 

ý 2A2 ) (2.30) 

mc is the effective mass for the density of states in the conduction band or 

valence band, kB is the Boltzmann constant and h is the reduced Plank 

constant. In (2.29), F, (q) is the Fenni-Dirac integral 

Fj Q7) =I 
xi 

- IF(i + 1) 
fo 

I+ exp(x - q) 
(2.31) 

in which rQ + 1) is the gamma function. E, is the energy of the band 

edges for the conduction band or valence band. Usually, E, =0 and Eh =0 

are chosen by defting the band edges as the energy reference for electrons 

and holes. Since it is very difficult to do the integral in the SPICE circuit 

model, the approximate form for (2.3 1) should be used. It has been shown 

that the Fermi-Dirac integral F, (q) can approximately be calculated by the 

following analytical form [10]: 

[exp(-i7) + C, Q7)]-l 

where, for i= 1/2, 

(2.32) 

C112 (77) "': 
3(ir/2Y2 (2.33) 

[q 
+ 2.13 + 

(7 
- 2.131 12/5+9.6 

r2]3/2 

As a result, the carrier density n, can analytically be calculated by a 

given quasi-Fermi energy uF, and a carrier temperature T, In addition, the 

following analytical form can be used to approximately determine the 

quasi-Fermi energy if the carrier density n, and carrier temperature T, are 

given [10]: 
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*UFc = Ec + kB Tc 
[hi 

+ I: ci (2.34) 

where C, = 3.53553 x 10-1, C2 = -4.95009x 10-3 
, 

C3 = 1.48386 x 10 -4 and 

C4 = -4.42563 x 10-6 for the approximation up to the fourth power of the 

approximate series. Note that the band-edge energies for electrons and 

holes, E, and E, are set to zero because electrons and holes are treated as 

different energy systems. However, it should be noted that if the electron 

energy is chosen as the energy reference for holes, then the following 

conventional notations can be used ne -ý n. nh _ý'P t "Fe -> EF, 
t 

/ia -> -Ell, , 
Ee -> E, and Eh -> -E, . 

Note that E, - E,, = Eg when 

using such a notation. In the following discussion, both notation systems 

are used according to convenience in different situations. 

The carrier energy density uc is defined as the total energy of 

carriers per unit volume. It is a function of carrier density and carrier 
temperature as expressed in equation (2.35). 

3 
uc= nkBTc H312 + ncEc (2.35) 

2 1/2 

( 

In the equation Hj' (17) ý F, (i7)lFj (q), note that in the non-degenerate case, 

that is, (qF, -E, )<<kBT,, u, -=3n, 
kBT, 12, the result corresponds to the 

theorem of equi-partition of energy that states each particle has kBT12 

energy for each degree of freedom. In the same way, an analytical 

approximation can be used to calculate F3/2(q) by [10] 
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C3/2 (17) = 
15(ir/2f2 

]5/2 
(2.36) 

77 + 2.64 + 
()7 

- 2.641 
9/4 

+ 14.9y9 
11 

The injection current is denoted by, 
inj. As schernatically shown in 

Fig. 2.8, the injection current on the p-type cladding region is established 
by a hole current, while the n-type cladding region by an electron current. it 

also shows that holes flowing from the p-type region will be trapped in the 

intrinsic Q) active region. The direction of holes is the same as that of the 

hole current. Electrons flow from the n-type region into the active region. 
The direction of electrons is opposite to that of the injection current since 

electrons have negative charge. Since not every electron transported across 

the n-type region or every hole transported through the p-type region will 

reach the active region where the stimulated emission proceeds. The 

coefficient of the injection efficiency t7,,, j is defted to characterise the 

percentage of carriers reaching the active region. In fact the injection 

efficiency q,,, j is determined by the lateral leakage current and the 

recombination of the majority carriers, that is, electrons in the n-type 

cladding region and holes in the p-type cladding region. 

There are two types of leakage currents: the lateral type and 

transverse type, as schematically shown in Fig. 2.9. The lateral leakage 

current is attributed to the injection efficiency i7i,, j in this work. The 

transverse leakage current Il,,, k is defined as the electrons (holes) escaping 

from the recombination process in the active region and entering into p- 

type (n-type) cladding region, that is, which becoming as the minority 

carriers. Since the leakage current represents the carriers escaping from the 
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Fig. 2.8. Schematic diagram of the injection current. 
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Fig. 2.9. Schematic diagram of the leakage currents (lateral and transverse 

directions). 
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lower band-edge energy of the active region into the higher band-edge 

energy of the cladding region. As a result this process is very sensitive to 

carrier temperature. That is, as carrier temperature increases, more carriers 

will have enough energy to surmount the band-edge energy difference and 

escape from the active region into the cladding region. If the diffusion 

theory is used to model the transport of carriers across the heteostructure 

between the active and cladding regions, then Ik,, k can approximately be 

calculated by [34] 
eh Ikak Ileak + Ileak 

qDeneoLYL, qDhnhoLYL., (2.37) 

Le tanh(WpILe) 
+ 

Lh tanh (WN 14) 

where Wp and WN are the lengths between the boundary of the 

heterostructure and the p-type contact, and the n-type contactý respectively, 

as shown in Fig. 2.8. The diffusion length of the minority carriers is given 

by L, = (D, r, )1/2' where D., and -r, are the diffusion coefficient and the 

recombination lifetime of the minority carriers, and n, O is the minority 

carrier density at the boundary of the heterostructure between the active 

and cladding regions. The minority density nO can be determined by 

n,, o N, FI/2 *UFc - Ec - ýc 
k, 6T, (2.38) 

Nc exp 
Ec + AE, 

kB 

where A E, is the band-edge energy difference for the heterostructure. 

According to this theory, the leakage current Il".,,, k is exponentially k 

dependent on the carrier temperature, Ic oc nco oc exp(- IITJ . This kak 

suggests that the leakage current will exponentially increase when carrier 
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temperature increases. This corresponds to less current going into the active 

region when the carrier temperature increases. This behaviour has 

significant implications in determining the heating effect in semiconductor 
lasers. 

The volume of the active region, V=L., LYL,, , is shown 

schematically in Fig. 2.10. As can be seen in Fig. 2.10 where L., is the 

thickness of the active region along the transverse direction, LY is the 

width of the active region along the lateral direction. For strong index- 

guiding lasers, such as buried-heteostructure types, LY is exactly defined 

by the geometrical structure. In addition, for the gain-guided or weakly 

index-guided lasers, the definition of LY becomes less obvious. In such 

cases, the effect of lateral current spread may become significant and the 

current density is not uniformly distributed along the y-direction. Under 

such circumstances, LY can be treated as a parameter that characterises the 

width of the metal contact, normally, p-type upper metal contact, rather 

than the width of the active region. In addition, the effect of the lateral 

current spread, that is, lateral leakage current, and can be incorporated into 

the parameter of the injection efficient Finally, L. is the length of the 

cavity between two mirrors. 

After electrons and holes enter into the active region, they need to 

recombine with each other to restore their equilibrium level. There are 

several carrier recombination mechanisms in the active region: the 

Shockley-Read-Hall (SRH) multi-phonon emission, spontaneous-emission 

of photons, Auger process and stimulated-emission of photons. The SRH 
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Fig. 2.10. Schematic diagram illustrating the volume of the active region. 
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recombination describes that the electrons in the conduction band proceed 
the multi-phonon emission to release the band-gap energy and fill (or 

recombine) the holes in the valence band. Traps formed by defects or 
impurities usually assist this SRH process. The Auger recombination, 

which describes an electron recombines with a hole and excites another 

electron to a higher energy state. Similarly, a hole can recombine with an 

electron and excite another hole to a higher energy state. An electron can 

also recombine with a hole by spontaneously emitting a photon. The term 
4spontaneous' emission means that such a recombination can proceed 

without any other photon involved. In addition, a photon can stimulate an 

electron to recombine with a hole and generate another photon. The 

generated photon by stimulation thus bears the same features, such as 
direction, frequency and phase, as the original photon, namely, with the 

same coherence. On contrary, the photon emitted by spontaneous emission 

could be in any direction and with any allowable frequency. This, of 

course, is the main difference between a laser and a light-emitting diode 

(LED). In short, the injected electrons and holes in the active region can 

recombine with each other via the SRH, Auger, spontaneous emission and 

stimulated emission. Usually, the SRH and Auger are called the 

nonradiative recombination processes, while the spontaneous emission and 

stimulated emission are called the radiative recombination processes. It 

should be noted that the SRH process here is differently referred from the 

conventional definition [35]. In the conventional treatment, the SRH 

process includes the trap-assisted Auger process. However, it is preferred 

to include this process in the Auger process, while the definition of SRH is 

solely referred to the process of the trap-assisted interband multi-phonon 

emission [9]. 
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The physical picture of the SRH process in the active region is 

illustrated in Fig. II (a), in which an electron and a hole emit many phonons 

and recombine in a trap centre. The change rate of the canier density via 
the SRH recombination is characterised by RsRH. Calculating the RsRHby 

first principles by considering the multi-phonon emission is an outstanding 

problem itself without a generally accepted answer. It is almost impractical 

to use any complicated formula for the SRH process in a circuit model. 
Nevertheless, the SRH recombination rate in semiconductor lasers is 

conventionally calculated by the following simplified formula [9]: 

RsRH ; t; AsRH (n - nj (2.39) 

where AsRu is the coefficient of the SRH process, n, is the intrinsic carrier 

density which characterises the electron and hole densities of the intrinsic 

semiconductors at the thermal equilibrium condition (that is, 

EF, = E,,,, M E, and T, = Th = TL ) [3 5]. 

n, = FNNh exp 
Eg 

Fk ýBT 
(2.40) 

Note that n=n, before any current is injected into the semiconductor laser. 

SM'ce the heating effect in the device is the main concern in this work, the 

temperature-dependent feature of each physical process will be discussed. 

In general, the SRH process mainly proceeds via the trap-assisted multi- 

phonon emission; therefore, Asp 
,, 

is supposed to be dependent on the 

carrier temperature and lattice temperature because the involvement of 

carriers and phonons. However, the SRH recombination is usually not the 

dominant recombination process in the active region, other recombination 

processes, such as spontaneous emission and Auger process are usually far 

more important than the SRH process in semiconductor lasers. Therefore, 
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Fig. 2.11. (a) SRH (interband) (b) intraband carrier energy relaxation via 

emitting phonons. 

50 



the camer and lattice temperatures dependence of ASRHwill be neglected 

in this work. 

An electron and a hole can directly recombine by generating a 
photon, as shown schematically in Fig. 2.12. The change rate of the carrier 

density due to this process is represented by RPon 
- 

In the spontaneous- 

emission process, since the momentum of the emitted photon is usually 

negligible compared to the momentum of carriers, an electron can directly 

recombine with a hole in the same k-state of the conduction band and 

valence band without any stimulation by photons. As an electron and a hole 

are directly involved in this process, RPon is considered to be proportional 

to the multiplication of the electron density and hole density, that is, 

R, 
Pon oc nenh. As a result, it is a common practice to calculate Rspon by [9] 

R, Pon= 
BPon (n,, 

nh- n i2) (2.41) 

In the spontaneous-emission process, an electron and a hole directly 

recombine with each other at each k-state of the conduction and valence 
bands whether they are in the high-energy tail or near the band edge. 
Consequently, although the emission spectrum may very sensitive to the 

carrier temperature, the overall spontaneous-emission rate RPon (and thus 

Bspon) should not strongly depend on the carrier temperature. Therefore, the 

coefficient BPonwill be treated as a constant in this work. 

In the Auger process, an electron can also recombine with a hole via 

exciting another electron or hole to a higher energy state. The change rate 

of the carrier density due to this process is characterised by RA. 
g. 
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Fig. 2.12. Schematic diagram of spontaneous emission. 
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Generally, the Auger process can be distinguished by direct or indirect 

(phonon-assisted or impurity-assisted) types. Each mechanism has several 
different routes by which electron-hole recombination proceeds, such as 
CCCH, CHHS and CHHL processes, as illustrated in Fig. 2.13. In addition, 
if the different valleys of the conduction band are fin-ther taken into 

account the calculation of RA,, 
g 

becomes extremely involved. As a 

consequence, it is an almost numerically difficult problem to calculate 
RA,, g 

by first principles. 

Since there are three carriers involving in the Auger process, the 
Auger recombination rate RA,, g 

is simply calculated by [9] 

h RAug = Reug + Rýug 
A 

e22+ CAhug 
(nh2 2) 

= C; 
ug 

(ne 
nh - ne nj ne nh ni (2.42) 

= CA 
ug 

(n 2_n, 2ý 

where, RA",, g represents the Auger process with two electrons and a hole 

(such as the CCCH process) and RAhug represents the Auger process with 

two holes and an electron (such as the CHHS process). 

It is commonly believed that RA,, g is very sensitive to the carrier 

temperature, especially for the material system with small band-gap energy. 
The canier-temperature dependent coefficient CA,, 

g can' be characterised as 

suggested by Zory [3 6] 
[fa I 

-ýIo 

] 

CA",, 
g 

(T,, ) = CA. 
g 

(3 00 K) exp 
0 

(2.43) 
kB Tc 

where E,, = -0.0404 eV and CAcg (300K) = 4.22 x 10-42 M6 /s were 
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Fig. 2.13. Schematic diagram of Auger recombinations. 
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suggested. This fonnula will be implemented in the circuit model to discuss 

the effect of the carrier heating on the Auger process and thus the 

properties of semiconductor lasers. 

Equation (2.43) is seen to give the same temperature dependence for 

the Auger process as for the leakage, that is RA,, 
g oc CA,, 

g oc exp(- IITJ, the 

Auger recombination rate is exponentially dependent on the carrier 

temperature. This suggests that the Auger recombination rate will 

exponentially increase when the carrier temperature increases. In short; for 

an amount of injected carriers, if the carrier temperature increases, most of 
the carriers will nonradiatively recombine and less of the carriers will 
proceed to the stimulated emission state to generate the lasing light. This 

phenomenon certainly has significant implications for the determination of 
the heating effects in semiconductor lasers. 

In summary, in this section, the carrier processes and their likely 

effects in semiconductor lasers have been briefly described. In addition it 

has been identified that the leakage current and Auger process are strongly 
dependent on the carrier temperature. These features will be incorporated 

into the circuit models. 

2.3 Parameters for Photon Processes I 

In the active region, electrons and holes recombined via the SRH, 

spontaneous emission and Auger process will not produce any 'lasing' 

light. However, in the stimulated-emission process, an electron can 
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recombine with a hole in the presence of a photon and generate another 

photon, as shown diagrammatically in Fig. 2.14. The photon generated by 

the stimulated emission has the same characteristics as the original photon, 

and it can also stimulate an electron and a hole to generate another photon. 
In addition, an electron in the valence band can 'stimulatively' absorb a 

photon and transit into the conduction band, that is, leave a hole in the 

valence band at the same time. In other words, a photon can be absorbed to 

create a pair of an electron and a hole. Under the natural condition, that is, 

without any injection current the photon absorption rate is much larger 

than the emission rate. As the current injects more electrons into the 

conduction band and more holes into the valence band, the emission rate 

will gradually increase and the absorption rate will decrease at the same 

time. When the current increases to a certain value where the emission rate 

equals to the absorption rate, the laser has reached the 'transparent' 

condition in which the photons propagate through the material without 

either loss or gain by stimulated process. However, at this stage, the photon 

will suffer from other loss mechanisms, such as free-carrier absorption. As 

the current increases ftirther and reaches the 'threshold' condition, the gi 

provided by stimulated emission will overcome all the optical losses and 

the photons will start to amplify themselves. The device becomes an optical 

amplifier. However, in a laser, the feedback mechanism by the mirrors will 
force the amplifier to oscillate in a steady state, that is, lasing condition. 

In semiconductor lasers, the term of the stimulated emission is 

actually referred as the net stimulated emission, that is, the emission rate 

minus the absorption rate. Apparently, the stimulated-emission process will 
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consume carriers and generate photons. The change rate of the carrier 

density by stimulated emission is usually described by the relationship 
R, ti. = vgGs (2.44) 

where og = CO Ing is the group velocity of photons, co is the speed of light 

in free space, ng is the effective refractive index for the group velocity and 

G is the gain coefficient defined by the optical susceptibility that is 

induced by carrier injection. Calculating the gain coefficient by first 

principles by considering the details of the stimulated emission processes 

have been intensively investigated and can be referred to many textbooks 

[8]-[11][33]-[35]. The results are summarised in the following: Generally, 

the gain coefficient G is a function of the electron density n, hole density 

nh, electron temperature T, hole temperature Th (which characterise the 

electron and hole distribution function in the k-states, respectively), lattice 

temperature TL (which mainly characterises the dependence of the energy 

gap on the lattice temperature), photon energy hw, and photon density s 

(which characterises the effect of spectral hole burning, as shown 

schematically in Fig. 2.15), that is, G(n,, nh, T,, Th, TL, hw1, s) . 
The 

numerical calculation for G only involves a single integral [37]; although, 

to implement such an integral in a circuit model is impractical. Therefore, 

as a result it is necessary to create an approximation for G while 

maintaining its dependence on ne 9 nh . 
T, 

, 
Th 

, 
TL 

,hw, and s as an 

essential feature in the circuit model. The following approximation form by 

Tsai et al. [28]-[32] is adapted in this work: 

G=g, 
(n - n1r)- 9T. 

(Te 
- TO)- 9T. 

(Th 
- TO)- 9T, (TL - TO) 

(2.45) (' + 6shbS) 

Here n,, is the carrier density in transparent condition when G=0. c., hb 
is 
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Fig. 2.15. Schematic diagram of spectral hole buming. 
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the nonlinear gain coefficient for the effect of spectral hole burning. To is 

the reference temperature. Usually, To = THs is chosen for simplicity. 

. 
(hwl), gr (hwl) 

, 
gT Note that n, (hwl), gn(hcoj) , gr ol) and , 

(hc 

6, hb(hcoj) are functions of photon energy hcol. For a single mode laser, 

their values are given as parameters in the circuit model. However, for a 

multi-mode laser, different mode will have different values of these 

parameters. Since the new proposed circuit models are designed for the 

single-mode lasers, these parameters will be treated as given constants. It is 

seen that the gain coefficient is linearly dependent on both the carrier 

temperature G oc -T, and lattice temperature G oc -TL . This suggests that 

when the carrier temperature or lattice temperature increases, the gain 

coefficient will linearly decrease. Consequently, the optical gain will 
deteriorate when the carrier or lattice temperature increases. This factor has 

significant implications in determining the heating effect in semiconductor 

lasers. 

The stimulated-emission process consumes carriers, but at the same 
time, generates photons. An electron and a hole recombined by stimulated 

emission will certainly generate a photon. 'Me consumption rate of the 

carrier density is R,,,. = vgGs , while the generation rate of the photon 

density is rR,,,.. = ]FvgGs in which r is the optical confinement factor. 

Since in a laser photons are distributed among a different volume of space 
from that of the active region distributed by carriers, electrons and holes. 

The definitions of the carrier density n and photon density s actually 

referred to different volumes. That is, even the recombination rate of the 

carrier number equals the generation rate of the photon number, their 
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'density' change rates will be different when they are referred to different 

distributed volumes. This is the reason for introducing the optical 

confinement factor IF for photons, and R.,,,. is determined by carriers. 

Therefore, the optical confinement factor is defmed as F characterising the 

overlap between the carrier density in the active region and optical field in 

the device, as shown schematically in Fig. 2.16. 

For carriers, the injection current supplies carriers and the 

recombinations deplete carriers. Similarly for photons, the stimulated 

emission generates photons and the optical loss depletes photons in the 

cavity. Photons are generated by stimulated emission will go through the 

mirrors and become useful output, or be absorbed inside the cavity, or be 

randomly scattered outside the cavity. The loss rate of the photon density 

due to these processes is characterised by the photon lifetime r, Generally, 

the photon lifetime in the cavity is calculated by 

vg 
(a,,,, + a.,, 

) (2.46) 

where a,,,, and a,,, are the absorption coefficients due to internal losses 

and mirror losses, respectively. The mirror losses describe the photons 

going through the two mirrors and becoming a useful output. If the 

reflectivities of these two mirrors are R, and R2, respectively, and the 

distance between them is L, then the mirror losses a,, d, can be calculated 

by [91 

a. irr : -, 
I In I 

2Lz RIR2) (2.47) 

There are several physical processes that contribute to the internal losses 

where the photons are absorbed or scattered. Generally, it was believed that 
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Fig. 2.16. Schematic diagram of the optical confinement factor. 
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the major contributions of the internal losses due to the free-carrier 

absorption, scattering and coupling, and its value can be calculated by [9] 

a,,,, = Tafa, + (1 
- llafta, 

p + a, + a, (2.48) 

where I afta, a and (I - I-)afa, 
p are the free-carrier absorption in the active 

region and passive region, respectively. a, is the scattering loss due to the 

scattering of photons by material interfaces, junctions, impurities, defects 

and strains. ac is the coupling loss due to the optical field spreading 

beyond the confinement layers because the wave nature of photons. 

However, it has been shown that free-carrier absorption is the dominant 

optical loss in semiconductor lasers [9]. The physical process of the free- 

carrier absorption describing an electron or a hole absorbs a photon with 

the assistance of phonons or impurities, and then transits to a higher energy 

state, as schematically shown in Fig. 2.17. Generally, free electrons and 

holes determine the free-carrier absorption af, and its value is almost 

linearly dependent on the densities of electrons and holes at lasing 

wavelength, respectively [10]. Therefore, the free-carrier absorption can be 

calculated by [10]: 

e+h_eh Clfca = afca aic,, - afcn, + ai,,, nh = arfcan (2.49) 

where aýc,, and ah are determined by electrons and holes, respectively, fca 

and aýca and 
h 

are their associated coefficients. Although afca can be (7ica 

calculated by first principles, for GaAs, which magnitude is experimentally 
determined by [34] 

afca(m-1) -_ 3X 10-22 n,, (M-3) +7x 10-22nh (M-3) (2.50) 

This relationship will be implemented in the new proposed circuit models. 

63 



so Ih hh 

Fig. 2.17. Schematic diagram of free-carrier absorption. 
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Photons are created not only by stimulated emission but also by 

spontaneous emission; therefore, the spontaneous emission should also 

contribute to the photon generation. However, for semiconductor lasers, the 

photons generated by stimulated emission are the main interest. 
Nevertheless, some photons are generated by spontaneous emission, are in 
the same direction as the photons generated by stimulated emission, can 

contribute to the lasing light. The coupling coefficient )6 is introduced to 

characterise the portion of photons emitted by spontaneous-emission 

process coupling into the group of photons emitted by stimulated emission, 

as shown in Fig. 2.18. It should be noted that the photon density s in (2.2) 

defined by photons only emitted by stimulated emission. As a result, the 

term PFRspon in (2.2) represents the increase rate of the photon density 

determined by the coupling of the spontaneous emission. As defined, the 

effect of the amplified spontaneous emission cannot be analysed by using 

the rate equations in this work. In addition, if the wide-angle photon 

detector is used in measuring the output photon power, then the measured 

L-1 relationship below and around the threshold will not exactly correspond 

with the prediction by these rate equations. In general, the values of T' and 

,8 are strongly dependent on the laser structure; therefore, they are treated 

as given parameters in this work and included in the circuit model as 

constants. 

2.4 Parameters for Carrier Heating Processes 

In a semiconductor laser, the injection current supplies energy to 

carriers; these carriers then release their energy to lattice by carrier-lattice 
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Fig. 2.18. Schematic diagram of the coupling coefficient for spontaneous 

emission. 
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collisions, that is, carrier-phonon interactions. Therefore, it is expected that 

the carrier heating and lattice heating will both be presented in 

semiconductor lasers; however, the carrier temperature and lattice 

temperature will be different from the condition where there is no injection 

current. In the active region of semiconductor lasers, the major heating 

mechanisms for carriers are due to the injection current, stimulated 

recombination, free-carrier absorption and Auger recombinations. 

Since in the band-edge, there is an energy difference between the 

cladding region and the active region, the carrier injecting from the 

cladding region will have higher energy than that of the carrier in the active 

region, as schematically shown in Fig. 2.19. The injecting carriers will 

move from the high-energy cladding region into the low-energy active 

region either by directly emitting phonons, which characterised by the 

carrier energy relaxation process, or by exchanging their energy with the 

carriers in the active region via carrier-carrier scattering. This is the 

physical process of the injection heating. As a result, the average amount of 

energy per carrier injected into the active region can approximately be 

represented by the energy difference between the carrier distribution in the 

cladding region and the carrier distribution in the active region: 
(AEj',, 

j) = AE, (2.51) 

For Al. Gai-. As/GaAs heterostructures, the following fonnulas are used in 

the new proposed circuit model: 
AE, = 0.6AEg (2.52) 

AEh = OAAEg (2.53) 

AEg = Eg (AIXGal-. As) - Eg (GaAs) (2.54) 
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Fig. 2.19. Schematic diagram of carrier energy relaxation in the injection 

heating process. 
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Since the actual current goes into the active region is '7inj, inj - leak, the 

power density generated by the injection heating is 
(du, 

= ýAE,,, 
t, 

) qiniiini - leak 

di ini eV 
(2.55) 

The change rate of the earner temperature due to the injection heating will 
be 

! ýT-, 
= '3u')-IýAE, ', 

Y) 
77ini, ini - leak (2.56) 

di 
inj 

aT eV 

Simulated emission deprives a pair of an electron and a hole, and 

thus removes a certain amount of energy from carriers. It should be noted 

that the stimulated recombination process removes not only the carrier 

energy but also the carriers themselves. The carrier temperature defined 

under the quasi-equilibrium. condition maintained by the carner-carrier 

scattering, which can statistically be viewed as the average energy of the 

whole carrier system, will certainly change according to the change of the 

average energy of the whole carrier system. This will be more clearly 
illustrated by the following derivations. The loss rate of the carrier energy 
density due to the stimulated emission can be expressed by: 

(ýýUý) Mh (h 
6v, - Eg X- 

vg Gs) 
di ti. 

Me + Mh (2.57) 
e A Etim (- 09 Gs) 

dUh )stim 
= 

Me (h 
(t), - Eg X- 

vg Gs) 
di Me + Mh (2.58) 

h 
=A Esti. (- 

ug Gs) 

Since the carrier energy density u, is a function of the carrier density n, 

and the carrier temperature T, by the chain rule of partial differentiation, C 
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du, ýýc ýnc 
+ ýýC-)( dTc ) 

(2.59) 
dt 

Jstim 
anc dt 

stim 
aTc )ý dt ) 

stim 
in order to manifest the change of the carrier temperature (dTldt),,,,,,,, the 

above equation can be rearranged as the following: 

TI ýu dn, u U0 
dio a T. 
T 

To 
).,, 

i. 
- 

2an-, ( 
di 

)Stim 

a T-,, 

-1 Z, 
0 AEs', im]ogGs (2.60) u. 

a 
u 

aT 
(AEsti. )ogGs 

a 
Note that (dn, 1dl).,,,. = -vg Gs and (au, Ian, ) represent the average energy 

per carrier. From the definition, the average energy change per carrier due 

to the stimulated recombination becomes 

" AE 
ýý, 

e _ 
Mh (ho) 

-E 
) 61) 2 ý, tj .. 

)= 

= AE h 

an e 

allh) 

, g . 
( 

Me +Mh 

_ 
Me (hw 

-E 
) 62 2 ) ý 

stim 

(Tnh 
l g . ( ) 

Me +Mh 

Whether (dTIdt),,,,. is negative or positive depends upon the sign of 

(, d Ec.. ) . 
since the lasing condition requires Eg :: 5 h w, :5 EF, - EFj, [ 10]. 

Consequently, the stimulated emission usually proceeds in the k-states 

between electrons and holes where the carriers' energy is smaller than their 

average energy. This implies that (d E' >0 and (dT, Idt),, 
i. > 0, that is, 

the carrier recombination by stimulated emission resulting in increasing the 

carrier temperature and thus the carrier heating. In shorý the stimulated 

recombination removes the carriers from the lower-energy states; therefore 

the average energy of the whole carrier system will increase and thus the 
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carrier temperature increases. It should be noted that although the 

stimulated emission reduces the total carrier energy but it increases the 

average carrier energy and thus the carrier temperature, because the carrier 

temperature is proportional to the average carrier energy rather than the 

whole carrier energy. 

The Auger recombination heating describes an electron and a hole 

recombine with each other by exciting another electron or hole to a higher 

energy state. For example, in the case of the Auger process that involves 

recombining an electron and a hole and exciting another electron into a 

higher energy state, that is, CCCH process [9], the electron system will 

approximately gain the amount of the band-gap energy. Alternatively, if a 

hole recombines with an electron via exciting another hole into a higher 

energy state, such as CHHS process, the hole system will approximately 

gain the amount of the band-gap energy. Therefore, in this work, it is 

assumed that the average energy variation for each Auger process is just 

the band-gap energy; that is, 

(AEýc sts Eg ug 

), 
(2.63) 

As a result, the power density generated by the Auger recombination is 

(AEAO 
ug 

) RA. 
g 

I 

duo) 1 Aug 
(2.64) 

'Me change rate of the carrier temperature due to the Auger recombination 
heating is 

ýLTC auc )-I (AE,,, 
j)Rc Aug d' A ug T 

J (2.65) 

It should be noted that, by the original definition of the recombination 
heating, the SRH and spontaneous-emission recombination processes might 
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also induce a certain amount of the carrier heating. However, generally 

their magnitudes should be much smaller than that of the Auger 

recombination heating and will be neglected in this work. 

In the process of ftee-carrier absorpfion, a carrier will absorb a 

photon and transit into a higher energy state. In this process, a carrier will 

gain an exact arnount of one-photon energy. Therefore, 

(AEý,,, ) = hw, (2.66) 

The power density generated by the free-carrier absorption is 

c (AEý,,, ) 
og afca s (2.67) 

dUc 

)fca 

= 

The change rate of the carrier temperature due to the free-carrier-absorption 

heating is 

c 
'ýUc (AEý,,, )vgafcaS 
aTc dTt 

c 
)fca 

-`- 

(0 

(2.68) 

Since the free-carrier-absorption process does not consume any electron- 

hole pairs, that is, (dnldt)f,,, = 0, therefore, (AEf",,, ) in (2.68) does not 

have the term (N, Ian, ) as in the case of the stimulated-emission heating. 

In the active region, carriers can increase their temperature via the 
injection heating, stimulated recombination heating, Auger recombination 
heating and free-carrier-absorption heating. Therefore, they need some 

cooling processes to reduce their temperature to keep the balance of the 

energy flow. In order to cool their temperature and thereby reach mutual 
thermal equilibrium with the ambient environment, carriers must exchange 
their energy either with the phonon bath via phonon emission or with the 
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photon bath via thermal photon emission (i. e., black-body radiation). For 

solid-state devices, carrier energy relaxation via the phonon emission is 

usually much more efficient than via the photon emission. In 

semiconductor lasers, photons are generated by stimulated emission do not 
help carriers to cool down their temperature but increase the carrier 

temperature. As a result it can be assumed that carriers relax their energy 
by emitting phonons in semiconductor lasers. If the carrier system is 

assumed to maintain its quasi-equilibrium with temperature T, and the 

phonon system is assumed to maintain its thermal equilibrium with 

temperature TL, then the carrier energy relaxation rate, that is, the loss rate 

of the power density, within the conduction band or valence band can be 

expressed by 

Uc )c U, (TC) - UC (TL) 
(2.69) 

-L rc-L 

where -rc-L is defted by the carrier energy relaxation time characterising 

the time scale for Tc to equalise with TL. The value of the carrier energy 

relaxation time Tc-L is typically within a range of several picosecond [37]. 

It should be noted that electrons and holes not only exchange their 

energy with lattice via electron-phonon and hole-phonon scattering but also 

exchange energy with each other by electron-hole scattering and phonon- 
bath sharing. Since the effective mass of electron is much smaller than the 

effective mass of hole, the electron heating is supposed to be more severe 

than the hole heating when electrons and holes are under the same 

condition of energy injection. As a result, the electron temperature is 

naturally higher than the hole temperature, and inevitably electrons will 

transfer parts of their energy to holes to equalise their temperatures. The 
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electron energy relaxation rate due to the electron-hole energy transfer can 
be expressed by 

I Ue (Te) 
- Ue(T du 

dul 
e)=-hh (2.70) 

e-h 
re-h d' 

)h-e 

where -r, -h 
is the electron-hole energy exchange time characterising the 

time scale for T, to equalise with Th. It should be emphasised again that 

although the electron-hole scattering provides a direct route for such energy 

exchange, electrons might also indirectly transfer their energy to holes via 

phonon bath sharing in which phonons emitted by electrons are absorbed 
by holes. Note that the negative sign before (duhldt)h-, indicates that the 

energy released by electrons is obtained by holes. 

Apparently, carriers release their energy by emitting phonons, and 

the released energy will be obtained by the phonon system. 'Merefore, the 

lattice will increase their temperature by the carrier energy relaxation 

processes. Similarly, the lattice needs some cooling mechanisms to reduce 
its temperature in order to keep the balance of energy flow. In fact, the 

lattice is cooled via the thermal-conduction process. This will be discussed 

in the next section. 
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2.5 Parameters for Lattice Heating Processes 

Thermal-conduction processes of phonons can be described 

according to Carslaw and Jaeger [38] by the equation of thermal 

conduction: 
a. TL 

= V*(K J+ 
gth CLPL "' 

t LVT (2.71) 

where CL is the specific heat capacity of lattice, pL is the material density 

of lattice, iq is the coefficient of thermal conductivity and gh is the 

thermal source in the unit of power density. The meaning of the thermal- 

conduction equation becomes more transparent if (2.71) is expressed by the 

following form: 

aTL I V. (K VT L 
J+ 91h 

at CLPL CLPL 
(2.72) 

=(aTL + 
raTL 

a' 
)Ic 

ý a' 
)source 

In equation (2.72) it can be seen that the change rate of the lattice 

temperature at a*specific position aTLIal is determined by the loss rate 

from the thermal conduction (ULlat),,, and the generation rate from the 

heat source (PTLIMmurce' Since only the lattice temperature in the active 

region will be considered in this work, TL will be denoted as the lattice 

temperature in the active region in the following discussion. In 

semiconductor lasers or any semiconductor device, the intraband carrier 

energy relaxation and the interband SRH process with multiple-phonon 

emission determine the heat source of the lattice heating. 'Merefore, 
increase rate of the lattice temperature can be expressed by 
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(13TL 1 Ue(Te) - Ue (TL) 
+ 

Uh (Th) - Uh (Tj 
at source 

CL PL re-L Th-L (2.73) 

+ (EFe Efh )RSRH ] 

It is assumed that the lattice temperature in the active region TL takes r,, 

second to cool down to the heat-sink temperature THs, then the reduce rate 

of the lattice temperature can be calculated by 

aTL 
=_TL 

-THS 

at 
)tc 

'r, 
(2.74) 

Apparently, the thennal. conduction process detennines the thennal 

conduction time r,, in the devices [30]. However, the thermal conduction 

time will be treated as a constant in the new proposed circuit model. 

In summary, the rate equations for modelling semiconductor lasers 

with the effects of the carrier and lattice heating have been introduced in 

this chapter. Every physical process in the rate equations has been carefully 

explained in order to ensure that the theoretical approach used in this work 

is based on realistic physical models. The method of transforming the rate 

equations into the new proposed SPICE circuit models is discussed in the 

next chapter. 
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CHAPTER 3 

TRANSFORNIING THE RATE EQUATIONS INTO 

THE SPICE CIRCUIT MODELS 

3.1 The Derivations of Circuit Models from Rate Equations 

In order to implement the rate equations into the circuit models as 

schematically shown in Fig. 3.1, the physical quantities described by the 

equations require to be transformed into circuit quantities which model 

each physical process, for example, currents, voltages and passive 

elements. Perhaps the most challenging aspect in such a transformation is 

to adequately represent the carrier density by a circuit quantity or element. 

For example, the Xu group [20][21], Rossi et al. [24] and Mena et al. [27], 

represented the carrier density by voltage, while in other groups it has been 

represented by current [16]-[19] [22][23][25][26]. Consequently, the 

philosophical arguments are undecided and a careful discussion on this 

aspect is first considered. 

The rate equation for carrier density (2.1) can be rewritten in a 

f current fonn' as: 

eV 
A 

i7inj Ij,, j - Ik, & -e VRsRH -e VRp,,,, -e 
VRA. 

g -e Vvg Gs 
dt (3.1) 

77inj, inj - Ikak - ISRH - Ispon - Aug - islim 

where 
ISRH =e VRSRH (3.2) 

Ispon e VRspon (3.3) 
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A 

I 

ds [photon temperature] 
dt 

dT, 
[electron temperature] 

dt 
dTh 

[hole temperature] 
dt 

Fig. 3.1. Schematic diagram of transformation from rate equations to 

circuit models. 
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IA,, 
g =e VRA. 

g (3.4) 

I,,, j. =e Vvg Gs (3.5) 

represent the recombination currents due to the SRH, spontaneous 

emission, Auger and stimulated emission, respectively. The task in 

transforming this rate equation is to choose a proper circuit element to 

represent the term eV(dnldt). The most obvious one is by using a capacitor 

as: 
In dV 

eV -4 _> Cn ýýw n OC I 

dt dt 
(3.6) 

Since the value of the carrier density n above the threshold is within the 

range of 1024 nf3, it is unreasonable to directly represent n by any circuit 

element or value. To circumvent this problem, it is necessary to transform 

the carrier density n into another physical quantity. Fortunately, the 

voltage drop V,, in the active region of a semiconductor laser actually 

corresponds to the separation of the quasi-Fermi energies between electrons 

and holes, that is, e V,, = EF, - E1%. Therefore, since the carrier density is 

determined by its quasi-Fermi energy (i. e., n(EF, ) and n(EA)), it is a 

as well; i. e., n(V ,, 
). As a result if the change rate of the function of V 

carrier density is implemented by a capacitor, then 

eV 
A 

=eV 
an dV,, 

= Cn 
d V,, 

(3.7) 
dt aV dt di 

where the capacitor is defmed by 

eV 
an 

(3.8) 
a V, 

It should be noted that the value of this capacitor strongly depends on V,,. 

In fact, it resembles the exponential relationship. In the SPICE syntax, the 
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nonlinear element of a capacitor can only be represented by a second-order 

polynomial form as given in [4]. That is: 

C(V) = CO (I + ajV + a2 V2) (3.9) 

Since the carrier density is exponentially dependent on the Fermi energy, it 

is almost impossible to represent C,, (V,, ) by such a second-order 

polynomial form with reasonable accuracy. However, such an approach has 

been used by the Xu group [20] [2 1 ], Rossi et al. [24] and Mena et al. [27]. 

Unfortunately, no justification is given for representing the rate equation by 

C,, (V,, ) in their work, nor is the method by which the relationship is 

implemented the C,, (V,, ) in SPICE codes given. As a consequence of this 

discussion, it was decided not to use this approach in this work. 

An alternative approach is to transforrn the change rate of the carrier 
density as: 

eV 
dn dI,, 

oc di dt 
(3.10) 

Such a transformation links the value of the carrier density to the value of 
the current. Tlis can be achieved if the carrier density n is transformed 
into a cuffent In by the defmition 

eV In =-n 
rn 

(3.11) 

where r,, is arbitrary time constant. The reason for the, choice is that since 

the value of n is a function of V,,; the current I,, should be a function of 

Vn. As a result, a circuit element must be found to represent the 

relationship between I,, and V, Since the value of the carrier density n is 

exponentially dependent on the value of the quasi-Fermi energy EF, and 
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thus V, it can be expected that I,, will also be exponentially dependent on 

V, Coincidently, the current in a diode exponentially depends on the 

voltage; therefore, can be well represented by a diode. In SPICE, 

the I-Vrelationship of a diode is described by 

I. (V,, ); zeI., 
[exp(V" 

- I,, R,, 
l7dVT 

(3.12) 

where VT=kBTlq, I, is the saturation current, R, is the series resistor of 

the diode, and 17d is the parameter to distinguish the different contribution 

between the diffusion current (77d ; tý 1) and the recombination generation 

current (i7d -ý 2). The parameters I, R, and i7dare chosen to represent the 

real I,, (V') as close as possible. In this model, 
l7d =2 (3.13) 

is chosen to characterise the recombination feature in the active region. 
Note that at V,, =0 and I,, = I, the carrier density is the intrinsic carrier 

density for the intrinsic active region, i. e., n=n,. Therefore, 

eV 
n, (3.14) 

rn 

The intrinsic carrier density is calculated by 

n, = V-NNhexp(- Eg 
(3.15) ýk-BT) 

where N,, and Nh are given in (3.15), Eg is the energy bandgap and T is 

the ambient temperature. 

The only parameter left to fit the relationship I,, = eVn(V,, )Ir,, is R, 

The percentage error introduced by using different values for R, to 
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represent the I,, - V,, relationship is shown in Fig. 3.2. As suggested by this 

result different values of R, will always cause some errors in such a 

fitting, especially for an applied voltage smaller than 0.2 V or larger than 

1.2 V. To account for the typical value of the serial resistance associated 

with a real laser diode [8][16], 

10 D (3.16) 

is assumed and used in this work. However, R, can always be treated as a 

fitting parameter for the circuit model presented in this work. 

Representing I,, =e Vn(Vn)lrn by a diode, (3.1) can be rewritten as 

27ini, ini --'ý leak + ISRH + Ispon + I. 
A. g 

+ Is6, + r, 
dIn 

(3.17) 
dt 

Following this transfortnation, the physical meaning of the original 

rate equation is more transparent. For the dc case, that is, r,, - dI,, Idl =0 in 

(3.17), the injection current is channelled into the leakage current, SRH 

recombination, spontaneous-emission recombination, Auger recombination 

or stimulated-emission recombination. Of course, the leakage, SRH and 

Auger process do not produce any light, so they are nonradiative 

recombinations. In contrast the spontaneous-emission and stimulated- 

emission recombinations are radiative processes because they generate 

light: incoherent light by spontaneous emission and coherent light by 

stimulated emission. It should be noted that if 
In = Ikak + ISRH + Ispon + IAug (3.18) 

is used in (3.17), then 

77inj, inj = In + slim + rn 
dIn 

(3.19) 
dt 
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Fig. 3.2. The percentage error as a function of the separation of the quasi- 
Fermi energies between electrons and holes modelled by a p-n diode. 

Modelling the quasi Fermi energy seperation by using the ideal diode equation 
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which represents the basic circuit model for a semiconductor laser used in 

many previous publications [16]-[19][22][23][25][26]. However, using the 

relationships (3.11) and (3.18) imply that the arbitrary time constant is 

decided by 
1 

leak + Rsm + RP,,,, + RAg (3.20) 
neV 

This turns out to be a very crude approximation. As discussed in Chapter 2, 

RSR11 oc n, RPon oc n2 and RA,, 
g oc n3 ; therefore, -r,, (n) should be dependent 

on the carrier density. Therefore, if rn(n) is determined by (3.20) instead 

of using a constant, the circuit element for rn(n) will be dependent on In 

because of n is determined by In by the definition in (3.11). This requires 

a nonlinear circuit element to represent rn (n) in (3.17) and (3.19). In order 

to avoid using such a complicated nonlinear circuit element, a time 

constant for rn is chosen instead: 

rý = lOns (3.21) 

is used in this work. This value is close to the value defted in (3.20). This 

approach leaves Il,,, k, 
IsRH, and IA,, 

g as different current sources. 

This turns out to be a crucial strategy when dealing with the heating 

problems of semiconductor lasers. As discussed, IIa and IA,, 
g are 

temperature sensitive, while IsRH and Ispon are not. Lumping all of them 

together in one circuit element as in (3.19) is certainly inappropriate. 

After settling this controversial issue (representing the dn1dj term), 

it appears almost impossible to directly represent r,, - dI,, Idl by a SPICE 

circuit. To circumvent this problem, a 'derivative circuit' with an artificial 

capacitor and a current-controlled voltage source C,, (dV,. Idt) can be used 
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to represent r, (dIn Idt) utilising the following transformations: rn -), Cn 

and In -+ Vj.. Note that in the discussion, the arrow symbol is used to 

indicate the transformation of variables, although such a transformation 

may not preserve the physical unit of the original variables. For example, in 

this case, if rn = 10 ns is assumed, then its correspondent capacitance will 

be Cn ý 10 nF. This part of circuit should be detached from the main 

circuits for carrier density. If it is connected to the main circuits for carrier 
density, then there will be a conflict between the voltage on the diode Vn 

and the 'dummy' voltage Vj,,. However, because Vn represents a real 

physical quantity, the quasi-Fermi energy separation in the active region, 

the diode is kept in the main circuit for carrier density and the circuit 

representing C,, (dV,. Idt) is detached from the main circuit for carrier 

density. For this reason, C,, (dVj. Idl) is tenned a derivative circuit, because 

the main function of C,, (dV,. Idl) is to represent r,, (dI,, Idt) in the circuits. 

The next step taken is to transfonn the photon rate equation into a 

circuit equation bearing in mind that Ipon = eVRvo,, and I,, jn = eVvgGs in 

the device are to represent the real spontaneous and stimulated 

recombination currents in the circuit model. Multiplying (2.2) on both sides 

by eV117, this gives 

ISHM + '81 spon = 
eV 

-s+ 
eV 

- 
ds 

r -r, r- dt 
(3.22) 

Since the unit on the right-hand side of (3.22) is current, and only the 

circuit element of a capacitor has the characteristics that the time derivative 

of its voltage equals its current, that is, C., (dV, Idt) = I,; there is no choice 

but to relate the photon density to the voltage, that is, s oc V,. In addition, if 
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the photon density is chosen to be related to the current, s oc I. . then 
(eV1IF)-(ds1dI) will be in the form of r., (dI, 1dt). The drawback of this 

latter choice is that another additional "derivative circuit" becomes 

involved, which is more complicated than incorporating a simple capacitor. 
Therefore, a voltage in this work will represent the photon density. 

However, it can be proved to be very impractical if the photon 
density s is directly transformed into voltage, since usually s ;: z 1020 _ 
1022 nf' when the device is biased above the threshold. In addition, the 

SPICE complier will not accept such a range of voltage values. Fortunately, 

the optical power P, which directly relates to the photon density s, emitted 
by a laser diode is usually within the mW range. This suggests that the 

emitted optical power turns out to be a suitable variable for transforming 

photon density s into the voltage unit having a mV range. It is well known 

that the total output power from two mirrorfacels is related to the photon 
density s by [8]: 

hwlvgadrrV 
(3.23) 

r 

Defming the 'optical voltage' by 

P[W] -> Vs IV] (3.24) 

and substituting (3.23) and (3.24) into (3.22), the final circuit equation for 

the photon rate equation becomes: 

61 (3.25) stim + spon + C" 

where the resistor R, and the capacitor C, are defmed by 

ý (01 S' 
--> R, (3.26) 

e r. 
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er m- 
hwl 

(3.27) 

respectively, and the mirror lifetime of a photon r.. =- Iloga,,, is used in 

the equations. It should be noted that the real physical units are not directly 

represented by circuit elements under such transformations. For example, 

the unit for hcojr, ler. is Volts, not Ohms, because the optical power 

(Watts) has been assigned to a voltage value. However, it must be 

emphasised that the voltage value of V, in fact represents the power value 

of P. 

Transforming the rate equation for the electron temperature into a 

circuit model follows a similar pattern. First, equation (2.14) is multiplied 

through by 're-L giving: 

re-L alle 
4,02 're-L 

(ý 

T- 
(AE, ' L' (A. E,,,. )eVvgGs 

eV FT- y 
)07ino Iiny - 

Ileat + 

eV ay- ee 

+ 
're-L "I 

e RA' + 're-L alu 
T 

(AEA. 
g)eV ug 

(AEý, 
a)eVvgaý,,, s 

eV eV 

(ýT; 

e e) 

(T dT, Ue -I[U, 
(T, )-Ue 

L)] 
au- r'-L [Ue (Te Ue 

(Th A +re-L * 
dt 

ýaTe 
e 

(3.28) 

For simplicity, some coefficients are defined the following: 
( 

Yinlj 
LU, ) -1 

(A Ee,, (3.29) 

eV T al ae 

re-L 
am 

alle ( -1 
e (AEsti. ) (3.30) 

eV aTe 

YAe 
ug 

Le-L 
(ýUe 

(AE e (3.31) Aug 

) 

eV aT 
e 
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, Vý, a ý-- 
Ee-L alle V 

(AEýca 
(3.32) 

eV oTe 
) 

and the free-carrier-absorption current by 

ýe=eS 
ca - eVogafca (3.33) 

Note that 

U( - 
aue 

(3.34) Te) = aTe 
Te 

can be used on the right-hand side of (3.28) and also it can be assumed that 

alle allh (3.35) 
aTe a Th 

Since Ue -- 3nekBTe /2, Uh ; zý 3nhkBTh /2 and ne = nh are also assumed in 

this work, this assumption implies that T,, ; zý Th. As long as the electron 

temperature is not significantly different from the hole temperature, this 

assumption seems to be reasonable. Implementing the assumption, (3.28) 

becomes 

rjenj 
(17.. 

Ysetzmjshm +y; 
ug 

e 
J 
Iini - 

Ileat + I; 
ug 

+ YýIliýll 

T dT (3.36) 
(Te -T 

e-L 
e-T 

J+ 

're-h 

(T 
h) +re-L 

dt 

Since the physical quantities on the left-hand side of (3.36) are 

currents, the same unit on the right-hand side of (3.36) should be kept as 

well. Therefore, either C, (dVIdt) or r, (dIIdt) can be used to represent 

the r, _L(dT, 
1dt) term on the right-hand side of (3.36) to match the unit of 

current. However, since C, (dVldt) only involves a single capacitor, while 
f -IT rJai, ldt) needs an additional 'derivative circuit'. C, (dVIdl) is chosen 

rather than -r, (dIIdt) to represent re-L(dT, Idt). Now since the 
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temperatures T, Th and TL in the device are usually of the order of 300 K, 

it is sensible directly to represent them by voltages: 
T [K] VJV] e (3.37) 

Th [K] Vh [V] (3.38) 

TL [K] VL [V] (3.39) 

and the capacitor by 

re-L [sl -> Ce [F] (3.40) 

It should be noted that the values of voltage, resistance and 

capacitance defined in this part of the circuits do not really represent the 

physical units of volts, ohms and farads. They represent the values of the 

original variables instead. For example, the voltage VL in volt actually 

represents the lattice temperature TL in Kelvin. The original physical unit 

of y is K/A while it is dimensionless in (3.36). 

The choice of representing the electron temperature T, by a voltage 

V certainly causes difficulties for the first and second terms on the right- 0 
hand side of (3.36) because of the disagreement among their units with 

others. To circumvent this problem, two 'dummy' resistors are used 

ID -> ReL 

and 
're-h Reh IK21 (3.42) 
re-L 

adding to the first and second terms in (3.36), respectively. As a result, the 

units of all the tenns in (3.36) are currents. Finally, the rate equation of the 

electron temperature becomes 
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re 
(�in eee +ýe je 

y, in - Ileak)+ YstimIstim + YAugIAug inj fca fca 

ve - VL Ve - Vh ýve (3A3) 
++C 

ReL Reh e dt 

which can be implemented into SPICE codes. 

By a similar derivation, transforming the rate equation for the hole 

temperature into a circuit model can be achieved by setting the hole 

temperature Th to a voltage Vh. For simplicity, only the final result is 

given: 
h (77i?? 

yh I+hI hug + Yfh j- leak slim cajh Yini VIM slim 
rAug 

t fca 

J7 - J7 dVh (3.44) hL 
Vh - J7e 

+ Ch 
RhL Rhe dt 

with the following definitions: 

h "h-L allh 

-) Yi 
-I 

h (AE, 
nj 

(3.45) 
ni eV aTh 

auh 
r h rh-L 

( V 
(A. Eh h (3.46) 

s 1 am eV. 
rT, 

L 
6h m )s 

hug Lh-L 
(LUh 

Yý jT eV 
ýý 

h 

h (AEýug (3.47) 

Yfh 
rh-L uh 

ca 

(2 
fi 

(A. E h 
ca (3.48) 

eV aTh 

hS Ifhca ae Vvg afca (3.49) 

*rh-L IS] -> Ch IF] (3.50) 

RhL 

'rh-e I] -> 
Rhe In] (3.52) 

Th-L 
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Transforming the rate equation for the lattice temperature (2.16) has 

its own ambiguity. The last term on the right-hand side of (2.16) has two 

natural circuit quantities: EF, - E,, 7, =eV,, and eVRsRu = Isw. Choosing 

any one of them should be workable. Nevertheless, carrier density, photon 
density, electron temperature and hole temperature in (2.1), (2.2), (2.14) 

and (2.15) are represented by current units in the previously derived circuit 

equations, therefore, to maintain consistency the same unit will be kept. 

Therefore, the original physical quantity of the SRH recombination current 
is retained. 

In the same way when transfomiing the rate equations for the 

electron and hole temperature, on both sides of (2.16) are multiplied by r, 

This gives 
TK Ue(Te)-Ue(TL)+ ric Uh(Th)-Uh(TL)+ 'rKV, ISM 

CL PL *re-L 

dTL 
CLPL rh-L CLPLV (3.53) 

= (TL - 
THS + 'ric 

dt 

The expression CL (dVL Idl) is used to represent -r,, (dTL Idt) so that 

the unit of current is kept to represent the SRH recombination current Isw. 

As the value of TL is about 300 K at room temperature, it is convenient 

directly to represent TL by a voltage as in (3-53) and r,, by a capacitor. 

r, [s] -> CL [F] (3.54) 

Since the thennal conduction time is usually in the range of 

nanosecond, the coffespondent capacitance should be acceptable within 
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SPICE simulations. Similarly, the temperature of the heat sink THs at room 

temperature, a voltage can directly represent it. 

THS [K] -4 VHS [V] (3.55) 

Since the choice has been made to keep the equation in the current 

unit, the following 'artificial' current sources must be defined 

'ric Ue (T 

e-L = e) - Ue (TL) 
(3.56) 

CLPL re-L 

I*ic Uh (T 
Ih-L - 

h) - Uh(TL) 
(3.57) 

CL PL 'rh-L 

to match the current unit in both sides of (3.53). In addition, a 
dimensionless coefficient 

YSM -rV, (3.58) 
VCLPL 

needs to be defined and a 'dummy' resistor will be used as 
RL (3.59) 

Finally, the circuit model for representing the rate equation of the lattice 

temperature effect, as it is required, this is: 

Ie-L + Ih 
-L 

+ YSRHISRH 
VL - VHS 

+ CL 
d VL 

RL dt 
(3.60) 

In summary, (3.17), (3.25), (3.43), (3.44) and (3.60) represent the 

circuit models for the carrier density, photon density, electron temperature, 

hole temperature and lattice temperature effects, respectively. Having 

achieved the circuit models from the rate equations, the next step is 

implementing these circuit models in SPICE code form. This step is 

considered in the next section. 
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3.2 The Representations of Circuit Models by SPICE Codes 

Implementing circuit models (3.17), (3.25), (3.43), (3.44) and (3.60) 

by SPICE codes is not as straightforward as it appears. Here an explanation 
is given on the procedures adopted for developing SPICE codes for circuit 

models. The circuit diagram of these SPICE codes is shown in Fig. 3.3 and 

the correspondent SPICE codes are attached as APPENDIX C. 4. The 

procedures to implement circuit models by SPICE codes are: 
1) Defining parameters. The parameters categorised comprise: 

fundamental constants, material parameters, structure parameters, 

photon parameters, lattice parameters, parameters of physical 

processes, gain parameters and other dependent parameters. 
Categorising the parameters is very important for the purposes of 
debugging and fitting data. Naming these parameters in the SPICE 

codes follows the symbols in the rate equations as close as possible. 
2) Writing functions for calculating n, nh , IJFe s, YA, u, and Uh - 

Their relationships are given in (2.29)-(2.36). It must be noted that 

the PSPICE complier used will not accept any numerical value 

smaller than 10-30. As a result any equation which contains the 

electron mass mo and the Plank constant h should be calculated 

before transforming to the SPICE models and precautions taken to 

check whether any numerical value is smaller than 10-30. 

3) When calculating aulan, au, lff, and their associated 

coefficients r, a sirnple central finite-difference procedure is used to 

calculate the derivatives. 

4) Calculating the leakage current Il,,, k according to (2.37). The 

leakage current components, ISRH=eVASRHn, Ispon=eVkponn 2) 
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Istim = eVogGs and Aug calculated by (2.42) and (2.43) are directly 

written in their associated circuits. Note that the carrier density n is 

calculated by n= Inrn le V once the value of In is known. The value 

of In can be retrieved from the current in the diode which may be 

obtained by an 'artificial' ammeter. This artificial ammeter is a OV 

voltage source that has no effect on the circuit. SPICE provides a 

very unique feature to read the current passing through the voltage 

source by declaring I(V,,,.,,, ), where is the name of the 
,e 

Ysource 

voltage source. 

5) The photon density s is simply calculated by the relationship 

s= Vr-r. 1hcoV. 

6) A 'dummy' voltage-controlled current source GDN is used to 

counteract the current in the diode. This is because it is desirable to 

keep the individuality of the different recombination currents, as 

discussed in Section 3.1. 

7) Using a 'derivative circuit' to represent rn(dInldt). Since this circuit 

is detached from the main circuits for carrier density, its contribution 

is represented by a voltage-controlled current source in the main 

circuits for carrier density. 

8) It is seem that the circuits for the carrier density and photon density 

are connected together by the stimulated-emission current I,,.. in 

addition, the circuits for the electron temperature, hole temperature 

and lattice temperature are detached from each other. The unique 
feature of the voltage-controlled current source in SPICE provides 
for their mutual effects. Since most of the physical quantities are 
determined by n, s, T, Th and TL in the rate equations, that is, V, 
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V, 
, 

V, 
, 

Vh and VL in the circuits. Using voltage-controlled current 

sources is a satisfactory way for implementing the current sources, 
such as Iinj) Ikak) ISRH 

9 
Ispon 

2 IA,, g and I.,, j. in the circuit models. 

Once the SPICE codes have been developed, they can be used to 

simulate the performance of the device. The next chapter presents results 

that describe the performance characteristics of laser diodes incorporating 

the various physical effects discussed. The basic model, which completely 
ignores the heating effects, is used as the benchmark for assessing 

performance. 
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Fig. 3.3. SPICE circuit model with carrier and lattice heating. 
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CHAPTER 4 

SPICE SUVIULATION RESULTS AND DISCUSSIONS 

4.1 Introduction 

In the previous chapters, the rate equations governing the heating 

behaviour in the active region of semiconductor lasers have been discussed, 

and the rate equations have successfully transformed into the circuit models. 

Once the circuit models are given, it will be rather straightforward to write 

a SPICE code according to the circuit models. 'Mough, attention should be 

paid to the numerical limitations of the SPICE complier itself. The most 

apparent example is that the default MicroSim PSPICE complier does not 

accept any defined parameter with a numerical value smaller than 10-30. 

Consequently, the Planck constant h in MKS unit cannot directly be 

defined in the SPICE codes. In addition, like any numerical method, the 

SPICE does not automatically guarantee the convergence of its numerical 

simulation for all cases. This could become rather problematic in choosing 

the numerical steps in simulating the dc, ac or transient response for SPICE 

circuits. 

SPICE provides three basic features to probe and characterise a 

circuit system: dc, ac and transient responses. Generally, these three 

features are also used to characterise the properties of a semiconductor 

laser. Of course, the ac response and the transient response characterise the 

same temporal behaviour of the device. The ac response represents the 

system properties in the frequency domain while the transient response 

directly characterises the system behaviour in the time domain. For 
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semiconductor lasers, the ac response is generally used to characterise the 

bandwidth of the devices. In addition, the transient response is usually 

employed to describe the tum-on behaviour of the devices. These built-in 

features in simulating the dc, ac and transient responses unquestionably 

give SPICE circuit models an unambiguous merit over their counterpart, 

the rate equations. For example, in order to simulate the ac response, a 

small-signal analysis on the rate equations must be provided. Such an 

analysis can be rather involved (sometimes unnecessarily complicated) 

especially in the case when dealing with the issues of the carrier and lattice 

heating [32]. In addition, different numerical procedures must be 

implemented separately for the ac and transient responses when using the 

rate-equation approach. This certainly adds more numerical complexity 

onto the theoretical models themselves, even to the models representing the 

same device. Apparently, the simplicity and consistency in simulating the 

dc, ac and transient responses by using the SPICE circuit model provides a 

definite merit to allow the extraction of the physical parameters from the 

measurement data of the device. 

The most involved parts for constructing any SPICE circuit model 

for a given device are in finding the physical model for the device and 

transforming this model into the correspondent circuit elements. Writing 

the SPICE codes for a given circuit is not a straightforward task. However, 

compared with the commercial simulation packages for formal 

programming language such as C++, the debugging function provided by 

the SPICE complier is rather sophisticated. Therefore, for a complicated 

model, debugging can become a rather involved task. The commercial 

vendor should improve such a shortcoming in the debugging capability of 

the SPICE in the near filture. 
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The parameters used in the SPICE circuit model are listed in 

APPENDIX D. Except for the physical constants, these parameters can be 

roughly categorised as the following: 

1) Structure parameters: L., LY and L, 

2) Material parameters: mole fraction x for AIxGal, As. 

3) Physical-process parameters: AsRH 
, BP,,,, , 

CAugj Te-L 1, 'rh-L i, re-h 

and r, 

4) Optical-processparameters: G, ai,, t, r, and 8. 

5) Defined parameters: 16, hb, g, gTe, gT and gT . 

Ideally, each parameter should be capable of being individually 

adjusted to verify its unique role in determining the properties of 

semiconductor lasers. However, the value of each parameter is usually 

within its typical range. For example, the cavity thickness of a laser L.,, is 

typical within 100 - 500 gm. In addition, although some of the parameters, 

such as 'r. -L 2 *rh-L and 'r. -h can be evaluated by first-principle's 

calculations, their precise values are still unresolved [3 1 ]. 

It should be kept in mind that the purpose of the simulations 

presented in this work is not to exhaustively evaluate the effect of each 

parameter on the performance of the device, or to extract the values of 
these parameters by fitting the simulation results with the measurement 
data. The simulation presented in the following is for the purpose of 
demonstrating the capabilities especially with respect to the influences or 

performance of the heating effects and versatilities of the SPICE circuit 

models for semiconductor lasers. In order more clearly to discuss the effect 
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of different parameters, SPICE circuit models without carrier and lattice 

heating will initially be discussed. These results are to provide the baseline 

performance data. Subsequently, the lattice heating will be added to the 

models to quantify the effect and performance. Finally, SPICE circuit 

models incorporating both the carrier and lattice heating are simulated and 

the results discussed. 

4.2 SPICE Circuit Model without Carrier and Lattice Heating 

If the effects of the carrier and lattice heating are neglected, then (2.1) 

and (2.2) will become the conventional carrier-photon rate equations 

presented in almost every textbook of semiconductor lasers. These 

equations can provide a basic and fundamental understanding of the static 

(i. e., dc) and dynamic (i. e., ac and transient responses) properties of 

semiconductor lasers. The SPICE circuits associated with the 

carrier-photon rate equations are shown in Fig. 4. L The SPICE codes are 

given in APPENDIX C. 1. 

In most cases, when the carrier-photon rate equations are used, the 
SRH, spontaneous emission and Auger recombination processes are 

normally lumped into a single expression and represented by the carrier 
lifetime r,, as in the following equation: 

RsRH + RP,, 
n + RA,, 

g = 
n-n, 

_n 
rn Tn 

In this definition, r,, represents the carrier lifetime. Coincidentally, the 

recombination current Ina ne V1Tn defted by the carrier lifetime rn 
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Fig. 4.1. SPICE circuit model without carrier and lattice heating. 
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becomes a convenient method to charactense the value of the applied 

voltage in the active region. From the small-signal analysis on the carrier- 

photon rate equations, it can be shown that the ac response can be 

characterised by two parameters: the resonant frequency f, and damping 

rate y [9]. 

')g9nS0 
(4.2) 

2z _V, 

1+ 4z 2 f, 2 
Z's + 

eshb 
(4.3) 

rn Lg gn 

When a laser is switched on, the carrier density will gradually 

increase from its intrinsic value (about 1012 M-3) in the active region above 

the threshold value (about 1024 M-3 ) and thus provide enough optical gain 
for lasing. As a result, after injecting, the laser light is only emitted after a 

certain time has elapsed. This time period is defined by the turn-on delay 

time td 191 

'd ;: ýý rn 
If- Ith 

(4.4) 

Apparently, the resonant frequency f, and damping rate y are much 

easier to characterise in the ac response while the turn-on delay time 'd is 

more related with the transient response. Bearing such relationships in 

mind, the transient response of a semiconductor laser with different carrier 

lifetimes rn are shown in Fig. 4.2. It clearly verifies the turn-on delay time 

'd is proportional to the carrier lifetime 1*n 
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Fig. 4.2. Transient response of a semiconductor laser with different carrier 
lifetimes r,, (in the unit of second). 
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As indicated in (4.2) and (4.3), increasing the differential gain g,, 

will increase the resonant frequency but respectively has no significant 

effect on the damping rate. This is clearly verified by the simulation results 

shown in Fig. 4.3. Similarly, as indicated in (4.2) and (4.3), increasing the 

photon lifetime -r, will decrease the resonant frequency and has no 

significant effect on the damping rate. This is clearly demonstrated in the 

simulation results shown in Fig. 4.4 where increasing the cavity length L.. 

represents the increase of the photon lifetime -r,. It is clearly seen in 

equations (4.2) and (4.3), that the value of the nonlinear gain coefficient 

6, hb only affects the damping rate and does not significantly affect the 

value of the resonant frequency. This is also clearly verified by the 

simulation results shown in Fig. 4.5. Figures 4.2 to 4.5 clearly characterise 

the 'ideal' performance of semiconductor lasers and may be used as a 

benchmark against which the effect of other phenomena may be assessed. 

The next section examines the changes in performance when the lattice 

heating effects are considered. 

4.3 SPICE Circuit Model with Lattice Heating 

If the effects of the carrier heating are neglected, then (2.1), (2.2) and 

(2.16) will become as the photon-carrier rate equations with simply the 

effect of the lattice heating accounted for. However, if the carrier heating is 

not considered, the heating sources of the lattice heating defined in (2.16) 

will apparently become in effect invalid. It is a common practice to 

circumvent this problem by defining the heating sources contributing to the 

lattice heating heuristically. Intuitively, the total power injected by the 
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Fig. 4.3. AC response of a semiconductor laser with different differential 
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current will either be dissipated as thermal power or be emitted as optical 

power. Therefore, if I and V represent the external applied current and 

voltage onto the device and P represents the output optical power, then 

I-V-P will represent the total thermal power dissipated in the whole 
device. If the ohmic resistance is neglected, that is, all the voltage drop is 

assumed to be in the active region then V can approximately be made to 

correspond to the qausi-Fermi energy separation within the active region. 
Moreover, if the percentage of the injection current that reaches the active 

region is represented by r1,, jI,,, j, and then i7i,, jIj,, j -V-P corresponds to the 

lattice heating sources in the active region, and the validity of this approach 

is discussed in the next section. The correspondent SPICE circuit is given 
in Fig. 4.6 and the SPICE codes for the circuit model is given in 

APPENDIX C. 2. The simulations of the L-I relationship and the lattice 

temperature with different thermal conduction times -r, are shown in Figs. 

4.7 and 4.8. As expected, when the value of r., increases, that is, the 

thermal conductivity of the device becomes worse, the output light 

saturates and is even degraded at higher bias currents. This is because the 

gain will decrease when the lattice temperature increases, as indicated by 

(2.45). It should be noted that the thermal conduction time r,, defined in 

(2.74) is determined by the thermal conduction within the device. Since the 

experimental or theoretical value of this thermal conduction time for a 

semiconductor laser cannot be found in the published literature, it will be 

treated as a fitting variable in the circuit model. 

It should be noted that as indicated in (2.37), (2.38), (2.42) and 
(2.43), the coefficient of the leakage current Ikak and the Auger process 

CA,, g are dependent on the carrier temperature, but not the lattice 
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Fig. 4.6. SPICE circuit model with lattice heating. 
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Fig. 4.7. L-I relationship of a semiconductor laser simulated with the 

effect of the lattice heating but without carrier heating for different thermal 
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temperature. Since the effect of the carrier heating is assumed to be 

negligible (zero) in this model, then the temperature-dependence feature is 
ignored in the circuit model shown in Fig. 4.6. However, CAIg and Ikak 

can be assumed to depend on the lattice temperature in the way as the 
carrier temperature in order to manifest the overall effect of the lattice 
heating. Even though, the lattice temperature does not directly influence the 
leakage current and Auger process. In fact, such a theoretical approach is 
based on the assumption that the magnitude of the carrier heating is totally 

negligible and the lattice temperature equals the carrier temperature, that is, 
TL = T., - 

If the temperature-dependent features for the leakage current and 
Auger recombinations are incorporated into the circuit as shown in Fig. 4.9. 

The SPICE codes are given in APPENDIX C. 3. The L-I relationship 

simulated clearly indicates that, in the same thermal conduction time, the 
thermal rollover is more severe for the case of the temperature-dependent 
leakage current and Auger recombinations. This result can certainly be 

anticipated. As injection current increases, the lattice temperature will 
increase and thus the carrier loss through the leakage current and Auger 

process will increase as well. Decreasing the carrier density will certainly 
decrease the optical gain and thus the optical output will fall. As a result, 
the thermal rollover in the L-I curve will be more severe as shown in Fig. 
4.10. 

In practice, the heating effects are usually investigated by changing 
the heat-sink temperature. This is because the changes of the carrier or 
lattice temperature widiin the device due to the injection current is almost 
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Fig. 4.9. SPICE circuit model with lattice heating including the 

temperature- sensitive leakage current and Auger process. 
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impossible to directly measure by experimental means, and can only be 

estimated by theorefical tests. Of course, this work is useful in assessing the 

carrier and lattice temperatures in the active region of the devices but is 

carried out following device fabrication. However the circuit models 
developed can be used to simulate realistic experimental situations by 

changing the heat-sink temperatures THS in the SPICE codes. The 

simulation results of the L-I relationship for different heat-sink 

temperatures THs are shown in Fig. 4.11. Apparently, increasing the heat- 

sink temperature increases the threshold current and L-I nonlinearity. In 

this simulation, if the heat-sink temperature changes from 300K to 400K, 

the threshold current will change from 10 mA to 80 mA. This certainly 

validates that the threshold current is almost exponentially dependent on 

the heat-sink temperature [9]: 

0 

Ithoc exp(LHS) 
T, 

(4.5) 

where the characteristic temperature To -- 50 K is extracted from the 

simulation. The Xu group gives a similar simulation for a quantum-well 

laser [20], as shown in Fig. 4.12. They used this simulation to validate the 

experimental L-I nonlinearity, which is actually due to the lattice heating 

resulted from the changes of the heat-sink temperature. Comparing the 

results in Fig. 4.11 with the work from the Xu group shown in Fig. 4.12. It 

is seen that the simulation results using the new approach have the same 

nonlinear trend with increasing temperature. However, as discussed in the 

previous section, attributing all the heating effects in semiconductor lasers 

to the lattice heating has its own conceptual and practical problems. 
Tberefore, in the following the carrier and lattice heating in the devices are 

simultaneously considered. 
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4.4 SPICE Circuit Model with Carrier and Lattice Heating 

As indicated by the previous results, the lattice heating has a 
dramatic effect on the dc properties of a semiconductor laser. Accounting 

for the lattice heating effect alone, the thermal rollover of the P-I 

relationship commonly seen in any semiconductor laser can satisfactorily 
be explained. However, dedicating all the heating effects in semiconductor 
lasers to the lattice heating has its own conceptual and practical problems. 
First of all, the heuristic definition of the lattice-heating source I-V-P is 

not in itself physically transparent; sometimes, it may become misleading. 
For example, if I and V represent the external applied current and voltage, 

respectively, then I-V-P will represent the total power dissipated in the 

whole device, not just the active region. Using this crude lumped approach, 
it becomes impossible to represent the heating source (more precisely, the 

power density) at different locations within the device, by the I-V-P 

expression. This 
. argument can fiirther be amplified by the following 

discussion and illustrated as Fig. 4.13. The lattice temperature distribution 

within the device can normally be described by the equation of thermal 

conduction 

CLPL L= V'('CLVTL)+gth aT 

at 
(4.6) 

where TL(r, t) is the lattice temperature at a specific location rand time 1, 

cL is the specific heat capacity of lattice, pL is the 'material density of 

lattice, KL is the coefficient of thermal conduction governing the speed of 

the distribution of the lattice temperature, and gh is the generation rate of 

the energy density at a specific location rand a specific time t. By the 

definition of &h, the I-V-P expression cannot apparently be used in 
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Fig. 4.13. Schematic diagrams of lattice heating under different conditions: 
(a) no current injection; (b) low current injection; and (c) high current 
injection. 
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conjunction with the equation of thermal conduction. Even when V is 

assigned to represent the qausi-Fermi energy separation within the active 

region, and the percentage of injection reaches the active region is 

represented by i7ijIj,, j, using i7,,, jI,,,, -V-P to represent the lattice heating 

sources in the active region cannot fully be justified. 

In addition to this ambiguous definition of the lattice-heating source, 
it has been well recognised that some of the physical properties of 

semiconductor lasers indeed result from the effect of the carrier heating, 

not the lattice heating. The most well known example is that the effect of 

the carrier heating contributes to the damping mechanism and modifies the 

dynamic properties of semiconductor lasers. Normally or misguidedly, this 

effect has been included in the nonlinear gain coefficient CAb that models 

the effect of spectral-hole burning, which has a similar contribution is 

accounted for carrier density. Since the thermal conduction time r., that 

characterises the time scale of thermal conduction typically ranges from 

nanosecond to microsecond, the lattice heating has almost no effect on the 

dynamic time scale over nanosecond. In essence, the effect of the lattice 

heating should almost disappear if the modulation frequency of a 

semiconductor laser exceeds I GHz. 

Since the injection current supplies energy to carriers, which then 

release their energy to lattice, it can be expected that both the carrier 
heating and lattice heating exist in a semiconductor laser, though die ranges 

and magnitudes of their effects can totally be different. As a result, it has 

almost become a common practice to disaggregate the effects of die carrier 
heating and lattice heating to different domains: the lattice heating only 
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affects the static (dc) properties of semiconductor lasers while the carrier 

heating only affects their dynamic (ac and transient) properties through the 

nonlinear gain coefficient6shb. This approach is embedded in the circuit 

model discussed in Sec. 4.3. Despite its simplicity, such an approach still 
has deficiencies. For example, it is entirely based on the assumption that 

the magnitude of the static carrier heating is negligible compared to the 

magnitude of the static lattice heating. Such an optimistic assumption 

cannot fully be validated for all different cases. Furthermore, chirping in 

semiconductor lasers, one of the obvious cases cannot satisfactorily be 

explained by such an approach [12]. In fact fin-ther confusion in the 

deffi-dtions of adiabatic and transient chirping has unnecessarily resulted 

from attempting to explain performance in this way. It has also been shown 

that even the nonlinear gain coefficient itself is not well defined [ 14]. 

Following the discussion, artificially differentiating the effects 

between the carrier heating and lattice heating cannot adequately resolve 

the critical heating issues associated with semiconductor lasers. Attributing 

the lattice heating only to the static properties and ascribing the carrier 

heating solely to the dynamic properties not only cannot fully be justified 

but also misrepresents the physical origins of the laser properties. Therefore, 

to understand the heating problems of semiconductor lasers, it is necessary 

to simultaneously include the carrier and lattice heating. 

Based on the previous theoretical equations that were proposed to 

model the processes of the carrier heating and lattice heating in 

semiconductor lasers, the rate equations for the electron temperature T., 

hole temperature Th and lattice temperature TL are given in (2.14), (2.15) 
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and (2.16). These equations have three important parameters determining 

the magnitude of the carrier heating: the electron-lattice energy relaxation 

time r,, -L, 
hole-lattice energy relaxation time -rh-L and electron-hole energy 

relaxation time r, -h . 
The electron-lattice energy relaxation time r, -L 

determines the time scale for the electron temperature to equalise the lattice 

temperature, rh-L determines the time scale for the hole temperature to 

equalise the lattice temperature, and 'r. -h 
determines the time scale for the 

electron temperature to equalise the hole temperature. Apparently, if the 

value of T. -L 
is larger, the electron heating will be more severe. Similarly, 

if the value of rh-L is larger which means that electrons will transfer less 

energy to holes, the electron heating will be more severe while the hole 

heating will be reduced. 

It should be noted that the physical processes of energy transfer 

among electrons, holes and lattice are extremely complicated. For example, 

carriers and phonons interact with each other via different types of physical 

mechanisms, such as the polar-optical-phonon, deformation-potential- 

optical-phonon, deformation-potential-acoustic-phonon, piezoelectric- 

acoustic-phonon and intervalley-phonon interactions. Optical phonons do 

not participate in the thermal-conduction processes because of their 

negligible group velocity. In other words, the thermal conduction is almost 

entirely determined by the acoustic phonons. 'Me optical phonons emitted 
by carriers will decay into the acoustic phonons. To exactly model all these 

processes in semiconductor lasers is certainly beyond the scope of this 

thesis. In fact some of the physical processes are still not well defined or 

properly discussed. For instance, the interactions among phonons 

themselves are still the subject of many debates. Theories for die 
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multiple-phonon emission in the SRH process are still not fully developed. 

It is thus not feasible to incorporate these phonon processes into the SPICE 

models proposed. Nevertheless, the foregoing certainly implies that the 

physical processes of energy transfer among electrons, holes and lattice are 

characterised by the electron-lattice energy relaxation time r, _L, 
hole- 

lattice energy relaxation time rh-L and electron-hole energy relaxation time 

're-h. As demonstrated that these energy relaxation times can be calculated 

by first principles, but they are treated as adjustable parameters in this work. 

The completed effects of the electron-lattice energy relaxation time 

r, -L on the dc L-I relationship, electron temperature, hole temperature and 

lattice temperature are shown in Figs. 4.14,4.15,4.16 and 4.17, 

respectively. As expected an increase in the value of the electron-lattice 

energy relaxafion time r, -L 
increases the magnitude of the electron heating. 

As a result, the electron temperature, lattice temperature and hole 

temperature will increase due to the higher electron temperature, and thus 

the thermal rollover will become more severe. It is evident from the dc 

response characteristic that the lattice heating is far more dominant than the 

carrier heating for the case of r,, = 4xIO-7 sec. The effects of changing the 

value of the hole-lattice energy relaxation time rh-L are rather similar to 

that of the T. -L characteristic and therefore their simulation results are not 

presented here. 

Similarly, the transient responses simulated by SPICE for the output 

power, electron temperature and hole temperature with different electron- 
lattice energy relaxation timere-L are shown in Fig. 4.18,4.19 and 4.20, 

123 



80 

70 

60 

50 

j40 

9 
C) 30 

20 

10 

Fig. 4.14. L-1 relationship for different electron- lattice energy relaxation 

times re-L (in the unit of second). 

124 

01 AV IIIII -i- --III 

0 20 40 60 80 100 120 140 160 180 200 
Input cuffent (mA) 



480 

46C 

440 

420 

400 

380 

.2 
360 

w 

340 

320 

30011 
0 20 40 60 80 100 120 140 160 180 200 

Input curTent (rnA) 

Fig. 4.15. Electron temperature as a function of the input current flor 

different el ectron- lattice energy relaxation times r e-L 
(in the unit of 

second). 

125 



480 

46C 

440 

-420 

9400 

1380 

.2 
360 

340 

320 

3001 
0 20 40 60 80 100 120 140 160 180 200 

Input cwTent (mA) 

Fig. 4.16. Hole temperature as a function of the input current fior different 

electron- lattice energy relaxation times re-L (in the unit of second). 

126 



450 

400 

, 
1350 

3001 
0 20 40 60 80 100 120 140 160 180 200 

Input curTent (mA) 

Fig. 4.17. Lattice temperature as a function of the input current lor 

different electron- I attice energy relaxation times z- e-L 
(in the unit of' 

second). 

127 



350 

300 

250 

, 
9200 

150 

100 

50 

Fig. 4.18. Transient response of the output light for different electron- 

lattice energy relaxation times re-L (in the unit of second). 

128 

0' ----III ----L II 

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 
Time (ns) 



350 

345 

340 

-335 ý41 
9330 

325 

9320 

315 

310 

305 

300 

Fig. 4.19. Transient response of the electron temperature flor diffierent 

electron- lattice energy relaxation times re-L (in the unit of second). 

129 

0.1 0.2 0.3 0.4 0.5 
Time (ns) 



I.. 

I ... 

i 41 

350 

345 

340 

335 

o330 

o320 

315 

310 

305 

300 
0. 

ý5 
0. 

'l 
0. 

L, 
5 0.2 0.25 0* 

'3 
0. 

ý5 
0'4 0.45- 0.5 0.55 

Time (ns) 

Fig. 4.20. Transient response of the hole temperature for different 

electron- lattice energy relaxation times re-L (in the unit of second). 

130 



respectively. Unambiguously, the results in Fig. 4.18 show that increasing 

r, -L will increase the damping rate y in the transient response case. 'Mat is, 

the carrier heating will result in a damping in the dynamic properties of a 
semiconductor laser. The damping caused by the carrier heating 

coincidentally has similar features to the damping due to the spectral-hole 
burning. As a result the effects of the carrier heating are conventionally 
included into the nonlinear gain coefficient eshb as the effect of spectral- 
hole burning. 

The electron and hole temperatures will rapidly increase as the 
injection current switches on at 1= 0 sec. Initially, only a small number of 
carriers exist in the active region, and the sudden supply of the injection 
heating will be distributed among them. As a result, each carrier will gain a 
huge amount of energy and thus the carrier temperature will suddenly rise 
to a dramatic level. As the heated carriers start to release their energy and 
the carrier density gradually increases as well, the carrier temperature will 
then progressively cool down. As the laser light starts to build up inside the 

cavity and then emitted by the mirrors, the stimulated recombination and 
free-carrier-absorption heating effects will heat carriers. Consequently, the 

carrier temperature will raise again, the increase of the carrier temperature 
being proportional to the photon density. After the initial transient variation 
the photon density settles down to its dc value, that is, the steady-state, and 
the carrier temperature will correspondingly settle down to its de value. 

Changing the valueof re-hwill have different effects on die electron 

temperature and hole temperature. It can be expected that increasing r, -h 
will decrease the amount of the electron energy releasing to holes. As a 
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result, increasing the value of the electron-hole energy relaxation time r. -h 
will result an increase in the electron temperature and a decrease in the hole 

temperature. This is clearly demonstrated by the SPICE simulations shown 
in Figs. 4.21 and 4.22. 
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CHAPTER 5 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

5.1 Summary of Previous Work and this Thesis 

In this thesis, a new proposed SPICE circuit model for 

semiconductor lasers incorporating the effects of the carrier and lattice 

heating, which has been developed, implemented and realised. The circuit 
is achieved from the rate equations that govern the dynamics of carrier 

density, photon density, electron temperature, hole temperature and lattice 

temperature in the active region of semiconductor lasers. The set of the rate 

equations used provide a solid, sound and physically-based theory for 

quantitatively describing the carrier and lattice heating in semiconductor 
lasers without unnecessary non-physical arguments (such as I-V-P in 

the previous work) to justify the heating effects. Based on this physical 

model, the rate equations have been transformed into a circuit model by 

tactically choosing suitable circuit elements and quantifies to represent the 

physical quantities in the rate equations given in Chapter 3. All the physical 

quantities that depend on the carrier temperature (such as gain, the Auger 

process and leakage current) are explicitly included in the circuit model by 

representing them as voltage-controlled current source, the carrier 

temperatures then being represented by voltages. SPICE codes have been 

developed exactly according to this circuit model. It has been shown and 
demonstrated that this single SPICE circuit model alone can simulate die dc, 

ac (i. e., small signal in the frequency domain), and transient (i. e., large 

signal in the time domain) responses of the carrier density, photon density, 

electron temperature, hole temperature and lattice temperature (Chapter 4). 
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The new proposed SPICE circuit thus fully meets the initial objectives set, 
i. e. it is universal, physically-based, flexible and expandable. 

Of course, it can be argued that, due to the complexity of the 

physical processes in any semiconductor laser, it is almost impossible to 
develop a SPICE circuit model to account for all the physical properties 
inside the device. Therefore, developing any circuit model will consider 

some effects while inevitably neglecting others. Consequently, all the 

circuit models proposed for semiconductor lasers so far have emphasised 

certain effects and neglected others. This illustrates that there is unlikely to 
be any "super" model for semiconductor lasers that is capable of including 

every physical process and explaining every physical property of the 

devices. Nevertheless, from the results of this work, it is clearly shown that 

the L-I nonlinearity cannot be explained without considering the heating 

effects. Therefore, the circuit models proposed by Tucker [16][17] cannot 
be used to realistically discuss the dc L-I relationship. Although this L-1 

nonlinearity can fully be explained by the circuit models proposed by the 

Xu group [20][21] and Mena et al. [27] by incorporating only the lattice 

heating, the non-physically-based and intuitive defn-dtion of the lattice. 

heating source using the I-V-P argument makes their circuit model 

quantitatively questionable. To obtain correspondence between 

experimental and theoretical results they simply adjust other parameters to 
fit the experimental data. Nevertheless, it is emphasised that fitting a set of 
data is not the only criterion by which to judge the merit of a circuit model. 
For any circuit model with more than ten adjustable parameters, it is easy 

to fit a set of data by tweaking these parameters. In general, circuit models 

with more adjustable parameters can fit more sets of data Nvith good 

accuracy. However, it should be noted that if the effect of die carrier 
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heating is totally neglected (that is, the carrier temperature equals to the 
lattice temperature in any case), any effect caused by the carrier heating or 
influenced by the carrier temperature cannot be explained by current 

models. 

In addition, their models cannot simulate the transient carrier 
temperature variation with time, which is a feature of the new SPICE 

circuit model presented. Subsequently, the transient photon damping 

caused by this transient carrier heating and consequently other models 

cannot explain the transient response of semiconductor lasers. Indeed, the 

simulation result from the Xu group has shown that the effect of the lattice 

heating alone almost has no influence on the transient response; Mena et al. 

did not discuss the usability of their model for the transient response. T'he 

circuit models proposed by Lu et al., Tsou et al. and Madhan et al. have 

emphasised the effect of carrier transport for quantum-well lasers but the 

heating effects have totally been neglected. Apparently, their interest was 

in the high-speed behaviour of quantum-well lasers while the L-I 

nonlinearity was not the main concern. 

Although different models have their own merits and shortcomings, 
it is confident that the new SPICE circuit model presented in this work is 

the most advanced one for dealing with the heating issues of semiconductor 
lasers. In addition, the aim for circuit models which deal with all the 

physical effects and cover a wide operating range of the device under study, 

with well understood parameters, is itself a major contribution for 

theoretical, design and application studies. 
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5.2 The Achievements of the Thesis 

Transforming the rate equations of the carrier heating into a 

correspondent circuit model, the mathematical derivations and the 

assembly of the relevant SPICE-codes is a complex task. Indeed, the 

complexity of the new proposed SPICE circuit model should not be 

underestimated. For example, the Ebers-Moll circuit model (as shown 

schematically in Fig. 5.1. ), the very famous circuit model for p-n-p or n-p-n 
junction transistors, has only 4 circuit components. A more advanced 

circuit model for junction transistors, the Gummel-Poon circuit model (as 

shown schematically in Fig. 5.2. ), has only 14 circuit components. The new 

circuit model derived has 38 circuit components in total, where 18 circuit 

components are dedicated to the electron and hole heating effects. It should 
be noted that all of the circuit components are achieved from the 

physically-based rate equations, similar to the approach taken to produce 

the Ebers-Moll and Gummel-Poon circuit models. 

As previously mentioned, it is almost impossible to realise a "supee, 

model that can incorporate all the physical processes and explain all the 

physical properties of semiconductor lasers. Nevertheless, to a modest 

extent, the new proposed SPICE circuit model has shown the following: 

1) The carrier heating can be incorporated into a SPICE circuit model 
for semiconductor lasers. As far as is known, this is the first circuit 

model explicitly including the carrier heating so far. 

2) The carrier heating can simultaneously be modelled with die lattice 

heating. This clearly solves the ambiguous problem associated wifli 

the lattice-heating source I-V-P in previous work. 
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3) A single circuit model alone can simulate the dc, ac and transient 

responses of the carrier density, photon density, electron temperature, 

hole temperature and lattice temperature. Compared with other 

electronic devices where separate circuit models are usually 
developed for predicting the de, ac or transient response, this ability 

certainly provides an additional advantage for the new proposed 
SPICE circuit model especially for using in an Electronic Design 

Automation (EDA) environment. 

4) The new proposed SPICE circuit model can simulate the time 

variation of the carrier temperature, as shown in Figs. 4.19, 4.20, 

4.21 and 4.22. As far as is known, the simulation of the carrier 

temperature varying with time (that is, in the time domain) has never 

been performed for semiconductor lasers. Although the ac response 

(that is, small-signal response in the frequency domain) of the carrier 

temperature has recently been investigated [32]. 

5.3 Suggestions for Future Work 

In this work, a new SPICE circuit model with the carrier and lattice 

effects has been presented for semiconductor lasers. The numerical 

simulation of the dc, ac and transient responses of this circuit model is 

implemented by the MicroSim PSPICE simulation package that can freely 

be downloaded from the Internet. This suggests the circuit model can be 

employed for other uses, if the source codes of this work are provided, to 

verify their experimental results and extracted the useful physical 

parameters, such as the differential gain and thermal conduction time. Such 
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parameters are extremely crucial for the characteristics of semiconductor 
lasers and almost impossible to directly measure by experiments. 

Without doubt, the role of Electronic Design Automation (EDA) in 

the modem electronic industries cannot be over emphasised. SPICE circuit 

simulation is almost indispensable in designing analogue electronic circuits. 
The needs of the SPICE circuit models for semiconductor lasers used in 

conjunction with other electronic circuits and systems (for example, the 

transmitter modules of fibre optic communication systems) are thus 

foreseeable. One of the major merits of using SPICE circuit models for 

devices is its flexibility in modifying the developed SPICE codes to 

accommodate more physical properties associated with devices. In other 

words, any physical properties that can be transformed into the models of 

resistances, capacitances, inductance, voltage and current sources can be 

incorporated into the original circuits without too many elaborate efforts. 

This suggests that ffirther work can be under taken in order to improve die 

new SPICE circuit models presented in this work, for example: 

1) In this work, the new SPICE circuit model only simulated the 

physical processes in the active region. In other words, the 

physical processes outside the active region were either neglected 
(for example, the heating mechanism outside the active region) or 

averaged (such as the injection efficiency). It should be noted that, 

in vertical-cavity surface-emitting lasers (VCSELs), the heating 

processes in the distributed Bragg reflection (DBR) mirrors could 
be as significant as in the active region. Under such a 

circumstance, additional circuits are needed to correctly model 

the overall heating behaviour within the devices. To incorporate 

these physical processes into the circuit model is certainly 
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feasible; but attentions should be paid to the numerical 

complexity or numerical stability for SPICE codes with too many 

circuit elements. 
2) In this work, only the intrinsic physical properties were 

considered for semiconductor lasers. In other words, their 

extrinsic properties, such as parasitic resistances and capacitances 

associated with the devices themselves or the external wire 
bonding, were not considered. In practice, the parasitic properties 

might be an important factor affecting the properties of 

semiconductor lasers, especially in their high-speed performance. 

Including parasitic resistances and capacitances into the SPICE 

circuit model will be reasonably straightforward. However, their 

values usually cannot directly be assessed by either experimental 

measurements or theoretical calculations. But if the parasitic 

resistances and capacitances are included into the circuit model 

presented in this work, their values can be estimated by measured 

ac data. This feature demonstrates another merit of using an 

extensive SPICE circuit model in characterising the properties of 

semiconductor lasers. 

3) Only bulk semiconductor lasers are used as the numerical 

examples in this work, while quantum-well (QW) lasers are not 

particularly discussed. However, the physical models presented in 

this work are general and can be applied to QW lasers if the 

correspondent parameters are given. The carrier and lattice 

heating processes in QW lasers should be rather similar to those 

in bulk lasers. It has been shown that the carrier energy relaxation 
time for QW lasers calculated by first principles do not present 

any considerable difference from those for bulk lasers. The 
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differential gain of QW lasers is substantially higher than that of 
bulk lasers. In addition, it should be noted that, other physical 

processes, such as the carrier transportý capture and escape, are 

not presented in bulk lasers but unique to QW lasers. In some 

cases, for example, if the separate confmement heterostructure 

(SCH) is very large, their effects may become crucial. Under such 

a circumstance, additional rate equations are needed to 

characterise their cffects. Accordingly, extra circuits should be 

incorporated to describe the carrier transporý capture and escape 

processes. 
4) Tlie SPICE circuit model provides an indisputable advantage for 

designing semiconductor lasers used in conjunction with other 

electronic circuits or systems, especially in designing the 

transmitter modules for fibre optic communication systems. The 

transmitter modules, receiver modules and the optical fibres are 
the three major components in a fibre optic communication 

system. It is thus perceivable thatý if SPICE circuit models can be 
further implemented for the receiver modules and optical fibres, 

they can be used to simulate a whole fibre optic communication 

system. This surely defines one of the ultimate goals for using 
SPICE circuit models in simulating the optoelectronic devices 

and systems. 

In conclusion, the SPICE circuit models presented in this work 
demonstrate the capability and versatility of SPICE in simulating the 

complicated carrier and lattice heating processes in semiconductor lasers 

and represent a state of the art modelling tool using leading edge 
understanding of physical processes. Further enhancement to this work can 
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provide a step towards simulating the optoelectronic devices and systems 
for fibre optic communication systems. 
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APPENDIX A: GETTING STARTED WITH PSPICE 

A very brief outline for downloading, installing and running the 

PSPICE program are given in this appendix. The evaluation (educational) 

version of the MicroSim PSPICE software can be downloaded from the 

website http: //fl`tp. microsim. coml. 

A. 1 Downloading the PSPICE: 

1. Type 'http: //fl`tp. microsim. cotW'on the web browser. 

2. Click the 'Eval_ Versions. ' Then click the '80dlabe. exe'to download 

the MicroSim PSPICE Evaluation Version 8.0 to a temporary 

directory in the PC. 

3. Either way, click 'eval_pieces' to download PSPICE from 

80dlepl. exe to 80dlep]3. exe into 13 floppy disks. Save all these 13 

80dlep *. exe files into the temporary directory of the PC. 

A. 2 InstaHing the PSPICE: 

Double click the 80dlabe. exe (or all the 80dlep*. exe files) file in the 

temporary directory. It will generate several executable files in the 

temporary directory. 

2. Double click the setup. exe file in the temporary directory. it will 

automatically install the PSPICE program in the PC. 

3. During the installation, it will ask whether to install 'Design Center' 

or TSPICE A_D. 'Please choose TSPICEA_D. ' 

151 



4. After the installation, it will create a 'MicroSim Eval 8' folder in the 

I start program. Then it is ready to run PSPICE simulation program on 

the PC. 

A. 3 Running a PSPICE program: 

1. Go to 'MicroSim Eval 8' folder in the start program. In the 'Design 

Manager, ' click 'Run TextEdit I the bottom icon of the left toolbar to 

activate the MicroSim Text Editor to write the PSPICE prograrn. 

2. Type any of PSPICE programs and use 'Save' to save a file with a 

extension narne '. cir,, for example, jenkins. cir, in the ýprqjecl' 

folder. 
3. Click 'Run PSPICEAID'in the second icon of the left toolbar in the 

Design Manager to activate the MicroSim PSPlCE AID. Then open 

the saved jenkins. cir file. It will start to compile and run the 

jenkins. cir program. 
4. If it runs successfully, click the 'File' in the PSPICE window and 

activate 'Run Probe' command to run the probe. Ile graphic 

'MicroSim Probe'screen will appear. Click the 'Trace' Add, then it 

gives a list of all the currents in each circuit element and all the 

voltages in each node, and the voltage drop in each element. 

Click the. currents or voltages to plot on the 'Probe' screen. More 

that one current or voltage can be selected for the sarne plot. 
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APPENDIX B: SUMMARY OF THE PSPICE SYNTAXES 

Although the SPICE is a simple but powerful simulation language 

for electronic circuits, it is still rather complicated to memorise all the 

details of its formats and syntaxes. In this appendix, the syntaxes of the 

PSPICE will be listed for possible future work. Although this list is not 

complete, it does provide all the major syntaxes that are relevant to this 

work and its possible further expansion. 

0 Components 

4. '- Passive components 

A Linear 

+ Resistor 

R<name> <+ node> <-node> <value> 

* Capacitor 

C<name> <+ node> <-node> <value> 

* Inductor 

L<name> <+ node> <-node> <value> 

A Nonlinear 

* Resistor 
R<name> <+ node> <-node> <model name> <value> 

. MODEL <model name> RES [modelparameters] 

where [model parameters] is (R =? TC I=? TC2 =? TCE = ?) 

* Capacitor 
C<name> <+ node> <-node> <model name> <value> 

. MODEL <model name> CAP [model parameters] 

where [model parameters] is (C =? TCI =? TC2 =? VCI =? VC2 = ?) 
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* Inductor 
L<name> <+ node> <-node> <model name> <value> 

. MODEL <model name> IND [model parameters] 

where [model parameters] is (C =? TCI =? TC2 =? ILI =? IL2 = ?) 

A Semiconductor components 

* Diode 
D<name> <A node> <K node> <model name> 
MODEL <model name> D [model parameters] 

* Bipolar transistor 
Q<name> <Cnode> <B node> <E node> <model name> 
MODEL <model name> <type> [model parameters] 

where <type> is either NPN or PNP 

El Sources 

%! - Independent sources 

A Independent current source 
I<name> N+ 

. 
N- [DC<value>j 

+ If(transient value) 

+ [PULSEI[SH7[EXP][Pnj[SFFMI[Source arguments]] 

A Independent voltage source 
V<name> N+ N- IDC<value>j 

+ V[ftransient value) 

+ [PULSEI[SWI[EXPI[PREI[SFFMI[Source argumenul] 
A DC 

V<name> <+ node> <-node> DC <value> 

. DC <source name> <sfart value> <end value> <step value> 
A AC 

V<name> <+ node> <-node> AC <magnitude> <phase> 

AC <sweep type> <Npoints> <startfrequency> <stopfrequency> 

where <sweep type> is LIN, OCT, or DEC. 

A Transient 

. TP. 4N <time step> <stop time> [<time start> <maximum time step>] [UICJ 
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A Exponential 
V<name> <+ node> <-node> EAP (VI V2 TDI TAUI 7D2 TAU2) 

A Pulse 
V<name> <+ node> <-node> PULSE (VI V2 TD TR TF TW PER) 

A Sinusoidal 
V<name> <+ node> <-node> SIN (VO VA FREQ 7D DF PHASE) 

A Single-frequency frequency-modulated 
V<name> <+ node> <-node> SFFM (VO VA FC MDI FS) 

A Piece-wise linear 
V<name> <+ node> <-node> PffE ((TI, VI) (r2, V2) .... (rN, VN)) 

-*. - Dependent sources 

Spice name Description 

E Voltage-controlled voltage source (VCVS) 

G Voltage-controlled current source (VCCS) 

F Current-controlled current source (CCCS) 

H Current-controlled voltage source (CCVS) 

El Sources 
4- Linear sources 

A VCVS 

E<name> <+node> <-node><+ controlling node> <-controlling node> <gain value> 

A VCCS 
G<name> <+ node> <- node> <+ controlling node> <- controlling node> <transconductance 

value> 

CCCS 
F<name> <+ node> <-node> < Vx=> <gain value> 

CCVS 
H<name> <+ node> <- node> <VxxN; > <transresistance value> 
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-*. - Nonlinear (polynomial) 

A One-dimensional 
E<name> <+ node> <-node> POLY(]) (< + controlling node> 

controlling node>) (<polynomial coefficient values>) 

A Two-dimensional 
E<name> <+ node> <-node> POLY(2) (<+ controlling node I> <- 

controlling node P) (<+ controlling node 2> <- controlling node 2>) (<polynomial coefficient 

values>) 

EI Analogue behavioural modelling 

-*e VALUE 

A Voltage-controlled voltage source (VCVS) 

E<name> <+ node> <-node> VALUE = (<expression>) 

A Voltage-controlled current source (VCCS) 

G<name> <+ node> <-node> VALUE = (<expression>) 

where <expression> is the output voltage value for E and current value for G 

TABLE 
E<name> <+ node> <-node> TABLE (<expression>) = <(U, ol) (f2, o2) ... (in, on) > 

G<name> <+ node> <-node> TABLE (<expression>) = <(H, ol) (U, o2) ... (in, on) > 

where <expression> is the input controlled values 
FREQ 
E<name> <+ node> <-node> FREQ (<expression>) qfj, dbj, pl) 07, db2, p2) ... n An pn) > 

G<name> <+ node> <-node> FREQ (<expression>) < r, dbl, PI) 02, db2,2) ... (fndbn, pn)> 07 

44- LAPLACE 
E<name> <+ node> <-node> LAPLACE (<expression>) - (Qrans/brrn>) 

G<name> <+ node> <-node> LAPLACE (<eVression>) - (Qrans/bm>) 

CHEBYSHEV 

E<name> <+ node> <- node> CHEBYSHEV (<expression>) = <type> <cutoff frequency> 

<attenuations> 

G<name> <+ node> <-node> CHEBYSHEV [<expression>) - <type> <cutoff frequency> 

<attenuations> 

where <type> is LP (low pass), HP (high pass), BP (band pass), or BR (band reject) 
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El Advanced commands 

-. *- Function 

. FTJNC <name> (arguments) (<expression of arguments>) 

-*. - Parameters 

. PAP, 4M <name> = <value> or [<expression>) 

Subcircuit 

. SUBCKT <name> <nodes> [PARAMS: <name> = <value>_. ] 

. ENDS [<subcircuit name>] 
X<name> [nodes] <subcircuit name> [PARAMS., <name> = <value>, 

El Output options of simulation results 

-*. - Text mode 

A Tabulated outputs 

. PRINT <type> <output va? iables> 

A Plotted outputs 
YLOT <type> <output variables> 

Direct outputs 

. OP 

. TF 

. FOUR 

. SENS 

-*e Graphic mode 

. FROBE [output variables] 
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APPENDIX C: SPICE CODES OF THIS THESIS 

C. 1 SPICE Circuit Model vdthout Carrier and Lattice Heating 

*COPYRIGHT BY MR. JENI(INS CHEHýHSIUNG CHEN AND DR. CHIN-YI TSAI 

XUNC ljm(x) UMIT(XO, 800&3) 

. PARAM QO - 1.6022E-19 

. PARAM ELIGHT - 11.45*QO) 

. PARAM LX - IE-7 

. PARAM LY - 2E-6 

. PARAM LZ - 3E-4 

. PARAM TAUN = IE-8 

. PARAM VG - 6.67E7 

. PARAM TAUCONF -0.35 

. PARAM ALPHAINT - IE3 

. PARAM RNM -0.32 

. PARAM BETA - 5E-5 

. PARAM TAUSPON - IB-8 

. PARAM DO - 4E-20 

. PARAM NTR - 2.5E24 

. PARAM ESHB - IE-23 

. PARAM NIO - 2.045EI2 

. PARAM VOL - (LX*LYOLZ) 

. PARAM ALPHAM IRR - (I/LZ*LOG(I/RMIRR)) 

. PARAM TAUM - (1/(VG*ALPHAMIRR)) 

. PARAM TAUS -I 1/(VG*(ALPIWNT+ALPHAMIRR))) 

. PARAM R-S - (ELIGHTIQ0*TAUSITAUM) 

. PARAM C-S - (QO/ELIGHT*TAUM) 

. PARAM DGP - IDGOTAUCONF*VG*TAUNOTALqvVEUGMNCL) 

. PARAM ESHBP - (ESBBOTAUCONF*TAUNVELIGHTNOL) 

. PARAM ITR - (QO*VOL*NTR/TAtN) 

. PARAM ISN - (QO*VOLONIO/TAUN) 

VIN 1 3 DC ov 

DN 3 0 DNEQ 

. MODEL DNEQ D (IS-(ISN) N-2 RS-10) 

GN 1 0 VALUE - (I(VN)) 

EN 4 0 VALUE - (I(VIN)) 

VN 4 5 DC ov 

CN 5 0 ITAUN) 

GSTIM 1 2 VALUE - (DGP*(I(VIM-rM)OLIM(V(2))/(I+ESHBPOUM(V(2)))) 

GSPON 0 2 VALUE - (BETA*I(V"OTAUN/TAUSPON) 
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RS 2 0 (ks) 

Cs 2 0 (C-S) 

IINJ 0 1 DC IMA 

. DC HNJ OAMA 100MA OAMA 

*IINJ 0 1 PULSE (OMA 100NU 000 2NS 4NS) 

*. TRAN 0. IFS 0.6NS 0.2NS 0. lps 

*HNJDC 0 1 DC 50MA 

*INJAC 0 1 AC INU 

*. AC DEC 1000 IK 30G 

TROBE 

XND 
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C. 2 SPICE Circuit Model with Lattice Heating but without 
Carrier Heating 

*nHS CIRCUIT IS TIHE SANE AS C3 BUT ME CIRCLTr IN TRE 
*LATTICE BEATING REPRESENTED BY A RESISTOR. 

*COPYRIGHT BY MR. JENKINS CHIH-HSIUNG CHEN AND DR. CHN-Yl TSAI 

*FLINDANENTAL CONSTANTS 

TARAM mo - 9.1095E-31 

TARAM QO - 1.60219E-19 

. PARAM KB - 1.38066E-23 

. PARAM HDASH - 1.05458E-34 

TARAM Pi - 3.14159265358979 

*NUTOUAL PARAMMTERS 

. PARAM NE (0.067*MO) 

. PARAM MH (0.45*MO) 

. PARAM EG (1.4225*QO) 

. PARAM NIO - 2.045E12 

*. FUNC EG(TLNFNli) «1.5 19-5.405E-4*TLA2/(TL+204)-1.6c-10*PWR(NE, 1/3)-1.6E- 

+ 10*PWR(Ngl/3»*QO) 

*. FUNC NIO(TL) QRT(2*PWR«NE*KB*TidWYMASH/MASII), 1.5)*2*PWR(M*KB 

+ /PDMASINMASM, 1.5»*EXP(-EGCII, 0,0Y2/KBrM»; 

*STRUCTURE PARANMTERS 

. PARAM LX - IE-1 

. PARAM LY - 2F, 6 

. PARAM LZ - 3B-4 

. PARAM WN - IOF, 6 

. PARAM WP - 2E-6 

. PARAM xc -0.3 

. PARAM DE (0.6*1.247*XC*QO) 

. PARAM DH (0.4*1.247*XC*QO) 

*PHOTON PARANETERS 

TARAM ELIGHT - (1.45*QO) 

TARAM VG - 6.67E7 

. PARAM TAUCONF -0.35 

. PARAM ALPHAINT - IE3 
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TARAM RMIRR -0.32 

TARAM BETA = SE-5 

*LATrICE PARAMEMRS 

. PARAM DENSITY - 5.36E3 

. PARAM KL -50 

. PARAM CLO - 0.35E3 

. PARAM THS -300 

*PARANIETERS OF PHYSICAL PROCESSES 

. PARAM ASRH - lE7 

. PARAM BSPON - IE-16 

. PARAM CAUG - 4.22E-42 

. PARAM TAUN - IF, 8 

. PARAM TAUEL - 2E- 12 

. PARAM TAUBL - IF-12 

. PARAM TALIEH - lE-12 

. PARAM TAUK - 4E-7 

. PARAM DHU - 20OE, 4; i(KB*300/QO)*0.85) 

. PARAM DTM - IOF, 4; (KB*300/QO)*0.04 

*GAINPARANETFRS 

. PARAM DG = 4E-20 

. PARAM NTR - MEN 

TARAM ESHB = IE-23 

TARAM DGDTE = 2.167E2 

. PARAM DGDTH = 2.482E2 

TARAM DGDTL - 3.484E2 

soTBER DEPENDENT PARAMETERS 

. PARAM VOL - (IX*LY*IZ) 

. PARAM ALPHAMIRR - (I/LZ*LOG(I/RlýM)) 

. PARAM TALIM - (1/(VG*ALPHAMIRR)) 

. PARAM TAUS - (1/(VG*(ALPHAINT+ALPHAMIRR))l 

. PARAM R-S - (ELIGHT/QO*TAUS/TALM) 

. PARAM Cýs - (QO/EUGHT*TAUM) 

. PARAM ISN - (QO*VOL*NIO/TALTN) 

*COEFFICIENTS FOR THE APPROMIATION OF TBE FEIM ENERGIY 

TARAM CFI - 3.53553E-1 

TARAM CF2 - -4.95009E-3 

. PARAM CF3 - 1.48386E-4 

. PARAM CR - -4.42563E-6 

*DEFINED FUNMONS 
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XUNC ljm(x) iLDM(XO, 10)1 

*FUNCITONS FOR THE APPROMMAnONS OF THE FEPJvff-DIPAC R-nTGRALS 

. FLJNC C12(X) (3*SQRT(PL'2)/PWR(X+2.13+PWR(PWR(ABS(X-2.13), 1215)+9.6,5/12), I. S)I 

XUNC C32(X) (15*SQRT(PI/2)/PWR(X+2.64+PWR(PWR(ABS(X-2.64), 9/4)+14.9,4/9), 2.5)) 

. FLNC FD12(X) (1/(EXP(-)Q+CI2(30)) 

XUNC FD32(X) (1/(E. NP(-M+C32(Xý)) 

*FUNCTIONS FOR TBE CARRIER DENSITY AND ITS FERMI ENERGY 

O. FLINC NC(TE) 12*PWR(NE*KB*TE/2/PVMASH/HDASK 1.5)) 

*. FUNC NV(Tli) (2*PWR(MH*KB*THWVMASHMASfU. 5)) 

. FLJNC NC(TE) (2*(NE*TE*1.7999EI4)**1.5) 

XUNC NV(M (2*(MH*TH*1.7999EI4)**1.51 

. FLTNC NE(MUFTE) (NC(TE)*FD12(NRJE/K]37M)) 

. FLJNC NRMURM (NV(M*FD12(MUH/KBMI)) 

. FLTNC MUE(NETE) (KB*TE*(LA)G(NEINC)+CFI*(NE(NC)+CF2*PWR(NE/NC, 2) 

+ +CF3*PWR(NE/NC, 3)+CF4*PWR(NE/NCý3))) 

XUNC MUH(NILM (KB*TH*(LOG(NH/NV)+CFI*CZ4(NV)+CF2*PWR(NH/NV, 2) 

+ +CF3*PWR(NH/NV, 3)+CF4*PWR(NH/W, 3))) 

*FUNCTIONS FOR TBE CARRIER ENERGY DENSrrY 

XUNC UE(NETE) 

XUNC WNKM 

XUNC PUEPNE(NETE) 

XUNC PUIFNKNKM 

XUNC PUEPTE(NETE) 

XUNC PUHPTH(NKni) 

*FUNCTION FOR CONVFRSION 

. FLJNC NOFI(" 

XUNC SOFP(P) 

OCIRCUIT FOR CARRIER DENSITY 

11.5*NEOKB*TE*FD32(MUE(NF, TE)T, BrM) 

/FD12(MUE(NE, TEYKBfM)l 

11.5*NH*KB*TH*FD32(NfLIRMTHYKBfM 

/FD12(NRM(NKTH)/KBMD) 

(UE(NE+NE/IE6, TE)-LTE(NE- NE/IE6, TE)Y(2*NE/IE6)) 

(UH(NH+NIVIE6, TH)-UH(NH-NIVIE6,711)Y(2*NIVIE6)) 

((UE(NE, TE+TE/IE6)-UE(NE, TE-TEIIE6)V(2*IVIE6)) 

(LU(NKTH+TIVIE6)-LIRMTH-UYIE6)Y(2*71YIE6)) 

(rN*TALWQONOLI 

(POTAUCONF*TALNWOI. /EUGHT) 

VIN 1 3 DC ov 

DN 3 0 DNEQ 

. MODEL DNEQ D (IS=(ISN)N-2RS-10) 

GDN 0 1 VALUE - JI(VIN)) 

GSRH 1 0 VALUE - (QO*VOL*ASRH*NOFI(I(VIN))) 

GSPONI 1 0 VALUE - (QO*VOL*BSPON*PVMtNOFI(I(NIN)), 2)) 

GAUG 1 0 VALUE - (QO*VOL*CAUG*PWR(NOFT(I(VIN)), 3)) 

GN 1 0 VALUE - (") 

*DERrVATIVE CIRCUIT FOR DN/DT 
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EN 40 VALUE - (I(VIN)) 

VN 45 DC ov 

CN 50 ITAUN) 

*CIRCUIT FOR PHOTON DENSITY 

GSTIM 12 VALUF - (QO*VOL*VG*(DG*(NOFT(I(VIN))-NTR)-DGDIL*(V(30)- 

+ THS))*SOFP(11M(V(2)))/(I+ESHB*SOFP(L2vf(V(2))))) 

GSPON2 02 ALUE - (BETA*QO*VOL*BSPON*PWR(NOFRI(VIN)), 2)) 
RS 20 fks) 

cs 20 (C-sl 

*CIRCUT FOR LATMCE DEATTMG 

GVI 0 30 VALUE - l(V(1,0)*RVDU)-V(2, O)YVOIJCD)/DENSrrYI 

RL 30 31 JTALJK) 

EL 31 0 VALUE - (THS) 
CL 30 0 IF 

*INPUT AND OUTPUT 

VINJ 9 1 DC OV 

IINJ 0 9 DC INU 

. DC IINJ 0. INU 200NU O. IMA 

*HNJ 0 1 PULSE (OMA IOOMA 000 2NS 4NS) 

*. TRAN 0. IFS O. 6NS O. 2NS 0. IPS 

*IINJDC 0 1 DC SOMA 

*IINJAC 0 AC IMA 

*. AC DEC 1000 IK 30G 

. PROBE 

XND 
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C. 3 SPICE Cirr-uitNIodel, %,, ithL-atftttUt-al&uglbut-iN! thout Carrier 

Heating but with the addition of the Temperature-SmiWiNt 

Leakage Current and Auger Process 

*TMS CIRCUIT IS MIE SAME AS C. 2 IN ADDITION %%TIll 
*LEAKAGE CLIMENT AND TEMPERATME-SENSITIVE AUGER. 

*COPYRIGIrr BY MR. JENKINS Cl JHl-HSIUNG MEN AND DR. CHN-YI TSAL 

*FUNDAMENTAL CONSTANTS 

*. PARAM mo - 9.1095E-31 

. PARAM QO - 1.60219E-19 

. PARAM KI) - 1.39066E-23 

O. PARAM MASH - 1.0545SE-34 

. PARAM PI - 3.14159265359979 

OMATERIAL PARAMETERS 

. PARAM NIE -0.067 

. PARAM mn -0.43 

. PARAM EG (1.4223*QO) 

. PARAM NIO - 104sE12 

*. FUNC EG(TINFNH) «1.519-5.401 

+ IOOP%%R(NU 

*. FUNC NKM) (SQRT(2*1% 

+ OILW11HD) 

*STRUCTURE PARANETERS 

. PARAM LX 

. PARAM LY 

. PARAM LZ 

. PARAM WN 

. PARAM %IP 

. PARAM xc 

. PARAM DE 

. PARAM DH 

*PHOTON PARAMETERS 

TARAM EUGHT 

TARAM VG 

j(I. S 19-5.405E-4*ILA2/(TL+204)-l. 6o, -IO*PWR(NF, 1/3)-l. 6E- 
IOOP%%'R(Mlt 1/3))*QO) 
(SQRT(2*PWR((NE*KB*TLJ2/PFMASH4MASMI. 5)*2*PWR((MH*KB 
OTLWIIHDASI-L'BDASI-a 1.5))*EXP(-EGCIIO, OY2/ICWn)) 

- M7 

- 2E-6 

= 3F4 

- IOE-6 

= 2E-6 

= 0.3 

10.6*1.247*XC*QO) 

10.4*1.247*XC*QO) 

6.67E7 
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. PARAM TAUCONT -0.33 

. PARAM ALPHAW - IE3 

. PARAM RMIRR -0.32 

. PARAM BETA - 5E-5 

*LATTICE PARAMETERS 

. PARAM DENSITY - 5.36E3 

. PARAM KL -50 

. PARAM CLO - 0.35E3 

. PARAM THS -300 

*PARANIETERS OF PHYSICAL PROCESSES 

TARAM ASRH - IE7 

TARAM BSPON - IE-16 

TARAM CAUG - 4.22E42 

TARAM TALIN - Mg 

. PARAM TAUEL - 2E- 12 

TARAM TAUHL - IE-12 

TARAM TALTEH - IE-12 

TARAM TALIK - IE-7 

. PARAM DUTE - 200E-4; ((KB*300/QO)*0.95) 

TARAM D= - IOE-4; (KB*300/QO)00.04 

*GAIN PARAT%ETERS 

. PARAM DG - 4E-20 

. PARAM NTR - ISE24 

. PARAM ESHB - IE-23 

. PARAM DGDTE - 2.167E2 

. PARAM DGDTH - 2.492E2 

. PARAM DGDIL - 3.484E2 

*OTBER DEPENDENT PARANIETERS 

. PARAM VOL - IIX*LYOLZ) 

. PARAM ALPHAMIRR m (I/LZOLOG(I/RMIRR)) 

. PARAM TALM - (II(VGOALPHAMIRR)) 

. PARAM TAUS - (I/(VGO(ALPHAM+ALPHAMIRR))) 

. PARAM R-S m JELIGHT/QO*TAUS/TALM) 

TARAM C-S - (QO/ELIGITr*TAUM) 

. PARAM ISN - (QO*VOL*NIO/TAUN) 

*COEMC=S FOR THE APPROXUAAnON OF ME FERM ENERGIY 

TARAM CFI - 3.53553E-1 

. PARAM CF2 - 4.95009E-3 

TARAM CF3 - 1.48386E-4 
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TARAM CR - -4.42563E-6 

*"EvfLJM ALLOWABLE PHOTON DENSITY AND TENVERATURE 

. PARAM SMAX -10 

*DETll, 4FD FUNCTIONS 

. FUNC LIM00 (LDffr(y., O, sm=) 

*FUNCTIONS FOR TBE APPROXM4AIIONS OF THE FFRM-DIRAC RTMGRALS 

XUNC C12(X) (3*SQRT(PI/2)/(X+2.13+(ABS(X-2.13)**(12/5)+9.6)**(5/12))**(1.5)) 

XUNC C32(X) (15*SQRT(PL2)/(X+2.64+(ABS(X-2.64)**(9/4)+14.9)**(4/9))**(2.5)) 

. FUNC FD12(X) (1/(F-NP(-M+CI2(30)) 

. FUNC FD32(X) (1/(EXP(-X)+C32(X))) 

*FUNCTIONS FOR TBE CARRIER DENSITY AND ITS FERNH ENERGY 

O. FUNC NC(TE) (2*PWR(NfE*KB*TE42/PLMASHMASK 1-5)) 

*. FLJNC NV`(M (2*PWRWKB*TffWLMASIlVDASKl-5)) 

XUNC NC(TE) (2*(NE*TE* 1.7999EI4)*01.5) 

. FUNC NV(TT-1) (20(MH*TH*1.7999EI4)**1.5) 

. FUNC NE(MUEJE) (NC(TE)*FD12(MUE/KB/TE)) 

. FUNC NKMUKTH) (NV(TM*FD12(NfUH/KBMD) 

XUNC NlUE(NETE) (KB*TE*(LOG(NEINC(TE))+CFI*(NE/NC(TE))+CF2*(NE 

+ /NC(TE))**2+CF3*(NE/NC(TE))*03+CF4*(NE/NqTE))**4)) 

. FUNC NIUH(NKM (KB*TH*(LOG(NH/NV(M)+CFI$(NH/NV(M)+CF2*(NH 

+ /NVCM))**2+CF3*(Nli/NV(M)**3+CF4*(NU/NV(M)$*4)) 

*FUNCTIONS FOR TBE CARRIER ENERGY DENSITY 

XUNC UE(NIýTE) (1.5*NE*KBOTF*FD32(MUE(NETE)/YJYM) 

+ /FD12(MLIE(NETE)(KBrM)) 

. FUNC UIANýIm (I. S*NH*KBOTHOFD32(NMRNKTIIYKB4[M 

+ /FD12(MUH(NKM/KBnR) 

. FUNC PUEPNE(NETE) ((UE(NE+NE/IE6, TE)-UE(NE-NE/IE6, TE)Y(2*NE/IE6)) 

. FUNC PUBMI(NILM ((UH(NH+NIVIE6, M-UH(NH-MVIE6,111))/(20NI]VIE6)) 

XUNC PUEPTE(NPTF) ((UE(NETE+TE/IE6>-UE(NFTFTEIIE6))1(2*TE/IE6)) 

XUNC PUHPTHMM f(UH(NKTH+nVIE6)-UH(Nlt7li-TII(IE6)Y(2*IIIVIE6)) 

*FUNCTION FOR CONVERSION 

XUNC NOFI(IN) (IN*TAUN/Q0/VOL) 

XUNC SOFP(P) (POTAUCONMAUMN01JEUGIff) 

*NORMAUSED AVERAGE ENERGY LOSS PER CARRIER 

. FL)NC RINJEP(NETE) (TAUELODFJPUEPTE(NETE)/QONOL) 
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. FUNC RINJBP(NKnl) (TAUHL*DMUHPnIMTII)/QONOL) 

XUNC RSTDAEP(NETE) (TAUEL*(PUEPNE(NETE)-(ElJGHT- 

+ EG)OMEV(NE+MMYPUEPIE(lýMTEYQO/VOL) 

. FLNC RSTUvUP(NKM jTAUHL*(PUfTNRMLTIfXELIGHT- 

+ EG)OMEI(NE+MMYPLIIIMUMTH)VQO/VOL) 

XUNC RAUGEP(NFTE) (TAUEL*EC&/PUEPTE(NFTEYQO/VOL) 

XUNC RAUGBP(NKni) (TAUBL*EG(PUHPTH(NKTH)/QO/VOL) 
XUNC RFCAEP(NFTE) (TAUEL*EllGHT/PUEPTE(NETEYQONOL) 

XUNC RFCABP(NKIII) (TAUHL*EUGHT/PUBPTH(NKnIYQONOL) 

*PARAý. IETERS AND FUNCTIONS FOR LEAKAGE CURRENT 

. PARAM TAUE - IE-9 

. PARAM TAUH - IE-9 

. PARAM LE - ((DIFFE*TAUE)**0.5) 

. PARAM LH - ((DIFFH*TAUH)**0.5) 

XUNC NE0(NETE) (NC(IE)*EXP(-(DE-MLTE(NETE)YKEVrE)) 

XUNC NHO(NKTH) (NV(TH)*EXP(-(DH-MUH(NHTH)YKBfIH)) 

XUNC ILEAKE(NEJE) (QO*DUn*NEO(NETE)*LYOLZaX. ITANFRWN/LE)) 

XUNC ILEAKH(NH, 111) (QO*DIFFH*NHO(NKM*LYOLZUIITANIRWP/LH)) 

*PARAMETER FOR AUGER RECOMBINATION 

. PARAM EA (QO*-0.0404) 

*CIRCUIT FOR CARRIER DENSITY 

VIN 13 DC ov 

DN 30 DNEQ 

. MODEL DNEQ D (IS-(ISN)N-2RS=10) 

GDN 01 VALUE = (I(VIN)) 

GLEAK 10 VALUE = (MEAKE(NOFI(I(VIMýV(10))+MEAYJi(NOFI(I(VIN)IV(20))) 

GSRH 10 VALUE - (Q0*VOL*ASRH*N0FI(I(VIN))) 

GSPONI 10 VALUE= (QOOVOLOBSPON*PWR(NOFI(I(VIN)), 2)) 

GAUG 10 VALUE - (QO*VOL*CAtJG*PWR(NOFI(I(VIN)), 3) 

+ *(EXP(-W(I/KBN(30)-I/KB/300)))l 

GN 10 VALUE - (I(W) 

*DERIVATIVE CIRCUIT FOR DN/DT 

EN 40 VALUE - JI(VIN) 

VN 45 DC ov 

CN 50 (TAUN) 

*CIRCUIT FOR PHOTON DENSITY 

GSTIM 12 VALUE - (QO*VOLOVG*(DG*(NOFI(I(V")-NTR)-DGDTL*(V(30)- 

+ THS))*SOFP(LMd(V(2)))/(I+ESID3*SOFP(LZvt(V(2))))I 

GSPON2 02 VALUE - (BETA*QO*VOLOBSPONOPWR(Non(I(VIN)), 2)) 
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RS 2 0 (R_S) 

cs 2 0 (C-S) 

*CIRCUIT FOR LATMCE HEMING 

GVI 0 30 VALUE - ((V(I)*I(VINJ)-V(2)YVOLICLOA: )ENSrrY*TAUK) 

RL 30 31 1 

EL 31 0 VALUE - (THS) 

CL 30 0 (TAUK) 

*INPUT AND OLTIPUT 

VINJ 9 1 DC ov 

IINJ 0 9 DC INU 

ZC IINJ 0. OIMA 200MA 0. OIMA 

*UNJ 0 1 PUME (OMA IOONU 000 2NS 4NS) 

*. TRAN 0. IFS 0.6NS 0.2NS 0. IPS 

*IINJDC 0 1 DC 50MA 

*IINJAC 0 1 AC IMA 

*. AC DEC 1000 IK 30G 

. PROBF 

. END 
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CA SPICE Circuit Model with Carrier and Lattice Heating 

*COPYRIGHT BY MR. JENI(INS CHH-HSrUNG CHEN AND DR. CHIN-YI TSAI 

*FUNDANENTAL CONSTANTS 

*. PARAM mo - 9.1095E-31 

. PARAM QO - 1.60219E-19 

TARAM KB - 1.38066E-23 

*. PARAM HDASH - 1.05458E-34 

TARAM Pi - 3.14159265358979 

*NUTERIAL PARANETERS 

. PARAM NIE -0.067 

. PARAM MH -0.45 

. PARAM EG (1.4225*QO) 

. PARAM NIO - 2.045E12 

*JUNC EG(TLNFNM «1.5 19-3.40SE-4*TL"2/(TL+204)-1.6c-10*PWR(NF, 1/3)-1.6E- 

+ 10*PWR(NIII/3»*QO) 

*. FUNC NIO(TL) (SQRT(2*PWR«NM*KB*TLJ2/PUMASIVMASM, 1.5)*2*PWR«MH*h13 

+ *TL2/PIMASFMDASH), 1.5»OEXP(-EG(Ti, 0,0y2TBfM»; 

*sIRUCTURE PARANETERS 

. PARAM LX - IFý7 

. PARAM LY - 2E-6 

. PARAM LZ - 3E-4 

. PARAM WN -IOM 

. PARAM WP - 2E-6 

. PARAM xc -0.3 

. PARAM DE (0.6*1.247*XC*QO) 

. PARAM DH (0.4*1.247*XC*QO) 

*PHCYrON PARAMETFRS 

TARAM ELIGHT - (1.45*QO) 

. PARAM VG - 6.67E7 

TARAM TAUCONF -0.35 
TARAM ALPHAINT - IE3 

TARAM SIGMAFCAE - 3E-22 

TARAM SIGMAFCAH - 7E-22 

TARAM Rlý= -0.32 
TARAM BETA -5&5 

169 



*LATTICE PARAMETERS 

. PARAM DENSITY - 5.36E3 

. PARAM KL -50 

. PARAM CLO - 0.35E3 

. PARAM THS -300 

OPARANETERS OF PHYSICAL PROCESSES 

TARAM ASRH - IE7 

TARAM BSPON - IE-16 

TARAM CAUG - 4.22E-42 

TARAM TAUN - IE-8 

TARAM TAUEL - 2&12 

. PARAM TAUHL - IE-12 

TARAM TALTEH = IE-12 

TARAM TAUK - IE-7 

TARAM DUW - 200E-4; i(KB*300/QO)*0.95) 

TARAM DIFFH - IOE-4; (KB*300/QO)*0.04 

*GAIN PARAMETERS 

. PARAM DG - 4&20 

. PARAM NIR - 2.5E24 

. PARAM ESBB = 1&23 

. PARAM DGDTE - 2.167E2 

. PARAM DGDTH - 2.482E2 

. PARAM DGDTL - 3.484E2 

*oTBER DEPENDENT PARAhETERS 

. PARAM VOL - (LX*LYOLZ) 

TARAM ALPHAMIRR - (=*LOG(I/RMIRR)) 

TARAM TALIM - 1/(VGOALPILkMIRR)) 

TARAM TAUS - 1/(VG*(ALPHAINT+ALPHAMIRR))) 

. PARAM R-S - (ELIGHT/QOOTAU&7ALIM) 

. PARAM C-S - (QO/EllGHTOTAUM) 

. PARAM ISN - (QO*VOL*NIOITAUN) 

*COEFFICEENTS FOR TBE*APPROMMAnON OF THE FERM ENERGrY 

TARAM CFl - 3.53553E-1 

TARAM CF2 - -4.95009E-3 
TARAM CF3 - 1.48386E-4 

TARAM CF4 - -4.42563E-6 
*DEFINED FUNMONS 

. FLJNC LIMM (LDVIIT(XOIIO)) 
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*FUNCnONS FOR THE APPROXEdAnONS OF THE FERM-DIRAC DMGRALS 

XUNC C12(X) 13*SQRT(PI/2)/PWR(X+2.13+PWR(PWR(ABS(X-2.13), 12/5)+9.6,5/12), I. S)) 

XUNC 02(Xý (15*SQRT(PIt2)/PWR(X+2.64+PWR(PWR(ABS(X-2.64), 9/4)+14.9,4/9), 2.5)) 

. FLJNC FD12(M (1/(EKP(-M+CI2(. X))) 

XUNC FD32(X) (1/(EXP(-X)+C32()Q)) 

*FUNCTIONS FOR THE CARRIER DENSITY AND ITS FERNII ENERGY 

*. FLJNC NC(TE) (2*(IvE*IKB*TF12TIAHDASRIHDASM**1.5) 

O. FLNC NV(nl) (2*(MH*KB*TLV2/PVMASInOASII)**1.5) 

. FLJNC NC(TE) (2*(ME*TE*1.7999EI4)**1.5) 

XUNC NV(TT-1) (2*(MH*TH*1.7999EI4)**1.5) 

XUNC NE(NlUETE) (NC(TE)*FD12(MUFAMrM)l 

XUNC NRMLILTH) (NV(M*FD12(NILU/KBnll)l 

XUNC MUE(NFTE) IKB*TE*(LOG(NE/NC(TF))+CFI*(NE/NC(TE))+CF2*(NE/NC(TE))**2 

+ +CF3*(NE/NqTE))**3+CF4*(NE/NC(TE))**4)) 

XUNC MUH(NIITlf) (KB*TH*(LOG(NIVW(nl))+CFI*(NEVNV(nl))+CF2*(NHNV(TH))**2 

+ +CF3*(NWW(ni))**3+CF4*(NH/ýN(ni))**4)) 

*FUNCTIONS FOR THE CARRIER ENERGY DENSITY 

TUNC UE(NFTE) 

FUNC UH(NKM 

. FLJNC PUEPNE(NFTE) 

XUNC PUIFNKNFLTTI) 

. FUNC PUEPTE(NETE) 

XUNC PLTIUMI(NKM 

*FUNCTION FOR CONVERSION 

(1.5*NE*KB*TE*FD320vfUE(NE, TE)/KB/TE) 

/FD12(MLJE(NE, TEYKBfM)) 

(1.5*NH*KB*TH*FD32(NIL41MTHYKBnli) 
/FD12(NIUH(NKTH)/KBnU)) 

((UE(NF+NE/IE6, TF)-UE(NE- NE/IF, 6, TE))/(2*NE/IE6)) 

((UH(NH+NWIE6, M-UH(NH-NIVIE6, M)/(2*NII/IE6)) 

((LT, (NE, TE+71/lIE6)-UE(NF, TE-TE/IE6)Y(2*TEIIE6)) 

((UH(NKTH+Tli/IE6)-Ull(NKTH-TIVIE6)Y(2*IUIE6)) 

. FLNC NOFIM4) ( IN*TAUN/QONOL) 

XUNC SOFP(P) ( P*TAUCONF*TALWVOLTUGHT) 

*AVERAGE ENERGY LOSS PER CARRIER 

XUNC RDEINJEP(NETE) (TAUELODE/PUEPTE(NFTE)/QO/VOL) 

XUNC RDEINnW(NKnl) (TAUBL*DHTUHFrH(NKTH)/QO/VOL) 

XUNC RDESIDAEP(NETE) ITAUELO(PUEPNE(NETE)-(ELJGIiT- 

+ EG)*Mtl/(I%E+M[I)YPUEPTE(NFTEYQO/VOL) 

XUNC RDESTIMHP(NI-LM (TAUBL*(PUHPNIJ(NKTH)-(EllGIrr- 

+ EG)*ME/(IýE+N"YPUYI]MI(NILTHYQONOL) 

XUNC RDEAUGEP(NETE) (TAUEL*EG(PLIEPTE(NETE)/QO/VOL) 

XUNC RDEAUGHP(NKlH) (TALTfIL*EG/PUI]PllkMLTIO/QONOL) 

XUNC RDEFCAEP(NETE) (TAUELOELIGHT/PLTM(NETEYQO/VOL) 

XUNC RDEFCAHP(NI-LM (TAUHL*EIIGHT/PUHPnI(NILIIIYQONOL) 
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*PARANIETERS AND FUNCTIONS FOR LEAKAGE CURRENT 

TARAM TAUE - IE-9 

TARAM TAUH - IE-9 

YARAM LE - ((D=*TAUE)**0.5) 

TARAM LH - ((DIFFH*TAUM**0.5) 

XUNC NEO(NETE) (NC(TE)*EXP(-(DE-NIUE(NE, TE))/KBfrE)) 

. FLJNC NHO(NKTH) (NV(M*EXP(-(DH-MUH(NKTII)YICBMD) 

XUNC MEAJKE(NETE) (QO*D=*NEO(NFTE)OLY*LZIEITANFRWN/LE)I 

XUNC ILEAKH(NKTH) (QO*DIFM*NHO(NKTH)*LY*LZ=ANH(WP/LH)) 

OPARAMETER FOR AUGER RECOMBINAlION 

YARAM EA - (QO*-0.0404) 

*CIRCUIT FOR CARRIER DENSrrY 

VIN 13 DC ov 

DN 30 DNEQ 

. MODEL DNEQ D (IS=jISN)N=2RS=10) 

GDN 01 VALUE - (I(VIN)) 

GLEAK 1 40 VALUE = (ILEAKE(NOFI(I(VIN)), V(10))+ILEAKH(NOFI(I(vin), V(20))) 

GSRHI 19 VALUE - (Q0*VOL*ASRH *NOFT(I(VIN))) 

GSPON1 18 VALUE - IQO*VOLOBSPON*NOFT(I(VIN))**2) 

GAUG 17 VALUE= (Q00VOL*CAUG *NOFI(I(VN)**3*(EXP(-EA$(I/KIYV(10)- 

+ 1/KB/300))+EXP(-EA*(I/KB/V(20)-I/KB/300)))) 

VGLEAK 40 0 DC ov 

VGAUG 70 DC ov 

VGSPONI 80 DC ov 

VGSRHl 90 DC ov 

GN 10 VALUE - 

*DERIVATIVE CIRCLTr FOR DN)DT 

EN 40 VALUE - (I(VIN)) 

VN 45 DC ov 

CN 50 (TAUN) 

*CIRCLTr FOR PHOTON DENSITY 

VGSTIM 6 2 DC 0 

GSTIM 1 6 VALUE - (QO*VOL*VG*(DG*(NOFI(I(VM)-NTR)-DGDTL*(V(30)-TIIS)- 

+ DGDTE*(V(10)-THS)-DGDTH*(V(20)41S))OSOFP(LIM(V(2)))/ 

+ (1+ESHB*SOFP(LIM(V(2))))l 

GSPON2 0 2 VALUE - (BETA*QO*VOL*BSPON*PWR(NOFI(I(VIN)), 2)) 

RS 2 0 (ks) 

cs 2 0 (CýS) 

*ciRcUT FOR ELECTRON BEATING 
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GINTrE 0 10 

GSl7vlE 0 10 

GAUGE 0 to 

GFCAE 0 10 

REL 10 11 

EEL 11 0 

REH 10 12 

EEH 12 0 

CE 10 0 

*CIRCUIT FOR HOLE BEMING 

GINTITI 0 20 

GSlTI. M 0 20 

GAUGH 0 20 

GFCAH 0 20 

RIIL 20 21 

EBL 21 0 

RBE 20 22 

EBE 22 0 

CH 20 0 

*CIRCL4T FOR LAIMCE ]HEATING 

GEL 0 30 

GHL 0 30 

GSRH2 0 30 

RL 30 31 

EL 31 0 

CL 30 0 

*INPUT AND OUTPUT 

VALUE - (RDEINJEP(NOFI(I(VIM), V(10))*I(VINJ)) 

VALUE - (RDESTINEP(NOFI(I(VIN)), V(10))*I(VGSTM) 
VALUE - (RDEAUGEP(NOFIa(VIN)), V(10))*I(VGAUG)/2) 

VALUE - (RDEFCAEP(NOFI(I(VIN)), V(10))*QO*VOL 

OVG*SIGMAFCAE*NOFI(I(VIN))*SOFP(LMV(2)))) 

I 
VALUE - (V(30)) 
(TAUEMAUEL) 

VALUE - (V(20)1 
(TAUEL) 

VALUE - IRDEINJBP(NOFI(I(VIM), V(20))*I(VINJ)) 

VALUE - (RDESTBAMNOFI(I(VIN)), V(20))*I(VGSTDVD) 

VALUE - (RDEAUGIIP(NOFI(I(VIN)), V(20))*I(VGAUG)/21 
VALUE= (RDEFCAHP(NOFI(WVIN)), V(20))*QO*VOL 

*VG*SIGMAFCAH*NOFI(I(VIN))*SOFP(LMV(2)))) 

I 

VALUE = (V(30)) 

(TAUER7AUDL) 

VALUE - (V(10)) 

(TAUBL) 

VALUE - f(INNOFI(I(VIN)), V(10))-LTE(NOFI(RW), V(30))) 

/TAUEUCLO/DENSrrY*TAUK) 

VALUE - ((URNOFRI(VIN)), V(20))-URNOFla(VIN)), V(30))) 

/TAUHUCLO/DENSITY*TAUK) 

VALUE - (V(I)* I(VGSRHIY VOUCLO/DENSnY$TAYJK) 

I 

VALUE - ITHS) 

(TAUK) 

VINJ 100 1 DC ov 

IINJ 0 100 DC 20MA 

. DC IINJ 0. OINU 20MA 0. OIMA 

*IINJ 0 100 PULSE (lE-SMA IOOMA 000 4NS 8NS) 

*. TRAN ips 1.5NS ONS IPS 

*HNJ 0 100 PWL (0 IOMA IFS 500MA IOPS IOMA) 

*. TRAN IPS INS ONS IPS 

*IINJDC 0 100 DC 20MA 

*HNJAC 0 100 AC 0. INU 

*. AC DEC 100 IOOM 30G 
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TROBE 

XND 
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APPENDIX D: PARAMETERS FOR THE SPICE MODELS 

Symbol SPICE parameter Value Unit 

MO MO 9.1095x 10,31 kg 

qO QO 1.60219xlO-19 C 

k, 6 KB 1.38066x 10-23 J/K 

h HDASH 1.05458x 10-34 J-s 

;r PI 3.14159265358979 

Me ME 0.067 MO 

Mh MIH 0.45 MO 

Eg EG 1.4225 qO 

nio NIO 2.045x 1012 M-3 

L, LX 1XIO-1 m 

LY LY 2x 10"6 m 

LZ LZ 3xIO'4 m 
Wn WN IOXIO-6 m 

WP WP 2xIO'6 m 

X, xc 0.3 

Ee DE 0.6xl. 247xXC qO 
Eh DH 0.4xl. 247xXC qO 

h co ELIGHT 1.45 qO 

09 VG 6.67x 107 M/s 

r TAUCONF 0.35 s 
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Symbol SPICE parameter Value Unit 

aint ALPHINT 1XIO, rn71 

e (Tfca SIGAMAFCAE 3x 10-22 m2 

h 
afca SIGAMAFCAH -22 7xio M 

RMIRR 0.32 

BETA 5xlO'5 

PL DENSITY 5.36x 103 kg/m' 

ICL KL 50 W-rif 1-K71 

CL CLO 0.35x 103 J. kg". K" 

THS THS 300 K 

ASRH ASRH IX107 §-1 

B, Von BSPON 1XIO-11 M3/S 

cAug CAUG 4.22x 1042 M"/s 

I*n TAUN 1XIO-1 s 

rspon TAUSPON 1XIO-1 s 

re-L TAUEL 2x 10-12 s 

'rh-L TAUHL IXIO-12 s 

Te-h TAUEH IX 10-12 s 

rk TAUK 1XIO, s 

De DIFFE 200xlO'4 Mi 

Dh DIFFH IOX104 m 

gn DG 4x 10-20 M 

ntr NTR 2.5 x 1024 M-3 
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Symbol SPICE parameter Value Unit 

'6shb ESHB 1XIO-11 M3 

9T, DGDTE 2.167x 102 m -3 -K-1 

gTh DGDTH 2.482x 102 M-3 W1 

9T, DGDTL 3.484x 102 m -3. K71 
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