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Abstract—This paper presents a new algorithm, called steady-
state and generational evolutionary algorithm, which combines
the fast and steadily tracking ability of steady-state algorithms
and good diversity preservation of generational algorithms,
for handling dynamic multiobjective optimization. Unlike most
existing approaches for dynamic multiobjective optimization, the
proposed algorithm detects environmental changes and responds
to them in a steady-state manner. If a change is detected, it
reuses a portion of outdated solutions with good distribution
and relocates a number of solutions close to the new Pareto front
based on the information collected from previous environments
and the new environment. This way, the algorithm can quickly
adapt to changing environments and thus is expected to provide
a good tracking ability. The proposed algorithm is tested on
a number of bi- and three-objective benchmark problems with
different dynamic characteristics and difficulties. Experimental
results show that the proposed algorithm is very competitive for
dynamic multiobjective optimization in comparison with state-
of-the-art methods.

Index Terms—Steady-state and generational evolutionary al-
gorithm, dynamic multiobjective optimization, change detection,
change response.

I. INTRODUCTION

MANY real-world multiobjective optimization problems

(MOPs) are dynamic in nature, whose objective func-

tions, constraints, and/or parameters may change over time.

Due to the presence of dynamisms, dynamic MOPs (DMOPs)

pose big challenges to evolutionary algorithms (EAs) since

any environmental change may affect the objective vector,

constraints, and/or parameters. As a result, the Pareto-optimal

set (POS), which is a set of mathematical solutions to MOPs,

and/or the Pareto-optimal front (POF) that is the image of

POS in the objective space, may change over time. Then, the

optimization goal is to track the moving POF and/or POS and

obtain a sequence of approximations over time.

DMOPs can be defined in different ways, according to the

nature of dynamisms [15], [41], [54]. In this paper, we mainly
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consider the following kind of DMOPs:

min F (x, t) = (f1(x, t), ..., fM (x, t))T

s.t.











hi(x, t) = 0, i = 1, ..., nh

gi(x, t) ≥ 0, i = 1, ..., ng

x ∈ Ωx, t ∈ Ωt

(1)

where M is the number of objectives, nh and ng are the

number of equality and inequality constraints, respectively,

Ωx ⊆ Rn is the decision space, t is the discrete time instance,

Ωt ⊆ R is the time space, and F (x, t): Ωx×Ωt → RM is the

objective function vector that evaluates solution x at time t.
In the past few years, there has been an increasing amount

of research interest in the field of evolutionary multiobjective

optimization (EMO) as many real-world applications, like

thermal scheduling [42] and circular antenna design [3], have

at least two objectives that conflict with each other, i.e., they

are MOPs. Due to multiobjectivity, the goal of solving MOPs

is not to find a single optimal solution but to find a set of

trade-off solutions. When an MOP involves time-dependent

components, it can be regarded as a DMOP. Many real-

life problems in nature are DMOPs, such as planning [8],

scheduling [12], [35], and control [15], [50]. There have been

a number of contributions made to several important aspects

of this field, including dynamism classification [15], [41], test

problems [4], [15], [20], [23]–[26], performance metrics [9],

[15], [17]–[19], [41], [55], and algorithm design [9], [12], [15],

[18], [21], [28], [54], [55]. Among these, algorithm design is

the most important issue as it is the problem-solving tool for

DMOPs.

Due to the presence of dynamisms, the design of a dynamic

multiobjective optimization EA (DMOEA) is different from

that of a multiobjective optimization EA (MOEA) for static

MOPs. Specifically, DMOEAs should not only have a fast

convergence performance (which is crucial to their tracking

ability), but also be able to address diversity loss whenever

there is an environmental change in order to explore the

new search space. Besides, if changes are not assumed to be

knowable, DMOEAs should be able to detect them in order not

to mislead the optimization process. This is because, when a

change occurs, the previously discovered POS may not remain

optimal for the new environment.

In principle, a change can be detected by re-evaluating

dedicated detectors [12], [18], [47], [54], [55] or assessing

algorithm behaviours [15], [32], [37]. The former is a easy-

to-use mechanism and allows “robust detection” [37] if a

high enough number of detectors is used, but it may require

additional cost since detectors have to be re-evaluated at every



2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MAY 2016

generation, and it may not be accurate when there is noise

in function evaluations. The latter does not need additional

function evaluations, but it may cause false positives and thus

make algorithms overreacting when no change occurs. Both

of them cannot guarantee that changes are detected [37].

On the other hand, whenever a change is detected, it

is often inefficient to restart the optimization process from

scratch, although the restart strategy may be a good choice

if the environmental change is considerably severe [7]. In the

literature, various approaches have been proposed to handle

environmental changes, and they can be mainly categorized

into diversity-based approaches and convergence-based ap-

proaches, according to their algorithm behaviours. Diversity-

based approaches focus on maintaining population diversity

whereas convergence-based ones aim to achieve a fast con-

vergence performance so that algorithms’ tracking ability are

guaranteed. Generally, population diversity can be handled by

increasing diversity using mutation of selected old solutions

or random generation of some new solutions upon the detec-

tion of environmental changes [12], [18], [55], maintaining

diversity throughout the optimization process [1], [2], [6],

or employing multi-population schemes [18], [40]. Proper

diversity is helpful for exploring promising search regions,

but too much diversity may cause evolutionary stagnation [5].

Convergence-based approaches try to exploit past infor-

mation for better tracking performance [7], especially when

the new POS is somewhat similar to the previous one or

environmental changes exhibit regular patterns. Accordingly,

recording relevant past information to be reused at a later

stage may be helpful for tracking the new POF as quickly

as possible. The reuse of past information is closely related to

the type of environmental change and hence can be helpful for

different purposes [6]. If the environment changes periodically,

relevant information of the current POS can be stored in a

memory and can be directly re-introduced into the evolving

population when needed. This kind of strategy is often called

memory-based approaches and has been extensively studied in

dynamic multiobjective optimization [7], [8], [18], [22], [52].

In contrast, if the environment change follows a regular pat-

tern, past information can be collected and used to model the

movement of the changing POF/POS. Hence, the location of

the new POS can be predicted, helping the population quickly

track the moving POF. Prediction-based approaches have

received massive attention because most existing benchmark

DMOPs (e.g., the FDA test suite [15]) involve predictable

characteristics, and studies along this direction can be referred

to [22], [28], [32], [33], [36], [47], [54], [55].

Aside from the above-mentioned approaches, some studies

concentrate on finding an insensitive robust POF instead of

closely tracking the moving POF [16], [27], [38]. Robustness-

based approaches assume that when the environment changes,

the old obtained solution can still be used in the new environ-

ment as long as its quality is acceptable [27]. However, the

criterion for an acceptable optimal solution is quite problem-

specific, which may hinder the wide application of these

approaches.

Although a number of approaches have been proposed for

solving DMOPs, the development of DMOEAs is a relatively

Algorithm 1 Framework of SGEA

1: Input: N (population size)
2: Output: a series of approximated POFs
3: Create an initial parent population P := {x1, . . . , xN};

4: (A,P ) := EnvironmentSelection(P );
5: while stopping criterion not met do
6: for i := 1 to N do
7: if change detected and not responded then
8: ChangeResponse();
9: end if

10: y := GenerateOffspring(P,A);
11: (P,A) := UpdatePopulation(y);
12: end for
13: (A,P ) := EnvironmentSelection(P ∪ P );
14: Set P := P ;
15: end while

young field and more studies are greatly needed. In this

paper, a new algorithm, called steady-state and generational

EA (SGEA), is proposed for efficiently handling DMOPs.

SGEA makes most of the advantages of steady-state EAs

in dynamic environments [48] for environmental change de-

tection and response. If a change is detected, SGEA reuses

a portion of old solutions with good diversity and exploits

information collected from both previous environments and the

new environment to relocate a part of its evolving population.

At the end of every generation, like conventional generational

EAs [13], [56], SGEA performs environmental selection to

preserve good individuals for the next generation. By mixing

the steady-state and generational manners, SGEA can adapt

to dynamic environments quickly whenever a change occurs,

providing very promising tracking ability for DMOPs.

The rest of this paper is organized as follows. Section II

describes the framework of the proposed SGEA, together with

detailed descriptions of each component of the algorithm.

Section III is devoted to presenting experimental settings for

comparison. Section IV provides experimental results and

comparison on tested algorithms. A further discussion of the

algorithm is offered in Section V. Section VI concludes the

paper with discussions on future work.

II. PROPOSED SGEA

The basic framework of the proposed SGEA is presented

in Algorithm 1. SGEA starts with an initial population P and

the initialization of an elitist population P and an archive A
through environmental selection. In every generational cycle,

SGEA detects possible environmental changes and evolves

the population in a steady-state manner. For each population

member, if a change is detected, then a change response mech-

anism is adopted to handle the detected change. After that,

genetic operation is applied to produce one offspring solution

for the population member, which is then used to update

the parent population P and archive A. At the end of each

generation, P and P are combined. Similar to generational

EAs [13], [56] or speciation techniques used in niching [5],

[29], a generational environmental selection is conducted on

the combined population to preserve a population of good

solutions for the next generation. This way, SGEA can be

regarded as a steady-state and generational MOEA. In the
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Algorithm 2 EnvironmentSelection(Q)

1: Input: Q (a set of solutions)
2: Output: A (archive), P (N elitists preserved)
3: Set A := ∅ and P := ∅;
4: Assign a fitness value to each member in Q;
5: for i := 1 to |Q| do
6: if F (i) < 1 then
7: Copy xi from Q to A;
8: end if
9: end for

10: if |A| < N then
11: Copy the best N individuals in terms of their fitness values

from Q to P ;
12: else
13: if |A| == N then

14: Set P := A;
15: else
16: Prune A to a set of N individuals by any truncation operator

and copy the truncated A to P ;
17: end if
18: end if

following subsections, the implementation of each component

of SGEA will be detailed step by step.

A. Environmental Selection

The environmental selection procedure (Algorithm 2),

which aims to preserve a fixed number of elitists from a

solution set Q after every generational cycle, starts with fitness

assignment. Each individual i of Q is assigned a fitness value

F (i), which is defined as the number of individuals that

dominate [56] it, as follows:

F (i) = |{j ∈ Q|j ≺ i}| (2)

where | · | denotes the cardinality of a set and j ≺ i indicates

that j dominates i. It should be noted that, various fine-grained

methods proposed in the literature [14], [45], [56] can be used

to assign fitness values for individuals. However, the fitness

assignment method used in this paper is relatively simple and

computationally efficient. Most importantly, when an external

individual e enters the set Q, the update of F (i) needs only one

dominance comparison between individuals e and i. The easy-

to-update property of this method will be clearly embodied in

the population update procedure (to be described in Section

II-C).

Afterwards, individuals having a fitness value of zero are

identified as nondominated solutions and then copied to an

archive A. If |A| is smaller than the population size N , the best

N individuals (including both dominated and nondominated

ones) in terms of their fitness values are preserved in an elitist

population P . Otherwise, there can be two situations: either the

number of nondominated solutions fits exactly the population

size, or there are too many nondominated solutions. In the

first case, all nondominated solutions are copied to P . In the

second case, a truncation technique is needed to reduce A
to a population of N nondominated solutions such that the

truncated A have the best diversity possible. In SGEA, the

k-th nearest neighbour truncation technique proposed in the

strength Pareto EA 2 (SPEA2) [56] is used to perform the

Algorithm 3 GenerateOffspring(P,A)

1: Input: P (parent population), A (archive population)
2: Output: y (offspring solution)
3: if rnd < 0.5 then
4: Perform binary tournament selection on P to select two

distinct individuals as the mating parents;
5: else
6: Randomly pick an individual from A and perform binary

tournament selection on P to select another distinct individual
as the mating parents.

7: end if
8: Apply genetic operators to generate a new solution y;

truncation operation, although we recognise there are other

options, e.g., the farthest first method [10], [11], which can

also serve this purpose. After that, solutions in the truncated

A are copied to P .

Note that, like classical generational MOEAs, such as the

nondominated sorting genetic algorithm II (NSGA-II) [13]

and SPEA2 [56], SGEA performs environmental selection at

the end of each generation. Thus, SGEA can be generally

categorized into generational MOEAs.

B. Mating Selection and Genetic Operators

Mating selection is an important operation before the pro-

duction of new offspring (line 10 of Algorithm 1). In this

paper, mating parents can be selected either from the parent

population P or the archive population A. The benefit of such

a mating selection method has been extensively investigated on

static MOPs in a number of studies [30], [34], [44], [57]. While

selecting mating parents from P can maintain good population

diversity, selecting parents from A can significantly improve

the convergence speed of the population, which is considerably

desirable in fast-changing environments. If a mating parent is

to be selected from P , SGEA performs a binary tournament

selection according to individuals’ fitness values. If not, the

mating parent can be randomly selected from the archive

population A.

Following the mating selection, genetic operators are ap-

plied on the mating parents to generate a new offspring solu-

tion. In SGEA, the simulation binary crossover and polynomial

mutation are chosen as the recombination and mutation oper-

ators, respectively. The reproduction procedure is presented in

Algorithm 3.

C. Population Update

In SGEA, population update (line 11 of Algorithm 1)

is conducted on both the parent population P and archive

population A, which is detailed in Algorithm 4. The update

operation on P is in fact replacing the worst solution of P with

the newly generated solution y while the update on A is using

y to update the archived nondominated set. First, if y is not a

duplicate solution, it will be compared with each member xi

of P for the dominance relation (lines 4 to 14 of Algorithm 4).

If y dominates xi (denoted as y ≺ xi), the fitness value of xi is

increased by one. If y is dominated by xi (denoted as y ≻ xi),

the fitness value of y is increased by one. Then, the worst
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Algorithm 4 UpdatePopulation(y)

1: Input: y (offspring solution)
2: Output: P (updated parent population), A (updated archive

population)
3: Set the fitness value of y as zero: F (y) := 0;
4: for i := 1 to |P | do
5: if y == xi then
6: Return;
7: end if
8: if y ≺ xi then
9: Add one to the fitness value of xi: F (i) := F (i) + 1;

10: end if
11: if y ≻ xi then
12: Add one to the fitness value of y: F (y) := F (y) + 1;
13: end if
14: end for
15: Compute the individual in P having the highest fitness value:

î := i : argmax{1≤i≤|P |}F (i);
16: if F (y) ≤ F (̂i) then

17: Set x
î
:= y and F (̂i) := F (y);

18: if F (y) < 1 then
19: Remove all solutions in A that are dominated by y, and

add y to A if A is not full;
20: end if
21: end if

individual in P with the highest fitness value is identified,

and if there are two or more such individuals, a random one

is selected. If y is not worse than the identified individual xî

in terms of the fitness value, the solution replacement takes

place, as shown in line 17 of Algorithm 4. Besides, if y is not

dominated by any member in P (which means its fitness value

is zero), it should be further considered to update the archive

population A if A is not full. This means, the archive update

occurs only when y successfully enters the parent population.

It can be observed that, the fitness assignment method used

here is easy to update an individual’s fitness value, which helps

SGEA conduct solution replacement in the parent population

and archive update in an efficient manner.

D. Dynamism Handling

This section discusses two main aspects of dynamism

handling. One is change detection, a step to detect whether a

change has occurs during the evolutionary process. The other

is known as change response or change reaction, which takes

actions to quickly react to environmental changes so that the

population adapts to new environments rapidly.

1) Change Detection: Change detection can be performed

by either re-evaluating a portion of existing solutions [12],

[18], [47], [54], [55] or assessing some statistical information

of some selected population members [15], [32], [37]. Since

both methods choose a small proportion of population mem-

bers as detectors, detection may fail if changes occur on non-

detectors. On the contrary, it will be computationally expensive

if the whole population members are chosen as detectors.

Therefore, a good detection method should strike a balance

between the detection ability and efficiency.

The proposed algorithm detects changes in a steady-state

manner, as shown in line 7 of Algorithm 1. In every generation,

population members (in random order) are checked one by

one for discrepancy between their previous objective values

and re-evaluated ones. If a discrepancy exists in a population

member, we assume a change is successfully detected and

there is no need to do further checks for the rest of population

members. When a change is detected, SGEA immediately

reacts to it in a steady-state manner. The detection method is

beneficial to prompt and steady change reaction at the cost

of high computational cost. For efficiency, the number of

individuals re-evaluated for change detection is restricted to

a small percentage of the population size. It is worth noting

that, re-evaluation based change detection methods assume that

there is no noise in function evaluations, i.e., they are not

robust. Thus, the proposed method may not be suitable for

detecting changes in noisy environments.

2) Change Response: If a change is successfully detected,

some actions should be taken to react to the environmental

change. A good change response mechanism must be able to

maintain a good level of population diversity and relocate the

population in promising areas that are close to the new POS.

Simply discarding old solutions and randomly reinitializing

the population is beneficial to population diversity but may be

time-consuming for algorithms to converge. Likewise, fully

reusing old solutions for the new environment might be

misleading if the landscapes of two consecutive changes are

significantly different. Also, this may cause the loss of popu-

lation diversity. As a consequence, algorithms may get trapped

into local minima or cannot find all POF regions for the new

environment. For these reasons, in this paper the population

for the new environment consists of half of old solutions

and half of reinitialized solutions. The half old solutions

are selected by the farthest first selection method [11], [43],

which was originally proposed to reduce an approximation set

to the maximum allowable size. The farthest first selection

method has been reported to provide better approximation

than NSGA-II’s crowding distance [13] for unconstrained and

constrained static MOPs [10], [11]. This method selects half of

old solutions that maximize the diversity in the objective space

(line 3 of Algorithm 5). The other half reinitialized solutions in

the new population are produced by a guess of the new location

of the changed POS. To make a correct or at least reasonable

guess, one must know two things, i.e., moving direction and

movement step-size. The following paragraphs contribute to

how to compute them.

Let Ct be the centroid of POS and At be the obtained

approximation set at time step t, then Ct can be computed

by:

Ct =
1

|At|
∑

x∈At

x (3)

The movement step-size St to the new location of the

changed POS at time step t+ 1 can be estimated by:

St = ‖Ct − Ct−1‖ (4)

where St is actually the Euclidean distance between centroids

Ct and Ct−1.

The moving direction should be carefully elaborated to

guide the population toward promising search regions. Other-

wise, a completely wrong guess of the moving direction will
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Algorithm 5 ChangeResponse()

1: Input: y (offspring solution)
2: Output: P (parent population), A (archive population)
3: R := farthest first selection(P ) [11];
4: Compute the centroid Ct of A at time step t;
5: Set A := ∅;
6: Re-evaluate solutions in R and copy nondominated solutions of

R to A;
7: Compute search direction D using;
8: for each xt ∈ P \R do
9: Reinitialize xt using Eq. (6) and re-evaluate the new solution

xt+1;
10: Remove all solutions in A that is dominated by xt+1, and add

xt+1 to A;
11: end for
12: Set Ct−1 := Ct;

mislead the population and make it hard to converge. Bearing

this in mind, we make use of half of the old solution set R
preselected by the farthest first selection [11] to compute the

moving direction. First, The solutions in R are re-evaluated,

and nondominated solutions are saved in the pre-emptied

archive A. Then, the moving direction can be calculated by:

D =
CA − CR

‖CA − CR‖
(5)

where CA and CR are centroids of A and R in the decision

space, respectively.

Having obtained the moving direction and movement step-

size, the other half population can be easily reinitialized. For

each member xt in P \ R, its new location in the decision

space is generated as follows:

xt+1 = xt + StD + εt (6)

where εt ∼ N(0, Iδt) is a Gaussian noise, added to increase

the probability of the reinitialized population to cover the POS

in the new environment. I is an identity matrix and δt is the

standard deviation in the Gaussian distribution. δt is defined

by:

δt =
St

2
√
n

(7)

where St is the step-size defined in Eq. (4), and n is the

number of decision variables.

The overall change response procedure is presented in Al-

gorithm 5. It is worthy noting that when the first environment

change occurs, the computation of Ct−1 is not applicable. In

this situation, randomly reinitialization is employed for the

generation of solutions in P \R. As long as the centroids of

the approximation sets of two consecutive environments are

available, the above reinitialization method can be adopted.

It should be mentioned that, our proposed reinitialization

method is somewhat predictive but in some sense beyond

prediction. Prediction approaches usually collect only history

information to predict future events. However, our method ex-

ploits both the information of previous environments and that

of the new environment to reinitialize a portion of solutions,

which we would like to call “guided” solutions because their

relocation are guided by an estimate of the performance of

the reused old solutions in the new environment. Therefore,

this method may be helpful for quickly tracking the changing

environment if the estimate of the new environment is reliable.

It is worth mentioning that, the guided reinitialization method

implicitly assumes that a change does not affect too much the

relative positions between solutions in the POS. It may fail in

case of a notable violation of the assumption. In this situation,

The proposed method may need to work with other population

reinitialization techniques in order to produce good tracking

performance.

E. Computational Complexity of One Generation of SGEA

In the for loop (lines 6 to 12 in Algorithm 1) of each

generation, computational resources are mainly consumed

by the offspring reproduction, population update and envi-

ronmental selection procedures, and other procedures need

less computational cost. The generation of an offspring so-

lution (line 10 of Algorithm 1) requires O(M) computa-

tions, where M is the number of objectives. The population

update procedure (line 11 of Algorithm 1) takes O(MN),
where N is the population size. Thus, the whole steady-state

evolution part takes O(MN2) computations. The environ-

mental selection procedure (line 13 of Algorithm 1) spends

O(MN2) computations on fitness assignment and on average

O(N2 logN) computations [56] on elitist preservation. There-

fore, the overall computational complexity of SGEA for one

generational cycle is O(MN2) or O(N2 logN), whichever is

larger. It should be noted that, in fast-changing environments,

the run-time complexity of environmental selection might

rarely reach O(N2 logN) as individuals usually are unlikely

well-converged (obtaining excessive nondominated solutions)

within very limited response time.

III. EXPERIMENTAL DESIGN

A. Test Problems

Twenty-one test problems, including five FDA [15] prob-

lems, three dMOP [18] problems, six ZJZ problems (F5-

F10) [54], and seven UDF [4] problems, are used to assess

our proposed algorithm in comparison with other algorithms.

The time instance t involved in these problems is defined as

t = 1

nt
⌊ τ
τt
⌋ (where nt, τt, and τ represent the severity of

change, the frequency of change, and the iteration counter,

respectively). The definition of these problems can be found

in the supplementary material of this paper. Note that, some

problems have been modified to implement our experiments,

and most of the test problems have periodical changes.

B. Compared Algorithms

Four popular DMOEAs are used for comparison in our em-

pirical studies. They are the MOEA based on decomposition

(MOEA/D) [51], dynamic version of NSGA-II (DNSGA-II)

[12], dCOEA [18], and PPS [54], representing different classes

of metaheuristics. The following gives a brief description of

each compared algorithm.

1) MOEA/D: as a representative of decomposition-based

algorithms, MOEA/D [51] converts a mutiobjective

problem by aggregation functions into a number of
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single-objective subproblems and optimizes them simul-

taneously. MOEA/D maintains population diversity by

the diversity of subproblems, and a fast convergence can

be achieved by defining a neighbourhood for each sub-

problem and performing mating selection and solution

update within this neighbourhood. Due to these features,

MOEA/D has gained increasing popularity in recent

years and has become a benchmark algorithm in static

multiobjective optimization. In this paper, the modified

version of the weighted Tchebycheff approach used in

[49] is adopted as the aggregation function for MOEA/D

because it has been recently proved to provide better

distribution than its original version. Also, a limited

number nr of solutions will be replaced by any new

solution, as suggested in [31].

2) DNSGA-II: it is a dynamic version of the popular

NSGA-II algorithm [13], which is a representative of

Pareto-dominance based MOEAs. To make it suitable for

handling dynamic optimization problems, Deb et al. [12]

adapted NSGA-II by replacing some population mem-

bers with either randomly created solutions or mutated

solutions of existing solutions if a change occurs. While

the former may perform better in environments with se-

vere changes, the latter may work well on DMOPs with

moderate changes. In our experiment, the latter method

is adopted as it shows slightly better performance than

the former in the study of [12].

3) dCOEA: it hybridizes competitive and cooperative

mechanisms observed in nature to solve static MOPs

and to track the changing POF in a dynamic environment

[18]. dCOEA uses a fixed number of archived solutions

to detect changes, and if detected, its competitive mech-

anism will be started to assess the potential of existing

information of various subpopulations. To increase di-

versity after a change, dCOEA also introduces stochastic

solutions into the competitive pool. Besides, dCOEA

uses an additional external population to store useful but

outdated archived solutions, hoping to help the evolving

population quickly adapt to the new environment by

exploiting these history information. It has been shown

that dCOEA is very promising for handling dynamic

environments [18], [24].

4) PPS: it is a representative of prediction-based methods

that model the movement track of the POF or POS

in dynamic environments and then use this model to

predict the new location of POS. In PPS [54], the POS

information is divided into two parts: the population

centre and manifold. Based on the archived population

centres over a number of continuous time steps, PPS

employs a univariate autoregression model to predict

the next population centre. Likewise, previous manifolds

are used to predict the next manifold. When a change

occurs, the initial population for the new environment

is created from the predicted centre and manifold. PPS

has been proved to be very competitive for dynamic

optimization when it is incorporated with an estimation

of distribution algorithm [53], and it outperforms other

predictive models [54].

C. Performance Metric

In our experimental studies, we adopt the following perfor-

mance metrics, as they can help deeply investigate algorithms’

performance regarding convergence, distribution, and diversity.

1) Inverted Generational Distance (IGD): The IGD [49],

[50], [54] measures both the convergence and diversity of

found solutions by an algorithm. Let POF be a set of

uniformly distributed points in the true POF, and POF ∗ be an

approximation of the POF. The IGD is calculated as follows:

IGD =
1

nPOF

nPOF
∑

i=1

di (8)

where nPOF = |POF |, di is the Euclidean distance between

the ith member in POF and its nearest member in POF ∗.

2) Schott’s Spacing Metric (S): Schott [39] developed this

kind of metric with regard to the distribution of the discovered

Pareto front. S measures how evenly the members in POF ∗

are distributed, and is computed as:

S =

√

√

√

√

1

nPOF∗ − 1

nPOF∗

∑

i=1

(Di −D)2 (9)

where Di is the Euclidean distance between the ith member in

POF ∗ and its nearest member in POF ∗ and D is the average

value of Di.

3) Maximum Spread (MS): The MS [17] measures to what

extent the obtained POF ∗ covers POF :

MS=

√

√

√

√

1

M

M
∑

k=1

[

min[POFk, POF ∗
k
]−max[POFk, POF ∗

k
]

POFk − POFk

]2

(10)

where POFk and POFk are the maximum and minimum of

the kth objective in POF , respectively; Similarly, POF ∗

k and

POF ∗

k are the maximum and minimum of the kth objective

in POF ∗, respectively.

4) Hypervolume Difference (HVD): The HVD [55] mea-

sures the gap between the hypervolume of the obtained POF ∗

and that of the true POF :

HVD = HV (POF ) −HV (POF ∗) (11)

where HV (S) is the hypervolume of a set S. The reference

point for the computation of hypervolume is (z1 + 0.5, z2 +
0.5, · · · , zM+0.5), where zj is the maximum value of the j-th

objective of the true POF and M is the number of objectives.

D. Parameter Settings

The parameters of the MOEAs considered in the experi-

ment were referenced from their original papers. Some key

parameters in these algorithms were set as follows:

1) Population size: The population size (N ) for all the

test problems was set to 100. To make MOEA/D have

100 subproblems for three-objective FDA4 and FDA5,

we first uniformly generate around 1000 weight vectors

using the simplex-lattice design [51], then prune them

to 100 using the farthest first method [10], [11].

2) Parameter settings for SGEA: These parameters were

set to the same values in all the compared algorithms.
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TABLE I
MEAN AND STANDARD DEVIATION VALUES OF SP METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (τt, nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 2.5421E-2(2.5497E-3)‡ 3.3966E-2(2.6330E-3)‡ 6.1386E-2(1.6514E-2)‡ 4.6542E-1(1.4472E-1)‡ 1.3267E-2(1.1095E-3)

FDA1 (10,10) 1.0136E-2(7.4361E-3)‡ 1.8316E-2(1.4011E-3)‡ 1.7072E-2(6.5312E-3)‡ 4.8939E-1(1.9408E-1)‡ 7.5411E-3(5.8178E-4)

(20,10) 6.7495E-3(7.3732E-4)‡ 8.9615E-3(7.8094E-4)‡ 5.7913E-2(1.6129E-2)‡ 3.5391E-1(1.6524E-1)‡ 3.9986E-3(2.5969E-4)

(5,10) 7.6448E-3(3.1834E-4) 2.7693E-2(3.9466E-3)‡ 2.4594E-2(6.0101E-3)‡ 1.8142E-2(2.8950E-2)‡ 9.4054E-3(1.6736E-3)

FDA2 (10,10) 5.3715E-3(3.3796E-4) 1.5614E-2(2.8655E-3)‡ 1.7122E-2(3.9192E-3)‡ 1.5625E-2(2.4152E-2)‡ 6.5871E-3(8.7753E-4)

(20,10) 5.0340E-3(1.3246E-4)† 8.0937E-3(2.0835E-3)‡ 1.8392E-2(4.0463E-3)‡ 1.0903E-2(4.8363E-3)‡ 4.9516E-3(4.9187E-4)

(5,10) 1.7052E-2(2.3120E-3) 3.3698E-2(1.6310E-2)† 5.2045E-2(9.7887E-3)‡ 8.3517E-2(4.6837E-2)‡ 3.1669E-2(4.1347E-3)

FDA3 (10,10) 1.1167E-2(1.9011E-3) 1.7698E-2(9.1874E-3) 1.6536E-2(4.1971E-3) 4.6011E-2(1.8288E-2)‡ 2.4160E-2(1.8298E-3)

(20,10) 8.2268E-3(1.7859E-3) 1.2049E-2(6.1286E-3) 9.0478E-3(2.0861E-3) 2.9416E-2(8.6135E-3)‡ 2.2741E-2(9.9650E-4)

(5,10) 1.2706E-1(5.5003E-3)‡ 5.9217E-2(4.6346E-3) 1.0232E-1(9.7961E-3)† 1.8035E-1(3.2800E-2)‡ 8.7427E-2(7.6848E-3)

FDA4 (10,10) 9.1659E-2(3.8467E-3)‡ 3.8658E-2(3.2771E-3) 6.0989E-2(1.0643E-2)‡ 1.6494E-1(2.9433E-2)‡ 4.1252E-2(2.9737E-3)

(20,10) 5.5146E-2(2.1395E-3)‡ 2.7830E-2(1.5839E-3)† 4.8519E-2(2.9057E-3)‡ 1.6572E-1(2.5986E-2)‡ 2.5354E-2(2.8502E-3)

(5,10) 1.5306E-1(5.0947E-3)‡ 9.9019E-2(8.8149E-3)‡ 1.4717E-1(1.1045E-2)‡ 1.5505E-1(1.4762E-2)‡ 8.2228E-2(4.2364E-3)

FDA5 (10,10) 1.1245E-1(3.9588E-3)‡ 6.3211E-2(4.8740E-3)‡ 1.0820E-1(8.7265E-3)‡ 1.2839E-1(1.5067E-2)‡ 4.5009E-2(2.6441E-3)

(20,10) 8.0300E-2(2.3006E-3)‡ 4.9950E-2(3.1582E-3)‡ 8.6349E-2(4.1808E-3)‡ 1.0497E-1(7.8394E-3)‡ 3.0379E-2(6.7640E-4)

(5,10) 5.3389E-3(7.8416E-4)‡ 8.4983E-2(5.2562E-3)‡ 1.0375E-1(7.8713E-2)‡ 4.1207E-2(1.1779E-1)‡ 3.4712E-3(5.4488E-4)

dMOP1 (10,10) 5.5311E-3(1.3101E-3)‡ 1.5696E-2(9.5712E-3)‡ 2.5068E-2(2.4719E-2)‡ 5.6413E-2(2.0924E-1)‡ 2.7029E-3(3.0835E-4)

(20,10) 5.2961E-3(2.7514E-4)‡ 6.3031E-3(6.6072E-4)‡ 1.4722E-2(2.0239E-2)‡ 2.6844E-2(8.1479E-2)‡ 2.5010E-3(2.5768E-4)

(5,10) 1.6538E-2(1.7941E-3)‡ 6.0455E-2(2.1579E-3)‡ 2.7767E-2(4.5722E-3)‡ 1.4701E-1(5.3676E-2)‡ 1.3177E-2(1.4569E-3)

dMOP2 (10,10) 1.0690E-2(5.3335E-4)‡ 3.0587E-2(3.9867E-3)‡ 1.1608E-2(2.7373E-3)‡ 1.4459E-1(5.3516E-2)‡ 6.6710E-3(5.8584E-4)

(20,10) 6.2086E-3(1.9806E-4)‡ 1.4253E-2(1.7038E-3)‡ 6.2807E-3(1.1104E-3)‡ 1.4322E-1(6.6231E-2)‡ 3.9175E-3(2.9561E-4)

(5,10) 1.4393E-2(1.2499E-3)‡ 3.3786E-2(5.5519E-3)‡ 2.7518E-2(4.8871E-3)‡ 2.7281E-2(2.2967E-2)‡ 9.5664E-3(9.9353E-4)

dMOP3 (10,10) 8.1655E-3(6.5231E-4)‡ 1.5418E-2(1.0978E-3)‡ 1.6453E-2(2.3904E-3)‡ 1.2555E-2(2.0652E-3)‡ 5.4336E-3(6.0751E-4)

(20,10) 5.3930E-3(5.5912E-4)‡ 7.3129E-3(3.9782E-4)‡ 1.1264E-2(1.7604E-3)‡ 9.9081E-3(1.4603E-3)‡ 4.2793E-3(5.3812E-4)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

Specifically, the crossover probability was pc = 1.0
and its distribution index was ηc = 20. The mutation

probability was pm = 1/n and its distribution ηm = 20.

The archive size was the same as the population size.

3) Stopping criterion and the number of executions: Each

algorithm terminates after a pre-specified number of

generations and should cover all possible changes. To

minimize the effect of static optimization, we gave 50

generations for each algorithm before the first change

occurs. The total number of generations was set to

3ntτt +50, which ensures there are 3nt changes during

the evolution. Additionally, each algorithm was executed

30 independent times on each test instance.

4) The neighbourhood size and the number nr of solutions

allowed to replace in MOEA/D were set to 20 and 2,

respectively.

5) For all the algorithms, the maximum 10% population

members were chosen for change detection. For the

steady-state MOEA/D, it used the same change detection

mechanism as SGEA, and population re-evaluation for

change response.

6) The number of uniformly sampled points on the true

POF was set to 500 and 990 for the computation of

IGD for bi- and three-objective problems, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results on FDA and dMOP Problems

To study the impact of change frequency on algorithms’

ability in dynamic environments, the severity of change (nt)

was fixed to 10, and the frequency of change (τt) was set

to 5, 10, and 20, respectively. The obtained average SP, MS,

IGD, and HVD results over a series of time windows and their

standard deviation values are presented in Tables I, II, III, and

IV, respectively, where the best values obtained by one of five

algorithms are highlighted in bold face. The Wilcoxon rank-

sum test [46] is carried out to indicate significance between

different results at the 0.05 significance level.

It can be observed from Table I that SGEA obtains the

best results on the majority of the tested FDA and dMOP

instances, implying that it maintains better distribution of

its approximations over changes than the other compared

algorithms in most cases. However, it performs slightly worse

than DNSGA-II for FDA2 and FDA3, and dCOEA for FDA4

with fast changes (i.e., τt = 5 and 10). For all the tested

instances, both PPS and MOEA/D fail to show encouraging

performance on the SP metric, and MOEA/D seems struggling

for maintaining a uniform distribution of its obtained POF for

dynamic optimization, as indicated by the large SP values in

Table I.

As shown in Table II, the results on the MS metric are quite

divergent. DNSGA-II and SGEA obtain a spread coverage

for FDA2, FDA4, and FDA5, although DNSGA-II provides

slightly better MS values than SGEA. For problems FDA1,

FDA3, and dMOP2, SGEA significantly outperforms the other

algorithms by a clear margin in terms of the MS metric.

PPS and MOEA/D cover the POF very well for two three-

objective problems, i.e., FDA4 and FDA5, and all the algo-

rithms perform similarly on dMOP1 except dCOEA, whose

MS values are not very competitive in this case. To have a

better understanding of how algorithms’ MS performance can

be affected by different dynamisms, we discuss a little bit

more on FDA3 and dMOP3. FDA3 is a problem in which

environmental changes shift the POS and affect the density

of points on the POF whereas dMOP3 is a problem where
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TABLE II
MEAN AND STANDARD DEVIATION VALUES OF MS METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (τt, nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 6.8875E-1(6.9604E-2)‡ 8.6361E-1(2.5899E-2)‡ 8.7571E-1(3.3122E-2)‡ 8.2378E-1(2.2483E-2)‡ 9.3411E-1(3.2794E-2)

FDA1 (10,10) 9.2689E-1(1.9129E-2)‡ 8.9378E-1(2.2115E-2)‡ 9.6555E-1(1.2319E-2)‡ 9.2142E-1(1.6053E-2)‡ 9.7277E-1(1.0854E-2)

(20,10) 9.8453E-1(2.1657E-3)† 9.2981E-1(1.2003E-2)‡ 9.8426E-1(4.8155E-3)† 9.6140E-1(8.4959E-3)‡ 9.8810E-1(6.2816E-3)

(5,10) 9.9649E-1(4.2818E-3)† 8.1389E-1(4.8855E-2)‡ 9.0733E-1(5.3057E-2)‡ 9.4951E-1(3.7796E-2)‡ 9.9231E-1(5.2065E-3)

FDA2 (10,10) 9.9730E-1(2.6637E-3)† 8.7511E-1(2.9208E-2)‡ 9.3410E-1(1.2746E-2)‡ 9.6362E-1(2.5629E-2)‡ 9.9308E-1(3.3464E-3)

(20,10) 9.9786E-1(1.9825E-3) 9.1688E-1(3.2152E-2)‡ 9.3897E-1(7.2423E-3)‡ 9.7535E-1(1.8048E-2)‡ 9.9342E-1(2.6409E-3)

(5,10) 6.3387E-1(1.1045E-1)‡ 5.0510E-1(4.5498E-2)‡ 6.0036E-1(3.4102E-2)‡ 7.3593E-1(9.3637E-2)‡ 8.8834E-1(8.9085E-2)

FDA3 (10,10) 7.6418E-1(7.9082E-2)‡ 5.7869E-1(3.6421E-2)‡ 6.0893E-1(2.6990E-2)‡ 8.2943E-1(8.4314E-2)‡ 9.3342E-1(7.1125E-2)

(20,10) 7.8775E-1(7.2659E-2)‡ 6.8023E-1(4.3336E-2)‡ 6.0760E-1(2.4411E-2)‡ 8.8984E-1(2.1886E-2)‡ 9.4731E-1(7.2987E-2)

(5,10) 9.9999E-1(3.2759E-6)† 9.6390E-1(7.4777E-3)‡ 9.9823E-1(7.5711E-4)‡ 9.9999E-1(2.1721E-6)† 9.9997E-1(1.9039E-5)

FDA4 (10,10) 1.0000E+0(7.8284E-7) 9.7421E-1(6.0289E-3)‡ 9.9903E-1(1.2185E-4)‡ 9.9999E-1(8.5330E-7) 9.9995E-1(2.6230E-5)

(20,10) 1.0000E+0(3.0455E-7) 9.8552E-1(2.3528E-3)‡ 9.9904E-1(9.8111E-5)‡ 1.0000E+0(2.6739E-7) 9.9992E-1(2.5034E-5)

(5,10) 9.9999E-1(2.0403E-6) 9.3043E-1(3.7021E-2)‡ 9.9758E-1(2.6961E-3) 9.9866E-1(3.2365E-3) 9.9442E-1(8.0786E-3)

FDA5 (10,10) 1.0000E+0(4.3629E-7) 9.5871E-1(3.5891E-2)‡ 9.9781E-1(3.8432E-3)‡ 9.9995E-1(1.4197E-4) 9.9949E-1(7.9814E-4)

(20,10) 1.0000E+0(7.6916E-8) 9.7908E-1(1.9611E-2)‡ 9.9955E-1(1.7863E-4)† 9.9999E-1(7.9466E-7) 9.9993E-1(5.9215E-5)

(5,10) 9.5971E-1(4.5522E-2)† 8.2629E-1(4.1500E-2)‡ 9.3007E-1(6.7780E-2)‡ 9.6544E-1(3.8454E-2)† 9.5950E-1(3.3426E-2)

dMOP1 (10,10) 9.8083E-1(2.0385E-2)† 8.8318E-1(2.5097E-2)‡ 9.7105E-1(3.3827E-2)‡ 9.8276E-1(1.5980E-2)† 9.8351E-1(1.3118E-2)

(20,10) 9.8836E-1(1.1924E-2)† 9.3962E-1(1.0940E-2)‡ 9.8192E-1(1.8910E-2)† 9.8869E-1(1.0211E-2)‡ 9.8534E-1(1.2710E-2)

(5,10) 7.1985E-1(9.8981E-2)‡ 7.4615E-1(5.4804E-2)‡ 8.5360E-1(1.3935E-2)‡ 7.9673E-1(1.2783E-2)‡ 9.4952E-1(1.3091E-2)

dMOP2 (10,10) 8.8398E-1(1.0456E-2)‡ 8.1368E-1(2.5334E-2)‡ 9.5016E-1(1.6218E-2)‡ 8.8264E-1(1.4109E-2)‡ 9.8099E-1(4.5689E-3)

(20,10) 9.8039E-1(3.2935E-2)‡ 9.0203E-1(1.6144E-2)‡ 9.7464E-1(2.6993E-3)‡ 9.5552E-1(5.9188E-3)‡ 9.9251E-1(1.4628E-3)

(5,10) 4.3016E-1(2.2614E-2)‡ 8.7837E-1(2.1444E-2) 8.5479E-1(1.3831E-2) 5.0950E-1(3.1263E-2)† 4.9760E-1(2.2063E-2)

dMOP3 (10,10) 5.3193E-1(2.1894E-2)† 9.1097E-1(1.1716E-2) 8.8793E-1(9.6772E-3) 6.3606E-1(1.8266E-2) 5.7573E-1(2.9590E-2)

(20,10) 6.2492E-1(1.9883E-2)‡ 9.4844E-1(1.1052E-2) 9.0666E-1(9.4326E-3) 7.7993E-1(1.9421E-2) 6.8486E-1(2.9571E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

TABLE III
MEAN AND STANDARD DEVIATION VALUES OF IGD METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (τt, nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 6.4053E-1(9.8895E-2)‡ 6.3686E-2(1.1610E-2)‡ 2.0885E-1(8.4104E-2)‡ 3.5649E-1(4.9023E-2)‡ 3.4182E-2(8.0969E-3)

FDA1 (10,10) 5.8213E-2(3.8909E-3)‡ 4.1342E-2(6.5605E-3)‡ 4.2736E-2(1.9486E-2)‡ 1.2112E-1(1.1879E-2)‡ 1.4809E-2(2.0621E-3)

(20,10) 4.1464E-2(4.2405E-3)‡ 2.3984E-2(2.2878E-3)‡ 1.6218E-2(7.9450E-3)‡ 4.0424E-2(2.2617E-3)‡ 7.5500E-3(1.4897E-3)

(5,10) 2.8517E-2(2.4351E-3)‡ 7.2853E-2(3.8658E-2)‡ 8.1301E-2(3.0399E-2)‡ 8.4088E-2(1.3585E-2)‡ 1.5004E-2(1.6826E-3)

FDA2 (10,10) 1.0805E-2(9.0279E-4)‡ 4.7325E-2(3.3605E-2)‡ 6.3561E-2(1.0647E-2)‡ 3.3894E-2(8.8878E-3)‡ 9.1174E-3(6.3334E-4)

(20,10) 6.5124E-3(5.2611E-4)† 3.2472E-2(4.6061E-2)‡ 6.2768E-2(9.0724E-3)‡ 1.6459E-2(4.9937E-3)‡ 6.3268E-3(4.0710E-4)

(5,10) 2.6346E-1(6.0463E-2)‡ 2.6371E-1(3.5505E-2)‡ 4.4378E-1(1.1102E-1)‡ 2.4764E-1(2.3050E-2)‡ 6.2525E-2(3.8414E-2)

FDA3 (10,10) 1.0821E-1(3.3153E-2)‡ 1.9526E-1(3.2807E-2)‡ 2.1946E-1(1.8132E-2)‡ 1.3090E-1(2.5891E-2)‡ 4.0371E-2(2.9061E-2)

(20,10) 9.0365E-2(2.8703E-3)‡ 1.2625E-1(3.1398E-2)‡ 1.9259E-1(2.4153E-2)‡ 5.4535E-2(8.3567E-3)‡ 3.5293E-2(2.9668E-2)

(5,10) 1.4906E+0(1.2669E-1)‡ 1.6224E-1(6.1969E-3) 3.0719E-1(1.9145E-2)‡ 1.3602E+0(1.6118E-1)‡ 4.6085E-1(6.6670E-2)

FDA4 (10,10) 7.6342E-1(4.4885E-2)‡ 1.2450E-1(4.5799E-3) 2.1151E-1(2.0215E-2)‡ 5.7713E-1(5.4877E-2)‡ 1.8302E-1(6.6613E-3)

(20,10) 2.6255E-1(1.6817E-2)‡ 1.0303E-1(1.7584E-3) 1.7909E-1(3.0438E-3)‡ 2.2277E-1(1.3352E-2)‡ 1.2684E-1(1.5029E-3)

(5,10) 1.7611E+0(1.0707E-1)‡ 4.3378E-1(4.6953E-2) 6.5562E-1(3.1705E-2)‡ 1.5704E+0(1.3189E-1)‡ 5.2338E-1(3.3442E-2)

FDA5 (10,10) 1.0239E+0(5.4901E-2)‡ 3.6283E-1(4.0631E-2)† 4.8031E-1(3.5207E-2)‡ 8.1980E-1(6.0501E-2)‡ 3.6260E-1(8.5854E-3)

(20,10) 4.8890E-1(1.2544E-2)‡ 3.1016E-1(2.7499E-2)† 3.7195E-1(1.2431E-2)‡ 4.0732E-1(1.4768E-2)‡ 3.0953E-1(2.2283E-3)

(5,10) 1.3135E-1(1.1037E-2)‡ 6.9595E-2(1.4007E-2)‡ 4.1528E-1(7.4997E-1)‡ 1.3604E-2(9.0549E-3)‡ 1.1207E-2(8.1627E-3)

dMOP1 (10,10) 8.8338E-3(5.0638E-3)‡ 3.9362E-2(6.2467E-3)‡ 5.0918E-2(9.3741E-2)‡ 9.3916E-3(4.3151E-3)‡ 8.2424E-3(5.3626E-3)

(20,10) 7.3907E-3(3.2736E-3)‡ 1.8848E-2(2.3214E-3)‡ 4.3965E-2(8.4779E-2)‡ 7.1797E-3(2.7117E-3)‡ 6.5411E-3(3.0256E-3)

(5,10) 6.8741E-1(7.5422E-2)‡ 1.2043E-1(2.0546E-2)‡ 1.5635E-1(1.8877E-2)‡ 4.9102E-1(4.1828E-2)‡ 3.0254E-2(3.4200E-3)

dMOP2 (10,10) 1.1864E-1(9.4674E-3)‡ 7.3299E-2(8.9931E-3)‡ 4.2819E-1(1.7367E-2)‡ 1.8898E-1(1.9146E-2)‡ 1.2148E-2(5.7205E-4)

(20,10) 1.5741E-1(6.7003E-4)‡ 3.4622E-2(4.3234E-3)‡ 2.0207E-2(2.4955E-3)‡ 5.6301E-2(3.9135E-3)‡ 6.3230E-3(1.7401E-4)

(5,10) 5.6244E-1(3.9864E-2)‡ 4.9556E-2(4.8079E-3) 1.7617E-1(8.0705E-2)† 3.4211E-1(1.9264E-2)‡ 1.8143E-1(9.6531E-2)

dMOP3 (10,10) 2.0009E-1(1.5091E-2)‡ 2.9589E-2(2.4806E-3) 1.1367E-1(1.2092E-2) 1.6853E-1(1.0496E-2)‡ 1.3248E-1(1.3627E-2)

(20,10) 1.0780E-1(8.5053E-3)‡ 1.6366E-2(1.7152E-3) 8.9901E-2(6.7418E-3)† 6.2795E-2(4.3764E-3) 8.1563E-2(1.2540E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

the population diversity can decrease dramatically. The results

of MS show that, for FDA3, SGEA can maintain a good

coverage of the POF when the other algorithms perform

poorly. However, this is not the case for dMOP3, where only

dCOEA and PPS are able to distribute their obtained solutions

widely on the POF. This means that the change response

mechanisms in DNSGA-II, MOEA/D, and SGEA may face big

challenges when dynamisms drastically aggravate population

diversity.

Since the IGD metric mainly depends on the closeness,

distribution, and coverage of an approximation to the true

POF, we can use IGD together with SP and MS to deeply

and extensively reveal the algorithms’ performance on the test

instances. Table III clearly shows that, SGEA performs the
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TABLE IV
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (τt, nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 8.7093E-1(7.5592E-2)‡ 1.2585E-1(2.4080E-2)‡ 3.8772E-1(1.0116E-1)‡ 7.7026E-1(9.4376E-2)‡ 8.1493E-2(2.0911E-2)

FDA1 (10,10) 1.3610E-1(1.7463E-2)‡ 8.5252E-2(2.0248E-2)‡ 2.9712E-1(1.6596E-2)‡ 2.8825E-1(2.9076E-2)‡ 3.8112E-2(1.4430E-2)

(20,10) 3.5539E-2(1.3774E-2)‡ 5.4656E-2(1.6343E-2)‡ 2.8401E-1(1.5220E-2)‡ 1.3478E-1(9.2613E-3)‡ 2.0270E-2(1.2830E-2)

(5,10) 4.7185E-2(1.4726E-2)‡ 1.8564E-1(6.4420E-2)‡ 3.2184E-1(6.7336E-2)‡ 1.3022E-1(2.5946E-2)‡ 2.5498E-2(1.3466E-2)

FDA2 (10,10) 2.0598E-2(1.4744E-2)‡ 1.2486E-1(4.6708E-2)‡ 2.6663E-1(1.4716E-2)‡ 6.2906E-2(1.8881E-2)‡ 1.6745E-2(1.4126E-2)

(20,10) 1.3369E-2(1.4735E-2)‡ 8.6455E-2(7.0196E-2)‡ 2.5527E-1(9.4754E-3)‡ 3.2497E-2(1.4799E-2)‡ 1.2377E-2(1.4101E-2)

(5,10) 1.5478E+0(1.6485E-1)‡ 1.4594E+0(8.5119E-2)‡ 1.7549E+0(1.8461E-1)‡ 1.6606E+0(7.8359E-2)‡ 9.8045E-1(1.0710E-1)

FDA3 (10,10) 1.0970E+0(9.9053E-2)‡ 1.3223E+0(7.7970E-2)‡ 1.1626E+0(4.6925E-2)‡ 1.1225E+0(9.3170E-2)‡ 9.2413E-1(8.2603E-2)

(20,10) 1.0419E+0(7.9293E-2)‡ 1.1578E+0(6.6326E-2)‡ 1.0365E+0(7.4288E-2)‡ 9.4755E-1(2.2550E-2)‡ 9.1188E-1(8.1889E-2)

(5,10) 2.0595E+0(2.0121E-1)‡ 3.8011E-1(2.6939E-2) 7.7744E-1(6.8856E-2)‡ 3.9719E+0(1.6351E+0)‡ 1.0379E+0(1.3381E-1)

FDA4 (10,10) 1.5893E+0(6.6551E-2)‡ 2.7081E-1(3.5707E-2)† 4.3455E-1(7.2947E-2)‡ 1.2458E+0(1.3708E-1)‡ 2.7403E-1(2.4337E-2)

(20,10) 5.4876E-1(5.7277E-2)‡ 1.8048E-1(2.4395E-2)‡ 3.3435E-1(8.3758E-3)‡ 4.3462E-1(5.0662E-2)‡ 1.4480E-1(2.0339E-2)

(5,10) 6.7506E+0(1.9848E-1)‡ 2.7667E+0(2.8579E-1)‡ 3.8869E+0(3.1382E-1)‡ 7.0876E+0(1.0641E+0)‡ 2.7020E+0(2.2339E-1)

FDA5 (10,10) 5.4164E+0(1.6223E-1)‡ 2.3772E+0(2.7316E-1)‡ 2.1995E+0(3.9061E-1)‡ 4.8043E+0(2.6911E-1)‡ 1.8867E+0(9.3801E-2)

(20,10) 2.6454E+0(1.1158E-1)‡ 2.0207E+0(1.8696E-1)‡ 1.0481E+0(1.1778E-1) 2.1517E+0(1.0853E-1)‡ 1.7874E+0(7.1890E-2)

(5,10) 3.9375E-2(3.8881E-2)† 1.7307E-1(3.3448E-2)‡ 2.8629E-1(3.6238E-1)‡ 4.6453E-2(3.6865E-2)‡ 3.7523E-2(2.5376E-2)

DMOP1 (10,10) 2.2844E-2(2.0365E-2)‡ 1.1236E-1(2.0863E-2)‡ 9.2754E-2(1.3906E-1)‡ 2.5712E-2(1.5458E-2)‡ 1.9048E-2(1.4569E-2)

(20,10) 1.7194E-2(1.4792E-2)† 5.6555E-2(8.1366E-3)‡ 6.0241E-2(8.1387E-2)‡ 1.5920E-2(7.9781E-3) 1.8012E-2(1.3010E-2)

(5,10) 8.0662E-1(1.1259E-1)‡ 3.0338E-1(4.9212E-2)‡ 3.9550E-1(3.9842E-2)‡ 9.0438E-1(7.3270E-2)‡ 8.7174E-2(1.9234E-2)

DMOP2 (10,10) 2.9084E-1(2.5036E-2)‡ 2.0782E-1(2.4976E-2)‡ 1.1778E-1(4.3469E-2)‡ 4.4678E-1(4.2568E-2)‡ 3.5928E-2(1.1177E-2)

(20,10) 4.5002E-2(1.2356E-2)‡ 1.0906E-1(1.5524E-2)‡ 5.6596E-2(6.2322E-3)‡ 1.9824E-1(1.4847E-2)‡ 1.8517E-2(1.1142E-2)

(5,10) 9.5131E-1(3.4052E-2)‡ 1.0526E-1(1.6998E-2) 4.2264E-1(1.5786E-2)† 7.6163E-1(5.3913E-2)† 4.0715E-1(2.4743E-2)

DMOP3 (10,10) 4.7415E-1(2.8497E-2)‡ 6.5770E-2(1.3652E-2) 2.7970E-1(2.7200E-2) 4.5433E-1(2.8194E-2)‡ 3.1866E-1(2.9555E-2)

(20,10) 2.7629E-1(2.5543E-2)‡ 3.6360E-2(1.3138E-2) 2.2118E-1(1.5326E-2)† 2.8764E-1(2.0740E-2)‡ 2.1541E-1(3.0679E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

best on the majority of the test instances and mainly loses

on FDA4 and dMOP3, where dCOEA is the best performer,

in terms of the IGD metric. Clearly, the uncompetitive dis-

tribution (i.e., slightly large SP metric) and poor coverage

(i.e., relatively small MS metric) of obtained approximations

are the main reasons for the low performance of SGEA on

FDA4 and dMOP3, respectively. However, good SP and MS

values do not necessarily result in satisfying IGD metric, and

this can be particularly observed from the case of DNSGA-II

on FDA2, suggesting that DNSGA-II converges worse than

SGEA although it provides the best SP and MS metrics on

this problem. For PPS and MOEA/D, the IGD performance is

not competitive in spite of their good spread performance for

most of the test instances, and this may be caused by their poor

solution distribution, as indicated by their large SP values.

Table IV presents the HVD metric obtained by five algo-

rithms on the FDA and dMOP problems. The obtained HVD

values are roughly consistent with the IGD ones illustrated

in Table III. Clearly, SGEA is more promising than the

other algorithms to solve most FDA and dMOP instances,

but it is outperformed by dCOEA on FDA4 and DMOP3.

Besides, the steady-state MOEA/D also shows some appealing

results on FDA3 and DMOP1 when τt equals 20, implying its

steady-state update method may be helpful for handling slow-

changing environments.

It can also be observed from the results of the three used

metrics that, the frequency of change has a significant effect

on algorithms’ performance, and the effect decreases when

environmental changes become slow. For two three-objective

problems, i.e., FDA4 and FDA5, DNSGA-II and MOEA/D are

most influenced by frequent changes and struggle to push their

populations toward the POF, as indicated by their large IGD

and HVD values in Tables III and IV, respectively. Overall,

dCOEA and SGEA seems less sensitive to the frequency

of change, as can be seen from their gradual improvement

on three metrics when τt increases from 5 to 20. On the

other hand, with the variation of frequency, there are drastic

improvements on DNSGA-II, PPS, and MOEA/D in most of

the test instances.

Apart from tabular presentation, we provide evolution

curves of the average IGD values on the test instances in Fig. 1.

It can be clearly seen that, compared with the other algorithms,

SGEA responds to changes more stably and recovers faster

for most of the test problems, thereby obtaining higher con-

vergence performance. The only exception is dMOP3, where

dCOEA performs the best, and due to the lack of population

diversity (indicated by poor MS values) when a change oc-

curs, the IGD values obtained by SGEA fluctuate widely on

this problem. Despite that, SGEA performs similarly to PPS

and better than DNSGA-II and MOEA/D on dMOP3. For a

graphical view of algorithms’ tracking ability, we also plot

their obtained POFs of FDA1, FDA2, FDA3 and dMOP3 over

31 time windows, which are shown in Fig. 2. Fig. 2 evidently

shows that SGEA is very capable of tracking environmental

changes, but may be of limited coverage if there is a significant

diversity loss (e.g., on dMOP3) in dynamic environments.

B. Results on ZJZ and UDF Problems

Unlike the FDA and dMOP test suites, the ZJZ (F5-F10)

[54] and UDF [4] test problems have nonlinear linkages

between decision variables. Also, the ZJZ and UDF test suites

introduces a number of new dynamic features which are not

included in FDA and dMOP. Table V reports the HVD values

obtained by five algorithms for these challenging problems
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Fig. 1. Evolution curves of average IGD values for eight problems with τt = 10 and nt = 10.

with (τt, nt) = (10, 10), and the obtained SP, MS, and IGD

metric values can be found in the supplementary material.

Compared with the average HVD values on FDA and

dMOP problems given in Section IV-A, the average HVD

values obtained on ZJZ and UDF problems are generally

much higher, implying that the optimization difficulties are

increased in the ZJZ and UDF problems. Table V clearly

shows that SGEA and PPS are top performers on these
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Fig. 2. Obtained POFs for four problems with τt = 10 and nt = 10.

difficult problems. SGEA obtains the best HVD values on

some problems while PPS wins on others. SGEA performs

significantly better than DNSGA-II on problems F5-F10, but

this superiority disappears when they are compared on the

UDF problems, and there is no much difference between them.

This means SGEA has no much advantage in dealing with

difficult variable-linkage UDF problems. PPS, which is not

impressive for solving FDA and dMOP problems, shows very

promising performance on some ZJZ and UDF problems. This

is because PPS employs an estimation of distribution algorithm

[53] as its reproduction operator. This operator can exploit

problem specific knowledge, and hence is very helpful for

solving variable-linkage problems. With the aid of such a

powerful operator, it is natural that PPS can obtain competitive

results on these variable-linkage DMOPs. In contrast to PPS,

dCOEA faces dramatic difficulties to handle the ZJZ and UDF

problems, although it has previously shown good performance

on FDA and dMOP problems.

Table V also shows that almost all the tested algorithms are

struggling for three-objective problems, i.e., F8 and UDF7, and

disconnected problems, i.e., UDF3 and UDF6, as indicated by

their relatively high HVD values. This is understandable be-

cause the increase of the number of objectives and disconnec-

tivity are themselves very challenging in static optimization,

let alone in dynamic optimization.

To show the evolution performance, Fig. 3 plots the evo-
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TABLE V
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS ON ZJZ AND UDF PROBLEMS

Prob. DNSGA-II dCOEA PPS MOEA/D SGEA

F5 1.2584E+0(2.5806E-2)‡ 1.1019E+0(1.6678E-1)‡ 4.0198E-1(9.9177E-2) 1.1908E+0(2.9956E-2)‡ 7.1648E-1(8.2355E-2)

F6 4.7654E-1(3.7611E-2)‡ 9.2223E-1(1.0246E-1)‡ 4.9294E-1(1.5074E-1)‡ 5.7587E-1(7.5659E-2)‡ 3.6068E-1(2.5674E-2)

F7 6.4963E-1(1.0867E-2)‡ 1.2297E+0(1.5928E-1)‡ 4.4905E-1(1.4280E-1) 6.5075E-1(2.8591E-2)‡ 6.0586E-1(1.5195E-2)

F8 1.0626E+0(4.6244E-2)‡ 8.8580E-1(1.2482E-1)‡ 1.3462E+0(1.0652E-1)‡ 1.0615E+0(6.6784E-2)‡ 4.5728E-1(3.2881E-2)

F9 8.8751E-1(3.4535E-2)‡ 1.0741E+0(1.9861E-1)‡ 6.8857E-1(7.7943E-2)‡ 8.5809E-1(4.6913E-2)‡ 5.7634E-1(7.0349E-2)

F10 1.2217E+0(5.0091E-2)‡ 8.5883E-1(8.8251E-2)‡ 5.3839E-1(1.2028E-1)† 1.0590E+0(5.9197E-2)‡ 5.7721E-1(2.3204E-2)

UDF1 5.1409E-1(3.2724E-2)† 7.4761E-1(3.8905E-2)‡ 7.9775E-1(5.2094E-2)‡ 6.1209E-1(9.4226E-2)‡ 5.1825E-1(5.0120E-2)

UDF2 5.5156E-1(2.4931E-2)‡ 6.1354E-1(2.8689E-2)‡ 4.3230E-1(1.9124E-2) 5.4236E-1(1.7627E-2)‡ 5.1049E-1(2.5728E-2)

UDF3 1.2217E+0(1.9063E-3)† 1.2314E+0(7.0157E-2)† 1.7374E+0(3.1733E-4)‡ 1.2266E+0(2.4696E-3)† 1.2212E+0(2.4181E-3)

UDF4 3.4766E-1(8.3674E-2)† 5.0624E-1(3.7884E-2)‡ 3.7727E-1(2.1791E-2)‡ 6.4101E-1(1.9436E-1)‡ 3.3216E-1(7.1516E-2)

UDF5 2.7870E-1(2.5461E-2)† 3.9877E-1(3.3025E-2)‡ 2.7052E-1(1.5772E-2)† 3.6585E-1(2.7331E-2)‡ 2.7251E-1(1.8914E-2)

UDF6 9.3426E-1(1.5483E-1) 1.2681E+0(7.2900E-2)‡ 1.8374E+0(1.0066E-2)‡ 1.2118E+0(1.4935E-1) 9.7707E-1(2.0394E-1)

UDF7 2.4041E+0(7.4722E-2)‡ 1.9125E+0(1.7349E-1)† 2.0607E+0(5.4338E-2)† 2.3287E+0(2.4253E-1)‡ 2.0625E+0(1.2304E-1)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

lution curve of the average IGD metric values over 30 in-

dependent runs. We can see from the figure that, SGEA is

able to respond to environmental changes fast and stably in

most cases. DNSGA-II and MOEA/D roughly have similar

evolution curves on the majority of cases. PPS recovers from

environmental changes fast on some problems, e.g., F6, F9,

UDF2, and UDF5, but recovers slowly on other problems like

F8 and UDF1. dCOEA seems struggling on these variable-

linkage DMOPs.

It is worth noting that, the tested algorithms do not react

to changes stably on a few problems, e.g., F5, F9, and F10.

The IGD values vary widely on these problems because they

involves more severe changes in POS than the other ZJZ

problems. Clearly, the severe POS movement in F5 degrades

the performance of SGEA, hence it is outperformed by PPS.

V. DISCUSSIONS

A. Influence of Severity of Change

To examine the effect of severity levels on algorithms’

performance, experiments were carried out on FDA and dMOP

problems with τt fixed to 10, and nt set to 5, 10, and 20, which

represent severe, moderate, and slight environmental changes,

respectively. Experimental results of five algorithms on the

HVD metric are given in Table VI. For the inspection of the

values of the SP, MS, and IGD metrics, the interested readers

can be referred to the supplementary material.

It can be observed from the table that, all the algorithms are

very sensitive to the severity of change, as can be seen from the

improvement of the metrics when increasing the value of nt.

For different severity levels, SGEA is able to produce impres-

sive performance and wins on the majority of the instances,

and this algorithm is mainly exceeded by dCOEA on only two

problems, i.e., FDA4 and dMOP3. However, for the problem

dMOP3, the HVD metric of SGEA deteriorates with the

decrease of the severity level. One possible explanation is that,

on dMOP3, the degree of diversity loss is roughly the same for

different severity levels, but for different severity levels, SGEA

reacts to changes differently, with a large movement step-size

for severe changes (nt = 5) and a small movement step-size

for slight ones (nt = 20). A larger movement step-size is

likely to increase more population diversity than a smaller one.

Therefore, the increase of nt may negatively affect population

diversity, which in turn leads to the deterioration of the HVD

metric. Such impact suggests that SGEA may need diversity

increase techniques to deal with problems like dMOP3.

B. Study of Different Components of SGEA

This subsection is devoted to studying the effect of different

components of SGEA. SGEA has three key components, i.e.,

the “guided” reinitialization for change response, the steady-

state population update, and the generational environmental

selection. To deeply examine the role that each component

plays in dynamic optimization, we adapt the original SGEA

into three variants. The first variant (SGEA-S1) does not

use the the part of “guided” change response. Instead, it

re-evaluates all current population members in the event

of environmental changes. The second variant (SGEA-S2)

discards the steady-state upadate part of SGEA. In other

words, SGEA-S2 generationally detects and reacts to changes,

and reproduces offspring. SGEA-S3 is another modification

of SGEA, in which environmental selection at the end of

every generation is conducted by preserving a population of

individuals with good fitness. This means, SGEA-S3 prefers

well-converged solutions regardless of their diversity. These

three variants are compared with the original SGEA on four

problems with the setting of (τt, nt) = (10, 10). Table VII

presents the average and standard deviation values of four

metrics obtained by different SGEA variants. The Wilcoxon

signed-rank test [46] is carried out at the 0.05 significance level

to indicate statistically significant difference between SGEA

and the other variants.

In Table VII, SGEA performs significantly better than the

three variants on FDA1 in terms of four metrics, implying all

the three key components are crucial to the high performance

of SGEA on this problem. For dMOP1, SGEA-S1, SGEA-

S2, and SGEA obtain considerably small IGD and HVD

values, indicating they can solve this problem very well. In

contrast, SGEA-S3 seems incapable of solving dMOP1, as

indicated by the inferior four metrics. The poor performance

of SGEA-S3 on dMOP1 is mainly due to the lack of diversity
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Fig. 3. Evolution curves of average IGD values for eight variable-linkage problems with τt = 10 and nt = 10.

maintenance, particularly when excessive nondominated solu-

tions are obtained. This case clearly illustrates the importance

of generational environmental selection to SGEA. For F5,

there is notable difference between SGEA-S2 and the other

algorithms in terms of the metrics. SGEA-S2 obtains the worst

SP, IGD, and HVD values, although it has better coverage

(MS) than the others. The results of SGEA-S2 on F5 obviously

suggest that the use of steady-state population update can

significantly improve the performance of SGEA. Besides, the

difference between SGEA-V1 and SGEA on F5, in terms of

the IGD and HVD metrics, also validates the effectiveness of

the proposed “guided” population reinitialization for handling

environmental changes. The results of four algorithms on

UDF1 show that SGEA is significantly better than SGEA-S1

and SGEA-S3. This observation further confirms the benefit

of the “guided” population reinitialization and generational

selection used in SGEA for dynamic optimization.

It is not difficult to understand that, as a combination of

three key components, SGEA generally outperforms the other

compared variants. The above observations clearly exhibit

the importance of each component in dealing with dynamic

environments. Here, we would like to give more explanations

for the role of each component. The “guided” population

reinitialization exploits the information of new environments
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TABLE VI
MEAN AND STANDARD DEVIATION VALUES OF HVD METRIC OBTAINED BY FIVE ALGORITHMS WITH DIFFERENT VALUES OF nt

Prob. (nt, τt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 8.7093e-1(7.5592e-2)‡ 9.7456E-2(2.9072E-2)‡ 3.2998E-1(7.1818E-2)‡ 6.8904E-1(8.8855E-2)‡ 7.3337E-2(3.3442E-2)

FDA1 (10,10) 1.3610e-1(1.7463e-2)‡ 8.5252E-2(2.0248E-2)‡ 2.9712E-1(1.6596E-2)‡ 2.8825E-1(2.9076E-2)‡ 3.8112E-2(1.4430E-2)

(20,10) 3.5539e-2(1.3774e-2)‡ 7.7223E-2(1.1557E-2)‡ 3.0045E-1(4.5258E-2)‡ 1.2551E-1(1.1056E-2)‡ 2.6418E-2(6.6551E-3)

(5,10) 4.7185e-2(1.4726e-2)‡ 1.4908E-1(1.0125E-1)‡ 6.3330E-1(2.7223E-2)‡ 1.3071E-1(3.4644E-2)‡ 2.6401E-2(2.7317E-2)

FDA2 (10,10) 2.0598e-2(1.4744e-2)‡ 1.2486E-1(4.6708E-2)‡ 2.6663E-1(1.4716E-2)‡ 6.2906E-2(1.8881E-2)‡ 1.6745E-2(1.4126E-2)

(20,10) 1.3369e-2(1.4735e-2)‡ 1.2103E-1(3.8214E-2)‡ 1.9674E-1(4.0100E-3)‡ 3.1918E-2(9.5535E-3)‡ 1.1804E-2(7.2197E-3)

(5,10) 1.5478e+0(1.6485e-1)‡ 1.7059E+0(1.1325E-1)‡ 1.4126E+0(1.3048E-1)‡ 1.5956E+0(9.7437E-2)‡ 1.3476E+0(5.1086E-2)

FDA3 (10,10) 1.0970e+0(9.9053e-2)‡ 1.3223E+0(7.7970E-2)‡ 1.1626E+0(4.6925E-2)‡ 1.1225E+0(9.3170E-2)‡ 9.2413E-1(8.2603E-2)

(20,10) 1.0419e+0(7.9293e-2)‡ 1.1057E+0(7.6375E-2)‡ 1.1209E+0(5.0710E-2)‡ 8.0963E-1(2.0865E-2)‡ 7.1753E-1(6.8361E-2)

(5,10) 2.0595e+0(2.0121e-1)‡ 2.6980E-1(4.9426E-2) 8.2319E-1(1.7066E-1)† 2.9513E+0(1.2324E+0)‡ 7.9666E-1(1.7675E-1)

FDA4 (10,10) 1.5893e+0(6.6551e-2)‡ 2.7081E-1(3.5707E-2)† 4.3455E-1(7.2947E-2)‡ 1.2458E+0(1.3708E-1)‡ 2.7403E-1(2.4337E-2)

(20,10) 5.4876e-1(5.7277e-2)‡ 2.6163E-1(2.4904E-2)‡ 3.2629E-1(1.2176E-2)‡ 5.2499E-1(6.0127E-2)‡ 1.7814E-1(1.1872E-2)

(5,10) 6.7506e+0(1.9848e-1)‡ 3.8546E+0(3.7632E-1)‡ 3.6047E+0(5.8770E-1)‡ 7.1636E+0(1.0447E+0)‡ 3.5028E+0(2.8444E-1)

FDA5 (10,10) 5.4164e+0(1.6223e-1)‡ 2.3772E+0(2.7316E-1)‡ 2.1995E+0(3.9061E-1)‡ 4.8043E+0(2.6911E-1)‡ 1.8867E+0(9.3801E-2)

(20,10) 2.6454e+0(1.1158e-1)‡ 1.5328E+0(1.3437E-1)‡ 1.1066E+0(1.9178E-1)† 1.9665E+0(1.2036E-1)‡ 1.0914E+0(3.2851E-2)

(5,10) 3.9375e-2(3.8881e-2)† 1.0840E-1(3.4407E-2)‡ 5.4358E-1(4.5618E-1)‡ 4.0618E-2(3.0140E-2)† 3.9348E-2(3.0606E-2)

dMOP1 (10,10) 2.2844e-2(2.0365e-2)‡ 1.1236E-1(2.0863E-2)‡ 9.2754E-2(1.3906E-1)‡ 2.5712E-2(1.5458E-2)‡ 1.9048E-2(1.4569E-2)

(20,10) 1.7194e-2(1.4792e-2)‡ 1.1161E-1(1.5244E-2)‡ 2.5362E-2(4.4676E-2)‡ 2.0475E-2(1.4607E-2)‡ 1.3659E-2(7.8804E-3)

(5,10) 8.0662e-1(1.1259e-1)‡ 1.9770E-1(4.3839E-2)‡ 3.9550E-1(3.9842E-2)‡ 9.4022E-1(7.3354E-2)‡ 7.2866E-2(2.5493E-2)

dMOP2 (10,10) 2.9084e-1(2.5036e-2)‡ 2.0782E-1(2.4976E-2)‡ 1.1778E-1(4.3469E-2)‡ 4.4678E-1(4.2568E-2)‡ 3.5928E-2(1.1177E-2)

(20,10) 4.5002e-2(1.2356e-2)‡ 1.7868E-1(1.9365E-2)‡ 4.8491E-2(1.0317E-2)‡ 1.9085E-1(1.9080E-2)‡ 2.5743E-2(5.5744E-3)

(5,10) 9.5131e-1(3.4052e-2)‡ 6.6570E-2(2.8299E-2) 4.0187E-1(5.2945E-2)‡ 7.6718E-1(4.0803E-2)‡ 2.4586E-1(3.9623E-2)

dMOP3 (10,10) 4.7415e-1(2.8497e-2)‡ 6.5770E-2(1.3652E-2) 2.7970E-1(2.7200E-2)‡ 4.5433E-1(2.8194E-2)‡ 3.1866E-1(2.9555E-2)

(20,10) 2.7629e-1(2.5543e-2)‡ 6.2846E-2(7.6769E-3) 2.1883E-1(1.4532E-2)‡ 3.4128E-1(1.9083E-2)‡ 3.6274E-1(1.9356E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

TABLE VII
PERFORMANCE COMPARISON OF SGEA VARIANTS

Problem Indicator SGEA-S1 SGEA-S2 SGEA-S3 SGEA

FDA1

SP 1.0573E-2(1.4425E-3)‡ 9.0396E-3(5.2292E-4)‡ 9.7488E-3(1.1191E-3)‡ 7.5411E-3(5.8178E-4)

MS 9.6158E-1(1.0782E-2)‡ 9.6332E-1(1.2436E-2)‡ 9.6631E-1(9.1630E-3)‡ 9.7277E-1(1.0854E-2)

IGD 1.9931E-2(1.6198E-3)‡ 2.6038E-2(2.9232E-3)‡ 1.6973E-2(1.8987E-3)‡ 1.4809E-2(2.0621E-3)

HVD 3.5270E-1(1.4660E-2)‡ 4.9284E-1(1.5196E-2)‡ 3.1760E-1(1.2533E-2)‡ 3.8112E-2(1.4430E-2)

dMOP1

SP 2.4045E-3(1.3972E-4) 2.7215E-3(3.0493E-4)† 8.5790E-3(1.0189E-3)‡ 2.7029E-3(3.0835E-4)

MS 9.8107E-1(1.8150E-2)† 9.8097E-1(2.4778E-2)‡ 8.1045E-1(1.0711E-1)‡ 9.8351E-1(1.3118E-2)

IGD 9.0188E-3(4.3106E-3)‡ 8.5146E-3(6.9219E-3)‡ 4.9847E-2(3.1290E-2)‡ 6.5411E-3(3.0256E-3)

HVD 2.0653E-2(1.8715E-2)‡ 2.1863E-2(2.3243E-2)‡ 1.5789E-1(8.5491E-2)‡ 1.9048E-2(1.4569E-2)

F5

SP 3.3094E-2(7.3229E-3)† 9.1399E-2(1.9653E-2)‡ 3.5606E-2(9.4640E-3)‡ 3.8765E-2(7.1231E-3)

MS 4.0412E-1(4.2687E-2)‡ 5.5816E-1(4.4388E-2) 4.7777E-1(4.8569E-2)† 5.0748E-1(4.2309E-2)

IGD 5.4434E-1(4.3308E-2)‡ 6.4214E-1(4.7136E-2)‡ 4.5958E-1(3.3362E-2)† 4.4195E-1(4.5046E-2)

HVD 9.2472E-1(6.3984E-2)‡ 1.1087E+0(4.2539E-2)‡ 7.8997E-1(5.9973E-2)‡ 7.1648E-1(8.2355E-2)

UDF1

SP 2.6490E-2(2.8379E-2)‡ 6.8987E-2(3.6611E-2)‡ 2.5998E-2(2.0151E-2)‡ 2.1084E-2(1.8674E-2)

MS 6.5907E-1(1.8926E-1)‡ 8.5675E-1(8.3575E-2) 7.1284E-1(1.7661E-1)† 7.2501E-1(1.1595E-1)

IGD 1.6684E-1(6.5977E-2)‡ 9.9619E-2(1.0661E-2)† 1.4393E-1(4.6269E-2)‡ 1.2449E-1(3.3093E-2)

HVD 5.7070E-1(8.8933E-2)‡ 4.9834E-1(2.2682E-2)† 5.3806E-1(6.0746E-2)‡ 5.1825E-1(5.0120E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.

to coarsely relocate some population members close to the new

POS, which is beneficial to rapidly track the changing POS.

The steady-state update strategy can speed up the convergence

process of the population. This is because, within every gener-

ation, when an offspring is generated, it is immediately used to

update the evolving population and the external archive. Thus,

the offspring, if very promising, has opportunities to be chosen

as a parent for producing new offspring. This way, The steady-

state update strategy offers a fast convergence speed and a

steady reaction to changes as well. Although the steady-state

update strategy is helpful for convergence, it does not consider

population diversity. For this reason, the generational selection

strategy is introduced to mainly maintain population diversity.

One particular situation is that, when plenty of nondominated

individuals are available, the generational selection can prune

them so as to preserve a fixed-size population with good

diversity for next generation. As a result, the balance between

convergence and diversity can be properly struck during the

evolution. In a nutshell, all these three components of SGEA

play a important role in reacting steadily and adapting rapidly

to environmental changes.

C. Influence of Introducing Mutated Solutions

In the previous section, empirical studies indicate that

SGEA is very competitive for handling dynamic environments,
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TABLE VIII
SP, MS AND IGD VALUES OF SGEA-V1 FOR FDA1 AND FDA2

FDA1 FDA2

η SP MS HVD SP MS HVD

0 7.5411E-3(5.8178E-4) 9.7277E-1(1.0854E-2) 3.8112E-2(1.4430E-2) 6.5871E-3(8.7753E-4) 9.9308E-1(3.3464E-3) 1.6745E-2(1.4126E-2)
10 9.4194E-3(5.2569E-4) 9.7253E-1(9.4358E-3) 3.9221E-2(1.3781E-2) 7.2513E-3(8.1050E-4) 9.9302E-1(3.1580E-3) 1.7192E-2(1.4852E-2)
20 9.4802E-3(4.1391E-4) 9.7125E-1(9.1182E-3) 4.0204E-2(1.6126E-2) 7.1854E-3(8.2471E-4) 9.9275E-1(3.9994E-3) 1.7308E-2(1.4810E-2)
30 9.8393E-3(6.5970E-4) 9.6881E-1(1.0522E-2) 4.2156E-2(1.4579E-2) 6.8743E-3(6.3021E-4) 9.9268E-1(4.8573E-3) 1.7439E-2(1.4599E-2)
40 9.9007E-3(4.8708E-4) 9.6982E-1(7.8856E-3) 4.2984E-2(1.3953E-2) 7.0167E-3(1.9724E-4) 9.9165E-1(5.3058E-3) 1.7284E-2(1.4777E-2)
50 1.1850E-2(1.4381E-3) 9.6134E-1(1.3593E-2) 5.0541E-2(1.3661E-2) 7.2156E-3(3.9059E-4) 9.9175E-1(5.0043E-3) 1.7209E-2(1.4652E-2)

but it does not work as well as DNSGA-II for a good distribu-

tion and coverage on problems like FDA2. Similar to DNSGA-

II, we can introduce η% mutated solutions of existing solutions

into the new population after a change into SGEA, and we

call this version of SGEA as SGEA-v1. This means, the new

population consists of 50% of old solutions, η% (0 ≤ η ≤ 50)

mutated solutions, and (50 − η)% guided solutions. Unlike

SGEA, SGEA-v1 computes the moving direction (as shown

in Eq. (5)) in a different way. To be specific, the 50% old

solutions and η% mutated solutions are regarded as the set

R in Eq. (5), and nondominated solutions from R after re-

evaluation are copied to A. This way, (50 − η)% of the new

population to be re-initialized can benefit from the reused old

solutions as well as the mutated solutions, especially when

these solutions have a high level of diversity.

The effect of mutated solutions is studied on FDA1 and

FDA2 with the setting of τt = 10 and nt = 10, and η varied

from 0 to 50. In the case of η = 0, SGEA-v1 is actually

the original SGEA, and η = 50 means there are no guided

solutions in the new population. The mutation probability and

the distribution index for making mutated solutions were set

the same as in DNSGA-II [12].

Table VIII presents the results of SGEA-v1 for the two

tested problems. For FDA1, the performance of SGEA-v1

on three metrics notably deteriorates with the increase in

the number of mutation solutions in population. The similar

trend can be observed from the results of FDA2, in which all

the metric values are negatively influenced when η increases.

The negative effect of introducing mutated solutions can be

explained by the fact that, mutated solutions are more random

than well-planned guided solutions used in SGEA, and may

take more time to be directed toward the true POF. In other

words, such mechanism seems not suitable for SGEA when

handling dynamic environments.

D. Influence of Introducing Random Solutions

As illustrated in the previous experimental study, SGEA

is quite vulnerable to severe diversity loss and thus cannot

compete with dCOEA on dMOP3. For this reason, we devise

another version of SGEA, denoted SGEA-v2, which is inspired

by the use of stochastic competitors for diversity increase in

dCOEA. SGEA-v2 has the similar change response framework

to SGEA-v1 except that it replaces η% of the population

with randomly created solutions. The influence of introducing

random solutions is studied on dMOP3, where η varies from

0 to 50.

The results of SGEA-v2 on dMOP3 with τt = 10 and

nt = 10 are given in Table IX. Clearly, the introduction of

TABLE IX
SP, MS AND IGD VALUES OF SGEA-V2 FOR DMOP3

η SP MS IGD

0 5.4336E-3(6.0751E-4) 5.7573E-1(2.9590E-2) 1.3248E-1(1.3627E-2)
10 7.8473E-3(1.1449E-3) 8.8779E-1(2.3199E-2) 3.6223E-2(9.4230E-3)
20 8.7294E-3(3.0487E-3) 9.1631E-1(1.1874E-2) 3.0153E-2(4.1528E-3)
30 8.8099E-3(2.8361E-3) 9.3661E-1(1.5004E-2) 2.5424E-2(4.8542E-3)
40 9.3054E-3(2.6714E-3) 9.4759E-1(1.3064E-2) 2.2199E-2(4.1150E-3)
50 9.4439E-3(2.8387E-3) 9.4656E-1(1.2554E-2) 2.4757E-2(3.3081E-3)
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Fig. 4. POFs of dMOP3 (τt = 10 and nt = 10) obtained by SGEA-v2
over 31 time steps.

random solutions significantly improves the coverage perfor-

mance of SGEA, which in turn decreases the IGD values.

Such benefit is maximized when 40% random solutions are

adopted, and the corresponding approximations of 31 time

steps are illustrated in Fig. 4, showing that SGEA with the use

of random solutions is very capable of tracking the changing

POF on dMOP3. On the other hand, the SP metric is negatively

affected by random solutions, with a notable decline when

η increases. This is because the use of random solutions

drastically increases population diversity, leading to a wide

spread of the population along the POF so that the uniformity

of the obtained approximation is not easy to keep. Thus, for

dMOP3, the SP metric is inconsistent with MS and IGD.

Since the use of random solutions considerably help SGEA

cope with the diversity loss, we wonder whether SGEA-v2

can win against the other compared algorithms on dMOP3.

Hence, we compare SGEA-v2 with η = 40 with the previous

best performer, i.e., dCOEA, on different dynamic scenarios
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TABLE X
COMPARISON BETWEEN DCOEA AND SGEA-V2 ON DMOP3

SP MS IGD

(τt, nt) dCOEA SGEA-v2 dCOEA SGEA-V2 dCOEA SGEA-v2

(5,10) 3.3786E-2(5.5519E-3) 1.9335E-2(4.5045E-3) 8.7837E-1(2.1444E-2) 9.1029E-1(1.2201E-2) 4.9556E-2(4.8079E-3) 4.7222E-2(5.2525E-3)

(10,10) 1.5418E-2(1.0978E-3) 9.3054E-3(2.6714E-3) 9.1097E-1(1.1716E-2) 9.4759E-1(1.3064E-2) 2.9589E-2(2.4806E-3) 2.2199E-2(4.1150E-3)

(20,10) 7.3129E-3(3.9782E-4) 4.8211E-3(1.0737E-3) 9.4844E-1(1.1052E-2) 9.6644E-1(8.0110E-3) 1.6366E-2(1.7152E-3) 1.1448E-2(2.5416E-3)
(10,5) 1.6060E-2(1.9712E-3) 1.0110E-2(2.6696E-3) 9.1484E-1(1.4420E-2) 9.3430E-1(1.4221E-2) 2.9953E-2(3.5438E-3) 2.5428E-2(4.8462E-3)

(10,20) 1.4903E-2(7.3451E-3) 7.7303E-3(1.2510E-3) 9.1736E-1(8.7132E-3) 9.4923E-1(1.2537E-2) 3.1686E-2(2.6402E-3) 2.2085E-2(4.5406E-3)
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Fig. 5. Comparison of IGD curves between dCOEA and SGEA-v2 for
dMOP3 with τt = 10 and nt = 10.

of dMOP3. Table X and Fig. 5 present the comparison re-

sults, clearly showing that SGEA-v2 significantly outperforms

dCOEA in terms of the three performance metrics. This further

confirms the potential of SGEA for handling dynamic environ-

ments if the population diversity is properly maintained.

E. More Discussions

The previous experimental comparison and analysis have

shown that SGEA is capable of solving a wide range of

DMOPs. Specifically, SGEA works well on simple DMOPs

without strong variable linkages, like most of the FDA and

dMOP problems. In some patterns of changes, such as, the

geometric shapes of two consecutive POFs/POSs are similar,

changes are slight or do not cause diversity loss, and changes

are relatively smooth, SGEA is able to track the moving

POFs/POSs effectively and efficiently. Therefore, SGEA pro-

vides better performance than the other compared algorithms

in these cases. The fact that most of the test problems have

periodical changes suggests SGEA is particularly applicable

to periodical environments.

However, like other algorithms, SGEA has some drawbacks

too. One drawback is that SGEA struggles to deal with

changes that brings about severe diversity loss, which has

been illustrated by dMOP3. In practice, SGEA does not

increase diversity when changes occur, so it is vulnerable

to the loss of diversity. However, as have shown in our

study, this drawback can be alleviated by introducing some

randomly created individuals when a change is detected.

Another drawback comes from the inefficiency of SGEA for

handling severe movements in POS. As verified by F5, such

a severe change can significantly degrade the performance of

SGEA. Besides, the dissimilar geometric shapes between two

consecutive POFs/POSs (see results on F10) may challenge the

performance of SGEA. In case that a change affects too much

the relative positions between solutions in the POS, the guided

reinitialization method of SGEA may not work well due to

its linear property. affects too much the relative positions

between solutions. On the other hand, SGEA also suffers

from optimization difficulties caused by variable linkages.

Experimental comparisons on the UDF problems evidently

show that SGEA and the other algorithms all have difficulty

in solving strong variable-linkage problems. A possible way

to solve variable linkages may be borrowing similar idea from

the optimizer of PPS or incorporating with new operators [42]

to evolve the population.

VI. CONCLUSIONS

In this paper, we have proposed a steady-state and gen-

erational evolutionary algorithm, i.e., SGEA, for handling

multiobjective problems with time-varying characteristics. Dif-

ferent from existing dynamism handling approaches in the

literature, SGEA detects and reacts to changes in a steady-state

manner. If a change is detected, SGEA reuses a portion of old

solutions with good diversity and re-evaluates them, providing

the algorithm with some basic understanding of the landscape

of the new environment. As a result, SGEA exploits useful

information extracted from the new environment, i.e., the mov-

ing direction, to relocate the remaining portion of population

to regions near the new POF. Otherwise, a generational cycle

of static steady-state optimization is executed, in which the

evolving population progressively interacts with an external

archive, promoting the convergence speed of SGEA. At the

end of each generation, the previous and current populations

are combined, and the environmental selection is performed

on the combined population to preserve elitists for the next

generation.

SGEA has been compared with other several popular

DMOEAs on a number of DMOPs, including bi- and three-

objective problems, with different dynamic characteristics and

difficulties. Experimental studies have shown that, on the

majority of the considered problems, SGEA is capable of

tracking their changing POFs efficiently, but may struggle to

recover if the problem has strong variable linkages or changes

cause a significant diversity loss.

The main components of SGEA have been studied and their

roles in handling dynamic environments have been deeply

illustrated. Besides, the influence of the introduction of mu-

tated and randomly created solutions for change reaction has
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been investigated, showing that mutated solutions may have

a negative effect on the elaborated SGEA, and the use of

random solutions can considerably alleviate the diversity loss

caused by environmental changes, thereby offering significant

improvement on the performance of SGEA.

Although SGEA has provided encouraging performance on

the test problems considered in this paper, it needs to be

examined on a wider range of dynamic environments, such as

changes that are hard to be detected or do not vary regularly.

Our future work includes the incorporation of new constraint

handling techniques to deal with dynamic constrained prob-

lems, new operators like [42] to evolve population, new

detectors and response mechanisms to handle environmental

changes. Besides, new dynamic benchmarks and performance

metrics are needed to facilitate the analysis of DMOEAs.
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This is the supplementary material to the paper entitled

“A Steady-state and Generational Evolutionary Algorithm for

Dynamic Multiobjective Optimization”, submitted to IEEE

Transactions on Evolutionary Computation. This material pro-

vides the formulation of the test problems used in the paper,

followed by some supplementary experimental results.

VII. TEST SUITES

The test suites used for algorithm analysis are composed of

both early- and newly-developed test problems, including bi-

and three-objective instances. The FDA and dMOP test suites

are the early ones whereas ZJZ and UDF are new variable-

linkage test problems.

As shown in Table XI, the FDA test suite includes three

bi-objective and five three-objective dynamic instances, which

has often been employed to examine algorithms’ performance

for DMOPs. Note that, the POS of the original FDA2 does

not change with time. To increase optimization difficulties,

we have made some changes on FDA2, which is based on

the study of Deb et al. in 2007. The dMOP test suite (see

Table XII) is an extension of FDA, having three bi-objective

instances. For dMOP3, its G(t) function has been adapted to

produce a problem with time-changing POS but static POF.

The ZJZ test suite (Table XIII) has four variable-linkage

problems. Their dynamisms lie in that the boundary of the POS

and/or the curvature of the POF change(s) with time. In F5-F8,

the environment changes smoothly, and the geometric shapes

of two consecutive POSs are similar to each other in some

sense. In F9, the environment changes smoothly in most cases,

and occasionally, the POS jumps from one area to another. In

F10, the geometric shapes of two consecutive POFs are totally

different from each other.

Table XIV lists seven deterministic test problems of the

UDF test suite, where UDF8 and UDF9 are excluded due to

their nature of randomness that drastically increases optimiza-

tion difficulties. The UDF problems feature the strong depen-

dency between variables, and in most cases the dependency

is time-varying. Also, the UDF problems introduce new dy-

namisms like angular shift or slope change of the POF, shape

change of both a polynomial POS and a trigonometric POS,

change of curvature of a spherical POF resulting in different

ellipsoids, etc. Note that, there is a basic misunderstanding

The authors are with the Centre for Computational Intelligence (CCI),
School of Computer Science and Informatics, De Montfort University, The
Gateway, Leicester LE1 9BH, U.K. (email: shouyong.jiang@email.dmu.ac.uk,
syang@dmu.ac.uk).

of the POF/POS of UDF3 and UDF6. That is, the POS and

POF are inconsistent with each other. To make the resulting

POS/POF exactly locate in the optimal regions suggested by

the UDF developers, we have made very slightly changes in

the objective formulation of UDF3 and UDF6.

VIII. SUPPLEMENTARY RESULTS ON ZJZ AND UDF

PROBLEMS

Table XV presents the SP, MS, and IGD results of five

algorithms on ZJZ and UDF test problems. Generally, SGEA

obtains relatively better SP values than the other algorithms in

most cases, indicating SGEA has an advantage in population

distribution. The good distribution performance of SGEA

might be due to the generational environmental selection,

which is able to remove overcrowded individuals at the cost

of a bit high computational complexity. Similarly, MOEA/D

also achieves good distribution on several problems, due to

its strength of diversity maintenance. dCOEA and PPS fail

to provide good spacing metric on the majority of the test

problems. However, when it comes to the spread of approxi-

mations, PPS turns the tables by obtaining considerably high

MS values. This shows PPS is able to cover the whole region

of the POF. In contrast, the other algorithms struggle to spread

widely, indicating they face great challenges to solving most

of these variable-linkage problems.

Due to good spread performance, it is not surprising that

PPS solves most of ZJZ and UDF problems very well in terms

of the IGD metric. SGEA obtains very competitive IGD values

on F6, F8, F9, F10, UDF1, UDF3, UDF4, and UDF7, but

it is outperformed by PPS or DNSGA-II on the rest of the

problems. The IGD results also suggest that dCOEA performs

the worst, thus it is not suitable for solving these variable-

linkage problems. Interestingly, on two three-objective prob-

lems, i.e., F8 and UDF7, SGEA performs significantly better

than the other algorithms in terms of IGD. This observation

shows SGEA may have great potential to solving higher-

dimensional problems. On the other hand, it can be also seen

from Table XV that, PPS and SGEA obtains relatively smaller

IGD values on UDF2 and UDF5 than the other UDF instances.

This is because UDF2 and UDF5 are two monotonic variable-

linkage problems whereas the other UDF problems have

non-monotonic dependencies between variables. Monotonic

variable linkages are much easier to be cracked than non-

monotonic ones, so PPS and SGEA surely perform better on

UDF2 and UDF5 than the other UDF problems.
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TABLE XI
FDA TEST SUITE

Instance Description Domain n Remarks

FDA1

f1(x) = x1

f2(x) = g(x)(1 −
√

f1/g(x))
g(x) = 1 +

∑n
i=2 (xi −G(t))2

G(t) = sin(0.5πt)
POS(t): 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n
POF(t): f2 = 1−

√
f1

[0, 1]× [−1, 1]n−1 11
POS shifts
POF is static

FDA2

f1(x) = x1

f2(x) = g(x)(1 − (f1/g(x))2
(H(t)+

n∑

j=n−8

(xj−H(t)/4)2)

)

g(x) = 1 +
∑n−7

i=2 x2
i

H(t) = 2 sin(0.5π(t − 1))
POS(t): 0 ≤ x1 ≤ 1, xi = 0, i = 2, . . . , n− 7
xj = H(t), j = n− 8, . . . , n

POF(t): f2 = 1− f2
1
H(t)

[0, 1]× [−1, 1]n−1 13
POS shifts
POF shape changes

FDA3

f1(x) = (x
F (t)
1 + x

F (t)
2 )/2

f2(x) = g(x)(1 −
√

f1/g(x))
g(x) = 1 +G(t) +

∑n
i=3 (xi −G(t))2

G(t) = | sin(0.5πt)|, F (t) = 102 sin(0.5πt)

POS(t): 0 ≤ x1, x2 ≤ 1, xi = G(t), i = 3, . . . , n

POF(t): f2 = (1 +G(t))(1 −
√

f1/(1 +G(t)))

[0, 1]2 × [−1, 1]n−2 10
POS shifts
POF changes

FDA4

f1(x) = ((1 + g(x)) cos(0.5πx1) cos(0.5πx2))
f2(x)=((1 + g(x)) cos(0.5πx1) sin(0.5πx2))
f3(x)=((1 + g(x)) sin(0.5πx1))

g(x) =
n
∑

i=3
(xi −G(t))2

G(t) = | sin(0.5πt)|
POS(t): 0 ≤ x1 ≤ 1, xi = G(t)i = 2, . . . , n
POF: f2

1 + f2
2 + f2

3 = 1

[0, 1]n 12
POS shifts
POF is static

FDA5

f1(x) =
(

(1 + g(x)) cos(0.5πx
F (t)
1 ) cos(0.5πx

F (t)
2 )

)

f2(x)=
(

(1 + g(x)) cos(0.5πx
F (t)
1 ) sin(0.5πx

F (t)
2 )

)

f3(x)=
(

(1 + g(x)) sin(0.5πx
F (t)
1 )

)

g(x) = G(t) +
n
∑

i=3
(xi −G(t))2

G(t) = | sin(0.5πt)|, F (t) = 1 + 100 sin4(0.5πt)
POS(t): 0 ≤ x1, x2 ≤ 1, xi = G(t)i = 3, . . . , n
POF: f2

1 + f2
2 + f2

3 = (1 +G(t))2

[0, 1]n 12
POS shifts
POF shifts

TABLE XII
DMOP TEST SUITE

Instance Description Domain n Remarks

dMOP1

f1(x) = x1

f2(x) = g(x)(1 − f1/g(x)
H(t))

g(x) = 1 + 9
n−1

∑n
i=2 x

2
i

H(t) = 0.75 ∗ sin(0.5πt) + 1.25
POS(t): 0 ≤ x1 ≤ 1, xi = 0, i = 2, . . . , n

POF(t): f2 = 1− f1
H(t)

[0, 1]n 10
POS is static
POF shape changes

dMOP2

f1(x) = x1

f2(x) = g(x)(1 − (x1/g(x))H(t))
g(x) = 1 +

∑n
i=2 (xi −G(t))2

H(t) = 0.75 sin(0.5πt) + 1.25, G(t) = |sin(0.5πt)|
POS(t): 0 ≤ x1 ≤ 1, xi = G(t), i = 2, . . . , n

POF(t): f2 = 1− f1
H(t)

[0, 1]n 10
POS shifts
POF shape changes

dMOP3

f1(x) = xr

f2(x) = g(x)(1 −
√

f1/g)
g(x) = 1 +

∑

xi∈x\xr
(xi −G(t))2

G(t) = | sin(0.5πt)|, r = U(1, . . . , n)
POS(t): 0 ≤ xr ≤ 1, xi ∈ x \ xr = G(t), i = 1, . . . , n
POF(t): f2 = 1−

√
f1

[0, 1]n 10
POS changes
POF is static
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TABLE XIII
ZJZ TEST SUITE

Instance Description Domain n Remarks

F5

f1(x) = |x1 − a|H +
∑

i∈I1
y2i

f2(x) = |x1 − a − 1|H +
∑

i∈I2
y2i

yi = xi − b− 1 + |x1 − a|(H+ i
n
), H = 0.75 sin(πt) + 1.25

a = 2 cos(πt) + 2, b = 2 sin(πt) + 2
I1 = {i|1 ≤ i ≤ n, i is old}, I2 = {i|1 ≤ i ≤ n, i is even}
POS(t): a ≤ x1 ≤ a+ 1, xi = b+ 1− |x1 − a|(H+ i

n
), i = 2, . . . , n

POF(t): f2 = (1− f1
1

H )H

[0, 5]n 11
POS changes
POF changes

F6

f1(x) = |x1 − a|H +
∑

i∈I1
y2i

f2(x) = |x1 − a − 1|H +
∑

i∈I2
y2i

yi = xi − b− 1 + |x1 − a|(H+ 1

n
), H = 0.75 sin(πt) + 1.25

a = 2 cos(1.5πt) sin(0.5πt) + 2, b = 2 cos(1.5πt) sin(0.5πt) + 2
I1 = {i|1 ≤ i ≤ n, i is old}, I2 = {i|1 ≤ i ≤ n, i is even}
POS(t): a ≤ x1 ≤ a+ 1, xi = b+ 1− |x1 − a|(H+ i

n
), i = 2, . . . , n

POF(t): f2 = (1− f1
1

H )H

[0, 5]n 11
POS changes
POF changes

F7

f1(x) = |x1 − a|H +
∑

i∈I1
y2i

f2(x) = |x1 − a − 1|H +
∑

i∈I2
y2i

yi = xi − b− 1 + |x1 − a|(H+ 1

n
), H = 0.75 sin(πt) + 1.25

a = 1.7(1− sin(πt)) sin(πt) + 3.4, b = 1.4(1 − sin(πt)) cos(πt) + 2.1
I1 = {i|1 ≤ i ≤ n, i is old}, I2 = {i|1 ≤ i ≤ n, i is even}
POS(t): a ≤ x1 ≤ a+ 1, xi = b+ 1− |x1 − a|(H+ i

n
), i = 2, . . . , n

POF(t): f2 = (1− f1
1

H )H

[0, 5]n 11
POS changes
POF changes

F8

f1(x) = ((1 + g(x)) cos(0.5πx1) cos(0.5πx2))
f2(x)=((1 + g(x)) cos(0.5πx1) sin(0.5πx2))
f3(x)=((1 + g(x)) sin(0.5πx1))

g(x)
∑n

i=3 (xi − (x1+x2

2
)H −G)2

G = sin(0.5πt)|, H = 0.75 sin(πt) + 1.25

POS(t): 0 ≤ x1, x2 ≤ 1, xi =
x1+x2

2
)H +G, i = 3, . . . , n

POF: f2
1 + f2

2 + f2
3 = 1

[0, 1]2 × [−1, 2]n−2 12
POS changes
POF changes

F9

f1(x) = |x1 − a|H +
∑

i∈I1
y2i

f2(x) = |x1 − a − 1|H +
∑

i∈I2
y2i

yi = xi − b− 1 + |x1 − a|(H+ 1

n
), H = 0.75 sin(πt) + 1.25

a = 2 cos(π(t − ⌊t⌋)) + 2, b = 2 sin(2π(t − ⌊t⌋)) + 2
I1 = {i|1 ≤ i ≤ n, i is old}, I2 = {i|1 ≤ i ≤ n, i is even}
POS(t): a ≤ x1 ≤ a+ 1, xi = b+ 1− |x1 − a|(H+ i

n
), i = 2, . . . , n

POF(t): f2 = (1− f1
1

H )H

[0, 5]n 11
POS changes
POF changes

F10

f1(x) = |x1 − a|H +
∑

i∈I1
y2i

f2(x) = |x1 − a − 1|H +
∑

i∈I2
y2i

yi =xi − b− |x1 − a|(H+ 1

n
), if ⌊τ/τt⌋ is odd

yi=xi − b− 1 + |x1 − a|(H+ 1

n
), if ⌊τ/τt⌋ is even

H = 0.75 sin(πt) + 1.25
a = 2 cos(πt) + 2, b = 2 sin(2πt) + 2
I1 = {i|1 ≤ i ≤ n, i is old}, I2 = {i|1 ≤ i ≤ n, i is even}
POS(t): a ≤ x1 ≤ a+ 1, xi = b+ 1− |x1 − a|(H+ i

n
), i = 2, . . . , n

POF(t): f2 = (1− f1
1

H )H

[0, 5]n 11
POS changes
POF changes

IX. SUPPLEMENTARY RESULTS ON DIFFERENT SEVERITY

LEVELS

This section presents supplementary results of five algo-

rithms on the SP, MS, and IGD metrics, which are given in

Tables XVI, XVII, XVIII, respectively.

We can observe from the tables that, both DNSGA-II and

SGEA provide very promising SP values for most of the test

instances, and DNSGA-II performs the best on FDA2 and

FDA3 whereas SGEA significantly wins on FDA1, FDA5, and

three dMOP problems with respect to the SP metric. dCOEA

shows its good distribution on FDA4 when changes are not

slight, meaning that it may be able to handle severe changes.

For the MS metric, SGEA obtains highly competitive results

on all the test instances except dMOP3, in which only dCOEA

and PPS can make a spread coverage of approximation. The

IGD performance of SGEA on the majority of the instances

is quite impressive, and this algorithm is mainly exceeded

by dCOEA on only two problems, i.e., FDA4 and dMOP3.

The outperformance of SGEA over the other algorithms on

the IGD metric is probably due to its good distribution and

spread abilities. Nevertheless, the spread ability of SGEA may

be challenged when solving problems like dMOP3, which can

impose severe diversity loss in dynamic environments.

On the other hand, all the algorithms are very sensitive to

the severity of change, as can be seen from the improvement

of the metrics when increasing the value of nt. For MS and

IGD, dCOEA and SGEA seem to be least influenced by nt,

and the other algorithms experience significant changes for
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TABLE XIV
UDF TEST SUITE

Instance Description Domain n Remarks

UDF1

f1(x) = x1 + |G|+ 2
J1

∑

j∈J1
y2j

f2(x) = 1− x1 + |G|+ 2
J2

∑

j∈J2
y2j

yj = xj − sin(6πx1 + j π
n
)−G, G = sin(0.5πt)

J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}
POS(t): 0 ≤ x1 ≤ 1, xi = sin(6πx1 + j π

n
) +G, i = 2, . . . , n

POF(t): f1 + f2 = 1 + 2|G|, |G| ≤ f1 ≤ 1 + |G|

[0, 1]× [−2, 2]n−1 10
POS shifts
POF shifts

UDF2

f1(x) = x1 + |G|+ 2
J1

∑

j∈J1
y2j

f2(x) = 1− x1 + |G|+ 2
J2

∑

j∈J2
y2j

yj = xj − x
0.5(2+3

j−2

n−2
+G)

1 −G, G = sin(0.5πt)
J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}

POS(t): 0 ≤ x1 ≤ 1, xi = x
0.5(2+3 j−2

n−2
+G)

1 +G, i = 2, . . . , n
POF(t): f1 + f2 = 1 + 2|G|, |G| ≤ f1 ≤ 1 + |G|

[0, 1]× [−1, 2]n−1 10
POS changes
POF shifts

UDF3

f1(x) = x1 +max(0, ( 1
2N

+ ǫ) sin(2Nπx1)) + |G|
+ 2

J1

(4
∑

j∈J1
2y2j − 2

∏

j∈J1
cos(

20πyj√
j

) + 2)

f2(x) = 1− x1 +max(0, ( 1
2N

+ ǫ) sin(2Nπ)) + |G|
+ 2

J2

(4
∑

j∈J2
2y2j − 2

∏

j∈J2
cos(

20πyj√
j

) + 2)

yj = xj − sin(6πx1 + j π
n
), G = sin(0.5πt), N = 10, ǫ = 0.1

J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}
POS(t): 0 ≤ x1 ≤ 1, xi = sin(6πx1 + j π

n
), i = 2, . . . , n

POF(t): (0, 1)and
⋃N

i=1[
2i−1
2N

+ |G|, 2i
2N

+ |G|], i = 1, . . . , N

[0, 1]× [−1, 1]n−1 10
POS is static
POF changes

UDF4

f1(x) = x1 + 2
J1

∑

j∈J1
y2j

f2(x) = 1−HxH
1 + 2

J2

∑

j∈J2
y2j

yj = xj − sin(6πx1 + (j +K)π
n
)−G

G = sin(0.5πt), H = 0.5 + |G|,K = ⌈nG⌉
J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}
POS(t): 0 ≤ x1 ≤ 1, xi = sin(6πx1 + j π

n
) +G, i = 2, . . . , n

POF(t): f1 + f2 = 1 + 2|G|, |G| ≤ f1 ≤ 1 + |G|

[0, 1]× [−1, 1]n−1 10
POS is changes
POF changes

UDF5

f1(x) = x1 + 2
J1

∑

j∈J1
y2j

f2(x) = 1−HxH
1 + 2

J2

∑

j∈J2
y2j

yj = xj − x
0.5(2+3 j−2

n−2
+G)

1 −G
G = sin(0.5πt), H = 0.5 + |G|
J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}

POS(t): 0 ≤ x1 ≤ 1, xi = x
0.5(2+3

j−2

n−2
+G)

1 +G, i = 2, . . . , n
POF(t): f1 + f2 = 1 + 2|G|, |G| ≤ f1 ≤ 1 + |G|

[0, 1]× [−1, 2]n−1 10
POS changes
POF changes

UDF6

f1(x) = x1 + ( 1
2N

+ ǫ)| sin(2Nπx1)|+ |G|+ 2
J1

∑

j∈J1
(2y2j − cos(4πyj) + 1)2

f2(x) = 1− x1 + ( 1
2N

+ ǫ)| sin(2Nπx1)|+ |G|+ 2
J2

∑

j∈J2
(2y2j − cos(4πyj) + 1)2

yj = xj − sin(6πx1 + j π
n
), G = sin(0.5πt), N = 10, ǫ = 0.1

J1 = {j|1 ≤ j ≤ n, j is old}, J2 = {j|1 ≤ i ≤ n, j is even}
POS(t): 0 ≤ x1 ≤ 1, xi = sin(6πx1 + j π

n
), i = 2, . . . , n

POF(t): (0, 1)and
⋃N

i=1[
2i−1
2N

+ |G|, 2i
2N

+ |G|], i = 1, . . . , N

[0, 1]× [−1, 1]n−1 10
POS is static
POF changes

UDF7

f1(x) = (R cos(0.5πx1) cos(0.5πx2)) +G+ 2
J1

∑

j∈J1
y2j

f2(x)=(R cos(0.5πx1) sin(0.5πx2)) +G+ 2
J2

∑

j∈J2
y2j

f3(x)=(R sin(0.5πx1)) +G+ 2
J3

∑

j∈J3
y2j

yj = xj − 2x2 sin(2πx1 + j π
n
), G = sin(0.5πt), R = 1 + |G|

J1 = {j|mod(j, 3) = 2}, J2 = {j|mod(j, 3) = 0}, J3 = {j|mod(j, 3) = 1}, 1 ≤ j ≤ n
POS(t): 0 ≤ x1, x2 ≤ 1, xi = 2x2 sin(2πx1 + j π

n
), i = 3, . . . , n

POF: (f1 −G)2 + (f2 −G)2 + (f3 −G)2 = R2, 0 ≤ f1, f2, f3 ≤ 1

[0, 1]2 × [−2, 2]n−2 10
POS is static
POF changes

most of the problems on these metrics with the increase of

the nt value. However, for the problem dMOP3, the MS and

IGD metric of SGEA deteriorates with the decrease of the

severity level. One possible explanation is that, on dMOP3,

the degree of diversity loss is roughly the same for different

severity levels, but for different severity levels, SGEA reacts

to changes differently, with a large movement step-size for

severe changes (nt = 5) and a small movement step-size

for slight ones (nt = 20). A larger movement step-size is

likely to increase population diversity more than a smaller

one, and better population diversity tends to provide better

coverage values. Thus, an increase of the value of nt leads to

the deterioration of the MS metric, which in turn results in the

decrease of the IGD metric. Such impact suggests that SGEA

may need diversity increase techniques to deal with problems

like dMOP3.
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TABLE XV
MEAN AND STANDARD DEVIATION VALUES OF THREE METRICS OBTAINED BY FIVE ALGORITHMS

DNSGA-II dCOEA PPS MOEAD SGEA

SP 4.1305E-2(5.1942E-3)† 1.3326E-1(7.3645E-2)‡ 8.7543E-2(2.3159E-2)‡ 3.3350E-2(3.6146E-3) 3.8765E-2(7.1231E-3)

F5 MS 6.0023E-1(2.7069E-2) 3.0085E-1(6.8719E-2)‡ 9.2766E-1(1.7241E-2) 6.1657E-1(1.8022E-2) 5.0748E-1(4.2309E-2)

IGD 7.8262E-1(3.9446E-2)‡ 8.0110E-1(2.2441E-1)‡ 2.6924E-1(4.3332E-2) 6.8854E-1(4.1976E-2)‡ 4.4195E-1(4.5046E-2)

SP 3.0175E-2(4.3517E-3)‡ 1.8272E-1(8.9110E-2)‡ 1.2104E-1(3.4235E-2)‡ 2.7848E-2(3.1905E-3)† 2.5625E-2(4.2917E-3)

F6 MS 7.4874E-1(3.1144E-2) 3.5806E-1(4.4452E-2)‡ 9.1340E-1(2.6124E-2) 7.2733E-1(3.1594E-2) 6.6810E-1(2.5050E-2)

IGD 3.0203E-1(2.1309E-2)† 6.5794E-1(1.3275E-1)‡ 2.6023E-1(6.5503E-2)† 3.4491E-1(5.6149E-2)‡ 2.9035E-1(1.3498E-2)

SP 2.0466E-2(4.1072E-3)† 1.1142E-1(7.2215E-2)‡ 9.6713E-2(2.4803E-2)‡ 2.2152E-2(4.4633E-3)‡ 1.8485E-2(3.6509E-3)

F7 MS 5.2999E-1(2.0255E-2) 2.2973E-1(4.9128E-2)‡ 9.1852E-1(2.7465E-2) 6.2445E-1(1.7365E-2) 4.5375E-1(2.5882E-2)

IGD 4.1988E-1(6.9493E-3)† 1.5695E+0(6.0322E-1)‡ 2.6369E-1(7.1414E-2) 4.1863E-1(6.0017E-2)† 4.4742E-1(1.0215E-2)

SP 1.5246E-1(2.1465E-2)‡ 2.2866E-1(7.8455E-2)‡ 3.0005E-1(2.7912E-2)‡ 5.3405E-1(1.8994E-1)‡ 6.8969E-2(1.6541E-2)

F8 MS 1.0000E+0(4.8026E-9) 8.9463E-1(7.9732E-2)‡ 9.9930E-1(1.4674E-4)‡ 9.9983E-1(7.6740E-4)‡ 9.9998E-1(1.6568E-5)

IGD 4.8669E-1(1.3287E-2)‡ 4.0033E-1(6.7456E-2)‡ 4.5632E-1(3.1250E-2)‡ 5.4900E-1(2.3683E-2)‡ 2.5119E-1(1.4621E-2)

SP 3.7039E-2(6.3222E-3) 2.1175E-1(8.1020E-2)‡ 1.5146E-1(2.3296E-2)‡ 3.1090E-2(4.2792E-3) 4.1831E-2(1.0482E-2)

F9 MS 6.6866E-1(2.3963E-2) 3.1904E-1(7.6351E-2)‡ 8.7697E-1(1.4230E-2) 6.8434E-1(1.5545E-2) 5.7945E-1(4.7702E-2)

IGD 4.7433E-1(2.1642E-2)‡ 8.8765E-1(3.3403E-1)‡ 3.5937E-1(4.4137E-2)† 4.2973E-1(2.4350E-2)‡ 3.6562E-1(3.4308E-2)

SP 7.2754E-2(9.3243E-3)‡ 1.4275E-1(9.5345E-2)‡ 1.1666E-1(2.3391E-2)‡ 3.9906E-2(5.8603E-3)† 3.6406E-2(5.9213E-3)

F10 MS 5.0622E-1(2.4791E-2) 3.7811E-1(3.7959E-2)‡ 8.8624E-1(2.3515E-2) 5.7719E-1(3.4409E-2)† 5.3786E-1(2.7667E-2)

IGD 1.0577E+0(1.5624E-1)‡ 5.7658E-1(8.1792E-2)‡ 3.7984E-1(8.7978E-2)† 6.3930E-1(8.6115E-2)‡ 3.8048E-1(1.3943E-2)

SP 3.0505E-2(1.7040E-2)‡ 2.0796E-1(4.1717E-2)‡ 1.4525E-1(2.6404E-2)‡ 2.3242E-2(8.1812E-3)† 2.1084E-2(1.8674E-2)

UDF1 MS 8.4443E-1(9.1792E-2) 4.4753E-1(5.2269E-2)‡ 8.4943E-1(1.3065E-2) 7.7672E-1(1.1789E-1)† 7.2501E-1(1.1595E-1)

IGD 1.0773E-1(2.4143E-2) 2.9132E-1(2.3521E-2)‡ 2.6784E-1(2.2828E-2)‡ 1.7021E-1(5.1960E-2)‡ 1.2449E-1(3.3093E-2)

SP 2.0358E-2(5.5219E-3)† 5.1134E-2(1.0858E-2)‡ 1.1973E-2(1.9316E-3) 2.5349E-2(2.3432E-3)‡ 2.0023E-2(4.5013E-3)

UDF2 MS 8.1659E-1(3.0827E-2)† 5.9608E-1(2.8683E-2)‡ 9.7961E-1(4.1188E-3) 9.3296E-1(2.0615E-2) 7.9909E-1(3.9435E-2)

IGD 1.1212E-1(1.0639E-2)‡ 1.8355E-1(2.0799E-2)‡ 2.5432E-2(5.0224E-3) 1.1651E-1(9.5585E-3)‡ 8.9530E-2(1.3222E-2)

SP 7.0693E-3(5.4821E-4)‡ 9.0140E+0(5.6139E+0)‡ 2.0728E+1(1.0781E+1)‡ 8.6347E-3(1.7376E-4)‡ 6.4064E-3(6.5391E-4)

UDF3 MS 4.6688E-1(2.9685E-3)† 1.3816E-1(4.7570E-2)‡ 9.3051E-2(7.5817E-2) 4.6585E-1(1.7802E-3)† 4.6569E-1(2.9756E-3)

IGD 6.0670E-1(3.3698E-6)† 6.5168E-1(7.7269E-2)‡ 4.5537E+0(1.1182E+0)‡ 6.0682E-1(6.3837E-5)† 6.0668E-1(7.4343E-6)

SP 1.3901E-2(7.1488E-3)† 1.8505E-1(3.4702E-2)‡ 6.9258E-2(6.1038E-3)‡ 8.3353E-3(7.0013E-3) 1.3755E-2(9.3584E-3)

UDF4 MS 6.7204E-1(1.0776E-1)† 4.9713E-1(4.6596E-2)‡ 8.8494E-1(7.7262E-3) 3.8658E-1(2.3906E-1)‡ 6.3916E-1(1.0243E-1)

IGD 1.7068E-1(4.7922E-2)† 2.8767E-1(2.8653E-2)‡ 1.8534E-1(8.2515E-3)‡ 3.1914E-1(1.3012E-1)‡ 1.6898E-1(4.4846E-2)

SP 2.0649E-2(3.7285E-3)† 4.9643E-2(9.1119E-3)‡ 1.5136E-2(7.2818E-3) 1.8149E-2(2.1542E-3)† 1.9872E-2(4.9098E-3)

UDF5 MS 8.2595E-1(3.5301E-2)† 6.0877E-1(3.4923E-2)‡ 9.7851E-1(6.2395E-3) 7.8208E-1(2.8993E-2)† 7.9127E-1(3.9154E-2)

IGD 1.1855E-1(1.2702E-2)‡ 2.0550E-1(3.5590E-2)‡ 2.8919E-2(1.3147E-2) 1.6145E-1(1.4778E-2)‡ 1.0060E-1(1.1665E-2)

SP 7.2716E-2(3.0720E-2) 7.5137E-2(5.9636E-2) 1.9746E-1(2.0849E-2)‡ 3.7043E-2(9.2546E-3) 9.1724E-2(2.6126E-2)

UDF6 MS 2.8465E-1(7.2939E-2) 2.5459E-2(1.6907E-2)‡ 1.1087E-1(4.9999E-2)‡ 1.6277E-1(3.4706E-2) 1.4911E-1(1.1118E-1)

IGD 4.5779E-1(8.7098E-2) 8.0414E-1(1.0972E-1)‡ 1.3401E+0(7.1751E-2)‡ 5.3159E-1(1.6401E-1) 6.6801E-1(2.0177E-1)

SP 1.8419E-1(4.0273E-2)‡ 1.4078E-1(4.9032E-2)‡ 2.8369E-1(4.7337E-2)‡ 9.6489E-2(2.0613E-2) 1.2889E-1(5.0211E-2)

UDF7 MS 9.9934E-1(7.3516E-4)† 7.6178E-1(5.9074E-2)‡ 9.5487E-1(6.8474E-3)‡ 9.6654E-1(6.6230E-2)‡ 9.9581E-1(5.5058E-3)

IGD 5.2447E-1(2.2852E-2)‡ 8.4026E-1(6.4416E-2)‡ 6.6895E-1(4.4901E-2)‡ 6.0373E-1(1.4375E-1)‡ 5.0877E-1(4.2250E-2)

† indicates SGEA performs equivalently to the corresponding algorithm.
‡ indicates SGEA performs significantly better than the corresponding algorithm.



6

TABLE XVI
MEAN AND STANDARD DEVIATION VALUES OF SP METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (nt, τt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 2.3603E-2(2.8511E-3)‡ 2.0538E-2(3.3715E-3)‡ 5.7913E-2(1.6129E-2)‡ 5.1460E-1(1.9004E-1)‡ 3.1065E-3(3.7257E-4)

FDA1 (10,10) 1.0136E-2(7.4361E-3)‡ 1.8316E-2(1.4011E-3)‡ 1.7072E-2(6.5312E-3)‡ 4.8939E-1(1.9408E-1)‡ 7.5411E-3(5.8178E-4)

(20,10) 7.0468E-3(2.7392E-4)‡ 1.5981E-2(1.1546E-3)‡ 8.3472E-3(3.7601E-3)‡ 5.6218E-1(2.3289E-1)‡ 2.5635E-3(1.2474E-4)

(5,10) 7.5513E-3(5.0819E-3)‡ 1.5976E-2(5.0404E-3)‡ 2.7372E-2(6.7389E-3)‡ 1.8031E-2(3.1095E-2)‡ 8.4131E-3(1.6810E-3)

FDA2 (10,10) 5.3715E-3(3.3796E-4)‡ 1.5614E-2(2.8655E-3)‡ 1.7122E-2(3.9192E-3)‡ 1.5625E-2(2.4152E-2)‡ 6.5871E-3(8.7753E-4)

(20,10) 5.1023E-3(1.3316E-4)† 1.4452E-2(1.6148E-3)‡ 7.5103E-3(9.6863E-4)‡ 1.2133E-2(1.0490E-2)‡ 5.3568E-3(5.8536E-4)

(5,10) 1.5194E-2(2.7931E-3) 2.2813E-2(2.1202E-2) 3.7487E-2(1.0564E-2)‡ 7.4921E-2(4.4281E-2)‡ 2.8641E-2(3.0303E-3)

FDA3 (10,10) 1.1167E-2(1.9011E-3) 1.7698E-2(9.1874E-3) 1.6536E-2(4.1971E-3) 4.6011E-2(1.8288E-2)‡ 2.4160E-2(1.8298E-3)

(20,10) 9.0058E-3(1.9191E-3) 1.6868E-2(6.4818E-3) 1.0697E-2(4.2133E-3) 2.9533E-2(7.8528E-3)‡ 2.2913E-2(1.2612E-3)

(5,10) 1.2272E-1(6.0116E-3)‡ 4.0376E-2(4.2433E-3) 9.9688E-2(1.5642E-2)‡ 1.7371E-1(3.6218E-2)‡ 7.0823E-2(9.7795E-3)

FDA4 (10,10) 9.1659E-2(3.8467E-3)‡ 3.8658E-2(3.2771E-3)† 6.0989E-2(1.0643E-2)‡ 1.6494E-1(2.9433E-2)‡ 4.1252E-2(2.9737E-3)

(20,10) 5.9334E-2(2.5096E-3)‡ 3.6891E-2(1.1792E-3)‡ 4.8229E-2(2.1120E-3)‡ 1.7016E-1(4.1716E-2)‡ 2.9545E-2(2.8958E-3)

(5,10) 1.4995E-1(5.4629E-3)‡ 7.0167E-2(8.1614E-3)‡ 1.3649E-1(1.3727E-2)‡ 1.5268E-1(2.3004E-2)‡ 6.7335E-2(7.3345E-3)

FDA5 (10,10) 1.1245E-1(3.9588E-3)‡ 6.3211E-2(4.8740E-3)‡ 1.0820E-1(8.7265E-3)‡ 1.2839E-1(1.5067E-2)‡ 4.5009E-2(2.6441E-3)

(20,10) 8.3461E-2(1.9047E-3)‡ 6.3886E-2(2.5608E-3)‡ 8.4473E-2(3.5256E-3)‡ 1.1041E-1(1.1738E-2)‡ 3.4288E-2(9.6187E-4)

(5,10) 5.2767E-2(4.7915E-3)‡ 2.2056E-2(1.9362E-2)‡ 1.4764E-1(1.2103E-2)‡ 3.8215E-2(1.0009E-2)‡ 3.1065E-3(3.7257E-4)

dMOP1 (10,10) 5.5311E-3(1.3101E-3)‡ 1.5696E-2(9.5712E-3)‡ 2.5068E-2(2.4719E-2)‡ 5.6413E-2(2.0924E-1)‡ 2.7029E-3(3.0835E-4)

(20,10) 5.2981E-3(3.6557E-4)‡ 1.9234E-2(1.1150E-2)‡ 2.0875E-2(2.3115E-2)‡ 1.2011E-2(2.2903E-2)‡ 2.5635E-3(1.2474E-4)

(5,10) 1.5112E-2(1.5422E-3)‡ 3.8234E-2(2.4936E-2)‡ 2.3420E-2(4.5958E-3)‡ 1.5221E-1(6.3478E-2)‡ 1.0641E-2(1.4417E-3)

dMOP2 (10,10) 1.0690E-2(5.3335E-4)‡ 3.0587E-2(3.9867E-3)‡ 1.1608E-2(2.7373E-3)‡ 1.4459E-1(5.3516E-2)‡ 6.6710E-3(5.8584E-4)

(20,10) 6.6931E-3(2.3537E-4)‡ 2.6805E-2(3.6038E-3)‡ 6.4762E-2(1.0563E-3)‡ 1.6326E-1(5.1917E-2)‡ 5.0367E-3(3.2434E-4)

(5,10) 1.3730E-2(1.4927E-3)‡ 1.6060E-2(1.9712E-3)‡ 2.5541E-2(3.5536E-3)‡ 3.9158E-2(3.9388E-2)‡ 8.1343E-3(1.9601E-3)

dMOP3 (10,10) 8.1655E-3(6.5231E-4)‡ 1.5418E-2(1.0978E-3)‡ 1.6453E-2(2.3904E-3)‡ 1.2555E-2(2.0652E-3)‡ 5.4336E-3(6.0751E-4)

(20,10) 5.0426E-3(3.5679E-4)† 1.4903E-2(7.3451E-3)‡ 1.0619E-2(1.4999E-3)‡ 8.7647E-3(9.4186E-4)‡ 5.2355E-3(5.6060E-4)

† indicates SGEA performs equivalently to the corresponding algorithm.
‡ indicates SGEA performs significantly better than the corresponding algorithm.

TABLE XVII
MEAN AND STANDARD DEVIATION VALUES OF MS METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (nt, τt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 7.1241E-1(4.8564E-2)‡ 8.8608E-1(2.9683E-2)‡ 8.8164E-1(3.2979E-2)‡ 8.4332E-1(2.8104E-1)‡ 9.6018E-1(3.4439E-2)

FDA1 (10,10) 9.2689E-1(1.9129E-2)‡ 8.9378E-1(2.2115E-2)‡ 9.6555E-1(1.2319E-2)‡ 9.2142E-1(1.6053E-2)‡ 9.7277E-1(1.0854E-2)

(20,10) 9.8031E-1(2.3680E-4)‡ 8.9741E-1(1.6142E-2)‡ 9.8103E-1(1.3812E-2)‡ 9.5545E-1(1.0533E-2)‡ 9.8798E-1(1.0573E-2)

(5,10) 9.9508E-1(1.0036E-2) 8.6132E-1(5.7423E-2)‡ 5.5229E-1(3.5217E-2)‡ 9.4510E-1(3.7878E-2)‡ 9.9008E-1(6.8485E-3)

FDA2 (10,10) 9.9730E-1(2.6637E-3) 8.7511E-1(2.9208E-2)‡ 9.3410E-1(1.2746E-2)‡ 9.6362E-1(2.5629E-2)‡ 9.9308E-1(3.3464E-3)

(20,10) 9.9807E-1(1.4954E-3) 8.7464E-1(2.2878E-2)‡ 9.7650E-1(3.8686E-3)‡ 9.7737E-1(1.7832E-2)‡ 9.9384E-1(2.3292E-3)

(5,10) 6.4380E-1(9.6286E-2)‡ 5.6870E-1(6.2074E-2)‡ 6.3312E-1(2.9549E-2)‡ 7.3718E-1(1.1354E-1)‡ 8.9275E-1(8.0045E-2)

FDA3 (10,10) 7.6418E-1(7.9082E-2)‡ 5.7869E-1(3.6421E-2)‡ 6.0893E-1(2.6990E-2)‡ 8.2943E-1(8.4314E-2)‡ 9.3342E-1(7.1125E-2)

(20,10) 8.0037E-1(5.5675E-2)‡ 6.0917E-1(4.0283E-2)‡ 5.7784E-1(2.6730E-2)‡ 8.9262E-1(1.8572E-2)‡ 9.5829E-1(4.8265E-2)

(5,10) 9.9999E-1(1.9400E-6) 9.7702E-1(6.1821E-3)‡ 9.9702E-1(6.0682E-4)‡ 9.9999E-1(7.6671E-7) 9.9995E-1(1.8274E-5)

FDA4 (10,10) 1.0000E+0(7.8284E-7) 9.7421E-1(6.0289E-3)‡ 9.9903E-1(1.2185E-4)‡ 9.9999E-1(8.5330E-7) 9.9995E-1(2.6230E-5)

(20,10) 1.0000E+0(2.8061E-7) 9.7419E-1(5.4999E-3)‡ 9.9944E-1(7.9980E-5)‡ 1.0000E+0(2.4224E-7) 9.9995E-1(2.4287E-5)

(5,10) 1.0000E+0(6.0410E-7) 9.3531E-1(5.5413E-2)‡ 9.7580E-1(1.8824E-2)‡ 9.9876E-1(2.7370E-3) 9.9272E-1(9.6598E-3)

FDA5 (10,10) 1.0000E+0(4.3629E-7) 9.5871E-1(3.5891E-2)‡ 9.9781E-1(3.8432E-3)‡ 9.9995E-1(1.4197E-4) 9.9949E-1(7.9814E-4)

(20,10) 1.0000E+0(8.7080E-8) 9.7586E-1(7.8360E-3)‡ 9.9930E-1(3.5658E-4)‡ 9.9999E-1(7.2439E-7) 9.9991E-1(1.4064E-4)

(5,10) 9.5788E-1(4.6623E-2)† 8.9305E-1(2.4520E-2)‡ 8.6800E-1(1.0276E-1)‡ 9.6511E-1(3.9167E-2)† 9.6018E-1(3.4439E-2)

dMOP1 (10,10) 9.8083E-1(2.0385E-2)† 8.8318E-1(2.5097E-2)‡ 9.7105E-1(3.3827E-2)‡ 9.8276E-1(1.5980E-2)† 9.8351E-1(1.3118E-2)

(20,10) 9.9048E-1(9.7522E-3)† 8.8383E-1(1.7368E-2)‡ 9.9119E-1(1.1231E-2)† 9.8807E-1(1.2963E-1)† 9.8798E-1(1.0573E-2)

(5,10) 7.1407E-1(1.2759E-1)‡ 8.1706E-1(4.2497E-2)‡ 8.7819E-1(1.9862E-2)‡ 8.1215E-1(1.4909E-2)‡ 9.4907E-1(2.6584E-2)

dMOP2 (10,10) 8.8398E-1(1.0456E-2)‡ 8.1368E-1(2.5334E-2)‡ 9.5016E-1(1.6218E-2)‡ 8.8264E-1(1.4109E-2)‡ 9.8099E-1(4.5689E-3)

(20,10) 9.7155E-1(1.7798E-3)‡ 8.4044E-1(2.0435E-2)‡ 9.7792E-1(4.4597E-3)‡ 9.4301E-1(6.6957E-3)‡ 9.8848E-1(1.3293E-3)

(5,10) 5.3110E-1(2.9706E-2)‡ 9.1484E-1(1.4420E-2) 8.6147E-1(2.3393E-2) 6.1751E-1(2.8390E-2)‡ 6.6406E-1(4.1852E-2)

dMOP3 (10,10) 5.3193E-1(2.1894E-2)† 9.1097E-1(1.1716E-2) 8.8793E-1(9.6772E-3) 6.3606E-1(1.8266E-2) 5.7573E-1(2.9590E-2)

(20,10) 4.5353E-1(1.6694E-2)‡ 9.1736E-1(8.7132E-3) 9.0726E-1(8.7679E-3) 6.3854E-1(1.5527E-2) 5.1810E-1(2.0145E-2)

† indicates SGEA performs equivalently to the corresponding algorithm.
‡ indicates SGEA performs significantly better than the corresponding algorithm.
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TABLE XVIII
MEAN AND STANDARD DEVIATION VALUES OF IGD METRIC OBTAINED BY FIVE ALGORITHMS

Prob. (nt, τt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 5.4897E-1(1.0686E-1)‡ 4.6477E-2(1.0304E-2)‡ 1.8417E-1(7.3672E-2)‡ 3.0228E-1(5.1321E-2)‡ 1.1789E-2(8.5757E-3)

FDA1 (10,10) 5.8213E-2(3.8909E-3)‡ 4.1342E-2(6.5605E-3)‡ 4.2736E-2(1.9486E-2)‡ 1.2112E-1(1.1879E-2)‡ 1.4809E-2(2.0621E-3)

(20,10) 2.0064E-2(4.8584E-4)‡ 3.9106E-2(4.6821E-3)‡ 2.6966E-2(3.2638E-2)‡ 5.2317E-2(3.0543E-3)‡ 6.1478E-3(2.7057E-3)

(5,10) 2.4801E-2(3.4246E-3)‡ 5.6324E-2(6.0436E-2)‡ 2.9452E-1(2.0496E-2)‡ 8.3039E-2(1.7388E-2)‡ 1.3540E-2(1.4827E-3)

FDA2 (10,10) 1.0805E-2(9.0279E-4)‡ 4.7325E-2(3.3605E-2)‡ 6.3561E-2(1.0647E-2)‡ 3.3894E-2(8.8878E-3)‡ 9.1174E-3(6.3334E-4)

(20,10) 7.0108E-3(3.6493E-4)‡ 4.5156E-2(2.5766E-2)‡ 2.4352E-2(5.0433E-3)‡ 1.6503E-2(4.0957E-3)‡ 6.9199E-3(3.6482E-4)

(5,10) 2.3102E-1(4.7984E-2)‡ 2.1511E-1(5.3849E-2)‡ 2.9905E-1(4.7499E-2)‡ 2.1691E-1(2.6667E-2)‡ 5.5370E-2(3.5390E-2)

FDA3 (10,10) 1.0821E-1(3.3153E-2)‡ 1.9526E-1(3.2807E-2)‡ 2.1946E-1(1.8132E-2)‡ 1.3090E-1(2.5891E-2)‡ 4.0371E-2(2.9061E-2)

(20,10) 8.7141E-2(2.3225E-2)‡ 1.7092E-1(2.9548E-2)‡ 2.1572E-1(1.6693E-2)‡ 6.4143E-2(5.9047E-3)‡ 3.2264E-2(2.0559E-2)

(5,10) 1.4121E+0(1.3105E-1)‡ 1.2435E-1(5.3278E-3) 3.1747E-1(4.9315E-2) 1.2436E+0(1.4598E-1)‡ 3.7517E-1(6.7244E-2)

FDA4 (10,10) 7.6342E-1(4.4885E-2)‡ 1.2450E-1(4.5799E-3) 2.1151E-1(2.0215E-2)‡ 5.7713E-1(5.4877E-2)‡ 1.8302E-1(6.6613E-3)

(20,10) 2.9918E-1(1.8309E-1)‡ 1.2169E-1(2.8761E-3) 1.7864E-1(4.3912E-3)‡ 2.4916E-1(1.5594E-2)‡ 1.4241E-1(2.5387E-3)

(5,10) 1.7221E+0(9.3446E-2)‡ 3.8319E-1(7.0915E-2) 6.2954E-1(7.5622E-2)‡ 1.4674E+0(1.1638E-1)‡ 4.7733E-1(4.3702E-2)

FDA5 (10,10) 1.0239E+0(5.4901E-2)‡ 3.6283E-1(4.0631E-2)† 4.8031E-1(3.5207E-2)‡ 8.1980E-1(6.0501E-2)‡ 3.6260E-1(8.5854E-3)

(20,10) 5.4101E-1(1.7738E-2)‡ 3.3554E-1(1.5279E-2)† 3.8012E-1(1.7546E-2)‡ 4.4964E-1(1.3514E-2)‡ 3.2537E-1(2.5246E-3)

(5,10) 2.0159E-2(2.3252E-2)‡ 3.7094E-2(7.2991E-3)‡ 1.0484E+0(1.0767E+0)‡ 1.4129E-2(9.1741E-3)‡ 1.1789E-2(8.5757E-3)

dMOP1 (10,10) 8.8338E-3(5.0638E-3)‡ 3.9362E-2(6.2467E-3)‡ 5.0918E-2(9.3741E-2)‡ 9.3916E-3(4.3151E-3)‡ 6.5411E-3(3.0256E-3)

(20,10) 6.6614E-3(2.3015E-3)‡ 3.9089E-2(4.1774E-3)‡ 1.8599E-2(4.8021E-2)‡ 7.2666E-3(3.1716E-3)‡ 6.1478E-3(2.7057E-3)

(5,10) 6.3388E-1(8.4149E-2)‡ 6.8629E-2(1.4197E-2)‡ 1.4011E-1(4.8219E-2)‡ 4.2265E-1(3.7463E-2)‡ 2.4477E-2(7.2375E-3)

dMOP2 (10,10) 1.1864E-1(9.4674E-3)‡ 7.3299E-2(8.9931E-3)‡ 4.2819E-1(1.7367E-2)‡ 1.8898E-1(1.9146E-2)‡ 1.2148E-2(5.7205E-4)

(20,10) 2.3878E-2(7.8330E-4)‡ 6.1763E-2(6.0134E-3)‡ 1.7442E-2(3.6816E-3)‡ 7.5743E-2(4.8974E-3)‡ 9.2375E-3(2.5852E-4)

(5,10) 4.9094E-1(4.2572E-2)‡ 2.9953E-2(3.5438E-3) 1.6803E-1(2.5591E-2)‡ 2.8448E-1(2.4158E-2)‡ 1.0476E-1(1.6017E-2)

dMOP3 (10,10) 2.0009E-1(1.5091E-2)‡ 2.9589E-2(2.4806E-3) 1.1367E-1(1.2092E-2) 1.6853E-1(1.0496E-2)‡ 1.3248E-1(1.3627E-2)

(20,10) 1.9094E-1(9.8024E-2)‡ 3.1686E-2(2.6402E-3) 8.8415E-2(6.1998E-3) 1.1595E-1(3.9111E-3) 1.5072E-1(9.1480E-3)

† indicates SGEA performs equivalently to the corresponding algorithm.
‡ indicates SGEA performs significantly better than the corresponding algorithm.


