
 

   

     

Except as otherwise permitted under the Copyright, 

Designs and Patents Act 1988, this thesis may only be 

produced, stored or transmitted in any form or by any 

means with the prior permission in writing of the 

author. The author asserts his/her right to be identified 

as such in accordance with the terms of the Copyright, 

Designs and Patents Act 1988 

 



 

 

 

A Hybrid Multi-Agent Architecture 

and Heuristics Generation for Solving 

Meeting Scheduling Problem 

PhD Thesis 

Serein Abdelmonam Alratrout 

 

This thesis is submitted in partial fulfilment of the 

requirements for the Doctor of Philosophy, awarded by 

Software Technology Research Laboratory 

Faculty of Technology 

De Montfort University 

United Kingdom, England 

May, 2009



Abstract 

i 

 

Abstract  

Agent-based computing has attracted much attention as a promising technique for 

application domains that are distributed, complex and heterogeneous. Current research 

on multi-agent systems (MAS) has become mature enough to be applied as a technology 

for solving problems in an increasingly wide range of complex applications. The main 

formal architectures used to describe the relationships between agents in MAS are 

centralised and distributed architectures. 

In computational complexity theory, researchers have classified the problems into the 

followings categories: (i) P problems, (ii) NP problems, (iii) NP-complete problems, 

and (iv) NP-hard problems. A method for computing the solution to NP-hard problems, 

using the algorithms and computational power available nowadays in reasonable time 

frame remains undiscovered. And unfortunately, many practical problems belong to this 

very class. On the other hand, it is essential that these problems are solved, and the only 

possibility of doing this is to use approximation techniques.  

Heuristic solution techniques are an alternative. A heuristic is a strategy that is powerful 

in general, but not absolutely guaranteed to provide the best (i.e. optimal) solutions or 

even find a solution. This demands adopting some optimisation techniques such as 

Evolutionary Algorithms (EA).  

This research has been undertaken to investigate the feasibility of running 

computationally intensive algorithms on multi-agent architectures while preserving the 

ability of small agents to run on small devices, including mobile devices. To achieve 

this, the present work proposes a new Hybrid Multi-Agent Architecture (HMAA) that 



Abstract 

ii 

 

generates new heuristics for solving NP-hard problems. This architecture is hybrid 

because it is "semi-distributed/semi-centralised" architecture where variables and 

constraints are distributed among small agents exactly as in distributed architectures, 

but when the small agents become stuck, a centralised control becomes active where the 

variables are transferred to a super agent, that has a central view of the whole system, 

and possesses much more computational power and intensive algorithms to generate 

new heuristics for the small agents, which find optimal solution for the specified 

problem.  

This research comes up with the followings: (1) Hybrid Multi-Agent Architecture 

(HMAA) that generates new heuristic for solving many NP-hard problems. (2) Two 

frameworks of HMAA have been implemented; search and optimisation frameworks. 

(3) New SMA meeting scheduling heuristic. (4) New SMA repair strategy for the 

scheduling process. (5) Small Agent (SMA) that is responsible for meeting scheduling 

has been developed. (6) ―Local Search Programming‖ (LSP), a new concept for 

evolutionary approaches, has been introduced. (7) Two types of super-agent (LGP_SUA 

and LSP_SUA) have been implemented in the HMAA, and two SUAs (local and global 

optima) have been implemented for each type. (8) A prototype for HMAA has been 

implemented: this prototype employs the proposed meeting scheduling heuristic with 

the repair strategy on SMAs, and the four extensive algorithms on SUAs. 

The results reveal that this architecture is applicable to many different application 

domains because of its simplicity and efficiency. Its performance was better than many 

existing meeting scheduling architectures. HMAA can be modified and altered to other 

types of evolutionary approaches.  



Declaration 

iii 

 

Declaration  

The thesis presented here is mine and original. It is submitted for the 

degree of Doctor of Philosophy at De Montfort University. The work was 

undertaken between December 2004 and May 2009. 

 



Acknowledgment 

iv 

 

Acknowledgment 

I have accumulated many debts of gratitude during the journey of researching and 

writing this thesis. 

First and foremost, I owe my utmost thanks to the almighty God, the most Merciful and 

the most Gracious; for all his grace and blessing, without whom none of this work 

would have been done. 

I am deeply indebted to my supervisor Dr. Francois Siewe, for his support, ideas, 

guidance and encouragements throughout my research study.  I am also very grateful to 

Professor Hussain Zedan and Dr. Amelia Platt for their help and support.    

I warmly express my deep appreciation to my mother for her endless love, support and 

sacrifices all the way through, which are too precious to forget. I also gratefully 

acknowledge father and mother in law, special thanks and sincere gratitude for their 

prayers and everlasting sympathy.  

My big and warmest thanks go to my lovely and patient husband, Ashraf who has 

always been beside me, a tower of strength to me during difficult moments, for his love, 

understanding, full support, encouragement and cooperation without which I was not 

going to be able to do this research. 

I cannot conclude this acknowledgement without conveying my considerable love and 

apologies to my beloved kids Betool and Bahaa Aldeen; I would like to dedicate this 

work to them.  



Acknowledgment 

v 

 

I would like also to express my special thanks to my colleagues in the STRL; Mai 

Alfawair and Omar Aldabbas for their support. 

Lastly, for everybody who was not mentioned here, but had contributed direct or 

indirectly to perform this work, my sincerely acknowledgements. 

 



Table of Contents 

vi 

 

Table of Contents 

ABSTRACT ............................................................................................................................. I 

DECLARATION ...................................................................................................................... III 

ACKNOWLEDGMENT ............................................................................................................. IV 

TABLE OF CONTENTS ............................................................................................................. VI 

LIST OF FIGURES .................................................................................................................... X 

LIST OF TABLES ................................................................................................................... XIII 

CHAPTER 1 ........................................................................................................................... 1 

INTRODUCTION ..................................................................................................................... 1 

1.1 RESEARCH MOTIVATION ...................................................................................................... 1 

1.2. RESEARCH QUESTION ......................................................................................................... 5 

1.3. MAJOR CONTRIBUTIONS ..................................................................................................... 7 

1.4 THESIS OUTLINES .............................................................................................................. 9 

CHAPTER 2 ..........................................................................................................................12 

MULTI-AGENT SYSTEMS .........................................................................................................12 

2.1 INTRODUCTION ................................................................................................................12 

2.2. WHAT IS AN AGENT? ........................................................................................................13 

2.2. INTELLIGENT AGENTS ........................................................................................................14 

2.3. MOBILE AGENT ..............................................................................................................16 

2.4. AGENTS AND OBJECTS .......................................................................................................17 

2.5. AGENTS AND EXPERT SYSTEMS ..............................................................................................19 

2.6. WHAT IS AN MAS? ..........................................................................................................19 

2.7. WHY MAS ...................................................................................................................20 

2.8. MULTI-AGENT ARCHITECTURES .............................................................................................22 

2.9 SUMMARY .....................................................................................................................24 

CHAPTER 3 ..........................................................................................................................25 

SCHEDULING PROBLEMS ........................................................................................................25 

3.1. INTRODUCTION ...............................................................................................................25 

3.2. FORMALISATION OF SCHEDULING PROBLEM ...............................................................................26 

3.2.1. Constraint Satisfaction Problem (CSP) .......................................................................27 



Table of Contents 

vii 

 

3.2.2. Constraint Optimisation Problem (COP) .....................................................................27 

3.2.3 Distributed Constraint Reasoning (DCR) .....................................................................28 

3.3. TIMETABLING .................................................................................................................31 

3.3.1 The HuSSH System .................................................................................................31 

3.4. MEETING SCHEDULING PROBLEM ..........................................................................................34 

3.4.1 Definition .............................................................................................................34 

3.4.2. Frameworks for Solving MSP ...................................................................................36 

3.5. Commercial Products for MSP ....................................................................................41 

3.6. SUMMARY ....................................................................................................................42 

CHAPTER 4 ..........................................................................................................................44 

EVOLUTIONARY ALGORITHMS ................................................................................................44 

4.1. INTRODUCTION ...............................................................................................................44 

4.2. ADVANTAGES OF EVOLUTIONARY ALGORITHMS ...........................................................................45 

4.3. GENETIC ALGORITHMS (GA) ................................................................................................46 

4.4. GENETIC PROGRAMMING (GP) .............................................................................................48 

4.5. LINEAR GENETIC PROGRAMMING (LGP) ...................................................................................51 

4.6. HOW DOES GP DIFFER FROM HEURISTIC APPROACH? ....................................................................52 

4.7. LOCAL SEARCH PROGRAMMING (LSP) .....................................................................................53 

4.8. SUMMARY ....................................................................................................................55 

CHAPTER 5 ..........................................................................................................................57 

HYBRID MULTI-AGENT ARCHITECTURE FOR MEETING SCHEDULING (HMAA) ..................................57 

5.1. INTRODUCTION ...............................................................................................................57 

5.2. MEETING SCHEDULING FRAMEWORKS .....................................................................................59 

5.3. SOLUTION APPROACH FOR MEETING SCHEDULING WITHIN HMAA .....................................................60 

5.4 HYBRID MULTI-AGENT ARCHITECTURE PROPOSED .........................................................................62 

5.5. SCENARIO: HYBRID MULTI-AGENT ARCHITECTURE (HMAA) NEGOTIATIONS ..........................65 

5.6. SCENARIO: MSP WITHIN HMAA ...........................................................................................67 

5.7. FULL FUNCTIONS SPECIFICATIONS OF THE HMAA .........................................................................69 

5.7.1 Interface Agent .....................................................................................................69 

5.7.2 Small Agent ..........................................................................................................70 

5.7.3 Facilitator Agent ....................................................................................................72 

5.7.4 Super Agent ..........................................................................................................72 

5.8 SUMMARY .....................................................................................................................73 

CHAPTER 6 ..........................................................................................................................75 



Table of Contents 

viii 

 

SMALL AGENT HEURISTIC .......................................................................................................75 

6.1. INTRODUCTION ...............................................................................................................75 

6.2. A PRIORITISED/RANKED-MEETINGS SCHEDULING HEURISTIC ............................................................76 

6.3. A SIMPLE LOCAL SEARCH REPAIR STRATEGY ...............................................................................85 

6.4. IMPLEMENTATION PLATFORM...............................................................................................88 

6.5 SUMMARY .....................................................................................................................90 

CHAPTER 7 ..........................................................................................................................91 

SUPER AGENTS CONSTRUCTION ..............................................................................................91 

7.1. INTRODUCTION ...............................................................................................................91 

7.2. LGP_SUAS (SUPERAGENTLGP/SUPERAGENTLGP_SP) ..................................................................92 

7.2.1. Parents' Heuristics ................................................................................................94 

7.2.2. Crossover Operations .............................................................................................96 

7.2.3. Mutation Operation ............................................................................................ 101 

7.2.4. Termination Criterion .......................................................................................... 105 

7.3  LSP_SUAS (SUPERAGENTLSP/ SUPERAGENTLSP_SP) .............. 107 

7.3.1. Solution’s Heuristic .............................................................................................. 109 

7.3.2. Crossover Operations ........................................................................................... 111 

7.3.3. Mutations Operation ........................................................................................... 114 

7.3.4. Termination Criterion .......................................................................................... 123 

7.4. SUMMARY .................................................................................................................. 125 

CHAPTER 8 ........................................................................................................................ 126 

EXPERIMENTAL RESULTS AND EVALUATION ............................................................................ 126 

8.1 INTRODUCTION .............................................................................................................. 126 

8.2. STAGE ONE: SMA EXPERIMENTS ......................................................................................... 128 

8.3. STAGE TWO: HMAA EXPERIMENTS ...................................................................................... 138 

EXPERIMENTS GROUP 1 ......................................................................................................... 138 

EXPERIMENTS GROUP 2 ......................................................................................................... 157 

EXPERIMENTS GROUP 3 ......................................................................................................... 170 

8.6. SUMMARY .................................................................................................................. 173 

CHAPTER 9 ........................................................................................................................ 175 

CONCLUSION AND FUTURE WORK ......................................................................................... 175 

9.1 SUMMARY ................................................................................................................... 175 

9.2 CONTRIBUTIONS ............................................................................................................ 176 



Table of Contents 

ix 

 

9.3. FUTURE WORK .......................................................................................................... 180 

REFERENCES ...................................................................................................................... 182 

APPENDIX A ....................................................................................................................... 198 

AN HMAA SCREEN SHOTS .................................................................................................... 198 

APPENDIX B ....................................................................................................................... 209 

JAVA CODE OF HMAA IMPLEMENTATION ............................................................................... 209 

 

 



List of Figures 

x 

 

List of Figures 

 

Fig. 1: Example of DCOP graph ..................................................................................... 30 

Fig. 2: Weightings for period selection heuristics in the HuSSH system ....................... 33 

Fig. 3: HMAA Architecture ............................................................................................ 64 

Fig. 4: HMAA scenario ................................................................................................... 65 

Fig. 5: HMAA scenario ................................................................................................... 66 

Fig. 6: Sequence diagram for Meeting Scheduling Problem within HMAA .................. 69 

Fig. 7: prioritised scheduling .......................................................................................... 79 

Fig. 8: Scheduling Pseudo Code for Optimisation problems .......................................... 81 

Fig. 9: Scheduling Pseudo Code for Search problems .................................................... 84 

Fig. 10: Local Search Pseudo Code ................................................................................ 86 

Fig. 11: Neighbourhood Function ................................................................................... 87 

Fig. 12: Pseudo Code for LGP ........................................................................................ 94 

Fig. 13: LGP_parent1 heuristic ....................................................................................... 95 

Fig. 14: LGP_parent2 heuristic ....................................................................................... 96 

Fig. 15: LGP Crossover - the Parents ............................................................................. 98 

Fig. 16: LGP crossover - the Children ............................................................................ 99 

Fig. 17: LGP crossover - Child1 ................................................................................... 100 

Fig. 18: LGP crossover - Child2 ................................................................................... 100 

Fig. 19: LGP before mutation - Child2 ......................................................................... 102 

Fig. 20: LGP after mutation-Child2 .............................................................................. 103 

Fig. 21: LGP mutation - Child1 .................................................................................... 104 

Fig. 22: LGP mutation - Child2 .................................................................................... 104 

Fig. 23: Pseudo code for LSP ........................................................................................ 109 

Fig. 24: SMA heuristic .................................................................................................. 110 

Fig. 25: Solution Heuristic ............................................................................................ 111 

Fig. 26: LSP crossover .................................................................................................. 112 

Fig. 27: LSP crossover_neighbour1 .............................................................................. 113 

Fig. 28: LSP crossover_neighbour2 .............................................................................. 113 

Fig. 29: LSP mutation1_neighbour1 .............................................................................. 115 

2009-07-20-final%20draf_fs.doc#_Toc235962817
2009-07-20-final%20draf_fs.doc#_Toc235962818
2009-07-20-final%20draf_fs.doc#_Toc235962825
2009-07-20-final%20draf_fs.doc#_Toc235962826
2009-07-20-final%20draf_fs.doc#_Toc235962827
2009-07-20-final%20draf_fs.doc#_Toc235962828
2009-07-20-final%20draf_fs.doc#_Toc235962829
2009-07-20-final%20draf_fs.doc#_Toc235962830
2009-07-20-final%20draf_fs.doc#_Toc235962831
2009-07-20-final%20draf_fs.doc#_Toc235962832
2009-07-20-final%20draf_fs.doc#_Toc235962833
2009-07-20-final%20draf_fs.doc#_Toc235962834
2009-07-20-final%20draf_fs.doc#_Toc235962835
2009-07-20-final%20draf_fs.doc#_Toc235962836


List of Figures 

xi 

 

Fig. 30: LSP mutation1_neighbour1 .............................................................................. 116 

Fig. 31: LSP mutation1_neighbour2 .............................................................................. 116 

Fig. 32: LSP mutation2_neighbour1 .............................................................................. 118 

Fig. 33: LSP mutation2_neighbour1 .............................................................................. 119 

Fig. 34: LSP mutation2_neighbour2 .............................................................................. 119 

Fig. 35: LSP mutation3_neighbour1 .............................................................................. 121 

Fig. 36: LSP mutation3_neighbour1 .............................................................................. 122 

Fig. 37: LSP mutation3_neighbour2 .............................................................................. 122 

Fig. 38: The feasibility of the ranking (comparing Stages 1 and 3) .............................. 130 

Fig. 39: The feasibility of the ranking (comparing Stages 2 and 4) .............................. 130 

Fig. 40: the feasibility of local search in (2) ................................................................. 131 

Fig. 41: the feasibility of local search in (4) ................................................................. 132 

Fig. 42: The performance of the FMSH ........................................................................ 133 

Fig. 43: The performance of Prioritised/ranked heuristic search problem compared with 

the local consistency approach ...................................................................................... 136 

Fig. 44: Comparing the performance of Prioritised/Ranked-Meetings Scheduling 

heuristic for Search problem solving with Prioritised/Ranked-Meetings Scheduling 

heuristic for optimisation problem solving and local search repair strategy ................ 136 

Fig. 45: Comparing the performance of Prioritised/ranked heuristic optimisation 

problem and local search with local consistency approach .......................................... 137 

Fig. 46: Violation reduction .......................................................................................... 171 

Fig. 47: Measurement of rounds/time ........................................................................... 173 

Fig. 48: First User Interface for FMAF ......................................................................... 198 

Fig. 49: a list of registered users ................................................................................... 199 

Fig. 50: the available SUAs. ......................................................................................... 199 

Fig. 51: SMA Main User Interface ............................................................................... 200 

Fig. 52: The meeting menu ........................................................................................... 201 

Fig. 53: Add Constraint Interface.................................................................................. 202 

Fig. 54: Add Meeting Interface ..................................................................................... 202 

Fig. 55: Add Attendees Interface .................................................................................. 203 

Fig. 56: Add Domain Interface ..................................................................................... 204 

Fig. 57: Add Meeting Menu Item ................................................................................. 204 

2009-07-20-final%20draf_fs.doc#_Toc235962849
2009-07-20-final%20draf_fs.doc#_Toc235962850


List of Figures 

xii 

 

Fig. 58: Transcript Text Box ......................................................................................... 206 

Fig. 59: View Meetings Text Box ................................................................................. 206 

Fig. 60: Local Search Menu Item .................................................................................. 207 

Fig. 61: SuperagentLGP Interface................................................................................. 207 

Fig. 62: SuperagentLGP_SP Interface .......................................................................... 208 

Fig. 63: SuperagentLSP Inteface .................................................................................. 208 

Fig. 64: SuperagentLSP_SP Inteface ............................................................................ 208 

 

 



List of Tables 

xiii 

 

 

List of Tables 
 

Table 1: Case 1 data table ............................................................................................. 140 

Table 2: Case 1 results Table ........................................................................................ 143 

Table 3: Case 2 data table ............................................................................................. 143 

Table 4: Case 2 results table.......................................................................................... 145 

Table 5: Case 3 data table ............................................................................................. 146 

Table 6: Case 3 results table.......................................................................................... 148 

Table 7: Case 4 data table ............................................................................................. 150 

Table 8: Case 4 results table.......................................................................................... 152 

Table 9: Case 5 data table ............................................................................................. 153 

Table 10: Case 5 results table ....................................................................................... 156 

Table 11: Case 6 data table ........................................................................................... 160 

Table 12: Case 7 data table ........................................................................................... 162 

Table 13: Case 8 data table ........................................................................................... 164 

Table 14: Case 9 data table ........................................................................................... 166 

Table 15: Case 6 results table ....................................................................................... 166 

Table 16: Case 7 results table ....................................................................................... 167 

Table 17: Case 8 results table ....................................................................................... 167 

Table 18: Case 9 results table ....................................................................................... 168 

Table 19: Results table .................................................................................................. 168 

 

 



Abbreviation 

xiv 

 

Abbreviations 

ABT Asynchronous Backtracking 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BDI Believe Desired Intention 

CH Hard Constraint 

CS Soft Constraint 

CSP  Constraint Satisfaction Problem 

DAI  Distributed Artificial Intelligence 

DB Data Base 

DCOP 

Distributed Constraint Optimisation 

Problem 

DCR Distributed Constraint Reasoning 

DisCSP Distributed Constraint Satisfaction 

EA Evolutionary Algorithm 

EAP Evolutionary Automatic Programming 

EC Evolutionary Computation 

FA Facilitator Agent 

HMAA Hybrid Multi-Agent Architecture 

GA Genetic Algorithm 

GP Genetic Programming 



Abbreviation 

xv 

 

HuSSH  Human Selection of Scheduling Heuristics 

IA Interface Agent 

ID IDentification number 

IL-MAP Incremental Limited information 

exchange Multi-agent Assignment 

Problem 

LGP Linear Genetic Programming 

LS Local Search 

LSP Local Search Programming 

MAS Multi-Agent Systems 

MS Meeting Scheduling 

MSP Meeting Scheduling Problem 

NN Neural Network 

NP Non Polynomial 

P Polynomial 

SMA SMall Agent 

SUA Super Agent 

VCSP Valued Constraint Satisfaction Problem 

 



Chapter 1  Introduction 

1 

 

Chapter 1 

Introduction 

1.1 Research Motivation 

Recent developments in the area of systems design and software engineering show that 

a new paradigm ―agent systems‖ is emerging, especially as a solution for more 

demanding applications. Agent-based computing attracted much attention as a 

promising technique for distributed, complex and heterogeneous application domains 

[27, 34, 36, 57, 60, 61]. It has been hailed as ―the next significant breakthrough in 

software development‖ [13], and ―the new revolution in software technology‖ [73]. 

Current research on multi-agent systems (MAS) has become mature enough to be 

applied as a technology for solving problems, in an increasingly wide range of complex 

applications [27, 93].  

Several questions arise regarding the best way to control agents' activities and 

applications performances: several formal models were proposed to describe the 

relationships between agents within MAS in the problem-solving process. The main 

formal representations are centralised and distributed architectures. In the former, the 

central agent is responsible for performing the task. Some of the difficulties raised in 

this type of architecture are because of the high risk of dependency on the controlling 

element. The number of computations required by the agent in order to store the global 

knowledge and to compute the tasks determines the size of the agent, which means that 

centralised agents tend to be large while the costs of sending large agents across the 



Chapter 1  Introduction 

2 

 

network may be greater than the benefits they confer [40]. Centralisation needs all the 

agents to reveal potentially private information to the central server agent, which would 

bring down the level of the privacy and security in many large systems. Finally, 

centralised architectures are difficult to integrate into naturally distributed systems. 

In decentralised or distributed architectures, the number of distributed agents can be 

configured into mechanisms of self-organisation without imposing external, centralised 

controls. The main difficulty is that decision-making is based on limited information 

about the environment, and does not refer to explicit deliberation. Because of their 

simplicity and mobility, individuals do not have an explicit representation of the 

collective task to be achieved [14]. Each of these types of architecture has its 

advantages and disadvantages that make each of them suitable for some domains and 

not for others. This situation impels the search for a solution. 

In computational complexity theory, NP is the class of decision problems that can be 

solved by a non-deterministic Turing machine in polynomial time. NP-complete: a 

decision problem P is said to be NP-complete if (1) P is in NP-class and (2) all problems 

in the NP-class are reducible to P i.e. other problems in NP can be transformed into a 

problem P. And finally NP-hard are those problems that satisfy only condition (2) that 

all problems in the NP-class are reducible [50]. A method of computing solutions to 

NP-complete/NP-hard problems using the algorithms and computational power 

available nowadays in reasonable time frame has yet to be discovered [13]. 

Unfortunately, many practical problems such as route planning, scheduling and the 

creation of timetables belong to this very class. It is essential that these problems are 



Chapter 1  Introduction 

3 

 

solved, and the only possibility of doing this is to use approximation techniques, since 

no straightforward solution technique is known.  

A heuristic solution technique is an alternative [15]. Derek Partridge [20] has defined 

the heuristic by “a rule of thumb: a procedure that achieves a certain goal on an 

acceptable proportion of occasion‖. He also maintains that ―in fact, there is more likely 

some assurance that it won't always work‖. It is therefore evident that heuristic 

strategies are generally powerful, but are not absolutely guaranteed to provide the best 

(i.e. optimal) solutions, or even to find a solution at all. This demands adopting some 

optimisation techniques such as Evolutionary Algorithms (EA) or Evolutionary 

Computation (EC).  

Evolutionary computations have received increased interest and have been successfully 

applied to numerous problems from different domains [8, 11, 18, 32]. This because they 

offer benefits to researchers of optimisation problems, some of which are the simplicity 

of the approach, the robust response to changing circumstances, flexibility, and the 

possibility of application to problems where heuristic solutions are not available or 

which generally lead to unsatisfactory results. Nowadays, EA is considered to be an 

adaptable means of problem solution, especially for complex optimisation problems 

[25].  

Researchers have recently adopted another form of problem solving research, 

―Evolutionary Automatic Programming‖ (EAP) [66]. Automatic Programming (AP) is 

best described by Archtur Samuel (Samuel, 1959): ―Tell the computer what to do, not 

how to do it‖. Hence, the ultimate goal is that the programmer only needs to state what 

an algorithm must do, not how it does it, and the automatic programming algorithm 



Chapter 1  Introduction 

4 

 

works out the implementation. EAP is used to refer to those systems that adopt 

evolutionary computations to automatically generate computer programs, and as such 

includes Genetic Programming (GP).  

Several multi-agent architectures were recently intensively studied and applied to many 

NP-problems [45], and have consequently become widely accepted. This has motivated 

the researcher to propose ―A Hybrid Multi-Agent Architecture (HMAA) where small 

agents can be distributed on small devices. The architecture is capable of solving many 

practical NP-hard problems while preserving the ability of small distributed agents to 

run on small devices‖. This research has been undertaken in order to investigate the 

feasibility of running computationally intensive algorithms (i.e. evolutionary 

algorithms) that generates new heuristics on multi-agent architectures, while preserving 

their ability to run on small devices (including mobile devices).  

This architecture is hybrid, since it is ―semi-distributed/semi-centralised‖ architecture 

where variables and constraints are distributed among small agents exactly as in 

distributed architectures. When the small agents become stuck, a centralised control 

becomes active in which the variables are transferred to a super agent that has a central 

view of the whole system and possesses much greater computational power and more 

intensive algorithms that enable it to generate new heuristics that find optimal solutions. 

The Meeting Scheduling Problem (MSP) has been adopted and investigated in order to 

examine and validate the idea. 

In an MSP each scheduling agent manages the calendar for its user, while the basic 

objective is to find a common free time slot for all participants in a particular meeting. 

Where MSP is a NP-hard problem, it is not possible to optimally solve every instance of 



Chapter 1  Introduction 

5 

 

MSP in an acceptable time using the algorithms and computing power available 

nowadays [7]. It has been solved within the MAS environment using heuristics, a 

solution that holds the promise of finding feasible solutions within a reasonable time 

[15, 72]. There are several heuristics for MSP, but most of them are of limited success 

because they use predefined deterministic heuristics which are domain specific, 

meaning that they work well in some environments and not in others.  

MSPs and others have been solved within MAS and suffer from this limitation. Mobile 

agents within distributed MAS have limited capabilities and cannot perform 

complicated computations that would generate new solutions. ―Overcoming this 

limitation of having restricted capabilities/heuristics that work well in some 

environments and not in others; by implementing computationally intensive algorithms 

on super/central agents, propose computationally intensive algorithms in order to 

generate new heuristics to be executed by the small agents, while preserving their 

simplicity and their ability to run on small devices‖  is another motivating factor for this 

study. 

1.2. Research Question 

The main question to be answered by the present research is: 

―What is the feasibility of running computationally intensive algorithms for generating 

new heuristics, such as Genetic Programming, on multi-agent architectures, in order to 

solve many NP-hard problems while preserving the simplicity and the ability of agents 

to run on small devices?‖. 

To answer this question, the following sub-questions must be addressed: 



Chapter 1  Introduction 

6 

 

 

(1) Investigate and analyse one of the well-known NP-hard problems, such as the 

MSP. What are the existing solutions' techniques (heuristics) used to solve this 

problem? And what are the advantages and disadvantages of these techniques?  

(2) Analyse some existing heuristic algorithms and repair strategies for MSPs in 

order to be able to propose new heuristics. 

(3) Propose a new heuristic for MSP that performs scheduling by considering 

specific parameters and priorities.   

(4) Investigate some local search strategies that can be used as repair strategies, and 

propose a neighbourhood structure (i.e. type of move) which could be 

implemented on small agents without affecting their mobility. 

(5) Use evolutionary approaches to solve such problem as MSPs, an investigation 

must be carried out into what the evolutionary approach means and how it 

differs from other problem-solving approaches.    

(6) Study the efficiency of such approaches, a hybrid multi-agent architecture must 

be proposed in which the central agent runs an evolutionary approach and 

proposes the sequences of moves to be executed by the small/mobile agents. 

(7) Implement a prototype for the proposed architecture to evaluate the performance 

of the proposed heuristic algorithm, and examine the idea of the possibility of 

implementing computationally intensive algorithms on MAS while preserving 

the ability to run on small devices such as mobile phones. The extensive 

algorithm would give the agent the capability of generating new and sometimes 

better solutions while preserving the ability to run on small agents.    



Chapter 1  Introduction 

7 

 

 

1.3. Major Contributions 

This research results in the following:  

1. Hybrid Multi-Agent Architecture (HMAA) for solving many NP-hard problems: 

in the proposed HMAA, variables and constraints are distributed among small 

agents, and when the small agents become stuck, a centralised control is 

activated, in which the variables are transferred to a super agent that has larger 

computational power and implements evolutionary algorithms in order to be 

able to find an optimal solution. 

 

2. Two types of HMAA have been implemented: (i) DCOP that deals with the NP-

problems as optimisation problem, in which the goal is to find an optimal 

solution that minimises the violation; (ii) DisCSP deals with NP-hard problems 

as search problem, where the goal is to find a feasible solution. 

 

3. New SMA meeting scheduling heuristic takes into account two parameters: a set 

of domains and a set of ranked attendees. These parameters are necessary in 

order to measure the difficulty of a meetings' scheduling. The heuristic starts by 

ranking the meetings, in order to schedule the most difficult ones respectively.  

 

4. New SMA local search repair strategy for the scheduling process which is 

activated when the scheduling ends with some violations. This repair strategy 

applies just to the DCOP framework. In the DisCSP framework the agents do 

not have to deal with violations of meetings, but only with unscheduled 

meetings. 



Chapter 1  Introduction 

8 

 

 

5. Small Agent (SMA) for meeting scheduling has been developed. This SMA 

uses the proposed prioritised/ranked meeting scheduling heuristic and local 

search repair strategy in order to accomplish the scheduling process of behalf of 

its user. This SMA is small size and limited capabilities agent, and it could be 

implemented and run on small devices such as phone mobile device or PDAs. 

Hence, the users could manage meetings and know their calendar through small 

mobile devices that implement this proposed SMA. 

 

6. A new concept, ―Local Search Programming‖ (LSP), has been introduced to the 

evolutionary approach; this concept generates a new heuristic based on the 

existing one. This method was inspired by both Genetic Programming and local 

search techniques. In LSP, the programmer seeks to generate new 

heuristics/programs using local search strategies instead of Genetic Algorithm 

techniques.  

7. Two types of super-agent (LGP_SUA and LSP_SUA) have been implemented 

in the HMAA, and two SUAs (local and global optima) have been implemented 

for each type. The first type is LGP_SUA (superagentLGP and 

superagentLGP_SP), it uses the LGP approach to generate new heuristics. The 

second is LSP_SUA (superagentLSP and superagentLSP_SP), it uses the LSP 

approach for the same purpose.  

8. Finally, a prototype for the proposed Hybrid Multi-Agent Architecture (HMAA) 

has been implemented. The architecture employs the proposed meeting 

scheduling heuristic with the repair strategy on smaller agents, and the four 

extensive algorithms on super-agents. 



Chapter 1  Introduction 

9 

 

 

The results reveal that this architecture is applicable to many different application 

domains because of its simplicity and efficiency. Its performance was better than many 

existing meeting scheduling architectures. It preserves agents’ mobility, (i.e. the ability 

to run on small devices), while implementing evolutionary algorithms. HMAA is very 

robust in that it can implement more than one optimisation technique without affecting 

the size of the small agents. Moreover, the proposed evolutionary approach LSP has 

proved its success in generating new heuristics as LGP, indicating that the proposed 

LSP is good enough to be applied as a new evolutionary approach using local searching 

instead of genetic algorithms when there is one parent instead of two. 

1.4 Thesis Outlines 

This thesis is organised into 10 chapters as follows: 

Chapter 2 presents a survey of multi-agent systems, definition of some terminologies 

and basic concepts, such as agents, intelligent agents, mobile agents, multi-agent 

systems. The differences between MAS and object and expert system are reviewed, as is 

the MAS advantages and existing architectures.  

Chapter 3 introduces the scheduling problems, and investigates the most used 

formalisations to define many scheduling problems. A certain amount of investigation 

for timetabling problem (specifically the Human Selection of Scheduling Heuristics 

(HuSSH) system) has been documented. An illustration for meeting scheduling 

problems (MSP) has been done; MSP is a term that has been adopted in order to 

facilitate the investigation and validation of the concept behind new architecture.   



Chapter 1  Introduction 

10 

 

Chapter 4 is a literature review about the evolutionary approaches (EA), the advantages 

of EA, and the most known disciplines of EA which are: genetic algorithms, genetic 

programming, and linear genetic programming. An illustration of how each one works 

and how it differs from other approaches. And finally a new EA concept ―local Search 

Programming (LSP)‖ is introduced and discussed. Local Search Programming is a new 

method for generating or modifying the existing heuristics. This method is inspired 

from GP and local search techniques together by which the system is looking to 

generate new heuristics/programs using local search techniques instead of GA 

techniques. 

Chapter 5 discusses the proposed HMAA; a clarification for the motivations to this new 

architecture is stated. The adopted formalisations for solving MSP within HMAA are 

discussed. The architecture of HMAA and Scenarios of HMAA negotiations and MSP 

solution approach within HMAA are illustrated. And finally full functions specifications 

of the HMAA are situated. 

Chapter 6 illustrates the small agent proposed heuristic used to solve the meeting 

scheduling problem.  It is a prioritised/ranked heuristic that gives initial solutions for the 

systems. Moreover, it discusses the proposed local search repair strategy used to 

optimise the violated solutions. All the algorithms used for scheduling and repair 

strategy are defined, some examples are illustrated.  

Chapter 7 demonstrates super agents who use evolutionary approaches in order to 

generate new heuristic for small agent. Two types of super-agents have been defined in 

HMAA, and two super-agents have been implemented for each type. The first type uses 

the linear genetic programming approach. The second one uses local search 



Chapter 1  Introduction 

11 

 

programming approach in generating new heuristic. The algorithms used by each super-

agent are also presented. 

Chapter 9 illustrates some experiments, done on the implemented (HMAA). Three main 

groups of experiments have been done; the first group states simple cases with different 

number of attendees, and different situations or combinations of meetings. The aim of 

these experiments is to show the feasibility of running the hybrid multi-agent 

architecture for a large number of attendees.  The second group is more complicated 

cases and susceptible situations, to measure the feasibility of the system in very 

complicated and limited domain range data. And the final group is randomly selected 

cases to measure the feasibility of the architecture on different situations. An analysis 

for these experiments has been done. 

Chapter 10 concludes the thesis and outlines future work. 



Chapter 2  Multi-agent Systems 

12 

 

Chapter 2  

Multi-Agent Systems 

 

 

2.1 Introduction 

John McCarthy is known as the Father of Artificial Intelligence (AI) [24, 48, 85]. In 

1956 he became the first person to coin the phrase ―Artificial Intelligence‖. His belief 

that computers can reason like humans and his attempts to make this happen has done 

much to further the development of AI; the modern approach to AI is centred around the 

concept of a rational agent. AI can be regarded as the study of the principles and design 

of artificial rational agents. 

After about fifteen years, in the mid to late 1970s, Distributed Artificial Intelligence 

(DAI) evolved and diversified rapidly, since agents are seldom stand-alone systems. In 

many situations they coexist and interact with other agents in several different ways. 

Today DAI is an established and promising field of research and practical application 

bringing together and drawing on results, concepts, and ideas from many disciplines. 

Objectives 

 

 To present a brief introduction to MAS. 

 To define basic concepts in MAS.  

 To illuminate some benefits for MAS.  

 To present well known MAS architectures and their limitations. 



Chapter 2  Multi-agent Systems 

13 

 

Gerhard Weiss [36] defined DAI as: “the study, construction, and application of multi-

agent systems (MAS), that is, systems in which several interacting, intelligent agents 

pursue some set of goals or perform some set of tasks”.  

The rest of this chapter presents an overview of MAS. Some of the terminology and 

basic concepts, such as agents, intelligent agents, mobile agents, multi-agent systems 

and the differences between MAS and object and expert system are reviewed, as is the 

reasons of utilising MAS. The chapter finally presents the most known MAS 

architectures and the current problems in these architectures. 

2.2. What is an Agent?  

Researchers agree that there is no universally accepted definition of the term ―agent‖; 

indeed, there is much debate and controversy on this subject [16, 36, 46]. Some 

researchers define an agent in terms of mental states such as beliefs, capabilities, 

choices and commitments [90], while others stress the ability of an agent to act 

autonomously in a dynamic environment [36]. This is due to the fact that different 

domains vary regarding the importance of the agent's attributes. For example, some 

agents are designed to undertake the whole task themselves while others must work 

together; some are mobile, some static; several communicate with each other via 

messages; some learn and adapt, others do not. However, there is general agreement that 

autonomy is central to the notion of agency. 

Ferber [34] defines an agent as: 

―A physical or virtual entity 

1) Which is capable of acting in an environment, 



Chapter 2  Multi-agent Systems 

14 

 

2) Which can communicate directly with other agents, 

3) Which is driven by a set of tendencies or goals (in the form of individual 

objectives or of a satisfaction/survival function which it tries to optimise), 

4) Which possesses resources of its own,  

5) Which is capable of perceiving its environment (but to a limited extent), 

6) Which has only a partial representation of this environment (and perhaps none at 

all), 

7) Which possesses skills and can offer services, 

8) Which may be able to reproduce itself, 

9) Whose behaviour tends towards satisfying its objectives, taking account of the 

resources and skills available to it and depending on its perception, its 

representation, and the communication‖. 

2.2. Intelligent Agents 

Before clarifying the term ―intelligent agent‖, the question ―what is intelligence?‖ must 

be answered. This question has been asked for thousands of years, by philosophy as 

well as by science. Gregory [81] says ―Innumerable tests are available for measuring 

intelligence, yet no one is quite certain of what intelligence is, or even just what it is 

that the available tests are measuring”. He also believes that ―Viewed narrowly, there 

seem to be almost as many definitions of intelligence as there were experts asked to 

define it.‖ Eike F Anderson [29] writes that "the Greek philosopher Aristotle tried to 

identify intelligence as the rules of “right thinking”, logical reasoning, by establishing 

patterns by which a true precondition would always lead to a true goal state‖. He gives 



Chapter 2  Multi-agent Systems 

15 

 

the dictionary definition for intelligence as “the capacity for understanding; ability to 

perceive and comprehend meaning‖. 

Shane Legg [89] identified some of the features involved in intelligence:  

 A property of an individual who is interacting with an external environment. 

 Ability to succeed or ―profit‖. 

 The individual is able to carefully choose their actions in a way that leads to 

them accomplish their goals. 

 Learning, adaptation and experience. 

He brings all these key features together and gives what he believes to be the essence of 

intelligence: ―intelligence measures an agent’s ability to achieve goals in a wide range 

of environments”.  

The definition of “intelligent agent” that has become increasingly widely adopted is 

that in [68]: ―intelligent agent is the computer system that is capable of flexible 

autonomous actions in some environment in order to meet its design objectives‖. Here, 

―autonomy‖ means a system that has control over its actions and internal state without 

direct intervention from humans or other systems.  

Flexibility falls into three categories: reactivity, proactiveness and social ability [68].  

1) Reactivity: the ability of the intelligent agent to perceive its environment, and 

respond in a timely fashion to changes that occur. 

2) Proactiveness: the ability of the intelligent agent to show goal-directed 

behaviour by taking initiatives in order to satisfy the design objectives. 



Chapter 2  Multi-agent Systems 

16 

 

3) Social ability: the ability to communicate with the user, system resources and 

other agents as required in order performing their task(s). 

2.3. Mobile Agent 

A mobile agent consists of a self-contained piece of software or a program that can 

migrate and execute on different machines in a dynamic networked environment, and 

can sense and act autonomously and proactively in this environment in order to realise a 

set of goals or tasks [43, 83]. 

Mobile agents have several strengths. The following is a brief discussion of reasons for 

using mobile agents [53]: 

1) They reduce the network load. Mobile agents allow one to package a 

conversation and dispatch it to a destination host where the interactions can take 

place locally. 

2) They overcome network latency. Mobile agents offer a solution, since they can 

be dispatched from a central controller to act locally and directly execute the 

controller's directions. 

3) They encapsulate protocols. When data are exchanged in a distributed system, 

each host owns the code that implements the protocols needed to properly code 

outgoing data and interpret incoming data. However, as protocols evolve to 

accommodate new efficiencies or security requirements, it is a cumbersome if 

not impossible task to upgrade protocol code properly. The result is often that 

protocols become a legacy problem. Mobile agents, on the other hand, are able 

to move to remote hosts in order to establish ―channels‖ based on proprietary 

protocols. 



Chapter 2  Multi-agent Systems 

17 

 

4) They execute asynchronously and autonomously. Due to fragile and expensive 

wireless network connections, a continuous open connection between a mobile 

device and a fixed network will not be always feasible. In this case the task of 

the mobile user can be embedded in mobile agents, which can then be 

dispatched into the fixed network and can operate asynchronously and 

autonomously to accomplish the task. At a later stage the mobile user can 

reconnect and collect the agent with the results. 

5) They adapt dynamically. Mobile agents have the ability to sense their execution 

environment and react autonomously to changes.  

6) They are naturally heterogeneous. Mobile agents are generally independent of 

the computer and the transport layer and depend only on their execution 

environment. Hence they can perform efficiently in any type of heterogeneous 

network. 

7) They are robust and fault-tolerant. The dynamic reactivity of mobile agents to 

unfavourable situations makes it easier to build robust and fault-tolerant 

distributed systems. If a host is being shut down, all agents executing on that 

machine will be warned and given time to dispatch and continue their operation 

on another host in the network. 

2.4. Agents and Objects 

The key advances in program design and development over the past three decades are in 

the field of abstract data types such as object-oriented programming, a powerful 

example of such abstractions. Wooldridge [60] said that ―probably the single most 

compelling argument in favour of agents for software engineering is that they represent 



Chapter 2  Multi-agent Systems 

18 

 

yet another such abstraction. Just as many systems may naturally be understood and 

modelled as a collection of interacting but passive objects, so many other systems may 

be naturally understood and modelled as a collection of interacting autonomous 

agents”. 

It is not easy to recognise the differences between agents and objects. Silva et al. [91] 

defines an object as “a passive or reactive element that has state and behaviour and can 

be related to other elements‖. Objects, then, are entities that encapsulate some state, are 

able to perform actions or methods in this state, and communicate by message passing. 

And an agent is “an autonomous, adaptive and interactive element that has a mental 

state”.  

The differences between objects and agents according to [16, 61, 91] are: 

 A different degree of autonomy. The object shows autonomy over its state, but 

does not exhibit control over its behaviour (it does not decide when to execute 

the method), object invokes methods from another object. Agents, on the other 

hand, request actions to be performed (the agent itself decides to initiate specific 

actions). However, agents can be implemented using object-oriented techniques 

by building some kinds of decision-making about whether to execute a method 

or initiate a specific action in the method of the agent itself [16, 91]. 

 An agent fixes the (mental) state of the element to consist of components such as 

beliefs, capabilities and decisions. The standard object model has nothing to say 

about how to build systems that integrate the notion of flexible (reactive, pro-

activeness, social) autonomous behaviour. But again, object-oriented programs 

that integrate these types of behaviours could be built. 



Chapter 2  Multi-agent Systems 

19 

 

On the one hand, agents and objects do compete in the sense that agent technology is 

more appropriate than object technology for applications [60]. On the other hand it must 

be said that the agent-oriented view is complementary to the object-oriented one due to 

the fact that developers typically implement agents using object-oriented techniques. 

2.5. Agents and Expert Systems 

An agent is capable of deciding independently what to do in order to solve a problem 

but it cannot be considered as an expert system capable of solving problems or giving 

advice in some knowledge-rich domain [74]. The followings are the main differences 

between expert systems and agents [59]:  

 Expert systems are inherently disembodied, which means they do not interact 

directly with any environment, but rather obtain their information through a user 

acting and giving feedback or advice to a third party. 

 Unlike agent systems, expert systems are not required to be capable of acting or 

co-operating with other agents. 

 Expert systems are not usually required to operate in anything like real-time. 

2.6. What is an MAS? 

An MAS is constructed as a society of agents with capabilities of communication and 

collaboration that interact in order to solve a common problem. Jennings defines MAS 

as ―a loosely-coupled network of problem solvers that work together to solve problems 

that are beyond their individual capabilities‖ [46]. 

Omicini [1] has defined the MAS as ―Ensembles of autonomous agents acting and 

working independently from each other, each representing an independent locus of 



Chapter 2  Multi-agent Systems 

20 

 

control of the all system. Each agent tries to accomplish its own task(s) and will 

typically need to interact with other agents and its surrounding environment in order to 

obtain access to information/ services that it does not need process to coordinate its 

activities to ensure its goal can be met‖. 

To enable MAS to solve problems coherently, the agents must communicate amongst 

themselves, coordinate their activities and negotiate once they find themselves in 

conflict. Conflicts may result from simple competition for limited resources or from 

more complex situations in which agents disagree because of discrepancies between 

their domains of expertise. Coordination is required to determine organisational 

structure among a group of agents and for task and resource allocation, while 

negotiation is necessary for the detection and resolution of conflicts. 

2.7. Why MAS 

Developers have discovered that distributed computations are easer to understand and to 

develop, especially when the problem being solved is itself distributed. Sometimes 

distribution can lead to computational algorithms that might not have been discovered 

using centralised approaches. Moreover, the centralised approach is sometimes 

impossible, since systems and data are distributed, huge in extent and comprise many 

components. 

Traditional Artificial intelligence (AI) has been concerned with how an agent can be 

constructed to function intelligently with a single locus of internal reasoning. But 

intelligent systems do not work in isolation, they work in social terms. 

The factors driving the increasing interest in MAS research are as follows: 



Chapter 2  Multi-agent Systems 

21 

 

1) Some problems are too large to be solved by a centralised single agent, due to 

resource limitations or the sheer risk of having one centralised system that could 

fail at critical times.  

2) Real-life problems are usually physically or functionally distributed. 

3) MAS's allow for the interconnection and interoperation of multiple existing 

legacy systems (e.g., expert systems, decision support systems, etc.).  

4) MAS's provide solutions in situations where expertise is distributed, for example 

in health care provisioning and manufacturing.  

5) MAS's enhance speed, reliability (the capacity to recover from the failure of 

individual components, with graceful degradation in performance), extensibility 

(the capacity to alter the number of processors applied to a problem), and the 

ability to tolerate uncertain data and knowledge. 

6) MAS's provide solutions to problems that can naturally be regarded as a society 

of autonomous interacting components-agents. For example, in meeting 

scheduling, a scheduling agent that manages the calendar of its user can be 

regarded as autonomous and as interacting with other similar agents that manage 

calendars of different users. 

7) MAS's enhance performance in the areas of computational efficiency, reliability 

(graceful recovery of component failures, because agents with redundant 

capabilities or appropriate inter-agent coordination are found dynamically, as 

when they take up the responsibilities of agents that fail), extensibility (because 

the number and the capabilities of agents working on a problem can be altered), 

robustness (the system’s ability to tolerate uncertainty, because suitable 

information is exchanged among agents), maintainability (a system composed of 



Chapter 2  Multi-agent Systems 

22 

 

multiple components-agents is easier to maintain because of its modularity), 

flexibility (because agents with different abilities can adaptively organise to 

solve the current problem) and reuse (because functionally specific agents can 

be reused in different agent teams to solve different problems). 

2.8. Multi-Agent Architectures 

As multi-agent systems become more complex, questions arise about the best way to 

control agents' activities, and thus application performance. Any multi-agent process 

can be performed using centralised or distributed MAS systems' architectures [14]. Each 

one of them has its own advantages and disadvantages. The following discusses how 

each works to accomplish a process such as scheduling, and what the strengths and 

weaknesses of each architecture are. 

In the centralised approach the tasks are performed by a single agent that has a global 

view of the system. This agent must accomplish the task to solve the given problem and 

distribute the results to all the agents. To do that, it must have global knowledge of the 

environment, as well as all the agents' private information. This architecture is 

preferable in many applications, since its stability, simplicity, as well as its provision of 

up to minute information, could easily optimise solutions. It would also improve 

resource utilisation.  

However there are also problems inherent in centralisation. One concerns the significant 

impact on the amount of computation required by an agent to store global knowledge 

and to compute and perform the scheduling process. This results in the consumption of 

a huge amount of computing power and time, which affects the agent’s size. It also 



Chapter 2  Multi-agent Systems 

23 

 

needs all agents to reveal potentially private information to the central server agent, 

which would crash the level of the privacy and security in many large systems. All of 

these factors result in difficulties when such agents are used in naturally distributed 

systems [33]. 

The agent-oriented paradigm for software engineering overcomes these difficulties 

provides a basis for the construction of extremely large, complex systems in which 

components can be naturally distributed across a network of heterogeneous computers 

without requiring a complete analysis of their interactions [52]. In distributed 

architectures the tasks are not the responsibility of one agent but of many. Hence, all 

agents accomplish the scheduling of their own tasks according to what they know about 

the environment. This could involve more privacy than the centralised architecture. 

Allocating tasks to several small agents would be more applicable for distributed or 

very large applications, and would moreover reduce the computational power needs for 

each small agent, which would in turn preserve their mobility and their ability to run on 

small devices. Furthermore, distribution can lead to computational algorithms that 

might not have been discovered using centralised approaches. 

Despite their advantages, distributed architectures have several difficulties. Neither up 

to date information nor the complete range of resources is available to all agents. 

Consequently information and computation is localised and communication limited; 

diversified goals also present significant challenges to the design of systems capable of 

achieving high levels of global utility since they make independent decisions based on 

local objectives which may result in conflicts. It is consequently sometimes very 

difficult to find a global optimal scheduling. 



Chapter 2  Multi-agent Systems 

24 

 

2.9 Summary 

This chapter presents an overview of MAS that can be defined as a group of agents 

work together to solve problems beyond their individual capabilities. Although agents 

represent abstract software like objects, they cannot be implemented using object-

oriented techniques. Agent implementation can be performed by building some kind of 

decision-making methods and integrating different autonomous behaviours. This, 

however, does not mean that agents can be considered as Expert systems because (1) 

agents can interact directly with environments, (2) communicate and cooperate with 

other agents and (3) respond in a timely fashion.  

In MAS, Two architectures are well known and widely used; centralised and distributed 

architectures. Both architectures have advantages and disadvantages that make each of 

them suitable for certain situations and unfeasible for others. This motivates us to 

propose new MAS architecture that can cope with different wide situation.  

Next chapter will investigate some problems that were tackled by MAS and will inspect 

some scheduling problems focusing on meeting scheduling problems. This problem will 

be adopted to validate and examine the proposed architecture in this research study. 



Chapter 3  Scheduling Problems 

25 

 

Chapter 3 

Scheduling Problems  

 

3.1. Introduction 

In complexity theory, a distinction is made between optimisation problems and decision 

problems. Decision problems are often referred to as yes-no problems, while the 

intention of optimisation problems is to find objects that minimise or maximise the 

value of objective functions under constraints [95]. Michael remarks [67] that ―many 

scheduling problems do not have a polynomial time algorithm; these problems are the 

so-called NP-hard problems‖. Numerous models and solutions to the various 

scheduling problems have been developed, ranging from exact methods such as branch-

and-bound to heuristic and meta-heuristic techniques.  

Solutions that satisfy the problem constraints are called feasible. Constraints are 

relationships among the entities and can be classified as hard or soft. On the one hand 

Objectives 

- 

 To introduce the scheduling problem.  

 To illustrate some formalisations used for scheduling problem.  

 To present the HuSSH system.  

 To illuminate the meeting scheduling problem. 

 To present frameworks for solving meeting scheduling problems.  

 



Chapter 3  Scheduling Problems 

26 

 

hard constraints must not be violated under any circumstances. On the other, it is 

desirable that soft constraints are satisfied as much as possible, but if any of them are 

violated, a penalty will be applied and the solution will still be considered as being 

feasible [97].  

In practice, the scheduling activity can be regarded as a search problem [65] for which 

it is necessary to find any feasible schedule, or as an optimisation problem for which the 

best feasible schedule is sought. The best solution is often defined to be the one with the 

lowest penalty (due to violation of the soft constraints). 

The class of scheduling problems includes a wide variety of problems such as machine 

scheduling, events scheduling, timetabling, and meeting scheduling. 

3.2. Formalisation of Scheduling Problem 

The scheduling problem can be solved within one of the two main multi-agent systems 

architectures, centralised and distributed architectures. Each of these has its own 

advantages and disadvantages, as discussed in Section 2.8. A wide variety of centralised 

architecture solutions defined the scheduling problem as a Constraint Satisfaction 

Problem (CSP), the solution to which involves finding an assignment of values to all 

variables such that all constraints are satisfied [54]. While the distributed architectures 

solutions defined the scheduling problem as Distributed Constraint Reasoning (DCR). 

This is a CSP in which the variables and constraints are distributed among a network of 

automated agents [63]. DCR has been proposed as a way to model and reason about the 

interactions between agents’ local decisions. 



Chapter 3  Scheduling Problems 

27 

 

This section investigates the formalisations used to define many scheduling problems: 

CSP, COP, DCR, Distributed Constraint Satisfaction Problem (DisCSP) and the 

Distributed Constraint Optimisation Problem (DCOP). 

3.2.1. Constraint Satisfaction Problem (CSP)  

CSP [54, 63, 96] consists of n variables V= {x1,x2 ..., xn} whose values are taken from 

the finite, discrete domains D={D1, D2 ..., Dn} and a set of constraints on their values 

R={R1, R2,…, Rm,} where each Ri(x1,…, xk) is a predicate on the cartesian product  

 that returns that returns true if the value assignments of the variables 

satisfies the constraint. Solving a CSP is equivalent to find an assignment of values to 

all variables such that all constraints are satisfied. 

3.2.2. Constraint Optimisation Problem (COP)  

A COP [9, 51] is 4-tuples < V, D, R, O > where V is a finite set of variables 

V={x1,x2,...,xm}. D is a set of domains D1, D2, ... , Dm. Each domain Di contains the 

finite set of values which can be assigned to variable xi. R is a set of constraints.  Each 

constraint involves some variables and defines a non-negative cost for every possible 

value combination of these variables. O is the objective function assigning a numerical 

quality value to a solution. An assignment is a pair including a variable, and a value 

from that variable’s domain. A partial assignment is a set of assignments in which each 

variable appears at most once.  

The cost of a partial assignment is computed over all constraints that involve only 

variables that appear in the partial assignment. Each such constraint defines some cost 

for the value assignments detailed in the partial assignment. All these costs are 



Chapter 3  Scheduling Problems 

28 

 

accumulated, and the sum is denoted as the cost of the partial assignment. A partial 

assignment that includes all the variables is a full assignment and a full assignment with 

minimal cost is a solution. Intuitively, the optimisation problem is harder than the 

satisfaction problems, but both are NP-complete. 

3.2.3 Distributed Constraint Reasoning (DCR)  

This includes two main families of problems: DisCSPs and DCOPs. 

3.2.3.1 Distributed Constraint Satisfaction Problems (DisCSPs) 

DisCSP [63] is a CSP in which the variables and constraints are distributed amongst a 

network of automated agents. DisCSP has been proposed as a way to model and discuss 

the interactions between agents’ local decisions. DisCSPs are composed of agents 

A={A1, A2…,Ak}, where each agent Ai has its own local variables  xi1,xi2…xin, whose 

values are taken from the finite, discrete domains D1, D2 ..., Dn, and connected by 

constraints among variables of different agents.  

Each agent controls or assigns the value of its variables, while agents must coordinate 

their choice of values so that a global objective function is satisfied. The global 

objective function is modelled as a set of constraints in which each agent is only 

assumed to have knowledge of the constraints in which its variable is involved. Every 

constraint is required to be true or false. In this limited representation, an assignment of 

values to variables must satisfy all constraints in order to be considered a solution. 

This representation is inadequate for many real-world problems in which it is 

impossible to satisfy all constraints. For these types of problems we may wish to obtain 



Chapter 3  Scheduling Problems 

29 

 

solutions that minimise the number of unsatisfied constraints. The next section presents 

a model that is able to deal with this type of optimisation problem. 

3.2.3.2 Distributed Constraint Optimisation Problems (DCOPs)  

DCOP [62, 70] is a distributed version of the COP (optimise the constraints), which is 

in turn derived from the CSP (satisfy all the constraints). A DCOP consists of n 

variables V={x1, x2..., xn,}, each assigned to an agent, where the values of the variables 

are taken from a discrete domain D={D1, D2 ..., Dn}, respectively. The goal of the 

agents is to choose values for the variables to optimise (i.e. maximise or minimise) a 

global objective function. This function is described as the sum of a set of valued 

constraints related to pairs of variables. Thus, for a pair of variables xi, xj there is a cost 

function, defined as: 

  

DCOP generalises the DisCSP, which has a limited power of representation since every 

constraint is required to be Boolean (i.e. satisfied or not satisfied). On the other hand, 

the cost functions in DCOP are the analogue of constraints from DisCSP. They take 

values of variables as input and, instead of returning ―satisfied or unsatisfied‖, they 

return a valuation as a non-negative number (i.e. how much it does not satisfy).  

 

 

Fij : Di ×Dj → N 
(3.1) 



Chapter 3  Scheduling Problems 

30 

 

 

Fig. 1: Example of DCOP graph 

Fig. 1 shows an example of DCOP with four agents where each has a single variable 

with domain {0, 1}. The objective is to find an assignment A* of values to variables 

such that the aggregate cost F (equation 3.2) is minimised. 

 

For example, if all variables are assigned to the value 0 in A, then F(A)=4. If all 

variables are assigned to the value 1 in A, then F(A)=0, which is the optimal solution. 

In DisCSP and DCOP some of the constraints may be public, and some are secrets of 

different participating agents. A simple example of such problem is meeting scheduling 

with secret constraints, meeting scheduling solving takes into account the fact that 

human agents often do not want to share full calendar information with other 

participants.   

     di     dj              F(di, dj)        

     0     0               1 

     0     1           2          

     1     0           2 

     1     1           0           

X1 

X2 

X3 X4 

F (A) =
Vxjxi

djdifij
,

),( , where xi           di    , xj           dj in A (3.2) 



Chapter 3  Scheduling Problems 

31 

 

3.3. Timetabling 

Roman Barták, and Hana Rudová [84] state that timetabling is a special case of 

scheduling. They have defined timetabling as: ―the allocation of given resources to 

objects being placed in space-time, in such a way as to satisfy as nearly as possible a 

set of desirable objectives”. A timetable shows at what time particular events are to take 

place. It does not necessarily imply an allocation of resources. In comparison with 

scheduling, in timetabling the importance of the resource allocation is restrained, 

although it is part of the scheduling process.  

A certain amount of investigation for Human Selection of Scheduling Heuristics 

(HuSSH) timetabling system has been done, and illustrated in the following subsection.  

3.3.1 The HuSSH System 

Examination timetabling is concerned with putting exams into a limited number of 

timeslots (periods) subject to a set of constraints. The generally accepted hard 

constraints are: 

1. No student can sit two exams simultaneously. 

2. The scheduled exams must not exceed the room capacity. 

3. Order constraints. 

4. Room or period requirements. 

The HuSSH system has been designed as a toolbox for designing heuristics for 

examination timetabling by users [17, 86]. Ahmadi et al have defined the HuSSH 



Chapter 3  Scheduling Problems 

32 

 

system as a multidisciplinary research involving computer science and psychology for 

solving scheduling problems (examination timetabling) by combining the intelligence 

and flexibility of human schedulers with the power of automated scheduling systems 

[17, 86]. The aims of this project were: 

1. To provide schedulers with a toolbox of intuitive heuristics to enrich 

their set of simple moves and heuristics at the level of construction and 

improvement of the schedule.  

2. To provide expert schedulers with a visual representation of the problem 

for the better understanding of the data and the constraints using design 

principles from cognitive science. 

3. The selection of heuristics by expert humans based on the characteristics 

of different contexts. 

4. Learning human strategies regarding the selection of heuristics. 

HuSSH is based on partitioning sequential heuristics for examination timetabling 

problems to exam selection, period selection and room selection heuristics. The user 

intervenes in the construction of examination timetabling in the HuSSH system at the 

level of heuristics selection. Some of the heuristics in the HuSSH system have proved to 

be difficult for the user to set up due to the high number of parameters and the 

complexity of their interrelationships. This is the case, for example, with the period 

selection heuristic. The period selection penalty function represents the potential cost of 

scheduling an exam in a period as the weighted sum of the violations in that period. 



Chapter 3  Scheduling Problems 

33 

 

The system enables the user to adjust the weightings as shown in Fig. 2 to reflect the 

importance of different constraints at different stages of the solution process. The 

extensive changes in the weightings make it very difficult for the user to analyse the 

effect of each change, and random-like changes in the behaviour of the heuristics may 

appear. 

 

Fig. 2: Weightings for period selection heuristics in the HuSSH system 

The present researcher contributions to this project include the design and 

implementation of an Artificial Neural Network (ANN). The results are published in 

[88]. This project has used artificial neural network (ANN) to find a relationship 

between the weightings and the final timetabling violations. The ANN provides 



Chapter 3  Scheduling Problems 

34 

 

feedback to the HuSSH user in order to select a better set of weightings through a 

simple user interface. 

The ANN has been built on the Enterprise miner/SAS platform. It is a Multi-Layer 

Perceptron Neural Network (MLP) NN with four hidden layers. The weightings of the 

network are adjusted using the back propagation (feedforward) algorithm. The NN has 

nine inputs which are the weightings of different parameters for the period heuristic, and 

nine target variables which are the violations in timetabling. 

The SAS generates C code which can be integrated within the HuSSH system. The final 

version will use the neural network outcome as an animated chart that will show the 

changes in the violations based on the user’s changes of the sliding bars of weightings.  

A well-known distributed scheduling problem, closely related to timetabling, is meeting 

scheduling or calendar management. Meeting scheduling is a distributed scheduling 

problem in which each person wants to schedule their meetings with others who want to 

accomplish the same task. Researchers engaged in the present study have solved this 

problem using a multi-agent system. The next section explains meeting scheduling at 

greater length and outlines some techniques to solve it within the multi-agent system 

architecture. 

3.4. Meeting Scheduling Problem 

3.4.1 Definition 

In the MSP each scheduler manages its calendar, while the basic objective is to find a 

common free time slot for all participants in a particular meeting. Meeting scheduling is 



Chapter 3  Scheduling Problems 

35 

 

a time-consuming routine task that, when delegated to a personal assistant agent, 

promises to significantly reduce the daily cognitive load [78]. It is not possible to 

optimally solve every instance of MSP within an acceptable time using the algorithms 

and computing power presently available, since MSP is a NP-hard problem [6, 7, 38]. It 

has therefore been solved within the MAS environment using heuristics that hold the 

promise of finding feasible solutions within a reasonable time [15].  

There are several solutions for meeting scheduling problems [30, 37, 38, 42, 65, 78, 79], 

but they have had only limited success because most existing meeting scheduling 

systems use predefined deterministic methods or heuristics that are domain specific, 

meaning that they work well in some environments and not in others. In practical 

environments, however, meeting scheduling is an ongoing reactive process, which 

means that the presence of real time information continually forces reconsideration. In 

other words it needs the agent to perceive its environment and response in a timely 

fashion to the changes that occur. 

To manage the meeting scheduling process effectively, multiple agents must reason and 

communicate their local schedules and their individual calendar management in order to 

obtain good global performance. Many real-world problems can be represented as CSPs 

[54, 63] which are not distributed. On the other hand, multi-agent systems in real-world 

problems often present themselves in distributed form. Researchers have proposed DCR 

as a key paradigm and a theoretical foundation for problems in multi-agent systems 

[78]. In DCR a set of variables is distributed among a set of agents, and set of variables, 

constraints, requires agents to coordinate their value choices.  



Chapter 3  Scheduling Problems 

36 

 

3.4.2. Frameworks for Solving MSP 

Hassine et al. [6, 7, 37, 38] have devised a new approach based on distributed 

reinforcement of node and arc consistency (DRAC) to solve MSPs. Their work focuses 

mainly on satisfying meetings hosts’ preferences as much as possible while taking into 

consideration all users’ availability, minimising the number of messages exchanged and 

retaining as much of the privacy of the users as possible. A static and deterministic 

version of this approach was initially proposed [37], in which the authors deal with the 

problem as a distributed one.  

They formalised the MS problem as a VCSP (Valued Constraint Satisfaction Problem) 

framework. This formalisation is a generalisation of CSP to the over-constrained 

problems by giving a weight or a valuation to each constraint that reflects the 

importance of satisfying that constraint. Their formalisation is defined by a quintuple 

(X, D, C, S, ), where X is a set of meetings, D a set of possible dates (domain) for X, 

C is composed of two types of constraints (hard an soft constraints), S = (E, , ) a 

valuation structure used to order the solutions obtained to the problem and : C E. E 

is the set of possible valuations,  a total order on E;  E corresponds to the 

maximal satisfaction and is an aggregation operator used to aggregate valuations. 

The local goal is to schedule meetings such that all the hard constraints CH are satisfied, 

while trying to maximise global utility (the sum of the initiator preferences). The global 

goal is to schedule the maximum number of meetings satisfying all the inter-agent 

constraints (these are represented by a set of strong constraints, i.e. equality constraints). 

Their approach was that more than one initiator agent can be activated at the same time 

(dynamic MS). Each initiator starts by sending reduced timeslots (by reinforcement 



Chapter 3  Scheduling Problems 

37 

 

node consistency) to the attendees and collecting the ranked time slots from them. The 

initiator then proposes timeslot that maximise utility, and collects responses (positive or 

negative).  

Each time the initiator receives at least one negative answer it must change its proposal 

and decrease its degree of preferences. If it receives no negative responses, it will first 

update its hard constraints by adding this proposal, then update the dates of its as yet 

unscheduled meetings by eliminating the dates corresponding to that one (arc-

consistency). The process continues until all meetings have been scheduled or proving 

that some of them could not be held of all agents in the system. 

The initiator reduces the time slots of the corresponding meetings by removing the 

infeasible time slots based on the hard constraints. This process starts from the most 

constrained meetings according to their hard constraints (node consistency 

reinforcement). If the time slots become empty after the reduction process, then the 

meeting cannot take place, so the time slots must be changed. After the node 

consistency reinforcement phase, the initiator agent deletes all the dates that are already 

used for more important meetings; this is how the arc consistency reinforcement phase 

is done. 

When the attendee receives the reduced time slots, he starts first by reinforcement node 

consistency, and then ranks the obtained slots according to its preference. When the 

attendees receive the proposal, they will send either positive answer to the initiator (if 

he does not accept the same proposal for another meeting) or negative answer.  

Amnon Meisels and Oz Lavee in their work [65] have defined the Meeting scheduling 

problem as a distributed constraints satisfaction search problem (DisCSP) and they used 



Chapter 3  Scheduling Problems 

38 

 

asynchronous backtracking (ABT) for solving MSP. Agents participate in multiple 

meetings, where each meeting is represented by a variable that needs to be assigned a 

time-slot. Additional information could be obtained in the form of Nogoods messages. 

During search for a consistent schedule for all meetings, agents can generate and send 

additional Nogoods to those sent by the ABT algorithm.  

Their approach was that every agent of the meeting scheduling problem includes 

multiple variables, one for each meeting it attends. All agents are assumed to be ordered 

successively and variables of each agent are ordered successively too, so that the 

variables of agent Ai+1 follow successively the variables of agent Ai.   

The initiator assigns values to all local variables and sends proposals to another agent in 

the form of ―ok?‖ message. The attendee updates the AgentView (which contains the 

most recent assignments received from agents with higher priority) with the received 

assignment and removes all eliminating explanations in all the local variables that 

contain the out of date assignment of the received variable.  

When backtrack message (reply message from the attendees) is received with Nogood 

proposal. The initiator checks the consistency of the received Nogood with the 

AgentView. If it is consistent, then initiator updates the relevant assignments in the 

AgentView that it is Nogood assignment. It also removes the eliminated values (which 

are because of the relevant assignment) from the relevant local variables. Then it assigns 

values to all the local variables, checking that all the eliminators in all the variables are 

consistent with the AgentView.  

If no consistent value is found, the eliminators of the current variable are resolved to 

form a Nogood, When the Nogood points to a local variable Xik then a backjump to Xik 



Chapter 3  Scheduling Problems 

39 

 

will be performed. The backjump requires the removal of all eliminators from all the 

local variables Xi k+1..j , that were jumped over This procedure implements the 

backjumping algorithm for multi local variables.  

If Nogood is not local variable, then the Nogood is sent in a backtrack message to the 

initiator of it, and the assignment of the Nogood is removed from the AgentView. Next, 

the local process for consistent assignments to all local variables starts from the 

beginning. When consistent assignments for all local variables have been found, all new 

assignments are sent by an (ok?) messages to all the attendees. 

Modi et al. [78, 79] provided an approach to (multi-agent meeting scheduling with 

rescheduling) using (DCR); which is an extension to DisCSP (Distributed Constraint 

Satisfaction Problem). They formalised the MS problem as IL-MAP (Incremental 

Limited information exchange Multi-agent Assignment Problem) which is a special 

form of Distributed Constraint Reasoning (DCR). The major difference is that MAP 

allows a variable to be shared among a set of agents (participants) while DisCSP assigns 

each variable to a unique agent.  

IL-MAP requires agents to assign values to variables where multiple agents must agree 

on the value assignments, and there is incremental scheduling of activities and there 

exist privacy restrictions on information exchange (initiator does not communicate 

information about meeting to any agent which is not a participant in that meeting). The 

basic distributed protocol is that the initiator proposes assignment to others who agree 

or refuse the proposed assignment based on their own existing assignment. 

Their approach was that the initiator manages the negotiation of the meeting by 

proposing times (free timeslots ranked according to a complex set of user preferences) 



Chapter 3  Scheduling Problems 

40 

 

and collecting responses (pending, impossible) from other attendees in a sequence of 

rounds and tries to find a mutually acceptable time. If time is found, the meeting is 

confirmed. Otherwise the process continues in rounds until the initiator runs out of 

times to propose in which case the process terminate with failure. 

Attendees may tentatively bump a confirmed meeting in favour of a new meeting in 

order to decrease the possibility of scheduling failure. The attendees will bump the 

meeting if the scheduling difficulty for the new meeting is greater than the scheduling 

difficulty for the existing meeting. If the new meeting is confirmed in the timeslot, the 

bumped one will be rescheduled by the initiator. If the new meeting is confirmed in 

other slot of time or fails to be scheduled, the bumped one is re-instated into the original 

slot. There are many other researchers who have used one of the standard definitions to 

define MSP, such as Adrian Petcu and Melinda et al. [5, 58, 76].  

Adrian Petcu has modelled the Meeting scheduling problem as Constraint Optimisation 

Problem (COP) where evaluation function maps each instantiation of variables of a 

constraint to a real number called utility, and simple aggregate function can sum up all 

of the utilities for all of the constraints (for a particular solution) which gives a way to 

measure the « goodness » of a solution. The task is to produce the « best » solution, that 

maximises the aggregated utility. They present a new complete method for distributed 

constraint optimisation, that extends the sum-product algorithm (which is true for tree-

shaped constraint networks) to arbitrary topologies using a pseudotree arrangement of 

the problem graph. 

Melinda et al. [58] in their work ―Active Preference Learning for Personalised 

Calendar Scheduling Assistance‖ have modelled the meeting scheduling problem as a 



Chapter 3  Scheduling Problems 

41 

 

standard constraint satisfaction problem (CSP), represented  by a set of variables {day, 

start, dur}, for each variable a domain specifying its possible values (Dday = {mon, tue, 

wed, thu, fri}, Dstart =[12:00am,11:59pm], Ddur = [0,1440] min), a set of constraints 

on one or more variables,  They have defined the calendar as a set of meetings. The 

scheduling problem (or meeting request) is a pair S = 〈C, X〉, where C is a calendar and 

X is a set of constraints over day, start, and dur. 

All of the mentioned meeting scheduling solution techniques use predefined heuristics.  

Because a single heuristic cannot grantee to provide a solution in all domains, these 

predefined heuristics work well in specific domains and may not work in others. The 

proposed HMAA overcome this limitation by having a super agent that is able to 

generate a new heuristic dynamically when the predefined one failed.  The new heuristic 

is constructed from the predefined one using an evolutional approach.  In this way the 

newly generated heuristic is at least as good as the predefined one used to construct it.  

3.5. Commercial Products for MSP 

Commercially, there are several existing meeting scheduling software products but 

many of them have disadvantages which include: (1) they are considered as 

computational calendars solely with some special features, these products are not truly 

autonomous agent and is not capable of communicating and negotiating with other 

agents in order to schedule meetings in a distributed way taking into account the users 

preferences and calendar availability [35, 55]. (2) several need high computational 

power in order to accomplish the corresponding task; such example is Profit Scheduler 

for Meetings
TM 

(PSforM) [80], (3) some of them require internet connection such as 



Chapter 3  Scheduling Problems 

42 

 

TimeBridge [94], (4) in the case of dealing with mobile devices or PDAs, the available 

software can only send a text message or iCalender file format for PDAs. An example is 

Snap Schedule Employee Scheduling Software [92].  

One of the well known MSP commercial product is Microsoft Outlook [55], there are 

number of problems in this product. Firstly, it ignores the negotiation step and issues of 

uncertainty about other users’ calendars. Furthermore, the scheduling features in 

Microsoft Outlook rely largely on an open calendar systems; where users are required to 

make their calendars publicly viewable within the organisation. Finally, a major 

limitation of Microsoft Outlook is that it will not consider moving existing meetings on 

behalf of the user. 

In turn, the proposed architecture overcomes most of the above disadvantages of the 

commercial meeting scheduling software. In the proposed architecture, the 

computational power needed for meeting scheduling is reduced; this is due to the fact 

that the size of the small agent, which is responsible to accomplish the scheduling 

process on behalf of the user, is very small. No internet connection is required to 

perform the scheduling, the small agent can be run on mobile devices, and users do not 

need to reveal potentially private information to the rest of the agents. Agents possibly 

run on mobile devices collaborate to schedule meetings on behalf of their users.          

3.6. Summary  

This chapter presents the scheduling problems; it starts with general definition for 

scheduling problems, and discusses the most accepted formalisations used to define the 

scheduling problems such as:  



Chapter 3  Scheduling Problems 

43 

 

 CSP (consists of variables whose values are taken from the finite, discrete 

domains and a set of constraints on their values, and the goal is to find feasible 

values for variables that satisfy the constraints); 

 COP (consists of variables whose values are taken from the finite, discrete 

domains and a set of weighted constraints on their values, COP can be defined 

as a regular CSP which constraints are weighted and the goal is to find a solution 

maximising the weight of satisfied constraints);  

  DisCSP is a CSP in which the variables and constraints are distributed amongst 

a network of automated agents; the goal is to obtain solutions that minimise the 

number of unsatisfied constraints; 

 DCOP is a distributed version of the COP (optimise the constraints), the goal of 

the agents is to choose values for the variables to optimise (i.e. maximise or 

minimise) a global objective function. This function is described as the sum of a 

set of valued constraints related to pairs of variables. 

After that the chapter discusses two scheduling problems: timetabling and the meeting 

scheduling problem. It presents the author’s work on timetabling, especially her 

contribution to the design and implementation of the HuSSH timetabling system. Then 

an overview of meeting scheduling problem (MSP) has been done. MSP has been 

adopted in order to facilitate the investigation and validation of the concept behind the 

new framework, HMAA, proposed in this research. Evolutionary algorithms that are 

discussed next chapter.   



Chapter 4  Evolutionary Algorithms 

44 

 

Chapter 4 

Evolutionary Algorithms 

 

 

 

4.1. Introduction 

Evolutionary Algorithms (EA) and Evolutionary Computations (EC) have received 

increased interest, and are being successfully applied to numerous problems from 

different domains, including optimisation, automatic programming, machine learning, 

operations research, bioinformatics, and social systems [8]. There are several reasons 

for this: (1) it offers benefits for the optimisation of researchers’ problems, (2) 

simplicity of the approach, (3) robust response to changing circumstances, (4) 

flexibility, and (5) the fact that it can be applied to problems where heuristic solutions 

are not available or generally lead to unsatisfactory results.  

Many disciplines are grouped under EAs, all of which share a common conceptual base 

of simulating the evolution of individual structures via processes of selection, mutation 

and reproduction [3, 4]. These disciplines are: evolution strategies (Rechenberg 1964) 

Objectives 

 

 To present the need for EAs. 

 To present some EAs and illustrate the differences between them. 

 To introduce a new concept in EA, called LSP. 

 To illustrate the motivations and the characteristics of LSP. 

 



Chapter 4  Evolutionary Algorithms 

45 

 

[25], evolutionary programming (Fogel, Owens and Walsh 1965), genetic algorithms 

(Holland 1975) [47] and genetic programming (Koza 1992) [49].  

Section 4.2 discusses the advantages of EA, and the following ones (4.3, 4.4 and 7.5) 

illustrate some EAs and how each one does work, and differs from other approaches. 

Section 4.6 illustrates how GP differ from heuristic approach. Finally Section 4.7 

introduces and discusses a new EA concept called ―Local Search Programming‖ (LSP). 

4.2. Advantages of Evolutionary Algorithms 

EAs have many benefits for problem solving research, some of which are [8, 32]:  

1. Traditional methods of optimisation do not respond well to dynamic changes in 

problem environments, and often require a complete restart in order to provide a 

solution. In contrast, EAs can be used to adapt solutions to changing 

circumstances by generating new solutions based on existing ones. 

2. EAs offer a framework that makes it relatively easy to incorporate prior 

knowledge of the problem to produce a more efficient exploration of the state 

space of possible solutions. 

3. EAs can be combined with other optimisation techniques, and can also be 

extended to multi-objective optimisation, which is of special interest in most 

financial applications. 

4. The evaluation of each solution can be handled in parallel, and only selection 

(which requires at least pair wise competition) requires some serial processing.  



Chapter 4  Evolutionary Algorithms 

46 

 

5. EAs are able to address problems for which there are no human experts. 

However, human expertise should be used when it is available.  

6. EA methods are inherently quantitative; therefore they are well suited for 

parameter optimisation. 

7. They are simple and robust. 

4.3. Genetic Algorithms (GA) 

The GA originated in 1975 with John Holland work [39, 47]. It is one of the algorithms 

that search a solution space for the optimal solution to a problem, in cases where it is 

extremely difficult or impossible to find an exact solution [18, 19, 41, 47]. The key 

characteristic of the GA is the means by which it conducts searches. It mimics the 

operation of evolution, where a population of possible solutions is formed and new 

solutions are found by ―breeding‖ or ―cross-over‖, which combines two solutions to 

produce two new individuals or solutions. GA takes a logically centralised view of 

problems, as it is possible to end up with a number of solutions, while a solution’s 

suitability is a measure of how ―good‖ the solution is. The centralised view is taken by 

choosing the best solution found so far to form a new generation. 

GA was first described by John Holland in the 1975 [47]. He and his associates 

Goldberg [19] and others were interested in artificial complex systems that would be 

able to adapt under changing environmental conditions. Their idea was that a population 

of individuals should behave like a natural system, where survival is supported by the 

elimination of useless or adverse properties. A GA is an iterative procedure which 

usually maintains a constant population size and basically works as follows: 



Chapter 4  Evolutionary Algorithms 

47 

 

1. An initial population of individuals is generated randomly or heuristically. 

2. The population is evaluated and assigned a fitness value according to how well it 

solves the problem.  

3. GAs use two operators (crossover and mutation) in order to generate new 

individuals:  

a. Crossover takes two individuals called parents and produces one or two 

new individuals called offspring by swapping parts of the parents. In its 

simplest form the operator works by exchanging substrings after a 

randomly selected crossover point.  

b. Mutation is essentially an arbitrary modification introduced to prevent 

premature convergence to local optima by randomly sampling new 

points in the search space. 

4. During each generation iteration, the individuals in the current population are 

evaluated and given a fitness value.  

5. The better solutions are repeatedly selected. 

6. Steps 2, 3, 4 and 5 are repeated in an attempt to evolve a better solution.  

Genetic Algorithms are by all means applicable to a wide range of problems as 

long as no problem specific knowledge is introduced [18, 19]. 



Chapter 4  Evolutionary Algorithms 

48 

 

4.4. Genetic Programming (GP) 

One of the most exciting uses of GAs is automatic program generation, pioneered by 

John Koza (1992) [49]. GP was originally formulated as an evolutionary method for 

breeding programs using expressions from the functional programming language LISP 

[11]. It addresses one of the central challenges of computer science, ―Automatic 

programming‖, which is to evolve computer programs to do what needs to be done, 

without telling it how to do it [99], allowing computers to solve problems automatically. 

GPs were introduced many years ago and have been used to solve a wide range of 

practical problems, producing a number of human-competitive results and even 

patentable new inventions [82]. GP applies GAs to a population of programs that are 

typically encoded as tree-structures.  

Trial programs are evaluated against a fitness function, and the best solutions selected 

for modification and re-evaluation. This modification-evaluation cycle is repeated until 

a correct program is produced. GP can be viewed as a branch of GA. The main 

difference between the two is the representation of the solution. GP creates computer 

programs as the solution, while GAs create a string of numbers that represent the 

solution. GP has been applied to a wide variety of problems with great success, 

equalling or exceeding the best human-created solutions to many difficult problems [21, 

22, 23, 99]. 

GP, as mentioned before, provides a method for automatically creating a working 

computer program by genetically breeding a population of computer programs. It 

applies the paradigm of Darwin’s theory of evolution (often characterised as ―the 

survival of the fittest‖), using the principles of Darwinian natural selection and 



Chapter 4  Evolutionary Algorithms 

49 

 

biologically inspired operations. It iteratively transforms a population of computer 

programs into new generations of programs by applying analogs of naturally occurring 

genetic operations. These operations also include crossover (sexual recombination), 

mutation, reproduction, gene duplication and gene deletion. The best individuals will 

survive and eventually evolve to do well in the given environment. 

The following steps provide a summary of how GP solves problems:  

1. Generate an initial population of random compositions of the function and 

terminals of the problem (computer programs). 

2. Execute each program in the population and assign it a fitness value 

according to how well it solves the problem. 

3. Create a new population of computer programs. 

a. Copy the best existing programs. 

b. Create new computer programs by mutation. Mutation is an 

important feature of GP. It creates a new child program by altering a 

randomly chosen part of a selected parent program. Two kinds of 

mutations are possible. In the first kind, a function can only replace a 

function, or a terminal a terminal. In the second kind, one entire sub-

tree can replace another. 

c. Create new computer programs by crossover (sexual reproduction). 

The Crossover Operation is the most important primary operation for 

modifying structures in GP. In this kind of operation, two solutions 



Chapter 4  Evolutionary Algorithms 

50 

 

are sexually combined to form two new solutions or offspring. The 

parents are chosen from the population according to the fitness of the 

solution. 

4. Repeatedly select the better populations. 

5. Attempt to evolve better solutions by repeating Steps 2, 3 and 4.  

Preparatory Steps for GP 

A human user communicates the high-level statement of the problem to the genetic 

programming system by performing certain well-defined preparatory steps. The five 

major preparatory steps for the basic version of GP require the human user to specify 

the following [87]: 

1) The set of terminals (e.g., the problem’s independent variables, zero-

argument functions and random constants) for each branch of the program. 

2) The set of primitive functions for each branch of the program to be evolved.  

3) The fitness measure (for measuring the fitness of individuals in the 

population). The most difficult and important concept in GP is the fitness 

function, the objective function GP aims to optimise. It determines how well 

a program is able to solve the problem. 

4) Certain parameters for controlling the run (e.g. size of population). 

5) The termination criterion and method for designating the result of the run. 

(This is simply a rule for stopping. Typically the rule is to stop either on 



Chapter 4  Evolutionary Algorithms 

51 

 

finding a program that solves the problem, or after a given number of 

generations). 

Disadvantages of GP 

The disadvantage of GP – and it is a massive one – is the phenomenal amount of 

computing resources required before any real-world problem can be tackled. Genetic 

programming is often impaired by the huge size of the search space and uses a huge 

amount of processing time even for apparently simple problem domains. 

4.5. Linear Genetic Programming (LGP) 

The linear structures are simply flattened representations of GP tree structures. LGP 

(Fing.30) is a GP variant that, instead of representing an individual as a tree, does so in 

the form of a ―linear‖ list of instructions [56, 98]. LGP employs as genetic material a 

linear program structure whose primary characteristics are exploited to achieve 

acceleration of both execution time and evolutionary progress [64]. 

In linear GP programs are linear sequences of instructions, and the number of 

instructions can be fixed, meaning that every program in the population has the same 

length. Or in other cases the number of instructions can be variable, and consequently 

different individuals can be of different sizes.  

The incentives to use linear GP [82] are that almost all computer architectures 

represent computer programs in a linear fashion, with neighbouring instructions 

normally being executed in consecutive time steps, and that computers do not naturally 

run tree-shaped programs, so interpreters or compilers have to be used in tree-based 

GPs. On the contrary, by evolving the binary bit patterns actually obeyed by the 



Chapter 4  Evolutionary Algorithms 

52 

 

computer, linear GP can avoid the use of this computationally expensive machinery and 

can consequently run several orders of magnitude faster. Moreover, simple linear 

structure lends itself to rapid analysis, and in some ways the search space of linear GP is 

also easier to analyze than that of trees. 

Typical linear GP crossover works by exchanging continuous sequences of 

instructions between parents [69]. The two crossover points are the same in both 

parents, so the existing code does not change its position relative to the start of the 

program, and the child programs have the same lengths as their parents. Homologous 

crossover is often combined with a small amount of normal two-point crossover to 

introduce length changes into the GP population. 

Two types of standard LGP mutation, micro- and macro-mutation, are usually 

employed. Micro-mutation involves an operand or an operator of an instruction being 

changed, while in macro-mutation a random instruction is inserted or deleted [69]. 

4.6. How does GP Differ from Heuristic Approach? 

Heuristics and GP both use search processes in order to solve NP-hard problems. There 

are, however, some differences in their approaches:  

 Genetic systems create possible new solutions, while heuristic systems tend to 

modify single solutions by addition and deletion, not by combination with other 

solutions.  

 Heuristic systems represent their searches as changes in configurations of data, 

while GP searches and changes entire programs or routines.  



Chapter 4  Evolutionary Algorithms 

53 

 

 Heuristics focus on abstract knowledge, while genetic search methods use 

methods inspired by biological genetic operations.  

 Heuristic artificial intelligence (AI) systems tend to be deterministic, while GP 

processes have a basic element of randomness. 

 Genetic systems explore multiple paths simultaneously [8]: each individual in a 

population is a potential solution to the problems the environment poses. AI 

systems tend to focus on one path at a time, and to explore variations in rapid 

succession. 

 GP tends to be any time algorithm; if there is a present need, the current best 

solution is used until something better evolves. In heuristic AI, on the other 

hand, it is more likely that the solution will not work [15, 20]. 

4.7. Local Search Programming (LSP) 

The LSP is a new concept proposed in this research project for the Evolutionary 

Algorithms. It generates new heuristics or programs based on existing ones, using a 

method inspired by both GP [49] and local search [41] techniques. LSP seeks to 

generate new heuristics/programs using local search techniques instead of Genetic 

Algorithm techniques.  

In LSA, the search for an approximate solution is conducted with respect to a 

neighbourhood structure defined on the set of feasible solutions F [44]; where LSA 

starts from an initial solution X and repeatedly replaces X with a better solution in its 

neighbourhood )(xN  until no better solution is found in )(xN . 



Chapter 4  Evolutionary Algorithms 

54 

 

LSP seeks to apply LSAs to programs (i.e. sets of instructions) in order to search in 

their neighbourhood for new and better solutions. The LSA optimises the current 

heuristic by stepping from one heuristic/algorithm to one of its neighbours. The 

neighbourhood is composed of the heuristics that can be obtained by simple local 

changes from the current heuristic. Trial programs are evaluated against its 

parent/origin, and the best is selected to continue searching for optimisation. This search 

pattern is repeated until an optimal program is produced (i.e. local optimisation).  

The main difference between LSA and LSP is that LSA optimises the solution while 

LSP optimises or modifies computer programs as the solution.   

The difference between GP and LSP is that GP applies GAs to a population of programs 

while LSP applies LSA to one program, meaning that GP needs two parents to cross 

from one to the other, while LSP works on one parent/solution and modifies it.  

Features of LSP 

The LSP approach needs only one solution and searches its neighbourhood for better 

solutions. In many cases, there is often only one solution, so a two-parent heuristic or 

algorithm approach cannot be applied, and sometimes no parent is available, so that 

they are generated randomly.  

LSP is a method for automatically creating a working computer program, which 

modifies one program to generate a neighbourhood, following local search approaches. 

It iteratively transforms one solution technique to another by stepping from one solution 

to one of its neighbours. LSP processes proposed to include mutation, reproduction, 

duplication and deletion.  



Chapter 4  Evolutionary Algorithms 

55 

 

Following are the proposed steps in LSP:   

1. Generate an initial solution technique (heuristic). This may be a random 

composition of the function and terminals of the problem (computer programs). 

2. Execute this initial program and assign it a fitness value according to how well it 

solves the problem. 

3. Create a new neighbourhood computer program through one or more of the 

following steps. 

a) Duplicate part of the program. 

b) Create new computer programs by mutation. 

c) Delete part of the program. 

4. The new neighbours (generations) are evaluated against the parent according to 

how well they solve the problem, 

5. The best one is selected to continue in the LSP cycle by repeating Steps 3 and 4. 

4.8. Summary 

This chapter is a literature review of some Evolutionary Approaches (EA); all of which 

share a common conceptual base of simulating the evolution of individual structures via 

processes of selection, mutation and reproduction. The chapter discusses the needs for 

utilising EAs in problem solving; then illustrates some EAs which are: GA, GP, and 

LGP; it present the beginning and the motivations of each, demonstrates how each one 

does work, and does differ from other mentioned approaches.  



Chapter 4  Evolutionary Algorithms 

56 

 

Since LGP- that is a flattened representation of GP- has been adopted to be used in SUA 

to generate new heuristic for SMA; then the differences between GP and heuristics that 

lead to utilising GP have been discussed. 

Finally a new EA concept called ―Local Search Programming (LSP)‖ is introduced, the 

differences between LSP and GP and LSA have been illustrated.  And the motivations 

for this new concept have been discussed.  

The detailed structure and functional specifications of FMAF for solving MSP are 

discussed in the next chapter.   

 



Chapter 5  FMAA 

57 

 

Chapter 5 

Hybrid Multi-Agent Architecture for Meeting Scheduling 

(HMAA) 

 

 

5.1. Introduction  

This research proposes a ―Hybrid Multi-Agent Architecture‖ for solving many NP-hard 

problems. The researcher believes that a method for computing solutions for NP-hard 

problems using the algorithms and computational power available nowadays within a 

reasonable time frame remains undiscovered. Unfortunately, many practical problems 

such as route planning, scheduling, calendar management/meeting scheduling and 

creation of timetables fall into this class. It is essential that these problems are solved, 

and the only possibility of doing so is to use approximation techniques, since no 

straightforward solution technique is known.  

Objectives 

- 

 To clarify the motivation for HMAA. 

 To present the adopted MSP frameworks. 

 To demonstrate the solution approach for MSP with HMAA. 

 To illustrate the architecture and the functional specifications of HMAA for 

solving MSP.  

- 



Chapter 5  FMAA 

58 

 

Researchers tend to use Heuristic techniques [15] because they are generally powerful. 

However, heuristics are not absolutely guaranteed to provide the best solutions, or even 

to find a solution at all. This demands adopting some optimisation techniques such as 

Evolutionary Algorithms (EA) or Evolutionary Computation (EC) [10, 28].  

The present work proposes a new Hybrid Multi-Agent Architecture (HMAA) for solving 

NP-hard problems. This architecture is hybrid because it is a semi-distributed/semi-

centralised architecture. In the proposed FMFA, variables and constraints are 

distributed among small agents exactly as in distributed architectures. But when these 

small agents become stuck, a centralised control becomes active where the variables are 

transferred to a super agent that has a central view of the whole system and possesses 

much more computational power and intensive algorithms such as EAs to find an 

optimal solution.  

This can be done by defining different classes of agents including super agents and 

small agents. Heuristics of small agents that are fixed and limited can be updated by the 

super agent that generates new skills/heuristics using evolutionary approaches. 

Section 5.2 discusses the formalisation of the MSP adopted in this research; Section 5.3 

illustrates the proposed solution approach for MSP with HMAA. The architecture of 

HMAA is clarified in Section 5.4, and Scenarios of HMAA negotiations and MSP 

within HMAA are illuminated in Section 5.5 and 5.6 respectively. Finally functional 

specifications for the architecture have been stated in Section 5.8.  



Chapter 5  FMAA 

59 

 

5.2. Meeting Scheduling Frameworks  

Each meeting xi has a set of attendees which are one or more of the agents. This formal 

definition contains the following elements: 

1. Agents: each agent represents its user. 

2. n variables xi (i=1…n), each representing a meeting, 

3. n domain sets Di (i=1…n), where each Di={t1,t2,…,tm} is a set of timeslots 

which are the possible values of the corresponding variable xi. 

4. Constraints: define which domain values are valid assignments.  

The HMAA implements the following two formalisations for the MSP: 

1) Distributed Constraint Satisfaction Problem (DisCSP):  

DisCSP where MSP is considered as a search problem consisting of a set of distributed 

agents, each one having a set of variables represent meetings {x1, x2..., xn,}, and each 

domain is a set of timeslots, and each agent has a hard constraint CH, which stipulates 

that no two meetings are scheduled at the same time. The goal is to search for the value 

assignment that satisfies the agents’ constraints. 

2) Distributed Constraint Optimisation Problem (DCOP):  

DCOP where MSP is considered is an optimisation problem consisting of a set of 

distributed agents, each one with a set of variables represent meetings {x1, x2..., xn,}, 

and each domain is a set of timeslots, and each agent has a hard constraint CH  

which  stipulates  that no two meetings are scheduled at the same time. The goal of 



Chapter 5  FMAA 

60 

 

the agents is to choose time slots from the domains for the meetings to optimise (i.e. 

minimise) the violation of constraints. 

Two formalisations have been adopted in order to generalise HMAA more and enable it 

to encompass more specifications and needs. This is because in some cases meetings 

must be scheduled, leaving the choice of which meeting to attend to individual 

participants, while trying to minimise the overlapping meetings as much as possible (the 

optimisation problem). In other situations, not scheduling meetings leaves to the initiator 

the opportunity to enter new options or domains for these unscheduled meetings (the 

search problem). Hence, HMAA implements these two options, leaving the users the 

choice of which framework is more suitable to its situation. 

5.3. Solution Approach for Meeting Scheduling within HMAA 

Super Agents and SMall Agents in meeting scheduling architecture HMAA cooperate in 

such a way that the Super Agent is the centre of the whole system. It decides the moves 

that the SMall Agent should follow (the heuristic), in order to overcome a failure, or to 

optimise the current solution. SMall Agents obey the commands of this central agent. 

This central agent is called the super agent, and the other agents dominated by it are 

called small agents. 

The small agents are responsible for autonomously managing the scheduling process on 

behalf the individuals they represent, through negotiation between each other. Agents 

negotiate by having one agent propose a meeting which the other agents accept or reject, 

based on whether or not the proposal fits their own schedules. Each agent knows its 



Chapter 5  FMAA 

61 

 

user's calendar availability, and the meetings to be scheduled with the attendees’ ranks 

in order to act on behalf of its user. 

As mentioned in the previous section, the scheduling activity is regarded as an 

optimisation problem for which the best feasible schedule is sought, or a search problem 

for which a feasible schedule is sought.  

Within the context of this research project the researcher has proposed a solution 

technique for meeting scheduling and repair strategy for the attained solution. The 

heuristic considers the different parameters (the available time domains for the 

meetings, and meeting and attendee rankings) in the scheduling process. If there is a 

violation, the repair strategy then starts from the initial violated solution and enters a 

loop that navigates the search space, stepping from one solution to one of its neighbours. 

The neighbourhood is composed of the solutions that can be obtained by a local change 

from the current one.  

However, the capabilities of the small agents are restricted, since they adopt fixed 

negotiation skills that would sometimes fail to attain a feasible solution, so that it 

reaches a dead-end - i.e. there is no possible value for the current variable. To overcome 

these limitations, the small agents would pass on their situation to a super agent which 

has more sophisticated algorithms, based on more powerful functions that would 

generate new better solutions. This super agent is capable of generating new 

heuristics/negotiation skills using evolutionary approaches like Genetic Programming 

(GP). 



Chapter 5  FMAA 

62 

 

5.4 Hybrid Multi-Agent Architecture Proposed  

The proposed architecture is hierarchical as depicted in Fig. 3. Which are, from top to 

bottom: the Super Agent (SUA) layer, the Facilitator Agent (FA) layer, the Small Agent 

(SA) layer and the Interface Agent (IA) layer. Super Agent (SUA) flanked on one side 

by the Facilitator Agent (FA) and FA on the other side flanked by the Small Agent 

(SMA). The SMA adjoining the (FA) layer and the Interface Agent (IA); the latter is 

only connected to the SMA. The arrows are interactions between the architecture 

components. Each pair of adjacent layers can communicate with each other by 

exchanging data and messages.  

The interface agent (IA) is reactive agent: it responds to changes in the environment; 

receives input from users then update the database with the input data, and exchanges 

data with the SMA (scheduling request). Each IA correlated on one SMA is the window 

of this SMA to the external environment, where SMA can perceive the environment, 

receive input from the environment, and present the attained results to the external 

environment through this IA. 

The SMA is a Believe Desired Intention (BDI) small agent, cannot perform complex 

computations, but rather receives data from the IA or FA, incorporates small algorithms 

to accomplish specific tasks, and sends the results back to them. SMA can receive data 

from the meeting database and input updated data -the assignment field- to the same 

database. SMAs are interacting by sending and receiving messages through FA. 

The FA is the central agent, like a server agent; any two or more agents who want to talk 

or exchange messages or data do so through the FA. The FA knows the agents’ names, 



Chapter 5  FMAA 

63 

 

IDs and addresses or locations, so it forwards the messages it receives to the 

corresponding agents. Any new agents added by the administrator or environment 

should be registered in the FA with their names, IDs and locations, which is why the FA 

is considered to be a reactive agent, FA receives data from environment (administrator), 

exchange data with SMAs (messages ) and with SUA (heuristics).  

Finally, the SUA is a BDI agent, performing the same tasks as the SMA, but it can have 

very large computational power and can implement computationally intensive 

algorithms like EAs that find more solutions and perform better for NP-hard problems. 

Meetings are variables to be assigned; they are the problems that the system HMAA 

would find a solution or value for. SMAs are the only agents responsible for assigning 

values or finding solutions for the problem; they can read data and update values. SUAs 

can read stored data from meetings in order to be able execute their algorithms, but 

cannot update values; they pass the result (heuristic) to the FA who forwards it to the 

corresponding SMA, which updates the values for the meetings according to advice 

received from the SUA in order to overcome the failure or to reduce the violation.  

One SUA can be defined and large number of SMAs and IAs can be initialised, where 

each SMA correlated to one IA. 



Chapter 5  FMAA 

64 

 

 

Fig. 3: HMAA Architecture 

Legend 

Administrator 

 

Users 

 

Interaction 

 



Chapter 5  FMAA 

65 

 

5.5. Scenario: Hybrid Multi-Agent Architecture (HMAA) Negotiations 

 

 

Environment Interface 

agent 
SMall agent Facilitator 

agent 
Super agent NP-hard 

problem DB 

Define new user 

Name, location 
Register No,  

Create SMA 
 

Create IA 

Send registered 
users 

Notify rest users 
Enter NP-hard 

problem data 
Create NP-

problem and store 

correlated data 

Request to 
solve NP-

problem Forward 
request 

to SMA 
Request  

Correlated data 

 

Propose solution  
 

Negotiation with 

correlated  
Agents  

through FA 

 
Assign the best 

gained value 

 

Forward 

negotiation 

Fig. 4: HMAA scenario 



Chapter 5  FMAA 

66 

 

 

Figs 4 and 5 illustrate how the proposed HMAA would work in tackling NP-hard 

problems. Each new user has to be registered with the FA by the administrator who 

Notify agents 

with the 

assigned value 

Forward 

notification 

Calculate 

violation, if 

unacceptable 

request help 

from SUA 

Forward 

request 

Request data 

 

Perform 

extensive 

algorithms  

 

Send gained 

solutions 

heuristic 

Forward  

heuristic 

Send 

result 

Display 

results 

Forward 

heuristic 

Fig. 5: HMAA scenario 



Chapter 5  FMAA 

67 

 

assigns the new user ID, creates the SMA and IA, sends details of the registered users to 

the new user and finally notifies the other users of the new user. 

If logged users add NP-hard problems to be solved later, they have to enter the problem's 

data through IA, which would create the problem in the database and store the correlated 

data entered by the user. The user can ask for a solution or solutions for the problems 

entered through IA, which would at that point send the request to the SMA. Once the SMA 

receives the request, it inquiries the correlated stored data to be undertaken while solving 

the problem. The SMA then executes its heuristic and negotiates with the other correlated 

SMAs through the FA who forwards the messages between them with the aim of finding a 

solution for the specified problem. The best obtained solution is forwarded to all the 

correlated SMAs and stored in the problem database.  

If this solution is unacceptable, the SMA asks for help from the SUA, which executes a 

much more powerful and extensive algorithm in order to find a better solution. Once the 

SUA receives a request for a new heuristic to solve the problem, it starts its evolutionary 

algorithms to generate a new heuristic for small agents. Once the SUA finds the solution it 

passes it to the related SMA through the FA. The SMA uses the newly received heuristic to 

reschedule the meetings, in order to overcome or minimise the violation. 

5.6. Scenario: MSP within HMAA 

The process starts when an employee decides to hold a meeting. As shown in Fig. 6; he 

registers in the HMAA by defining his name and location to the FA which stores this 

information, assigns an ID, create an SMA and an IA for him and send him a list of 

logged users.  The user enters a meeting request, defines a list of time domains for this 



Chapter 5  FMAA 

68 

 

meeting and a list of attendees from the list of logged users with their ranks to attend the 

corresponding meeting through the IA.  

The IA accepts the data, creates a meeting as a variable to be assigned a value, and 

sends the request to the SMA. The SMA initiator proposes one time slot and sends the 

proposal to the FA for forwarding to the other SMA attendees who would check their 

calendars and send replies as to the proposal’s acceptability or otherwise to the FA to 

send back to the SMA initiator. When the latter has received all the replies, it calculates 

the violation (i.e. how many conflicts replies there are). If the violation values greater 

than 0, it tries to find a better proposal, by putting forward the next time slot from the 

domain. If there is no better solution, he sends the best one available to the FA to 

forward to SMA attendees for confirmation (optimisation problem), and updates the 

meeting variable with the best gaining value. 

If a violation remains after all the meetings have been scheduled, then the SMA contacts 

the SUA through the FA to try to find a better solution by performing extensive 

algorithms for the NP-hard problem. The SUA interrogates the database to obtain the 

relevant data and executes its evolutionary algorithms. Once the SUA finds a heuristic 

with better results it passes it to the corresponding SMA through FA, who will follow 

the recommendations of SUA, and update the meetings' values accordingly.    



Chapter 5  FMAA 

69 

 

 

Fig. 6: Sequence diagram for Meeting Scheduling Problem within HMAA 

5.7. Full Functions Specifications of the HMAA 

5.7.1 Interface Agent 

The functions of the Interface Agent are as follows: 

Small agents Super agent Facilitator Meetings 

Initialize 
Initialize 

Register 

Interface agent 

List of attendees 

Send the request 

Initialize 

Proposal time  

 

 Spread proposal to 

corresponding attendees 

 Reply  

Forward the reply to 

initiator 

Calculate violation and 

propose better proposal 

Confirm best proposal 

Forward conformation  

Display result 

Query  

If there is violation send the 

situation to super agent 

Forward request 

to overcome  

Perform EA 

and send result 

Forward to 

correlated agents 

Query 

Results 

Request meeting 

List of domain 



Chapter 5  FMAA 

70 

 

1. Create a new meeting in the Data Base (DB): the user from the external environment 

can request a meeting to be scheduled through the Interface Agent (AI), who would 

response by asking for the meeting parameters. 

2. Add meeting parameters (attendees with ranks, time domain): the user adds the 

meeting parameters (attendees with ranks, time domain) through interface agent. 

Who would accept the entrance, and accordingly create a new meeting with the 

entered parameters to be scheduled. 

3. Fire the request of scheduling: once the user request scheduling for the unscheduled 

meetings through the IA, the IA contacts the corresponding small agent a forward 

the request to it. 

4. Display results for the users: the user can inquiry his scheduled meetings from the 

IA, who would inquiry them from meeting database. 

5.7.2 Small Agent 

The functions of the Small Agents are as follows: 

1. The scheduling for unscheduled meetings: once the small agent receives a request to 

schedule list of meetings he would: 

a) Inquiry the corresponding parameters (attendees and their ranks, time domains) 

for all the correlated meetings from the meeting database. 

b) Arrange the meetings according to their calculated priority, which based on 

these parameters. 



Chapter 5  FMAA 

71 

 

c) Starts by the most important meeting-highest priority- and initiate a proposal for 

it from the corresponding domain. 

d) Sends the proposal to the corresponding SMA attendees through the facilitator. 

e) The facilitator forwards the proposal the corresponding SMA attendees. 

f) Each SMA receives a proposal for a meeting finds the number of meetings he 

has in the same proposed timeslot (ex. 0 means no other meeting, 1 means 

having one meeting in the same proposed timeslot, 2 mean two meetings…). 

g) Forward this number to the FA, who would pass it to the SMA initiator. 

h) When the SMA initiator receives all reaction from all the SMA attendees, he 

would calculate the violation for this proposal, and keep it as the best proposal 

until he finds better proposal with less violation. 

i) If the violation is more than 0, then the initiator sends the next proposal with the 

corresponding SMA attendees to the facilitator. And repeat steps (d-h) for all the 

time domains for the corresponding meeting. 

j) Sends conformation to the corresponding SMA attendees through the FA with 

the solution, and update the meeting values in the database with this gained best 

proposal. 

k) Accordingly all the SMA attendees would update their calendar with this 

confirmed meeting. 

2. Repeat steps (c – k) for all the rest of the meetings.   



Chapter 5  FMAA 

72 

 

3. Calculate the total violation: if the violation is unacceptable, the SMA would contact 

the SUA through the FA, and pass the existed situation in order to try to overcome 

the failure or reduce the violation. 

4. Once the SMA's receive new solution approach/heuristic from the FA, they obey to 

the SUA recommendations and update their heuristic accordingly. 

5.7.3 Facilitator Agent 

The functions of the facilitator agent 

1. Receive request for new user with name and location, give him ID, an register the 

new user in FA: in order to identifying a new user, the admin from the external 

environment should enter a user name and the location to Facilitator Agent, the FA 

would react and response to the entrance by giving him ID, and register the new 

user in FA. 

2. Create SMA and IA for the new user and send him the logged users: the FA creates 

SMA and IA for the new user and sends him the logged users who are already 

registered to the FA. 

3. Communication and cooperation between SMA and SUA through the messages 

between them. 

5.7.4 Super Agent 

 The functions of the super agents 



Chapter 5  FMAA 

73 

 

2. Generate new heuristics for SMA by executing EA: once the SUA receives the 

request through the FA, it would ask for information from the meeting database. 

The SUA execute evolutionally intensive algorithms like GP; this would hopefully 

find better new solutions and better schedules for the current situation. 

3. The SUA passes the solution to the FA to forward it to the corresponding.  

4. Calculate violation. 

5.8 Summary 

The chapter discusses the proposed HMAA; a clarification for the motivations to this 

new architecture has been stated. Then the adopted formalisations for solving MSP with 

HMAA have been discussed, these formalisations are: DisCSP and DCOP. Two 

formalisations have been adopted in order to generalise HMAA more and enable it to 

encompass more specifications and needs. This is because in some cases meetings must 

be scheduled, leaving the choice of which meeting to attend to individual participants, 

while trying to minimise the overlapping meetings as much as possible (DCOP). In 

other situations, not scheduling meetings leaves the initiator the opportunity to enter 

new options or domains for these unscheduled meetings (DisCSP). Hence, HMAA 

implements these two options, leaving the users the choice of which framework is more 

suitable to its situation. 

In addition to all of the above, the chapter shows the architecture of HMAA which is 

hierarchical architecture composed of four adjacent layers: SUA, FA SMA, and IA. And 

the relationship between these layers has been clarified.  



Chapter 5  FMAA 

74 

 

Scenarios of HMAA negotiations and MSP solution approach within HMAA have been 

illuminated. And finally full functions specifications of the HMAA have been situated. 

The construction of SMA, which is the basic part of HMAA, is introduced in the 

following chapter.  

 



Chapter 6  Small Agent Heuristic 

75 

 

Chapter 6 

Small Agent Heuristic 

 

6.1. Introduction 

This chapter is discussing fundamental part of HMAA for solving MSP which is SMA. 

SMAs are responsible for accomplishing the scheduling process on behalf of their users, 

and their main seek is to find timeslots from each domain to assign the corresponding 

meeting to, where all the attendees accept that assignment. The goal is to find feasible 

or optimal (depends on the chosen framework) solution. The proposed heuristic -used 

by SMA- is prioritised/ranked heuristic; this heuristic gives initial solutions for the 

systems. The heuristic starts by ranking the meetings –according to proposed equation -

in order to schedule the most difficult ones –with highest rank-respectively.  

Objectives 

 

 To illustrate SMA main task in HMAA. 

 To illustrate the proposed algorithm used by SMA to accomplish the 

task. 

 To presents the repair strategy used by SMAs in order to improve 

their obtained violated solutions. 

 

 

 



Chapter 6  Small Agent Heuristic 

76 

 

After that the proposed local search repair strategy for the violated solutions is 

illustrated in Section 6.3. Section 6.4 discusses the platform used for developing a 

prototype, and some of the advantages of the adopted platform. Screenshots for the 

implemented prototype are in Appendix A. 

6.2. A Prioritised/Ranked-Meetings Scheduling Heuristic 

Within this research project, a new meetings scheduling heuristic is proposed. This 

prioritised/ranked heuristic gives initial solutions for the system. Each small agent is 

responsible for managing its local meetings. Each meeting has a set of domains and a 

set of ranked attendees; the rank of an attendee tells how important the attendee is to the 

meeting. The small agents are responsible for finding timeslots from each domain to 

assign the corresponding meeting to, where all the attendees accept that assignment. The 

goal is to find feasible or optimal (depends on the chosen framework) solution.   

The heuristic starts by ranking the meetings in order to schedule the most difficult ones 

firstly. The rank of a meeting measures how difficult it is to schedule that meeting. The 

ranking for the meetings is calculated according to the following equation (5.1): 



Chapter 6  Small Agent Heuristic 

77 

 

 

 

The ranking for a meeting Xi is calculated by asking all the attendees of the meeting Xi 

how busy they are in the domain Di for meeting Xi. Each attendee replies by sending 

“How_Much_Busy” message, ―How_Much_Busy‖ message is a percentage value 

(between 0.0 and 1.0) indicates how busy the corresponding attendee is in Di. 

When How_Much_Busy value is received from a specific attendee, this value is 

multiplied by the stored attendee rank (entered by the user). The summation of this 

multiplication for all the attendees of the corresponding meeting (Xi) gives the rank of 

this meeting Rank (Xi). 

By this; if the attendee is very busy in the domain (has many meetings already 

confirmed in one or more of the domain’s timeslots) of a specific meeting, then 

How_Much_Busy message value for the corresponding meeting will be high. If the 

attendee is busy in the entire domain; then the How_Much_Busy is ―1.0‖, and if he is 

free then How_Much_Busy is ―0.0‖. Each time the attendee is busier, the 

How_Much_Busy message value is increased. On the other hand the higher ranked 

attendees (high attendee rank value); their busy messages values affect more the 

meeting's rank.  

Example 1: in meeting X1, attendee A1 is busy in (9/10) of  X1 domain ―0.9 busy‖ and 

his rank in that meeting ―0.1‖; attendee A2 is free in X1 domain ―0.0 busy‖ and his rank 

in ―0.9‖ then the meeting rank is: 

Rank (Xi) = ∑ (rank (Attendee)* How_Much_Busy (Attendee, Di)) 

 

(6.1) 



Chapter 6  Small Agent Heuristic 

78 

 

Rank (X1) = ((0.1*0.9) + (0.0*0.9)) 

Rank (X1) = 0.09 

While in another meeting X2, A1 is free ―0.0 busy‖ and his rank ―0.5‖, while A2 is ―0.5‖ 

busy and his rank ―0.5‖ then the rank for X2 is: 

Rank (X2) = ((0.5*0.0) + (0.5* 0.5)) 

Rank (X2) = 0.25 

From the results above it can be seen that X2 is ―more difficult‖ to schedule than X1, 

although A1 is busier (0.9) in X1 than A2 (0.5) in X2; this is due to the fact that A2 in X2 

is more ranked/important (0.5) than A1 in X1 (0.1). Which implies that the influence of 

the unavailability/ busyness of the more ranked attendees on the meeting rank is higher.   

Example 2: if there are two agents A1, A2 and A1 has a meeting (X 1) on 1st June. A1 has 

initiated another two meetings (X 2, X 3) between (A1, A2) with the domains D2= {2nd 

June, 3rd June}, and D3= {1st June, 3rd June}) respectively. The ranks for the attendees 

(A1, A2) in X 2 are {0.9, 0.1}, and in X 3 are {0.4, 0.6} respectively.  

Each attendee of A1 and A2 calculates ―How-Much-Busy‖ with the following equation: 

How_Much_Busy (A1, D2) = how busy A1 is in D2/ size of D2= 0.0/2.0 = 0.0 

How_Much_Busy (A2, D2) = how busy A2 is in D2/ size of D2= 0.0/2.0 = 0.0 

How_Much_Busy (A1, D3) = how busy A1 is in D3/ size of D3= 1.0/2.0 = 0.5 

How_Much_Busy (A2, D3) = how busy A1 is in D3/ size of D3= 0.0/2.0 = 0.0 

Algorithm 1 in Fig. 7 shows the prioritised scheduling algorithm used by the SMAs to 

accomplish the scheduling task; the algorithm starts by calculating the rank for each 



Chapter 6  Small Agent Heuristic 

79 

 

meeting according to equation (6.1); and then orders the meetings accordingly. After 

which it schedules the meetings by rank by giving scheduling priority to the most 

difficult meetings, which is the one with the maximal rank value (Fig. 7). 

 

Fig. 7: prioritised scheduling 

So the ranks for the meetings are: 

 

In this research project, two algorithms have been proposed:  

(i) Optimisation problem solving: Fig. 8 shows Algorithm 2; the scheduling pseudo 

code for optimisation problems. In this algorithm the initiator starts scheduling the most 

difficult meeting (i.e. with maximum rank which in example2 is X 3), as shown in Fig. 

8; the initiator sends first timeslot as a proposal for the meeting and waits for replies 

from the attendees. Each attendee will reply with Reply-Violation message, which 

contains a number indicating how many meeting he has got in the same proposed 

timeslot i.e. Number 0 indicates that there are no other meetings in the proposed 

Algorithm1 

{ 

Find meetings-ranks      

Repeat for all unscheduled meetings   

{ 

Schedule the most difficult meeting with the highest rank 

} 

} 

 

Rank (X2) = ((0.9*0.0) + (0.1*0.0)) 

Rank (X2) = 0.0 

 

Rank (X3) = ((0.4*0.5) + (0.6*0.0)) 

Rank (X3) = 0.2 

 



Chapter 6  Small Agent Heuristic 

80 

 

timeslot. The more meetings the attendee has in the specific timeslot, the higher Reply-

Violation value sent.  

The initiator tries to find the timeslot from the domain for the corresponding meeting 

with violation 0, the initiator calculates the violation according to the following 

equation (6.2): 

 

Each Reply_Violation value received from specific attendee is multiplied by the rank of 

the corresponding attendee, and the summation of this multiplication for the 

corresponding meeting's attendees gives the corresponding meeting's violation. The 

higher Reply_Violation values increase the meeting violation, on the other hand the 

more ranked attendee affect more this violation. 

Domain (xi) = {di1, di2… din} where the dij are timeslots 

Violation (dij) = ∑ (rank (attendee)*Reply_Violation (attendee, dij)) 

 

(6.2) 



Chapter 6  Small Agent Heuristic 

81 

 

 

Fig. 8: Scheduling Pseudo Code for Optimisation problems 

In Example 2, for meeting X 3 the violations of its domains (1st June, 3rd June) are: 

0)2(

)06.0()04.0()2(

4.0)1(

)06.0()14.0()1(

Dviolation

Dviolation

Dviolation

Dviolation

 

Once the algorithm finds a timeslot with violation 0 (which is D2), it assigns that 

meeting to that timeslot. Otherwise, it assigns the meeting to the timeslot with the 

minimal violation. The initiator agent then sends a confirmation message with the 

assignment to all attendees. Each attendee receives this confirmation message, adds the 

corresponding meeting to its local calendar at the specified timeslot. The other meetings 

already scheduled at the same timeslot are called ―affected meetings‖.  

Algorithm2  
Schedule (Meeting M) 

{  
 Choose first time slot from the domain as Best_Proposal; 
 Send Best_Proposal to all the attendees; 
 Calculate the Best_Proposal_Violation;  
 Loop until Best_Proposal_Violation is 0 or no more timeslots in the domain 
 { 
  Choose next time slot from the domain as Proposal2; 

Send Proposal2 to all the attendees; 
  Calculate the Proposal2_Violation;  

If ((Proposal2_Violation <= Best_Proposal_Violation) 
{ 

Best_Proposal = Proposal2; 
   Best_Proposal_Violation =Proposal2_Violation;  

} 

 
    
       
 } 
 Send Best_Proposal to all the attendees as confirmation  
  
} 

 

 

 

 



Chapter 6  Small Agent Heuristic 

82 

 

The Reply_Violation value for those affected meetings (if they exist) are updated in 

order to consider the new confirmed meeting as a violation for those affected meetings; 

and notification messages to the initiators for those affected meetings are sent; in order 

to update the violation of the meetings that are scheduled at the same timeslot.   

This process is reiterated for each meeting until all meetings have been assigned. In 

Example 2, therefore, at the end of this stage the meeting X2, X 3 would be assigned to 

3rd and 2nd June respectively.  

(ii) Search problem solving: Fig. 9 shows Algorithm 3; scheduling pseudo code for 

search problems. As can be seen in the figure the initiator starts by node_consistency. 

Node consistency is the method used for unary constraint. It determines if a value is 

consistent or not, if it is inconsistent, then that value is removed from the domain of the 

variable. 

Node_consistency in MSP means exclude unavailable timeslots. In Example 2; 

node_consistency would remove the timeslot ―1st June‖ from X3 domain; this is 

because A1 has got meeting X1 in ―1st June‖; hence this timeslot is unavailable for A1. 

Node_consistency is applied in search problem because there is no need to propose 

timeslots that are not available for the initiator itself.  

After node_consistency the initiator starts as shown in Fig. 9 with the most difficult 

meeting ;X3 in example2 ; sends a proposal from the available domain (3rd June), and 

waits for replies from the attendees. Each time the initiator receives Reply_Violation 

message from specific attendee not equals zero, then executes “excluding (timeslot, 

attendee)‖ function that excludes this timeslot from the rest of the meetings if the 

corresponding attendee attends.  



Chapter 6  Small Agent Heuristic 

83 

 

Example 3: agent A wants to schedule two meetings with another agent B: M1 with 

domain {1st June, 2nd June}, and M2 with domain {1st June, 2nd June, 3rd June} with 

agent B, where M1 is more difficult than M2. Agent A starts with M1, proposes firstly 

(1st June), if A receives Reply_Violation not equals zero –means B has got a meeting in 

1st June- A removes 1st June from the domain of M1 and M2; so he would not propose 

1st June during the scheduling of M2. This due to the fact that B is also attending M2 

and A already knows –during scheduling M1-that B is busy in 1st June, hence no need 

to propose 1st June again while already know the answer. This would reduce the 

scheduling time and load; hence no need to ask about the same timeslot the same 

attendee twice.  

After calculating violation not equals zero, the initiator tries the next time slot until 

finding timeslot with violation zero, otherwise the corresponding meeting would not be 

schedule. Each meeting he schedules a meeting, he performs arc_consistency. 

Arc_consistency is used for binary constraints; given two variables X and Y then the 

constraint graph is consistent if for every possible value of X there is a value of Y that 

satisfies the constraint between X and Y.  

Arc_consistency in MSP excludes the already assigned timeslot from the rest of the 

meeting; since they become unavailable to the initiator itself. Returning to Example 2; 

when the initiator proposes ―3rd June‖ for X3, and receives Reply_Violation messages 

from the all the attendees equal zero, then the initiator schedule X3 in ―3rd June‖, and 

performs arc_consistency that would remove timeslot ―3rd June‖ form the domain of 

the rest of the meetings (e.g. form the domain of X2). This is because ―3rd June‖ 

becomes unavailable to the initiator itself.  



Chapter 6  Small Agent Heuristic 

84 

 

In Example 3; when scheduling meeting M1 in 2nd June, arc_consistency removes ―2nd 

June‖ form the domain of M2; then when scheduling M2 the initiator already removed 

timeslots {1st June (node_consistency), 2nd June (arc_consistency)}since he already 

has answers for them, then the initiator proposes just one timeslot in scheduling M2 

which is ―3rd June‖. 

 

Fig. 9: Scheduling Pseudo Code for Search problems 

But why not excluding timeslots that are not available in ―optimisation problem‖? This 

is because in dealing with the problem as optimisation problem, the initiator has to 

schedule the meeting in the minimum violated timeslot, which means even if the 

timeslot is not available for some attendees, there is a probability that this time slot is 

the minimum violated one.  

Algorithm3  
Schedule (Meeting M) 
{  

  

 Loop until Best_proposal_violation is 0 or no more timeslots in the domain 
 { 
  Choose timeslot from the domain as Best_proposal   

Send Best_proposal for all the attendees 
  Calculate the Violation of Best_proposal  

If ((Best_proposal_violation  is 0) 
{ 

 
   Send Best_Proposal for all the attendees as confirmation  
   Arc_consistency (timeslot) 
  } 
 

Else  

{ For all attendees that Reply-Violation is not zero    
Excluding (timeslot; attendee)  

  } 
    

     
 } 
  

  
} 

 

 

 

 



Chapter 6  Small Agent Heuristic 

85 

 

6.3. A Simple Local Search Repair Strategy 

As has been discussed in the previous section, the Prioritised/Ranked-Meetings 

Scheduling heuristic for optimisation problem solving does schedule all the meetings 

with the minimum violation. In order to search for better scheduling that may reduce the 

violation; a simple Local Search Approach (LSA) repair strategy has been developed.  

In LSA, the search for an approximate solution is conducted with respect to a 

neighbourhood structure defined on the set of feasible solutions F . For every 

FxNFx )(,  is a neighbourhood function. Feasible solutions in )(xN  are called 

neighbours of x, or solutions adjacent to x. For example the Simplex algorithm is a local 

search algorithm where   )(xN  consists of all basic feasible solutions which differ from 

x in only one basic column [44]. 

LSA starts from an initial solution X and repeatedly replaces X with a better solution in 

its neighbourhood )(xN  until no better solution is found in )(xN , where )(xN  is a set 

of solutions obtainable by slight perturbations  

The iterative steps for LSA are based on modifications of a single solution as follows 

[41]: 

 Start with a solution 

 Improve it, aiming at a better solution 

In the proposed repair strategy, a local search neighbourhood structure has been defined 

using simple moves involving only timeslots and meetings. The move involves two 

overlapped meetings (Xi, Xj). Two meetings X and Y are considered to be overlapped if 



Chapter 6  Small Agent Heuristic 

86 

 

each meeting has in its domain the timeslot which the other meeting is assigned to. 

Swapping two overlapped meetings X and Y means reassigning X the timeslot that Y is 

already assigned to, and reassigning Y the timeslot that X was assigned to before the 

swap.  

 

Fig. 10: Local Search Pseudo Code 

Fig. 10 shows the pseudo code for Algorithm 4 ―the local search repair strategy‖; the 

algorithm loops for all the violated meetings, starting by the most violated ones 

respectively. Firstly, it finds the neighbourhoods for the most violated meeting M, then 

swaps M with one of its neighbours and recalculates the total violation.  If the violation 

decreases, then confirm this swapping and restart the local search process. If the 

Algorithm4  

{ 

         List of violated meetings; 

         Calculate the total violation; 

         Loop for all violated meetings 

 

 Find Neighbourhood of M; 

 Loop for all neighbour X of M   

 { 

  Swap X with M; 

  Recalculate the violation;  

  If the new violation is less than the previous violation 

  { 

   Exit loop; 

Restart the local search process   

    

  } 

 

   

  Else if the new violation is greater than the previous violation 

  { 

   Undo-swap  

  } 

 } 

} 

 

 



Chapter 6  Small Agent Heuristic 

87 

 

swapping increases the violation, then undo this swapping and try to swap M with the 

next neighbour.  

This is iterated for all the neighbours of the corresponding meeting. Then another local 

search for better neighbourhood is starting by swapping the next violated meeting with 

one of its neighbourhood. The neighbourhood of meeting M is generated by the 

function in Fig. 11. 

 

Fig. 11: Neighbourhood Function 

The meeting M1 is considered to be one of M neighbourhood, if M1 is assigned to 

timeslot which is in M domain; and M is assigned in to timeslot that is in M1 domain.   

In Example 2, we have the followings: 

Meeting X1 has domain {1st June, 2nd June, 3rd June} and is assigned to (1st June) 

Meeting X2 has domain {1st June, 3rd June} and is assigned to (3rd June) 

Algorithm5 Find_Neighbourhood (M) 

{ 

 i=0; 

For (d=M.domain[0]  to  M.domain[final]) //search in domain (M) 

 { 

For (M1=meeting[0] to all-meetings)  //search in all the meetings 

  { 

   If (M1.assignment ==d) //if meeting (M1) assigned in the timeslot (d) 

   { 

For (d1=M1.domain [0] to M1.domain[final]) // search in domain (M1) 

   { 

    If (M.assignment==d1) //if meeting (M) assigned in timeslot (d1) 

{ 

    M.Neighbourhood[i]=M1; //then M1 is neighbour to M 

    i++; 

    Break; 

    } 

} 

   } 

    

  } 

 } 

} 



Chapter 6  Small Agent Heuristic 

88 

 

Meeting X3 has domain {2nd June, 3rd June} and is assigned to (2nd June) 

Then the neighbourhood of X1 is {X2}. So the algorithm could swap X1 with X2 

(overlapped in {1st June and 3 of June}); if needed. 

Each agent first assigns all the meetings to timeslots, and then performs this simple 

local search repair strategy on the solution in order to improve the solution (i.e. to find a 

better solution with a small number of violations). 

6.4. Implementation Platform 

The computer world currently has many platforms, and it has become increasingly 

difficult to produce software that runs on all of them. The Java Platform, however, 

provides an ideal solution to this with its Java Virtual Machine [ 2, 71, 77]. 

In this research project Java has been adopted for developing a prototype for the 

HMAA. Some of this platform’s advantages will now be discussed. According to 

JavaSoft's White Paper [26], the Java Base Platform is currently embedded in the most 

widely used Internet browser, Netscape Navigator, Microsoft Internet Explorer (applet), 

workstation and network operating systems [12, 75]. 

Java is, at its most basic, a programming language created by Sun Microsystems. 

However, it has developed from being just a programming language into a platform 

designed for running highly interactive, dynamic and secure applets and applications on 

networked computer systems [26]. Being interactive and dynamic, the Java Platform has 

benefits not only for the developer and support personnel, but also for the end user.  



Chapter 6  Small Agent Heuristic 

89 

 

Developers can write object-oriented, multithreaded, dynamically linked graphical end-

user applications using the Java language. The platform has built-in security, exception 

handling and automatic garbage collection called GC (a schema of memory 

management that automatically frees up space, based on the reachability of the object 

blocks of memory, sometimes after all references to the memory have been redirected), 

so that designers need not worry about cleaning up dead memory, because the 

responsibility for releasing unused memory has been moved from the developer to GC.  

This would reduce the probability of memory leaks [26]. 

Java is:  

 Cross-Platform  

 Object-oriented  

 Multithreaded  

 Distributed  

One of the key components of Java’s success in addition to the excellent programming 

language and cross-platform support is its approach to distributed programming. Java 

code can be downloaded dynamically from remote servers and interpreted within a local 

application or applet. A compiled Java program is distributed as a set of files known as 

class files (one Java class per file) and is generally run through an interpreter (known as 

the Java Virtual Machine, or JVM) on the client.  

The JVM handles the platform-specific calls such as GUI, file-system and networking 

calls, and also performs run-time garbage collection to remove unused objects from the 

memory. This garbage collection process -as have been mentioned-removes the burden 



Chapter 6  Small Agent Heuristic 

90 

 

of memory management from the programmer’s shoulders, resulting in drastically fewer 

runtime programming errors.  

Java also supports distributed object programming (the initiation and use of objects 

running on other servers) through its native protocol, Java RMI, and also through 

CORBA. This means that a client application running on a Palm organiser could initiate 

remote objects written in any CORBA-compliant language on nearly all operating 

platforms [31].  

6.5 Summary 

The chapter illustrates the Small Agent task of finding timeslots from each domain to 

assign the corresponding meeting to, where all the attendees accept that assignment. The 

goal is to find feasible or optimal (depends on the chosen framework) solution. The 

proposed heuristic -used by small agents- is prioritised/ ranked heuristic that gives 

initial solutions for the systems. The heuristic starts by ranking the meetings –according 

to proposed equation -in order to schedule the most difficult ones –with highest rank-

respectively.  

After that the proposed local search repair strategy for the violated solutions has been 

illustrated. A Local search neighbourhood structure has been defined using simple 

moves involving only timeslots and meetings. The move involves two overlapped 

meetings, it swaps these two overlapped meetings, each meeting in the swapped 

meetings has in its domain the timeslot for which the other meeting has been assigned 

to.  



Chapter 7  Super Agent Construction 

91 

 

Chapter 7 

Super Agents Construction 

 

 

7.1. Introduction 

The super agent task is fired when one of HMAA small agents failed to find a zero 

violation solution, using its predefined heuristic. Its task is to generate a new heuristic 

for the corresponding agent, which produces the optimal solution for the current 

situation. Because a super agent has more computational power, it can implement 

evolutionary approaches in order to achieve its goal. The predefined small agent 

heuristic is used as a parent heuristic in the evolution process. Super agent keeps 

generating and trying new generations of heuristic until the one that produces optimal 

solution is generated. Then it sends the optimal heuristic to the corresponding small 

agent to be used to overcome the failure.  

Objectives 

 

 To illustrate the performance of SUA in HMAA. 

 To present two types of SUA (LGP and LSP), with two SUAs for 

each type.  

 To present and illustrate the algorithm for each SUA. 

 To present case that illustrates SUAs algorithms and results. 

 



Chapter 7  Super Agent Construction 

92 

 

Two types of super-agent have been implemented in the HMAA, with two SUAs for 

each type. Section 7.2 discusses the first type that consists of two SUAs called 

LGP_SUAs namely; superagentLGP and superagentLGP_SP; these SUAs use the LGP 

approach to generate new heuristics. Section 7.3 illustrates the second type formed by 

the LSP_SUAs; superagentLSP and superagentLSP_SP that use the LSP approach to 

generate new heuristics. Screenshots for the implemented HMAA prototype is in the 

Appendix A. 

7.2. LGP_SUAs (superagentLGP/superagentLGP_SP)   

In HMAA, the SUA's task starts after receiving from the SMA two messages: the first 

one includes a list of meetings with all their details, and the second one contains the 

heuristic of the SMA (used to accomplish the scheduling process) represented as a 

program  

In HMAA, two LGP_SUAs using the LGP approach have been implemented 

(superagentLGP and superagentLGP_SP). As we have mention in Chapter 7; LGP 

needs to crossover two parents' heuristics in order to generate new heuristics' children. 

The two mentioned SUAs receive one of the parent heuristics from the SMAs and 

generate the second parent by reversing the received one. 

As mentioned in Chapter 5.1, the SMA heuristic is a Prioritised/Ranked-Meetings 

Scheduling heuristic that ranks meetings according to the discussed properties using 

the Rank-Meeting function, and then uses the Schedule function, which schedules the 

meetings according to some defined specifications, for all the meetings  

The following are the preparatory steps followed in generating LGP heuristics: 



Chapter 7  Super Agent Construction 

93 

 

1) The set of terminals: the meetings defined by the domain and the list of ranked 

attendees. 

2) The set of primitive functions consists of:  

i) the ranking function: ―Rank-Meeting ― 

ii) the scheduling function: ―Schedule‖ 

3) The fitness measure minimises the total violation (i.e. The number of overlapping 

meetings , and the algorithm preserves the children with the minimum violation as 

parents for the production of the next generation  

4) The termination criterion: the rule for stopping is either finding a program which 

solves the problem, or stopping after a given number of generations, or stopping if 

there are no new parents with fewer violations (for superagentLGP_SP). 



Chapter 7  Super Agent Construction 

94 

 

 

 

Fig. 12 is a pseudo-code for LGP. LGP starts by initialising a population of solutions, 

and evaluating the solutions in the population, after which the algorithm loops until the 

termination criterion is satisfied:  firstly it selects parents for the reproduction of the 

next population, then recombines and mutates the chosen parents, finally evaluates the 

generated population in order either to terminate the search or select the best solutions 

for the next iteration. 

7.2.1. Parents' Heuristics 

For example, suppose that the user enters the followings six meetings to be scheduled, 

with their specifications of the attendees' ranks and domains  

{meeting0, meeting1, meeting2, meeting3, meeting4, meeting5} 

 

 

Initialise population; 

Evaluate population; 

Loop until the termination criterion is satisfied 

{ 

Select parents for reproduction; 

Perform recombination and mutation; 

Evaluate population; 

 

} 

 
Fig. 12: Pseudo Code for LGP 



Chapter 7  Super Agent Construction 

95 

 

The SMA default heuristic to solve this scheduling problem is shown in Fig. 13, where 

the algorithm firstly ranks the meetings and loops until scheduling the six meeting: 

 

 

The LGP_SUAs consider this heuristic as one of the parents' heuristics (for the 

superagentLGP and superagentLGP_SP) received from the SMAs.  Both LGP_SUAs 

generate the second parent heuristic by reversing the first, as Fig. 14:  

Fig. 13: LGP_parent1 heuristic 

{ 

1. Rank-Meeting; 

Schedule 

2. Schedule 

3. Schedule 

4. Schedule 

5. Schedule 

6. Schedule 

 

} 



Chapter 7  Super Agent Construction 

96 

 

 

  

The algorithm in Fig. 14 performs ―schedule‖ five times, then ranks the meetings then 

calls the scheduling function once more to schedule the last unscheduled meeting. 

7.2.2. Crossover Operations 

The Crossover Operation is the most important primary operation. It is used to modify the 

structures in GP. In the crossover operation, two existing solutions are sexually combined to 

form two new ones.  

For LGP_SUAs, the middle point (the middle step/function or statement) of the 

heuristic has been chosen to crossover the two parents. The algorithm reaches this 

point by dividing the steps of the linear heuristics by two. This point cuts the two 

parents from the middle element, after which the algorithm crosses over the first part of 

parent1 with the second part of parent2 and the first part of parent2 with the second 

part of parent1  

{ 

1. Schedule 

2. Schedule 

3. Schedule 

4. Schedule 

5. Schedule 

6. Rank-Meeting; 

Schedule 

 

} 

Fig. 14: LGP_parent2 heuristic 



Chapter 7  Super Agent Construction 

97 

 

In our example, the crossover point is 6/2=3; Fig. 15 shows the two parents and details 

the crossing-over operation for LGP_SUAs, while Fig. 16 shows the 

generations/children result from this crossing-over operations.  



Chapter 7  Super Agent Construction 

98 

 

 

 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Rank-

meetings 

 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Crossover 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Rank-

meetings 

Parent1 Parent2 

Fig. 15: LGP Crossover - the Parents 



Chapter 7  Super Agent Construction 

99 

 

 

 

 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Rank-

meetings 

 

Scheduling 

Scheduling 

Scheduling 
Scheduling 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Rank-

meetings 

Child1 Child2 

Fig. 16: LGP crossover - the Children 



Chapter 7  Super Agent Construction 

100 

 

 

 

 

 

 

The first generation/ child heuristic resulted from crossover operation is presented in Fig. 17. 

It loops for scheduling six times. The other child is shown in Fig. 18 which loops for 

Child2  

{ 

1. Rank-Meeting; 

  Schedule 

2. Schedule 

3. Schedule 

4. Schedule 

5. Schedule 

6. Rank-Meeting; 

Schedule 

} 

 

Child1  

{ 

1. Schedule 

2. Schedule 

3. Schedule 

4. Schedule 

5. Schedule 

6. Schedule 

} 

Fig. 17: LGP crossover - Child1 

Fig. 18: LGP crossover - Child2 



Chapter 7  Super Agent Construction 

101 

 

scheduling six times and ranks the meetings two times in these six iterations; once in 

iteration/step one and once in iteration/step six. 

7.2.3. Mutation Operation 

Mutation is an important feature of GP. It creates a new child program by randomly altering a 

chosen section of a selected parent program. After the crossover operation, LGP performs the 

mutation operation on the children programs. The proposed mutation operation works as 

follows: (a) the second element in the heuristic is replaced with a replication of the last 

element; and (b) the third element in the heuristic is replaced by a replication (copy) of the 

element preceding the last element of the heuristic 

Fig. 19 presents the mutation operation that has been done on child two of Fig. 18, while Fig. 

20 presents the output child after this mutation. 



Chapter 7  Super Agent Construction 

102 

 

 

 

 

Rank-

meetings 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Rank 

meetings 

Mutation1 

Scheduling 

Scheduling 

Duplicate 

Duplicate 

Mutation2 

Scheduling 

Rank 

meeting

s 

Scheduling 

Fig. 19: LGP before mutation - Child2 



Chapter 7  Super Agent Construction 

103 

 

 

  

 

Rank-

meetings 

Scheduling 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Rank 

meeting

s 

Scheduling 

Fig. 20: LGP after mutation-Child2 



Chapter 7  Super Agent Construction 

104 

 

 

 

 

 

 

 

Child1  

{ 

1.   Schedule  

6.   Schedule 

5.   Schedule 

4.   Schedule 

5. Schedule 

6. Schedule 

} 

Fig. 21: LGP mutation - Child1 

Fig. 22: LGP mutation - Child2 

Child2  

{ 

1.   Rank-Meeting; 

Schedule  

6.   Rank-Meeting 

Schedule  

5.   Schedule 

4.   Schedule 

5. Schedule 

6. Rank-Meeting; 

Schedule 

} 



Chapter 7  Super Agent Construction 

105 

 

Figs. 21 and 22 present the two children/generations heuristics created by mutation. The first 

child (Fig. 21) loops six times for scheduling, the other one loops six times for scheduling 

while ranks three times in iterations one, two and six. 

This mutation is due to the fact that certain changes are needed to prevent premature 

convergence to local optima. The experiments have also revealed that changing the first half 

of each parent is enough to prevent early local optima. This is because in the next iteration 

the children will be composed of the first half of one parent crossed over with the second half 

of the second. If the first half has been changed in proper way, then the probability of 

producing the same children is very small, even if the second part is the same. Therefore 

modifications of the first half with two elements from the second half have been proposed.  

7.2.4. Termination Criterion   

Each LGP_SUA evaluates the new generations/children, and the one with a violation 

total equalling zero becomes the solution heuristic. The algorithm then terminates and 

the solution heuristic is sent to the SMA to be applied and used to overcome the 

failure. If this happens, then LGP could generate a new SMA heuristic that solves the 

problem, which in fact achieves the main goal of HMAA, which is to automatically 

generate new heuristics for SMAs in order to solve the new problems.  

If no child/generation gives a violation value of zero, the algorithm continues with the 

next iteration in which the children’s heuristics with the minimum number of violations 

are chosen to be parents in the next iteration. The algorithm continues for the specified 

number of iterations (i.e. 500), then terminates. The best child heuristic, the one with 

the minimum number of violations, is sent to the SMA to be used. 



Chapter 7  Super Agent Construction 

106 

 

As mentioned before, two SUAs have been implemented (superagentLGP, and 

superagentLGP-SP). They have similar responses to the followings conditions: 

1) They terminate if one of the following occurs: 

a) Find a solution with number of violation equals 0  

b) Loop 500 rounds 

2) Otherwise they continue looping and generating more generations. They select new 

parents according to the following conditions: 

a) If the two children's violations are less than the two parent's violations, then the 

two new parents for the next generation will be the two children generated. 

b) Otherwise: if only one of the children's violations is less than one or both 

parent's violations, then the two new parents for the next generation will be: 

i) the parent with the minimum number of violations between both of its 

parents 

ii) the child with the minimum number of violations between both children 

c) Otherwise: if one or two of the children's number of violations equals that of one 

or both parent, then the two new parents for the next generation will be: 

i) The parent with the minimum number of violations between both of its 

parents (if both parents have the same number of violations, either of them 

can be chosen). 



Chapter 7  Super Agent Construction 

107 

 

ii) The child with the minimum number of violations between its children (if 

both children have the same number of violations, either of them can be 

chosen) 

3) SuperagentLGP and SuperagentLGP_SP differ only in their response to the 

following condition: 

a) Otherwise: if none of the children's violations number lower than at least one of 

the parent's, 

i) SuperagentLGP’s response will be: the two new parents for the next 

generation will be: 

(1) the parent with the minimum number of violations between its parents (if 

both parents have the same number of violations, either of them can be 

chosen) 

(2) the child with the minimum number of violations between its children (if 

both children have the same number of violations, either of them can be 

chosen) 

(a) SuperagentLGP-SP: terminates. 

7.3  LSP_SUAs (superagentLSP/ superagentLSP_SP) 

A new method, LSP, is proposed for generating or modifying the existing heuristic. This 

method is inspired by both GP [49] and LSA [41]: the intent behind LSP is to generate 

new heuristics/programs using LSA instead of GA techniques.  



Chapter 7  Super Agent Construction 

108 

 

The motivation for proposing LSP is that, while working on LGP_SUAs, it has been 

noticed that the two parents' programs have the same components (the same steps or 

functions). This implies that there is no need for two parents: one parent is enough to 

provide the desired solutions. LSP is therefore a method for automatically creating a 

working computer program using local search approaches by modifying one 

solution/parent of such a program. It iteratively transforms one solution to another 

chosen in its neighbourhoods. LSP includes mutation, reproduction, duplication and 

deletion. 

As mention in the previous section, SUAs' task starts after receiving two messages from 

the SMA: the first includes a list of meetings with all their details, the second contains 

the heuristic the SMA follows in order to complete the scheduling process. 

The LSP_SUAs (superagentLSP and superagentLSP-SP) use the LSP approach to 

generate new heuristics; the LSP needs one parent's heuristic in order to generate the 

new heuristics' children. The two LSP_SUAs receive the SMA heuristic from the SMAs 

and make some modifications to it before utilising it as a parent for the LSP process. 

As mentioned before the SMA heuristic is a Prioritised/Ranked-Meetings scheduling 

heuristic that ranks meetings according to certain properties using the Rank-Meeting 

function and then using the Schedule function, that schedules meetings according to 

defined specifications, for all the meetings. 

The preparatory steps for the basic version of LSP are the same as for LGP. 

 



Chapter 7  Super Agent Construction 

109 

 

 

  

Fig. 23 presents the pseudo code for LSP; it starts with an initial population/heuristic 

and evaluates this population; then the algorithm enters a loop until satisfying the 

terminations criterion. In each iteration the algorithm firstly selects a solution/heuristic 

to search in its neighbourhood for a better solution, then generate a neighbourhood for 

the selected solution, finally evaluate each neighbour in order either to terminate the 

search (if the termination criterion is met), or to choose the best solution in the next 

iteration. 

7.3.1. Solution’s Heuristic 

An assumption is that the user enters six meetings to be scheduled, with their specification 

according to the attendees' ranks and domain. 

{meeting0, meetign1, meeting2, meeting3, meeting4, meeting5} 

The SMA heuristic received by the LSP_SUAs is shown in the following figure: 

 

Fig. 23: Pseudo code for LSP 

Initialise population (the solution is a mutation of the SMA heuristic); 

Evaluate population; 

Loop until one of the termination criteria is satisfied 

{ 

Select solution whose neighbourhood is to be searched 

Generate neighbourhood (crossover with itself) and mutations opertation 

Evaluate neighbours 

} 

 

 



Chapter 7  Super Agent Construction 

110 

 

 

Fig. 24: SMA heuristic 

It is proposed that the solution heuristic be initially generated in superagentLSP and 

superagentLSP-SP by Replacing the last element of the received heuristic with a copy 

of the first element of that heuristic, as shown in Fig. 25. 

{ 

1. Rank-Meeting; 

   Schedule 

 

2. Schedule 

 

3. Schedule 

 

4. Schedule 

 

5. Schedule 

 

6. Schedule 

}  

 

 



Chapter 7  Super Agent Construction 

111 

 

 

Fig. 25: Solution Heuristic 

This is a kind of mutation operation on the initial solution heuristic, which is to alter 

one gene value in the solution from its initial state. With this, the probability of the 

dissimilarity for the parent’s two equals parts (half1 and half2) decreases; (the first 

element in the first part/half will be the same of the last element in the second 

part/half). Hence the algorithm will be able to find better solutions more quickly. 

Moreover, this mutation decreases the probability to reach to local optima from the 

beginning. 

7.3.2. Crossover Operations 

In the crossover operation, specific point has been chosen to crossover the solution in 

order to generate neighbours for the solution heuristic. The middle point (or the middle 

step/function or statement) of the heuristic has been proposed. The algorithm reaches 

this point by dividing the linear heuristic steps into two. This point cuts the parent form 

the middle element, after which the algorithm combines the first part of the solution 

Initial Solution  

{ 

1. Rank-Meeting; 

Schedule 

 

2. Schedule 

 

3. Schedule 

 

4. Schedule 

 

5. Schedule 

 

6. Rank-Meeting; 

Schedule 

}  

 

 



Chapter 7  Super Agent Construction 

112 

 

with itself in order to generate one neighbour, and the second part of the solution with 

itself to generate another as shown in Fig. 26; In this example the crossover point is 

6/2=3 

 

Fig. 26: LSP crossover 

 

 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Crossover 

Scheduling 

Scheduling 

Rank-

meetings 

Rank-

meetings 

Crossover 

 



Chapter 7  Super Agent Construction 

113 

 

 

Fig. 27: LSP crossover_neighbour1 

 

 

Fig. 28: LSP crossover_neighbour2 

 

Neighbour2 

{ 

 

1. Schedule 

 

2. Schedule 

 

3. Rank-Meeting 

Schedule 

 

4. Schedule 

 

5. Schedule 

 

6. Rank-Meeting 

Schedule 

 

}  

 

 

 

Neighbour1 

{ 

1. Rank-Meeting 

Schedule 

 

2. Schedule 

 

3. Schedule 

 

4. Rank-Meeting 

Schedule 

 

5. Schedule 

 

6. Schedule 

}  

 

 



Chapter 7  Super Agent Construction 

114 

 

The neighbourhood outcomes from this crossover operation is shown in Figs. 27 and 28; the 

first neighbour heuristic (Fig. 27) loops the scheduling function six times and ranks meetings 

two time in iteration one and four. The other neighbour (Fig. 28) loops the scheduling 

function six times and ranks the meetings two times in iteration three and six. 

7.3.3. Mutations Operation 

After the crossover operation, LSP performs some mutation operations on the 

neighbourhood programs, by altering chosen parts of selected programs. The first 

mutation or transformation swaps two specified elements: the one in index (crossover 

point /2) with the one in index (last index – (crossover point/2)). 

In this example the crossover point equals 3 then crossover point/2 is 3/2 =1.5; that 

means index ―2‖ is the index of ―crossover point/2‖. The two elements that will be 

swapped are: the first element is the one in index (2); and the other one is the one in 

index (6-2=4), hence swapping 2 and 4. Fig. 29 illustrates this mutation on the first 

neighbour: 

 



Chapter 7  Super Agent Construction 

115 

 

 

 

Fig. 29: LSP mutation1_neighbour1 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Swapping 



Chapter 7  Super Agent Construction 

116 

 

 

Fig. 30: LSP mutation1_neighbour1 

 

 

Fig. 31: LSP mutation1_neighbour2 

Mutation1_Neighbour2 

 

{ 

 

1. Schedule 

 

4. Schedule 

 

3.   Rank-Meeting 

    Schedule 

 

2. Schedule 

 

5. Schedule 

 

6. Rank-Meeting 

Schedule 

 

}  

 

 

 

Mutation1_Neighbour1 

{ 

1. Rank-Meeting 

Schedule 

 

4. Rank-Meeting 

Schedule 

 

3. Schedule 

 

2. Schedule 

 

5. Schedule 

 

6. Schedule 

}  

 

 



Chapter 7  Super Agent Construction 

117 

 

Fig. 30 and 31 present the heuristics formed by applying the first mutation operation on 

Neighbour1 and Neighbour2, respectively. 

This swap is performed because the two equal parts of the heuristic are identical, so mixing is 

needed between elements from both parts in order to differentiate them. 

The second mutation is sliding the first half/part of each neighbour by one step as shown in 

Fig. 32; this sliding on one half of the heuristic is in order to decrease the opportunity for 

similarity between the two equal halfs/parts in the heuristic; Fig. 32 illustrates this mutation 

on neighbour one. 



Chapter 7  Super Agent Construction 

118 

 

 

Fig. 32: LSP mutation2_neighbour1 

 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Scheduling 

Sliding 



Chapter 7  Super Agent Construction 

119 

 

 

Fig. 33: LSP mutation2_neighbour1 

 

 

Fig. 34: LSP mutation2_neighbour2 

Neighbour2 

{ 

 

 

3. Rank-Meeting 

    Schedule 

 

1. Schedule 

 

4. Schedule 

 

2. Schedule 

 

5. Schedule 

 

6. Rank-Meeting 

Schedule 

 

}  

 

 

 

Neighbour1 

{ 

 

3. Schedule 

 

1.  Rank-Meeting 

Schedule 

 

4. Rank-Meeting 

Schedule 

 

 

2. Schedule 

 

5. Schedule 

 

6. Schedule 

}  

 

 



Chapter 7  Super Agent Construction 

120 

 

 

The outcomes neighbourhood heuristics of this mutation is shown in Figs. 33 and 34. 

The last mutation or transformation transposes all the algorithms or solution steps of 

each neighbour by two steps, so that enormous variants between the neighbours are 

generated in the next neighbourhood. Illustration for this mutation on the first obtained 

neighbour is shown in Fig.35. 



Chapter 7  Super Agent Construction 

121 

 

 

 

Fig. 35: LSP mutation3_neighbour1 

Scheduling 

Scheduling 

Rank 

meetings 

Scheduling 

Rank 

meetings 

Scheduling 

Scheduling 

Scheduling 

Sliding 

Scheduling 

Scheduling 



Chapter 7  Super Agent Construction 

122 

 

 

 

.  

 

Neighbour2 

{ 

 

5. Schedule 

 

6. Rank-Meeting 

    Schedule 

  

3. Rank-Meeting 

Schedule 

 

1. Schedule 

 

4. Schedule 

 

2.  Schedule 

 

}  

 

 

 

Neighbour1 

{ 

 

5.  Schedule 

 

6. Schedule 

 

3. Schedule 

 

1. Rank-Meeting 

Schedule 

 

4. Rank-Meeting 

Schedule 

 

2. Schedule 

 

}  

 

 
Fig. 36: LSP mutation3_neighbour1 

Fig. 37: LSP mutation3_neighbour2 



Chapter 7  Super Agent Construction 

123 

 

At the end of these mutations, the obtained neighbours are shown in Figs. 36 and 37; the first 

neighbour heuristic (Fig. 36) loops for scheduling meeting six times through which it ranks 

the meeting two times; in iteration four and five.  The second neighbour heuristic (Fig. 37) 

loops for scheduling meeting six times through which it ranks the meeting two times; in 

iteration two and three. Mutation1, mutation2 and mutation3 all of them are used as mutations 

operation in the proposed LSP. 

7.3.4. Termination Criterion  

The superagentLSP and superagentLSP_SP try the new generations/ neighbours; the 

one that returns the number of violations equalling zero is the solution heuristic, which 

will be send to the SMA to be used in order to overcome the failure. If no neighbour 

gives such a result, the algorithm continues with the next iteration, in which the 

neighbouring heuristic with the minimum number of violations is chosen as the solution 

whose neighbourhood is to be searched in the next iteration. The algorithm continues 

for the defined number of iterations (500), and the best neighbour heuristic (i.e. with the 

minimum violation) is sent to the SMA to be used. 

As mentioned before, two LSP_SUAs have been implemented (superagentLSP, and 

superagentLSP-SP) each of which have similar responses to the followings conditions: 

a) They terminate if one of the following occurs: 

i) A solution with violation =0 is found  

ii) 500 rounds are looped 



Chapter 7  Super Agent Construction 

124 

 

b) Otherwise they continue looping and searching for better neighbourhoods, 

selecting new solutions according to the following criteria: 

i) If the two neighbours’ violations total less than the solution violation, the 

new solution for the next iteration will be the neighbour with the minimum 

number of violations. 

ii) Otherwise, if one of the neighbour’s violations is less than the solution 

violation, then the new solution for the next generation will be the neighbour 

with the minimum number of violations. 

iii) Otherwise, if one or two of the neighbour’s violations equals the solution 

violations, then the new solution for the next generation will be the 

neighbour with the minimum number of violations. 

SuperagentLSP and superagentLSP_SP only in their responses to the following 

condition: 

iv) Otherwise if none of the neighbour's violations is less than the solution’s 

violation: 

(1) The SuperagentLSP response will be that the new solution for the next 

generation will be the neighbour with the minimum number of 

violations. 

(2) SuperagentLSP-SP: terminates. 



Chapter 7  Super Agent Construction 

125 

 

7.4. Summary 

The chapter illustrates t the SUAs part of HMAA, it presents SUAs main goals; where 

some of which search for feasible solution heuristic while the others search to optimise 

the solution heuristic. It discusses the algorithms they use; two types of EAs have been 

used (LGP and LSP); and it illustrates by example how each SUA computes its solution 

heuristic. The performance of these SUAs and the feasibility of EAs that are used by 

SUA in the HMAA will be measured in the next chapter. 

 



Chapter 8  Experimental Results and Evaluation 

126 

 

Chapter 8 

Experimental Results and Evaluation 

 

8.1 Introduction 

This chapter illustrates some experiments performed on HMAA. The experiments have 

been done on both frameworks search and optimisation problem solving frameworks, 

where two stages of experiments have been conducted.  

Stage one of experiments is done on small agent predefined heuristic (prioritised/ranked 

heuristic and local search repair strategy), where two groups of experiments have been 

done as shown in Section 8.2. The first group is measuring the feasibility of the 

proposed heuristic by assessing of the (ranking property) before scheduling, and the 

(local search repair strategy) to optimise the obtained solution. This assessing is done by 

generating number of meetings distributed amongst defined number of agents. And run 

Objectives 

- 

 To present the HMAA implementation. 

 To present the developed experiments on HMAA. 

 To evaluate the performance of HMAA.  

 To evaluate the performance of SUAs that implement EAs. 

 To measure the feasibly of LSP. 

 



Chapter 8  Experimental Results and Evaluation 

127 

 

the heuristic on stages each of which executing and measuring one of the defined 

property. 

The second group of experiments evaluates the SMA based approach mentioned in [7]. 

In this case a number of random meetings are generated, depending on the same 

parameters used in the approach. 

In Stage two three groups of experiments are conducted. The first presents simple cases 

with differing numbers of attendees and a variety of situations and combinations of 

meetings. The aim of these experiments is to examine the feasibility of running the 

HMAA for large number of attendees.  

The second group contains more complicated cases and susceptible situations with one 

user, who has chosen their data carefully (as will be seen below), and a large number of 

meetings. This group was constructed in order to measure the feasibility of the system in 

very complicated cases when the domain range data is limited. The cases measure the 

feasibility of the local optima in the searching process. This means that instead of 

continuing until the solution is found, or completing a specified number of rounds, the 

search ends when the number of violations of the new generations are more than that of 

the parents' violations (for LGP), or the neighbourhood’s violations are more than those 

of the current solution’s (for LSP).  

The final group consists of randomly selected cases that measure the feasibility of the 

proposed architecture in different situations. It must be said that each meeting is 

determined by the specific domain of possible dates on which the meeting can be held, 

and the potential attendees with their weight/significance. This is because the HMAA 

aims partly to optimise scheduling, which means reducing the number of violations as 



Chapter 8  Experimental Results and Evaluation 

128 

 

much as possible so that if there is no feasible schedule without overlaps, the system 

schedules the meeting by overlapping the meetings of the least significant attendees. 

8.2. Stage One: SMA Experiments 

Experiments Group 1 

In these experiments, three agents have been initialised and thirty meetings distributed 

amongst them. Each agent initialises some of them with different domains, some of 

which overlap.  

The experiments have been performed in four stages: 

 Stage One- the agent ranks the meetings before scheduling them and does not 

schedule violated meetings (search problem). (The agents arrange the meetings 

according to the mentioned equation –equation 5.1 - and then schedule the 

meetings according to their ranks. Once it finds a violation, the meeting will not 

be scheduled. The feasibility of the algorithm is measured by the number of 

unscheduled meetings). 

 Stage Two- the agent ranks the meetings before scheduling them and schedules 

the violated meeting (optimisation problem), after which it performs a local 

search (the agent arranges the meetings according to the mentioned equation 

5.1, and then schedules them according to their ranks; it schedules all the 

meetings even if there is a violation, then perform the local search in order to 

optimise the violation. The feasibility of the algorithm is measured by the total 

violation). 



Chapter 8  Experimental Results and Evaluation 

129 

 

 Stage Three- the agent does not rank the meeting, and does not schedule the 

violated meetings (search problem) ( the agent schedules the meetings according 

to how the user has entered them; once there is a violation the algorithm will not 

schedule the meeting. The feasibility of the algorithm is measured by how many 

meetings are not scheduled). 

 Stage Four- the agent does not rank the meeting but does schedule the violated 

meetings (optimisation problem), after which it performs a local search (the 

agent schedules the meetings according to how the user has entered them; it 

schedules all the meetings even if there is a violation, then performs a local 

search in order to optimise the violation. The feasibility of the algorithm is 

measured by the total violation). 

In these four stages of experiments, the feasibility of ranking the meetings before 

scheduling is measured by comparing the result of the experiment’s first stage with 

those of the third (Fig. 38), and likewise the second with the fourth (Fig. 39), and then 

measuring the feasibility of the local search by comparing the results before and after 

that search in Stage Two (Fig. 40) and Stage Four (Fig. 41). The results of Stage Two 

and Stage Four are finally compared in order to measure the feasibility of the ranking 

before and after the local search (Fig. 42). 

 



Chapter 8  Experimental Results and Evaluation 

130 

 

Compare 1 and 3: (Rank before scheduling) with 

(not rank) 

0 0

0.43

0.63

0.07

0.21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ranking noRanking

T
h

e
 v

io
la

ti
o

n
Agent 3

Agent 2

Agent 1

 

Fig. 38: The feasibility of the ranking (comparing Stages 1 and 3) 

 

Compare 2 and 4: (Rank before scheduling) with 

(not rank)

0.2 0.2

4.5 4

1.3

7.1

0

2

4

6

8

10

12

Ranking noRanking

T
h

e
 v

io
la

ti
o

n

Agent3

Agent2

Agent1

 

Fig. 39: The feasibility of the ranking (comparing Stages 2 and 4) 

Figs. 38 and 39 show that there are tangible reductions in the violation when ranking the 

meetings before scheduling; the total violations for the three agents in Stages one and 

two were ―00.50, 06.00‖ respectability; while it were in Stages three and four ―00.84, 

11.3‖ respectively, this indicates that the ranking process reduces the total violations 



Chapter 8  Experimental Results and Evaluation 

131 

 

and so improves the scheduling results. This is due to the fact that the ranking 

property/function gives a glow to the agent about the difficulties to schedule the 

meetings, and then starts with the more difficult. 

 

Compare before and after the local 

search in Stage 2

1.3 1.3

4.5

2.5

0.2

0

0

1

2

3

4

5

6

7

before local search after local search

T
h

e
 v

io
la

ti
o

n

Agent3

Agent2

Agent1

 

Fig. 40: the feasibility of local search in (2) 

 



Chapter 8  Experimental Results and Evaluation 

132 

 

Compare before and after local search 

in Stage 4

7.1 7

4
2

0.2

0

0

2

4

6

8

10

12

before local search after local search

T
h

e
 v

io
la

ti
o

n

Agent3

Agent2

Agent1

 

Fig. 41: the feasibility of local search in (4) 

Figs. 40 and 41 show that the local search has improved the scheduling process, by 

decreasing the violation from ―06.00‖ up to ―03.80‖ in Fig 40; and from ―11.30‖ up to 

―09.00‖ in Fig. 41; which means that it increases the opportunity of scheduling more 

meetings. 

From the figures above, it is clear that the ranking and local search have improved the 

performance of the scheduling process; the following shows how combining these two 

algorithms affect the scheduling process. 

 



Chapter 8  Experimental Results and Evaluation 

133 

 

 

Fig. 42: The performance of the FMSH 

 

Column (R/noLS) shows the performance of the algorithm that only ranks the meetings 

(Stage two before local search), column (R/LS) the performance of the algorithm that 

both ranks the meeting and performs local searches for the schedules (Stage two after 

local search; which is the main thrust behind the present work), column (noR/noLS) the 

performance of the algorithm that does not rank or perform local searches (Stage four 

before local search), and column (noR/LS) the performance of the algorithm that only 

performs local search for the schedules( Stage four after local search).  

It is clear from Fig. 42 that (noR/noLS) has the maximum number of violations. This 

means that ranking or local searching would result in better scheduling. From the same 

figure, it can also be seen that applying both ranking and local searching together would 

offer the best scheduling capability. Column R/LS has the minimal violation, indicating 

that this algorithm that ranks the meetings and performs local searches has improved the 

performance of the SMA, and has the capacity to find better schedules for many 



Chapter 8  Experimental Results and Evaluation 

134 

 

meetings without affecting the small size of the agent nor their ability to run on small 

devices.  

Experiments Group 2  

To evaluate the SMA proposed heuristics, a comparison has been done between:  

 Approach 1: ―Prioritised/Ranked-Meetings Scheduling heuristic for Search 

problem solving‖. 

 Approach 2: ―Prioritised/Ranked-Meetings Scheduling heuristic for 

Optimisation problem solving with local search repair strategy‖. 

 And Approach 3: ―Meetings scheduling solver enhancement with local 

consistency reinforcement‖ [7].  

As has been clarified in Section 3.4.2 Hassine et al. in their work ―Meetings scheduling 

solver enhancement with local consistency reinforcement‖[7, 37, 38] have devised a 

new approach based on distributed reinforcement of node and arc consistency (DRAC) 

to solve MSPs.  

The comparison is done by generating number of random meeting scheduling problems 

using the same parameters as in [7]. These are: 

 n= 10 is the number of agents in the framework 

 m=3 is number of new meetings to be scheduled 

 Att  {3, 5, 7} is the number of the attendees in these meetings 



Chapter 8  Experimental Results and Evaluation 

135 

 

 T=two months, which is equivalent to 60 time slots available in the calendar of 

each agent, cH {20, 30, 40, 50} are the hard constraints in each attendee 

calendar, these being the timeslots that could not be scheduled, and accordingly 

d {66%, 50%, 33%, 16%} is the maximum possible number of timeslots 

available per T. 

For each pair <Att, cH > 9 instances were generated, after which the average of 

scheduled meetings using approach 1 and the average of un-violated meetings using 

approach 2 are measured and compared with the average of scheduled meetings using 

approach 3. 

 

Table 1: Percentage of scheduled meetings of 108 cases 

 <3,20> <3,30> <3,40> <3,50> <5,20> <5,30> <5,40> <5,50> <7,20> 

Appraoch1 100 70 20 7 35 30 8 7 14 

Appraoch2 100 70.24 20.32 7.16 35.32 30.0 8.16 7.08 14.0 

Appraoch3 100 50 10 3 50 10 3 0 15 

 

<7,30> <7,40> <7,50> 

12 2 2 

12.16 2 2 

3 3 0 

 



Chapter 8  Experimental Results and Evaluation 

136 

 

0

20

40

60

80

100

120

<3,20> <3,30> <3,40> <3,50> <5,20> <5,30> <5,40> <5,50> <7,20> <7,30> <7,40> <7,50>

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
le

d
 m

e
e
ti

n
g

s
approach1

approach3

 

Fig. 43: The performance of Prioritised/ranked heuristic search problem compared with the local 

consistency approach 

 

0

10

20

30

40

50

60

70

80

<3,
30>

<3,
40>

<3,
50>

<5,
20>

<5,
30>

<5,
40>

<5,
50>

<7,
20>

<7,
30>

<7,
40>

<7,
50>

p
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
le

d
 m

e
e
ti

n
g

s

approach1

approach2

 

Fig. 44: Comparing the performance of Prioritised/Ranked-Meetings Scheduling heuristic for 

Search problem solving with Prioritised/Ranked-Meetings Scheduling heuristic for optimisation 

problem solving and local search repair strategy 

 



Chapter 8  Experimental Results and Evaluation 

137 

 

0

20

40

60

80

100

120

<3,
20>

<3,
30>

<3,
40>

<3,
50>

<5,
20>

<5,
30>

<5,
40>

<5,
50>

<7,
20>

<7,
30>

<7,
40>

<7,
50>

P
e
rc

e
n

ta
g

e
 o

f 
s
c
h

e
d

u
a
le

d
 m

e
e
ti

n
g

s
approach2

approach3

 

Fig. 45: Comparing the performance of Prioritised/ranked heuristic optimisation problem and local 

search with local consistency approach 

In the Figs. 43, 44 and 45 the dark blue lines show the performance of SMAs using 

approach 1, the dashed red lines are the performance of SMAs using approach 2, and 

the yellow lines are the performance of SMAs using approach 3; the local consistency 

approach [7]. 

As shown in the Fig. 43, the performance of approach 1 in general is better than 

approach 3, since it considers the difficulty-complexity- of scheduling the meeting, and 

starts with the most difficult meetings in sequence.  

It can be noticed in Fig. 44 that local search repair strategy used in approach 2 improves 

the performance of the SMAs compared with approach 1 that does not use this repair 

strategy. 

Fig. 45 compares the performance of the SMAs using approach 1 with others using 

approach 3. The results show that approach 1 with its proposed approach is better than 

the local consistency approach. This is due to the fact that in SMA heuristic starts with 



Chapter 8  Experimental Results and Evaluation 

138 

 

the most difficult meetings and local search optimises the obtained solution that would 

improve their performance.  

The proposed SMA heuristics and repair strategy partially overcomes the limitation of 

fixed predefined heuristic. Since from the experiments above; it has been illuminated 

that applying local searching –an evolutionary approach- on the obtained 

solution/scheduling improves the scheduling, and in some cases produces new 

solutions/schedules that could not be obtained by the predefined heuristic.  

This has motivated us to extend the system with super-agents (SUAs) that employ 

evolutionary approaches (EAs). These EAs are used by SUA in order to generate new 

heuristic for SMAs; where SUAs would propose new heuristics to be executed by the 

SMAs. This is aimed to overcome that failure and optimise the scheduling with the new 

hybrid architecture proposed in the present work. 

8.3. Stage Two: HMAA Experiments 

Experiments Group 1 

These experiments have been done on both HMAA optimisation and search 

frameworks, and consist of simple cases with differing numbers of attendees and a 

variety of situations and combinations of meetings. The aim of these experiments is to 

demonstrate the feasibility of the hybrid multi-agent architecture for any number of 

attendees. 

As it can be seen below, each case starts by defining the number and names of 

attendees. The doubled lined tables are data tables showing the meetings, the attendees 



Chapter 8  Experimental Results and Evaluation 

139 

 

with their ranks and domains. The optimisation framework column specifies the dates 

found by the SMAs’ predefined heuristics using optimisation HMAA, while the search 

framework column specifies the dates found by the SMAs’ predefined heuristics using 

search HMAA. 

This is followed by:  

1) Firstly, SuperagentLGP results or outcomes are characterised by  

a) the generated heuristic of the superagentLGP,  

b) the rounds or loops needed to find the solution 

c) the final violation 

2) Secondly, SuperagentLSP outcomes are characterised by  

a) the generated heuristic by the superagentLSP. 

b) its loops. 

c) its violation. 

The dashed tables are the results of the framework, the rectangle around certain domain 

timeslots specify the dates that have been found by the SMA using the superagentLGP 

heuristic and the superagentLSP heuristic. 



Chapter 8  Experimental Results and Evaluation 

 140 

Case 1: 

Number of Users=1: Serein (Ser) 

Number of meetings= 7 

 

Data table 

 

Meetings Attendees(rank) Domain 

Optimisation 

framework 

Search 

framework 

Meeting1 

 

Ser (1.0) {1 Oct,2 Oct,3 Oct,5 Oct} 5 Oct 5 Oct 

Meeting2 

 

Ser (1.0) {1 Oct,2 Oct,5 Oct,7 Oct} 7 Oct violated 

Meeting3 

 

Ser (1.0) {2 Oct,6 Oct,8 Oct} 2 Oct 2 Oct 

Meeting4 

 

Ser (1.0) {3 Oct,7 Oct,8 Oct} 3 Oct 3 Oct 

Meeting5 

 

Ser (1.0) {1 Oct,2 Oct,3 Oct} 1 Oct 1 Oct 

Meeting6 

 

Ser (1.0) {1 Oct,2 Oct,7 Oct} 7 Oct 7 Oct 

Meeting7 

 

Ser (1.0) {2 Oct,4 Oct,7 Oct} 4 Oct 4 Oct 

 

Small agent violation is 

 

 

2.0 

 

1.0 

Table 1: Case 1 data table 

 



Chapter 8  Experimental Results and Evaluation 

 141 

1) superagentLGP outcomes: 

a) The superagentLGP-generated heuristic is  

{ 

Rank-Meetings 

Schedule 

Rank-Meetings 

Schedule 

Schedule 

Schedule 

Schedule 

Schedule 

Schedule 

} 

b) The total number of rounds = 0 

c) The violation after using the new heuristic = 0.0 

 

2) superagentLSP outcomes: 

a) The superagentLSP Generated heuristic is  

{ 

Rank-Meetings 

Schedule 

Rank-Meetings 

Schedule 

Schedule 



Chapter 8  Experimental Results and Evaluation 

 142 

Schedule 

Schedule 

Rank-Meetings 

Schedule 

Schedule 

    } 

b) The total number of rounds=1 

c) The violation after using the new heuristic (0.0) 

 

 

Results  table 

 

Meetings Attendees(rank) Domain 

Meeting1 

 

Ser (1.0) {1 Oct,2 Oct, 3 Oct ,  5 Oct} 

Meeting2 

 

Ser (1.0) {1 Oct,2 Oct, 5 Oct ,7 Oct} 

Meeting3 

 

Ser (1.0) { 2 Oct , 6 Oct,8 Oct} 

Meeting4 

 

Ser (1.0) {3 Oct,7 Oct, 8 Oct } 

Meeting5 

 

Ser (1.0) { 1 Oct ,2 Oct,3 Oct} 

Meeting6 

 

Ser (1.0) {1 Oct,2 Oct, 7 Oct } 

Meeting7 Ser (1.0) {2 Oct, 4 Oct ,7 Oct} 



Chapter 8  Experimental Results and Evaluation 

 143 

 

Small agent violation is 0.0 

 

Table 2: Case 1 results Table 

Case 2: 

Number of Users=2: Serein (Ser), Ashraf (Ash) 

Number of meetings=4 

 

 

Data Table 

 

Meetings 

 

Attendees(rank) Domain 

Optimisation 

framework 

Search 

framework 

Meeting1 

 

Ser (1.0) {1 Oct, 2 Oct, 3 Oct } 3 Oct violated 

Meeting2 

 

Ser (0.2) 

Ash (0.8) 

{2 Oct, 4 Oct } 2 Oct 2 Oct 

Meeting3 

 

Ser (0.4) 

Ash (0.6) 

{1 Oct, 2 Oct } 1 Oct 1 Oct 

Meeting4 

 

Ser (1.0) {3 Oct } 3 Oct 3 Oct 

Small agent violation 2.0 1.0 

Table 3: Case 2 data table 

 

1) SuperagentLGP outcomes: 

a) The superagentLGP Generated heuristic is  



Chapter 8  Experimental Results and Evaluation 

 144 

{ 

Rank-Meeting  

Schedule  

Rank-Meeting  

Schedule  

Rank-Meeting  

Schedule  

Schedule 

    } 

 

b) The total number of rounds=1 

c) The violation after using the new heuristic =0.0 

 

2) SuperagentLSP outcomes: 

a) The superagentLSP Generated heuristic is  

{ 

Schedule  

Rank-Meeting  

Schedule  

Rank-Meeting  

Schedule  

Schedule 

} 

b) The total number of rounds =1 



Chapter 8  Experimental Results and Evaluation 

 145 

c) The violations after using the new heuristic =0.0 

 

Results Table 

 

Meetings 

 

Attendees(rank) Domain 

Meeting1 

 

Ser (1.0) 

{ 1 Oct , 2 Oct, 3 Oct } 

 

Meeting2 

 

Ser (0.2) 

Ash (0.8) 

{2 Oct, 4 Oct  } 

 

Meeting3 

 

Ser (0.4) 

Ash (0.6) 

{1 Oct, 2 Oct  } 

 

Meeting4 

 

Ser (1.0) 

{ 3 Oct  } 

 

 

Small agent violation is 0.0 

Table 4: Case 2 results table 

Case 3: 

Number of Users=3: Serein (Ser), Ashraf (Ash), Omar (Omr) 

Number of meetings=5 

 

 

Data Table 

 

Meetings Attendees(ran Domain Optimisation Search 



Chapter 8  Experimental Results and Evaluation 

 146 

 k) framework framework 

Meeting1 

 

Ser  (0.5) 

Ash (0.5) 

{3 Oct } 3 Oct 3 Oct 

Meeting2 

 

Ser  (0.8) 

Omr (0.2) 

{2 Oct, 5 Oct } 2 Oct 2 Oct 

Meeting3 

 

Ser  (0.1) 

Ash (0.2) 

Omr(0.7) 

{2 Oct, 5 Oct } 5 Oct 5 Oct 

Meeting4 

 

Ser  (0.1) 

Omr (0.9) 

{2 Oct, 4 Oct, 5 Oct } 5 Oct violated 

Meeting5 

 

Ser  (0.7) 

Ash (0.3) 

{4 Oct, 8 Oct } 4 Oct 4 Oct 

 

Small agent violation 

0.8 1 

Table 5: Case 3 data table 

 

1) SuperagentLGP outcomes: 

a) The superagentLGP Generated heuristic is 

{ 

Rank-Meeting  

Schedule  

Rank-Meetings  

Schedule  

Rank-Meetings  

Schedule  

Schedule  



Chapter 8  Experimental Results and Evaluation 

 147 

Schedule 

} 

 

b) The total number of rounds =1 

c) The violation after using the new heuristic =-0.0 

 

2) SuperagentLSP outcomes: 

a) The superagentLSP Generated heuristic is  

{ 

Schedule  

Schedule  

Schedule  

Rank-Meetings  

Schedule  

Schedule 

} 

b) The total number of rounds =1 

c) The violation after using the new heuristic =0.0 

 

 

 

 

 

 



Chapter 8  Experimental Results and Evaluation 

 148 

 

Result Table  

Meetings 

 

Attendees(rank) domain 

Meeting1 

 

Ser  (0.5) 

Ash (0.5) 

{ 3 Oct  } 

Meeting2 

 

Ser  (0.8) 

Omr (0.2) 

{ 2 Oct , 5 Oct } 

Meeting3 

 

Ser  (0.1) 

Ash (0.2) 

Omr(0.7) 

{2 Oct, 5 Oct  } 

Meeting4 

 

Ser  (0.1) 

Omr (0.9) 

{2 Oct, 4 Oct , 5 Oct } 

Meeting5 

 

Ser  (0.7) 

Ash (0.3) 

{4 Oct, 8 Oct  } 

 

Small agent violation is 0.0 

 

Table 6: Case 3 results table 

 

Case 4: 

Number of Users=4: Serein (Ser), Ashraf (Ash), Omar (Omr), Abed (Abd) 

Number of meetings=7 

 

 

 



Chapter 8  Experimental Results and Evaluation 

 149 

 

Data Table 

Meetings 

 

Attendees(rank) 

 

Domain 

Optimisation 

framework 

Search 

framework 

Meeting1 

 

Ser  (0.1) 

Ash (0.5) 

Omr (0.3) 

Abd (0.1) 

{1 Oct, 2 Oct , 5 

Oct, 6 Oct } 

5 Oct 5 Oct 

Meeting2 

 

Ser  (0.8) 

Ash (0.2) 

{1 Oct, 2 Oct, 6 

Oct, 8 Oct } 

8 Oct 8 Oct 

Meeting3 

 

Ser  (0.5) 

Omr (0.5) 

{3 Oct, 7 Oct } 7 Oct 7 Oct 

Meeting4 Ser  (1.0) 

{1 Oct, 2 Oct, 3 Oct 

} 

 

3 Oct violated 

Meeting5 

 

Ser  (0.5) 

Abd (0.5) 

{1 Oct, 2 Oct } 1 Oct 1 Oct 

Meeting6 

 

Ser  (0.3) 

Ash (0.2) 

Abd (0.5) 

{3 Oct } 3 Oct 3 Oct 

Meeting7 

 

Ser  (0.3) 

Ash (0.7) 

{2 Oct, 4 Oct } 2 Oct 2 Oct 

Small agent violation 1.3 1 



Chapter 8  Experimental Results and Evaluation 

 150 

Table 7: Case 4 data table 

 

1) superagentLGP outcomes: 

a) The superagentLGP Generated heuristic is  

{ 

Rank-Meetings  

Schedule  

Rank-Meetings  

Schedule  

Schedule  

Schedule 

Schedule  

Schedule 

Schedule  

} 

b) The total number of round=1 

c) The violation after using the new heuristic =0.0 

2) superagentLSP outcomes: 

a) The superagentLSP Generated heuristic is  

{ 

Schedule  

Rank-Meetings  

Schedule 

Rank-Meetings 



Chapter 8  Experimental Results and Evaluation 

 151 

Schedule  

Schedule 

Schedule  

Schedule 

Schedule  

} 

b) The total number of rounds =1 

c) The violation after using the new heuristic =0.0. 

 

Results Table 

 

Meetings 

 

Attendees(rank) 

 

Domain 

 

Meeting1 

 

Ser  (0.1) 

Ash (0.5) 

Omr (0.3) 

Abd (0.1) 

{1 Oct, 2 Oct , 5 Oct , 6 Oct } 

Meeting2 

 

Ser  (0.8) 

Ash (0.2) 

{1 Oct, 2 Oct, 6 Oct , 8 Oct } 

Meeting3 

 

Ser  (0.5) 

Omr (0.5) 

{3 Oct, 7 Oct  } 

Meeting4 

 

Ser  (1.0) 

 

{ 1 Oct , 2 Oct, 3 Oct } 

Meeting5 
Ser  (0.5) 

Abd (0.5) 

{1 Oct, 2 Oct  } 



Chapter 8  Experimental Results and Evaluation 

 152 

 

Meeting6 

 

Ser  (0.3) 

Ash (0.2) 

Abd (0.5) 

{ 3 Oct  } 

Meeting7 

 

Ser  (0.3) 

Ash (0.7) 

{2 Oct, 4 Oct  } 

Small agent violation is 0.0 

Table 8: Case 4 results table 

 

Case 5: 

Number of Users=5: Serein (Ser), Ashraf (Ash), Omar (Omr), Abed (Abd), Jon 

(Jon) 

Number of meetings=8 

 

 

Data Table 

Meetings 

 

Attendees(rank) domain 

Optimisation 

framework 

Search 

framework 

Meeting1 

 

Ser (0.2) 

Ash (0.2) 

Omr (0.2) 

Abd (0.2) 

Jon (0.2) 

{1 Oct,2 Oct,3 Oct, 5 Oct,6 

Oct,7 Oct} 

3 Oct 3 Oct 

Meeting2 

 

Ser (0.1) 

Ash (0.9) 

{1 Oct, 2 Oct,5 Oct, 7 Oct} 5 Oct 5 Oct 



Chapter 8  Experimental Results and Evaluation 

 153 

Meeting3 

 

Ser (0.4) 

Ash (0.5) 

Omr (0.1) 

{2 Oct, 6 Oct, 8 Oct} 6 Oct 6 Oct 

Meeting4 

 

Ash (1.0) {3 Oct,7 Oct, 8 Oct} 3 Oct 3 Oct 

Meeting5 

 

Ser (0.5) 

Jon (0.5) 

{1 Oct,2 Oct, 3 Oct} 2 Oct violated 

Meeting6 

 

Ser (0.4) 

Ash (0.4) 

Omr (0.1) 

Abd (0.1) 

{1 Oct, 2 Oct} 1 Oct 1 Oct 

Meeting7 

 

Ser (0.5) 

Ash (0.5) 

{3 Oct,5 Oct, 6 Oct, 7 Oct} 7 Oct 7 Oct 

Meeting8 

 

Ash (1.0) {2 Oct, 4 Oct} 2 Oct 2 Oct 

 

Small agent violation 

 

1.2 1 

Table 9: Case 5 data table 

 

1) SuperagentLGP outcomes: 

a) The superagentLGP Generated heuristic is  

{ 

Rank-Meetings  

Schedule 

Rank-Meetings  

Schedule  



Chapter 8  Experimental Results and Evaluation 

 154 

Schedule  

Schedule  

Schedule 

Schedule  

Schedule  

Schedule  

} 

b) The total number of rounds =0 

c) The violation after using the new heuristic is =0.0 

2) SuperagentLGP outcomes: 

a) The superagentLSP Generated heuristic is  

{ 

Schedule 

Rank-Meetings 

Schedule 

Rank-Meetings 

Schedule 

Schedule 

Schedule 

Schedule 

Schedule 

Schedule 

} 

 



Chapter 8  Experimental Results and Evaluation 

 155 

b) The total number of rounds =1 

c) The violation after using the new heuristic is =0.0 

 

Results Table 

 

Meetings 

 

Attendees(rank) Domain 

Meeting1 

 

Ser   (0.2) 

Ash  (0.2) 

Omr (0.2) 

Abd (0.2) 

Jon  (0.2) 

{1 Oct,2 Oct,3 Oct, 5 Oct , 6 Oct,7 Oct} 

Meeting2 

 

Ser  (0.1) 

Ash (0.9) 

{1 Oct, 2 Oct , 5 Oct,7 Oct} 

Meeting3 

 

Ser  (0.4) 

Ash (0.5) 

Omr (0.1) 

{2 Oct ,6 Oct , 8 Oct} 

Meeting4 

 

Ash (1.0) { 3 Oct , 7 Oct,8 Oct} 

Meeting5 

 

Ser   (0.5) 

Jon   (0.5) 

{1 Oct,2 Oct, 3 Oct } 

Meeting6 

 

Ser   (0.4) 

Ash  (0.4) 

Omr (0.1) 

Abd (0.1) 

{ 1 Oct , 2 Oct} 

Meeting7 

 

Ser  (0.5) 

Ash (0.5) 

{3 Oct,5 Oct,6 Oct ,7 Oct } 



Chapter 8  Experimental Results and Evaluation 

 156 

Meeting8 

 

Ash (1.0) {2 Oct, 4 Oct } 

 

Small agent violation is 0.0 

 

Table 10: Case 5 results table 

Analysis for Experiment Group 1 

From these experiments, the following observations can be made: 

1) It is feasible for the proposed framework to run any number of users without 

affecting its performance. HMAA has been run on up to ten users, and it could quite 

conceivably run hundreds. In this document, only five experiments are demonstrated 

since it is unfeasible to show all experiments.   

2) It is feasible for SUAs to solve wide verity of situations. Both types of SUA 

(superagentLGP and superagentLSP) can automatically generate algorithms using 

LGP or LSP to overcome the failures in the situations previously outlined. These 

situations have been carefully selected because they are difficult for SMAs to solve.  

3) Both types of SUA give the same components with different combinations. All the 

produced algorithms have the same components (i.e. the number of ―Rank-

Meetings‖ functions combined with the number of ―Schedule‖ functions), but they 

have combined and arranged these two components in different forms.    



Chapter 8  Experimental Results and Evaluation 

 157 

Experiments Group 2 

This group of experiments consists of more complicated cases and susceptible 

situations, having one user (Serein (Ser)) and different numbers of meetings with 

different domains and constraints. These experiments are run in order to see if one or all 

of the SUAs can reach a solution and what is the feasibility of the system in very 

complicated and limited domains and constraints.  

Moreover, the local optima property has been added to the SUA algorithms. This means 

that, instead of continuing until the solution is found or the specified number of rounds 

is reached, searching ends when the neighbourhood's violations(for LSP) or the new 

generations' violations (for LGP) are greater than the solution’s/parent’s violation/s.  

This could be achieved by defining another two SUAs (superagentLGP_SP, 

superagentLSP_SP), which exit searching when they reach the local optimum (i.e. 

where the neighbourhood's violations (superagentLSP_SP)/the next generations' 

violations (superagentLGP_SP) are greater than the current solution’s 

(superagentLSP_SP)/parents' (superagentLGP_SP) violations, in addition to the existing 

defined SUAs (superagentLGP, superagentLSP) which continue until they reach a 

solution or loop for 500 rounds. This is due to the fact that the feasibility of any system 

measured by: the ability to solve the problem, and the time needed to do; this time on 

our system measured by the number of rounds the algorithms loops to generate the 

solution heuristic. Sometimes local optima solution in an acceptable time is more 

feasible than global optima solution in a long time.  



Chapter 8  Experimental Results and Evaluation 

 158 

This group of experiments was conducted using both frameworks (optimisation and 

search frameworks). However, the results from the experiments that were performed 

using the optimisation framework is presented only. This is because the results were 

similar in both frameworks as shown in previous section.  

As will be seen below, the double-lined data tables are those showing the meetings, 

attendees with their ranks, and domains. The underlined dates are those chosen by the 

default SMA heuristic; the red rectangles around specific dates are 

conflicting/overlapping ones. The last four columns of the table are the results of the 

previously mentioned four agents (SuperagentLGP, SuperagentLSP, 

SuperagentLGP_SP and SuperagentLSP_SP). The last row in the table represents the 

violations of the corresponding columns.  

The following tables are the results tables for the four SUAs. They show the starting 

and ending violations and the number of rounds for each SUA algorithm. This 

information is presented in order to compare the performance of these SUAs. 

Case 6:  

In this case, sixteen meetings have to be scheduled; their domain is thirty days and 

%43.34 of this domain is constrained.  

The number of the Meetings=16; 

The number of constrained time slots=30 * %43.34 = 13 time slots constrained. 

The number of available time slots =30 - 13 = 17 time slots available. 



Chapter 8  Experimental Results and Evaluation 

 159 

Hence sixteen meetings can be distributed among seventeen timeslots. The results were 

as follows: 

 

 

Data Table 

 

Meetings 

 

Attendees Domain with SMA 

solution 

Superagent 

LGP 

Superagent 

LSP 

Superagent 

LGP_SP 

Superagent 

LSP_SP 

Meeting1 

 

Ser  (1) 

 

{2 Oct} 2 Oct 2 Oct 2 Oct 2 Oct 

Meeting2 

 

Ser  (1) 

 

{1 Oct, 4 Oct} 1 Oct 1 Oct 1 Oct 1 Oct 

Meeting3 

 

Ser  (1) 

 

{1 Oct, 4 Oct } 4 Oct 4 Oct 4 Oct 4 Oct 

Meeting4 

 

Ser  (1) 

 

{1 Oct,3 Oct, 4 Oct } 3 Oct 3 Oct 3 Oct 3 Oct 

Meeting5 

 

Ser  (1) 

 

{3 Oct,5 Oct} 5 Oct 5 Oct 5 Oct 5 Oct 

Meeting6 

 

Ser  (1) 

 

{6 Oct,7 Oct, 8 Oct } 6 Oct 6 Oct 6 Oct 6 Oct 

Meeting7 

 

Ser  (1) 

 

{7 Oct,9 Oct} 9 Oct 9 Oct 9 Oct 7 Oct  

Meeting8 Ser  (1) {6 Oct,7 Oct} 7 Oct 7 Oct 7 Oct 7 Oct  



Chapter 8  Experimental Results and Evaluation 

 160 

  

Meeting9 

 

Ser  (1) 

 

{ 8 Oct } 8 Oct 8 Oct 8 Oct 8 Oct 

Meeting10 

 

Ser  (1) 

 

{10 Oct,11 Oct, 14 

Oct, 15 Oct} 

14 Oct 14 Oct 14 Oct 14 Oct 

Meeting11 

 

Ser  (1) 

 

{10 Oct,11 Oct, 15 

Oct, 17 Oct} 

15 Oct 15 Oct 15 Oct 15 Oct 

Meeting12 

 

Ser  (1) 

 

{12 Oct,16 Oct} 16 Oct 16 Oct 16 Oct 16 Oct 

Meeting13 

 

Ser  (1) 

 

{10 Oct,11 Oct,  

12 Oct } 

10 Oct 10 Oct 10 Oct 10 Oct 

Meeting14 

 

Ser  (1) 

 

{10 Oct,11 Oct} 11 Oct 11 Oct 11 Oct 11 Oct 

Meeting15 

 

Ser  (1) 

 

{ 12 Oct } 12 Oct 12 Oct 12 Oct 12 Oct 

Meeting16 

 

Ser  (1) 

 

{11 Oct,13 Oct} 13 Oct 13 Oct 13 Oct 13 Oct 

Violation = 6 0 0 0 2 

Table 11: Case 6 data table 

Case 7: 

 In this case, eighteen meetings have to be scheduled; their domain is thirty days and 

%33.34 of this domain is constrained.  



Chapter 8  Experimental Results and Evaluation 

 161 

The number of the Meetings=18 meetings; 

The number of constrained time slots in the domain= 30 * %33.34=10 time slots 

constrained 

The number of available time slots =30-10 = 20 time slots available. 

Hence eighteen meetings can be distributed across twenty dates. The results were as 

follows: 

 

 

Data Table 

 

Meetings 

 

Attendees Domain with SMA 

violation 

Superagent 

LGP 

Superagent 

LSP 

Superagent 

LGP_SP 

Superagent 

LSP_SP 

Meeting1 

 

Ser   (1) 

 

{2 Oct} 2 Oct 2 Oct 2 Oct 2 Oct 

Meeting2 

 

Ser  (1) 

 

{1 Oct, 4 Oct} 1 Oct 1 Oct 1 Oct 1 Oct 

Meeting3 

 

Ser  (1) 

 

{1 Oct, 4 Oct } 4 Oct 4 Oct 4 Oct 4 Oct 

Meeting4 

 

Ser  (1) 

 

{1 Oct,3 Oct, 4 Oct } 3 Oct 3 Oct 3 Oct 4 Oct 

Meeting5 

 

Ser  (1) 

 

{3 Oct,5 Oct} 5 Oct 5 Oct 5 Oct 3 Oct 

Meeting6 

 

Ser  (1) 

 

{6 Oct,7 Oct,10 

Oct,11 Oct} 

10 Oct 10 Oct 10 Oct 10 Oct 

Meeting7 Ser  (1) {6 Oct, 7 Oct,11 Oct, 11 Oct 11 Oct 11 Oct 11 Oct 



Chapter 8  Experimental Results and Evaluation 

 162 

  13 Oct} 

Meeting8 

 

Ser  (1) 

 

{8 Oct,12 Oct} 12 Oct 12 Oct 12 Oct 12 Oct 

Meeting9 

 

Ser  (1) 

 

{6 Oct, 7 Oct, 8  

Oct } 

6 Oct 6 Oct 6 Oct 6 Oct 

Meeting10 

 

Ser  (1) 

 

{6 Oct,7 Oct} 7 Oct 7 Oct 7 Oct 7 Oct 

Meeting11 

 

Ser  (1) 

 

{ 8 Oct } 8 Oct 8 Oct 8 Oct 8 Oct 

Meeting12 

 

Ser  (1) 

 

{7 Oct,9 Oct} 9 Oct 9 Oct 9 Oct 9 Oct 

Meeting13 

 

Ser  (1) 

 

{14 Oct,15 Oct, 18 

Oct} 

15 Oct 15 Oct 15 Oct 15 Oct 

Meeting14 

 

Ser  (1) 

 

{14 Oct,15 Oct,18 

Oct, 19 Oct} 

18 Oct 18 Oct 18 Oct 18 Oct 

Meeting15 

 

Ser  (1) 

 

{15 Oct, 19 Oct, 20 

Oct} 

19 Oct 19 Oct 19 Oct 19 Oct 

Meeting16 

 

Ser  (1) 

 

{ 16 Oct ,19 Oct, 20 

Oct} 

20 Oct 20 Oct 16 Oct  20 Oct 

Meeting17 

 

Ser  (1) 

 

{ 14 Oct, 15 Oct,  16  

Oct }  

16 Oct 16 Oct 16 Oct  16 Oct 

Meeting18 

 

Ser  (1) 

 

{14 Oct,15 Oct} 14 Oct 14 Oct 14 Oct 14 Oct 

Violation = 6 0 0 2 0 

Table 12: Case 7 data table 

 



Chapter 8  Experimental Results and Evaluation 

 163 

Cases 8 and 9: 

 In these cases, sixteen meetings have to be scheduled; their domain is thirty days and 

%46.67 of this domain is constrained.  

The number of the Meetings=16 meetings; 

The number of constrained time slots in the domain= 30 * %46.67=14 time slots 

The number of available time slots =30-14 = 16 time slots available. 

Hence, sixteen meetings can be distributed between sixteen time slots. The date and the 

performances for both SUAs are shown separately in the two following tables.  

 

 

Data Table 

 

Meetings 

 

Attendees Domain with SMA 

solution 

Superagenet 

LGP 

Superagent 

LSP 

Superagent 

LGP_SP 

Superagent 

LSP_SP 

Meeting1 

 

Ser (1) 

 

{2 Oct} 2 Oct 2 Oct 2 Oct 2 Oct 

Meeting2 

 

Ser (1) 

 

{1 Oct, 4 Oct} 1 Oct 1 Oct 1 Oct 1 Oct 

Meeting3 

 

Ser (1) 

 

{1 Oct, 4 Oct } 4 Oct  4 Oct  4 Oct  4 Oct 

Meeting4 

 

Ser (1) 

 

{1 Oct,3 Oct, 4 Oct } 4 Oct   4 Oct  4 O ct 3 Oct 

Meeting5 Ser  (1) {3 Oct,5 Oct} 3 Oct 3 Oct 3 Oct 5 Oct 



Chapter 8  Experimental Results and Evaluation 

 164 

  

Meeting6 

 

Ser (1) 

 

{6 Oct,7 Oct, 8 Oct } 6 Oct 6 Oct 6 Oct 6 Oct 

Meeting7 

 

Ser (1) 

 

{7 Oct,9 Oct} 9 Oct 9 Oct 9 Oct 7 Oct  

Meeting8 

 

Ser (1) 

 

{6 Oct,7 Oct} 7 Oct 7 Oct 7 Oct 7 Oct  

Meeting9 

 

Ser  (1) 

 

{ 8 Oct}  8 Oct 8 Oct 8 Oct 8 Oct 

Meeting10 

 

Ser (1) 

 

{10 Oct,11 Oct, 14 Oct, 

15 Oct} 

14 Oct 14 Oct 14 Oct 14 Oct 

Meeting11 

 

Ser (1) 

 

{10 Oct,11 Oct, 15 Oct, 

16 Oct} 

15 Oct 15 Oct 15 Oct 15 Oct 

Meeting12 

 

Ser (1) 

 

{12 Oct,16 Oct} 16 Oct 16 Oct 16 Oct 16 Oct 

Meeting13 

 

Ser  (1) 

 

{10 Oct,11 Oct, 12 Oct } 10 Oct 10 Oct 10 Oct 10 Oct 

Meeting14 

 

Ser  (1) 

 

{10 Oct,11 Oct} 11 Oct 11 Oct 11 Oct 11 Oct 

Meeting15 

 

Ser  (1) 

 

{ 12 Oct } 12 Oct 12 Oct 12 Oct 12 Oct 

Meeting16 

 

Ser  (1) 

 

{11 Oct,13 Oct} 13 Oct 13 Oct 13 Oct 13 Oct 

Violation= 6 2 2 2 2 

Table 13: Case 8 data table 

 

 



Chapter 8  Experimental Results and Evaluation 

 165 

 

Data Table 

 

Meetings 

 

Attendees Domain with SMA 

solution 

Superagent] 

LGP 

Superagent 

LSP 

superagentL

GP_SP  

superagentL

SP_SP 

Meeting1 

 

Ser (1) 

 

{2 Oct} 2 Oct 2 Oct 2 Oct 2 Oct 

Meeting2 

 

Ser (1) 

 

{1 Oct, 4 Oct} 1 Oct 1 Oct 1 Oct 1 Oct 

Meeting3 

 

Ser (1) 

 

{1 Oct, 4 Oct } 4 Oct 4 Oct 4 Oct 4 Oct  

Meeting4 

 

Ser (1) 

 

{1 Oct,3 Oct , 4 Oct } 3 Oct 3 Oct 3 Oct 4 Oct  

Meeting5 

 

Ser (1) 

 

{3 Oct,5 Oct} 5 Oct 5 Oct 5 Oct 3 Oct 

Meeting6 

 

Ser (1) 

 

{6 Oct,7 Oct, 8 Oct}  6 Oct 6 Oct 6 Oct 8 Oct  

Meeting7 

 

Ser (1) 

 

{7 Oct,9 Oct} 9 Oct 7 Oct 9 Oct 7 Oct 

Meeting8 

 

Ser (1) 

 

{6 Oct,7 Oct} 7 Oct 7 Oct 7 Oct 6 Oct 

Meeting9 

 

Ser (1) 

 

{ 8 Oct } 8 Oct 8 Oct 8 Oct 8 O ct 

Meeting10 

 

Ser (1) 

 

{10 Oct,11 Oct, 12 

Oct, 14 Oct} 

 12 Oct  12 Oct  12 Oct  12 Oct 

Meeting11 

 

Ser (1) 

 

{10 Oct,11 Oct, 14 

Oct,  

14 Oct 15 Oct 14 Oct 14 Oct 



Chapter 8  Experimental Results and Evaluation 

 166 

15 Oct } 

Meeting12 

 

Ser (1) 

 

{11 Oct,15 Oct, 16 

Oct} 

11 Oct 11 Oct 11 Oct 11 Oct 

Meeting13 

 

Ser (1) 

 

{12 Oct,15 Oct, 16 

Oct} 

16 Oct 16 Oct 16 Oct 16 Oct 

Meeting14 

 

Ser (1) 

 

{10 Oct,11 Oct, 12 

Oct} 

10 Oct 10 Oct 10 Oct 10 Oct 

Meeting15 

 

Ser (1) 

 

{10 Oct,11 Oct, 15  

Oct } 

15 Oct 15 Oct 15 Oct 15 Oct 

Meeting16 

 

Ser (1) 

 

{11 Oct,13 Oct, 15 Oct 13 Oct 13 Oct 13 Oct 13 Oct 

 

Violation 

 

 

 6 

 

0 

 

0 

 

0 

 

4 

Table 14: Case 9 data table 

 

 superagentLGP superagentLSP superagentLGP_SP 

local optimum 

superagentLSP_SP 

local optimum 

Starting 

violation 

6 6 6 6 

Ending 

violation 

0 0 0 2 

Number 

of rounds 

5 13 5 2 

Table 15: Case 6 results table 

 



Chapter 8  Experimental Results and Evaluation 

 167 

 

 superagentLGP superagentLSP superagentLGP_SP 

local optimum 

superagentLSP 

local optimum 

Starting 

violation 

6 6 6 6 

Ending 

violation 

0 0 2 0 

Number of 

rounds 

11 2 7 2 

Table 16: Case 7 results table 

 

 superagentLGP superagentLSP superagentLGP_SP 

local optimum 

superagentLSP_SP 

local optimum 

Starting 

violation 

6 6 6 6 

Ending 

violation 

2 2 2 2 

Number of 

rounds 

500 500 7 2 

Table 17: Case 8 results table 

 

 superagentLGP superagentLSP superagentLGP_SP 

local optimum 

superagentLSP_SP 

local optimum 

Starting 6 6 6 6 



Chapter 8  Experimental Results and Evaluation 

 168 

violation 

Ending 

violation 

0 0 0 4 

Number of 

rounds 

5 10 5 3 

Table 18: Case 9 results table 

 

 

 Small 

agent 

superagentL

GP 

superagentL

SP 

superagentLGP

_SP local 

optimum 

superagentLSP

_SP 

local optimum 

Violation 

percentage  

36% 3% 3% 6% 12% 

Reduction 

in violation 

0% 33% 33% 30% 24% 

Table 19: Results table 

 

Analysis of Experiment Group 2 

From the experiments above, the following observations can be made: 

1) HMAA in this group has been examined on very complicated situations; where the 

meetings' domains are very constrained. We have documented four cases of these 

situations: 



Chapter 8  Experimental Results and Evaluation 

 169 

a) Case 6:  we have (16) meetings and (30) domain timeslots; (%43.34) of this 

domain is unavailable (constrained); hence (%56.66) of this domain is available. 

On the other hand the percentage of the domain needed to schedule these 16 

meetings is (16/30=%53.34). Then the meetings would be scheduled in %53.34 

of the domain where %56.66 is available. 

b) Case 7:  (18) meetings and the domain is (30) timeslots where %33.34 is 

unavailable. These (16) meetings need (%53.33) of the domain to be scheduled, 

where just %66.66 is available. 

c) Cases 8 and 9: there are (16) meetings; and (30) timeslots domain where 

(%46.67) of this domain is unavailable.  These 16 meetings need (%53.33) of 

the domain to be scheduled where exactly (%53.33) of this domain is 

unconstrained or available.  

The results of this group of experiments show that the percentage of the scheduled 

meetings' violation using SMA default heuristic is (%36), and this percentage is 

considered small since these cases are very restricted and constrained situations. On the 

other hand, this violation has been reduced more in the cases of using the help of one of 

the SUAs. Using superagentLGP, superagentLSP, superagentLGP_SP, 

superagentLSP_SP generated heuristics have reduced the violation up to 3%, 3%, 6%, 

12% respectively. Hence it is perfectly feasible for the four SUAs in HMAA to solve 

very susceptible and complicated situations; they reduced the violations by a huge 

margin of the SMA's violation (33 per cent, 33 per cent, 30 per cent, and 24 per cent 

respectively). And this level of reduction is a great achievement. 



Chapter 8  Experimental Results and Evaluation 

 170 

2) The feasibility of the system is measured by the number of violations as well as the 

time taken or the number of rounds needed. Sometimes local optimum is more 

feasible than global optima, as in Tables 15, 17 and 18. In Table 17 the 

superagentLSP_SP and superagentLGP_SP reached the same violation of 

superagentLSP and superagentLGP –which equals 2- in a very small number of 

rounds ―2‖; while superagentLSP and superagentLGP needed ―500‖ rounds for that. 

In Tables 15 and 18, superagentLSP_SP reached to violations (2, 4) in small number 

of rounds (2, 3); while superagentLSP reached to ―zero‖ violations but in number of 

rounds equals (13 and 10) respectively. The same for superagentLGP_SP, in Table 

16; it reached violation equals 2 in ―7‖ rounds, while superagentLGP reached ―zero‖ 

violations in 11 rounds. Hence, in some cases in is more feasible to reach acceptable 

violation in acceptable time; than ―zero‖ violation in very long time.   

Experiments Group 3 

In these experiments, three agents are initialised and thirty meetings with different 

domain distributed between them. Some of these domains overlap.  

The experiments have been carried out in three stages: 

 Stage 1 — the SMA stage. The SMA attempts to resolve problems by using its 

heuristic to scheduling meetings with a minimum of violations. 

 Stage 2 — the superagentLGP. The SMA asks the superagentLGP to generate 

new heuristics to solve the violations. The superagentLGP uses its LGP 

algorithm to generate new heuristics for the SMAs. 



Chapter 8  Experimental Results and Evaluation 

 171 

 Stage 3 — superagentLSP. The SMA asks the superagentLSP to generate new 

heuristics to solve the violation. The superagentLSP uses its LSP algorithm to 

generate a new heuristic for the SMAs. 

These experiments can measure the feasibility of the system by comparing the results of 

Experimental Stage 1 with Stage 2 and Stage 3. As it can be seen in Fig. 46, the SUAs 

in the implemented HMAA are responsible for a big reduction in the number of 

violations. The violation of the SMAs using its heuristic was 94, which was reduced to 

between 18 and 20 using one of the SUA-generated heuristics. This means that the new 

HMAA can reduce violations by nearly 75 per cent. 

 

Violation reduction

0
10
20
30
40
50
60
70
80
90

100

smaller agent

heuristic

superagentLGP

heuristic

superagentLSP

heuristic

Agents

V
io

la
ti

o
n

 

Fig. 46: Violation reduction 



Chapter 8  Experimental Results and Evaluation 

 172 

By comparing results of Stage 2 with those of Stage 3, the feasibility of the LSP can be 

measured as a proposed evolutionary approach and compared with the LGP-based one 

of existed evolutionary approaches. The superagentLGP produces algorithms that 

produced violations totalling 20, while the superagentLSP equivalent was 18; this 

reveals that superagentLSP (using LSP) is better that superagentLGP (which uses LGP). 

This does not mean that LSP is better than linear search programming, however.  

Fig. 47 shows that the superagentLSP loops 60 rounds while superagentLGP loops 54: 

LSP loops 10 per cent more rounds. This is the reason why superagentLSP's violations 

are fewer in number than those of superagentLGP'. This is due to the proposed 

algorithms for both SUAs: since they have the same components (as mentioned in the 

analysis of Experiment Groups 1 and 2), so the proposed algorithms for superagentLSP 

loop more than those for superagentLGP. But if they have the same components, then 

LSP and LGP are both good enough to solve many complicated and sensitive situations, 

and both SUA algorithms could be modified and altered to generate better solutions. 



Chapter 8  Experimental Results and Evaluation 

 173 

0

10

20

30

40

50

60

70

LGP  LSP smaller agents

ro
u

n
d

s

 

Fig. 47: Measurement of rounds/time 

In Fig. 47; LSP rounds are more than LGP that does not mean LSP needs longer time 

frame than LGP. This is due to the fact that in each round LSP generates two heuristics 

and tries them to measure their feasibility; while LGP generates and tries four heuristics 

in each round; which means each round in LSP needs half time frame needed for LGP. 

On the other hand the probability of finding a solution in four options of heuristics is 

more than in two heuristics which is the case of LSP; that does not means LGP finds 

solution faster, since it depends mainly on the strength of the heuristic itself.   

8.6. Summary 

The chapter illustrates experiments for HMAA, where two stages of experiments have 

been conducted. Stage one is done on small agent predefined heuristic; where two 

groups of experiments have been done. 



Chapter 8  Experimental Results and Evaluation 

 174 

Stage two conducted three groups of experiments; experiments group 1 demonstrated 

the feasibility of HMAA on large number of users; and wide variety of situations. 

Experiments group 2 conducted to measure the feasibility of the system for acceptable 

level of violations and time frames; where some times searching local optima solution is 

more feasible than computing the global one.  The final group is for measuring the 

feasibility of LSP compared with LGP as a new concept to EAs research; and the result 

that LSP performance was very good and equals to LGP approach. 

Further modifications and more expanding to HMAA are discussed in the following 

chapter.  

 



Chapter 9  Conclusions and Future Work 

 175 

Chapter 9 

Conclusion and Future Work 

9.1 Summary 

Recently AI researchers tend to move away from machine-orientation views of 

programming toward concepts and metaphors that more closely reflect human beings 

orientations; this evolved trend to Agent research area where high-level more human-

oriented abstraction software are developed. In order to simplify the development of 

such software, it has been discovered after several years that distributed systems are 

easier to understand and build; specially that real-life problems are usually physically or 

functionally distributed, and sometimes the problems are too large to be solved by a 

centralised agent; hence further development in AI research toward distribution has led 

Multiagent systems (MAS).  

MASs are loosely-coupled network of problem solvers that work together to solve 

problems that are beyond their individual capabilities. Despite the big advantages raised 

from distributing the problem solving process, it cannot be denied that distributed 

frameworks have several difficulties; neither up to date information nor the complete 

range of resources are available to all agents. Consequently information and 

computation is localised; diversified goals also present significant challenges to the 

design of systems capable of achieving high levels of global utility where independent 

decisions may result in conflicts.  



Chapter 9  Conclusions and Future Work 

 176 

In this research we have proposed a new hybrid multi-agent architecture (HMAA), the 

architecture is ―semi-distributed/semi-centralised‖ where problems are firstly 

distributed among small agents that implement predefined heuristics to solve problems. 

However, heuristics are not absolutely guaranteed to provide the best (i.e. optimal) 

solutions, or even to find a solution at all. Therefore optimisation techniques such as 

EAs are needed to solve such a situation.  

HMAA has a centralised control; a central agent possessing much greater computational 

power and more intensive algorithms and optimisation techniques; becomes active 

when those small agents become stuck, and generates new heuristic that enable those 

small agents to solve their problems. The Meeting Scheduling Problem (MSP) has been 

adopted and investigated in order to examine and validate the idea. 

The results reveal that this architecture is applicable to many different application 

domains because of its simplicity and efficiency. Its performance is better than those of 

many existing meeting scheduling frameworks. It preserves small agents’ mobility (i.e. 

the ability to run on small devices) while implementing evolutionary algorithms. 

HMAA is very robust in that it can implement more than one optimisation technique 

without affecting mobility.  

9.2 Contributions 

This research has produced the following results:  

(1) Hybrid Multi-Agent Architecture (HMAA) for solving many NP-hard problems: this 

architecture is hybrid because it is a ―semi-distributed/semi-centralised‖ architecture. In 

the proposed HMAA, variables and constraints are distributed among small agents 



Chapter 9  Conclusions and Future Work 

 177 

exactly as in distributed architectures. But when the small agents become stuck, a 

centralised control is activated, in which the variables are transferred to a super agent 

that has a central view of the whole system and possesses much more computational 

power and intensive algorithms (such as evolutionary algorithms) that enable it to find 

an optimal solution . It does this by defining different classes of agents including super-

agents and small agents. Fixed and limited heuristics of small agents can be altered by 

the super-agents; that generate new skills/heuristics using evolutionary approaches  This 

architecture is used for examining the feasibility of running computationally intensive 

algorithms (such as EA) on multi-agent architectures, while preserving the small agent 

size and their ability to run on small devices. 

(2) Two types of HMAA have been implemented: the first deals with the NP-problems 

as optimisation problem DCOP, in which the goal is to find an optimal solution that 

minimises the violation; the other deals with NP-hard problems as search problem 

DisCSP, where the goal is to find a feasible solution. The implementation of these two 

types of HMAA is due to the fact that some applications' domains need to implement 

the optimal solution, with the minimum violations, leaving the final decision about the 

results obtained to the user. Other applications require feasible solutions without any 

violations, leaving the users the opportunity to enter the unsolved problem into the 

system again, using new options (domains) in order to retry the attempt at a solution. 

(3) New SMA meeting scheduling heuristic: this prioritised/ranked heuristic takes into 

account two parameters: a set of domains and a set of ranked attendees. These 

parameters are necessary in order to measure the difficulty of a meetings' scheduling. 

The heuristic starts by ranking the meetings, in order to schedule the most difficult ones 



Chapter 9  Conclusions and Future Work 

 178 

respectively. This gives meetings that do not have many feasible options in their time 

domains the opportunity to be scheduled before the others. The aim of the 

prioritised/ranked heuristic is to find timeslots from each domain to assign the 

corresponding meeting to, where all the attendees accept that assignment. The goal is to 

find a feasible or optimal solution depending on the chosen framework.   

(4) New SMA repair strategy for the scheduling process: this is activated when the 

scheduling ends with some violations. The repair strategy implements a local search 

algorithm to search for a better schedule. It starts with the meeting with the greatest 

number of violations, and defines its neighbourhood structure using simple moves 

involving only two-meeting timeslots. Each move involves the meeting with the most 

violations and one of the meetings overlapping with it, so that each has in its domain the 

timeslot to which the other meeting has been assigned. It swaps these two meetings in 

order to find a better schedule; the process is repeated for all the meetings with 

violations until the optimal solution with minimal violations. This repair strategy 

applies just to the DCOP framework. In the DisCSP framework the agents do not have 

to deal with violations of meetings, but only with unscheduled meetings. 

(5) Small Agent (SMA) for meeting scheduling has been developed. This SMA is 

responsible for accomplishing the scheduling process on behalf the individual it 

represents; by utilising the proposed prioritised/ranked meeting scheduling heuristic and 

local search repair strategy. This SMA is small size and limited capabilities agent, and it 

could be implemented and run on small devices such as phone mobile device or PDAs. 

Hence, the users could manage meetings and know their calendar through small mobile 

devices that implement this proposed SMA. 



Chapter 9  Conclusions and Future Work 

 179 

(6) ―Local Search Programming‖ (LSP), a new concept for evolutionary approaches, 

has been introduced. This is a method for automatically creating a working computer 

program that modifies one solution technique (heuristic/computer program) using local 

search approaches. This method is inspired by genetic programming and by local search 

techniques. LSP tries to generate new heuristics/programs using local searching instead 

of genetic algorithm (GA) techniques. Local searching optimises the current heuristic by 

moving from one heuristic/algorithm to one of its neighbours. The neighbourhood is 

composed of those heuristics that can be obtained by simple local changes to the current 

heuristic. Trial programs were evaluated against their parent/origin and the best one 

selected in order to continue searching for the optimal solution. This search pattern is 

repeated until the optimal program is produced. The main difference between local 

search algorithms and local search programming is that the former optimises the 

solution while the latter optimises computer programs as the solution.  The difference 

between genetic programming and local search programming is that GP applies GAs to 

a population of programs, while LSP applies LSA to one program, meaning that GP 

needs two parents to crossover them, while LSP works on one solution in order to 

modify it.  

(7) Two types of super-agent (LGP_SUA and LSP_SUA) have been implemented in the 

HMAA, and two SUAs (local and global optima) have been implemented for each type. 

The first type is LGP_SUA (superagentLGP and superagentLGP_SP), it uses the LGP 

approach to generate new heuristics. The second is LSP_SUA (superagentLSP and 

superagentLSP_SP), it uses the LSP approach for the same purpose. In HMAA, the 

SUAs task starts after it receives a request from the SMA for a new heuristic. The 

SUAs’ design incorporates powerful functions that generate new meeting scheduling 



Chapter 9  Conclusions and Future Work 

 180 

solutions, while applying one of the aforementioned EAs. Evolutionary strategies 

promise to find optimal solutions that minimise the number of violations. This is not 

always possible for relatively unsophisticated small/mobile agents, because they have 

fixed heuristics with limited capabilities, and may therefore sometimes fail to find the 

optimal solution.   

(8) A prototype for HMAA has been implemented: this prototype employs the proposed 

meeting scheduling heuristic with the repair strategy on SMAs, and the four extensive 

algorithms on SUAs. This is in order to evaluate the SMA heuristic and the local search 

repair strategy, as well as to examine the feasibility of running the investigated 

computationally intensive algorithms on multi-agent architectures while preserving the 

small agents’ size and ability to run on small devices. This examination is carried out by 

evaluating the performance of the SUAs.   

9.3. Future work 

In future work the following will be investigated: 

 Generalising the HMAA and extending it to include many different distributed, 

large-scale, open, heterogeneous, dynamic applications, as well as many NP-

hard problems. An exciting example of such problems is Multi-agent Resource 

Allocation (MARA), which merges computer science and economics. MARA is 

defined as the allocation of resources within a system of autonomous agents, 

which not only have preferences over alternative allocations of resources but 

also participate in computing an allocation. The objective of a resource 

allocation procedure is either to find an allocation that is feasible (e.g. search 



Chapter 9  Conclusions and Future Work 

 181 

problem); or to find an allocation that is optimal (e.g. optimisation problem). 

Another example is Task Allocation Problem (TAP), where the agents are 

connected in a social network and tasks arrive at the agents distributed over the 

network. 

 Extending local search algorithm to cater for a larger neighbourhood structures 

that does not need great computational power. Extending the local search 

algorithm is supposed to be worth, since it would improve the performance of 

the SMA while preserving the ability to run on small devices. 

 Implementing another types of evolutionary algorithms on super agents; which 

search to find the optimal heuristic or optimal solution. many discipline are 

grouped under evolutionary algorithms; these disciplines are: evolutionary 

strategy(Rechenberg 1964), evolutionary programming (Fogel, Owens and 

Walsh 1965), genetic algorithm (Holland 1975) and genetic programming (Koza 

1992) the one that has been adopted to investigate and validate the proposed 

HMAA. Implementing other types of EAs may improve the performance of the 

proposed HMAA. 

 Formalising heuristics that are used in solving NP-hard problem, and using them 

in evolutionary algorithm to generate new heuristics. This is due to the fact that 

if heuristic can be defined as sequence of blocks, it is easily for the EAs to 

generate new heuristics by simply perform mutation on these blocks.   

 



  References 

 182 

References  

[1] A. Omicini, F. Zambonelli, and M. Klusch. Coordination of Internet Agents: 

Models Technology and Applications. Chapter 13, R. Tolksdorf, Springer, 2001. 

 

[2] A. Taivalsaari, B. Bush, and D. Simon. The Spotless System: Implementing a 

Java System for the Palm Connected Organizer. Tech. report SMLI TR-99-77, Sun 

Microsystems, Palo Alto, Calif., 1999.  

 

[3] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, 

Natural Computing, ISBN 3540401849, 2008.  

 

[4] A. Abraham. Evolutionary Computation, Handbook for Measurement, Systems 

Design. John Wiley and Sons Ltd., London, ISBN 0-470-02143-8, pp. 920–931, 

2005   

 

[5] A. Petcu and B. Faltings. A Distributed, Complete Method for Multi-agent 

Constraint Optimisation. In the proceedings of the fifth international workshop on 

Distributed Constraint Reasoning (DCR04), Toronto, Canada, 2004  

 

[6] A. Hassine, T. Bao Ho. An Agent-based Approach to Solve Dynamic Meeting 

Scheduling Problems with Preferences. Engineering Applications of Artificial 

Intelligence, vol. 20 ,  issue 6,  pp. 857-873, 2007. 

 



  References 

 183 

[7] A. Hassine, T. B. Ho, and T. Ito. Meetings Scheduling Solver Enhancement with 

Local Consistency Reinforcement.  Applied Intelligence, vol. 24, issue 2, pp. 143–

154, 2006.  

 

[8] A. Abraham, N. Nedjah, and L. Mourelle. Evolutionary Computation: from 

Genetic Algorithms to Genetic Programming. Springer, Germany, ISBN: 3-540-

29849-5, 2006.  

 

[9] A. Meisels. Distributed Search by Constrained Agents Algorithms, Performance, 

Communication. Springer, ISBN 1848000405, p19-26, 2008.  

 

[10] T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University 

Press, New York, 1996. 

 

[11] M. Brameier and W. Banzhaf. A Comparison of Linear Genetic Programming 

and Neural Networks in Medical Data Mining. IEEE transactions on Evolutionary 

Computation, pp. 17-26, 2001.  

 

[12] B. Montague. JN: An Operating System for an Embedded Java Network 

Computer. Technical Report UCSC-CRL-96-29, 1997.  

 

[13] C. Guilfoyle and E. Warner.  Intelligent Agents: the New Revolution in Software. 

Ovum, 1994. 

 



  References 

 184 

[14] C. Bernon, V. Chevrier, and V. Hilaire. Applications of Self-Organising Multi-

Agent Systems: An Initial Framework for Comparison. Informatica, vol. 30, pp. 73–

82, 2006. 

 

[15] C. Voudouris, D. Lesaint, and D. Pothos. Solving Large Industrial Problems 

using Heuristic Search and Constraint Programming. Intelligent System Research, 

BT, 1998. 

 

[16] C. Paolo and M. Wooldridge. Agent-oriented Software Engineering. In the 

proceedings of the International Conference on Software Engineering, pp. 816-817, 

2000. 

 

[17] P. I. Cowling, S. Ahmadi, P. C. Cheng and R. Barone. Combining Human and 

Machine Intelligence to Produce Effective Examination Timetables.  Proceedings of 

the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL2002), 

pp. 662-666, 2002. 

 

[18] D. Beasley, D. Bull, and R. Martin. An Overview of Genetic Algorithms: Part 

, Fundamentals. Technical report, University of Purdue, volume ( ), pp. - , 

. 

 

[19] D. Goldberg. Genetic Algorithms in Search, Optimisation and Machine 

Learning. Addison-Wesley Longman Publishing Co., Inc.  Boston, MA, USA, 1989.  

 



  References 

 185 

[20] D. Partridge. A new Guide to Artificial Intelligence. Ablex Pub. Corp. 

(Norwood, N.J), 1991. 

 

[21] L. M. Deschaine. Tackling Real-world Environmental Challenges with Linear 

Genetic Programming. PCAI Magazine, vol. 15, pp. 35-37, 2000. 

 

[22] L. M. Deschaine, R. A. Hoover, and J. Skibinski. Using Machine Learning to 

Complement and Extend the Accuracy of UXO Discrimination Beyond the Best 

Reported Results at the Jefferson Proving Grounds. In the proceedings of the  

Society for Modeling and Simulation International, 2002. 

 

[23] L. M. Deschaine, J. J. Patel, R. G. Guthrie, J. T. Grumski, and M. J. Ades. 

Using Linear Genetic Programming to Develop a C/C++ Simulation Model of a 

Waste Incinerator.  The Society for Modeling and Simulation International: 

Advanced Simulation Technology Conference, pages 41-48, 2001. 

 

[24] D. Li and Y. Du. Artificial Intelligence with Uncertainty. Chapman & 

Hall/CRC, 2008. 

 

[25] M. Dianati, I. Song, and M. Treiber.  An Introduction to Genetic Algorithms 

and Evolution Strategies. Technical report, University of Waterloo, Ontario, N2L 

3G1, Canada, 2002. 

 



  References 

 186 

[26] D. Kramer. The Java™ Platform: A White Paper. JavaSoft White Paper  Sun 

Microsystems, California USA, 1996. 

 

[27] E. S. K. Yu. Agent-Oriented Modelling: Software versus the World. In the 

proceedings of AOSE'01, LNCS 2222, pp. 206-225. Springer-Verlag, 2001. 

 

[28] E. Mezura-montes, A. Carlos, and C. Coello. An Improved Diversity 

Mechanism for Solving Constrained Optimisation Problems using a Multimembered 

Evolution Strategy. In the proceedings of GECCO, 2004. 

 

[29] E. Anderson. Playing Smart – Artificial Intelligence in Computer Games. In the 

proceedings of zfxCON03 Conference on Game Development, ZFX - 3D 

Entertainment, Braunschweig, Germany, 2003. 

 

[30] E. Shakshuki, H. Koo, D. Benoit, and D. Silver. A Distributed Multi-agent 

Meeting Scheduler. Journal of Computer and System Sciences archive, vol. 74,  pp. 

279-296, 2008. 

 

[31] E. Evans and D. Rogers.  Using Java Applets and CORBA for Multi-user 

Distributed Applications.  IEEE Internet Computing, vol. 1, pp 43-55, 1997.  

 

[32] F. Streichert. Introduction to Evolutionary Algorithms. Frankfurt MathFinance 

Workshop, University of Tuebingen, 2002.  

 



  References 

 187 

[33] F. Zhang, P. B. Luh and E. Santos Jr.  Performance Study of Multi- Agent 

Scheduling and Coordination Framework for Maintenance Networks. In the 

proceedings of 2004 IEEEIRSI International Conference on intelligent Robots and 

Systems, Sendai, Japan, 2004.  

 

[34] J. Ferber. Multi-agent systems: an introduction to distributed artificial 

intelligence. Addison-Wesley, London, 1999. 

 

[35]  L. Garrido  and K. Sycara. Multi-agent Meeting Scheduling: Preliminary 

Experimental Results. In the proceedings of 1st International Conference on Multi-

Agent Systems (ICMAS).  Pp. 95 – 102, 1996. 

 

[36] G. Weiss. Multiagent Systems: a Modern Approach to Distributed Artificial 

Intelligence. The MIT Press, 1999. 

 

[37] A. Hassine, T. Ito, and T. B. Ho. A new Distributed Approach to Solve 

Meeting Scheduling Problems. In the proceedings of IEEE/WIC Int. Conf. IAT, 

2003  

 

[38] A. Hassine, X. Defago, and T. B. Ho. Agent-based Approach to Dynamic 

Meeting Scheduling Problems. Proceedings of the Third International Joint 

Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, 2004. 

 



  References 

 188 

[39] J. Holland. Adaptation in Natural and Artificial Systems. Ann Harbor: 

University of Michigan Press, 1975  

  

[40] H. Nwana and D. Nduma. A Perspective on Software Agents Research. The 

Knowledge Engineering Review, 1999. 

 

[41] I. Devarenne, H. Mabed, and A. Caminada. Intelligent Neighbourhood 

Exploration in Local Search Heuristics. In the proceedings of the 18th IEEE 

International Conference on Tools with Artificial Intelligence, pp. 144-150 , 2006. 

 

[42] I. Demirel and N. Erdogan. Meeting Scheduling with Multi-agent Systems: 

Design and Implementation. In the proceedings of the 6th WSEAS International 

Conference on Software Engineering, pp. 92-97, 2007. 

 

[43] R. Jain, F. Anjum, and A. Umar. A Comparison of Mobile Agent and Client-

Server Paradigms for Information Retrieval Tasks in Virtual Enterprises. In the 

proceedings of AiWoRC Workshop, Buffalo, New York, 2000.   

 

[44] J. Orlin, A. Punnen, and A. Schulz. Approximate Local Search in 

Combinatorial Optimisation. SIAM Journal on Computing, Vol. 33, pp. 1201-1214, 

2004. 

 



  References 

 189 

[45] N. R. Jennings and  M. Wooldridge. Applications of Intelligent Agents. Agent 

Technology: Foundations, Applications, and Markets. Springer-Verlag, Heidelberg, 

Germany, 1998   

 

[46] N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research 

and Development. Vivek, vol. 12, no. 3-4, pp. 38-66, 1999. 

 

[47] J. Holland. Adaptation in Natural and Artificial Systems: An Introductory 

Analysis with Applications to Biology, Control and Artificial Intelligence. The MIT 

Press, ISBN: 026258116, 1992.  

 

[48] J. McCarthy.  John McCarthy: father of AI. Intelligent Systems, IEEE, Volume 

17, Issue 5, pp. 84 – 85, 2002. 

 

[49] J. Koza. Genetic Programming: On the Programming of Computers by Natural 

Selection. The MIT press, Cambridge, MA, 1992  

 

[50] J. Leung. Handbook of Scheduling: Algorithms, Models, and Performance 

Analysis. Chapman & Hall; 1 edition, Mathematics, pp. 2-9, 2004. 

 

[51] K.  Andersen and J.  Debenham . Database and Expert Systems Applications. 

In the proceedings of the 16th international conference on Database and Expert 

Systems Applications (DEXA), Denmark, p. 339, 2005. 

 



  References 

 190 

[52] R. Kohout and K. Erol. Achieving High Quality Solutions in Distributed 

Agent-Based Control Systems.  In the proceedings of the IASTED International 

Conference on Artificial Intelligence and Soft Computing, August 9-12, Honolulu, 

Hawaii, 1999. 

 

[53] D. B. Lange and M. Oshima. Seven Good Reasons for Mobile Agents. 

Communications of the ACM, vol. 42, no. 3, pp. 88-8, 1999. 

 

[54] Y. C. Law and J. H. M. Lee. Algebraic Properties of CSP Model Operators. In 

the proceedings of the International Workshop on Reformulating Constraint 

Satisfaction Problems: Towards Systematisation and Automation, 2002. 

 

[55] M. Sugumaran, K. Easawarakumar, and P. Narayanasamy. An Effective 

Approach for Distributed Meeting Scheduler.  International Journal of Information 

Technology , Vol. 12, No. 8, 2006. 

 

[56] M. Heywood and A. Zincir-Heywood. Dynamic Page Based Crossover in 

Linear Genetic Programming. IEEE transactions on Systems, Man, and Cybernetics, 

Part B, Vol. 32, pp. 380-388, 2002. 

 

[57] M.  Huhns and L. Stephens. Multiagent Systems and Societies of Agents. In 

Multiagent systems: a modern approach to distributed artificial intelligence, G. 

Weiss (Ed.),  MIT Press, pp. 79-120, 1999  

 



  References 

 191 

[58] M. Gervasio, M. Moffitt, M. Pollack, J. Taylor, and T. Uribe. Active Preference 

Learning for Personalised Calendar Scheduling Assistance.  In the proceedings of 

the International Conference on Intelligent User Interfaces, San Diego, CA, Jan 

2005. 

 

[59] M. Wooldridge. Agent-based Software Engineering. IEE Proc. on Software 

Engineering  - , 1997. 

 

[60] M. Wooldridge and N. Jennings. Software Engineering with Agents: Pitfalls 

and Pratfalls. IEEE Internet Computing, Vol. 3, pp. 20-27, 1999  

 

[61] M. Wooldridge and P.Ciancarini. Agent-Oriented Software Engineering: The 

State of the Art.  Agent-Oriented Software Engineering, Springer-Verlag, 2001  

 

[62] R. Mailler and V. Lesser. Solving Distributed Constraint Optimisation 

Problems using Cooperative Mediation. In the proceedings of the Third 

International Joint Conference on Autonomous Agents and Multiagent Systems 

AAMAS, pp. 438–445, 2004. 

 

[63] M. Yokoo, E. Durfee, and K. Kuwabara. The Distributed Constraint 

Satisfaction Problem: Formalisation and Algorithms. IEEE Transactions on 

knowledge and data engineering, vol. 10, no. 5, 1998  

 



  References 

 192 

[64] M. Brameier and W. Banzhaf. Linear Genetic Programming (Genetic and 

Evolutionary Computation). Springer, 2006.  

 

[65] A. Meisels and O. Lavee. Using Additional Information in Discsps Search. 

Distributed Constraint Reasoning Workshop (DCR), 2004. 

 

[66] M. O'Niell. Grammatical Evolution, Evolutionary Automatic Programming in 

an Arbitrary Language. Springer, ISBN 1402074441, 2003. 

 

[67] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer; 3rd ed., p. 

1 and p. 26, 2008. 

 

[68] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 

ISBN 047149691X, p. 23, 2002. 

 

[69] M. Oltean. Encoding Multiple Solutions in a Linear Genetic Programming 

Chromosome. In the proceedings of the 4th International Conference on 

Computational Science, Part III, Springer-Verlag, 2004.  

 

[70] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An Asynchronous Complete 

Method for Distributed Constraint Optimisation. In the proceedings of the Third 

International Joint Conference on Autonomous Agents and Multiagent Systems 

AAMAS, pp. 161–168, 2003. 

 



  References 

 193 

[71] D. Mulchandani. Java for Embedded Systems. IEEE Internet Computing, Vol. 

2, pp. 30-39, 1998. 

 

[72] N. Jennings and M. Wooldridge.  Applications of Intelligent Agents. Agent 

Technology: Foundations, Applications, and Markets, 1998. 

 

[73] Ovum Report.  Intelligent agents: the new revolution in software. London: 

Ovum Publications, 1994  

 

[74] P. Jackson. Introduction to Expert Systems. Addison-Wesley: Reading, MA, 

1986  

 

[75] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A Java-oriented OS for Active 

Networks. IEEE Journal on Selected Areas of Communications,   March 2001  

 

[76]  Adrian. Dynamic Distributed Optimisation for Planning and Scheduling. AAAI 

Workshop - Technical Report, pp. 52-53, v WS-05-06, 2005  

 

[77] P. Dobble. Real-time java platform programming.  Prentice Hall PTR, 1st 

edition, Page 13, 2000.  

 

[78] P. Modi and M. Veloso. Multiagent Meeting Scheduling with Rescheduling. In 

the proceedings of the fifth Workshop on Distributed Constraint Reasoning (DCR), 

2004. 



  References 

 194 

 

[79] P. Modi, M. Veloso, S. Smith, and J. Oh. CMRADAR: A Personal Assistant 

Agent for Calendar Management. Agent Oriented Information Systems, (AOIS), 

2004  

 

[80] Profit Scheduler for MeetingsTM. 

http://www.profitpt.com/profit_meeting_scheduler.asp, accessed on Jun 2009. 

 

[81] R. Gregory. The Oxford Companion to the Mind. Oxford University Press, 

Oxford UK, 1998  

 

[82] R. Poli, W. Langdon, and N. McPhee. A Field Guide to Genetic Programming. 

Lulu Enterprises, UK Ltd, ISBN 1409200736, March 2008. 

 

[83] R. Gray. Agent Tcl: A Flexible and Secure Mobile-agent System. In the 

proceedings of the fourth Annual Tcl/Tk Workshop, 1996.  

 

[84] R. Barták and H. Rudová . Integrated Modelling for Planning, scheduling, and 

Timetabling Problems. In the proceedings of PLANSIG, Edinburgh, UK, December 

2001.  

 

[85] S. Russell and P. Norvig. Artifical intelligence: a modern approach.  Prentice 

Hall, 2nd edition, 2003. 

 

http://www.profitpt.com/profit_meeting_scheduler.asp


  References 

 195 

[86] S. Ahmadi, R. Barone, E. Burke, P. Cheng, P. Cowling and B. McCollum. 

Integrating Human Abilities and Automated Systems for Timetabling: a 

Competition using Stark and Hussh Representations at the PATAT 2002 

Conference.  In the proceedings of the 4th international conference on the practice 

and theory of automated timetabling (PATAT), pp. 265-273, 2002  

 

[87] S. Sivanandam, S. Deepa. Introduction to Genetic Algorithms. Springer; 1 

edition, ISBN 354073189X, 2007. 

 

[88] S. Al-Ratrout and S. Ahmadi. Learning the Effect of Parameters in Timetabling 

Process.  In the proceedings of the international conference International 

Conference on Recent Advances in Soft Computing (RASC), 2006.  

 

[89] S. Legg and M. Hutter. Universal Intelligence: A Definition of Machine 

Intelligence. Minds and Machines. Vol. 17, pp. 391-444, 2007.  

 

[90] Y. Shoham. Agent-oriented Programming.  Artificial Intelligence, 60(1):51-92, 

1993. 

 

[91] V. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lucena, and P. Alencar. 

Taming Agents and Objects in Software Engineering. Software engineering for 

large-scale multi-agent systems, Research issues and practical applications, pp. 1-

26, 2003. 

 



  References 

 196 

[92] Snap Schedule Employee Scheduling Software, 

http://www.bmscentral.com/products/schedule/overview.aspx, accessed on 21 June 

2009. 

 

[93] K. P. Sycara. Multiagent Systems. AI Magazine, vol. 19, no. 2, pp. 79-92, 1998  

 

[94] TimeBridge, http://www.timebridge.com/home.php, accessed on 21 June 2009. 

 

[95] H. Tomoyuki, M. Mitsunori, and S. Hisashi. Optimisation Problem Solving 

System using Grid RPC. In the Proceedings of the 3rd IEEE/ACM International 

Symposium on Cluster Computing and the Grid (CCGr]\id 2003), Japan, 2003.  

 

[96] R. J. Wallace and E. C. Freuder. Constraint-based Reasoning and 

Privacy/Efficiency Tradeoffs in Multi-agent Problem Solving. Artificial 

Intelligence,  vol. 161, no. 1-2, Distributed Constraint Satisfaction, pp. 209-227, 

January, 2005. 

 

[97] W. Zhang. Modelling and Solving a Resource Allocation Problem with Soft 

Constraint Techniques. Technical Report: WUCS, 2002. 

 

[98] W. Langdon and W. Banzhaf. Repeated Sequences in Linear Genetic 

Programming Genomes. Complex Systems publications, 15 (2005) 285–306; Inc. 

2005. 

 

http://www.bmscentral.com/products/schedule/overview.aspx
http://www.timebridge.com/home.php


  References 

 197 

[99] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming An 

Introduction on the Automatic Evolution of Computer Programs and Its 

Applications. Morgan Kaufmann Publishers, 1st edition, ISBN 155860510X, 1998.  



  Appendix A 

 198 

Appendix A 

An HMAA Screen Shots 

After running the FMAF, the first user interface (Fig. 48) asks the user to choose the 

type (formalisation) of the scheduling framework; either search heuristic framework, 

where the FMAF searches for scheduling all un-violated meetings, leaving the violated 

meetings without scheduling. The other framework is optimisation heuristic framework 

where FMAF search for optimal scheduling with the minimum violation. 

 

 

Fig. 48: First User Interface for FMAF 

 

After choosing the framework type, a list of registered users will be displayed (fig. 49), 

and easily the initiator user selects the attendees with whom he wants to arrange the 

meetings. Accordingly their agents will be activated to participate in this scheduling 

problem solving.  

 



  Appendix A 

 199 

 

Fig. 49: a list of registered users 

 

The next interface (Fig. 50) asks the user to choose one or more of the SUAs, in order to 

help the SMA if it fails to find un-violated scheduling; by generating new SMA's 

heuristic. 

 

 
Fig. 50: the available SUAs. 

 

When users are logged on, they see the following interface (Fig. 51): 

 



  Appendix A 

 200 

 
Fig. 51: SMA Main User Interface 

 

This interface shows  

 two menus: Meeting and Advanced Scheduling 

 the user name for the corresponding user (e.g. Tom) 

 how many users are logged on  



  Appendix A 

 201 

 the transcriptions text book (the messages exchanged while arranging 

meetings) 

 My meeting text book, where the user can see the final schedule for all the 

meetings. 

 

When users open the ―Meeting‖ menu, they see the followings menu items (Fig. 52): 

 

 
Fig. 52: The meeting menu 

 

 Add Constraint: in order to add unavailable dates 

 Add a meeting: in order to enter the meeting’s corresponding data 

 Schedule meetings: to perform the scheduling process 

 View meeting: to see the corresponding schedule 

 

When the ―Add Constraint‖ menu item is pressed a new interface appears containing 

(Fig. 53): 



  Appendix A 

 202 

 Calendar: to choose unavailable dates 

 Finish Constraint: to save constrained/unavailable dates 

 Stop constraint: this button stops the listener property in order to navigate 

between months or years without registering any dates. 

 Start constraint: starts the listener property after it has been stopped; listener 

property is a calendar property used in order to record unavailable dates. 

 

 

 

Fig. 53: Add Constraint Interface 

 

When the user presses the ―Add Meeting‖ menu item, a new interface appears 

containing the menu ―Meeting properties‖ (Fig. 54). 

 

 
Fig. 54: Add Meeting Interface 



  Appendix A 

 203 

 

This interface allows the user to enter the related data about the attendees and time 

domains for the corresponding meeting (Fig. 54), in order to enable the agent to 

perform the required calculations for the meeting scheduling heuristic. 

 

 

 
Fig. 55: Add Attendees Interface 

 

By pressing ―Add Attendees‖, all the logged users will be presented on the screen (Fig. 

55), so the user can easily rank the corresponding attendees (how important it is for each 

attendee to be present at the meeting), and then check the check box for the related 

users. The user finally presses the ―Finish Attendees‖ button to save this information in 

the system. 

 



  Appendix A 

 204 

 
Fig. 56: Add Domain Interface 

. 

When the menu item ―Add Domain‖ is pressed a calendar is presented (Fig. 56) on 

which the user can easily choose the possible dates for the meeting, and then press 

―Finish Domain‖ to save the domain to the corresponding meeting. Stop and Start 

buttons stop the listener to enable navigation between months and years, and start it 

again when the user is ready to enter the unavailable dates. 

 

 

  

 
Fig. 57: Add Meeting Menu Item 

 



  Appendix A 

 205 

 

When all the meeting properties have been set, the ―Back‖ menu item from the 

―Meeting Properties‖ menu is chosen (Fig. 57). By doing this, the meeting is created 

and the corresponding data entered. This meeting now awaits the scheduling request, 

after which the user will be returned to the main user interface (Fig. 51). 

If any data is missing such as if the user pressed "Back" without entering the domain or 

the attendees or both, the meeting will not be saved and a message will be displayed on 

the transcript text box. The user then has to repeat all the steps (Fig. 58).  

By choosing ―Schedule Meeting‖ (Fig. 52), the agent starts the scheduling process. 

Each message sent or received by the agent will be displayed on the transcript text box 

(Fig. 58): 

The standard form for any message on the transcript text box is the following; where the 

underlined bold words are variables:   

Sender name sends a type of message for a meeting: a meeting name time slot 

 Sender name: one of the agents responsible for scheduling the corresponding 

meeting 

 Type of message: proposal, confirmation 

 Meeting name: set by the system 

 Time slot: date from the domain. 

 

 



  Appendix A 

 206 

 
Fig. 58: Transcript Text Box 

 

By choosing ―View Meetings‖ (Fig. 52) from the ―Meeting‖ menu, the schedule of 

meetings will be displayed in the My Meeting text box (Fig. 59).  

 

 
Fig. 59: View Meetings Text Box 

 

As can be seen in Fig. 59, the system sometimes schedules meetings while there are 

violations (conflicts). The ―Advanced Scheduling‖ menu contains the ―Local Search 

Repair‖ item that executes the repair strategy in order to find better schedules (Fig. 60).    

  

 



  Appendix A 

 207 

 
 

Fig. 60: Local Search Menu Item 

 

 

After choosing the users and SUAs, all of which are activated in order to participate in 

scheduling problem solving.  

When the user choose "View meetings" from "Meeting" menu item; the scheduled 

meetings with their total violation will be displayed in "My Meetings" text area. 

If the violation is more than "0", then the user can ask one or more of the activated 

SUAs to generate new heuristic, by selecting the corresponding SUA's interface and 

clicking on "Generate" menu item (Fig.61, 62, 63 and 64). 

 

 

Fig. 61: SuperagentLGP Interface 



  Appendix A 

 208 

 

Fig. 62: SuperagentLGP_SP Interface 

 

 

Fig. 63: SuperagentLSP Inteface 

 

 
Fig. 64: SuperagentLSP_SP Inteface 

 

Searching for new better heuristic will be starting and the best one will be send to the 

corresponding SMA to use. 

 



  Appendix B 

 209 

 

Appendix B 

Java Code of HMAA implementation 

public class Client0 extends UnicastRemoteObject implements MessageClient0  

 {   

  public static String host; 

  public static String chatName; 

  public static MessageServer0 server0; 

  public static int listening = 1; 

  public static Client0 client0; 

  public static View view; 

  public static Vector users = new Vector(); 

  public static Shared0[] meeting=new Shared0[100]; 

  public static int no=-1; 

  public static int no1=-1; 

   

  public static Vector clientHeuristic=new Vector(); 

  public  

   

   

  Client0(View view) throws RemoteException  

  { 

    try  

    { 

      this.view = view; 

      Registry registry = LocateRegistry.getRegistry(host); 

      server0 = (MessageServer0) registry.lookup(MessageServer0.REGISTRY_NAME); 

      System.out.println("Registering with server..."); 

      server0.register(this); 

      System.out.println("Registration complete"); 

    } 

     catch (Exception e) { } 

      

      

  } 

   

   

  /* 

   Allow the server to send the client a Shared0 message object. 

   The method then passes the message to the update() method. 

   */ 

  public void sendMessage(Shared0 msg)  

  {  

    view.update(msg); 



  Appendix B 

 210 

  } 

   

   

  /* 

    Allows the server to retrieve the user name for this  

    specific user. 

   */  

  public String getUserName()  

  { 

    return chatName; 

  } 

   

   

  /*. 

   Allows the server to retrive the state of whether this  

   client is, or is not listening. 

   */ 

    

  public int getListening()  

  { 

    return listening; 

  } 

   

   

 

   static class  View extends JFrame { 

     

     

    JMenuBar bar=new JMenuBar(); 

    JMenuBar bar1=new JMenuBar(); 

    JMenuBar bar2=new JMenuBar(); 

    JMenuBar calBar=new JMenuBar(); 

    JMenu meetingMenu=new JMenu("Meeting"); 

    JMenuItem addMeetingMenuItem =new JMenuItem("Add Meeting"); 

    JMenuItem addConstraintMenuItem =new JMenuItem("Add Constraint"); 

    JMenuItem schedMeetingMenuItem =new JMenuItem("Schedule Meetings"); 

    JMenuItem viewMeetingMenuItem =new JMenuItem("View Meeting"); 

     

   JMenu advancedSchedMenu=new JMenu("Advanced Scheduling"); 

    JMenuItem localSearchMenuItem=new JMenuItem("Local Search Repair"); 

     

     

    JMenuItem LGPMenuItem=new JMenuItem("send to LGP Super Agent"); 

    JMenuItem LGPSPMenuItem=new JMenuItem("send to LGP Super Agent 

(local optimum)"); 

    JMenuItem LSPMenuItem=new JMenuItem("send to LSP Super Agent"); 

    JMenuItem LSPSPMenuItem=new JMenuItem("send to LSP Super Agent (local 

optimum)"); 



  Appendix B 

 211 

    JMenu finishAddAttendeesMenu=new JMenu("Meeting Properties"); 

    JMenu finishAddConstaintMenu=new JMenu("Constraints"); 

    JMenuItem viewAttendeesMenuItem=new JMenuItem("Add Attendees"); 

    JMenuItem addDomainMenuItem=new JMenuItem("Add Domain"); 

    JMenuItem finishMenuItem=new JMenuItem("Back"); 

    JMenuItem finishMenuItemConstraint=new JMenuItem("Back"); 

   

    JButton finishAddDomainButton=new JButton("Finish Domain"); 

    JButton finishAddConstraintButton=new JButton("Finish Constraint"); 

    JButton finishAddAttendeesButton=new JButton("Finish Attendees"); 

    JButton stopListenerButton=new JButton("Stop"); 

    JButton startListenerButton=new JButton("Start"); 

    JButton stopListenerButtonConstraint=new JButton("Stop constraint"); 

    JButton startListenerButtonConstraint=new JButton("Start constraint"); 

     

     

    JCheckBox [] usersCheckBox=new JCheckBox[100]; 

 JTextField [] usersRankTextField=new JTextField[100]; 

 int user_no=0; 

 int attendeesNo=0; 

 int user_rank_sum=0; 

  

  

    String [][] domain=new String [100][2]; 

    int iii;//************************************************ 

    String [][] receiverName=new String[100][2]; 

    String [][]solution; 

    String [] solution_index; 

    String[][] max_violation; 

    int max_v_l; 

    double tot=0,tot_max_v=0,tot_max_v1=0; 

    int find; 

    //int [] index_max_violation; 

    double [] rankReceiver; 

    Lis s=new Lis(); 

    Lis1 s1=new Lis1(); 

    checkBoxItemListener checkBoxHandler=new checkBoxItemListener(); 

    private static final int transcriptRows = 10; 

    private static final int transcriptColumns = 30;       

    private static final int inputRows = 10; 

    private static final int inputColumns = 30; 

    private String[] whisperingtoMany=new String[0],copyws=new String[0]; 

    private String[][] whisperingToMany_r=new 

String[0][0],whisperingToMany_r1=new String[0][0],whisperingToMany_r2=new 

String[0][0]; 

    

  //  double violation=0,violation_no=0,violation_c=0,violation_no_c=0; 

    int numberAttendees; 



  Appendix B 

 212 

     

     

    private JCalendar mycalendar1; 

    private JTextArea transcript = new JTextArea(transcriptRows, transcriptColumns); 

    private JTextArea input = new JTextArea(inputRows, inputColumns); 

    private JTextField roomCount = new JTextField(3); 

    private JTextField sendToField = new JTextField("Attendees"); 

    private JTextField rankSendToField = new JTextField("Ranks"); 

   

    JScrollPane scrollPane; 

    private JLabel nameLabel = new JLabel("You are currently logged on as "  

       + chatName + "."); 

    private JLabel roomCountLabel = new JLabel("Current number of users: "); 

     

    private JPanel namePanel = new JPanel(); 

     

    private JPanel infoPanel = new JPanel(); 

     

    private JPanel panel = new JPanel(); 

    private JPanel panel1 = new JPanel(); 

     

    private JPanel [] panel22; 

    private JPanel panel21 = new JPanel(); 

    private JPanel panel2 = new JPanel(); 

     

    private JPanel calPanel = new JPanel(); 

    private JPanel calPanel1 = new JPanel(); 

    private JPanel calPanel2 = new JPanel(); 

     

    private JPanel buttonPanel1 = new JPanel(); 

     

    private JPanel buttonPanel2 = new JPanel(); 

    

    

    View () { 

      super("Agent Meeting Scheduling "); 

       

      transcript.setEditable(false); 

      roomCount.setEditable(false); 

      transcript.setLineWrap(true); 

       

       

 

      mycalendar1= new JCalendar(); 

   mycalendar1.setFont(new Font("Dialog", Font.BOLD, 10)); 

    

   setJMenuBar(bar); 

    



  Appendix B 

 213 

   meetingMenu.add(addConstraintMenuItem); 

   meetingMenu.add(addMeetingMenuItem); 

   meetingMenu.add(schedMeetingMenuItem); 

   meetingMenu.add(viewMeetingMenuItem); 

   bar.add(meetingMenu); 

    

   advancedSchedMenu.add(localSearchMenuItem); 

    

   advancedSchedMenu.add(LGPMenuItem); 

   advancedSchedMenu.add(LGPSPMenuItem); 

   advancedSchedMenu.add(LSPMenuItem); 

   advancedSchedMenu.add(LSPSPMenuItem); 

   bar.add(advancedSchedMenu); 

    

   finishAddAttendeesMenu.add(viewAttendeesMenuItem);    

   finishAddAttendeesMenu.add(addDomainMenuItem); 

   finishAddAttendeesMenu.add(finishMenuItem); 

   bar1.add(finishAddAttendeesMenu); 

    

    

   finishAddConstaintMenu.add(finishMenuItemConstraint); 

   bar2.add(finishAddConstaintMenu); 

    

    

      

      buttonPanel1.setBackground(Color.yellow); 

      buttonPanel2.setBackground(Color.red); 

      

 

      localSearchMenuItem.setToolTipText("Local search to find better solution " ); 

       

       

      final JDesktopPane theDesktop=new JDesktopPane(); 

      getContentPane().add(theDesktop); 

      namePanel.add(nameLabel); 

      infoPanel.add(roomCountLabel); 

      infoPanel.add(roomCount); 

      buttonPanel1.setLayout(new FlowLayout());  

     

     

      final Component[] components =  

      { 

  

  namePanel, 

  

  infoPanel, 

 

  new JLabel("Transcript"), 



  Appendix B 

 214 

  new JScrollPane(transcript), 

  new JLabel("My Meetings"), 

  new JScrollPane(input) 

    };      

       

      /** 

       * When the user closes the window, this method will send off one 

       * final message to the server letting it know that this client  

       * is leaving. 

       */ 

       

      addWindowListener(new WindowAdapter() { 

   public void windowClosing(WindowEvent e) { 

     Shared0 msg = new Shared0(chatName, "", listening); 

     try { 

       server0.deregister(msg); 

     } catch (RemoteException f) { }  

     finally { System.exit(0); } 

   } 

 }); 

       

       

      

      

      finishMenuItemConstraint.addActionListener(new ActionListener() { 

    public void actionPerformed(ActionEvent e)  

    { 

       setJMenuBar(bar); 

    

      

       panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

       setContentPane(panel); 

      //panel.setBackground(Color.blue); 

      pack(); 

     }}); 

      

      

      

     finishMenuItem.addActionListener(new ActionListener() { 

    public void actionPerformed(ActionEvent e)  

    { 

      

      

      String [][] receiverName_c=new String[attendeesNo][2]; 

      

      for(int i=0;i<attendeesNo;i++) 

      { 

       receiverName_c[i][0]=receiverName[i][0]; 



  Appendix B 

 215 

       receiverName_c[i][1]=receiverName[i][1];  

      } 

      

      

      receiverName=new String[attendeesNo][2]; 

      

      for(int i=0;i<attendeesNo;i++) 

      { 

       receiverName[i][0]=receiverName_c[i][0]; 

       receiverName[i][1]=receiverName_c[i][1];  

      } 

      

     no++; 

     meeting[no] = new Shared0(chatName, domain, 

listening,iii,"meeting"); 

      meeting[no].setName(chatName+no); 

      meeting[no].setWhisperingToMany(receiverName); 

       meeting[no].setMessageType("proposal"); 

      meeting[no].dont_loop=0; 

      meeting[no].index=0; 

      meeting[no].violation=0; 

      meeting[no].violation_c=0; 

      meeting[no].violation_no=0; 

      meeting[no].violation_no_c=0; 

     // meeting[no].rank=100-no; 

//(1_2)****************************************************the first entered 

meeting the first one scheduled in order to discard the meetings ranks  

       

       

    

   numberAttendees = whisperingtoMany.length;  

    

   if(meeting[no].whisperingToMany.length==0) 

      { 

       

       transcript.append("HOST: " + meeting[no].getInitiator() +  

    "- no attendees to send. try again.\n"); 

    no--; 

      } 

      else 

      { 

       if (meeting[no].messageArray.length==0)  

       { 

       

        transcript.append("HOST: " + 

meeting[no].getInitiator() +  

     "- no domain to send. tryyyyyyyyyyyyyy 

again.\n"); 



  Appendix B 

 216 

     no--; 

       }} 

       

      

     setJMenuBar(bar); 

    

      

       panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

       setContentPane(panel); 

      //panel.setBackground(Color.blue); 

      pack(); 

       

     }}); 

  

  

  viewAttendeesMenuItem.addActionListener(new ActionListener() { 

    public void actionPerformed(ActionEvent e) { 

      

    

     setContentPane(panel2); 

       

      pack(); 

 

   } 

 }); 

  

 finishAddAttendeesButton.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

  

      //setJMenuBar(bar); 

    

   

     // panel2.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

      setContentPane(panel1); 

      //panel.setBackground(Color.blue); 

      pack(); 

      

  }}); 

       

       

     

     

      addConstraintMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  



  Appendix B 

 217 

    { 

      

     setJMenuBar(bar2); 

     calPanel2=new JPanel(); 

  calPanel2.add(mycalendar1); 

  calPanel2.add(finishAddConstraintButton); 

  calPanel2.add(stopListenerButtonConstraint); 

  calPanel2.add(startListenerButtonConstraint); 

         

         

        

    

  

        setContentPane(calPanel2); 

     pack(); 

    mycalendar1.addPropertyChangeListener(s1); 

       

      

      

     }}); 

     

     

      addMeetingMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

       

      panel1=new JPanel(); 

       

  panel21=new JPanel();        

   panel2=new JPanel(); 

    

  

     panel22 = new JPanel[10];    

    

    

   attendeesNo=0; 

   receiverName=new String[100][2]; 

   Enumeration en = users.elements(); 

 

     user_no=0; 

     Object[] userInfo; 

     String currName; 

     int currState; 

     while(en.hasMoreElements()) { 

       

       

       



  Appendix B 

 218 

       userInfo = (Object[]) en.nextElement(); 

        

       if(!( userInfo[0].equals("lsp")) && !( userInfo[0].equals("lgp"))&&!( 

userInfo[0].equals("lgpsp"))&&!( userInfo[0].equals("lspsp"))){ 

        

       currName = (String) userInfo[0]; 

       currState = (int) ((Integer) userInfo[1]).intValue(); 

        

       

      usersCheckBox[user_no]=new JCheckBox(currName); 

      usersRankTextField[user_no]=new JTextField("      1.0      "); 

      user_rank_sum=0; 

       

       

      usersCheckBox[user_no].addItemListener(checkBoxHandler); 

       

     panel22[user_no]=new JPanel(); 

      panel22[user_no].add(usersCheckBox[user_no]); 

       

      panel22[user_no].add(usersRankTextField[user_no]); 

      user_no++; 

 

     } 

     } 

      

     panel21.setLayout(new GridLayout(user_no+1,2)); 

     for(int i=0;i<user_no;i++) 

     { 

    

     panel21.add(panel22[i]); 

     } 

     panel2.add(panel21); 

     panel2.add(finishAddAttendeesButton); 

       

       

      iii=0; 

       

      calPanel=new JPanel(); 

  calPanel.add(mycalendar1); 

  calPanel.add(stopListenerButton); 

  calPanel.add(startListenerButton); 

        calPanel.add(finishAddDomainButton); 

         

         

        domain=new String[100][2]; 

      

     

       setJMenuBar(bar1); 



  Appendix B 

 219 

       setContentPane(panel1); 

       pack(); 

       

    } 

}); 

      

       

      viewMeetingMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

     tot= 0; 

     input.setText("MEETING NAME ~~~~  ASSIGNMENT  ~~~~  

VIOLATION \n"); 

     input.append( 

"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 

     for(int i=0;i<=no;i++) 

     { 

      if(meeting[i].violationAssignment!=100) 

      { 

      input.append("         "+meeting[i].getName()+"                              

"+meeting[i].getAssignment()); 

     if((meeting[i].getInitiator()).equals(chatName)) 

      { 

      input.append("                       "+meeting[i].violationAssignment+"\n"); 

     

      tot=tot+(meeting[i].violationAssignment); 

       

      tot=round(tot,2); 

      } 

      else 

      { 

       input.append("\n"); 

      } 

      } 

       

     } 

     input.append( "                                                                                 ~~~~~~~\n"); 

     input.append( "                                          total of the violations=  "+tot+"\n"); 

      

     System.out.println("tot         =         "+tot); 

      

      

    } 

   }); 

    

    

    



  Appendix B 

 220 

   finishAddDomainButton.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

       

      mycalendar1.removePropertyChangeListener(s); 

            

   panel2 = new JPanel(); 

     // panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

      setContentPane(panel2); 

      //panel.setBackground(Color.blue); 

      pack(); 

       

     }}); 

       

       

       finishAddConstraintButton.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

       

      mycalendar1.removePropertyChangeListener(s1); 

            

   panel2 = new JPanel(); 

     // panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

      setContentPane(panel2); 

      //panel.setBackground(Color.blue); 

      pack(); 

       

     }}); 

      

     stopListenerButton.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

       

      mycalendar1.removePropertyChangeListener(s); 

       

       

       

     }}); 

      

         startListenerButton.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  



  Appendix B 

 221 

    { 

      

       

      mycalendar1.addPropertyChangeListener(s); 

       

       

       

     }}); 

    

    

       stopListenerButtonConstraint.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

       

      mycalendar1.removePropertyChangeListener(s1); 

       

       

       

     }}); 

      

         startListenerButtonConstraint.addActionListener(new 

ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

       

      mycalendar1.addPropertyChangeListener(s1); 

       

       

       

     }}); 

       

    

       

       addDomainMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

     

     

    setContentPane(calPanel); 

    pack(); 

    mycalendar1.addPropertyChangeListener(s); 

       



  Appendix B 

 222 

        } 

   } );     

    

 ; 

       

    

    

   schedMeetingMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

      

   

  node_consistency(); 

      

      if(clientHeuristic.size()<=no) 

   { 

     for(int a=clientHeuristic.size();a<=no;a++) 

     { 

     

      if(a==0) 

      { 

       clientHeuristic.add("rs"); 

      } 

      

      else 

      { 

        clientHeuristic.add("s"); 

       

      } 

     

     } 

 } 

    

  

  

  for(int a=0;a<clientHeuristic.size();a++) 

   { 

    System.out.println("step========"+clientHeuristic.get(a)); 

     

    } 

   

  

  

 System.out.println("no1="+no1+"    no="+no); 

  

 clearMeetings(); 

    for(int ii=0;ii<=no;ii++) 



  Appendix B 

 223 

     { 

      System.out.println("ii="+ii); 

        

      Object o=clientHeuristic.get(ii); 

      String os=(String)o; 

      if((os).equals("rs")) 

      { 

       System.out.println("rs"); 

       findMeetingsRankandschedulingProcess(no);//(2-

2)********************************************call the ranking function in 

order to ranks the meetings    

      } 

      else 

      { 

       System.out.println("s"); 

       schedulingProcess();  

      } 

  

      } 

     } 

    } 

    ); 

    

   

   localSearchMenuItem.addActionListener(new ActionListener() 

   { 

    public void actionPerformed (ActionEvent e) 

    { 

     System.out.println("local search no=    "+no); 

     solution=new String[no+1][2];  

     solution_index=new String[no+1];  

     max_v_l=0; 

     find=0;  

     tot_max_v=tot; 

      

     System.out.println("local search tot ="+tot+"    tot_max_v   

="+tot_max_v); 

 

     neigbourhood(); 

      

          

      

    } 

   });    

       

      LGPMenuItem.addActionListener(new ActionListener() 

   { 

    public void actionPerformed (ActionEvent e) 



  Appendix B 

 224 

    { 

  

     Shared0 msg_heu=new 

Shared0(chatName,"lgp",clientHeuristic,listening); 

     msg_heu.setMessageType("msg_type_c_h"); 

     sendTo(msg_heu); 

       

     Shared0 msg_lsp=new 

Shared0(chatName,"lgp",meeting,listening,no+1); 

     msg_lsp.setMessageType("msg_type_lsp"); 

     sendTo(msg_lsp); 

     }}); 

      

    

    LGPSPMenuItem.addActionListener(new ActionListener() 

   { 

    public void actionPerformed (ActionEvent e) 

    { 

  

     Shared0 msg_heu=new 

Shared0(chatName,"lgpsp",clientHeuristic,listening); 

     msg_heu.setMessageType("msg_type_c_h"); 

     sendTo(msg_heu); 

       

     Shared0 msg_lsp=new 

Shared0(chatName,"lgpsp",meeting,listening,no+1); 

     msg_lsp.setMessageType("msg_type_lsp"); 

     sendTo(msg_lsp); 

     }}); 

      

      

      

   LSPMenuItem.addActionListener(new ActionListener() 

   { 

    public void actionPerformed (ActionEvent e) 

    { 

  

     Shared0 msg_heu=new 

Shared0(chatName,"lsp",clientHeuristic,listening); 

     msg_heu.setMessageType("msg_type_c_h"); 

     sendTo(msg_heu); 

       

     Shared0 msg_lsp=new 

Shared0(chatName,"lsp",meeting,listening,no+1); 

     msg_lsp.setMessageType("msg_type_lsp"); 

     sendTo(msg_lsp); 

     }}); 

      



  Appendix B 

 225 

    LSPSPMenuItem.addActionListener(new ActionListener() 

   { 

    public void actionPerformed (ActionEvent e) 

    { 

  

     Shared0 msg_heu=new 

Shared0(chatName,"lspsp",clientHeuristic,listening); 

     msg_heu.setMessageType("msg_type_c_h"); 

     sendTo(msg_heu); 

       

     Shared0 msg_lsp=new 

Shared0(chatName,"lspsp",meeting,listening,no+1); 

     msg_lsp.setMessageType("msg_type_lsp"); 

     sendTo(msg_lsp); 

     }}); 

      

     

       

      /* 

       * This section deals with action events from the "Who's Here" button. 

       */ 

       

 

       

      JPanel panel = new JPanel(); 

      panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

      setContentPane(panel); 

      //panel.setBackground(Color.blue); 

      pack(); 

      setVisible(true); 

      input.requestFocus(); 

      input.setLineWrap(true); 

      setResizable(true); 

    } 

     

    public void solutionRepresentation() 

    { 

     max_v_l=0; 

     tot_max_v=0; 

    

     for(int i=0;i<=no;i++) 

     { 

     

      System.out.println("  meeting name      "+meeting[i].getName()+"         

initiator =           "+meeting[i].getInitiator()+"          me     "+chatName); 

      if((meeting[i].getInitiator()).equals(chatName)) 

      { 

      



  Appendix B 

 226 

      //System.out.println("         "+meeting[i].getName()+"         initiator          

"+meeting[i].getInitiator()+"         me         "+chatName); 

      solution [max_v_l][0]=meeting[i].getAssignment(); 

       

      solution 

[max_v_l][1]=((Double)meeting[i].violationAssignment).toString(); 

       

      solution_index[max_v_l]=""+i; 

       

      //if((Double)meeting[i].violationAssignment!=100) 

      //{ 

       max_v_l++; 

      //} 

      System.out.println("solution"+ solution[i][0]+" 

violation"+solution[i][1]); 

      } 

       

     } 

   

     max_violation=new String[max_v_l][2];  

   

   //System.out.println("________________________________"+max_v_l);  

  int s=0;    

     for(int i=0;i<max_v_l;i++) 

     { 

     

 System.out.println(""+meeting[i].getName()+"violationAssignment="+meeting[

i].violationAssignment); 

       

     // if((Double)meeting[i].violationAssignment!=100) 

     // { 

     //  System.out.println("true"); 

       max_violation[s][0]=solution[i][1]; 

       max_violation[s][1]=solution_index[i]; 

       s++; 

     // } 

  } 

   

  String temp,temp_index; 

 System.out.println("max_violation.length="+max_violation.length);  

  for (int i = (max_violation.length-1); i >= 0; i--) 

         for (int j = 0; j < i; j++) 

            if (Double.parseDouble(max_violation[j][0]) < 

Double.parseDouble(max_violation[j + 1][0])) 

            { 

               temp = max_violation[j][0]; 

               temp_index=max_violation[j][1]; 

               max_violation[j][0] = max_violation[j + 1][0];//the value of the max violation 



  Appendix B 

 227 

               max_violation[j][1] = max_violation[j+1][1];// the index of tha max violation 

in the solution representation 

               max_violation[j + 1][0] = temp; 

               max_violation[j + 1][1] = temp_index; 

                

            } 

// System.out.println("Max_violarion list is ready");  

  

  

   

     for(int i=0;i<max_violation.length;i++) 

     { 

      System.out.println("max violation"+max_violation[i][0]+ 

"index"+max_violation[i][1]+" assigmnet 

"+solution[Integer.parseInt(max_violation[i][1])][0]); 

      tot_max_v=tot_max_v+Double.parseDouble(max_violation[i][0]); 

      tot_max_v=round(tot_max_v,2); 

     } 

     System.out.println(" total max_violation= list "+tot_max_v); 

      

     if((tot_max_v==0)||(Double.parseDouble(max_violation[0][0])==0)) 

     { 

      find++; 

      System.out.println("~~~~~optimal solution found cause 

max_violation=o~~~~~~~~~~~~"); 

     } 

      

     

      

    } 

     

    public void neigbourhood() 

    { 

     System.out.println("neigbor"); 

      

      

     solutionRepresentation(); 

      System.out.println("solutoin "); 

     tot_max_v1=tot_max_v; 

     System.out.println("tot_max_l         ======="+tot_max_v1); 

      

     int r=-1; 

    

 while((tot_max_v!=0)&&(Double.parseDouble(max_violation[0][0])!=0)&&(r<

(max_violation.length)-1)&&(Double.parseDouble(max_violation[r+1][0])!=0)) 

     { 



  Appendix B 

 228 

     

 System.out.println("r="+r+"Double.parseDouble(max_violation[r+1][0])"+Doub

le.parseDouble(max_violation[r+1][0])); 

      find=0; 

      

      

      r=-1; 

      

      while ((find==0)&&(r<(max_violation.length)-

1)&&(Double.parseDouble(max_violation[r+1][0])!=0)) 

      { 

      

 System.out.println("rrrrrrrrrr="+r+"Double.parseDouble(max_violation[r+1][0])

"+Double.parseDouble(max_violation[r+1][0])); 

       r++; 

       String [] domain_max_violation =new String 

[meeting[Integer.parseInt(max_violation[r][1])].messageArray.length]; 

       System.out.println("domain length max violation is 

"+domain_max_violation.length); 

       for(int i=0;i<domain_max_violation.length;i++)// find the 

domain for the max violated meeting 

       { 

       

 domain_max_violation[i]=meeting[Integer.parseInt(max_violation[r][1])].messa

geArray[i][0]; 

        System.out.println("domain max violation is 

"+domain_max_violation[i]); 

       } 

      

      

       for(int i=0;i<=no;i++)//search in all meetings 

       { 

       

        for(int j=0;j<domain_max_violation.length;j++)//search 

in all domain of the most violated meeting 

        { 

       // 

 System.out.println("meeting[i].getAssignment()"+meeting[i].getAssignment()+"

domain_max_violation[j]"+domain_max_violation[j]+"equals"+(meeting[i].getAssign

ment()).equals(domain_max_violation[j])); 

       // 

 System.out.println("((meeting[i].getInitiator()).equals(chatName))"+((meeting[i]

.getInitiator()).equals(chatName))); 

        

 if(((meeting[i].getInitiator()).equals(chatName))&&((meeting[i].getAssignment(

)).equals(domain_max_violation[j])))//find meeting assigned to domain for MVM 

         { 

         



  Appendix B 

 229 

          for(int 

k=0;k<meeting[i].messageArray.length;k++)// search in the domain of that meeting 

          { 

         // 

 System.out.println("meeting[i].getAssignment()"+meeting[i].getAssignment()+"

meeting[Integer.parseInt(max_violation[r][1])].getAssignment()"+meeting[Integer.parse

Int(max_violation[r][1])].getAssignment()); 

          

 if((!(meeting[i].getAssignment()).equals(meeting[Integer.parseInt(max_violatio

n[r][1])].getAssignment()))&&((meeting[i].messageArray[k]).equals(solution[Integer.p

arseInt(max_violation[r][1])][0]))&&(!(meeting[i].getName()).equals(meeting[Integer.p

arseInt(max_violation[r][1])].getName()))&&(!(meeting[i].getAssignment()).equals(me

eting[Integer.parseInt(max_violation[r][1])].getAssignment()))) 

           { 

            //System.out.println("true"); 

           

 //System.out.println("tot_max_v before swap"+tot_max_v); 

            tot_max_v1=tot_max_v; 

           

            System.out.println("swap 

"+meeting[i].getName()+" with 

"+meeting[Integer.parseInt(max_violation[r][1])].getName());  

            Shared0 m1=new Shared0 

(),m2=new Shared0(); 

           // m1=meeting[i]; 

          // 

 m2=meeting[Integer.parseInt(max_violation[r][1])]; 

           

           

 swap(meeting[i],meeting[Integer.parseInt(max_violation[r][1])]); 

            solutionRepresentation(); 

            

           

 if(tot_max_v1<=tot_max_v) 

            { 

              

 System.out.println("tot_max_v1="+tot_max_v1+"tot_max_v= after 

swap"+tot_max_v+"so re swap");       

            

 swap(meeting[Integer.parseInt(max_violation[r][1])],meeting[i]); 

            

 solutionRepresentation(); 

             

            

 System.out.println("tot_max_v after canceling swap"+tot_max_v); 

            } 

            else 

            { 



  Appendix B 

 230 

            

             find++; 

            

            

 System.out.println("~~~~~better solution solution has been 

found~~~~~~~~~~~~"); 

             break; 

            } 

           

          } 

          

         } 

         

         if(find!=0) 

         { 

          System.out.println("break"); 

          break; 

         } 

          

          

        } 

       } 

       if(find!=0) 

       { 

        System.out.println("break"); 

        break; 

       } 

       

       

      } 

      

     }  

     

    }//while max_violation[0][0]!=0  

      

      

    } 

     

    

    public void swap(Shared0 s_i,Shared0 s_index_max_violation) 

    { 

     String s=new String(s_i.getAssignment()); 

     String s2=new String(s_index_max_violation.getAssignment()); 

      

      

     s_i.setMessageType("confirm_delete"); 

     s_index_max_violation.setMessageType("confirm_delete"); 

      



  Appendix B 

 231 

      

     sendTo(s_i);//to delete the meeting 

     sendTo(s_index_max_violation);// to delete the meeting 

      

      

     

     

    // reply(s_i); 

     System.out.println("*********************meeting  "+s_i.getName()+" 

violation assignment "+s_i.violationAssignment); 

    // reply(s_index_max_violation); 

     System.out.println("***********************meeting  

22222222222"+s_index_max_violation.getName()+" violation assignment 

"+s_index_max_violation.violationAssignment); 

   

      

     s_i.setMessageType("confirm"); 

     s_i.setMessage(s2); 

     s_i.setAssignment(s2); 

      

      

     s_index_max_violation.setMessageType("confirm"); 

     s_index_max_violation.setMessage(s); 

     s_index_max_violation.setAssignment(s); 

     

     

     

     

    sendTo(s_i); 

     

    System.out.println("+++++++++++++++++meeting  "+s_i.getName()+" 

violation assignment "+s_i.violationAssignment); 

     sendTo(s_index_max_violation); 

     System.out.println("+++++++++++++++++++meeting  

22222222222"+s_index_max_violation.getName()+" violation assignment 

"+s_index_max_violation.violationAssignment); 

   

      

      

          

    } 

     

     

     

    public Dimension getPreferredSize() { 

      return (new Dimension(400, 800)); 

    } 

     



  Appendix B 

 232 

     

    public void schedualing(Shared0 meeting ) 

    { 

       

   

 

   int l=copyws.length; 

        

       

      try 

      {      

       

    

 if((meeting.messageArray[meeting.index][1]).equals("yes"))     

    

     { 

      String proposal = 

meeting.messageArray[meeting.index][0]; 

            meeting.setMessage(proposal); 

            sendTo(meeting); 

     } 

     else 

     { 

      meeting.index++; 

            if(meeting.index<(meeting.messageArray.length)) 

             { 

              schedualing(meeting); 

               

             } 

             else 

             { 

             

 if((meeting.getAssignment()).equals("")) 

               { 

               meeting.setAssignment(""); 

              meeting.violationAssignment=1; 

              meeting.scheduled=false; 

              } 

               

               

             } 

     } 

      

         

      

                

      } 

      



  Appendix B 

 233 

       catch(Exception e) 

       { 

    transcript.append("HOST: " + meeting.getInitiator() +  

    "- no domain toooooooooooo send. try again.\n"); 

   } 

 

    

       

    } 

       

    

        

    public void sendTo(Shared0 msg) 

    { 

      

     //System.out.println("SEND To"); 

     String from = msg.getInitiator(); 

     

     

    

     msg.setUsers(users); 

     Enumeration en = users.elements(); 

     Object[] currUserInfo; 

      

     while(en.hasMoreElements())  

     { 

      currUserInfo =  (Object[]) en.nextElement(); 

      try{ 

       

        for(int i=0;i<msg.whisperingToMany.length;i++) 

       

        { 

          

         if (currUserInfo[0].equals(msg.whisperingToMany[i][0]) )  

          

         try 

         { 

          ((MessageClient0) currUserInfo[2]).sendMessage(msg); 

         } 

     catch (RemoteException e) { System.out.println("error 

send to");} 

   

   } 

  }//try 

   catch(Exception e){System.out.println("widesprd exception");} 

     } 

   }   

    



  Appendix B 

 234 

    /* 

   * Allows clients to public messages that will be sent to every 

   * person in the room that is listening at that time. 

   */  

   public void sendAll(Shared0 msg) 

    {  

     Enumeration en= users.elements(); 

     Object[] currUserInfo; 

     msg.setUsers(users); 

     

     while(en.hasMoreElements()) 

      { 

        

       currUserInfo =  (Object[]) en.nextElement(); 

        

       if (((Integer) currUserInfo[1]).intValue() == 1) 

        

       { 

       try 

        { 

        ((MessageClient0) currUserInfo[2]).sendMessage(msg); 

         

        } 

       

      catch (RemoteException e)  

       { 

       } 

        } 

     } 

   }    

       

                 

    /** 

     * Appends all incoming "chat" messages (not "state" messages) 

     * to the transcript window, and updates this client with the 

     * current chat room user information. 

     */ 

    public void update(Shared0 msg)  

    { 

      

      

     //System.out.println("UPDATE "); 

     

    try{ 

     if ((listening == 1) || msg.getWhispering()) 

     if((msg.msgType).equals("msg_type_s_h")) 

       { 

        System.out.println("heuristic received"); 



  Appendix B 

 235 

       clientHeuristic=msg.heuristic; 

       } 

  else if((msg.msgType).equals("confirm"))        

      transcript.append(msg.getInitiator() + " sends a CONFIRMATION for meeting: 

"+msg.getName()+"   " + msg.getMessage()+"\n"); 

      else if((msg.msgType).equals("proposal")) 

      transcript.append(msg.getInitiator() +" sends a PROPOSAL for meeting:  "+ 

msg.getName()+"   "+ msg.getMessage()+"\n"); 

      roomCount.setText((String) msg.getRoomSize()); 

       users = (Vector) msg.getUsers(); 

      } 

      catch(Exception e){System.out.println("listttttttttttttning");} 

   

       try{  

        

        

        if((msg.msgType).equals("empty")) 

       { 

        System.out.println("received empty msg"); 

        System.out.println("no before empty="+no); 

       /*  meeting=new Shared0[100]; 

         no=-1; 

                no1=-1;*/ 

                 

                for(int t=0;t<=no;t++) 

                { 

                 if((meeting[t].meeting_constraint).equals("constraint")) 

                 { 

                   

                 } 

                 else 

                 { 

                  no=t-1; 

                  no1=no; 

                  break; 

                 } 

                } 

                 

               System.out.println("no after empty="+no);  

       } 

        else if((msg.msgType).equals("msg_type_lsp1")) 

       { 

         

         meeting=new Shared0[msg.meetings.length]; 

         for(int s=0;s<msg.meetings.length;s++) 

         { 

         

          



  Appendix B 

 236 

         meeting[s]=msg.meetings[s]; 

         

        meeting[s].setInitiator(chatName); 

        System.out.println("meeting==="+meeting[s].getName()+"  

initiator  "+meeting[s].getInitiator()); 

        no++; 

        } 

       

       } 

        

      else if((msg.msgType).equals("proposal")) 

       { 

          

         reply(msg); 

        

       } 

       

              

       else if((msg.msgType).equals("reply")) 

       { 

           

        int i=0; 

        try{ 

          

          for(i=0;i<=no;i++)//find this rply for which meeting 

          { 

           

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            

             

            meeting[i].violation_no++;// we received one rply 

             

            

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

             { 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator()))) 

              { 

               

          

 meeting[i].violation=meeting[i].violation+(Double.parseDouble(meeting[i].whis

peringToMany[k][1]))*Double.parseDouble(msg.getMessage()); 

          

 arc_consistency(meeting[i].messageArray[meeting[i].index][0],msg.getInitiator(

)); 



  Appendix B 

 237 

           break; 

            

          } 

         } 

         

            //} 

           

           break;//we found for which this reply is 

           } 

          } 

            } 

         catch(Exception e) 

         { 

          System.out.println("error in finding to which proposal this 

reply"); 

         } 

         

         try{ 

           

        

         

 if(meeting[i].violation_no==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

            

          

           try 

           { 

            

           

            if(meeting[i].violation==0) 

            {    

            

            

 meeting[i].setAssignment(meeting[i].getMessage()); 

             meeting[i].violationAssignment=0; 

            

           

            } 

           

            else 

            {  

            // System.out.println("violatiojn/violation 

no="+l); 

             if 

(meeting[i].violationAssignment>=meeting[i].violation) 

             { 



  Appendix B 

 238 

             

 meeting[i].setAssignment(meeting[i].getMessage()); 

             

 meeting[i].violationAssignment=meeting[i].violation; 

             

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

               

              //System.out.println("meeting "+ 

meeting[i].getName()+"    propose schedualed so rank ="); 

               

             

            

             } 

            

             meeting[i].index++; 

            

             //System.out.println("iii="+iii); 

            

 if(meeting[i].index<(meeting[i].messageArray.length)) 

             { 

              meeting[i].violation=0; 

              meeting[i].violation_no=0; 

              schedualing(meeting[i]); 

               

             } 

             

            } 

           

           } 

           catch(Exception e) 

           { 

            System.out.println("44444444444444444"); 

           } 

          

           try 

           { 

           

           if(meeting[i].dont_loop==0) 

            { 

             no1++; 

             

             System.out.println("meeting"+i+"      

.violationAssignment="+meeting[i].violationAssignment); 

             if((meeting[i].violationAssignment<=0)) 

             { 

             System.out.println("if is true"); 

             Shared0 conf_msg=new 

Shared0(chatName,meeting[i].getAssignment(),listening); 



  Appendix B 

 239 

           

             conf_msg.setName(meeting[i].getName()); 

          

             conf_msg.setMessageType("confirm"); 

           

            

 conf_msg.setWhisperingToMany(meeting[i].whisperingToMany); 

            

 arc_consistency(meeting[i].getAssignment()); 

             meeting[i].dont_loop++; 

             sendTo(conf_msg); 

             } 

             else 

             { 

              meeting[i].setAssignment(""); 

              meeting[i].violationAssignment=1; 

              meeting[i].scheduled=false; 

             } 

              

           

            } 

           } 

           

           catch(Exception e) 

           { 

            System.out.println("8888888888"); 

           } 

           

          } 

          

         } 

         catch(Exception e) 

         { 

          System.out.println("222222222222222222"); 

         } 

        // System.out.println("hiiiiiiiiiiii"); 

          

       } 

       else if ((msg.msgType).equals("confirm")) 

       { 

       

       System.out.println("***********received confirm msg"); 

        boolean found=false; 

        try 

        { 

        // search in the meeting if this confirmed meeting is exist 

         int i; 

         for(i=0;i<=no;i++) 



  Appendix B 

 240 

         { 

         System.out.println("my meetings are no"+i+" its 

name"+meeting[i].getName()); 

          if ((msg.getName()).equals(meeting[i].getName())) 

          { 

           System.out.println("+++++++++++++++++name 

for this meeting is"+msg.getName()); 

           meeting[i].setAssignment(msg.getMessage()); 

           meeting[i].violationAssignment=0; 

           meeting[i].attend=true; 

           meeting[i].scheduled=true; 

           found=true; 

           //no1++; 

           

            //System.out.println("meeting name    

"+meeting[i].getName()+"violation assignmt     "+meeting[i].violationAssignment); 

           break; 

          } 

         } 

          

         //this meeting is not exist then add it  

         if (!found)          

         { System.out.println("this meeting is not exist i will add it i 

have meeting number"+no); 

         

          no++; 

          no1++; 

          meeting[no]=new 

Shared0(msg.getInitiator(),msg.getMessage(),listening); 

          meeting[no].setName(msg.getName()); 

          meeting[no].setAssignment(msg.getMessage()); 

          meeting[no].violationAssignment=0; 

          meeting[no].attend=true; 

          meeting[no].scheduled=true; 

          System.out.println("now ihave meeting no "+no+" and the 

assgment"+meeting[no].getAssignment()); 

          

          

         }  

        //reply(msg);  

        } 

        catch(Exception e) 

        { 

         System.out.println(" can not confirm this meeting"); 

        } 

       } 

        

        



  Appendix B 

 241 

        

        

        else if ((msg.msgType).equals("confirm_delete")) 

       { 

       

        

        try 

        { 

        System.out.println("CONFIRM DELETE  to"+chatName+"      regarding 

meeting"+msg.getName()); 

          

        reply(msg);  

        } 

        catch(Exception e) 

        { 

         System.out.println(" can not confirm this meeting"); 

        } 

       } 

       

        

        

       else if ((msg.msgType).equals("confirm_reply")) 

       { 

         

       //System.out.println("msg reply for confirm received 

from"+msg.getInitiator()+"regarding meeting"+msg.getName()+"with 

value"+msg.getMessage()); 

       int i=0; 

       try{ 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

           

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            meeting[i].violation_no_c++;// we received one 

rply 

            

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

             { 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

              { 

              //System.out.println("msg 

received"+msg.getMessage()+" from "+msg.getInitiator()+"regarding meeting 

"+meeting[i].getName()+" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old violation 



  Appendix B 

 242 

"+meeting[i].violationAssignment+"violation_no_c="+meeting[i].violation_no_c+" 

whidspreadtomany="+meeting[i].whisperingToMany.length); 

         

 meeting[i].violation_c=meeting[i].violation_c+(Double.parseDouble(meeting[i].

whisperingToMany[k][1]))*(Double.parseDouble(msg.getMessage()));//take sender 

rank 

         

 meeting[i].violation_c=round(meeting[i].violation_c,2); 

         

 //System.out.println("===========new violation_c"+meeting[i].violation_c); 

          break; 

          } 

         } 

          

         

           // } 

           

           break;//we found for which this reply is 

           } 

          } 

            } 

         catch(Exception e) 

         { 

          System.out.println("||||||||||||||||||||||error in finding to which 

confirmation this reply"); 

         } 

          

         

 if(meeting[i].violation_no_c==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

            

          

           try 

           { 

           

 meeting[i].violationAssignment=meeting[i].violation_c; 

           

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

            //System.out.println("++++++++++++meeting 

"+meeting[i].getName()+"assigned 

to"+meeting[i].getAssignment()+"violation="+meeting[i].violationAssignment); 

            meeting[i].violation_c=0; 

            meeting[i].violation_no_c=0; 

             

           } 

           catch(Exception e) 

           { 



  Appendix B 

 243 

            System.out.println("error in violation calculation 

"); 

           } 

          

         } 

        

         else  

         { 

           

         } 

      

    } 

   

        else if ((msg.msgType).equals("confirm_reply_update")) 

       { 

       System.out.println("msg confirm reply update  received 

from"+msg.getInitiator()+"regarding meeting"+msg.getName()+"  with 

value"+msg.getMessage()); 

       int i=0; 

       try{ 

        System.out.println(chatName+"received update confirm for 

meeting"+msg.getName()); 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

          System.out.println("existed meetings :  "+meeting[i].getName()); 

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            System.out.println("meeting found"); 

            for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

            { 

             if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

             { 

            //System.out.println("msg received confirm update 

for"+meeting[i].getName() 

            // +"from 

"+msg.getInitiator()+"value"+msg.getMessage() 

            // +" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old violation 

"+meeting[i].violationAssignment); 

          

          

        

 meeting[i].violationAssignment=(meeting[i].violationAssignment) 

        

 +(Double.parseDouble(meeting[i].whisperingToMany[k][1]))*(Double.parseDo

uble(msg.getMessage())); 



  Appendix B 

 244 

         //take sender rank 

          

        

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

        

 //System.out.println("############ meeting 

name"+meeting[i].getName()+"new 

violationAssignment"+meeting[i].violationAssignment); 

         break; 

         } 

        } 

          

        break;//we found for which this reply is

  

           } 

           

            

          } 

           

         } 

             

         catch(Exception e) 

         { 

          System.out.println("error in finding to which confirmation this 

reply"); 

         } 

          

          

          

          

          

         

         

    } 

     

     

     

     

    else if((msg.msgType).equals("busy")) 

    { 

      

     System.out.println("busy "); 

     double free=0; 

      

     String [][]wsr=new String[1][2]; 

     wsr[0][0]=msg.getInitiator(); 

     wsr[0][1]="1"; 

      



  Appendix B 

 245 

      

     for(int i=0;i<msg.messageArray.length;i++) 

     { 

      System.out.println("-------------i="+i+" i have number of 

meetings="+no); 

       

      

      for(int j=0;j<=no;j++) 

      { 

      System.out.println("-------------meeting="+j+"     

scheduled"+meeting[j].scheduled);  

        

       if((meeting[j].scheduled)) 

       { 

        System.out.println("i have scheduled al ready 

meeting"+j+"    assigment         "+meeting[j].getAssignment()+" 

msg.messageArray[i][0]"+msg.messageArray[i][0]); 

        

        

       if((meeting[j].getAssignment()).equals(msg.messageArray[i][0])) 

       { 

        System.out.println("the same date"); 

        free++;  

        break; 

       } 

       } 

       } 

       } 

    System.out.println("free="+free); 

     free=free/msg.messageArray.length; 

      

     Shared0 busyReply=new Shared0(chatName,""+free,1); 

      

      

      

      

     busyReply.setWhisperingToMany(wsr); 

      

     busyReply.msgType="busy_reply"; 

      

     busyReply.setName(msg.getName()); 

      

      

     sendTo(busyReply); 

    } 

     

    else if((msg.msgType).equals("busy_reply")) 

    { 



  Appendix B 

 246 

      

      

     int i=0; 

       try{ 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

           

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            meeting[i].busyReplyAll++;// we received one 

rply 

            

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

             { 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

              { 

            //  System.out.println("busy_reply 

msg received="+msg.getMessage()+" from "+msg.getInitiator()+"regarding meeting 

"+meeting[i].getName()+" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old busy 

"+meeting[i].busyReplyRank+"violation_no_c="+meeting[i].violation_no_c+" 

whidspreadtomany="+meeting[i].whisperingToMany.length); 

         

 meeting[i].busyReplyRank=meeting[i].busyReplyRank+((Double.parseDouble(

meeting[i].whisperingToMany[k][1]))*(round((Double.parseDouble(msg.getMessage())

),2))*10);//take sender rank 

         

 meeting[i].busyReplyRank=round(meeting[i].busyReplyRank,2); 

        // 

 System.out.println("===========new 

busyReplyRank"+meeting[i].busyReplyRank); 

          break; 

          } 

         } 

          

         

           // } 

           

           break;//we found for which this reply is 

           } 

          } 

            } 

         catch(Exception e) 

         { 



  Appendix B 

 247 

          System.out.println("error in finding to which meeting this busy 

reply"); 

         } 

          

          

         

 if(meeting[i].busyReplyAll==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

            

          

           try 

           { 

           

 //System.out.println(""+meeting[i].getName()+"received all busy replies"); 

            meeting[i].rank=meeting[i].busyReplyRank; 

            //meeting[i].rank=round(meeting[i].rank,2); 

            //System.out.println("meeting 

"+meeting[i].getName()+"ranked to"+meeting[i].rank); 

            meeting[i].busyReplyAll=0; 

            meeting[i].busyReplyRank=0; 

             

           } 

           catch(Exception e) 

           { 

            System.out.println("error in rank calculation "); 

           } 

          

         } 

        

         else  

         { 

           

         } 

      

      

      

    } 

     

    }//try 

     

    catch(Exception e) 

    { 

     System.out.println("erroor update"); 

    } 

    } 

     

    public void reply(Shared0 msg) 



  Appendix B 

 248 

    { 

      

      int r=0; 

       

      whisperingToMany_r=new String[1][2];  

      whisperingToMany_r1=new String[1][2];  

       

      whisperingToMany_r[0][0]=msg.getInitiator(); 

      whisperingToMany_r[0][1]="1"; 

       

        

      int [] otherEffectedMeetings=new 

int[no+1],otherEffectedMeetings1=new int[no+1]; 

      int effectedMeetings=0,effectedMeetings1=0; 

      int k; 

     

      

     //System.out.println("   check all meeting"); 

      for(int i=0;i<=no;i++)//search in all meetings 

      { 

      

      

   //   System.out.println("meeting   "+meeting[i].getName()+" assigned to   

"+meeting[i].getAssignment() 

     // +"msg.getmessge  "+msg.getMessage()); 

       

      if ((meeting[i].getAssignment()).equals(msg.getMessage()))//if the 

meeting has the same assignment 

      { 

       if(meeting[i].attend)//I am attend this meeting 

       { 

        if((meeting[i].getName()).equals(msg.getName()))// it is 

the same meeting 

        { 

        /* if ((msg.msgType).equals("confirm_delete")) 

         { 

          

         otherEffectedMeetings[effectedMeetings]=i; 

         effectedMeetings++; 

         }*/ 

        //System.out.println("*** meeting 

"+meeting[i].getName()+" has the same assignemnt"+meeting[i].getAssignment()); 

        } 

        else// there is another meeting with this assignment 

        { 

          

          



  Appendix B 

 249 

        /* if((msg.msgType).equals("confirm")|| 

(msg.msgType).equals("confirm_delete")) 

         { 

          

         //System.out.println("meeting 

"+meeting[i].getName()+" has the same assignemnt"+meeting[i].getAssignment()); 

         otherEffectedMeetings[effectedMeetings]=i; 

         effectedMeetings++; 

         //System.out.println("effected meeting no 

="+effectedMeetings+  

//         " name 

"+meeting[otherEffectedMeetings[effectedMeetings]].getName());   

          

          

        

         }*/ 

         r++;//how many meeting have at the same time 

        // System.out.println("rrrrrrrrrrrrrrrrrrrrrrrrrr"+r); 

          

        // break; 

        } 

       } 

      } 

         } 

        //System.out.println("msg type "+msg.msgType+"r="+r);  

/*     for(int t=0;t<effectedMeetings;t++) 

     { 

      System.out.println("EEEEEEEEEEEEEEEEeffected meeting"+ 

meeting[otherEffectedMeetings[t]].getName()); 

     } */ 

         

    //   System.out.println("fish effected meetings");   

          

    /*   if((msg.msgType).equals("confirm")||(msg.msgType).equals("confirm_delete")) 

         { 

            

           if((msg.msgType).equals("confirm")) 

           { 

             for(int i=0;i<effectedMeetings;i++) 

             { 

              

            Shared0 msg2 = new Shared0(chatName, "1", 

listening); 

            System.out.println("msg.msgType =  

"+msg.msgType); 

            msg2.setMessage("1"); 

            

            



  Appendix B 

 250 

            

          msg2.setMessageType("confirm_reply_update"); 

          

         

 msg2.setName(meeting[otherEffectedMeetings[i]].getName()); 

          whisperingToMany_r1[0][0] = 

meeting[otherEffectedMeetings[i]].getInitiator(); 

        whisperingToMany_r1[0][1]="1"; 

           msg2.setWhisperingToMany(whisperingToMany_r1); 

           

         

           sendTo(msg2); 

          // System.out.println("msg sent"); 

           } 

          } 

          else if((msg.msgType).equals("confirm_delete")) 

           { 

       

            if(effectedMeetings>1) 

            { 

    

             

             { 

               

             for(int i=0;i<effectedMeetings;i++) 

              { 

              

              Shared0 msg2 = new 

Shared0(chatName, "-1", listening); 

              System.out.println("msg.msgType 

=  "+msg.msgType); 

              msg2.setMessage("-1"); 

             

 msg2.setMessageType("confirm_reply_update"); 

          

            

 msg2.setName(meeting[otherEffectedMeetings[i]].getName()); 

    

             whisperingToMany_r1[0][0] = 

meeting[otherEffectedMeetings[i]].getInitiator(); 

          

 whisperingToMany_r1[0][1]="1"; 

             

 msg2.setWhisperingToMany(whisperingToMany_r1); 

              sendTo(msg2); 

          // System.out.println("msg sent"); 

              }   

            } 



  Appendix B 

 251 

           

           } 

           

          } 

          

        }*/ 

         

        if ((msg.msgType).equals("confirm_delete")) 

        {} 

        else 

        { 

                

         

        Shared0 msg1 = new Shared0(chatName, ((Integer)r).toString(), 

listening); 

         

        if((msg.msgType).equals("proposal")) 

        msg1.setMessageType("reply"); 

        else  

        msg1.setMessageType("confirm_reply"); 

          

        msg1.setName(msg.getName()); 

         msg1.setWhisperingToMany(whisperingToMany_r); 

         sendTo(msg1); 

         } 

       

        

    } 

    

    

 

 public void findMeetingsRankandschedulingProcess(int m) 

 { 

  

  Shared0 [] busy=new Shared0[no+1]; 

   

  //System.out.println("m=   "+m); 

    

    for(int a=0;a<=no;a++)  

     { 

      //System.out.println("aaaa="+a); 

      

      if(((meeting[a].getInitiator()).equals(chatName))&& 

meeting[a].rank!=-2)// i am the initiator and not schedualed yet  

      { 

       //System.out.println("111"); 

      

      meeting[a].busyReplyRank=0; 



  Appendix B 

 252 

       //System.out.println("2222"); 

       

      busy[a]=new 

Shared0(chatName,meeting[a].messageArray,1,meeting[a].messageArray.length,"meeti

ng");  

      // System.out.println("333"); 

      

      busy[a].setWhisperingToMany(meeting[a].whisperingToMany); 

     // System.out.println("444"); 

      busy[a].setName(meeting[a].getName()); 

      //System.out.println("1555511"); 

      busy[a].msgType="busy"; 

      // System.out.println("16661"); 

      

      sendTo(busy[a]); 

     //  System.out.println("7771"); 

      

      } 

     } 

     schedulingProcess(); 

     //no=no-1; 

 } 

 

 

public void schedulingProcess() 

{ 

  

       

   int max_rank_meeting=0; 

    

   

         for (int j = 0; j <=no; j++) 

         { 

     

       if( (meeting[j].getInitiator()).equals(chatName )) 

               { 

                  

                if ((meeting[j].rank) >(meeting[max_rank_meeting 

].rank)) 

              { 

     

              

                 max_rank_meeting = j; 

                

              } 

               

              else if (((meeting[j].rank) == (meeting[max_rank_meeting 

].rank))&& (j!=max_rank_meeting) ) 



  Appendix B 

 253 

              

              { 

                

                 

                if ((meeting[j].messageArray.length) 

<(meeting[max_rank_meeting].messageArray.length)) 

               { 

               

                max_rank_meeting=j; 

                 

                 

                

               

               } 

              } 

              } 

               

          } 

           

           

              

        

         

       

       if(meeting[max_rank_meeting].rank>=-1) 

       { 

          

      

      System.out.println("scheduling meeting 

"+meeting[max_rank_meeting].getName()+"  

Rank=="+meeting[max_rank_meeting].rank); 

   //   

System.out.println("meeting[max_rank_meeting].scheduled"+meeting[max_rank_meeti

ng].scheduled); 

        meeting[max_rank_meeting].rank=-2; 

        schedualing(meeting[max_rank_meeting]); 

    

        } 

} 

    public String[] effect(Shared0 m) 

    { 

     String []e_meetings=new String[10]; 

     return e_meetings; 

    } 

     

    public void node_consistency() 

    { 

     for(int m=0;m<=no;m++)//loop for all entered new meetings 



  Appendix B 

 254 

     { 

      if((meeting[m].getInitiator()).equals(chatName)) 

       

      for(int d=0;d<meeting[m].messageArray.length;d++)//loop for the 

domain of this new meeting 

      { 

       for(int mm=0;mm<=no1;mm++)//loop for all the scheduled 

meetings  

       { 

       

 if((meeting[mm].getAssignment()).equals(meeting[m].messageArray[d][0])) 

        { 

         meeting[m].messageArray[d][1]="no"; 

        } 

        

       } 

        

      } 

     } 

    } 

     

    public void arc_consistency(String date1, String att1) 

    { 

     for(int m=0;m<=no;m++)//loop for all entered new meetings 

     { 

      if((meeting[m].getInitiator()).equals(chatName)) 

      if(! meeting[m].scheduled) 

      for(int d=0;d<meeting[m].messageArray.length;d++)//loop for the 

domain of this new meeting 

      { 

       if((meeting[m].messageArray[d][0]).equals(date1)) 

       { 

        for(int a=0;a<meeting[m].whisperingToMany.length;a++) 

        { 

        

 if((meeting[m].whisperingToMany[a][0]).equals(att1)) 

         meeting[m].messageArray[d][1]="no"; 

        } 

          

        

        

       } 

        

      } 

     } 

    } 

  public void arc_consistency(String date1) 

    { 



  Appendix B 

 255 

     for(int m=0;m<=no;m++)//loop for all entered new meetings 

     { 

      if((meeting[m].getInitiator()).equals(chatName)) 

      if(! meeting[m].scheduled) 

      for(int d=0;d<meeting[m].messageArray.length;d++)//loop for the 

domain of this new meeting 

      { 

       

        

       if((meeting[m].messageArray[d][0]).equals(date1)) 

       { 

         

         meeting[m].messageArray[d][1]="nos"; 

               

       } 

        

      } 

     } 

    } 

 

    public void clearMeetings() 

{ 

  

 no1=-1; 

 System.out.println("clear meetings ="+no); 

  for(int g=0;g<=no;g++) 

   { 

     

   if((meeting[g].meeting_constraint).equals("constraint")) 

                 { 

                  no1++; 

                   

                 } 

                 else 

                 { 

                  meeting[g].assignment=""; 

             meeting[g].violationAssignment=100; 

             meeting[g].rank=-1; 

             meeting[g].violation=0; 

             meeting[g].violation_c=0; 

             meeting[g].violation_no=0; 

             meeting[g].violation_no_c=0; 

             meeting[g].dont_loop=0; 

             meeting[g].index=0; 

             meeting[g].scheduled=false; 

                  

                 } 

         } 



  Appendix B 

 256 

     

     

      

      } 

 

     

     

     

    double round(double value, int decimalPlace) { 

    double power_of_ten = 1; 

    while (decimalPlace-- > 0) 

       power_of_ten *= 10.0; 

    return Math.round(value * power_of_ten)  

       / power_of_ten; 

    } 

 

 

    String getInput()  

    { 

      

     String text = input.getText(); 

     if (!text.equals("")) 

     if (text.charAt(text.length() - 1) != '\n') text = text + "\n"; 

     input.setText(""); 

     input.requestFocus(); 

     return text; 

    } 

     

     

     

   class checkBoxItemListener implements ItemListener 

   { 

    public void itemStateChanged (ItemEvent e) 

    { 

           

     //JCheckBox s=new JCheckBox(); 

      

     for(int y=0;y<user_no;y++) 

     { 

           

      if (e.getSource()==usersCheckBox[y]) 

      

       if(e.getStateChange()==ItemEvent.SELECTED) 

       { 

         

      

 receiverName[attendeesNo][0]=usersCheckBox[y].getText(); 



  Appendix B 

 257 

      

 receiverName[attendeesNo][1]=usersRankTextField[y].getText(); 

       attendeesNo++; 

       } 

       else 

       { 

        for(int h=0;h<attendeesNo;h++) 

        { 

        

 if((usersCheckBox[y].getText().equals(receiverName[h][0]))) 

         { 

          for(int o=y;o<attendeesNo;o++) 

          { 

          

 receiverName[o][0]=receiverName[o+1][0]; 

          

 receiverName[o][1]=receiverName[o+1][1]; 

          

          } 

          attendeesNo--; 

          user_rank_sum=user_rank_sum-

Integer.parseInt(receiverName[attendeesNo][1]); 

               

         }}}}} 

             

    }  

   class Lis implements PropertyChangeListener { 

 public void propertyChange(PropertyChangeEvent e) { 

   java.util.Calendar c = mycalendar1.getCalendar(); 

   domain[iii][0]=(c.getTime().toString()).substring(4,10); 

  

 domain[iii][1]="yes";//System.out.println("domain[iii]="+domain[iii]); 

   iii++; 

    

  

 } 

}  

 

   

   class Lis1 implements PropertyChangeListener { 

 public void propertyChange(PropertyChangeEvent e) { 

   java.util.Calendar c = mycalendar1.getCalendar(); 

   domain[0][0]=(c.getTime().toString()).substring(4,10); 

   domain[0][1]="yes"; 

   System.out.println("domain="+domain[0][0]); 

   

    receiverName=new String[1][2]; 

      receiverName[0][0]=chatName; 



  Appendix B 

 258 

      receiverName[0][1]="1.0";  

       no++; 

        

      meeting[no] = new Shared0(chatName, domain, 

listening,1,"constraint"); 

      meeting[no].setName(chatName+no); 

      meeting[no].setWhisperingToMany(receiverName); 

       meeting[no].setMessageType("proposal"); 

      meeting[no].dont_loop=0; 

      meeting[no].index=0; 

      meeting[no].violation=0; 

      meeting[no].violation_c=0; 

      meeting[no].violation_no=0; 

      meeting[no].violation_no_c=0; 

      

       

      

   

  

 

}  

  } 

} 

   

  /** 

   * Creates the view object first and then the client. 

   * Will not allow user names longer then 10 characters. 

   */ 

  public  static void main (String[] args) { 

    

    host = args[0]; 

    chatName = args[1]; 

    if (chatName.length() > 10)  

    { 

      System.out.println("Shorter name required. Please try again."); 

      System.exit(1); 

    } 

    view = new View();     

    try  

    { 

      client0 = new Client0(view); 

    }  

    catch (RemoteException e) { } 

  } 

} 

 

 

import java.util.*; 



  Appendix B 

 259 

import javax.swing.*; 

import javax.swing.event.*; 

import java.awt.*; 

import java.awt.event.*; 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

import java.rmi.*; 

import java.rmi.registry.*; 

import java.rmi.server.*; 

import CalendarBean.*; 

import CalendarBean.JCalendar.*; 

import java.beans.*; 

import java.util.Collections; 

 

 

 

 

 

 

 

public class superAgentLGP extends UnicastRemoteObject  implements MessageClient   

 {   

  public static String host; 

  public static String chatName; 

  public static MessageServer server; 

  public static int listening = 1; 

  public static superAgentLGP superagentLGP; 

  public static View view; 

  public static Vector users = new Vector(); 

  public static Shared[] meeting=new Shared[100]; 

  public static int no=-1; 

  public static int no1=-1; 

  public static Vector heu_c=new Vector(); 

  public static Vector heu_s=new Vector(); 

   

  public static Vector [] parent=new Vector[2]; 

   

   

   

  public static Vector [] children=new Vector[4]; 

 

  public static double [] parent_v=new double[2]; 

 

  public static double [] children_v=new double[4]; 

  public static String smalleragentname; 

    

  superAgentLGP(View view) throws RemoteException  

  { 



  Appendix B 

 260 

    try  

    { 

      this.view = view; 

      Registry registry = LocateRegistry.getRegistry(host); 

      server = (MessageServer) registry.lookup(MessageServer.REGISTRY_NAME); 

      System.out.println("Registering with server..."); 

      server.register(this); 

      System.out.println("Registration complete"); 

    } 

     catch (Exception e) { } 

  } 

   

  public void run() 

  { 

   System.out.println("runjnnnnnnnnnnnnnnnnnnnnnnn"); 

  } 

   

  /* 

   Allow the server to send the client a Shared message object. 

   The method then passes the message to the update() method. 

   */ 

  public void sendMessage(Shared msg)  

  {  

    view.update(msg); 

  } 

   

   

  /* 

    Allows the server to retrieve the user name for this  

    specific user. 

   */  

  public String getUserName()  

  { 

    return chatName; 

  } 

   

   

  /*. 

   Allows the server to retrive the state of whether this  

   client is, or is not listening. 

   */ 

    

  public int getListening()  

  { 

    return listening; 

  } 

   

   



  Appendix B 

 261 

 

   static class  View extends JFrame { 

     

     

    JMenuBar bar=new JMenuBar(); 

    JMenuBar bar1=new JMenuBar(); 

    JMenuBar calBar=new JMenuBar(); 

    JMenu meetingMenu=new JMenu("Linear Genetic Programming Scheduling "); 

    JMenuItem addMeetingMenuItem =new JMenuItem("Add Meeting"); 

    JMenuItem schedMeetingMenuItem =new JMenuItem("Generate"); 

    JMenuItem viewMeetingMenuItem =new JMenuItem("View Meeting"); 

     

   JMenu advancedSchedMenu=new JMenu("Advanced Schedualing"); 

    JMenuItem localSearchMenuItem=new JMenuItem("Local Search Repair"); 

     

    JMenu finishAddAttendeesMenu=new JMenu("Meeting Properties"); 

    JMenuItem viewAttendeesMenuItem=new JMenuItem("Add Attendees"); 

    JMenuItem addDomainMenuItem=new JMenuItem("Add Domain"); 

  //  JMenuItem finishMenuItem=new JMenuItem("Back"); 

   

    JButton finishAddDomainButton=new JButton("Finish Domain"); 

    JButton finishAddAttendeesButton=new JButton("Finish Attendees"); 

     

    JCheckBox [] usersCheckBox=new JCheckBox[100]; 

 JTextField [] usersRankTextField=new JTextField[100]; 

 int user_no=0; 

 int attendeesNo=0; 

 int user_rank_sum=0; 

  

  

    String [] domain=new String [10]; 

    int iii;//************************************************ 

    String [][] receiverName=new String[100][2]; 

    String [][]solution; 

    String [] solution_index; 

    String[][] max_violation; 

    int max_v_l; 

    double tot=0,tot_max_v=0,tot_max_v1=0; 

    int find; 

    //int [] index_max_violation; 

    double [] rankReceiver; 

    Lis s=new Lis(); 

    checkBoxItemListener checkBoxHandler=new checkBoxItemListener(); 

    private static final int transcriptRows = 10; 

    private static final int transcriptColumns = 30;       

    private static final int inputRows = 10; 

    private static final int inputColumns = 30; 

    private String[] whisperingtoMany=new String[0],copyws=new String[0]; 



  Appendix B 

 262 

    private String[][] whisperingToMany_r=new 

String[0][0],whisperingToMany_r1=new String[0][0],whisperingToMany_r2=new 

String[0][0]; 

    

  //  double violation=0,violation_no=0,violation_c=0,violation_no_c=0; 

    int numberAttendees; 

     

     

    private JCalendar mycalendar1; 

    private JTextArea transcript = new JTextArea(transcriptRows, transcriptColumns); 

    private JTextArea input = new JTextArea(inputRows, inputColumns); 

    private JTextField roomCount = new JTextField(3); 

    private JTextField sendToField = new JTextField("Attendees"); 

    private JTextField rankSendToField = new JTextField("Ranks"); 

   

    JScrollPane scrollPane; 

    private JLabel nameLabel = new JLabel("You are currently logged on as "  

       + chatName + "."); 

    private JLabel roomCountLabel = new JLabel("Current number of users: "); 

     

    private JPanel namePanel = new JPanel(); 

     

    private JPanel infoPanel = new JPanel(); 

     

    private JPanel panel = new JPanel(); 

    private JPanel panel1 = new JPanel(); 

     

    private JPanel [] panel22; 

    private JPanel panel21 = new JPanel(); 

    private JPanel panel2 = new JPanel(); 

     

    private JPanel calPanel = new JPanel(); 

     

    private JPanel buttonPanel1 = new JPanel(); 

     

    private JPanel buttonPanel2 = new JPanel(); 

    

    

    View () { 

      super("superAgentLGP Meeting Scheduling "); 

       

      transcript.setEditable(false); 

      roomCount.setEditable(false); 

      transcript.setLineWrap(true); 

       

       

 

      mycalendar1= new JCalendar(); 



  Appendix B 

 263 

   mycalendar1.setFont(new Font("Dialog", Font.BOLD, 10)); 

    

   setJMenuBar(bar); 

    

 //  meetingMenu.add(addMeetingMenuItem); 

   meetingMenu.add(schedMeetingMenuItem); 

 //  meetingMenu.add(viewMeetingMenuItem); 

   bar.add(meetingMenu); 

    

   advancedSchedMenu.add(localSearchMenuItem); 

   //bar.add(advancedSchedMenu); 

    

   finishAddAttendeesMenu.add(viewAttendeesMenuItem);    

   finishAddAttendeesMenu.add(addDomainMenuItem); 

   //finishAddAttendeesMenu.add(finishMenuItem); 

   bar1.add(finishAddAttendeesMenu); 

      

      buttonPanel1.setBackground(Color.yellow); 

      buttonPanel2.setBackground(Color.red); 

      

 

      localSearchMenuItem.setToolTipText("Local search to find better solution " ); 

       

      final JDesktopPane theDesktop=new JDesktopPane(); 

      getContentPane().add(theDesktop); 

      namePanel.add(nameLabel); 

      infoPanel.add(roomCountLabel); 

      infoPanel.add(roomCount); 

      buttonPanel1.setLayout(new FlowLayout());  

     

     

      final Component[] components =  

      { 

  

 }; 

       

      addWindowListener(new WindowAdapter() { 

   public void windowClosing(WindowEvent e) { 

     Shared msg = new Shared(chatName, "", listening); 

     try { 

       server.deregister(msg); 

     } catch (RemoteException f) { }  

     finally { System.exit(0); } 

   } 

 }); 

       

       

   



  Appendix B 

 264 

  

  viewAttendeesMenuItem.addActionListener(new ActionListener() { 

    public void actionPerformed(ActionEvent e) { 

      

    

     setContentPane(panel2); 

       

      pack(); 

 

   } 

 }); 

  

 

       

    

    

    

    

       

    

    

   schedMeetingMenuItem.addActionListener(new ActionListener()  

      { 

    public void actionPerformed(ActionEvent e)  

    { 

       

   int crossover_point=0; 

    

   no=meeting.length; 

 

      Shared msg_emty=new Shared (); 

 

   msg_emty.setMessageType("empty"); 

 

   Enumeration en = users.elements(); 

    

      String [][] rn=new String[(users.size())-1][2]; 

       

   Object[] currUserInfo; 

      int i =0; 

       

      while(en.hasMoreElements())  

     { 

     currUserInfo =  (Object[]) en.nextElement(); 

        try{ 

       

        if (!currUserInfo[0].equals("lsp") &&!currUserInfo[0].equals("lgp")) 

         



  Appendix B 

 265 

      { 

       rn[i][0]=(String)currUserInfo[0]; 

       rn[i][1]="1";  

       i++; 

      } 

     

        msg_emty.setWhisperingToMany(rn);  

        

      }//t 

   

  catch(Exception ee) 

       {System.out.println("problem in LSP scheduling EMPTY");} 

    

   } 

  

 

 

              

  for(int a1=0;a1<2;a1++) 

  { 

 

   

 sendTo(msg_emty);  

 

 clearMeetings(); 

  

      

    for(int ii=0;ii<parent[a1].size();ii++) 

      { 

        

        

      Object o=parent[a1].get(ii); 

      String os=(String)o; 

      if((os).equals("rs")) 

      { 

       

       findMeetingsRankandschedulingProcess(no);//(2-

2)********************************************call the ranking function in 

order to ranks the meetings    

      } 

      else 

      { 

       

       schedulingProcess();  

      } 

       

    } 

       



  Appendix B 

 266 

       

      tot= 0; 

      for(int i1=0;i1<no;i1++) 

      { 

      if(meeting[i1].violationAssignment!=100) 

      { 

      

      if((meeting[i1].getInitiator()).equals(chatName)) 

      { 

         

      tot=tot+(meeting[i1].violationAssignment); 

       

      tot=round(tot,2); 

      } 

       

      } 

     } 

     

     parent_v[a1]=tot; 

    System.out.println("violation parent "+a1+"="+tot); 

      } 

          

  

  

  

 

     

  Vector solution_h =new Vector();   

  double solution_h_v; 

  if(parent_v[0]<parent_v[1]) 

    { 

    // System.out.println("(parent_v[0]<parent_v[1] 

 solution_h=(Vector)parent[0].clone();"); 

      

     solution_h=(Vector)parent[0].clone(); 

     solution_h_v=parent_v[0]; 

      

    } 

    else 

    { 

    //    System.out.println("(parent_v[0]>parent_v[1] 

 solution_h=(Vector)parent[1].clone();"); 

     solution_h=(Vector)parent[1].clone(); 

     solution_h_v=parent_v[1]; 

      

     parent[1]=(Vector)parent[0].clone(); 

     parent_v[1]=parent_v[0]; 

      



  Appendix B 

 267 

     parent[0]=(Vector)solution_h.clone(); 

     parent_v[0]=solution_h_v; 

      

    } 

       

 

 

   

      for(int i2=0;i2<children.length;i2++) 

  { 

   children[i2]=new Vector(); 

  } 

   

  int rounds=0; 

  int q=0; 

  boolean sameparent=false; 

   

  while((solution_h_v>0)&&(rounds<50))//&&(!sameparent)) 

  { 

   

   

  rounds++; 

  children[0]=(Vector)parent[0].clone(); 

  children_v[0]=parent_v[0]; 

   

  children[1]=(Vector)parent[1].clone(); 

  children_v[1]=parent_v[1]; 

   

  children[2]=(Vector)parent[0].clone(); 

  children[3]=(Vector)parent[1].clone(); 

   

   

  crossover_point=children[2].size()/2; 

  System.out.println(""); 

  System.out.println("crossover in point =" +crossover_point); 

  System.out.println(""); 

   

   

   

   

  for(int i4=crossover_point+1;i4<children[2].size();i4++) 

  { 

    

   children[2].set(i4,parent[1].get(i4)); 

   children[3].set(i4,parent[0].get(i4)); 

    

  } 

   



  Appendix B 

 268 

 

  Object o1=new Object(); 

  Object o2=new Object(); 

    for(int u=2;u>=1;u--) 

    { 

     

     o1=children[2].get(children[2].size()-u); 

     children[2].remove(children[2].size()-u); 

   

        children[2].insertElementAt(o1,u); 

     

     o2=children[3].get(children[3].size()-u); 

     children[3].remove(children[3].size()-u); 

   

        children[3].insertElementAt(o2,u); 

     

    } 

    

    

   

  System.out.println(""); 

  System.out.println("***************Round number ="+rounds); 

  System.out.println(""); 

  for(int a1=2;a1<4;a1++) 

  { 

    

   System.out.println("child no "+a1+" is the following heuristic"); 

   System.out.println(""); 

    

    

   

 sendTo(msg_emty);  

 

 clearMeetings(); 

  

      

    for(int ii=0;ii<children[a1].size();ii++) 

      { 

       System.out.print("     ("+(ii+1)+")  "); 

        

      Object o=children[a1].get(ii); 

      String os=(String)o; 

      if((os).equals("rs")) 

      { 

         System.out.println(" findMeetingsRank"); 

         System.out.println("           schedulingProcess"); 

         System.out.println(""); 



  Appendix B 

 269 

       findMeetingsRankandschedulingProcess(no);//(2-

2)********************************************call the ranking function in 

order to ranks the meetings    

      } 

      else 

      { 

       System.out.println(" schedulingProcess"); 

         System.out.println(""); 

       schedulingProcess();  

      } 

       

    } 

       

       

      tot= 0; 

      for(int i1=0;i1<no;i1++) 

      { 

      if(meeting[i1].violationAssignment!=100) 

      { 

      

      if((meeting[i1].getInitiator()).equals(chatName)) 

      { 

         

      tot=tot+(meeting[i1].violationAssignment); 

       

      tot=round(tot,2); 

      } 

       

      } 

     } 

      

     children_v[a1]=tot; 

     

      } 

       

       

     

     

 

  sameparent=true; 

  boolean anychangeonparent=false; 

    for(int h1=2;h1<4;h1++) 

    { 

      

      if(children_v[h1]<=parent_v[1]) 

         { 

          sameparent=false; 

       anychangeonparent=true; 



  Appendix B 

 270 

          

          if(children_v[h1]<parent_v[0]) 

          { 

            

           parent[1]=(Vector)parent[0].clone(); 

        parent_v[1]=parent_v[0]; 

         

        parent[0]=(Vector)children[h1].clone(); 

        parent_v[0]=children_v[h1]; 

         

         

        solution_h=(Vector)children[h1].clone(); 

        solution_h_v=children_v[h1]; 

         

       } 

         else 

         { 

          parent[1]=(Vector)children[h1].clone(); 

         parent_v[1]=children_v[h1]; 

        

         } 

       

     } 

     

        

    } 

     

   

     

  if(!anychangeonparent)// no change on parent 

  { 

    

   System.out.println("children have no less violation"); 

   if(children_v[2]<=children_v[3]) 

   { 

     

    parent[1]=(Vector)children[2].clone(); 

     parent_v[1]=children_v[2]; 

     

   } 

   else 

   { 

    parent[1]=(Vector)children[3].clone(); 

     parent_v[1]=children_v[3]; 

     

   } 

  } 

   



  Appendix B 

 271 

     

  

  

    for(int j=0;j<4;j++) 

    { 

     System.out.println(""); 

     System.out.println("violation for child no"+j+"  is equals== 

"+children_v[j]); 

    } 

 

     

 

      

      

       }     /************************/ 

           /***********************/ 

            

  System.out.println(""); 

  System.out.println("***************at the end the total Rounds  ="+rounds); 

  System.out.println(""); 

  sendTo(msg_emty);  

  clearMeetings(); 

  System.out.println(""); 

  System.out.println("the solution heuristic/ algorithm is"); 

  System.out.println(""); 

  for(int o=0;o<solution_h.size();o++) 

  { 

   System.out.print("     ("+(o+1)+")  "); 

    if((solution_h.get(o)).equals("s")) 

         { 

          System.out.println("         schedulingProcess"); 

          System.out.println(""); 

         } 

            

            else if((solution_h.get(o)).equals("rs")) 

            { 

         

         System.out.println("         findMeetingsRankand"); 

         System.out.println("                   schedulingProcess"); 

         System.out.println(""); 

          } 

 

}     

 

  Shared msg_heu1=new Shared(chatName, 

smalleragentname,solution_h,listening); 

     msg_heu1.setMessageType("msg_type_s_h"); 

     sendTo(msg_heu1); 



  Appendix B 

 272 

     System.out.println("this  heuristic has been sent to the smaller agents"); 

      

     Shared msg_lsp1=new 

Shared(chatName,smalleragentname,meeting,listening,no); 

      

     msg_lsp1.setMessageType("msg_type_lsp1"); 

      

      

     sendTo(msg_lsp1); 

      

           

     } 

    } 

    ); 

    

   

    

     

    

 

       

      /* 

       * This section deals with action events from the "Who's Here" button. 

       */ 

       

 

       

      JPanel panel = new JPanel(); 

      panel.add(SwingUtil.vBox(components, SwingUtil.CENTER)); 

      setContentPane(panel); 

      //panel.setBackground(Color.blue); 

      pack(); 

      setVisible(true); 

      input.requestFocus(); 

      input.setLineWrap(true); 

      setResizable(true); 

    } 

   

     

     

     

    

     

    public Dimension getPreferredSize() { 

      return (new Dimension(400, 800)); 

    } 

     

     



  Appendix B 

 273 

    public void schedualing(Shared meeting ) 

    { 

       

   

 

   int l=copyws.length; 

        

       

      try 

      { 

        

        String proposal = meeting.messageArray[meeting.index]; 

      

      //  System.out.println(meeting.getName()); 

        

          meeting.setMessage(proposal); 

      

       

           sendTo(meeting); 

      

                

      } 

      

       catch(Exception e) 

       { 

    transcript.append("HOST: " + meeting.getInitiator() +  

    "- no domain toooooooooooo send. try again.\n"); 

   } 

 

    

       

    } 

       

    

        

    public void sendTo(Shared msg) 

    { 

      

     //System.out.println("SEND To"); 

     String from = msg.getInitiator(); 

     

     

    

     msg.setUsers(users); 

     Enumeration en = users.elements(); 

     Object[] currUserInfo; 

      

     while(en.hasMoreElements())  



  Appendix B 

 274 

     { 

      currUserInfo =  (Object[]) en.nextElement(); 

      try{ 

       

        for(int i=0;i<msg.whisperingToMany.length;i++) 

       

        { 

          

         if (currUserInfo[0].equals(msg.whisperingToMany[i][0]) )  

          

         try 

         { 

          ((MessageClient) currUserInfo[2]).sendMessage(msg); 

         } 

     catch (RemoteException e) { System.out.println("error 

send to");} 

   

   } 

  }//try 

   catch(Exception e){System.out.println("widesprd exception");} 

     } 

   }   

    

    /* 

   * Allows clients to public messages that will be sent to every 

   * person in the room that is listening at that time. 

   */  

   public void sendAll(Shared msg) 

    {  

     Enumeration en= users.elements(); 

     Object[] currUserInfo; 

     msg.setUsers(users); 

     

     while(en.hasMoreElements()) 

      { 

        

       currUserInfo =  (Object[]) en.nextElement(); 

        

       if (((Integer) currUserInfo[1]).intValue() == 1) 

        

       { 

       try 

        { 

        ((MessageClient) currUserInfo[2]).sendMessage(msg); 

         

        } 

       

      catch (RemoteException e)  



  Appendix B 

 275 

       { 

       } 

        } 

     } 

   }    

       

                 

    /** 

     * Appends all incoming "chat" messages (not "state" messages) 

     * to the transcript window, and updates this client with the 

     * current chat room user information. 

     */ 

    public void update(Shared msg)  

    { 

      

      

     //System.out.println("UPDATE "); 

     

    try{ 

     if ((listening == 1) || msg.getWhispering()) 

  if((msg.msgType).equals("confirm"))        

      transcript.append(msg.getInitiator() + " sends a CONFIRMATION for meeting: 

"+msg.getName()+"   " + msg.getMessage()+"\n"); 

      else if((msg.msgType).equals("proposal")) 

      transcript.append(msg.getInitiator() +" sends a PROPOSAL for meeting:  "+ 

msg.getName()+"   "+ msg.getMessage()+"\n"); 

      roomCount.setText((String) msg.getRoomSize()); 

       users = (Vector) msg.getUsers(); 

      } 

      catch(Exception e){System.out.println("listttttttttttttning");} 

   

       try{  

        

       if((msg.msgType).equals("msg_type_c_h")) 

       { 

        smalleragentname=msg.getInitiator(); 

        heu_c=msg.heuristic; 

        heu_s=(Vector)heu_c.clone(); 

         

         

        heu_c.set(1,heu_c.get(0)); 

        

        heu_s.set(heu_s.size()-1,heu_s.get(0)); 

            Collections.reverse(heu_s); 

        for(int iii=0;iii<2;iii++) 

        { 

         parent[iii]=new Vector(); 

         



  Appendix B 

 276 

        } 

            parent[0]=heu_c; 

        parent[1]=heu_s; 

         

        

        

        System.out.println(""); 

         

        System.out.println("parent[1]-the smaller agent heuristic- is the 

following heuristic"); 

        System.out.println(""); 

         

        for(int y=0;y<parent[0].size();y++) 

        { 

         System.out.print("     ("+(y+1)+")  "); 

         if((parent[0].get(y)).equals("s")) 

         { 

          System.out.println("     schedulingProcess"); 

          System.out.println(""); 

         } 

            

            else if((parent[0].get(y)).equals("rs")) 

            { 

         

         System.out.println("    findMeetingsRank"); 

         System.out.println("              schedulingProcess"); 

         System.out.println(""); 

          } 

        } 

        System.out.println(""); 

          

        System.out.println("parent[2]-the reverse of parent[1]- is the following 

heuristic");  

        System.out.println(""); 

         

         for(int y=0;y<parent[1].size();y++) 

         { 

          System.out.print("     ("+(y+1)+")  "); 

         if((parent[1].get(y)).equals("s")) 

         { 

          System.out.println("     schedulingProcess"); 

          System.out.println(""); 

         } 

            

            else if((parent[1].get(y)).equals("rs")) 

            { 

         

         System.out.println("     findMeetingsRankand"); 



  Appendix B 

 277 

         System.out.println("               schedulingProcess"); 

         System.out.println(""); 

            } 

        } 

          

    System.out.println(""); 

    System.out.println(""); 

        

        

           /**********************/ 

           /**********************/ 

            

            

   

              

        

       } 

        

       else if((msg.msgType).equals("msg_type_lsp")) 

       { 

         meeting=new Shared[msg.meetings.length]; 

         for(int s=0;s<msg.meetings.length;s++) 

         { 

         

          

         meeting[s]=msg.meetings[s]; 

         

        meeting[s].setInitiator(chatName); 

       

 //JOptionPane.showMessageDialog(null,"meeting==="+meeting[s].getName()+

"  initiator  "+meeting[s].getInitiator()); 

         

        } 

       

       } 

        

        

      else if((msg.msgType).equals("proposal")) 

       { 

          

         reply(msg); 

        

       } 

       

              

       else if((msg.msgType).equals("reply")) 

       { 

           



  Appendix B 

 278 

    //   System.out.println("received reply"); 

        

        int i=0; 

        try{ 

          

          for(i=0;i<=no;i++)//find this rply for which meeting 

          { 

         //

 System.out.println("meeting[i].getName()="+meeting[i].getName()+"    

msg.getName()="+msg.getName()); 

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

           //System.out.println("trueee and 

meeting[i].violation_no="+meeting[i].violation_no); 

             

            meeting[i].violation_no++;// we received one rply 

             

          

 //System.out.println("meeting[i].violation_no="+meeting[i].violation_no); 

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

             { 

             

 //System.out.println("meeting[i].whisperingToMany[k][0]="+meeting[i].whispe

ringToMany[k][0]+"    msg.getInitiator()"+msg.getInitiator()); 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator()))) 

              { 

             // System.out.println("the old 

violation"+meeting[i].violation);  

         

 meeting[i].violation=meeting[i].violation+(Double.parseDouble(meeting[i].whis

peringToMany[k][1]))*Double.parseDouble(msg.getMessage()); 

          //System.out.println(" 

proposal  "+meeting[i].getMessage()+"  received rply for prop from "+msg.getInitiator() 

         // +"  rank for the 

replier"+meeting[i].whisperingToMany[k][1]+" so violation="+meeting[i].violation); 

          break; 

          } 

         } 

         

            //} 

           

           break;//we found for which this reply is 

           } 

          } 

            } 



  Appendix B 

 279 

         catch(Exception e) 

         { 

          //System.out.println("error in finding to which proposal this 

reply"); 

         } 

         

         try{ 

           

        

 //System.out.println("meeting[i].violation_no="+meeting[i].violation_no+"    

meeting[i].whisperingToMany.length="+meeting[i].whisperingToMany.length); 

         

 if(meeting[i].violation_no==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

           //System.out.println("true"); 

          

           try 

           { 

            

           

            if(meeting[i].violation==0) 

            {    

            

 //System.out.println("meeting[i].violation==0"); 

            

 meeting[i].setAssignment(meeting[i].getMessage()); 

             meeting[i].violationAssignment=0; 

            

           

            } 

           

            else 

            {  

            // System.out.println("violatiojn/violation 

no="+l); 

             if 

(meeting[i].violationAssignment>=meeting[i].violation) 

             { 

             

 meeting[i].setAssignment(meeting[i].getMessage()); 

             

 meeting[i].violationAssignment=meeting[i].violation; 

             

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

               

              //System.out.println("meeting "+ 

meeting[i].getName()+"    propose schedualed so rank ="); 



  Appendix B 

 280 

               

             

            

             } 

            

             meeting[i].index++; 

            

             //System.out.println("iii="+iii); 

            

 if(meeting[i].index<(meeting[i].messageArray.length)) 

             { 

              meeting[i].violation=0; 

              meeting[i].violation_no=0; 

              schedualing(meeting[i]); 

               

             } 

             

            } 

           

           } 

           catch(Exception e) 

           { 

            System.out.println("44444444444444444"); 

           } 

          

           try 

           { 

          //System.out.println(meeting[i].dont_loop); 

           if(meeting[i].dont_loop==0) 

            { 

             //System.out.println("trueeeee"); 

             Shared conf_msg=new 

Shared(chatName,meeting[i].getAssignment(),listening); 

           

             conf_msg.setName(meeting[i].getName()); 

          

             conf_msg.setMessageType("confirm"); 

           

            

 conf_msg.setWhisperingToMany(meeting[i].whisperingToMany); 

           

              

           

           //  meeting[i].violation_no=0; 

             meeting[i].dont_loop++; 

           // 

 if((meeting[i].violationAssignment>0))//(1-

6)++++++++++++++++++++++++++++++++++not sced violated meeting  



  Appendix B 

 281 

           //  {//(2-

6)++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++n

ot sced violated meeting  

           //   meeting[i].setAssignment(" can 

not");//(3-6)++++++++++++++++++++++++++++++++not sced violated meeting  

           //  

 meeting[i].violationAssignment=0;//(4-

6)+++++++++++++++++++++++++++++++++++not sced violated meeting  

               

           //  }//(5-

6)++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++n

ot sced violated meeting  

           //  else 

if((meeting[i].violationAssignment==0))//(6-

6)+++++++++++++++++++++++++++++not sced violated meeting  

             sendTo(conf_msg); 

           //  no1++; 

            } 

           } 

           

           catch(Exception e) 

           { 

            System.out.println("8888888888"); 

           } 

           

          } 

          

         } 

         catch(Exception e) 

         { 

          System.out.println("222222222222222222"); 

         } 

        // System.out.println("hiiiiiiiiiiii"); 

          

       } 

       else if ((msg.msgType).equals("confirm")) 

       { 

       

        

        boolean found=false; 

        try 

        { 

        // search in the meeting if this confirmed meeting is exist 

         int i; 

         for(i=0;i<=no;i++) 

         { 

         //System.out.println("my meetings are no"+i+" its 

name"+meeting[i].getName()); 



  Appendix B 

 282 

          if ((msg.getName()).equals(meeting[i].getName())) 

          { 

          

 //System.out.println("+++++++++++++++++name for this meeting 

is"+msg.getName()); 

           meeting[i].setAssignment(msg.getMessage()); 

           meeting[i].violationAssignment=0; 

           meeting[i].attend=true; 

           found=true; 

           // System.out.println("meeting name    

"+meeting[i].getName()+"violation assignmt     "+meeting[i].violationAssignment); 

           break; 

          } 

         } 

          

         //this meeting is not exist then add it  

         if (!found)          

         { //System.out.println("this meeting is not exist i will add it 

i have meeting number"+no); 

         

          no++; 

          no1++; 

          meeting[no]=new 

Shared(msg.getInitiator(),msg.getMessage(),listening); 

          meeting[no].setName(msg.getName()); 

          meeting[no].setAssignment(msg.getMessage()); 

          meeting[no].violationAssignment=0; 

          meeting[no].attend=true; 

         // System.out.println("now ihave meeting no "+no+" and the 

assgment"+meeting[no].getAssignment()); 

          

          

         }  

        reply(msg);  

        } 

        catch(Exception e) 

        { 

         System.out.println(" can not confirm this meeting"); 

        } 

       } 

        

        

        

        

        else if ((msg.msgType).equals("confirm_delete")) 

       { 

       

        



  Appendix B 

 283 

        try 

        { 

        System.out.println("CONFIRM DELETE  to"+chatName+"      regarding 

meeting"+msg.getName()); 

          

        reply(msg);  

        } 

        catch(Exception e) 

        { 

         System.out.println(" can not confirm this meeting"); 

        } 

       } 

       

        

        

       else if ((msg.msgType).equals("confirm_reply")) 

       { 

         

       //System.out.println("msg reply for confirm received 

from"+msg.getInitiator()+"regarding meeting"+msg.getName()+"with 

value"+msg.getMessage()); 

       int i=0; 

       try{ 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

           

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            meeting[i].violation_no_c++;// we received one 

rply 

            

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

             { 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

              { 

              //System.out.println("msg 

received"+msg.getMessage()+" from "+msg.getInitiator()+"regarding meeting 

"+meeting[i].getName()+" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old violation 

"+meeting[i].violationAssignment+"violation_no_c="+meeting[i].violation_no_c+" 

whidspreadtomany="+meeting[i].whisperingToMany.length); 

         

 meeting[i].violation_c=meeting[i].violation_c+(Double.parseDouble(meeting[i].

whisperingToMany[k][1]))*(Double.parseDouble(msg.getMessage()));//take sender 

rank 



  Appendix B 

 284 

         

 meeting[i].violation_c=round(meeting[i].violation_c,2); 

         

 //System.out.println("===========new violation_c"+meeting[i].violation_c); 

          break; 

          } 

         } 

          

         

           // } 

           

           break;//we found for which this reply is 

           } 

          } 

            } 

         catch(Exception e) 

         { 

          System.out.println("||||||||||||||||||||||error in finding to which 

confirmation this reply"); 

         } 

          

         

 if(meeting[i].violation_no_c==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

            

          

           try 

           { 

           

 meeting[i].violationAssignment=meeting[i].violation_c; 

           

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

            //System.out.println("++++++++++++meeting 

"+meeting[i].getName()+"assigned 

to"+meeting[i].getAssignment()+"violation="+meeting[i].violationAssignment); 

            meeting[i].violation_c=0; 

            meeting[i].violation_no_c=0; 

           

 //System.out.println("&&&&&&&&&&&&&meeting[i].scheduled="+meeting[

i].scheduled); 

            meeting[i].scheduled=true; 

           

 //System.out.println("^^^^^^^^^^^^^^^^^^^^^^^^meeting[i].scheduled="+meeti

ng[i].scheduled); 

           } 

           catch(Exception e) 

           { 



  Appendix B 

 285 

            System.out.println("error in violation calculation 

"); 

           } 

          

         } 

        

         else  

         { 

           

         } 

      

    } 

   

        else if ((msg.msgType).equals("confirm_reply_update")) 

       { 

       //System.out.println("msg confirm reply update  received 

from"+msg.getInitiator()+"regarding meeting"+msg.getName()+"  with 

value"+msg.getMessage()); 

       int i=0; 

       try{ 

        //System.out.println(chatName+"received update confirm for 

meeting"+msg.getName()); 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

          //System.out.println("existed meetings :  

"+meeting[i].getName()); 

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            //System.out.println("meeting found"); 

            for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 

            { 

             if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

             { 

            //System.out.println("msg received confirm update 

for"+meeting[i].getName() 

            // +"from 

"+msg.getInitiator()+"value"+msg.getMessage() 

//             +" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old violation 

"+meeting[i].violationAssignment); 

          

          

        

 meeting[i].violationAssignment=(meeting[i].violationAssignment) 



  Appendix B 

 286 

        

 +(Double.parseDouble(meeting[i].whisperingToMany[k][1]))*(Double.parseDo

uble(msg.getMessage())); 

         //take sender rank 

          

        

 meeting[i].violationAssignment=round(meeting[i].violationAssignment,2); 

        

 //System.out.println("############ meeting 

name"+meeting[i].getName()+"new 

violationAssignment"+meeting[i].violationAssignment); 

         break; 

         } 

        } 

          

        break;//we found for which this reply is

  

           } 

           

            

          } 

           

         } 

             

         catch(Exception e) 

         { 

          System.out.println("error in finding to which confirmation this 

reply"); 

         } 

          

          

          

          

          

         

         

    } 

     

     

     

     

    else if((msg.msgType).equals("busy")) 

    { 

     double free=0; 

      

     String [][]wsr=new String[1][2]; 

     wsr[0][0]=msg.getInitiator(); 

     wsr[0][1]="1"; 



  Appendix B 

 287 

      

      

     for(int i=0;i<msg.messageArray.length;i++) 

     { 

      for(int j=0;j<=no1;j++) 

      { 

       if((meeting[j].getAssignment()).equals(msg.messageArray[i])) 

       { 

        free++;  

        break; 

       } 

      } 

     } 

      

     free=free/msg.messageArray.length; 

      

     Shared busyReply=new Shared(chatName,""+free,1); 

    // System.out.println("*********free="+free); 

      

      

      

     busyReply.setWhisperingToMany(wsr); 

      

     busyReply.msgType="busy_reply"; 

      

     busyReply.setName(msg.getName()); 

      

      

     sendTo(busyReply); 

    } 

     

    else if((msg.msgType).equals("busy_reply")) 

    { 

      

      

     int i=0; 

       try{ 

          for( i=0;i<=no;i++)//find this rply for which meeting 

          { 

           

           if((meeting[i].getName()).equals(msg.getName())) 

           { 

            meeting[i].busyReplyAll++;// we received one 

rply 

            

            

             for(int 

k=0;k<meeting[i].whisperingToMany.length;k++) 



  Appendix B 

 288 

             { 

              if 

((meeting[i].whisperingToMany[k][0].equals(msg.getInitiator())))//find sender  

              { 

           //  System.out.println("msg 

received"+msg.getMessage()+" from "+msg.getInitiator()+"regarding meeting 

"+meeting[i].getName()+" 

rank"+(Double.parseDouble(meeting[i].whisperingToMany[k][1]))+"old busy 

"+meeting[i].busyReplyRank); 

         

 meeting[i].busyReplyRank=meeting[i].busyReplyRank+((Double.parseDouble(

meeting[i].whisperingToMany[k][1]))*(round((Double.parseDouble(msg.getMessage())

),2))*10);//take sender rank 

         

 meeting[i].busyReplyRank=round(meeting[i].busyReplyRank,2); 

        // 

 System.out.println("===========new 

busyReplyRank"+meeting[i].busyReplyRank); 

          break; 

          } 

         } 

          

         

           // } 

           

           break;//we found for which this reply is 

           } 

          } 

            } 

         catch(Exception e) 

         { 

          System.out.println("error in finding to which meeting this busy 

reply"); 

         } 

          

          

         

 if(meeting[i].busyReplyAll==meeting[i].whisperingToMany.length)//all replies 

have been received 

          { 

            

          

           try 

           { 

           

 //System.out.println(""+meeting[i].getName()+"received all busy replies"); 

            meeting[i].rank=meeting[i].busyReplyRank; 

            //meeting[i].rank=round(meeting[i].rank,2); 



  Appendix B 

 289 

            //System.out.println("meeting 

"+meeting[i].getName()+"ranked to"+meeting[i].rank); 

            meeting[i].busyReplyAll=0; 

            meeting[i].busyReplyRank=0; 

             

           } 

           catch(Exception e) 

           { 

            System.out.println("error in rank calculation "); 

           } 

          

         } 

        

         else  

         { 

           

         } 

      

      

      

    } 

     

    }//try 

     

    catch(Exception e) 

    { 

     System.out.println("erroor update"); 

    } 

    } 

     

    public void reply(Shared msg) 

    { 

      

      int r=0; 

       

      whisperingToMany_r=new String[1][2];  

      whisperingToMany_r1=new String[1][2];  

       

      whisperingToMany_r[0][0]=msg.getInitiator(); 

      whisperingToMany_r[0][1]="1"; 

       

        

      int [] otherEffectedMeetings=new 

int[no+1],otherEffectedMeetings1=new int[no+1]; 

      int effectedMeetings=0,effectedMeetings1=0; 

      int k; 

     

      



  Appendix B 

 290 

     //System.out.println("   check all meeting"); 

      for(int i=0;i<=no;i++)//search in all meetings 

      { 

      

      

      //System.out.println("meeting   "+meeting[i].getName()+" assigned to   

"+meeting[i].getAssignment() 

      //+"msg.getmessge  "+msg.getMessage()); 

       

      if ((meeting[i].getAssignment()).equals(msg.getMessage()))//if the 

meeting has the same assignment 

      { 

       if(meeting[i].attend)//I am attend this meeting 

       { 

        if((meeting[i].getName()).equals(msg.getName()))// it is 

the same meeting 

        { 

         if ((msg.msgType).equals("confirm_delete")) 

         { 

          

         otherEffectedMeetings[effectedMeetings]=i; 

         effectedMeetings++; 

         } 

        //System.out.println("*** meeting 

"+meeting[i].getName()+" has the same assignemnt"+meeting[i].getAssignment()); 

        } 

        else// there is another meeting with this assignment 

        { 

          

          

         if((msg.msgType).equals("confirm")|| 

(msg.msgType).equals("confirm_delete")) 

         { 

          

         //System.out.println("meeting 

"+meeting[i].getName()+" has the same assignemnt"+meeting[i].getAssignment()); 

         otherEffectedMeetings[effectedMeetings]=i; 

         effectedMeetings++; 

         //System.out.println("effected meeting no 

="+effectedMeetings+  

//         " name 

"+meeting[otherEffectedMeetings[effectedMeetings]].getName());   

          

          

        

         } 

         r++;//how many meeting have at the same time 

        // System.out.println("rrrrrrrrrrrrrrrrrrrrrrrrrr"+r); 



  Appendix B 

 291 

          

        // break; 

        } 

       } 

      } 

         } 

      //  System.out.println("msg type "+msg.msgType+"r="+r);  

     for(int t=0;t<effectedMeetings;t++) 

     { 

      //System.out.println("EEEEEEEEEEEEEEEEeffected meeting"+ 

meeting[otherEffectedMeetings[t]].getName()); 

     }  

         

    //   System.out.println("fish effected meetings");   

          

       if((msg.msgType).equals("confirm")||(msg.msgType).equals("confirm_delete")) 

         { 

            

           if((msg.msgType).equals("confirm")) 

           { 

             for(int i=0;i<effectedMeetings;i++) 

             { 

              

            Shared msg2 = new Shared(chatName, "1", 

listening); 

            //System.out.println("msg.msgType =  

"+msg.msgType); 

            msg2.setMessage("1"); 

            

            

            

          msg2.setMessageType("confirm_reply_update"); 

          

         

 msg2.setName(meeting[otherEffectedMeetings[i]].getName()); 

          whisperingToMany_r1[0][0] = 

meeting[otherEffectedMeetings[i]].getInitiator(); 

        whisperingToMany_r1[0][1]="1"; 

           msg2.setWhisperingToMany(whisperingToMany_r1); 

           

         

           sendTo(msg2); 

          // System.out.println("msg sent"); 

           } 

          } 

          else if((msg.msgType).equals("confirm_delete")) 

           { 

       



  Appendix B 

 292 

            if(effectedMeetings>1) 

            { 

    

             

             { 

               

             for(int i=0;i<effectedMeetings;i++) 

              { 

              

              Shared msg2 = new 

Shared(chatName, "-1", listening); 

              //System.out.println("msg.msgType 

=  "+msg.msgType); 

              msg2.setMessage("-1"); 

             

 msg2.setMessageType("confirm_reply_update"); 

          

            

 msg2.setName(meeting[otherEffectedMeetings[i]].getName()); 

    

             whisperingToMany_r1[0][0] = 

meeting[otherEffectedMeetings[i]].getInitiator(); 

          

 whisperingToMany_r1[0][1]="1"; 

             

 msg2.setWhisperingToMany(whisperingToMany_r1); 

              sendTo(msg2); 

          // System.out.println("msg sent"); 

              }   

            } 

           

           } 

           

          } 

          

        } 

         

        if ((msg.msgType).equals("confirm_delete")) 

        {} 

        else 

        { 

                

         

        Shared msg1 = new Shared(chatName, ((Integer)r).toString(), listening); 

         

        if((msg.msgType).equals("proposal")) 

        msg1.setMessageType("reply"); 

        else  



  Appendix B 

 293 

        msg1.setMessageType("confirm_reply"); 

          

        msg1.setName(msg.getName()); 

         msg1.setWhisperingToMany(whisperingToMany_r); 

         sendTo(msg1); 

         } 

       

        

    } 

    

    

 

 public void findMeetingsRankandschedulingProcess(int m) 

 { 

  

  Shared [] busy=new Shared[no]; 

    

   //System.out.println("1111111111"); 

       

     for(int a=0;a<no;a++)  

     { 

      

      if(((meeting[a].getInitiator()).equals(chatName))&& 

meeting[a].rank!=-2)// i am the initiator and not schedualed yet  

      { 

      

      meeting[a].busyReplyRank=0; 

       

      busy[a]=new 

Shared(chatName,meeting[a].messageArray,1,meeting[a].messageArray.length,"meetin

g");  

      

      busy[a].setWhisperingToMany(meeting[a].whisperingToMany); 

      

      busy[a].setName(meeting[a].getName()); 

      

      busy[a].msgType="busy"; 

      

      sendTo(busy[a]); 

       

      

      } 

     } 

     schedulingProcess(); 

     //no=no-1; 

 } 

 

public void schedulingProcess() 



  Appendix B 

 294 

{ 

  

      // System.out.println("enter schedulingProcess"); 

   int max_rank_meeting=0; 

    

  // System.out.println("no============="+no); 

         for (int j = 0; j <no; j++) 

         { 

    // System.out.println("j="+j+"   meeting[j].rank  ="+meeting[j].rank+"   

meeting[j].messageArray.length="+meeting[j].messageArray.length); 

    // System.out.println("meeting[j].scheduled="+meeting[j].scheduled); 

 

       if( (meeting[j].getInitiator()).equals(chatName )) 

               { 

                  

                if ((meeting[j].rank) >(meeting[max_rank_meeting 

].rank)) 

              { 

     

              

                 max_rank_meeting = j; 

                

              } 

               

              else if (((meeting[j].rank) == (meeting[max_rank_meeting 

].rank))&& (j)!=max_rank_meeting ) 

              

              { 

                

                 

                if ((meeting[j].messageArray.length) 

<(meeting[max_rank_meeting].messageArray.length)) 

               { 

               

                max_rank_meeting=j; 

                 

                 

                

               

               } 

              } 

              } 

               

          } 

           

           

              

        



  Appendix B 

 295 

         

       

       if(meeting[max_rank_meeting].rank>=-1) 

       { 

//       System.out.println("scheduling meeting 

"+meeting[max_rank_meeting].getName()+"  

Rank=="+meeting[max_rank_meeting].rank); 

      meeting[max_rank_meeting].rank=-2; 

        schedualing(meeting[max_rank_meeting]); 

         

 

         

    

        } 

} 

 

public void clearMeetings() 

{ 

  

// System.out.println("clear meetings ="+no); 

  for(int g=0;g<no;g++) 

   { 

     meeting[g].assignment=""; 

         meeting[g].violationAssignment=100; 

         meeting[g].rank=-1; 

         meeting[g].violation=0; 

         meeting[g].violation_c=0; 

         meeting[g].violation_no=0; 

         meeting[g].violation_no_c=0; 

         meeting[g].dont_loop=0; 

         meeting[g].index=0; 

         meeting[g].scheduled=false; 

      } 

} 

 

    /* 

     Returns the typed message from the input text field. 

      

     */ 

      

    public String[] effect(Shared m) 

    {String []e_meetings=new String[10]; 

    return e_meetings; 

    } 

     

     

    double round(double value, int decimalPlace) { 

    double power_of_ten = 1; 



  Appendix B 

 296 

    while (decimalPlace-- > 0) 

       power_of_ten *= 10.0; 

    return Math.round(value * power_of_ten)  

       / power_of_ten; 

    } 

 

 

    String getInput()  

    { 

      

     String text = input.getText(); 

     if (!text.equals("")) 

     if (text.charAt(text.length() - 1) != '\n') text = text + "\n"; 

     input.setText(""); 

     input.requestFocus(); 

     return text; 

    } 

     

     

     

   class checkBoxItemListener implements ItemListener 

   { 

    public void itemStateChanged (ItemEvent e) 

    { 

      

      

     JCheckBox s=new JCheckBox(); 

      

     for(int y=0;y<user_no;y++) 

     { 

       

       

      

      if (e.getSource()==usersCheckBox[y]) 

      

       if(e.getStateChange()==ItemEvent.SELECTED) 

       { 

         

      

       

 receiverName[attendeesNo][0]=usersCheckBox[y].getText(); 

      

       

 receiverName[attendeesNo][1]=usersRankTextField[y].getText(); 

        attendeesNo++; 

       } 

       else 

       { 



  Appendix B 

 297 

        for(int h=0;h<attendeesNo;h++) 

        { 

        

 if((usersCheckBox[y].getText().equals(receiverName[h][0]))) 

         { 

          for(int o=y;o<attendeesNo;o++) 

          { 

          

 receiverName[o][0]=receiverName[o+1][0]; 

          

 receiverName[o][1]=receiverName[o+1][1]; 

          

          } 

          attendeesNo--; 

          user_rank_sum=user_rank_sum-

Integer.parseInt(receiverName[attendeesNo][1]); 

       

         

         } 

        

        } 

       

       } 

      }  

      

   } 

     

    }  

   class Lis implements PropertyChangeListener { 

 public void propertyChange(PropertyChangeEvent e) { 

   

  

   

   java.util.Calendar c = mycalendar1.getCalendar(); 

    

   

   domain[iii]=(c.getTime().toString()).substring(4,10); 

   

   //System.out.println("domain[iii]="+domain[iii]); 

   iii++; 

    

   

  

 } 

}  

  } 

 

   



  Appendix B 

 298 

  /** 

   * Creates the view object first and then the client. 

   * Will not allow user names longer then 10 characters. 

   */ 

  public  static void main (String[] args) { 

    

    host = args[0]; 

    chatName = args[1]; 

    if (chatName.length() > 10)  

    { 

      System.out.println("Shorter name required. Please try again."); 

      System.exit(1); 

    } 

    view = new View();     

    try  

    { 

      superagentLGP = new superAgentLGP(view); 

    }  

    catch (RemoteException e) { } 

  } 

} 

 

 

 


