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Abstract—In this paper, the system decoupling problem has
been investigated and a novel decoupling control strategy is
presented for Lipschitz nonlinear uncertain multivariable sys-
tems. This control strategy consists of an explicit parametric
state feedback controller and a linear state observer, where the
free parameters of the controller can be adjusted to attenuate
the coupling effects. In addition, the optimal parameters can
be obtained using H infinity norm based performance criterion.
The convergence of the observer, the robust stabilization of the
controller and closed-loop system are analyzed while the sufficient
conditions are determined. Following the design procedure of the
presented control strategy, an illustrative numerical example is
given to demonstrate the effectiveness and correctness of the
presented control strategy.

I. INTRODUCTION

Coupled or interactive phenomenon commonly exists in
the complex industrial dynamic processes. How to design
the decoupling controller for the MIMO system with strong
coupling has gained widely attention since 1950s. Due to the
coupling effects, the results for the SISO systems cannot be
extended to the MIMO systems directly.

The decoupling problem described by state-space model
was presented by B.S.Morgan[1] firstly. After years of devel-
opment, P.L.Falb et al. [2], E.G.Gilbert et al.[3] and J.Descusse
et al.[4] give the answers to this problem gradually. Corre-
sponding developments also appear in the field of optimal
decoupling control[5] and robust decoupling control [6]. All
the control methods above focus on the linear deterministic
models, however most of the practical processes are nonlinear
systems, such as the Lipschitz nonlinear, thus the existing
results have limitations from the view of implementation. To
overcome these potential shortcoming forms the purpose of
this paper.

To deal with the control design of the state space models
with Lipschitz nonlinear and uncertain parameters, a plenty
of results have been developed[7][8] while these nonlinear
control laws are difficult to implement. In [9][10], the control
structures are designed as the linear controllers with nonlinear
compensators, however these nonlinear compensators process
enormous online computation. Basically, it is significant to

develop a simply control law for implementation for the
complex dynamic systems to achieve decoupling.

Based upon the Lipschitz nonlinear uncertain multivariable
model, the controller and linear observer can be designed
and analyzed theoretically, while the nonlinear term can be
considered as unmodeled dynamics which satisfies the Lip-
schitz condition. The sufficient conditions are given for the
convergence of the observer, the robust stabilization of the
controller and closed-loop system. Using this control structure,
the design procedure is simplified and also the implement
difficulty is reduced. Furthermore, the parameters of the con-
troller and observer can be optimized following the parametric
state feedback controller [11][12] and H infinity norm based
performance index. Following the presented control strategy,
the optimal output feedback control law has been obtained and
the performance can be verified by the numerical simulation.

The rest of the paper is organized as follows. In Section 2,
problem description is given including the model formulation
and control objective. The optimal decoupling control strategy
is developed while the convergence of the linear observer,
the robust stabilization of the parametric state feedback linear
controller and closed-loop nonlinear system are analyzed in
Section 3. Moreover, the parameter optimization and design
procedure are also discussed in this section. Section 4 presents
the results of numerical simulation while the conclusions are
drawn in Section 5.

II. PROBLEM DESCRIPTION

Suppose that the complex industrial dynamic process can be
modelled by the following nonlinear uncertain multivariable
systems.

ẋ (t) = (A+ ∆A (t))x (t) + (B + ∆B (t))u (t)

+ φ (x (t) , u (t))

y (t) =Cx (t) (1)

where x ∈ Rm , u ∈ Rn and y ∈ Rn are the system
state vector, input vector and output vector, respectively. m
and n are positive integers while system matrices A, B C
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and parameter uncertainties ∆A (t), ∆B (t) are of appropriate
dimensions. The nonlinear term φ (x (t) , u (t)) is a vector-
valued nonlinear function.

Suppose that the investigated system model satisfies the
following assumptions.

Assumption A1: φ (x (t) , u (t)) is Lipschitz with respect
to the state x, uniformly in the control u, and there exists a
real constant γc > 0 such that

‖φ (x1, u1)− φ (x2, u2)‖ ≤ γc ‖x1 − x2‖
φ (0, u (t)) = 0 (2)

Assumption A2: The pair (A,B) is controllable and the
pair (A,C) is observable.

Assumption A3: The admissible parameter uncertainties are
of the norm-bounded form[

∆A (t) ∆B (t)
]

= M
[

Ξ1 (t)N1 Ξ2 (t)N2

]
(3)

In Eq. (3), M , N1 and N2 denote the structure of the uncertain-
ties are known real constant matrices with proper dimensions,
Ξ1 (t) and Ξ2 (t) are unknown time-varying matrices which
respectively meet the following conditions.

ΞT
1 (t) Ξ1 (t) ≤ I,ΞT

2 (t) Ξ2 (t) ≤ I (4)

Remark 1: All the assumptions mentioned above are com-
mon in nonlinear control. In particular, the parameter uncer-
tainty structure in Eq. (3) has been widely used in the problem
of robust stabilization of uncertain systems[13]. Moreover, it
can represent parameter uncertainty in many physical cases.

The control objective is to develop a new control strategy
so that the closed-loop system remains robust stabilization and
the optimal control law should be designed to decouple the
system outputs y.

III. CONTROL STRATEGY

A. State feedback design
The linear state feedback controller can be determined by

the nominal linear model and the control law is described by

u (t) = Kx (t) (5)

where the gain matrix K can be obtained by parametric
design[12] while

K = [W1f1, . . . ,Wmfm]

×
[
(λ∗1I −A1)

−1
B1f1, . . . , (λ

∗
mI −Am)

−1
Bmfm

]−1

(6)

where modified parameter vectors and closed-loop eigenvalues
are denoted by f1, . . . , fm and λ∗1, . . . , λ

∗
m which can be

considered as free parameters. In the case of a common open-
loop and closed-loop eigenvalue, the gain matrix K can be
determined by the following equations.

Aj = A+ v0jw
0
j
T

Wj = I −
eiw

0
j
T
B

w0
j
T
bi

Bj = BWj + v0j e
T
i , j = 1, . . . ,m (7)

where v0j and w0
j denote the open-loop eigenvectors and

eigenrows of A. bi is the i-th column of B. ei is a unit vector
while the i-th element is 1. In the other case, no common
eigenvalue results in w0T

j bi = 0 which leads to

Aj = A

Wj = I

Bj = B, j = 1, . . . ,m (8)

Substituting control law (5) into the system model (1) yields
the closed-loop system:

ẋ (t) = (Ac + ∆Ac (t))x (t) + φ (x (t) , u (t)) (9)

where Ac = A + BK, ∆Ac (t) = ∆A (t) + ∆B (t)K. Thus
the following lemma can be proposed.

Lemma 2: For the nonlinear uncertain multi-variable system
given by (1), with the assumptions A1, A2, A3 and with
the control law given by (5), then there exist three positive
constants ε1, ε2, ε3, so that the equilibrium x (t) = 0 is
stabilized if the following matrix inequality has a positive-
definite solution P = PT > 0.

AT
c P+PAc + ε1N

T
1 N1 +

(
ε−1
1 + ε−1

2

)
PMMTP

+ ε2K
TNT

2 N2K + ε3P
TP + ε−1

3 γ2I < 0 (10)

Proof: Consider the Lyapunov function candidate as

Vc (x) = xT (t)Px (t) , P = PT > 0 (11)

The time derivative of Vc (x) along the trajectories of (9) is

V̇c (x) = xT (t)AT
c Px (t) + xT (t)PAcx (t)

+ xT (t)Pφ (x (t) , u (t)) + φT (x (t) , u (t))Px (t)

+ xT (t) ∆AT (t)Px (t) + xT (t)P∆A (t)x (t)

+ xT (t)KT ∆BT (t)Px (t) + xT (t)P∆B (t)Kx (t)
(12)

Let ε1, ε2 and ε3 be positive constants. Thus the following
matrix inequalities hold using the Lemma in [14].

xT (t) ∆AT (t)Px (t) + xT (t)P∆A (t)x (t)

= xT (t) (MΞ1N1)TPx (t) + xT (t) pMΞ1N1x (t)

≤ xT (t) (ε1N
T
1 N1 + ε−1

1 PMMTP )x (t) (13)

xT (t)KT ∆BT (t)Px (t) + xT (t)P∆B (t)Kx (t)

= xT (t)KT (MΞ2N2)TPx (t) + xT (t)PMΞ2N2Kx (t)

≤ xT (t) (ε2K
TNT

2 N2K + ε−1
2 PMMTP )x (t) (14)

xT (t)Pφ (x (t) , u (t)) + φT (x (t) , u (t))Px (t)

≤ ε3xT (t)PTPx (t) + ε−1
3 φT (x (t) , u (t))φ (x (t) , u (t))

≤ xT (t) (ε3P
TP + ε−1

3 γ2I)x (t) (15)



Substituting these inequalities into the derivative of Vc (x)
with A1, we have

V̇c (x) ≤ xT (t)
(
AT

c P + PAc

)
x (t)

+ xT (t)
(
ε1N

T
1 N1 + ε−1

1 PMMTP
)
x (t)

+ xT (t)
(
ε2K

TNT
2 N2K + ε−1

2 PMMTP
)
x (t)

+ xT (t)
(
ε3P

TP + ε−1
3 γ2I

)
x (t) (16)

Since V̇c (x) < 0 , the proof of lemma 1 is completed.

B. Observer design
Using the linear observer to estimate the states of the model

(1), the linear observer can be designed based on the nominal
linear model.

˙̂x (t) = (A− LC) x̂ (t) + Ly (t) +Bu (t) (17)

where the estimated state vector can be denoted by x̂ and L
is the gain matrix of this observer.

Introducing the error of the estimation by

e (t) = x (t)− x̂ (t) (18)

and substituting the Eq. (17)-(18) to system model (1). The
closed-loop model can be described by

ė (t) = Aoe (t) + ∆Ac (t)x (t) + φ (x (t) , u (t)) (19)

where Ao = A−LC. Similar to Lemma 2, Lemma 3 is given
as follows.

Lemma 3: For the nonlinear uncertain multi-variable system
given by (1), with the assumptions A1, A2, A3 and with the
linear observer given by (17), then there exists three positive
constants ε1, ε2, ε3, so that the estimation error e (t) converges
to zero if the following matrix inequalities have a positive-
definite solution P = PT > 0.

AoP + PAo + ε3P
TP < 0 (20)

ε1N
T
1 N1 +

(
ε−1
1 + ε−1

2

)
PMMTP

+ ε2K
TNT

2 N2K + ε−1
3 γ2I < 0 (21)

Proof: Consider the Lyapunov function candidate as

Vo (e) = eT (t)Pe (t) , P = PT > 0 (22)

The time derivative of Vo (e) along the trajectories of (18)
is

V̇o (e) = eT (t) (AoP + PAo) e (t)

+ eT (t)Pφ (x (t) , u (t)) + xT (t) ∆AT (t)Px (t)

+ φ(x (t) , u (t))
T
Pe (t) + xT (t)P∆A (t)x (t)

+ xT (t)KT ∆BT (t)Px (t) + xT (t)P∆B (t)Kx (t)
(23)

Similar to the proof of Lemma 2, we have

V̇o (e) ≤ eT (t) (AoP + PAo) e (t)

+ xT (t)
(
ε1N

T
1 N1 + ε−1

1 PMMTP
)
x (t)

+ xT (t)
(
ε2K

TNT
2 N2K + ε−1

2 PMMTP
)
x (t)

+ ε3e
T (t)PTPe (t) + ε−1

3 γ2xT (t)x (t) (24)

which ends the proof

C. Output feedback design

Combining the parametric state feedback controller and
the observer which mentioned above, the output feedback
controller should be designed for the system (1).

u (t) = Kx̂ (t) (25)

which leads to the closed-loop dynamic as follows.

ẋ (t) = Acx (t) + ∆Ac (t)x (t) + φ (x (t) , u (t))

− (B + ∆B (t))Ke (t) (26)

Then the stability of the closed-loop control design can be
guaranteed by the following theorem

Theorem 4: For the nonlinear uncertain multi-variable sys-
tem given by (1), with the assumptions A1, A2, A3 and with
the control law given by (25) using the observer (17), then
there exists a set of positive constants εi, i = 1, . . . , 8, so
that the equilibrium x (t) = 0 is stabilized if the following
matrix inequalities have positive-definite solution P1 = PT

1 >
0, P2 = PT

2 > 0.

ε4K
TBTBK + ε5K

TNT
2 N2K+AoP2 + P2Ao

+ ε8P
T
2 P2 < 0 (27)

AT
c P1 + P1Ac + (ε−1

1 + ε−1
2 + ε−1

4 + ε−1
5 )P1MMTP

+
(
ε−1
6 + ε−1

7

)
P2MMTP2 + (ε2 + ε7)KTNT

2 N2K

+ ε3P
T
1 P1 + (ε−1

3 + ε−1
8 )γ2I1 + (ε1 + ε6)NT

1 N1 < 0 (28)

Proof: Consider the Lyapunov function candidate as

V (x (t) , e (t)) = xT (t)P1x (t) + eT (t)P2e (t) (29)

The time derivative of V (x (t) , e (t)) along the trajectories of
(26) is

V̇ (x (t) , e (t)) = xTAT
c Px+ xTPAcx+ φT (x, u)Px

+ xTPφ(x, u) + xT ∆ATPx+ xTP∆Ax

+ xTKT ∆BTPx+ xTP∆BKx− eTKTBTPx

− xTPBKe− eTKT ∆BTPx− xTP∆BKe

+ eT (t) (AoP + PAo) e (t) + eT (t)Pφ (x (t) , u (t))

+ φ(x (t) , u (t))
T
Pe (t) + xT (t) ∆AT (t)Px (t)

+ xT (t)P∆A (t)x (t) + xT (t)KT ∆BT (t)Px (t)

+ xT (t)P∆B (t)Kx (t) (30)

Let ε4 and ε5 be positive constants. Thus the following matrix
inequalities hold using the Lemma in [14].

− eT (t)KTBTPx (t)− xT (t)PBKe (t)

≤ ε4eT (t)KTBTBKe (t) + ε−1
4 xT (t)PMMTPx (t)

(31)

−eT (t)KT ∆BT (t)Px (t)− xT (t)P∆B (t)Ke (t)

≤ ε5eT (t)KTNT
2 N2Ke (t) + ε−1

5 xT (t)PMMTPx (t)
(32)



Substituting these inequalities into the derivative of
V (x (t) , e (t)) and using Lemma 3, we have

V̇ ≤ xT [AT
c P1 + P1Ac + (ε1 + ε6)NT

1 N1

+ (ε2 + ε7)KTNT
2 N2K + ε3P

T
1 P1 + (ε−1

3 + ε−1
8 )γ2I

+ (ε−1
1 + ε−1

2 + ε−1
4 + ε−1

5 )P1MMTP1

+
(
ε−1
6 + ε−1

7

)
P2MMTP2]x

+ eT (ε4K
TBTBK + ε5K

TNT
2 N2K

+AoP2 + P2Ao + ε8P
T
2 P2)e (33)

which leads to the conditions and the proof has been com-
pleted.

D. Parametric optimisation

To deal with the coupling effects of the MIMO system,
the free parameters of the controller should be optimized.
Substituting the feedback gain matrix (6) and the control law
(25) to the nominal linear model which is used to design the
controller, the linear closed-loop model can be obtained as
follows.

ẋ (t) = Acx (t)

y (t) = Cx (t) (34)

The transfer function matrix of this state space model (34)
can be obtained by

G (s, λ∗i , fi) = C(sI −Ac)
−1
B (35)

where the elements of the matrix are transfer functions which
can be changed by turning the free parameters of the controller.
Furthermore, the Eq. (35) can be expressed as another form
by

G (s, λ∗i , fi) = Ḡ (s, λ∗i , fi) + ¯̄G (s, λ∗i , fi) (36)

where the matrix Ḡ denotes the diagonal matrix and the
diagonal elements of matrix ¯̄G are zero.

The coupling effects should be attenuate if the H infinity
norm of the matrix is close to zero, and also the norm of
the matrix should be close to one, in order to meet the
control objective. Therefore, two performance indexes can be
proposed as follows.

J1(λ∗i , fi) = min
m∑
j=1

m∑
i=1

∥∥G∗
ij(s, λ

∗
i , fi)

∥∥
H∞

, j 6= i (37)

J2(λ∗i , fi) = min
m∑
j=1

m∑
i=1

∥∥1−G∗
ij(s, λ

∗
i , fi)

∥∥
H∞

, j = i

(38)

Comparing (1) and (34), the nonlinear dynamic with un-
matched time-varying uncertain parameters can be considered
as random disturbances which will also affect the performance
of the decoupling design. The probabilistic decoupling[15]
should be considered as a compensation performance index.

J3 = min

∥∥∥∥∥γJ (yk)−
n∏

i=0

γi (yi,k)

∥∥∥∥∥
H∞

(39)

where γJ and γi denote the joint probability density function
and the marginal probability density function for each system
output yi, respectively. Moreover these probability density
functions in Eq. (39) can be estimated by the kernel density
estimation [16].

Therefore, the complete performance criterion can be given
as follows.

J = R1J1(λ∗i , fi) +R2J2(λ∗i , fi) +R3J3 (40)

where real positive R1, R2 and R3 denote the performance
weights.

Then the optimal free parameter fi can be obtained by
gradient descent once the eigenvalues λ∗i are pre-specified.

fi,j+1 = fi,j + µ
dJ

dfi

∣∣∣∣
fi=fi,j

i = 1, . . . ,m (41)

where j denotes the optimisation searching iteration index. µ
stands for the pre-specified step. Note that the free parametric
optimization would not affect the stability of the closed-loop
system design.

Remark 5: The feedback gain matrix of the observer can be
obtained using proposed optimization approach in this section
based on the dual principle.

Remark 6: The optimization operation can also be replaced
by multi-objective optimization algorithms then the weights
can be neglected.

Remark 7: Only a few elements of the parameter vectors fi
affect the control performance directly. Therefore, in order to
determine the free parameters quickly, trial and error method
can be used, and the performance indexes can verify the
manually selected parameters simply.

E. Design procedure

The procedure of the proposed control strategy is summa-
rized as follows:

Step1 Setup the initial free parameters of the controller.
Step2 Transfer the closed-loop model to the transfer function

matrix and develop the expressions of the performance
indexes.

Step3 Use the numerical approach to optimize the performance
indexes, by computing the H infinity norm and multi-
objective optimization, and the optimal parameters are
obtained.

Step4 Compute the feedback gain matrix of the control law,
and verify it by the conditions of Lemma 2 to guarantee
robust stability of the system, if the conditions hold, then
go to next step, otherwise, return to step 1.

Step5 Obtain the feedback gain matrix of the observer by dual
principle and verify it by Lemma 3.

Step6 Verify the optimal parameters by the theorem 4, and
if the conditions can be satisfied, then complete the
procedure, otherwise, return to step 1.



IV. A NUMERICAL SIMULATION

In order to illustrate the effectiveness of decoupling control
strategy proposed in this paper, a numerical simulation has
been carried out.

Consider the parameters of the Lipschitz nonlinear uncertain
multivariable systems (1) as follows.

A =

 2 0 −1
1 −1 −1
1 −1 −2

 , B =

 1 0
0 1
0 1


C =

[
1 1 0
0 0 1

]
,M =

 0.1 0 0.1
0 0.2 0

0.1 0 0.1


Ξ1 (t) = Ξ2 (t) = sin t

 1 0 0
0 1 0
0 0 1


N1 =

 0.1 0.1 0
0 0 0.1
0 0.1 0

 , N2 =

 0.2
0

0.1

0
0.1
0.1


φ (x (t) , u (t)) =

 0.1 sinx1 + 0.1 sinx2
0.1 sinx3

0.1 sinx1 + 0.1 sinx3


Pre-selecting the free parameters λ∗i and setting the initial

values of fi, the optimal parameters can be obtained by
computing the performance indexes

λ∗1 = −1, λ∗2 = −2, λ∗3 = −3, f∗1 =
(

3 1
)T

f∗2 =
(

9.98 −1.1
)T
, f∗3 =

(
0 0.97

)T
Using the Eq.(6) and the dual principle, both the feedback

gain matrix of the controller and the observer can be devel-
oped.

K∗ =

[
−4.5231
−1.5077

−2.8615
−1.9538

2.4308
1.4769

]
L =

 27.4089 −6.9170
−9.2883 2.3958
4.4179 4.8795


Substituting the parameters, the closed-loop dynamic can be

simulated with the initial states x1 = x2 = x3 = 0.5. Then
Fig. (1-3) show the control performance, the estimated states,
and the estimation errors, respectively. From the results, the
controller and observer can meet the control objective for the
Lipschitz nonlinear uncertain multivariable system (1) while
the procedure of designing is simply and easy to implement.

In order to illustrate the decoupling performance, a distur-
bance sine wave, Fig. (4), is introduced to the closed-loop
dynamic to affect the control signals , and the amplitude, fre-
quency of this wave are 0.1, 2, respectively. Another feedback
gain matrix of the controller K is selected to compare with
the optimal parameters.

K =

[
−9.2609
19.0870

−5.9565
16.6522

5.1739
−12.3913

]
The control performance with the different feedback gain

matrixes can be showed by Fig. (4) and Fig. (5). By analyzing

Fig. 1. The outputs of the closed-loop system.

Fig. 2. The estimated states.

the results of the simulation, the decoupling performance with
the optimal parameters is better and the coupling affects have
been attenuated. When the system inputs periodic fluctuate
with the given sine wave disturbance, the coupling effects of
the system outputs still exist using feedback gain matrix K
showing by Fig. (4), while the outputs y1, y2 seem almost
unaffected by the non-diagonal control inputs u1, u2 , and also
the performance of the diagonal outputs become better.

V. CONCLUSION

The problem of decoupling for a class of nonlinear uncertain
system has been solved using the parametric control strategy.
Combining the H infinity norm and parametric optimization,
the optimal parameters for decoupling design have been ob-
tained by optimizing proposed performance criterion. And
also stability analysis in this paper is given to guarantee the
robustness, stabilization and convergence of the system. From
the results of the numerical simulation, the effectiveness of the



Fig. 3. The estimation errors of the observer.

Fig. 4. The decomposed outputs with the pulse using K.

proposed decoupling control strategy has been verified. The
benefit of the proposed control strategy is that the controller
is easy to design and implement when the nonlinear term is
unknown with parameter uncertainties.

Due to the nonlinear of the performance indexes, the para-
metric optimization is difficult to develop the globally optimal
solution, and the locally optimal solution is associated with the
initial value. Therefore, more intelligent optimization methods
will be used to optimize the parameters as the future works.
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