
Stable Marriage Problem Based
Adaptation for Clone Detection and

Service Selection

Hosam Hasan M. Al Hakami

STRL

De Montfort University

This thesis is submitted in partial fulfilment of the requirements for the
degree of

Doctor of Philosophy

March 2015

Except as otherwise permitted under the Copyright, Designs and Patents Act 1988, this

thesis may only be produced, stored or transmitted in any form or by any means with the

prior permission in writing of the author. The author asserts his/her right to be identified as

such in accordance with the terms of the Copyright, Designs and Patents Act 1988.

Declaration

I declare that the work described in this thesis was originally carried out by me during the

period of registration for the degree of Doctor of Philosophy at De Montfort University,

Leicester, United Kingdom, from October 2009 to November 2014. It is submitted for the

degree of Doctor of Philosophy at De Montfort University. Apart from the degree that this

thesis is currently applying for, no other academic degree or award was applied for by me

based on this work.

Hosam Hasan M. Al Hakami

March 2015

iii

Acknowledgements

In the name of Allah, the Most Merciful and the Most Gracious, I gave praise and thanks to

Him for supporting me with the strength to complete this thesis, and for providing me with

knowledgeable and caring individuals during the study process.

This thesis could not have been completed without the recommendations, advice and

encouragement of many people.

Special thanks to my supervisor Feng Chen, who oversaw this thesis and offered wise

direction. I am sincerely thankful and appreciative of this invaluable assistance.

I would like to thank my second supervisor Helge Janicke for his constant guidance,

personal attention, suggestions, endless encouragement and full support during the last three

years of my study.

I also extend my sincere thanks and appreciation to my colleagues at the Faculty of

Technology, who gave me guidance and advice through my study. Special thanks to my wife,

for her love, patience and support during my whole study, and to my lovely daughter Remas.

I also wish to express thanks to my mother and father for their love and encouragement.

Finally, I would like thank to all of my relatives and friends, who have always been there

when I needed them most.

v

Publications

• Al Hakami, H, Aldabbas, H., & Alwada’n, T. (2012). Comparison between Cloud and

Grid computing: Review Paper. International Journal on Cloud Computing: Services

and Architecture (IJCCSA), 2(4):1–21.

• Al Hakami, H & Chen, F (2014) "SMP-based Dual Proposed Matching Scheme for

Service Selection", 7th Saudi Students Conference-UK, Edinburgh, UK.

• Al Hakami, H, Chen, F., & Janicke, H (2014) "SMP-based Clone Detection", Second

International Conference on Software Engineering, pp 89-101. AIRCC.

• Al Hakami, H, Chen, F., & Janicke, H (2014) An Extended Stable Marriage Problem

Algorithm for Clone Detection, International Journal of Software Engineering &

Applications (IJSEA), 5(4):103-122.

• Al Hakami, H, Chen, F., & Janicke, H (2014) "SMP-based Service Matching", Science

and Information Conference, pp 620-625. IEEE.

• Al Hakami, H, Chen, F., & Janicke, H SMP-Based Approach for Intelligent Service

Interaction: submitted to International Journal of Advanced Computer Science and

Applications (IJACSA).

Abstract

Current software engineering topics such as clone detection and service selection need to

improve the capability of detection process and selection process. The clone detection is the

process of finding duplicated code through the system for several purposes such as removal

of repeated portions as maintenance part of legacy system. Service selection is the process of

finding the appropriate web service which meets the consumer’s request. Both problems can

be converted into a matching problem.

Matching process forms an essential part of software engineering activities. In this

research, a well-known mathematical algorithm Stable Marriage Problem (SMP) and its

variations are investigated to fulfil the purposes of matching processes in software engineering

area. We aim to provide a competitive matching algorithm that can help to detect cloned

software accurately and ensure high scalability, precision and recall. We also aim to apply

matching algorithm on incoming request and service profile to deal with the web service as

a clever independent object so that we can allow the services to accept or decline requests

(equal opportunity) rather than the current state of service selection (search-based), in which

service lacks of interacting as an independent candidate.

In order to meet the above aims, the traditional SMP algorithm has been extended to

achieve the cardinality of many-to-many. This adaptation is achieved by defining the selective

strategy which is the main engine of the new adaptations. Two adaptations, Dual-Proposed

and Dual-Multi-Allocation, have been proposed to both service selection and clone detection

process. The proposed approach (SMP-based) shows very competitive results compare

to existing software clone approaches, especially in identifying type 3 (copy with further

modifications such update, add and delete statements) of cloned software. It performs the

detection process with a relatively high precision and recall compare to the CloneDR tool

and shows good scalability on a middle sized program. For service selection, the proposed

approach has several advantages such as service protection and service quality. The services

gain equal opportunity against the incoming requests. Therefore, the intelligent service

interaction is achieved, and both stability and satisfaction of the candidates are ensured.

This dissertation contributes to several contributions firstly, the new extended SMP algo-

rithm by introducing selective strategy to accommodate many-to-many matching problems,

to improve overall features. Secondly, a new SMP-based clone detection approach to detect

cloned software accurately and ensures high precision and recall. Ultimately, a new SMP-

based service selection approach allows equal opportunity between services and requests.

This led to improve service protection and service quality.

Case studies are carried out for experiments with the proposed approach, which show

that the new adaptations can be applied effectively to clone detection and service selection

processes with several features (e.g. accuracy). It can be concluded that the match based

approach is feasible and promising in software engineering domain.

x

Table of Contents

List of Figures xvii

List of Tables xxi

Nomenclature xxii

1 Introduction 1

1.1 Background & Motivation . 2

1.2 Research Objectives . 3

1.3 Research Questions . 4

1.4 Original Contributions . 4

1.5 Research Methodology . 5

1.6 Criteria of Success . 8

1.7 Thesis Outline . 9

2 Background and Related Research 11

2.1 Introduction . 12

2.2 Stable Matching Problem . 13

Table of Contents

2.2.1 Overview . 13

2.2.2 Stable Marriage Problem . 15

2.2.2.1 The Gale-Shapley Algorithm 15

2.2.2.2 Optimal Stable Marriage Problems 22

2.2.2.3 Stable Marriage with Incomplete Lists (SMI) 23

2.2.2.4 Stable Marriage with Ties (SMT) 24

2.2.2.5 Stable Marriage with Ties and Incomplete List 26

2.2.3 Hospitals/Residents Problem . 26

2.2.4 Stable Roommates Problem . 28

2.3 Clone Detection . 30

2.3.1 Overview . 30

2.3.2 Clone Relation Terms . 30

2.3.3 Definition of Code Cloning . 33

2.3.4 Detection Techniques and Tools 34

2.3.4.1 Text-based Technique 35

2.3.4.2 Metrics-based Technique 37

2.3.4.3 Token-based Technique 42

2.3.4.4 Tree-based Technique 43

2.3.4.5 PDG-based Technique 46

2.4 Service Selection . 47

2.4.1 Overview . 47

2.4.2 Qos-based Service Selection . 48

xii

Table of Contents

2.4.3 Semantic Matching . 49

2.4.4 Service Availability . 51

2.5 Search-Based Optimisation . 53

2.5.1 Overview . 53

2.5.2 SBSE Ingredients . 54

2.5.3 Common Search Algorithms . 55

2.5.3.1 Hill Climbing . 55

2.5.3.2 Simulated Annealing 56

2.5.3.3 Genetic Algorithms . 56

2.6 Conclusion . 57

3 SMP Extensions 59

3.1 Overview . 60

3.2 Dual Proposed . 63

3.2.1 Overview . 63

3.2.2 Dual Proposed Algorithm . 64

3.2.3 Selective Strategy . 66

3.2.4 Semantic Equivalence . 71

3.2.5 Evaluation . 72

3.3 Dual Multi Allocation . 73

3.3.1 Overview . 73

3.3.2 Dual Multi Allocation Algorithm 74

3.4 Conclusion . 76

xiii

Table of Contents

4 SMP-Based Clone Detection 79

4.1 Overview . 80

4.2 Similarity Measurements . 80

4.3 Metrics . 81

4.4 Detection Process . 82

4.5 SMP-based Clone Detection . 84

4.5.1 The Scenario . 89

4.5.1.1 The stage of Building the Preference Lists 89

4.5.1.2 The Stage of Running the SMP Algorithm 93

4.5.1.3 Extended SMP Algorithm (Dual-Multi-Allocation) for

Clone Detection . 94

4.5.2 Discussion . 95

4.6 Conclusion . 96

5 SMP-Based Service Matching 99

5.1 Overview . 100

5.2 Dual-Proposed for Service Selection . 101

5.2.1 Dual-Proposed Scheme . 101

5.2.2 Service Matching . 103

5.3 Cloud Service Availability . 107

5.4 Discussion . 109

5.5 Conclusion . 109

xiv

Table of Contents

6 Evaluation 111

6.1 Clone Detection . 112

6.1.1 Introduction . 112

6.1.2 Case Study (Job Search System) 113

6.1.2.1 Overview . 113

6.1.2.2 Related Technology . 114

6.1.2.3 System Design . 115

6.1.3 Clone Detection Experiment . 116

6.1.3.1 Recall and Precision . 120

6.1.3.2 Discussion . 123

6.2 Service Selection . 125

6.2.1 Case Study . 125

6.2.1.1 A Hotel Reservation Example 125

6.2.1.2 Discussion . 127

6.2.2 Experiment for Service Selection 129

6.3 Conclusion . 132

7 Conclusion and Future Work 135

7.1 Summary of the Thesis . 136

7.2 Contributions Revisited . 136

7.3 Success Criteria Revisited . 138

7.4 Thesis Limitations . 139

7.5 Future Work . 139

xv

Table of Contents

References 141

Appendix A Screen-shots 151

A.1 Clonesets Snapshots . 154

Appendix B Source Code 155

xvi

List of Figures

2.1 Instance C1 of SMP . 18

2.2 Instance C2 of SMP . 20

2.3 A Stable Marriage Instance of Size 4 . 21

2.4 Case C of SMI . 23

2.5 Case C of SMT . 25

2.6 Clone pair and Clone class . 31

2.7 Normalization operations on source code elements 36

2.8 Tools and calculated metrics . 40

2.9 Service Selection process . 48

2.10 Description Framework Of Fqos . 50

2.11 Overall Architecture of SBSE Approach 55

3.1 Dual Propose Technique . 63

3.2 love’s degree . 66

3.3 Selective Strategy Scheme . 68

3.4 Example of selective strategy . 69

xvii

List of Figures

3.5 Semantic Equivalence Candidates . 71

3.6 Semantic Equivalence Candidates (SMP-based) 72

3.7 Multi-proposed Technique . 73

4.1 Detection Process for Program Analysis 83

4.2 Metrics level-based . 85

4.3 Detection Process for Program Analysis 87

4.4 High presentation of code fragment along with its measurements 88

4.5 Detection Process for Program Analysis 89

4.6 Methods preference . 93

4.7 Dual Multi Allocation. 95

5.1 Dual Proposed . 102

5.2 Services Matching with Dual Propose Algorithm 103

5.3 A stable marriage instance of size 8 . 105

5.4 Service Matching in Cloud. 108

6.1 Three-tier architecture . 115

6.2 Three-tier description of the project . 116

6.3 Number of clone candidates for program netbeans-javadoc and job search

project. 118

6.4 Number of clone candidates for program netbeans-javadoc and job search

project. 119

6.5 Number of detected software clones for job search project. 120

xviii

List of Figures

6.6 Recall and Precision . 121

6.7 Recall. 123

6.8 Precision. 124

6.9 General Example of web services . 126

6.10 SMP-based service selection . 127

6.11 Hotel Reservation Request . 128

6.12 Hotel Reservation Service. 129

6.13 Hotel Reservation Example. 130

6.14 Execution of the main SMP Service Optimal. 131

6.15 Execution of the main SMP Request Optimal. 132

6.16 Execution of the dual-proposed SMP. 133

A.1 Job search project browsed by CloneDR 151

A.2 Some statistics of job search project based on CloneDR 152

A.3 Job search project analysed by CloneDR 152

A.4 Some statistics of netbeans-javadoc project based on CloneDR 153

A.5 netbeans-javadoc project analysed by CloneDR 153

A.6 Clone set of type 1 . 154

A.7 Clone set of type 2 . 154

xix

List of Tables

2.1 Metrics-based Detection Techniques. 41

2.2 Detection Methods of Token-based. 44

2.3 Detection Methods of Tree-based. 45

2.4 Detection Methods of PDG-based. 47

2.5 Obstacles to and opportunities for growth of cloud computing.[10] 52

3.1 New Man-Oriented . 70

3.2 New woman-Oriented . 70

4.1 Coupling Metrics. 90

4.2 Method Metrics. 90

4.3 Metrics of Source file 1. 91

4.4 Metrics of Source file 2. 91

4.5 Metrics Weight. 92

5.1 ServiceView . 104

5.2 RequestView . 104

xxi

List of Tables

5.3 Service-view . 106

5.4 Request-view . 106

6.1 Job search system . 117

6.2 Snapshot of some metrics in the job search system 117

6.3 Number of actual clone for program netbeans-javadoc and job search project. 118

6.4 Number of clone candidates for program netbeans-javadoc and job search

project. 119

6.5 Number of detected software clones for job search project. 120

xxii

Chapter 1

Introduction

Objectives

� To provide an overview of the research problems and motivations.

� To identify the scope of the thesis.

� To present the research objectives and questions.

� To describe the criteria of success.

� To describe the research methodology.

� To introduce the outline of the thesis.

1

Chapter 1. Introduction

1.1 Background & Motivation

Matching processes are the corner stones of the widely spread software applications, in

which the software approaches can be judged as perfect (fulfil the standard requirement) or

poor. Current software areas such as clone detection and service selection need to increase

the capability of its match process to accomplish the intelligence assignment between its

candidates. Stable Marriage Problem (SMP) algorithm is one of the well-known mathematical

matching algorithms, which is used for multiple purposes and several criteria with different

derived versions[55]. Therefore, with some amendments to this algorithm in order to take

place and replace the current matching process of such software applications, the intelligent

is achieved.

The matching process performance needs to be challenging in several aspects of criteria

for instance speed, accuracy, flexibility, stability and intelligence (satisfied matched candi-

dates). Especially to accommodate the SMP algorithm to wide range of software matching

processes, the current state of the SMP algorithm lacks the satisfaction of both matched

candidates and increase the fairness of the matching process. Therefore, the original SMP

algorithm need to be adapted to suit wide range of software engineering disciplines.

Clone detection is the process of finding duplicated code through the system for several

purposes such as removal of repeated portions as maintenance part of legacy system. On

the other hand, service selection is the process of finding the appropriate web service which

meets the consumer’s request. Basically, the service listed as a WSDL file in the directory

UDDI to be picked up by the request. The current service selection process performs a simple

search-based technique which only considers the consumer’s view.

2

Chapter 1. Introduction 1.2 Research Objectives

This needs a proper engine to increase the performance of these processes, as for example,

current clone detection process lacks to identify some cloned software types. Also, current

service selection process lacks to a suitable syntactic matching-based behaviour that should

ensures an independent interaction between the services and requests. As a result, stable

marriage problem may be applied in order to improve the overall process in both topics.

1.2 Research Objectives

This research aims to investigate a well-known mathematical algorithm Stable Marriage

Problem (SMP algorithm) and its variations to fulfil the purposes of matching processes in

software engineering area. The research objectives presented in this thesis are as follows:

• To improve the current status of the clone detection process to increase its overall

performance, as most of the current approaches lack of detecting some types of software

clones.

• Also, to improve the process of service selection by introduce matching-based approach

to ensure an intelligent service interaction between fully independent services and

incoming clients’ requests.

• To evaluate our proposed approach and demonstrate that it can be ideally used in

different software engineering disciplines such as clone detection and service selection.

3

Chapter 1. Introduction

1.3 Research Questions

The principle research question in this study is:

• How to effectively modify the current state of SMP algorithm to be efficiently

applied in Software Engineering area?

Based on this research question we investigate some disciplines in software engineering

and therefore, two sub questions are formulated as follows:

– Does the new adapted algorithm SMP-based helps in detecting cloned software

(Clone Detection)?

– Does the new adapted algorithm SMP-based improves the current service selec-

tion process?

1.4 Original Contributions

This dissertation mainly contributes to the following:

• The new extended SMP algorithm by introducing selective strategy to acommodate

many-to-many matching problems, to improve some features such as precision, fairness

and satisfaction (see Chapter 3).

• A new SMP-based clone detection approach to detect cloned software accurately and

ensure high scalability, precision and recall (see Chapter 4).

4

Chapter 1. Introduction 1.5 Research Methodology

• A new SMP-based service selection approach to allow equal opportunity between

services and requests, to improve service protection and service quality, rather than the

current state of search-based service selection (see Chapter 5).

1.5 Research Methodology

The cornerstone of setting off any type of research is the choosing of the most appropriate

research method. It is a crucial step as it makes the whole work as organized as possible and

presented in precise way leading to facilitate the research to the researchers. However, due

to the different domains, the research methods are varied. [17, 39, 91] Following is a brief

description about some common research methods:

• Experimental Research: This type of research method usually is used to test a

proposed hypothesis.

• Qualitative Research: This type of research method required the researcher to directly

involve in performing some activities with people to consider their opinion using

conservation and direct observation.

• Exploratory Research: This type of research considered when new problem of a

domain is identified.

• Quantitative Research: This type of research reflects the objectivity of the researcher

as an independent of the research process, the researcher in this method usually design

a questionnaire form.

5

Chapter 1. Introduction

• Action Research: This type of research intended to find an urgent solution for unex-

pected problem for example controlling unknown dangerous virus.

• Conceptual Research: This type of research method is related to ideas and theory to

develop new concepts.

• Empirical Research: This type of research method tests a wide range of empirical

studies to prove the utility of the known solution on a large scale.

• Fundamental Research: Also called pure research or basic research, this type of

research method focuses on expanding knowledge, without specific applications or

products in mind.

• Non-experimental Research: in this type of research method the hypothesis is not

important to be considered.

In computer science domain, as it is usually in the form of research projects, all of the

aforementioned types of research methods above are not suitable. Research projects in

computer science domain focuses on developments of new methods and systems. There-

fore, as stated by [27, 77], the following research method which is known as constructive

research method takes place in development of solutions for previously identified problem

situation. This type of constructive research method refers to contributions to knowledge

being developed as new algorithms, frameworks, models, or techniques.

The constructive research approach is a research procedure for producing innovative

constructions (novel) which help to tackle issues faced in the real world and, by that means,

6

Chapter 1. Introduction 1.5 Research Methodology

to make a contribution to the theory of the discipline in which it is applied. By developing

a construction, something that differs profoundly from anything, which existed before, is

created: novel constructions bring forth, by definition, new reality.

In philosophy, the application of constructive research can be found in those cases where

the world is constructed, step by step, from supposedly basic elements like objects, time-

space slices, observations, thoughts, or logical relations. Mathematical algorithms and new

mathematical entities provide theoretical examples of constructions. In medicine it can be

found that the constructive approach in the development of new treatment or medicine [64].

Computer languages - is an example of developing a pure construction.

The need to the constructive research approach has several aspects appear when:

• implies a very close involvement and co-operation between the researcher and prac-

titioners in a team-like manner, in which experiential learning is expected to take

place,

• focuses on real-world problems felt relevant to be solved in practice,

• produces an innovative construction meant to solve the initial real-world problem,

• is explicitly linked to prior theoretical knowledge, and

• pays particular attention to reflecting the empirical findings back to theory [85].

• includes an attempt for implementing the developed construction and thereby a test for

its practical applicability.

7

Chapter 1. Introduction

As long as our research focuses on how to improve a current mathematical algorithm to be

used for solving some existing issues with different fields, the constructive method approach

is used for this purpose. This research constructs a novel strategy “selective strategy” which

is the main engine of the proposed adaptations in this thesis. The constructive methodology

helps to validate the proposed framework which trying to tackle real problems in software

engineering state of art.

The constructive research approach is used in this thesis, as it fulfils the requirements of

this research. Our approach considers the significant tasks of development, implementation

and evaluation.

1.6 Criteria of Success

• Adapting the current state of Stable Marriage Problem to the field of software engi-

neering.

• Applying the extended algorithm to clone detection and increase the performance

efficiency of the current clone detection techniques and emphasise the accuracy.

• Detecting type 3 (a copy with further modifications such update, add and delete

statements) of software clones using both selective group of metrics and SMP-based

approach.

• Applying the extended algorithm to add a sense of matching to the current state of

service selection process to protect the services.

8

Chapter 1. Introduction 1.7 Thesis Outline

• Evaluating a medium-sized case study to demonstrate the scalability of the proposed

approaches.

1.7 Thesis Outline

This section provides the proposed structure of the authors’ PhD thesis.

• Chapter 1: Introduction

This chapter gives an overview of the problem, motivation and approach to the solution.

Also, it shows the fundamentals of this thesis by introduce the research objectives,

research questions, main contributions, research methodology and criteria of success.

• Chapter 2: Background and Related Work SMP and its derived algorithms, clone

detection, selection services and search based software engineering are the main

topics of this thesis. All these topics and their relevant are deeply reviewed and

investigated. This chapter is a cornerstone of the thesis which shows a full knowledge

about aforementioned basics.

• Chapter 3: SMP Extensions.

This chapter presents the development of current Stable Marriage Problem to be more

suitable for Software Engineering area. This is illustrated in define the selective

strategy which forms the main engine of the new adaptations. This chapter shows

two extensions respectively “Dual Proposed Algorithm” and “Dual Multi Allocation

Algorithm”.

9

Chapter 1. Introduction

• Chapter 4: SMP-Based Clone Detection

This chapter is concerned with designing the SMP-based clone detection framework

and provides a small prototype to detect duplicated code. This is based on the intro-

duced adaptation in chapter 3. A concrete example is introduced to explain the adapted

algorithm.

• Chapter 5: SMP-Based Service Selection.

This chapter is concerned with correlating services and requests using the SMP-based

service selection approach. This is based on the introduced adaptation in chapter

3. A concrete example is introduced to explain the adapted algorithm. The service

availability to redirect coming requests to similar services is also discussed.

• Chapter 6: Evaluation.

This chapter shows the design of experiments and concerned with evaluating our

approach against other approaches. A medium-sized experiment provided to test the

SMP-based approach to clone detection and to analyse the obtained results against

a solid benchmark. Also, this chapter provides an automated experiment to test the

SMP-based approach to service selection.

• Chapter 7: Conclusion and Future Work.

This chapter concludes the whole research and provide some recommendations. Also,

it shows some limitations of the proposed approach. Finally, it provides some possible

future work and directions.

10

Chapter 2

Background and Related Research

Objectives

� To provide the background information of this thesis.

� To present state of the art stable marriage problem algorithms.

� To review the work related to matching schemes in several software applications.

� To introduce state of the art search-based optimisation.

11

Chapter 2. Background and Related Research

2.1 Introduction

In this chapter, we introduce several relevant topics to gain a solid background of the required

knowledge, which helps to sharpen and improve our prospective approach. We correlate

these topics to try to fit an adaptation of SMP algorithm to software engineering areas.

As long as the Stable Marriage Problem (SMP) algorithm which invented around 50

years ago, helped in several applications such as matching applicants to jobs and residents to

hospitals under the cardinality of one-to-one and one-to-many, respectively. Therefore, we

investigate these algorithms to try to improve their current state to ensure the cardinality of

many-to-many for software context purpose.

Many researchers in [25, 99] define the types of cloned software as following:

• Type 1: Identical code fragments, except for variations in whitespace, layout and

comments.

• Type 2: Syntactically identical fragments except for variations in identifiers, literals,

types, whitespace, layout and comments.

• Type 3: Copied fragments with further modifications such as changed, added or

removed statements, in addition to variations in identifiers, literals, types, whitespace,

layout and comments.

• Type 4: Two or more code fragments that perform the same computation but are

implemented by different syntactic variants.

12

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

As the current approaches of the clone detection lack of accuracy (low precision and

low recall) and lack of recognising some types of cloned software such as type 3 and type

4, we investigate their current approaches, tools, techniques and used algorithms to fully

understand their backgrounds. Thus, trying to accommodate the new adaptation of the SMP

algorithm to solve these issues and improve the overall performance of the current detection

process.

Also, we investigate the current state of art of service selection process which lack of a

proper selective process, as most of the current approaches perform search-based techniques.

Recent approaches of service selection consider some semantic techniques to enhance the

overall selection process using ontology alignment. As long as the current approaches of

service selection do not consider the view of the services provided by the service providers,

it should be a way to consider both views of costumers and services. This needs a matching

algorithm which can consider both parties.

2.2 Stable Matching Problem

2.2.1 Overview

It has been noticed in some crucial large-scale practical applications that there are several

matching problems that need to be solved. In a matching problem there are three aspects

that need to be considered; the candidates of the different sets about to assigned, preference

list and capacities and stability. The preference list of the candidate is a set of opposite

candidates, ordered based on the most preferable candidate over the opposite set, that he/she

13

Chapter 2. Background and Related Research

prefers to assign to. The capacity of the candidate is the most allowable number of candidates

that he/she can assign to.

The stability ensures that there are no two candidates that would prefer each other to

currents assignees. By this concept of satisfied stability the stable matching is formed. For

instance finding a job among several jobs and assigning it to the right job seeker. Assigning

the students to the best of their choices of which department to study in is a similar issue.

Similarly, allocating the final year students to the final projects and supervisors. Add to these

the process of distributing the medical graduation students to the hospitals as trainees.

All these cases could form unfair problems if the preciseness of the matchmaking process

is lost. Most of these cases need an optimality to satisfy all contributors on both sides. A

matchmaker is a high responsible person who controls the process of matching by applying a

suitable formula on each case to accomplish the optimal matching.

The idea of stable marriage problem is about finding a matching between men and women,

based on the preference lists that consist of the members of the opposite gender for each

candidate. The result of the matching process must be stable, which means that there is none

of the pair members both men and women have any motivation or influence to break down

the relation. This problem was introduced in 1962 in the seminal paper of Gale and Shapley,

and it has interested many researchers from different backgrounds such as mathematics,

economics, game theory, computer science, etc.

In this chapter we discuss the stable marriage problem and its variants derived algorithms,

and other related matching algorithms. Also, applicable areas in software engineering are

introduced to see the possibility of use aforementioned matching algorithms in two different

14

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

levels; code level and architecture level. Moreover, we introduce semantic matching which

deals with data side. In section 2.1 we express the main algorithm of stable marriage problem.

The SMP algorithm involves two sets of candidates (men, women), where each candidate

ranks the opposite candidates in strict order of preference.

In section 2.2 we describe another type of stable marriage problem known as the Hos-

pitals/Residents problem which reflects different relation (many-to-one). We then move to

section 2.3 to describe the Stable Roommates problem which is one of the related Stable

Marriage Problems. In section 2.4 we introduce the clone detection in which similar code

fragments are matched for various purposes. We briefly introduce the semantic matching and

its uses of ontology alignment in section 2.5. Finally in section 2.6 we explore some search

based techniques and how they differ from matching techniques.

2.2.2 Stable Marriage Problem

2.2.2.1 The Gale-Shapley Algorithm

The stable marriage problem is a mechanism that is used to match two sets of the same

size, considering preference lists in which each element expresses its preference over the

participants of the element in the opposite set [35]. Thus, the output has to be stable, which

means that the matched pair is satisfied and both of them have no incentive to disconnect. A

matching is stable when all participants have acceptable partners and there is no possibility

of forming blocking pairs. This problem is in interest of a lot of researchers in many different

areas from several aspects. Matching problems on bipartite sets where the entities on one side

15

Chapter 2. Background and Related Research

may have different sizes are intimately related to the scheduling problems with processing

set restrictions [18].

David Gale and Lloyd in their paper [35] in 1962 described the Stable Marriage Problem

for a first time, and formally defined and introduced their algorithm as a solution. A case

C of the stable mating SM involves the same number of men and women and we denote to

by x. The preference list is essential in this algorithm for each man and woman, which is

built by ranking all x members of the opposite gender. The set of men and set of women are

indicated to in the case C as follows:

W = w1,w2, ...,wn

M = m1,m2, ...,mn

The preference lists in stable matching SM are considered as complete, when all members

of the case C are ranked.

Algorithm 1 Basic Gale-Shapley algorithm[89]
1: assign each person to be free
2: while some man m is free do
3: begin
4: w:= first woman on m’s list to whom m has not yet proposed;
5: if w is free then
6: assign m and w to be engaged to each other
7: else
8: if w prefers m to her fiancé m’ then
9: assign m and w to be engaged and m’ to be free
10: else
11: w rejects m and m remains free
12: end;
output the stable matching consisting of the n engaged pairs

We denote to an initial pre-step to a matching M by A as assignments which is a set of

pairs of woman and man (m,w) ∈ MW , if a pair (m,w) ∈ A this means that w is assigned to a

16

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

man m in A and m is assigned to w in A. Also, it means that w is m’s partner in A and m is w’s

partner in A. For example, let A(s) refers to s’s spouse in A, where s ∈ M∪W . If A(s) ̸= /0,

this means that s is assigned in A, otherwise it is not assigned in A. With the same indication

used with assignments, if (m,w) ∈ M from either men-to-women or women-to-men. This

means that w is matched to a man m in M and m is matched to w in M. Also, it means that w

is m’s partner in M and m is w’s partner in M

The issue of blocking pair appears when one of the partners in matching M would

like to engage to another partner from different pair in matching M whom he/she prefers

more than his/her current partner. This affects the whole pairs and blocks matching M.

Consequently, the matching M is not stable. The following pair is considered as a blocking

pair: (m,w) ∈ MW be a blocking pairs w prefers m to M(w) and m prefers w to M(m).

So, we say that the pair (m,w) is stable if both w and m matched to each other in a

stable matching M. Figure 2.1 shows an example case of stable matching (SM), in which the

preference lists are ordered from right to left, start with the most preferable (we use this order

for all stable matching (SM) examples in this thesis). M = (m1,w1),(m2,w3),(m3,w2) is

an example of stable matching in case C1 of Figure 2.1.

The algorithm is presented in two possible views based on who has the right to propose

(men or women). These two orientations are woman-oriented algorithm and the man-oriented

algorithm. In the man-oriented algorithm each man m proposes to the first woman w on

his preference’ list to whom he did not propose before. If the woman w is free, then she

becomes engaged to the man m. Otherwise, if the woman w prefers a man m’ to her current

husband-to-be the man m, then she rejects her current fiancé the man m. consequently, the

17

Chapter 2. Background and Related Research

m1 : w1 w3 w2

m2 : w1 w2 w3

 m3 : w2 w1 w3

w1 : m1 m3 m2

w2 : m3 m1 m2

w3 : m1 m2 m3

Men’s preferences Women’s preferences

Fig. 2.1 Instance C1 of SMP algorithm.

woman w becomes engaged to the new man m’ and the man m becomes free. Otherwise

the woman w keeps her current husband-to-be to m and rejects m’ which remains free. This

procedure continues until all the men engaged. The process of woman-oriented algorithm is

similar to the man-oriented algorithm; the different is that the women make proposals. The

algorithm relies on the strategy of “deferred acceptance” in proceeding this process.

Consequently, based on the aforementioned orientations, the output is either of man-

optimal and woman-pessimal or woman-optimal and man-pessimal stable matchings. Each

man in man-optimal stable matching is feature from obtaining the best partner and thus, each

woman assigns to her worst partner. Accordingly, each woman in woman-optimal algorithm

is feature from obtaining her best partner among stable matchings, and as a result each man

obtains his worst partner.

18

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

Algorithm 2 Extended Gale-Shapley algorithm[43]
1: assign each person to be free
2: while some man m is free do
3: begin
4: w:= first woman on m’s list;
5: if some man p is engaged to w then
6: assign p to be free;
7: assign m and w to be engaged to each other;
8: for each successor m’ of m on w’ list do
9: delete the pair(m’,w)
10: end;

The following are two possible matchings for the case C2 which illustrated in Figure 2.2:

Mz = (m3,w4),(m2,w1),(m1,w2),(m4,w3)

M0 = (m3,w2),(m2,w1),(m1,w4),(m4,w3)

Whereas Mz and M0 are woman-optimal and man-optimal, respectively. In some situation

both man-optimal and woman-optimal are the same, like the following unique stable matching

presented in case C1 in the previous example of Figure 2.1:

Mz = M0 = (m2,w3),(m3,w2),(m1,w1)

Gale and Shapley claimed that their algorithm implemented in complexity of

n2 −2n+2

However, later Knuth [68] confirmed that the algorithm involved at time of O(n2) which is

indicated in the next theorem.

19

Chapter 2. Background and Related Research

m1 : w1 w4 w3 w2

 m2 : w1 w3 w4 w2

 m3 : w1 w2 w4 w3

m4 : w1 w4 w3 w2

w1 : m2 m3 m4 m1

w2 : m1 m2 m4 m3

w3 : m4 m2 m3 m1

w4 : m2 m3 m1 m4

Men’s preferences Women’s preferences

Fig. 2.2 Instance C2 of SMP algorithm.

Theorem 1. Any algorithm to find a stable matching or to check if a given matching is stable

or to determine whether a given pair is stable requires O(n2) time in the worst case, even

when both the preference lists and ranking arrays are given as input.

Theorem 2. All possible execution of the Gale-Shapley algorithm (with the men as proposers)

yields the same stable matching, and in this stable matching, each man has the best partner

that he can have in any stable matching.

According to the previous theorem if each man has given his best stable partner, then the

result is a stable matching. The stable matching generated by the man-oriented version of the

Gale-Shapely algorithm is called man-optimal. However, in the man-optimal stable matching,

20

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

each woman has the worst partner that she can have in any stable matching, leading to the

terms of man-optimal is also woman-pessimal. This results in the next theorem [43].

Theorem 3. In the man-optimal stable matching, each woman has the worst partner that

she can have in any stable matching.

The following example in Figure 2.3 gives different output for both man-optimal and

woman optimal for the same instance which formed out of 4 elements.

m1: w1 w3 w2 w4

m2: w3 w4 w2 w1

m3: w2 w1 w4 w3

m4: w3 w1 w2 w4

Men’s Preferences

w1: m2 m3 m4 m1

w2: m3 m4 m2 m1

w3: m4 m3 m2 m1

w4: m2 m1 m3 m4

Women’s Preferences

Fig. 2.3 A Stable Marriage Instance of Size 4.

The stable matching generated by both man-oriented and women-oriented versions is:

Man−oriented = M0 = (1,4),(2,3),(3,2),(4,1)

Woman−oriented = Mz = (1,4),(2,1),(3,2),(4,4)

21

Chapter 2. Background and Related Research

An extended version of Gale-Shapley algorithm has been designed to improve the basic

algorithm. The extended version reduces the preference list by eliminating specific pairs that

can be clearly identified as unrelated to any stable matching. The deletion process of such

pair is performed by deleting each other from the preference lists.

2.2.2.2 Optimal Stable Marriage Problems

In this section we show a defined variant of stable matching that introduced by O’Malley in

his thesis [93]. This variation is designed to find an optimal stable matching. He defined the

rank of an agent p on an agent q’s list, denoted by rank(p,q), to be the position of q on p’s

list. Let I be an instance of sm, where M is the set of men and W is the set of woman in I.

Let M be a stable matching in I, and let p be some agent in I. We define the cost of p with

respect to M, denoted by costM(p), to be rank(p,M(p)).

First he defined the regret of a matching M as follows:

r(M) = max
p∈M∪W

costM(p)

He claimed that M has minimum regret if r(M) is minimised over all stable matchings in

I. Gusfield [41] described an O(n2) algorithm which finds a minimum regret stable matching

given an instance of SM.

Also, he defined the cost of a matching M as follows:

c(M) = ∑
p∈M∪W

costM(p)

22

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

Knuth [68], with Irving et al. [53] were the first who introduce the problem of egalitarian

stable matching, which is the minimised stable matchings in in C, they introduced an

algorithm which required O(n4) to solve this problem. However, a sophisticated algorithm

has been introduced later by Feder [32] to find the egalitarian stable matching in O(n3).

2.2.2.3 Stable Marriage with Incomplete Lists (SMI)

From the title of this section it appears that the preference lists of candidates varies according

to their desire. This occurs when a candidate find that a member of the opposite gender is

unacceptable. Thus, the candidate disappears from the list of that member. This is clearly

depicted in Figure 2.4. If one of the candidates let say a man mj appears on a woman wi’s

preference list, this means that both mj and wi are acceptable to each other.

m1 : w1 w3

m2 : w2 w3 w1

m3 : w3

w1 : m1 m2

w2 : m2

w3 : m1 m2 m3

Men’s preferences Women’s preferences

Fig. 2.4 Case C of SMI.

23

Chapter 2. Background and Related Research

It can be noticed that the preference lists in SMI consistently interact according to any

changes occurred from both genders. Figure 2.4 shows that man m3 disappears from the

preference list of woman w1 which means, it is not accepted by woman w1. This implies that

the woman w1 disappears from the list of preference of man m3. The stability definition of

SMI is amended from the form of SM, since it contains unacceptable candidates. Therefore,

there are slight alerts to considering a blocking pair of M [43], if:

• m and w are not matched in M, but m and w find each other acceptable.

• m is either unmatched in M, or prefers w to his partner in M.

• w is either unmatched in M, or prefers m to her partner in M.

Gale and Sotomayor [36] stated that in a case of SMI, the same set of women and men

are matched in all stable matchings, as noted below.

Theorem 4. In an instance of SMI, the same set of men and women are matched in all stable

matchings.

2.2.2.4 Stable Marriage with Ties (SMT)

In this version, ties are used to determine indifferent between two or more candidates, as

shown in Figure 2.5. It appears that m3 is indifferent between w1 and w2 and prefers

w3 to both of them whereas m1 does not prefer any candidate to others, as it is indifferent

between all of the women candidates. This leads to various definitions of the stability such

as super-stability, strong stability and weak stability. From their names, these suggest to

24

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

check the stability of matched pairs among a matching. Therefore, a blocking pair is defined

according to the aforementioned variations as follows:

m1 : (w1 w2 w3)

m2 : w1 w3 w2

m3 : w3 (w1 w2)

w1 : (m1 m2) m3

w2 : m2 (m3 m1)

w3 : m1 m2 m3

Men’s preferences Women’s preferences

Fig. 2.5 Case C of SMT.

• Super stability: each of m and w either indifferent between them or strictly prefers

the other to their partner in matching M.

• Strong stability: Whichever, m either strictly prefers w to his partner in M or is

indifferent between them, and w strictly prefers m to her partner in M, or w either

strictly prefers m to her partner in M or is indifferent between them, and m strictly

prefers w to his partner in M.

• Weak stability: both m and w strictly prefer each other to their partners in M.

According to the aforementioned definitions, a matching M is said to be super, strongly

and weakly stable when blocking pairs disappear. An algorithm to find a super stable

25

Chapter 2. Background and Related Research

matching is defined by Irving [53], which runs in time O(n2). Also, he provides another

algorithm to find a strongly stable matching, which requires O(n4) . Both algorithms rely on

the strategy of “deferred acceptance”.

2.2.2.5 Stable Marriage with Ties and Incomplete List

As previously mentioned in SMI, however, this algorithm has ties which considered in the

process of matching. The stability can be achieved by combining the ties with incompleteness.

For instance, when two applicants tie (in terms of their qualifications) to accomplish a certain

job, the system should find a way to sort it out by using such algorithm.

With regards to our research some of aforementioned algorithms with slight amendment may

help to find a way of admitting an optimal matching. Also, there are some algorithms derived

from the main algorithm supporting different approaches such as non-bipartite (more than

two sets).

2.2.3 Hospitals/Residents Problem

The hospitals/residents problem (also called Colleges/Students problem, and by many other

names)reflects a cardinality of many-to-one of the stable marriage problem. This cardinality

touches a wide range of large-scale applications that require stable matching such as stu-

dents/colleges problem. Therefore, it has interested the researchers in different aspects for

instance recruitment in which uses schemes to match a group and employers to a group of

employees. The National Resident Matching Program is a real existing example that takes a

place in the United States, which helps to match around 30,000 residents to hospitals yearly.

26

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

It is clear that every hospital can accommodate more than one resident and many residents

can be assigned to one hospital, which implies the cardinality of one-to-many. Hospital

resident (HR) problem is introduced to manage such issue. There are two sets involved in

this algorithm, a set H of x hospitals and a set R of y residents. Respectively, every hospital

h has a capacity c that indicates the number of available positions. Each hospital ranks its

acceptable residents in R in strict preference order and each resident ranks his/her acceptable

hospitals in H in strict preference order. In matching M, the hospital h should appear no

more than c pairs, and every resident r should appear in only one pair. It can be said that a

pair(r,h) /∈ M is a blocking pair in matching M if:

(i) r prefers h to the hospital he/she is assigned to or r is unmatched and finds h acceptable

and,

(ii) h prefers r to one of the residents assigned to it or h is not filled to capacity c and finds

r acceptable.

Algorithm 3 Hospital-oriented algorithm [55]
1: assign each resident to be free
2: assign each hospital to be totally unsubsidised;
3: while (some hospital h is unsubsidised) and (h’s list contains a resident r not
provisionally assigned to h) do
4: begin
5: r:= first such resident on h’s list;
6: if r is already assigned, say to h’, then
7: break the provisional assignment of r to h’;
8: provisionally assign r to h;
9: for each successor h’ of h on r’s list do
10: remove h’ and r from each other’s lists
11: end;

27

Chapter 2. Background and Related Research

Gale and Shapley in [35] are first introduced the HR problem along with the simple

“deferred acceptance” strategy which acts as an engine of the algorithm. They proved the

existing of stable matching in every instance of HR, which found in time of O(nm). In [22]

Cheng et al. discussed how to find the possible stable matchings. Also, they checked an HR

instance and its stable matchings and introduced meta-rotations concept.

Algorithm 4 Resident-oriented algorithm [55]
1: assign all residents to be free
2: assign all hospital to be totally unsubsidised;
3: while (some resident r is free) and (r has a nonempty list) do
4: begin
5: h:= first hospital on r’s list; r ”proposes” to h
6: if h is fully subscribed then
7: begin
8:r’:= worst resident provisionally assigned to h;
9: assigned r’ to be free
10: end;
11: provisionally assign r to h;
12:if h is fully subscribed then
13: begin
14: s := worst resident provisionally assigned to h;
15: for each successor s’ of s on h’s list do
16: remove s’ and h from each other’s lists
17: end;
18: end;

2.2.4 Stable Roommates Problem

Unlike stable marriage problem, the stable roommate algorithm is a non-bipartite extension

of the main stable marriage problem [43]. The algorithm is applied on the candidates of

the same set of even cardinality, so the idea of SRP is based on building the preference lists

for each member from same set in strict order. A matching is a set of n unordered pairs of

28

Chapter 2. Background and Related Research 2.2 Stable Matching Problem

members whereas 2n reflects the number of participants. The matching is stable if there is no

pair (x,y), each of whom prefers the other to their assigned roommate in M. Such a pair is

said to block M.

Algorithm 5 Phase 1 of the stable roommates algorithm [34]
1: assign each person to be free
2: while some free person x has a nonempty listdo
3: begin
4: y:= first person on x’s list; x proposes to y
5: if some person z is semiengaged to y; then
6: assign z to be free; y rejects z
7: assign x to be semiengaged to y
8: for each successor x’ of x on y’s list do
9: delete the pair x’,y from the preference table
10: end;

SR has been firstly studied by Gale and Shaply [35], and gave an example that does not

confess a stable matching. However, later on the problem have been solved by Irvin [54]

when the problem stood by Knuth[68] when he defined an algorithm that required time of

O(n2). Afterward the structural aspects of SR have been explored by Gusfield [42], also a

comperhansive discussion of SR is given by Gusfield and Irving in [43]. Also, Tan [104]

announced the concept of a stable partition in an instance I of SR in which he provides a

‘succinct certificate’ in the case that I does not admit a stable matching.Subsequently, Feder

et al. [33] showed an O(nlog3n) parallel algorithm to find a stable matching if exists, for a

given instance of SR.

29

Chapter 2. Background and Related Research

Algorithm 6 Phase 2 of the stable roommates algorithm [34]
1: T := phase 1 table;
2: while (some list in T has more than one entry) and (no list in T is empty)do
3: begin
4: find a rotation ρ exposed in T ;
5: T := T/ρ eliminate ρ then
6: end;
7: if some list in T is empty then
8: report instance unsolvable
9: else
10: output T , which is a stable matching

2.3 Clone Detection

2.3.1 Overview

Clone detection is a crucial field that has been intensively conducted by researchers and

practitioners for the last two decades to enhance software systems and therefore, improves

the maintainability for the future lifespan of the software system. Although clone detection

is a wide spread research problem over many years; it is considered as a fuzzy terminology,

since the researchers have differently defined it according to various situations and criteria.

Thus, it is essential to understand the meaning of clones and its uses to know how to deal

with it properly. In this section, we provide different definitions and types of clones.

2.3.2 Clone Relation Terms

Clones are usually detected as one of two forms or terms; either clone pair or clone classes.

These two terms focus on the similarity relation of two or more pieces of software clones.

[62] Describe an equivalence relation to the similarity relation, such as symmetric relation

30

Chapter 2. Background and Related Research 2.3 Clone Detection

and transitive relation. It can be said that there is a clone-relation between two fragments

of code if they have the same sequences (characters, strings, tokens etc.) From Figure 2.6

below we can express the meaning of clone pair and clone classes based on the clone relation:

Fig. 2.6 Clone pair and Clone class.[97][5]

• Clone Pair :two fragments of code are considered to form a clone pair when they

have a clone-relation between them. That means these two portions are either identical

or similar to each other. As seen in the Figure 2.6 for the three code fragments,

Fragment 1 (F1), Fragment 2 (F2) and Fragment 3 (F3), we can get five clone pairs,(
F1(a),F2(a)

)
,
(
F1(b),F2(b)

)
,
(
F2(b),F3(a)

)
,
(
F2(c),F3(b)

)
and

(
F1(b),F3(a)

)
. If

we assume to extend the granularity size of cloned fragments, we get basically two

clone pairs,
(
F1 (a + b), F2 (a + b)

)
and

(
F2 (b + c), F3 (a + b)

)
. And if we consider

the granularity not to be fixed, we get seven clone pairs,
(
F1(a), F2(a)

)
,
(
F1(b), F2(b)

)
,

31

Chapter 2. Background and Related Research

(
F2(b), F3(a)

)
,
(
F2(c), F3(b)

)
,
(
F1(b), F3(a)

)
,
(
F1 (a + b), F2 (a + b)

)
and

(
F2 (b + c),

F3 (a + b)
)
; each of these fragments is termed as a simple clone [13].

• Clone Class: is a maximal set of related portions of code that contains a clone pairs.

It can be seen that the three code fragments of Figure 1, we get a clone class of(
F1(b),F2(b),F3(a)

)
where the three code portions F1(b),F2(b)andF3(a) form

clone pairs with each other
(
F1(b),F2(b)

)
,
(
F2(b),F3(a)

)
and

(
F1(b),F3(a)

)
result

in three clone pairs. Consequently, a clone class is a collection of clone pairs that

sharing the same code fragment [96, 98]

• Clone Communities: as termed in [88], it is another name of the Clone classes that

reflects the aggregation of related code fragments which form a clone pairs.

• Clone Class Family: researchers in [96] revealed the term of clone class family to

group aggregate all clone classes of same domain.

• Super Clone: as have been outlined by [58] multiple clone classes between the same

source entities (subsystems or clone classes) are aggregated into one large super clone

which is the same as the clone class family.

• Structural Clones: it is an aggregation of similar simple clones that spread in different

clone classes in the whole system [13]. Therefore, it can be classified as both a class

clone (in early stage of clustering similar fragments of code) and super clone.

32

Chapter 2. Background and Related Research 2.3 Clone Detection

2.3.3 Definition of Code Cloning

As aforementioned there is no original or specific definition of cloned code and there-

fore, all anticipated clone detection methods have their own definition for code clone

[73, 78](Lakhotia, Li et al. 2003, Kontogiannis 1997). However, a fragments of code

that have identical or similar code fragments in the source code are considered to be code

clones. Regardless of the changes that have been applied on a certain code clone, if still

within thresholds of the copied portion, then both the original and the copied fragments term

as code clones and they form a clone pair.

Some researchers based their definition of clone code on some definition of “Similarity”

whereas there is no specified definition of detection independent clone similarity. [15](Baxter,

Yahin et al. 1998) defined code clones as the fragments of code that are similar based on

definition of similarity and they provide a threshold-based definition of tree similarity for

near-miss clones. However, there is a fuzziness of the term similarity; what is meant by simi-

lar? , and to what extend are they similar? The definition provided by (Kamiya, Kusumoto

et al. 2002)zooms in this terminology as they define the clones as the segments of source

files that are identical or similar to each other. Another ambiguous definition is proposed

by [19, 98](Burd, Bailey 2002, Roy, Cordy 2007) in which fragment of code is called clone

when there is more existences of that fragment in the source code with or without “minor”

modifications. However, a number of researchers [63, 73, 82](Kontogiannis 1997, Li, Lu et

al. 2006, Kapser, Godfrey 2004) tried to control and specify their own detection dependent

threshold-based definition of the term “similarity”. Therefore, after several comparisons

that run-out by [16, 73, 98](Roy, Cordy 2007, Kontogiannis 1997, Bellon, Koschke et al.

33

Chapter 2. Background and Related Research

2007)they attempt to automatically unify the result sets of multiple detectors, to try to solve

the differential detector-based output.

2.3.4 Detection Techniques and Tools

The following are some features (dimensions) which form corner stones and clarify the

several facets of the clone detection techniques:

• Source Representation: it is the final form or representation of the code fragments

being compared in the comparison phase to meet the algorithm requirements. This can

be achieved using the different types of transformations/normalizations or filtering.

• Source Transformation/Normalization: some clone detection approaches apply a

kind of transformation / normalization or filtering on the original source code to get a

suitable code format in order to apply a comparison algorithm. However, some other

approaches only remove the comments and the whitespaces.

• Comparison Algorithm: one of the major concerns or issues that can affect the

performance of the clone detection process is the choice of the appropriate detection

or matching algorithm. Several approaches apply different data mining/information

retrieval algorithms.

• Clone Granularity: there are two types of granularity clones fixed and free granularity.

A returned fixed granularity clone is the pre-defined block size of the considered code

fragments such as (e.g., function, begin-end brackets etc.). However, if there is no

34

Chapter 2. Background and Related Research 2.3 Clone Detection

certain considered limit or size of the code portion block then they are called free

granularity clones.

• Clone Similarity: This feature represents the type of code clones that can be found

by some detection techniques such as exact match clone, parameterized match or

near-miss clones.

2.3.4.1 Text-based Technique

This technique is purely based on the text or string methods, so in this approach the raw

source code is considered as sequence of lines and strings. Code segments are matched with

each other to detect the same sequences of text or strings which are not related to structural

elements of the language. The detected sequences are returned as clone pair by the detection

technique. Some text-based approaches perform a slight transformation/normalization on

the code fragments before setting off the comparison process, whereas normally the raw

source code is directly used in the matched process. The following are some commonly used

filtering/transformation/normalization techniques in some approaches:

• Normalization: basic normalization can be applied on the raw source code (Table 2.7).

• Whitespaces: considers and removes all whitespaces including tabs, new line(s) and

other blanks spaces.

• Comments: eliminates all comments used in the source code.

Text-based approaches differ from one another, as they are based on different techniques

such as fingerprints and dot plot. Ducasse et al. [28] present one of the most recent text-based

35

Chapter 2. Background and Related Research

Fig. 2.7 Normalization operations on source code elements.[28, 98]

approaches that is based on dot plot. The scatter plot is a two dimensional chart formed by

two axes of source code. In this approach the comparison units are lines of program. The

dot appears when x and y are equal based on the calculated hash value of both lines. The

diagonals in dot plots can identify the clones, as dot plot can further be used to display the

information of code clones. String-based dynamic pattern matching is applied by Ducasse et

al. on dot plot to match the lines of code. Another similar approach SDD is identified by Lee

and Jeong[80], applies an n-neighbor technique to detect type-3 clones.

As the approach of Ducasse et al is not sure about recognizing the type-3 clones Wettel

and Marinescu [110] provide an extension to this approach to find nearmiss clones using dot

plots. They use the algorithm that relates the neighboring lines to detect some forms Type-3

clones. The approach of Marcus and Maletic [87] applies latent semantic indexing (LSI) to

source code to identify and retrieve the two similar code portions, based on the similar used

comments and identifiers of the retrieved code fragments. This approach limits to identify

abstract data types (ADTs) which are high level concept clones.

However, Johnson is a key person who applies the technique of fingerprints in his

approach on substrings of the source code [59, 60]. Initially, he uses the hash technique

36

Chapter 2. Background and Related Research 2.3 Clone Detection

to hash certain portion of code of fixed number of lines (the window). Then they classify

the sequences of lines which have the same hash value as clones, using the known sliding

window techniques as well as the incremental hash function. The sliding window technique

helps to recognise code clones of variant lengths, as it is frequently applied. Also, Manber

[86] uses in his approach the technique of fingerprints to detect similar source files, based on

the subsequences of the main keywords.

2.3.4.2 Metrics-based Technique

In Metrics-based approaches, several software metrics are gathered from clone fragments

to derive its measurement in order to be compared instead of comparing the actual portions

directly. These metrics values are related to various scopes such as a package, a class or a

method and then these values are compared to detect code clones over these blocks. The

source files are normally parsed to Abstract Syntax Trees representation as a pre-process to

calculate the software metrics.

There are several software metrics tools which can be used for code measurements. [83]

(Lincke et al. 2008)have made selection set of software metrics tools according to analyzable

languages, metrics calculated, and availability/license type. They found that the majority of

metrics tools available can derive metrics for many programming languages such as Java

programs, UML and C/C++. They state that about half of the tools are rather simple “code

counting tools” which calculates Lines of Code (LOC) metric. However, they consider the

other half as more sophisticated software metrics such as CBO (Coupling Between Object

37

Chapter 2. Background and Related Research

classes). The following are some of the final selected software metrics tools by (Lincke et al.

2008) [83]:

• OOMeter this software metrics tool accepts Java/C# source code and UML models in

XMI and calculates various metrics, developed by Alghamdi et al [2].

• Eclipse Metrics Plug-in 1.3.6 this is an open source metrics calculation and depen-

dency analyzer plugin for the Eclipse IDE. It calculates several metrics and catches

cycles in package and type dependencies, developed by Frank Sauer.

• CCCC this is an open source command-line tool. It analyses C++ and Java code,

proposed by Chidamber & Kemerer and Henry & Kafura.

• Understand for Java this is a metrics tool for Java source code.

• Dependency Finder this is an open source tool for analyzing compiled Java code. It

extracts dependency graphs and mines them for useful information.

• Semmle is an Eclipse plug-in which allows searching for bugs and measure code

metrics by providing and SQL querying languages for object oriented code.

• Analyst4j this is an Eclipse IDE plug-in which allows several features such as search,

metrics and report generation for Java programs.

• Eclipse Metrics Plug-in 3.4 this is an open Source tool which calculates various

metrics during, developed by Lance Walton.

38

Chapter 2. Background and Related Research 2.3 Clone Detection

Linke et al also considered some software metrics derived by aforementioned tools and

they base their selected metrics on the class unit, as they argue that this unit is the natural

block of object oriented software systems and most metrics have been calculated on class

level. The following are some considered software metrics in their study:

• LOC (Lines Of Code) calculates the lines of code of a specified unit [52].

• NOM (Number Of Methods) calculates the methods in a class [102].

• LCOM-CK (Lack of Cohesion of Methods) describes the lack of cohesion between

the methods of a class [23]. It is proposed by Chidamber & Kemerer

• CBO (Coupling Between Object classes) gives the number of classes to which a class

is coupled [23].

• NOC (Number Of Children) is the number of subclasses to a certain class in its block

[23].

• RFC (Response For a Class) reflects the number of methods which can be executed in

response to an object of the class [23].

• DIT (Depth of Inheritance Tree) represents the maximum inheritance path from the

class to the main root class [23].

• WMC (Weighted Methods per Class) it is the total of weights for the methods of a

class [23]. However, using Cyclomatic Complexity software metric method weight

can be achieved [108].

39

Chapter 2. Background and Related Research

• LCOM-HS (Lack of Cohesion of Methods, proposed by Henderson-Sellers) describes

the lack of cohesion between the methods of a class [102].

The following table shows the software metrics calculated by metrics tools where ‘x’

indicates that a certain metric can be calculated by a certain metric tool.

Fig. 2.8 Tools and calculated metrics.[83]

Davey et al. [26] apply neural networks algorithm on code fragments (begin end block)

and considered a certain features of specified code blocks. Their approach identifies the

exact, parameterized, and near-miss clones.

Balazinska et al. [11] have proposed their tool SMC (similar methods classifier) in which

dynamic matching and metrics craterisation are combined. A similar approach was defined

by Kontogiannis et al. [74] based on two different ways to find code clones. The first one

uses direct comparison of the metrics values of the specified clone granularity. The second

40

Chapter 2. Background and Related Research 2.3 Clone Detection

compares the specified blocks (code fragments), a statement-by-statement basis using a

dynamic programming (DP) technique, as the small distance is considered as clone that is

caused by cut-and-paste habits. Both Patenaude et al. [94] and Mayrand et al. [88] take into

account several metrics which consider some features such as names and control flow of

functions to match functions with same or close metrics values as code clones.

However, Calefato et al. [20] have showed that Metrics-based approaches have been

applied in web documents to detect redundant web pages and clones.

Table 2.1 shows a comparison of different approaches of metrics-based techniques with

respect to several properties.

Table 2.1 Metrics-based Detection Techniques.

Properties Lanubile Mayrand Kontogiannis
Code

Representation
Several metrics

(LOC,ELOC,CLOC) Several metrics Feature vectors

Comparison
Granularity

visual inspection
of each function

Metrics of individual
functions

Metrics of
each begin-end block

Complexity Not specified
PolynomialO(n3),

n=statements
contains, clones

O(n2),n=input size

Comparison
Technique

metrics values
of visual inspection

21 function metrics
with 4 points of

comparison

Numerical comparison
of metrics values

Clone Similarity
Identical, nearly
Identical, similar

and distinct
Exact and near-miss Partial and near-miss

Clone
Granularity Free, function Free, function

Free,
begin-end blocks)

Output Type Functions with
metrics values

Clone Class and
Clone Pair Clone Pair

41

Chapter 2. Background and Related Research

2.3.4.3 Token-based Technique

Token approaches (lexical approaches) transform/parsed/lexed the source code into a se-

quence of tokens using compiler-style lexical analysis. These tokens are scanned to detect

duplicated subsequences of tokens, as a result the matched tokens from the original code

fragments are retrieved as clones. This technique is much better than the textual approach in

term of detecting the minor code changes such as formatting and spacing.

Baker’s tool Dup [8, 9] is one of the best tools that represent this approach. She used

a lexical analyser to chop the line of the program to se-quence of tokens. However, there

are two types of tokens that appear in this stage respectively; parameter tokens (identifiers

and literals) and non-parameter tokens. The parameter tokens are encoded based on their

occurrence in the line (position index) which helps in detecting type-2 clones whereas in the

non-parameter tokens a hashing function is used. Suffix tree is used to present the prefixes of

sequence of symbols. Common prefix means that tree suffixes share the same set of edges,

which can be considered a clone.

CCFinder [62] of Kamiya et al.is another recent and efficient token-based clone detection

in this approach. Each line of the program is chopped to tokens using a lexer. The whole

tokens of a certain source file are then chained as a single sequence. Then, the token se-

quence is transformed (based on the specified transformation rules such as add, change or

delete tokens). Special tokens are used to be replaced by the identifiers (with considering

types and names) across the source file, making code portions with different variable names

clone pairs. The similar sub-sequences are searched among the transformed token sequence

using suffix-tree based sub-string matching algorithm to be returned as clone pairs/clone

42

Chapter 2. Background and Related Research 2.3 Clone Detection

classes. Finally, a suitable mapping is applied between the already obtained information of

clone pair/ clone class the token-sequences and the clone pair/ clone class information of

the original source code. Several tools are based on the CCFinder, such as RTF [14], which

enhances the process of detecting clones by allowing the user to tailor tokenization; by using

a more memory-efficient suffix-array in place of suffix trees. Also, Gemini [106] uses scatter

plots to display near-miss clones. Another pioneered clone detection technique is CP-Miner

[81, 82], in which a frequent subsequence data mining technique [1] is used to find similar

sequences of the original tokenised statements.

Some of the aforementioned techniques are used to detect plagiarism. SIM [38] is one

of the plagiarism detection tools, which uses the dynamic pro-gramming string alignment

technique to compare token sequences. Also, JPlag [95] and Winnowing [100] are examples

of plagiarism detection tools which is based on token techniques.

2.3.4.4 Tree-based Technique

Tree-matching approaches detect code clones by matching the similar sub-trees obtained by

parsing the source code (an abstract syntax tree). Several techniques of tree matching are

used to search the related source code of the corresponding subtrees which are returned as

clone pairs. Compared to token-based approach, the AST is more sophisticated in order of

detecting code clones as it is based on the structure of the program rather than variable names,

literal values. CloneDr [15] which is lunched by Baxter et l., is one of the best tools uses

AST. The subtrees which are obtained by parsing the trees of the program are hashed into

buckets which compares the contained subtrees to each other using a tolerant tree matching.

43

Chapter 2. Background and Related Research

Table 2.2 Detection Methods of Token-based.

Properties Kamiya et al. Baker Li et al.

Code
Representation

Sequence of
normalized,

transformed &
parameterized tokens

Parameterized token
string

Collection of short
sequences
of numbers

Comparison
Granularity Token Sequence of tokens Tokens sequence

Complexity O(n),n =lines
of code

O(m+n),
m=number of

detections,
n=lines of code

O(n2), n=Lines
of code

Comparison
Technique

Tokens of
Suffix-tree

Suffix-tree based
Token matching

Frequent
subsequence

mining technique

Clone Similarity
Exact or near
miss possibly

with gaps

Exact and
parameterized

matches

Exact and near
miss with gaps

Clone
Granularity

Free, threshold-based
of tokens (30 tokens)

Free and
threshold-based

(minimum 15 lines)

Free and
threshold-based
(of functions)

Output Type Clone pair
and Clone Class

Clone pair
and Clone Class Clone pair

Evans and Fraser [30] have proposed an approach in which structural abstraction of a

program is achieved to handle exact and near-miss clones with gaps. Yang [112] has proposed

an approach which can effectively manage the syntactic differences between the compared

subtrees using dynamic programming approach. Wahler et al. [107] have converted the AST

to XML to find exact and parametrised clones at abstract level. Then they have applied a

data mining technique to find code clones.

However, there are several recent approaches which facilitate the comparison process of

subtree by applying alternative simple tree representations rather than considering the full

subtree. Falke,et al. [31], who have serialized the AST subtrees as AST node sequences for

44

Chapter 2. Background and Related Research 2.3 Clone Detection

which a suffix tree is then constructed which allows to detect the syntactic clones faster (at

the speed of token-based techniques). Tairas and Gray [103] have proposed an approach

based on suffix trees, using Microsoft’s new Phoenix framework.Jiang et al. [56] in their

tool Deckard have proposed a novel approach to detect similar trees, in which vectors are

computed to approximate the structure of ASTs in a Euclidean space. Then locality sensitive

hashing (LSH) is applied to aggregate the similar vectors using Euclidean distance metric to

detect the related code clones.

Table 2.3 Detection Methods of Tree-based.

Properties Evans Wahler et al Yang
Code

Representation AST in XML AST in XML Parse tree

Comparison
Granularity AST Node one line Token (Tree node)

Complexity Not specified

O(k.n2),
n=statements contains,

clones, K=maximal
size clones

O(T 1T 2),T 1 =
nodes of

first tree, T2=nodes
of second tree

Comparison
Technique

Graph theoretic
Approach Frequent Itemset Tree matching

Clone Similarity Exact and near
miss with gap

Exact and
parameterized

matches

Exact and
near miss

Clone
Granularity

Free,
threshold-based

Free,
threshold-based
(5 statements)

Free, program/
segment)

Output Type
HTML document

with clone
information

Not specified
Just displays with

pretty-printing

45

Chapter 2. Background and Related Research

2.3.4.5 PDG-based Technique

Program Dependency Graph (PDG)-based approaches [70, 76, 84] semantically considers the

source code details due to the high abstraction representation of the source code. Expressions

and statements are presented by the nodes of the graph whereas control and data dependencies

are represented by the edges. PDG provides more precise information than the syntactic

approaches. As the PDG holds crucial information of a program such as control flow and

data flow, thus it can facilitate matching the corresponding similar subgraphs (code clones)

easily in a semantic way using matching algorithm. The approaches of the PDG are reliable

and robust for code management. However, they lack of scalability to huge systems.

Komondoor and Horwitz [70, 72] have proposed one of the most leading approaches in

this technique known as PDG-DUP which uses program slicing to detect isomorphic PDG

subgraphs [109]. They have also applied a sophisticated approach which aggregates the

detected code clones with keeping the semantics of the source code [69, 71]. This has been

used to support software refactoring by automating the procedure extraction. Furthermore,

Gallagher and Lucas [37] have conducted a slicing based clone analysis experiment by

arguing the raised question: Are decomposition slices clones? going through the all variables

in the whole system by computing program slices. They have showed the pros and cons to

the raised arguments.

Chen at al. [21] proposes an approach for code compaction which considers syntactic

structure and data flow. The technique has several features in embedded systems. Liu at

al. [84] announce their tool which helps in plagiarism detection purposes. Krinke [76] also

46

Chapter 2. Background and Related Research 2.4 Service Selection

proposes an iterative PDG-base technique (k-length patch matching) to finding maximal

similar subgraphs.

Table 2.4 Detection Methods of PDG-based.

Properties Krinke Komondoor et al. Liu et al.
Code

Representation Fine Grained PDGs
set of PDGs

of procedures
set of PDGs without
control dependencies

Comparison
Granularity PGD subgraphs PDGs PGD Node PGD Node

Complexity Non-polynomial Not Available NP-Complete

Comparison
Technique

patch matching
of k-length

Isomorphic PDG
subgraph matching

using backward
slicing

Isomorphic subgraph
matching

Clone Similarity Exact and Semantic
non-contiguous,

reordered, intertwined Exact and Near-miss

Clone
Granularity

Free,
threshold-based,
length limited
similar path

Free, slicing-based Fixed, programs

Output Type Clone Class
Clone pair

and Clone Class
Plagiarized pair
of procedures

2.4 Service Selection

2.4.1 Overview

Service selection is the process of choosing the appropriate service which fulfils the client’s

requirement. Service selection is a key step to affect the whole process of service composition.

Different approaches are applied to match service providers and consumers. Typically the

selection relies on the search function of Universal Description, Discovery and Integration

(UDDI) which often provides a relatively poor search facility by allowing only a keyword

47

Chapter 2. Background and Related Research

based search of web services. Consequently, returning unrelated services since UDDI

registry encompasses both checked and unchecked services [57]. Huang et al. in [51] present

an efficient service selection scheme that considers non-functional characteristics while

choosing web services by service requesters. Their model considers different data types,

and uses multiple criteria decision making (MCDM) with weighted sum model (WSM) to

help service requesters evaluate services numerically. They proof using experimental results

that their service selection scheme performs much better than the enumerative method, and

outperforms other related methods in terms of efficiency and effectiveness. The Figure 2.9

below illustrates the whole process through the three major stages of Huang’s model.

Functional
matchmaking

Text based QoS
matchmaking

Numeric based
QoS

matchmaking

Fig. 2.9 Service Selection process [51].

2.4.2 Qos-based Service Selection

Various definitions of Quality of Service (QoS) has been provided previously; Schmidt in

[101] defines the QoS as the degree to which a system, component or process meets customer

or user needs or expectations”. Alrifai and Risse [6] propose a solution that combines

global optimisation with local selection techniques to prevent local selection strategy fails

in handling global QoS requirements. They use distributed local selection to find the best

web services that satisfy these local constraints. Baldoni et al. [12] show that the semantic

matchmaking techniques used in the services is lacking preservation and they provide an

48

Chapter 2. Background and Related Research 2.4 Service Selection

approach to overcome these limitations. Yu et al. [113] present a broker-based architecture

to facilitate the selection of QoS-based services. Recent approaches of service selection are

deeply involved in semantic manner using ontology which has drawn the attention of many

researchers [66][92][40][61][65].

Discovering the recommended web services needed by users among the vast resources is

a significant challenge. Zhong et al. [10] discuss functional attributes and non-functional

attributes of the web services resources from the resources balanced perception of FQoS

(Functional Quality of Service) and QoS. They propose a web service description, discovery

and selection mechanism towards balanced perceptions of FQoS and QoS. In this mechanism,

FQoS is more used to describe and discover services, and QoS is more used to select services.

Due to the perspective differences, they point out several problems on the research on service

functions and quality of service. There are big differences among QoS indicators. Due to

the similarity between the functional and non-functional attributes, there is an ambiguity of

specifying service functions out of QoS [105]. Figure 2.10 below illustrates a brief depiction

about FQoS.

2.4.3 Semantic Matching

Semantic terminology reflects the cleverness of the process that find the similarity of cor-

responding concepts that somehow are related to main candidates. In this section we show

a brief description of ontology alignment. It is a significant process that contributes to the

foundation of semantic Web, which can help to solve the heterogeneousness problem. There

are several alignment methods which are classified based on their approaches and strategies.

49

Chapter 2. Background and Related Research

Service Name

Service
Category

Annotation

Data Definition

Web Service

Service
Operation

Output

Input

Operation
Name

QoS

FQoS

has QoS

has Annotation

has data
definetion

has output

has input

has
operatio

n

has name

has
category

has name

mapping

International
classification standards

Fig. 2.10 Description Framework Of FQoS [10].

Some of these methods are based on lexical and linguistic treatments [75]. Whereas other

methods act as hybrids and comprehend the lexical treatments, which rely on the structural of

the ontologies to be aligned [111]. These methods helped to complete the classic techniques

of matching, which reveals the effectiveness or the wealth of the ontologies representative

language. Ontologies represent the concepts used in a domain; therefore, each ontology

should reflect a whole related domain. However due to the parallel use, different ontologies

which related to a certain domain may developed independently. Thus, Ontology matching

[29] is used for creating mappings between ontologies.

50

Chapter 2. Background and Related Research 2.4 Service Selection

Many matching processes (matchers) of ontology alignment systems use several ap-

proaches to measure the similarity between concepts that related to two different ontologies.

Based on the context of similarity measurements, these matchers relate to different clas-

sifications such as lexical, structural or extensional matchers. Cross in [24] goes further

and tries to ensure the quality of mappings produced by the Ontology Alignments systems,

by investigating the use of semantic similarity measures. This help to evaluate ontology

alignment especially with respect to precision [24]. Semantic alignment quality is based only

on the produced mappings and has no knowledge of missed mappings. Therefore, it is more

related to the precision than recall.

2.4.4 Service Availability

The main purpose of designing the Clouds is to provide services to users and providers needs

to be made up for sharing their capability and resources [4]. Armbrust et al. [7] discuss many

obstacles of growth cloud computing paired with the suggested solutions (opportunities) to

overcome these issues as depicted in Table 2.5. Also, many organisations worry about the

availability of the computing services, which therefore affect the cloud computing workflow.

Some software as a service (SaaS) products set a high standard in this regard to prevent

the issue of service unavailability such as Google Search [7]. Table 2.5 shows the services

outages and the causes, for Amazon Simple Storage Service (S3), AppEngine and Gmail in

2008.

As services providers need to meet the requirement of the consumers, providing a

mechanism of matching the services description to the required services is very significant.

51

Chapter 2. Background and Related Research

Table 2.5 Obstacles to and opportunities for growth of cloud computing.[10]

Service and Outage Duration Date
S3 outage: authentication service
overload leading to unavailability 2 hours 2/15/08

S3 outage: Single bit error
leading to gossip protocol blowup 6-8 hours 7/20/08

AppEngine partial outage: programming error 5 hours 6/17/08
Gmail: site unavailable due to

outage in contacts systems 1.5 hours 8/11/08

Meanwhile, massive services of the Internet need to assign the services to the requesters

efficiently and automatically. Therefore, providing service matching approach can tackle

above issues by redirecting the related request to the most similar available services when

the current service is busy. In this paper SMP algorithm will be investigated to improve the

process of service selection.

The main SMP algorithm performs a one-to-one cardinality over the matched candidates.

Furthermore, the relationship of one-to-many is presented in one of the extended SMP

algorithms which called Hospital resident (HR), basically many residents assigned to one

hospital [22]. Whereas in this approach a many-to-many relationship is needed. Hence, the

original SMP algorithm is extended to cope with the new requirements of this proposed

approach.

Many-to-many relationship is needed in both clone detection and service selection

processes. This helps the services for instance to interact according to their views based on

the profile and the history of the costumers (incoming requests), which secure the services

from unwanted malicious costumers. Based on this background chapter 5 shows the use of

52

Chapter 2. Background and Related Research 2.5 Search-Based Optimisation

the extended Gale-Shapley algorithm in our application to enhance the process of service

selection.

2.5 Search-Based Optimisation

2.5.1 Overview

Search concept is a corner stone of many processes such as a sophisticated search approaches

and matching processes. The simplest search process is random search that randomly

generates solutions. However, such a search process works without any aspect of intelligence,

therefore the sophisticated search processes are guided by fitness function that supported

by some optimization techniques for instance simulated annealing,hill climbing simulated

annealing and genetic algorithms [45].

Search Based Software Engineering (SBSE) is an approach in which search optimization

techniques are applied to manage some obstacles raised in Software Engineering processes

and products using generic, flexible, robust and scalable computational search. SBSE

is widely applicable and successful approach that provides a mechanism for managed

automation of software engineering activities [46].

The importance of SBSE appears clearly in providing insights and decision support. Also,

it is crucial to transfer the problems of software engineering to be machine-based search

rather than human-based search by using the evolutionary computation paradigms and several

methods of the metaheuristic search. This is to benefit from both machines’ reliability and

53

Chapter 2. Background and Related Research

humans’ creativity, rather than relying on humans, which avoid error prone that makes the

features of the engineering process very expensive [49].

Matching is a process in which we must apply a search process that tries to find the

candidate based on certain standards; however we consider using some sophisticated search

processes in SMP algorithm to apply a dual search process in which both seekers looking to

satisfy their own criteria or features.

Search-based optimization shares valuable ideas, which might intersected in future works

of other optimization techniques. As long as the SMP algorithm is match-based, we tried to

borrow some search based techniques to be more suitable for some match-based processes.

This might reveal a new term for future research direction known as match-based software

engineering.

2.5.2 SBSE Ingredients

There are two basic factors for performing SBSE [44, 48, 49]:

• The presentation of the problem.

• The fitness function.

Figure 2.11 shows these two ingredients which are the basis of Search Based Software

Engineering to implement search based optimisation algorithms and get results. Software

engineers use a proper representation for their problem. However, the fitness function guides

the search process for optimal or near optimal elements in a search space of possible solutions

using software metrics [47, 49].

54

Chapter 2. Background and Related Research 2.5 Search-Based Optimisation

Raw Data Representation

Metrics or Properties Fitness Function

Search Algorithm

Fig. 2.11 Overall Architecture of SBSE Approach [49].

2.5.3 Common Search Algorithms

SBSE benefits from well-known search optimization techniques such as hill climbing, simu-

lated annealing and genetic algorithms. These algorithms add a sense of cleverness compared

to the basic random search which is considered as unguided search that usually fail to find

the optimal solutions.

Both Simulated Annealing and Hill climbing are considered as local searches due to their

way of work, as they refer to one candidate solution at a time, choosing ‘moves’ based on the

neighbourhood of that candidate solution. However, genetic algorithms are said to be global

searches.

2.5.3.1 Hill Climbing

Hill climbing is the simplest search algorithm that uses fitness information in the form of

fitness function[49]. A point of the search space is randomly selected by the algorithm of

Hill Climbing. After that the algorithm checks the raised solutions in the ‘neighbourhood’

of the original. If the neighbouring candidate solutions are similar and found of improved

55

Chapter 2. Background and Related Research

fitness, the search ‘moves’ to that new solution and explores the neighbourhood of it for better

solutions, and so on until no improved neighbours can be found for the current candidate

solution. This solution is locally optimal.

2.5.3.2 Simulated Annealing

Originally, the name of Simulated Annealing comes from the analogy of the technique with

the chemical process of annealing. Later, Kirkpatrick et al. [67] proposed the algorithm as

the basis of the search mechanism.

Simulated Annealing relies on a certain variable namely temperature, and without restart-

ing the search process, it attempts to escape local optima. At the start the temperature is high

and the free movement through the search space is allowed. As the search progresses, the

temperature reduces, consequently, moving to poorer solutions becomes unlikely. Ultimately,

freezing point is reached, leading the algorithm to acts as if Hill Climbing. A lower solution

is calculated by consider the acceptance probability as p = e
−δ

t , where t presents the current

temperature value, and δ indicates the difference in fitness value between the neighbouring

inferior solution and the current solution.

2.5.3.3 Genetic Algorithms

The name Genetic Algorithm reflects the analogy between encoding of candidate solutions

as a sequence of simple components, and the genetic structure of an individual [90]. Such

components are referred to as individuals or chromosomes. Normally, a Genetic Algorithm

uses a binary representation, i.e. candidate solutions are encoded as strings of 1s and 0s.

56

Chapter 2. Background and Related Research 2.6 Conclusion

Population refers to the set of candidate solutions that are currently concerned; however,

generation refers to each successive population considered. The first generation is made up

of randomly selected individuals. Some domain information about problem is determined

by selected chromosomes of population, which may increase the chances of the search

converging on a set of highly-fit candidate solutions. Therefore, each individual of the

population is evaluated for fitness. Holland [50] introduces the original Genetic Algorithm

which includes the selection of ’fitness-proportionate’ which determines the expected times

of selecting an individual for reproduction, that is proportionate to the individual’s fitness

in comparison with the rest of the population. However, fitness-proportionate selection has

been criticised because highly-fit chromosomes appearing early in the advance of the search

tend to dominate the selection process, leading the search to converge earlier on one sub-area

of the search space [49].

Eventually, the following generation of the population is selected for the reinsertion stage,

and the new individuals are evaluated for fitness. The GA continues in this loop until it

reaches a solution of global optimal.

2.6 Conclusion

This chapter reviews the relevant topics to the main research topic, such as Stable Marriage

Problem and its variants. Also, the Clone Detection is deeply reviewed and investigated as it

is one of the main parts of the conducted case studies. The current status of service selection

is reviewed.

57

Chapter 2. Background and Related Research

Several search-based algorithms are investigated to be compared with the proposed

matching-based approach. This chapter gives a solid knowledge of the relevant areas, which

is a cornerstone to represent and understand the proposed research topic. This section

summarises the reviewed topics as follows:

• Stable Marriage Problem and its variants, Clone Detection and Service selection are

reviewed.

• To compare the matching-based approach, some search-based algorithms are intro-

duced.

58

Chapter 3

SMP Extensions

Objectives

� Leveraging SMP algorithms in software engineering.

� Defining the selective strategy.

� Presenting the extended SMP algorithm.

59

Chapter 3. SMP Extensions

3.1 Overview

Our research is focusing on increasing the efficiency of the stable matching algorithms with

respect to software engineering field. We concentrate on the Gale and Shapely algorithm

(Stable Marriage Problem) SMP; trying to increase the detection range of similar candidates

to be matched semantically using ontologies. Also, as long as SMP algorithm allows only

the candidates of the first set (Men) to propose to their first choices, our research devoted

to increase the fairness of SMP algorithm by allowing the candidates of the second set

(Women) to make their own choices i.e. propose to the best of their choices of the opposite

set. Moreover, we found another way to increase the fairness by allowing the candidates of

the first set (Men) to enter the competition again to propose for their second choices even if

they have already been assigned to their first choices; to fulfil the best choices (wishes) of the

candidates of the second set (Women); this will affect the cardinality of the SMP algorithm

to be one-to-many rather than the original one-to-one; it is similar to the HR problem.

Our approach shows the possibility of extending the SMP algorithm to enhance the

matching process in software engineering area, as already known SMP algorithm has many

derived algorithms such as SMPI, SMPIT. We would like to dynamically change the SMP

algorithm to meet some purposes of software matching and other discipline. We add some

modifications to the preferences of the SMP algorithm to update the sets of preferences

(to receive new inputs during the matching process for example). We also mentioned the

possibility of analysing the pseudo code using metrics, and then applying the SMP algorithm

to find code similarity.

60

Chapter 3. SMP Extensions 3.1 Overview

The main aim of this research is the development of a comprehensive matching framework

to accomplish a high-level of features, to help in multi purposes and different aspects in

Software Engineering. It has been noticed that SMP algorithm does not allow the candidates

from the same set to involve into an agreement in which they can speed up the process of

choosing their preferences upon the opposite candidates. However, this is considered in our

approach trying as best as possible to apply more fair assignments. For example, if A1 has

not been allocated to B1 which is its first choice, the algorithm will do the best to fit A1 with

its second choice and so on (trying to alleviate the problem).

In semantic sense, we would derive equivalence candidates from each candidate to

increase the chances of detecting related candidates as have been shown in Figure 3.5 below.

We build the preferences in two different phases (or two different lists of candidates, clarified

later). First, it is build based on the original candidates as normal. Second, it is build based

on the equivalence candidates which in this case acts as original ones as have been depicted

in Figure 3.6.

Our approach, also considers a cardinality of many to many, which means a man can be

engaged to more than one woman and vice versa. To fulfil the requirements of matching

process of some software engineering areas (Clone detection etc.); the SMP algorithm needs

to be properly modified and consider such cardinality. It is a valued change to SMP algorithm

as currently it is at the cardinality of one to one. These modifications met the needs of clone

detection process, as long as there are many similar fragments of codes match many similar

fragments of code in the opposite set in the same instance.

61

Chapter 3. SMP Extensions

We improve the SMP algorithm to fulfil the required purposes by adding three different

extensions; firstly, allowing dual proposes; secondly, allowing dual multi allocation and

finally deriving the equivalence candidates using ontologies.

62

Chapter 3. SMP Extensions 3.2 Dual Proposed

3.2 Dual Proposed

3.2.1 Overview

Since the SMP algorithm allows only the candidates of the first set (Men) to propose to their

first choices, our research devoted to increase the fairness of SMP algorithm by allowing the

candidates of the second set (Women) to make their own choices i.e. propose to the best of

their choices of the opposite set.

Our approach considers a dual proposed technique that allows the candidates from both

sets to propose for their preferences. This slight amendment has enhanced the precision of

the matching process, it is illustrated in Figure 3.1.

A1

A2

A3

B1

B2

B3

A1,A2,A3
propose

A2,A1,A3

A2,A3,A1

B1,B3,B2

propose

Dual ProposeB2,B3,B1

B3,B1,B2

As,Bs are piece of code or text

Fig. 3.1 Dual Propose Technique.

Practically, this process gives two different stable matched pairs; respectively man-

optimal and woman-optimal. Thus, we enclose a novel way of assigning men and women to

each other; by add a selective strategy. However, this strategy helps to judge which of the two

pairs is more optimal. In the late section of this chapter the selective strategy is explained.

Figure 3.2 shows a partial example of the strategy.

63

Chapter 3. SMP Extensions

3.2.2 Dual Proposed Algorithm

Dual proposed algorithm acts as both man-optimal and woman-optimal. The combination of

these two versions supplemented with a selective strategy using love’s degree factor, result in

complete concrete dual proposed scheme.

The algorithm of Dual Proposed consists of two phases followed by the selective strategy

as following (Algorithm 7):

• Phase 1 man-optimal algorithm.

• Phase 2 woman-optimal algorithm.

• Apply selective strategy.

The above algorithm formed of three main parts. First and second parts use the original

SMP algorithm. First part presents the man-oriented algorithm in which men have the priority

and gain the best choices against the women. Second part presents the women-oriented

algorithm in which women have the priority and gain the best choices against the men. The

final part is the selective strategy which selects the ultimate output based on the two different

outputs of the first and second parts.

Steps 1 to 11 illustrate the original Man-oriented algorithm (SMP algorithm). In these

steps men get paired to their best choices. A man m may is assigned to a women w yields to

the relation of one-to-one. The output of these steps is assigned to the matching M1. Men

and women act as if services and requests which need to be mapped according to the relation

provided by the algorithm.

64

Chapter 3. SMP Extensions 3.2 Dual Proposed

Algorithm 7 Dual Proposed Algorithm
1: assign each person to be free
2: while some man m is free do
3: begin
4: w:= first woman on m’s list;
5: if some man p is engaged to w then
6: assign p to be free;
7: assign m and w to be engaged to each other;
8: for each successor m’ of m on w’ list do
9: delete the pair(m’,w)
10: end;
11: assign M1 to the man-optimal pair;
12: assign each person to be free
13: while some woman w is free do
14: begin
15: m:= first man on w’s list;
16: if some woman s is engaged to m then
17: assign s to be free;
18: assign w and m to be engaged to each other;
19: for each successor w’ of w on m’ list do
20: delete the pair(w’,m)
21: end;
22: assign M2 to the woman-optimal pair;
23: apply selective strategy on M1 and M2
24: end;

Steps 12 to 22 illustrate the original Woman-oriented algorithm (SMP algorithm). How-

ever, in these steps the women gain their best choices against men as previously showed in

steps 1 to 11 where men get their best choices. The ultimate output of these steps is assigned

to the matching M2.

Step 23 applies the selective strategy which is defined in section 3.2.3 to get the final

results and providing a relation of many-to-many based on both M1 and M2.

65

Chapter 3. SMP Extensions

1: A, C, B, D

2: C , D, B, A

3: B, A, D, C

4: C, A, B, D

A: 2, 3, 4, 1

B: 3, 4, 2, 1

C: 4, 3, 2, 1

D: 2, 1, 3, 4

Love Degree
 1 2 3 4

Love Degree
 1 2 3 4

Love degree of man 1 and woman C to each other is calculated as following
The love degree of man1 to woman C is 2
The love degree of woman C to man1 is 4

(2+4) / 2= 3

Fig. 3.2 love’s degree factor.

3.2.3 Selective Strategy

The selective strategy acts as the main engine for the two proposed adaptations, and uses

some factors (love degree and contrast degree) to select the optimal pairs. The selective

strategy considers the contrast’s degree factor between the elements in order of choosing the

optimal pair. This factor helps when two different pairs has the same love’s degree. Also,

when more than one candidate have the same love’s degree with a certain candidate, then

the right candidate will be chosen. The contrast’s degree reflects the difference between the

66

Chapter 3. SMP Extensions 3.2 Dual Proposed

assigned candidates. For example the contrast’s degree between man1 and woman C is 2 as

depicted in Figure 3.2.

The selective strategy formed out of two main factors, respectively, love’s degree and

contrast’s degree. Love’s degree reflects the degree of love from the view of both involved

candidates (services etc.). However, to converge these views, the degree of love for both

participating (in the same pair) candidates is added and then the result is divided by two. The

final result is the love’s degree of the pair.

Whereas, the contrast’s degree reflects the difference between the actual love’s degree

of the involved candidates (services etc.). Thus, the most preferable pair is that with small

difference in its contract’s degree. This factor helps when two different pairs has the same

love’s degree. Also, when more than one candidate has the same love’s degree with a certain

candidate, then the right candidate will be chosen. Figure 3.3 depicts the selective strategy

scheme.

With regards to the example in Figure 5.3 the output based on this strategy slightly

differs. We provides several solutions some of which allow a candidate to be assigned to

more than one candidates from the opposite set of participants, which reflects the cardinality

of “many to many”. However, as overall comprehensive observation the new algorithm

provides slightly different matching pairs from the original man-optimal algorithm.

In the current state of the SMP algorithms, there are no needs to judge between two pairs

to be chosen as an optimal pair. However, with regards to the recent extensions to the main

SMP algorithms the need to a strategy to choose the optimal pair is raised and essential.

67

Chapter 3. SMP Extensions

1: A, C, B, D

2: C , D, B, A

3: B, A, D, C

4: C, A, B, D

A: 2, 3, 4, 1

B: 3, 4, 2, 1

C: 4, 3, 2, 1

D: 2, 1, 3, 4

Love’s degree
 1 2 3 4

Love’s degree of man 1 and woman C to each other is calculated as following
The love’s degree of man1 to woman C is 2
The love’s degree of woman C to man1 is 4

The final result is (2+4) / 2= 3

Love’s degree
 1 2 3 4

Contrast’s degree of man 1 and woman C is calculated as following
The love’s degree of man1 to woman C is 2
The love’s degree of woman C to man1 is 4

The final result is the difference (4-2) = 2

Contrast’s degree

Contrast’s degree

Fig. 3.3 Selective Strategy Scheme

Therefore, we provide a competitive Selective Strategy to support the newly built extension,

at its ultimate parts to help choosing the optimal pair.

In our approach, a cardinality of many to many is considered, which means the man can

be engaged to more than one woman and vice versa. To fulfil the requirements of matching

process of some software engineering areas (Service Selection etc.); the SMP needs to be

68

Chapter 3. SMP Extensions 3.2 Dual Proposed

properly modified and consider such cardinality. It is a valued change to SMP algorithm as

currently it is at the cardinality of one to one.

These modifications met the needs of clone detection process, as long as there are many

similar fragments of codes which match many similar fragments of code in the opposite set

in the same instance. Our extension of SMP algorithm encloses a novel way of assigning

men and women to each other; by add a love’s degree factor. Figure 3.2 shows the love

degree extension and gives an example of how it is calculated.

The following example in Figure 3.4 illustrates the process of the introduced strategy as

presented in algorithm 7 against the original SMP algorithm:

1 : B D A C

2 : C A D B

3 : B C A D

 4 : D A C B

A : 2 1 4 3

B : 4 3 1 2

C : 1 4 3 2

D : 2 1 4 3

Men’s preferences Women’s preferences

Fig. 3.4 Example of selective strategy.

The original SMP algorithm shows the following results. These results are different

according to who starts to propose (man-oriented or woman-oriented).

Man−Optimal = M0 = (1,D),(2,C),(3,B),(4,A)

69

Chapter 3. SMP Extensions

Woman−optimal = Mz = (1,D),(2,A),(3,B),(4,C)

Based on the previous output, it can be seen that men 2 and 4 are assigned to two different

women in both orientations. Therefore, the selective strategy is applied to give more precise

solution. The following two tables give the new solutions based on the factors used in the

selective strategy based on the output of the original SMP algorithm which finds the final

solutions in a quadratic time.

Table 3.1 New Man-Oriented

M0 Love degree Contrast degree Weight
(1,D) 2 0 1

(2,C) 3 3 3

(3,B) 2 1 2

(4,A) 2 1 2

NM0 = New−Man−oriented = (1,D),(2,A),(3,B),(4,A).

Table 3.2 New woman-Oriented

Mz Love degree Contrast degree Weight
(1,D) 2 0 1

(2,A) 2 1 2

(3,B) 2 1 2

(4,C) 3 1 2

NMz = New−Woman−oriented = (1,D),(2,A),(3,B),(4,A),(4,C)

Selective strategy is calculated using the union of both new outputs NM0 and NMz as

follows:

NM0∪NMz = (1,D),(2,A),(3,B),(4,A)

70

Chapter 3. SMP Extensions 3.2 Dual Proposed

3.2.4 Semantic Equivalence

This feature is attached to the previous extensions to increase the detection range of similar

candidates to be matched semantically using ontologies. This should be implemented through

two different phases as illustrated in figures[3.5 and 3.6].

Figure 3.5 presents the initial stage of the process; which gets the synonyms of the main

original candidates using ontology.

CandidateA1

CandidateA11
CandidateA12

CandidateA1i

Equivalence CandidatesOriginal Candidate

Fig. 3.5 Semantic Equivalence Candidates.

Figure 3.6 shows the virtual candidates which illustrated in newly formed two sets. These

candidates derived originally from the main candidates as depicted in Figure 3.5. This final

stage of the proposed extension matches the virtual candidates using the SMP algorithm.

71

Chapter 3. SMP Extensions

A11

A12

A21

A22

A23

A31

A32

B11

B12

B21

B22

B31

B32

B33

A1

A2

A3

Matching
equivalences

propose propose

B1

B2

B3

As,Bs are piece of code or text

Fig. 3.6 Semantic Equivalence Candidates (SMP-based).

3.2.5 Evaluation

The presented matching scheme covers a noticeable hole of the current state of the original

SMP algorithm and perfectly suited to the world of software engineering, serving in several

aspects the needed allocation process that requires a high consideration of both sides of

matched candidates. Our Scheme has increased the quality of allocating the similar services to

each other, through considering the desire of the matched services, which result in increased

satisfaction of the candidates in each pair, reflects a high stability. However, the Scheme has

some limitation in terms of the time feature, as the consideration of the candidates’ desire

needs more computation and recursion to fulfil and reach the highly required stability. The

implementation shows a smoothly scalable Scheme which performed in a large environment.

It shows efficiency in its performance and the final results.

72

Chapter 3. SMP Extensions 3.3 Dual Multi Allocation

3.3 Dual Multi Allocation

3.3.1 Overview

This extension allows the candidates of the both first and second set to enter the competition

and propose again for a certain times to their preferences. Each candidate of the first set

may have more than one matched participants of the second set and vice versa. Since, the

current state of the stable marriage problem algorithm at the cardinality of “one to one” and

later covered the “one to many” which is presented in Hospital and Resident problem; this

extension will consider the “many to many” cardinality. Such extension serves wide range of

real software applications that already exists.

A1,A2,A3

A2,A1,A3

A2,A3,A1

B1,B3,B2

B2,B3,B1

B3,B1,B2

A1 P to B3

A1

A2

A3

B1

B2

B3

As,Bs are piece of code or text Assignments {{A1,B2},{A2,B3},{A3,B1}}

Fig. 3.7 Multi-proposed Technique.

73

Chapter 3. SMP Extensions

Therefore, dual multi allocation considers multiple matched participants with different

level of love’s degree factor to the main candidates of both sets. Results in several stable

matched pairs that annotated by the stable’s degree.

3.3.2 Dual Multi Allocation Algorithm

This algorithm results in several stable matching pairs with dissimilar allocated candidates

based on love’s degree, which can be controlled to reach a certain level of desires. However,

the matching process can be fixed as default to retrieve candidates of the highest rank love’s

degree factor.

The algorithm of Dual Multi Allocation consists of two phases followed by the selective

strategy as following:

• Phase 1 Hospital-Oriented-Man algorithm.

• Phase 2 Hospital-Oriented-Woman algorithm.

• Apply selective strategy.

The above algorithm formed of three main parts. First part presents the Hospital-oriented

algorithm in which hospitals have the priority and gain the best choices against the residents.

Second part presents the residents-oriented algorithm in which residents have the priority and

gain the best choices against the hospitals. Final part is the selective strategy which selects

the ultimate output based on the two different outputs of the first two parts.

Steps 1 to 11 illustrate the original Hospital-oriented algorithm (HR). In these steps

men act as hospitals and the women act as residents. Therefore, a man m may allocated by

74

Chapter 3. SMP Extensions 3.3 Dual Multi Allocation

Algorithm 8 Dual Multi Allocation algorithm
1: assign each person to be free
2: while (some man m is unallocated) and (m’s list contains a woman w not allocated to
m) do
3: begin
4: w:= first woman on m’s list;
5: if w is already allocated, say to m’, then
6: break the allocation of w to m’;
7: assign w to m;
8: for each successor m’ of m on w’s list do
9: remove m’ and w from each other’s lists
10: end;
11: assign M1 to the Hospital-oriented-man pair or set of pairs;
12: assign each person to be free
13: while (some woman w is unallocated) and (w’s list contains a man m not allocated to
w) do
14: begin
15: m:= first man on w’s list;
16: if m is already allocated, say to w’, then
17: break the allocation of m to w’;
18: assign m to w;
19: for each successor w’ of w on m’s list do
20: remove w’ and m from each other’s lists
21: end;
22: assign M2 to the Hospital-oriented-woman pair or set of pairs;
23: apply selective strategy on M1 and M2
24: end;

many women w. the relation here is many-to-one. The output of these steps is assigned to

the matching M1. Men and women act as if software methods which need to be mapped

according to the relation provided by the algorithm.

Steps 12 to 22 illustrate the original Hospital-oriented algorithm (HR). However, in these

steps the women act as hospitals and the men act as residents as previously showed in steps 1

to 11. The ultimate output of these steps is assigned to the matching M2.

75

Chapter 3. SMP Extensions

Step 23 applies the selective strategy which is defined in section 3.2.3 to get the final

results. Figure 4.1 shows an example of using algorithm 8 where the methods candidates

are mapped to the similar methods based on their software metrics values. The time to reach

the final solutions cost a polynomial time.

3.4 Conclusion

This chapter introduces the heart of our framework “selective strategy” which is used as the

main engine of the new extensions. The chapter shows how to improve the current State of

clone detection by introduces the extended Dual-Multi-Allocation algorithm.

Also, it shows the second main adaptation, Dual-Proposed algorithm which improves the

current state of service selection. The use of semantic matching is discussed to strengthen

the SMP-based approach in the process of service selection.

The problems of clone detection and service selection are similar however, the basic are

different as the current status of service selection apply one to many relationship whereas the

relation of clone detection process is arbitrary to fixed (hash function). Therefore, the two

extensions are introduced to reach final purpose of this application which is to achieve the

cardinality of many to many.

This section summarises the key points of this chapter as follows:

• The main engine of the introduced extensions is defined as “selective strategy”.

• The Dual-Multi-Allocation extension is introduced, which helps to improve the current

state of Clone Detection (see chapter 4).

76

Chapter 3. SMP Extensions 3.4 Conclusion

• The Dual-Proposed extension is introduced, which helps to improve the process of

service selection (see chapter 5).

• It is discussed that how to strengthen the SMP-based approach using semantic match-

ing.

77

Chapter 4

SMP-Based Clone Detection

Objectives

� To provide a clone detection scenario based on adapted SMP algorithm.

� To present the SMP-based approach to clone detection.

� To show a concrete clone detection example.

79

Chapter 4. SMP-Based Clone Detection

4.1 Overview

Code cloning is a severe problem that negatively affects industrial software and threatens

intellectual property. This Chapter presents a novel approach to detecting cloned software by

using a bijection matching technique. The proposed approach focuses on increasing the range

of similarity measures and thus enhancing the recall and precision of the detection. This

is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating

how matches between code fragments of different files can be expressed. a prototype of our

approach is provided using a proper scenario, which shows a noticeable improvement in

several features such as scalability and accuracy.

Clone detection has been intensively investigated due to the need of tackling code issues

in the maintenance process. Current detection algorithms are more or less search based

algorithms that do not consider the preferences of both candidates (code portions) in the

process. In this Chapter, a variant of the stable marriage problem algorithm to clone detection

is investigated to find clones of different source files. The extended algorithm introduces

the preferences of code segments based on the values of predefined metrics, e.g. cyclomatic

complexity (CC) and the number of calls from or to a method (MCIN & MCOUT). The

clone detection process should therefore consider the values of both parties.

4.2 Similarity Measurements

Several techniques for software clone detection have been introduced over so far. We provide

background concepts of the process of clone detection. Also, most of clone detection

80

Chapter 4. SMP-Based Clone Detection 4.3 Metrics

techniques are classified and presented with regard to different aspects. The aim of this

Chapter is: providing a new method of detecting the clones, and to introduce our competitive

detection method (SMP-based). Our method focuses on two facets. First, we introduce a

new matched algorithm (Stable Marriage Problem) to the world of clone detection. Second,

we use a variable granularity to detect maximum number of possible clones.

4.3 Metrics

Since our process is method-based we use some metrics to extract some features out of the

matched fragments, such as method rank, number of the parameters and nested depth method.

However, our approach might be extended to be a variable adaptive by considering a higher

abstract level such as classes.

In the following we present some predefined metrics based on both methods and classes:

Based on the numeric metrics values, we will build the preferences list of each element

(clone), from the opposite source file. We use a java plug-in with eclipse, known as Metrics

1.3.6 which calculates some metrics such as following:

• NOM presents the number of methods in a class.

• LCOM-HS describes the lack of cohesion between methods in the class.

• NOC indicates the number of subclasses of a certain class.

• DIT is the maximum inheritance path from a class to the root class.

• WMC indicates the total weights of the methods in a class.

81

Chapter 4. SMP-Based Clone Detection

Based on the above metrics, we specify the characteristics of each method. However, in order

to build up the preferences lists of every single method, the list needs to be ordered based on

the most similar attributes of the opposite methods.

4.4 Detection Process

In Figure 4.1 we present a high level view of our detection method that SMP-based

In the following, we give short description of these phases: The phase abstraction is the

basic transformation of the source code to source units, in our case presented as subtree

of AST. The representation of a source unit is based on the used approach such as text-

based, token-based, AST-based, or metric-based. However, in the first preparation phase, we

prepare for classifying the cases by applying some annotations, for example case without

parameters are A. Also, we can extend these annotations for several purposes (e.g. enables to

remove getter and setter methods, remove redundant parentheses). In the next step which

is the Assembly, we group the similar cases into several sets, these cases are represented as

candidates (elements of their related sets). In the second preparation step, we unify these sets

into a unique set and create a set of preferences for each candidate. These preferences are

actual clones from the opposite source file. Thus there is link somehow between the matched

files in this phase. In the pre-ultimate important stage which is the matching phase, we apply

the SMP algorithm on the sets (two sets fileA and fileB) with its preference lists, forming an

optimal clone pairs.

82

Chapter 4. SMP-Based Clone Detection 4.4 Detection Process

Abstraction

Second Preparation

Clone Pairs

First Prepration

Assembly

FileA

Matching

Abstraction

Second Preparation

First Prepration

Assembly

FileB

Fig. 4.1 Detection Process for Program Analysis.

83

Chapter 4. SMP-Based Clone Detection

4.5 SMP-based Clone Detection

Our experiment has been designed to concentrate on enhancing several features such as

accuracy, satisfaction and stability of the current clone detection approaches. We have

specified certain metrics to help in recognising the aspects of the related and similar portions

of codes.

We proofed the remarkable efficiency of our approach by carrying out a case study on

two middle sized source files. Each file has got a minimum of 100 of specified blocks. We

have got a set of metrics to determine the specs of each fragment of code, which help each

candidate to build up its own preference list in order to apply the SMP algorithm. First, we

took two different source files of the same program language with certain threshold-based of

clone granularity.

84

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

Package-
based metrics

Class-based
metrics

Method-
based metrics

NOI&
C

LCO
M

Insta
bility

NOM

WMC

LOC LLOC

CA

CE

NOC

METRICS

Fig. 4.2 Metrics level-based.

85

Chapter 4. SMP-Based Clone Detection

However the granularity-level may vary at certain points and stages to different abstract

levels (e.g. class, package etc.) based on the situation of the matched source files. Figure 4.2

depicts several metrics based on abstraction levels.

The process has two different phases as following: Phase1: we build the preference list

of each clone of first source file (in this case the criteria is the similarity) from the second

source file’s clones, starting by the most similar block and so on. We do the previous step

for the second file. Phase2: we apply the original SMP algorithm with observing some

appointed features for both the used algorithm (e.g. speed & performance) and the status of

the detected clones (e.g. accuracy). After that we swap the original SMP algorithm with our

extended algorithm with considering the specified features.

How does it work?

To apply the SMP algorithm in clone detection, it needs first to build the preference

lists of both code fragments. This can be achieved by using predefined metrics to specify

the most similar related participants (code clone). Each code portion needs to strictly order

the code fragments based on the similarity and vice versa. The traditional SMP algorithm

performs a single assignment (one-to-one) for the involved candidates, which does not help

especially in the case of allocating more than one code portion (method etc.) to the related

code fragments of other source file. Multi Dual Allocation algorithm has been proposed

to fulfil this requirement which widely needed in such fields. Figure 4.3 depicts a general

prototype of code clones (method-based).

86

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

int h(int x,int y)

 {

 return x*y;

 }

Float f(int x,int y)

 {

Float u=x/

y;

return u;

 }

int recursion(int i){
i+=i;

if (i>20)
{

stop;
return i;

}
else

{
 recursion (i);

}
}

String S(boolean x)

 {

 String satus;

 If (x==1)

 Satus=true;

 Else

Satus=false;

return Satus;

 }

void Z(int x,int y)

 {

Int

area=x*y;

 }

Int k(int f)
{

Int Factorial=1;
While (f > 0)

{
Factorial= Factorial*f;

f - -;
return Factorial;

}
}

1

2

3

A

B

C

Source file 1 Source file 2

Fig. 4.3 Detection Process for Program Analysis.

So let’s zoom-in into one of these clones and get the assigned metrics’ values to under-

stand its nature, ease of cooperating to act as a candidate (see Figure 4.4).

87

Chapter 4. SMP-Based Clone Detection

Int k(int f)
{

Int Factorial=1;
While (f > 0)

{
Factorial= Factorial*f;

f - -;
return Factorial;

}
}

c

DIT

NOC

LCOM

NOM

WMC

Fig. 4.4 High presentation of code fragment along with its measurements.

We have considered some metrics which reflect the aspects of each clone; however, we

have avoided the others due to the scope (clone-granularity) which we specified to act as a

clone candidate.

88

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

4.5.1 The Scenario

int h(int x,int y)

 {

return

x*y;

 }

Float f(int x,int

y)

 {

Float

u=x/y;

return u;

 }

int recursion(int i){
i+=i;

if (i>20)
{

stop;
return i;

}
else

{
 recursion (i);

}
}

String S(boolean x)

 {

 String satus;

 If (x==1)

Satus=true;

 Else

Satus=fals

e;

return Satus;

 }

void Z(int x,int y)

 {

Int

area=x*y;

 }

Int k(int f)
{

Int Factorial=1;
While (f > 0)

{
Factorial= Factorial*f;

f - -;
return Factorial;

}
}

1

2

3

A

B

C

A C B

B C A

B A C

1 2 3

3 2 1

2 1 3

Source file 1 Source file 2

Fig. 4.5 Detection Process for Program Analysis.

4.5.1.1 The stage of Building the Preference Lists

The blocks of the first source file look for the similar blocks of the second source file, based

on the values of the metrics of each fragments of codes. We use java plug-in with eclipse

89

Chapter 4. SMP-Based Clone Detection

1.3.3 known as Metrics 1.3.6 which gives the values of several metrics, to calculate the

required metrics that we wish to consider in this process. We mentioned some of these

metrics in an early section of this chapter.

Table 4.1 Coupling Metrics.

Abbreviations Description
PROM Number of protected methods

PUBM Number of public methods

PRIM Number of private methods

MCIN Number of calls to a method

MCOUT Number of calls from a method

Table 4.2 Method Metrics.

Abbreviations Description
LOC Number lines of code

Nbp Number of parameters

Nbv Number of variables declared in the method

Mca Afferent coupling at method level

Mce Efferent coupling at method level

CC McCabe’s Cyclomatic Complexity

NBD Nested Block Depth

SMP-based approach is similar to the approach presented by Mayrand et al. [88] as

both approaches use several metrics to identify functions with similar metrics values as code

clones. Also, as seen above metrics are calculated from names, layout, expressions, and

(simple) control flow of functions. As a result functions with similar metrics values are

clone. The main different between these two approaches is the algorithm being used, which

accordingly SMP-based approach compete other approaches to obtain better results.

90

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

Table 4.3 Metrics of Source file 1.

Method
Metrics

LOC Nbp Nbv CC NBD

A 6 1 1 2 1

B 4 2 1 1 1

C 6 1 1 2 2

Table 4.4 Metrics of Source file 2.

Method
Metrics

LOC Nbp Nbv CC NBD

1 1 2 0 1 1

2 1 2 1 1 1

3 10 1 0 2 2

As seen with several approaches for instance CloneDR, the user can set the basic criteria

of the search process which influence the end results according to their requirements for

example, similarity threshold which reflects the ratio of identical to total code in the clone.

Also, starting depth is one of these criteria which determine minimum tree depth in the clone

(see Figure A.1).

SMP-approach gives a priority to each candidate (method) to order similar codes (possible

clones) as a preference lists. Similar codes means acceptable to the minimum requirement or

to a certain threshold. Also, with regards to the importance of certain software metric this

means that some software metrics may more valuable than others in order to run this certain

matching process. This reflects the status of the current approaches in term of detecting

software clones as some of these tools are good in detecting some types of software clone

which undetectable by others.

91

Chapter 4. SMP-Based Clone Detection

Methods in SMP-based approach are engaged to each other based on a semi-semantic

way. This is done by selecting a group of software metrics that reflect the deep structure

of the method (method hierarchy). This is the main reason that the SMP-based approach

outperforms other approaches in detecting type 3. These software metrics are weighted

individually and as a group based on the prior requirements.

The weight may vary based on the values of software metrics (Variable weight) for

example if both NBV and NBP weighted by 20% as individual, this may be increased

when they have very close metrics’ values with other method so the chance of the similarity

(detecting clone) is increased. However, there are certain thresholds of the metrics’ values

indicate that both methods are not similar; it can be called unwanted method. The following

table4.5 shows the initial weight of the conducted software metrics.

Table 4.5 Metrics Weight.

Abbreviations Description Weight
LOC Number lines of code 10%

Nbp Number of parameters 20%

Nbv Number of variables declared in the method 20%

CC McCabe’s Cyclomatic Complexity 25%

NBD Nested Block Depth 25%

From the weight priority above, it can be noticed that the SMP-based approach focuses

on the structure of the method to find the cloned methods. However, SMP-based approach

pairs the most similar methods to each other and discards the unwanted methods from the

competition at early stage, which means not listed in the preference list of the method being

92

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

matched with their similar methods. This is a filtering stage based on the software metrics

values and forms the pre-step to the build the preference list that required in the algorithm.

With regards to the weight priority in tables 4.3 and 4.4, the preference lists of involved

candidates appear as follows (Figure 4.6):

1 : B A C

2 : B A C

 3 : C A B

A : 3 2 1

B : 2 1 3

C : 3 2 1

Source file 1
Methods preferences

Source file 2
Methods preferences

Fig. 4.6 Methods preference.

4.5.1.2 The Stage of Running the SMP Algorithm

The stage of running the SMP algorithm each block of the first source file should be engaged

to one and only one block of the second source file and vice versa. Therefore, the blocks of

the first source file start to propose to their best choices of their preference list. The matching

result out of running the SMP algorithm based on the above Figure 4.5 is M (a set of matched

pairs).

93

Chapter 4. SMP-Based Clone Detection

4.5.1.3 Extended SMP Algorithm (Dual-Multi-Allocation) for Clone Detection

SMP algorithm has solved several similar optimisation issues in different fields such as

matching jobs to the most suitable jobseekers. Since the original SMP algorithm allows only

the candidates of the first set (Men) to propose to their first choices, this research devotes to

increase the fairness of SMP algorithm by allowing the candidates of the second set (Women)

to make their own choices i.e. proposes to the best of their choices of the opposite set. The

proposed approach considers a dual multi allocation technique that allows the candidates

of both first and second set to enter the competition and propose again for a certain times

to their preferences. So, each candidate of the first set may have more than one matched

participants of the second set and vice versa.

This adaptation has enhanced the precision of the matching process; it is illustrated in

Figure 4.7 below. In the main SMP algorithm the desire is not controlled by the similarity,

thus the assigned candidates are not meant that they are similar to each other. However, in

clone detection the concept of similarity is essential. Therefore, aforementioned extension of

the current state of SMP algorithm is necessary to be effectively applied in such applications.

A novel matching scheme is needed to achieve smart interaction between the code fragments

of the matched source files. This widens the spot to detecting every possible clone.

Practically, this process gives more than one stable matched pairs; respectively Hospital-

Oriented-man and Hospital-Oriented-woman. Thus, we enclose a novel way of assigning the

related code portions by adding a selective strategy. This strategy helps to choose the pairs

which form similar code clones to a certain threshold. This algorithm results in several stable

matching pairs with dissimilar allocated candidates based on love’s degree, which can be

94

Chapter 4. SMP-Based Clone Detection 4.5 SMP-based Clone Detection

CF1,CF2,CF3

CF2,CF1,CF3

CF2,CF3,CF1

CP1,CP3,CP2

CP2,CP3,CP1

CP3,CP1,CP2

CF = Code Fragments, CP = Code Portions

CF1

CF2

CF3

CP1

CP2

CP3

Less suitablemore suitable

Multi Dual Allocation

Fig. 4.7 Dual Multi Allocation.

controlled to reach a certain level of desires. However, the matching process can be fixed as

default to retrieve candidates of the highest rank love’s degree factor.

However, to increase the fairness of this assignments between the similar fragments of

the aforementioned different source files, a new strategy has been defined and added to the

adapted SMP algorithm (Chapter 3). Also to make the detection process more accurate and

satisfiable.

4.5.2 Discussion

The output of the previously depicted prototype in Figure 4.3 shows a remarkable efficiency

of our approach. A set of metrics are predefined to determine the specs of each fragment

of code, which help each candidate to build up its own preference list in order to apply the

SMP algorithm. It is noticed that the extended algorithm benefits from some features such as

performance and the accuracy of the detected software clones.

95

Chapter 4. SMP-Based Clone Detection

This means that it is possible to develop match making code fragments that are not only

decide on the basis of the candidates’ preferences of the first source file, but are actually

trying to, within the current set of code fragments of both source files, to optimise the pairings

from both perspectives fairly.

Also, allowing the relation of many-to-many has increased the range of clones (high recall,

high precision) that were undetectable with most of previous clone detection approaches.

However, the time complexity is challenging in this newly adapted algorithm, which is still

the same as the original SMP (polynomial time).

4.6 Conclusion

This chapter introduces some software metrics based on different abstract levels to help in

measuring the software portions. Also, two-phase workflow for Clone Detection is presented,

to show the steps of SMP-based approach.

A middle-sized prototype is tested to apply the new adaptation of the SMP (Dual-Multi-

Allocation). This section summarises the key points as follows:

• Some software metrics based on different abstract levels, which help in measuring the

software portions are introduced.

• A two-phase workflow for Clone Detection is presented:

– Building the candidates’ preference lists.

– Applying the new adapted algorithm.

96

Chapter 4. SMP-Based Clone Detection 4.6 Conclusion

• To apply the new adaptation of the SMP (Dual-Multi-Allocation) a small prototype is

tested.

97

Chapter 5

SMP-Based Service Matching

Objectives

� To provide a service selection scenario based on adapted SMP algorithm.

� To present the SMP-based approach to service selection.

� To show a concrete service selection example.

99

Chapter 5. SMP-Based Service Matching

5.1 Overview

Service-oriented computing is establishing itself as a new computing paradigm in which

services advertise their capabilities within a network, and then are used, composed and

orchestrated by other services and end-users. Whilst many approaches to matching service

providers with consumers of their services have been developed in the past, the proposed

approach in this paper takes a different view of the problem in that it does not look for the

fittest individual utility, but views it as a constrained optimisation problem that matches

between a set of services and a set of service requests. Our approach addresses this problem

using an adaptation of the well known stable-marriage problem and demonstrates how

matching between services and requests to a certain threshold can be expressed. This will

contribute a fair assignment between services and requests based on their preferences. As

the current state of the service selection process considers only the view of requests, the

proposed approach can ensure several features to the services such as service protection and

service quality, e.g. it can ensure the preservation of service availability by redirecting a

coming request to a similar service if the current service is busy.

Recent research of service selection focuses on matching behaviour, trying to interact

with services in a smart way. This can positively impact several relevant big topics on

service-oriented computing, such as cloud computing which provides both software and

resources as services, and service composition in which aggregation of services are composed

to automate a certain job.

In this Chapter we will apply a variant of the stable marriage problem to service oriented

computing (SOC) and use it to match between service providers and service consumers.

100

Chapter 5. SMP-Based Service Matching 5.2 Dual-Proposed for Service Selection

Current selection algorithms take the QoS (Quality of Services) constraints of the requestor

(service consumer) into account, but do not consider the preferences of the service provider

in the process. Our work expands this to include preferences that a service provider may have

towards service consumers. Example preferences of a service provider may include returning

customers, payment options and country of origin. The web service selection process should

therefore consider the values of both parties.

5.2 Dual-Proposed for Service Selection

5.2.1 Dual-Proposed Scheme

Dual proposed is one of two main adaptations presented in this thesis. The proposed approach

considers a dual proposed technique that allows the candidates from both sets to propose

to their preferences. This crucial modification has enhanced the precision of the matching

process; it is illustrated in figure 5.1 below. In the main SMP algorithm the desire is not

controlled by the similarity, thus the assigned candidates are not meant that they are similar

to each other. However, in service selection the concept of similarity plays an important role.

Therefore, aforementioned extension of the current state of SMP algorithm is necessary to be

effectively applied in such applications.

A novel matching scheme is needed to achieve smart interaction between the services and

their corresponding requests. This led to a quality satisfaction for selecting the appropriate

services to the equivalent requests as the original SMP algorithm base its matching process

on the desire of the candidates of the first set regardless of the similarity factor. However, in

101

Chapter 5. SMP-Based Service Matching

the process of service selection the similarity between a certain service and the corresponding

request forms the corner stone. This enhancement increases the novelty of SMP algorithm, as

it will help to contribute and serve many applications in different aspects of service matching

or selection.

S1,S2,S3
propose

S2,S1,S3

S2,S3,S1

R1,R3,R2

propose

R2,R3,R1

R3,R1,R2

S = Services, R = Requests

S1

S2

S3

R1

R2

R3

Less suitablemore suitable

Fig. 5.1 Dual Proposed.

Practically, this process gives two different stable matched pairs; respectively man-

optimal and woman-optimal. Thus, we enclose a novel way of assigning men and women to

each other by adding a selective strategy. This strategy helps to choose the most optimal pair

among the final result.

This significant adaptation increases the performance of the original SMP algorithm

especially in the process of service selection. The importance of this extended algorithm is

accomplished by implicating aforementioned selective strategy in Chapter 3.

102

Chapter 5. SMP-Based Service Matching 5.2 Dual-Proposed for Service Selection

5.2.2 Service Matching

To apply the SMP algorithm in services, it needs first to build the preference lists of both

service requirements and service providers. This can be achieved using service profile to

specify the most similar related participants (service requirements or service providers).

Thus, each service requirement needs to strictly order the service providers based on the

similarity and vice versa (similar to Figure 7). However, the SMP algorithm performs a single

assignment (one-to-one) for the involved candidates, which at some points does not help

especially in the case of allocating more than one service requirements to the right service

provider for example. Dual propose algorithm has been proposed to fulfil this requirement

which widely needed in such fields. Figure 5.2 below illustrates a brief depiction about our

approach.

SR1

SR2

SR3

SR4

SP1

SP2

SP3

SP4

Matching

Service
profile

Service
profile

Service providersService requierments

Fig. 5.2 Services Matching with Dual Propose Algorithm

103

Chapter 5. SMP-Based Service Matching

In the following, we apply our approach to the previous example, presented in Figure

2.3:

Table 5.1 ServiceView

M0 Love degree Contrast degree Weight
(SR1,SP4) 2 0 1

(SR2,SP3) 3 3 3

(SR3,SP2) 2 1 2

(SR4,SP1) 2 1 2

ServiceView=New−Man−oriented =(SR1,SP4),(SR2,SP1),(SR3,SP2),(SR4,SP1).

Table 5.2 RequestView

Mz Love degree Contrast degree Weight
(SR1,SP4) 2 0 1

(SR2,SP1) 2 1 2

(SR3,SP2) 2 1 2

(SR4,SP3) 3 1 2

RequestView=New−Woman−oriented =(SR1,SP4),(SR2,SP1),(SR3,SP2),(SR4,SP1),(SR4,SP3).

The combination of both new versions, each candidate may be assigned to more than one

candidates and this based upon the features considered by the selective strategy.

Similarly The following example in Figure 5.3 considers the selective strategy with

different symbols. This example shows different output from the main SMP algorithm,

which allows a candidate to be assigned to more than one candidate from the opposite set of

participants, which reflects the cardinality of many-to-many. The new algorithm provides

different matching pairs from the original man-optimal algorithm.

M0 = { (S1,R5) , (S2,R3) , (S3,R8) , (S4,R6) , (S5,R7) , (S6,R1) , (S7,R2) , (S8,R4)}

104

Chapter 5. SMP-Based Service Matching 5.2 Dual-Proposed for Service Selection

S1: R5 R7 R1 R2 R6 R8 R4 R3

S2: R2 R3 R7 R5 R4 R1 R8 R6

S3: R8 R5 R1 R4 R6 R2 R3 R7

S4: R3 R2 R7 R4 R1 R6 R8 R5

S5: R7 R2 R5 R1 R3 R6 R8 R4

S6: R1 R6 R7 R5 R8 R4 R2 R3

S7: R2 R5 R7 R6 R3 R4 R8 R1

S8: R3 R8 R4 R5 R7 R2 R6 R1

Services’ Preferences

R1: S5 S3 S7 S6 S1 S2 S8 S4

R2: S8 S6 S3 S5 S7 S2 S1 S4

R3: S1 S5 S6 S2 S4 S8 S7 S3

R4: S8 S7 S3 S2 S4 S1 S5 S6

R5: S6 S4 S7 S3 S8 S1 S2 S5

R6: S2 S8 S5 S3 S4 S6 S7 S1

R7: S7 S5 S2 S1 S8 S6 S4 S3

R8: S7 S4 S1 S5 S2 S3 S6 S8

Requests’ Preferences

Fig. 5.3 Service marriages (Similarity-based).

So, the output after applying our strategy is as following:

New-Service-Optimal=M′0= { (S1,R5) , (S2,R3) , (S3,R2) , (S4,R8) , (S5,R7) , (S6,R1) ,

(S7,R7) , (S8,R4) }.

Mz= { (S1,R3) , (S2,R6) , (S3,R2) , (S4,R8) , (S5,R1) , (S6,R5) , (S7,R7) , (S8,R4)}

So, the output after applying our strategy is as following:

New-Request-Optimal= M′z= { (R1,S5) , (R1,S6) , (R2,S3) , (R3,S2) , (R4,S8) , (R5,S6) ,

(R6,S4) , (R7,S5) , (R8,S3) }. = { (S2,R3) , (S3,R2) , (S3,R8) , (S4,R6) , (S5,R1) , (S5,R7) ,

(S6,R1) , (S6,R5), (S8,R4) }.

From above results we can derive the dual-propose-multi-allowance as following:

Service-view
⋃

Request-view = { (S1,R5) , (S2,R3) , (S3,R2) , (S3,R8) , (S4,R6) , (S4,R8)

, (S5,R1) , (S5,R7) , (S6,R1) , (S6,R5), (S7,R7) , (S8,R4) }.

105

Chapter 5. SMP-Based Service Matching

Table 5.3 Service-view

Pairs (m,w) Love degree Contrast degree Weight
(S1,R5) 1 5 3

(S2,R3) 2 2 2

(S3,R8) 1 5 3

(S4,R6) 6 1 4

(S5,R7) 1 1 1

(S6,R1) 1 3 2

(S7,R2) 1 4 3

(S8,R4) 3 2 3

Table 5.4 Request-view

Pairs (m,w) Love degree Contrast degree Weight
(R1,S5) 1 3 2

(R2,S3) 3 3 3

(R3,S1) 1 7 4

(R4,S8) 1 2 2

(R5,S6) 1 3 2

(R6,S2) 1 7 4

(R7,S7) 1 2 2

(R8,S4) 2 5 4

Whereas, Service-view
⋂

Request-view = { (S2,R3) , (S3,R2) , (S5,R7) , (S6,R1) }.

The above results are used as threshold between the views of both parties. The union in-

cludes more pairs which are more relevant to the view of one party. However, the intersection

is the view that is agreed by both parties.

106

Chapter 5. SMP-Based Service Matching 5.3 Cloud Service Availability

5.3 Cloud Service Availability

As seen in the previous sections, there are several fields can benefit from our approach to

achieve a considerable improvements. Our service matching approach reliably tackles the

issue of service unavailability by redirecting the related request or requests to the most similar

and available service or services when the current service is busy.

Applying SMP algorithm in services needs first building the preference lists of both

services from matched cloud domains. This can be achieved using service profile to specify

the most similar related participants (services in the other pool). Thus, each service from p1

needs to strictly order the services from p2 based on the similarity and vice versa. However,

the original SMP algorithm performs a single assignment (one-to-one) for the involved

candidates, which at some points does not help especially in the case of allocating more

than one service to the right service in matched cloud domain for example. Dual propose

algorithm has been proposed to fulfil this requirement which widely needed in such fields.

Figure 5.4 below illustrates a brief depiction about our approach.

The result is matching of services from different domains or pools that take into account

the preferences of both parties. This means that our approach is able to develop match

making services that trying to optimise the pairings from both perspectives fairly.

This presented matching scheme covers a noticeable hole of the current state of the

original SMP algorithm and perfectly assigned to the world of software engineering, serving

in several aspects the needed allocation process that requires a high consideration of both

sides of matched candidates. Also, our approach shows the ability to enhance the quality

of allocating the similar services to each other, through considering the desire (similar

107

Chapter 5. SMP-Based Service Matching

S1

S2

S3

S4

S’1

S’2

S’3

S’4

Matching

Service
profile

Service
profile

Cloud domain (pool2)Cloud domain (pool1)

Fig. 5.4 Service Matching in Cloud.

or equivalence) of the matched services, which result in increased the satisfaction of the

candidates in each pair, expecting a high stability. However, the Scheme should expect

some limitation in terms of the time feature, as the consideration of the candidates’ desire

needs more computation and recursion to fulfil and reached the highly required stability.

The implementation shows a competitive scheme which relatively performed in a large

environment.

108

Chapter 5. SMP-Based Service Matching 5.4 Discussion

5.4 Discussion

Our contribution in this chapter is the selective strategy, that compromises the preferences of

the service provider and the service request in a service oriented computing environment.

Our scheme can increase the quality of allocating the services to the corresponding requests,

through considering the desire of the matched candidates, which results in increased satisfac-

tion of the candidates in each pair. This leads to more stable service bindings and has the

potential to reduce inefficiencies that are incurred through re-binding and alternative lookups.

However, as long as the proposed scheme uses the adaptation of Dual proposed, the scheme

would require a polynomial time to complete the pairing process.

In our future work we would like to look at how dynamic constraints such as incurred by

load and execution constraints on the providers would influence the stability of the matches.

We also plan to evaluate our approach against strategies that consider only the interests of the

service consumer.

5.5 Conclusion

This chapter introduces a new adaptation to the topic of service selection and discusses many

relevant issues such as service availability. A middle sized prototype based on the defined

adaptation is tested and shows that the adapted algorithm tackles such issues.

This section summarises the key points of this chapter as follows:

• A new adaptation of SMP Algorithm (Dual-Proposed) is applied for the process of

Service Selection.

109

Chapter 5. SMP-Based Service Matching

• To apply the new adaptation of the SMP (Dual-Proposed), a small prototype is tested.

• The service availability is discussed and how the new adapted algorithm can help to

overcome this issue.

110

Chapter 6

Evaluation

Objectives

� To provide a medium-sized experiment to test the SMP-based approach to clone

detection and to analyse the obtained results against a solid benchmark.

� To provide an automated experiment to test the SMP-based approach to service selec-

tion.

111

Chapter 6. Evaluation

6.1 Clone Detection

6.1.1 Introduction

There are several clone detection techniques and tools for different interest of purposes.

Therefore, there are some properties or parameters which can be used to compare the existing

techniques or approaches of clone detection. These properties are relatively considered

as challenges of detecting software clones. In the following we mention some of these

parameters:

• Recall: a good approach should be able to identify all relevant software clones of a

system. Some of these clones may not be detected due to the reshape of the syntactic

forms and therefore the similarity with the original, might not be recognised, although

there is a relationship between the code fragments.

• Precision: the tool should detect software clone with a high precision among the

retrieved clones, so less of false positive (discussed more in the next section).

• Robustness: the tool should be able to tackle different type of code clones and can find

any hidden relationships between the software clones with higher recall and precision.

• Scalability: a good tool should be able to detect software clones in large system and

handle complex systems efficiently (speed & memory).

The proposed approach tries (SMP-based) to maximise the range of considering the possible

corresponding code clones. However, the final results show that based on the basic of the

112

Chapter 6. Evaluation 6.1 Clone Detection

original algorithm the time complexity may needs to be considered, which is quadratic time

(polynomial time), as most of the metrics techniques’ computational time is linear time.

Several related materials are considered in order of carrying out this experiment as

follows:

1) Many software metrics tools to calculate the required values of code fragments such as

Eclipse Metrics Plug-in 1.3.6

2) Also some pioneered metrics-based approaches as benchmarks to be compared against

our approach in several facets; such as eMetrics proposed by Fabio et al [20, 79].

3) Moreover, different samples (snapshots of used source code) which have been already

considered by other researchers (exists tools) to give a precise comparison.

6.1.2 Case Study (Job Search System)

6.1.2.1 Overview

The job search web application project provides services for both jobseekers and companies

to seek their needs. It allows different organizations to upload different categories of job

advertisements to the system to be viewed by appropriate applicants. The system has an

automatic matching facility that matches the job specification with the applicant’s preferences

when the conditions are met. The job search engine will shows only the related jobs to what

has been searched for. In this thesis, the job search web application has been utilized as a

case study, in order to apply our approach detecting the possible similar code (code clones)

within the whole project.

113

Chapter 6. Evaluation

6.1.2.2 Related Technology

This section gives a brief overview of the technologies that have been used to implement this

project. These technologies are as flow:

• Java programming. It is a professional object oriented programming language that

was developed by Sun Microsystems. It is independent platform which means that is

can be executed on many different operating systems [3]. In our case, it makes this

case study more suitable to use it with our approach as many clone detection tools

have used several java-based cases to evaluate their approaches.

• Hibernate. Hibernate is an ORM tool for Java that uses XML files as a replacement

for the database tables in the design and implementation. However, it has been aimed

to be used with the database in this project. Hibernate has been developed by Gavin

King and a team of Java developers and is supported by Red Hat. Hibernate is used to

perform operations on the database by mapping the instance variables in the classes

with the columns in the database [3].

• Spring Framework. Spring Framework has many features, organised in seven mod-

ules.

• Wicket Framework Wicket is an open source component-oriented Java web applica-

tion framework [3].

• Aegis which is also called Spring Security is a power full and flexible security solution

that provides applications with comprehensive authentication and authorization.

114

Chapter 6. Evaluation 6.1 Clone Detection

• PostgreSQL is one of the most popular databases that have a strong reputation in

terms of reliability and data integrity. It is easily capable to operate on top of many

different operating systems.

• JavaScript is the scripting language of the Web that adds functionality, validates

forms; detects browsers, etc. This project has already used this language to validate

forms and apply some functionality.

6.1.2.3 System Design

The system consists of three major tiers namely presentation tier, business tier and data tier.

Each of these tiers or levels performs part of the functional requirements of the system. They

are all inter-connected to achieve the overall objective of the system as seen in following

figure 6.1

Fig. 6.1 Three-tier architecture.[3]

The following table 6.2 describes the layers of the three-tier architecture and shows how

this web application has adopted each of them:

115

Chapter 6. Evaluation

Fig. 6.2 Three-tier description of the project.

6.1.3 Clone Detection Experiment

An example (a Java code of a job search system) has taken place over a medium size of

source files with around 460 methods as appears in the following tables. However, the way of

calculating metrics is reflecting the priority of wanted aspects of each block. This specified

116

Chapter 6. Evaluation 6.1 Clone Detection

merged metrics are justified to accomplish the purpose of detecting as many as possible of the

code clones, achieving high recall. Moreover, the precision of the retrieved code fragments

needs to be considered, avoiding both false-negative and false-positive.

Table 6.1 Job search system

#Files Size #Methods #LOC Language
73 260kb 495 6085 Java

Table 6.1 shows the details of the job search system, which has been used to extract

software clones using our approach (SMP-based). Table 6.2 shows some calculated metrics

in the job search system.

Table 6.2 Snapshot of some metrics in the job search system

Method
Metrics

LOC Nbp Nbv CC NBD
AdminPage 118 0 2 3 3

ManageType 61 0 6 3 4

ChangePass 40 1 2 2 3

NewJob 49 1 11 2 3

JobSearch 122 2 6 5 4

UpdateAdmin 48 1 6 2 2

We have used the CloneDR tool to find the duplicated code in job search project. The

CloneDR tool has got several parameters which influence the ultimate results of the software

clone pairs, such as minimum mass (lines) and similarity threshold. Table 6.3 shows actual

cloned software in both job search project and netbeans-javadoc.

Figure 6.3 below shows the detected clone candidates, actual clone candidates and three

types of clone software in both job search project and netbeans-javadoc.

117

Chapter 6. Evaluation

Table 6.3 Number of actual clone for program netbeans-javadoc and job search project.

Cands Actual cands Type1 Type2 Type3
Jobsearch 41 38 19 16 3

netbeans-javadoc 82 70 27 38 5

Fig. 6.3 Number of clone candidates for program netbeans-javadoc and job search project.

To avoid bias, all actual candidates are inspected, to make sure that the candidates are

real software clones. The results therefore, are subjected to examination by author who has

investigated software clone candidates which were detected by SMP-Based approach. Figure

6.4 displays the total detected code clones and their derived types based on the inspected

clone candidates, comparing CloneDR to SMP-Based.

118

Chapter 6. Evaluation 6.1 Clone Detection

Table 6.4 Number of clone candidates for program netbeans-javadoc and job search project.

SMP-approach CloneDR
Type1 Type2 Type3 Total Type1 Type2 Type3 Total

Jobsearch 17 11 13 41 19 16 3 38

netbeans-javadoc 23 29 16 68 27 38 5 70

Fig. 6.4 Number of clone candidates for program netbeans-javadoc and job search project.

Also, we have considered the experiment conducted by Bellon et al. in their valuable

article [16] and examine its findings to evaluate our approach. Figure 6.5 depicts several

clone detection tools including our technique, finding software clones based on their types.

119

Chapter 6. Evaluation

Table 6.5 Number of detected software clones for job search project.

Type1 Type2 Type3 Total
Data set 40 20 10 70

SMP-approach 17 11 13 41

Baker 29 17 6 52

Kamiya 33 12 5 50

Rieger 30 13 6 49

Fig. 6.5 Number of detected software clones for job search project.

Some examples of software clones types are listed in Appendix A (see figure A.7).

6.1.3.1 Recall and Precision

In this section we demonstrate two important measures that we use in some of the evaluation

parts of this chapter. To measure the effectiveness of a retrieval method in information

120

Chapter 6. Evaluation 6.1 Clone Detection

retrieval, there are two important measures; recall and precision. Figure 6.6 below shows the

calculation of these measures. These can be calculated if we suppose there exists set A of

actual clones precisely inspected by human. However, it is very expensive to determine A

using manual inspection, which means that the final results are subjective to the inspector.

The tools of clone detection will identify some set C of candidate clones. The ideal set C

should be as close as possible to the actual clones of set A. However, the set of candidates D

presents a real software clones. Precision measures the fraction of candidates that are actually

clones, and recall measures the fraction of actual clones that are identified as candidates.

Achieving both high recall and precision reflects an ideal approach.

Fig. 6.6 Recall and precision.

The following are two definitions that used for calculating recall ad precision of our

approach (SMP-based) and CloneDR.

Definition 1:

121

Chapter 6. Evaluation

• Let AllCands(P,T, t)denote the reported candidates (possible software clones) of a

program P by conducted tools T with respect to clone type t.

• Let Cands(P,T, t) denote the reported candidates (possible software clones) of program

P by tool T with respect to clone type t.

• Let InspectedCands(P,T, t) denote all candidates (possible software clones) of tool T

for program P and clone type t that examined by an independent inspector.

• Let ActuCands(P,T, t) denote the reported actual clone candidates of program P by

tool T with respect to clone type t by the inspector.

• Let IntersetCands(P,T, t) denote all candidates (possible software clones) of con-

ducted tools of a program P with respect to clone type t that are in common.

Definition 2:

Recall = ActuCands(P,T,t)
AllCands(P,T,t) ;

Precision = ActuCands(P,T,t)
Cands(P,T,t)

The following figure 6.7 shows the recall of our approach (SMP-based) against CloneDR

based on different bases, as defined in Definition 1 and 2.

The following figure 6.8 shows the precision of our approach (SMP-based) against

CloneDR based on different bases, as defined in Definition 1 and 2. We have noticed that our

approach can detect more software clones of type 3 compared to other tools, which indicate

a deep understanding of the code geologies, whereas the most recognised code clones are

type 1.

122

Chapter 6. Evaluation 6.1 Clone Detection

Fig. 6.7 Recall; see Definition 2.

The difference of the results refers to the considered metrics in aforementioned ap-

proaches, as SMP-based has used some metrics which present the nature of the code methods

rather than focusing on the syntactic facet of the software clone.

6.1.3.2 Discussion

The experiment shows that the SMP-based approach can precisely identify a type-3 clone

which is a copy with further modifications more than syntactic changes. The main features of

SMP-based approach are competitively outweigh some already existing approaches in several

facets such as increasing the spot of the detection process to try to detect every possible

clone smell. However, this approach lacks two related features respectively time complexity

and speed as the used algorithm is executed in a quadratic time, which impacts the overall

123

Chapter 6. Evaluation

Fig. 6.8 Precision; see Definition 2.

scalability. The clone granularity has been set as method-based blocks in which every method

acts as a candidate (possible software clone).

A remarkable efficiency of the proposed approach have been evaluated by carrying out a

case study on two medium size source files, each file has more than 100 specified blocks.

Also, a set of metrics are predefined to help each candidate to build up its own preference list

in order to apply the SMP algorithm. We observed some appointed features for the extended

algorithm (e.g. performance) and the status of the detected clones (e.g. accuracy). This

means that we are now able to develop match making code fragments that not only decide

on the basis of the candidates’ preferences of the first source file, but are actually trying to,

within the current set of code fragments of both source files, to optimise the pairings from

both perspectives fairly. Similarly, allowing the many-to-many relationship to increase the

124

Chapter 6. Evaluation 6.2 Service Selection

range of clones (high recall, high precision) that are undetectable with most of the previous

clone detection approaches. The time complexity is the same as the original SMP algorithm

(polynomial time).

6.2 Service Selection

6.2.1 Case Study

To apply the SMP algorithm in service selection, it needs first to build the preference lists of

both requests and services. This can be achieved using service profile to specify the most

similar related participants (services or requests). Each request needs to strictly order the

service based on the similarity and vice versa (similar to Figure 5.3). The traditional SMP

algorithm performs a single assignment (one-to-one) for the involved candidates, which does

not help especially in the case of allocating more than one service requests to the right service

for example. Dual-proposed algorithm has been proposed to fulfil this requirement.

6.2.1.1 A Hotel Reservation Example

Figure 6.9 is a general example of web service composition scenario.

125

Chapter 6. Evaluation

1. Flight Booking

2. Hotel Reservation

3. Weather

4. Car Rental
5. Payment

Fig. 6.9 General Example of web services.

Figure 6.10 shows an engaged service, hotel reservation, to the most suitable requests

using SMP algorithm based on the QoS and the values of both candidates. There are different

hotel services to show the rooms available, the style of the rooms etc. There are also some

hotel reservation requests from the customers or agents. Then the extended dual-proposed

algorithm can be applied to choose the best services.

The result is matching of service providers (hotels) and consumers (guests) that do not

only take into account the preferences of the respective consumers, but also those of the

providers. This means that we are now able to develop match making services that not only

decide on the basis of the request’s preferences, but are actually trying to, within the current

set of services requests and services, optimise the pairings from both perspectives fairly.

126

Chapter 6. Evaluation 6.2 Service Selection

Hotel Reservation ServicesHotel Reservation Requests

Serv1

Serv2

Serv3

Serv4

QoS Constraints
& Values

Service Provider
Update Services

QoS Computation

Fig. 6.10 SMP-based service selection.

6.2.1.2 Discussion

The network administrator should act as the stakeholder and take advantage of monitoring

the process of matching services to requests. This provides reliable information such as

profile and history details of both services and requests. The result is a service interaction in

which optimal assignments of these two parties ensure safety, reliability, dependability and

stability to their candidates.

Based on the characteristics of both services and requirements of customers’ requests,

our approach can start triggering the matching process to allocate the most proper customers’

requests to the most appropriate services and considers both views using our smart selective

strategy.

Our approach contributes to the service selection by adding the matching behaviour rather

than the traditional existing search-based techniques which picks up the required services

from the UDDI directory regardless of the constraints of the chosen services.

127

Chapter 6. Evaluation

Web services should be dealt with as independent objects that have their own view about

incoming consumers’ request and are aware of its requirements. Therefore, SMP-based

approach gives services rights to whether accept or decline the customers’ requests, with

regards to their conditions. This can corroborate the concept of equal opportunity which in

turn ensures the stability.

Moreover, this approach helps services to check the trust level of the client, which

supports both safety and reliability. On demand, the service may choose to reject the client

because he demanding highly computational task that may impact other ongoing tasks in the

service to meet a quality of service that it promised to other clients.

The following Diagrams 6.11 and 6.12 show some considered facets of both consumer’s

request and web service respectively, in a simple prototype example of hotel reservation.

Hotel
Reservation

Request

Room type

Room rent

Time

Hotel branch

Provided
services

Prospective
tenant

Taxi
Flight

reservation

Restaurants

Entertainment

Swimming pool

Gym

Additional
conditions

No smokers

Pet allowed

Age of child

Room
description

Find an offer

Check the
distance

Bid a room Hotel rank

Fig. 6.11 Hotel Reservation Request.

128

Chapter 6. Evaluation 6.2 Service Selection

Hotel
Reservation

Service

Room type

Room price

Time

Hotel branch

Provided
services

Prospective
tenant

Taxi
Flight

reservation

Restaurants

Entertainment

Swimming pool

Gym

Additional
conditions

No smokers

Pet allowed

Age of child

Room
description

Smart deals

Distance from
certain

destination
Rooms for

bidding
Hotel rank

Fig. 6.12 Hotel Reservation Service.

The following Figure 6.13 depicts an early pre-step of matching consumer’s requests to

the services of hotel reservation using SMP-Based approach.

6.2.2 Experiment for Service Selection

In this part we apply dual-proposed algorithm for selection process of the services to the

relevant requests. We assume a many to many relationship in which the service can serve

more than one request at a time, also the request is served by more than one service to fulfil

its requirements. The following screen-shots 6.14, 6.15 and 6.16 present a prototype of

java program that designed to show the execution of both the original SMP algorithm beside

the newly adapted dual-proposed algorithm.

129

Chapter 6. Evaluation

HRS4 HRS1

HRS2

HRS4

HRS3

CRR1

CRR2

CRR3

CRR4

HRS2

HRS3

HRS1

HRS3

HRS1

HRS4

HRS2

HRS3

HRS2

HRS1

HRS4

HRS1

HRS2

HRS4

HRS3

HRS1 HRS2

HRS4HRS3

Fig. 6.13 Hotel Reservation Example.

The preference lists are randomly generated for each candidate and for each service.

Then we choose to run either of the two algorithms. The results appear in the right part of

the screen along with the execution time.

Figure 6.14 shows the service-optimal based on the original SMP algorithm. This gives

the priority to the party of services whereas in Figure 6.15 the best choices are selected by

the requests. This not satisfies the service selection process as long as the relation based on

this main SMP algorithm is still one-to-one.

However, results in Figure 6.16 reflects clearly the relation of many-to-many between

the services and the requests as this meet the purpose of the two direction approach that

130

Chapter 6. Evaluation 6.2 Service Selection

Fig. 6.14 Execution of the main SMP Service Optimal.

consider the view of the services party. It can be seen that the selective strategy is applied

and the relevant factors (love degree, contrast degree and weight) are calculated in the right

area of the output Figure 6.16.

The final results shows that our algorithm accurately performs the selection process for

the wanted purpose. The final pairs are accordingly stable and achieve the satisfaction, with

regard to their preferences. However, the computational time still in concern, the execution

time of both dual-proposed and the main SMP algorithm is almost the same, running in a

quadratic time (polynomial time).

131

Chapter 6. Evaluation

Fig. 6.15 Execution of the main SMP Request Optimal.

6.3 Conclusion

This chapter discuses two different experiments for two issues, to support the proposed

methods. This gives a chance to compare the introduced method to the previous approaches

for both clone detection and service selection. The obtained results show that the proposed

approach outperforms the cur-rent approaches in overall performance.

This section summarises the key points of this chapter as follows:

• Two experiments for both clone detection and service selection are presented.

• Compare the SMP-based approaches to the existing approaches.

• The obtained results are analysed to evaluate some properties such as accuracy and

overall performance.

132

Chapter 6. Evaluation 6.3 Conclusion

Fig. 6.16 Execution of the dual-proposed SMP algorithm.

133

Chapter 7

Conclusion and Future Work

Objectives

� To summarise the whole thesis and provide some recommendations.

� To show the limitations of our approach.

� To provide some possible future works.

135

Chapter 7. Conclusion and Future Work

7.1 Summary of the Thesis

This chapter concludes the thesis as detailed in the former chapters. Comparing and reviewing

the work to the existing relevant approaches in the literature. The thesis demonstrates that

the developed selective strategy utilises the SMP algorithm effectively for enhancing the

task of both service selection and clone detection. The proposed modifications to the SMP

algorithm further enhance the efficacy of the algorithm, improving the cardinality to achieve

many-to-many relationship and therefore, improving both the detection process of the code

clones and matching process of service selection. Similar software applications could also

benefit from the newly adapted algorithm. The capabilities and potential of the approach

are experimentally validated, and compared with either the relevant techniques, or original

approaches in the literature. Ultimately, the chapter states a number of directions for future

works. The thesis aggregates and relates together a number of relatively big topics, starting

with utilising stable marriage problems in software engineering.

7.2 Contributions Revisited

The principle contributions of this thesis are as follows:

• First, we extend the original SMP algorithm for purpose of software context, to ensure

a proper correlation process between the involved candidates. The two extensions

respectively named as Dual proposed and Dual Multi Allocation. The first extension

is based on the original SMP algorithm, whereas the second adaptation is based on

the hospital resident algorithm (HR) originally derived from the main SMP algo-

136

Chapter 7. Conclusion and Future Work 7.2 Contributions Revisited

rithm. These extensions accommodate the main idea of the SMP in order to improve

and enhance the current state of software clone detection and the process of service

selection.

• Second, we design a semi-automated experiment on several real programs (netbean-

javadoc), and also contribute to the results of Bellon’s study. As the final results are

subjects to an independent expert programmer who manually checks the detected clone

candidates, he notices that most of suspected software clone candidates are real cloned

software. He states that SMP-based approach shows very competitive results compared

to some existing software clone approaches, especially in identifying type 3 (a copy

with further modifications such update, add and delete statements) of cloned software

and he regards these results very encouraging. Also, the SMP-based technique acts very

well with regards to the accuracy, showing a high percentage of recall of 44% which is

just above the percentage achieved by CloneDR, and accomplishes a good percentage

of precision of 79% compared to some previous approaches. The main drawback of the

approach is that it requires a polynomial time O(n3) to run the algorithm, however, as

the compare granularity fixed to the method-based level, the number of candidates are

much lower than some other approaches which rely on very small blocks for instance

line-based or token-based. This alleviates the problem of time complexity and puts the

SMP-based approach in acceptable range of other approaches.

• Finally, we utilise the SMP-based algorithm to the process of service selection where a

basic search-based algorithm is presented. The SMP-based ensures matching behaviour

137

Chapter 7. Conclusion and Future Work

to this process, and deals with each service as an independent object which has the

right to whether accept or decline a certain request based on their constraints. The

initial results shows that the SMP-based approach preserves the service quality, as

the busy service will either redirect or simply reject the coming request. Moreover,

the SMP-based helps services to protect themselves against malicious requests by

checking the consumer’s profile, and therefore, ensures both safety and reliability.

7.3 Success Criteria Revisited

We emphasize the criteria of success of our approach as follows:

• The adaptation of the main SMP algorithm (SMP-based) is successfully extended to

process the relationship of many-to-many, which helps in software engineering context,

and is applied to matching process of both clone detection and service selection, which

performs well in correlating similar candidates.

• SMP-based approach outperforms the current clone detection, especially in recognising

type 3 of software clones, and shows high precision and high recall.

• Service selection process clearly benefits from the SMP-based approach by ensuring

an intelligent matching interaction between services and requests.

• All aforementioned steps are experimentally tested and showed competitive results.

138

Chapter 7. Conclusion and Future Work 7.4 Thesis Limitations

7.4 Thesis Limitations

In this section, we show the limitations of this thesis as follows:

• Our SMP-based approach less efficient, because of its nature as the original SMP

algorithm is performed in a polynomial time O(n3).

• Our SMP-based approach is limited to detect software clones of type 1,2 and 3, and

faces difficulties to recognise most of semantically equivalence code fragments (type

4).

• In service selection, we assumed that the services are completely independent which

requires a third party to ensure the workflow of the matching process between the

candidates of both parties. We regard this as a new paradigm that has not yet been

tested in reality.

7.5 Future Work

We make several recommendations in relation to future research:

• To improve the SMP-based approach to automatically and dynamically compare

different levels of software clone granularities, as its current status is fixed to method-

based only.

• To improve SMP-based approach by consider some semantic techniques such as

ontology alignments which positively affects the matching process among the textual

part of paired elements. This will ensure a perfect service selection.

139

Chapter 7. Conclusion and Future Work

• To extend the SMP-based approach to detect type 4 of cloned software, which performs

with same computations but are implemented by different syntactic variables.

• To resolve the issue of service availability by correlating the similar cloud services

from different pools of services in order to provide similar services

140

References

[1] Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Data Engineering,
1995. Proceedings of the Eleventh International Conference on, pages 3–14. IEEE.

[2] Alghamdi, J. S., Rufai, R. A., and Khan, S. M. (2005). Oometer: A software qual-
ity assurance tool. In 2011 15th European Conference on Software Maintenance and
Reengineering, pages 190–191. IEEE Computer Society.

[3] AlHakami, H. (2009). Job search web application. Master’s thesis, The University of
Birmingham.

[4] AlHakami, H., Aldabbas, H., and Alwada’n, T. (2012). Comparison between cloud and
grid computing: review paper. International Journal on Cloud Computing: Services and
Architecture, 2(4):1–21.

[5] AlHakami, H., Chen, F., and Janicke, H. (2014). An extended stable marriage prob-
lem algorithm for clone detection. International Journal of Software Engineering &
Applications (IJSEA), 5:103–122.

[6] Alrifai, M. and Risse, T. (2009). Combining global optimization with local selection
for efficient qos-aware service composition. In Proceedings of the 18th international
conference on World wide web, pages 881–890. ACM.

[7] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

[8] Baker, B. S. (1993). A program for identifying duplicated code. Computing Science and
Statistics, pages 49–49.

[9] Baker, B. S. (1995). On finding duplication and near-duplication in large software
systems. In Proceedings of 2nd Working Conference on Reverse Engineering, pages
86–95. IEEE.

[10] BALANCED, S. M. T. (2013). Web service description framework and selection
mechanism towards balanced perceptions of fqos and qos. Journal of Theoretical and
Applied Information Technology, 47(1).

141

[11] Balazinska, M., Merlo, E., Dagenais, M., Lague, B., and Kontogiannis, K. (1999).
Measuring clone based reengineering opportunities. In Software Metrics Symposium,
1999. Proceedings. Sixth International, pages 292–303. IEEE.

[12] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C. (2008). Service
selection by choreography-driven matching. In Emerging Web Services Technology,
Volume II, pages 5–22. Springer.

[13] Basit, H. and Jarzabek, S. (2009). A data mining approach for detecting higher-level
clones in software. Software Engineering, IEEE Transactions on, 35(4):497–514.

[14] Basit, H. A. and Jarzabek, S. (2007). Efficient token based clone detection with
flexible tokenization. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 513–516. ACM.

[15] Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). Clone detection
using abstract syntax trees. In Software Maintenance, 1998. Proceedings. International
Conference on, pages 368–377. IEEE.

[16] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison
and evaluation of clone detection tools. Software Engineering, IEEE Transactions on,
33(9):577–591.

[17] Bergh, D. and Ketchen, D. (2009). Research Methodology in Strategy and Management.
Number v. 5 in Research methodology in strategy and management. Emerald Group
Publishing Limited.

[18] Biró, P. and Mcdermid, E. (2014). Matching with sizes (or scheduling with processing
set restrictions). Discrete Applied Mathematics, 164:61–67.

[19] Burd, E. and Bailey, J. (2002). Evaluating clone detection tools for use during preventa-
tive maintenance. In Source Code Analysis and Manipulation, 2002. Proceedings. Second
IEEE International Workshop on, pages 36–43. IEEE.

[20] Calefato, F., Lanubile, F., and Mallardo, T. (2004). Function clone detection in web
applications: A semiautomated approach. Journal of Web Engineering, 3:3–21.

[21] Chen, W.-K., Li, B., and Gupta, R. (2003). Code compaction of matching single-entry
multiple-exit regions. In Static Analysis, pages 401–417. Springer.

[22] Cheng, C., McDermid, E., and Suzuki, I. (2008). A unified approach to finding
good stable matchings in the hospitals/residents setting. Theoretical Computer Science,
400(1):84–99.

[23] Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6):476–493.

[24] Cross, V. and Hu, X. (2011). Using semantic similarity in ontology alignment. Ontology
Matching, page 61.

[25] Cuomo, A., Santone, A., and Villano, U. (2012). A novel approach based on formal
methods for clone detection. In Proceedings of the 6th International Workshop on Software
Clones, pages 8–14. IEEE Press.

[26] Davey, N., Barson, P., Field, S., Frank, R., and Tansley, D. (1995). The development
of a software clone detector. International Journal of Applied Software Technology,
1(3/4):219–236.

[27] Dodig-Crnkovic, G. (2010). Constructivist research and info-computational knowledge
generation. In Magnani, L.; Carnielli, W. P. C., editor, Model-Based Reasoning In
Science And Technology - Abduction, Logic, and Computational Discovery (Studies in
Computational Intelligence), pages 359–380. Springer Verlag.

[28] Ducasse, S., Nierstrasz, O., and Rieger, M. (2006). On the effectiveness of clone
detection by string matching. Journal of Software Maintenance and Evolution: Research
and Practice, 18(1):37–58.

[29] Euzenat, J. and Shvaiko, P. (2007). Ontology matching, volume 18. Springer Berlin.

[30] Evans, W. S., Fraser, C. W., and Ma, F. (2009). Clone detection via structural abstraction.
Software Quality Journal, 17(4):309–330.

[31] Falke, R., Frenzel, P., and Koschke, R. (2008). Empirical evaluation of clone detection
using syntax suffix trees. Empirical Software Engineering, 13(6):601–643.

[32] Feder, T. (1994). Network flow and 2-satisfiability. Algorithmica, 11(3):291–319.

[33] Feder, T., Megiddo, N., and Plotkin, S. A. (1994). A sublinear parallel algorithm for
stable matching. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 632–637. Society for Industrial and Applied Mathematics.

[34] Fleiner, T., Irving, R. W., and Manlove, D. F. (2011). An algorithm for a super-stable
roommates problem. Theoretical Computer Science, 412(50):7059–7065.

[35] Gale, D. and Shapley, L. (2013). College admissions and the stability of marriage. The
American Mathematical Monthly, 120(5):386–391.

[36] Gale, D. and Sotomayor, M. (1985). Some remarks on the stable matching problem.
Discrete Applied Mathematics, 11(3):223–232.

[37] Gallagher, K. and Layman, L. (2003). Are decomposition slices clones? In Program
Comprehension, 2003. 11th IEEE International Workshop on, pages 251–256. IEEE.

[38] Gitchell, D. and Tran, N. (1999). Sim: a utility for detecting similarity in computer
programs. In ACM SIGCSE Bulletin, volume 31, pages 266–270. ACM.

[39] Goddard, W. D. and Melville, S. (2004). Research methodology: An introduction.
jutaonline. co. za.

[40] Guo, G., Yu, F., Chen, Z., and Xie, D. (2011). A method for semantic web service
selection based on qos ontology. Journal of Computers, 6(2):377–386.

[41] Gusfield, D. (1987). Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing, 16(1):111–128.

[42] Gusfield, D. (1988). The structure of the stable roommate problem: efficient rep-
resentation and enumeration of all stable assignments. SIAM Journal on Computing,
17(4):742–769.

[43] Gusfield, D. and Irving, R. W. (1989). The stable marriage problem: structure and
algorithms.

[44] Harman, M. (2007a). The current state and future of search based software engineering.
In 2007 Future of Software Engineering, pages 342–357. IEEE Computer Society.

[45] Harman, M. (2007b). Search based software engineering for program comprehension.
In Program Comprehension, 2007. ICPC’07. 15th IEEE International Conference on,
pages 3–13. IEEE.

[46] Harman, M., Burke, E., Clark, J., and Yao, X. (2012a). Dynamic adaptive search based
software engineering. In Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement, pages 1–8. ACM.

[47] Harman, M. and Clark, J. (2004). Metrics are fitness functions too. In Software Metrics,
2004. Proceedings. 10th International Symposium on, pages 58–69. IEEE.

[48] Harman, M. and Jones, B. F. (2001). Search-based software engineering. Information
and Software Technology, 43(14):833–839.

[49] Harman, M., McMinn, P., de Souza, J. T., and Yoo, S. (2012b). Search based software
engineering: Techniques, taxonomy, tutorial. In Empirical Software Engineering and
Verification, pages 1–59. Springer.

[50] Holland, J. H. (1975). Adaptation in natural and artificial systems. University of
Michigan Press.

[51] Huang, A. F., Lan, C.-W., and Yang, S. J. (2009). An optimal qos-based web service
selection scheme. Information Sciences, 179(19):3309–3322.

[52] Humphrey, W. S. (1997). Introduction to the personal software process. Addison-
Wesley Professional.

[53] Irving, R., Leather, P., and Gusfield, D. (1987). An efficient algorithm for the "optimal"
stable marriage. Journal of the ACM (JACM), 34(3):532–543.

[54] Irving, R. W. (1985). An efficient algorithm for the "stable roommates" problem.
Journal of Algorithms, 6(4):577–595.

[55] Iwama, K. and Miyazaki, S. (2008). A survey of the stable marriage problem and its
variants. In Informatics Education and Research for Knowledge-Circulating Society, 2008.
ICKS 2008. International Conference on, pages 131–136. IEEE.

[56] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). Deckard: Scalable and accurate
tree-based detection of code clones. In Proceedings of the 29th international conference
on Software Engineering, pages 96–105. IEEE Computer Society.

[57] Jiang, M., Ding, Z., and Liu, J. (2012). Service selection based on behavior matching.
Journal of Software, 7(9):1950–1959.

[58] Jiang, Z., Hassan, A., and Holt, R. (2006). Visualizing clone cohesion and coupling. In
Software Engineering Conference, 2006. APSEC 2006. 13th Asia Pacific, pages 467–476.
IEEE.

[59] Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. In
Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative
research: software engineering-Volume 1, pages 171–183. IBM Press.

[60] Johnson, J. H. (1994). Visualizing textual redundancy in legacy source. In Proceedings
of the 1994 conference of the Centre for Advanced Studies on Collaborative research,
page 32. IBM Press.

[61] Junhao, W., Jianan, G., Zhuo, J., and Yijiao, Z. (2011). Semantic web service selection
algorithm based on qos ontology. In Service Sciences (IJCSS), 2011 International Joint
Conference on, pages 163–167. IEEE.

[62] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. Software Engineering,
IEEE Transactions on, 28(7):654–670.

[63] Kapser, C. and Godfrey, M. (2004). Aiding comprehension of cloning through cate-
gorization. In Software Evolution, 2004. Proceedings. 7th International Workshop on
Principles of, pages 85–94. IEEE.

[64] Kasanen, E. and Lukka, K. (1993). The constructive approach in management account-
ing research. Journal of management accounting research, (5):243–264.

[65] Keskes, N., Lehireche, A., and Rahmoun, A. (2010). Web services selection based on
context ontology and quality of services. Int. Arab J. e-Technol., 1(3):98–105.

[66] Khutade, P. A. and Phalnikar, R. (2014). Qos aware web service selection and ranking
framework based on ontology. International Journal of Soft Computing and Engineering,
4(3):77–81.

[67] Kirkpatrick, S., Jr., D. G., and Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

[68] Knuth, D. (1997). Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. Amer Mathematical
Society.

[69] Komondoor, R. and Horwitz, S. (2000). Semantics-preserving procedure extraction. In
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 155–169. ACM.

[70] Komondoor, R. and Horwitz, S. (2001). Using slicing to identify duplication in source
code. In Static Analysis, pages 40–56. Springer.

[71] Komondoor, R. and Horwitz, S. (2003). Effective, automatic procedure extraction.
In Program Comprehension, 2003. 11th IEEE International Workshop on, pages 33–42.
IEEE.

[72] Komondoor, R. V. (2003). Automated duplicated-code detection and procedure extrac-
tion. PhD thesis, UNIVERSITY OF WISCONSIN.

[73] Kontogiannis, K. (1997). Evaluation experiments on the detection of programming
patterns using software metrics. In Reverse Engineering, 1997. Proceedings of the Fourth
Working Conference on, pages 44–54. IEEE.

[74] Kontogiannis, K. A., DeMori, R., Merlo, E., Galler, M., and Bernstein, M. (1996).
Pattern matching for clone and concept detection. In Reverse engineering, pages 77–108.
Springer.

[75] Kotis, K., Vouros, G. A., and Stergiou, K. (2006). Towards automatic merging of
domain ontologies: The hcone-merge approach. Web Semantics: Science, Services and
Agents on the World Wide Web, 4(1):60–79.

[76] Krinke, J. (2001). Identifying similar code with program dependence graphs. In Reverse
Engineering, 2001. Proceedings. Eighth Working Conference on, pages 301–309. IEEE.

[77] Labro, E. and Tuomela, T.-S. (2003). On bringing more action into management
accounting research: process considerations based on two constructive case studies.
European Accounting Review, 12(3):409–442.

[78] Lakhotia, A., Li, J., Walenstein, A., and Yang, Y. (2003). Towards a clone detection
benchmark suite and results archive. In Program Comprehension, 2003. 11th IEEE
International Workshop on, pages 285–286. IEEE.

[79] Lanubile, F. and Mallardo, T. (2003). Finding function clones in web applications.
In Software Maintenance and Reengineering, 2003. Proceedings. Seventh European
Conference on, pages 379–386. IEEE.

[80] Lee, S. and Jeong, I. (2005). Sdd: high performance code clone detection system for
large scale source code. In Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 140–141.
ACM.

[81] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2004). Cp-miner: A tool for finding
copy-paste and related bugs in operating system code. In OSDI, volume 4, pages 289–302.

[82] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006). Cp-miner: Finding copy-paste and
related bugs in large-scale software code. Software Engineering, IEEE Transactions on,
32(3):176–192.

[83] Lincke, R., Lundberg, J., and Löwe, W. (2008). Comparing software metrics tools. In
Proceedings of the 2008 international symposium on Software testing and analysis, pages
131–142. ACM.

[84] Liu, C., Chen, C., Han, J., and Yu, P. S. (2006). Gplag: detection of software plagiarism
by program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 872–881. ACM.

[85] Lukka, K. (2000). The key issues of applying the constructive approach to field research.
Reponen, T.(ed.).

[86] Manber, U. et al. (1994). Finding similar files in a large file system. In Usenix Winter,
volume 94, pages 1–10.

[87] Marcus, A. and Maletic, J. I. (2001). Identification of high-level concept clones in
source code. In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, pages 107–114. IEEE.

[88] Mayrand, J., Leblanc, C., and Merlo, E. (1996). Experiment on the automatic detection
of function clones in a software system using metrics. In Software Maintenance 1996,
Proceedings., International Conference on, pages 244–253. IEEE.

[89] McDermid, E. and Irving, R. W. (2011). Popular matchings: structure and algorithms.
Journal of combinatorial optimization, 22(3):339–358.

[90] McMinn, P. (2004). Search-based software test data generation: a survey. Software
Testing, Verification and Reliability, 14(2):105–156.

[91] McNabb, D. (2002). Research Methods in Public Administration and Nonprofit Man-
agement: Qualitative and Quantitative Approaches.

[92] Nagy, W., Mokhtar, H. M., and El-Bastawissy, A. (2011). A flexible tool for web service
selection in service oriented architecture. International Journal of Advanced Computer
Science and Applications, 2(12):191–201.

[93] O’Malley, G. (2007). Algorithmic aspects of stable matching problems. PhD thesis,
University of Glasgow.

[94] Patenaude, J.-F., Merlo, E., Dagenais, M., and Laguë, B. (1999). Extending soft-
ware quality assessment techniques to java systems. In Program Comprehension, 1999.
Proceedings. Seventh International Workshop on, pages 49–56. IEEE.

[95] Prechelt, L., Malpohl, G., and Philippsen, M. (2002). Finding plagiarisms among a set
of programs with jplag. J. UCS, 8(11):1016.

[96] Rieger, M., Ducasse, S., and Lanza, M. (2004). Insights into system-wide code
duplication. In Reverse Engineering, 2004. Proceedings. 11th Working Conference on,
pages 100–109. IEEE.

[97] Roy, C. K. (2009). Detection and analysis of near-miss software clones. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages 447–450.
IEEE.

[98] Roy, C. K. and Cordy, J. R. (2007). A survey on software clone detection research.
Technical report, Citeseer.

[99] Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495.

[100] Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 76–85. ACM.

[101] Schmidt, M. E. (2000). Implementing the IEEE software engineering standards. Sams.

[102] Sellers, B. H. (1996). Ojbect-oriented metrics. measures of complexity.

[103] Tairas, R. and Gray, J. (2006). Phoenix-based clone detection using suffix trees. In
Proceedings of the 44th annual Southeast regional conference, pages 679–684. ACM.

[104] Tan, J. J. (1991). A necessary and sufficient condition for the existence of a complete
stable matching. Journal of Algorithms, 12(1):154–178.

[105] Tao, C.-H. and Feng, Z.-Y. (2010). Novel qos-aware web service recommendation
model. Application Research of Computers, 10:83.

[106] Ueda, Y., Kamiya, T., Kusumoto, S., and Inoue, K. (2002). On detection of gapped
code clones using gap locations. In Software Engineering Conference, 2002. Ninth
Asia-Pacific, pages 327–336. IEEE.

[107] Wahler, V., Seipel, D., von Gudenberg, J. W., and Fischer, G. (2004). Clone detection
in source code by frequent itemset techniques. In SCAM, volume 4, pages 128–135.

Chapter 7. Conclusion and Future Work 7.5 Future Work

[108] Watson, A. H., McCabe, T. J., and Wallace, D. R. (1996). Structured testing: A
testing methodology using the cyclomatic complexity metric. NIST special Publication,
500(235):1–114.

[109] WEISER, M. (1984). Program slicing. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 10(4).

[110] Wettel, R. and Marinescu, R. (2005). Archeology of code duplication: Recovering
duplication chains from small duplication fragments. In Symbolic and Numeric Algorithms
for Scientific Computing, 2005. SYNASC 2005. Seventh International Symposium on, pages
8–pp. IEEE.

[111] Xu, P., Wang, Y., Cheng, L., and Zang, T. (2010). Alignment results of sobom for oaei
2010. Ontology Matching, page 203.

[112] Yang, W. (1991). Identifying syntactic differences between two programs. Software:
Practice and Experience, 21(7):739–755.

[113] Yu, T., Zhang, Y., and Lin, K.-J. (2007). Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1):6.

149

Appendix A

Screen-shots

Here are some snapshots which are taken during the experiments, which relevant to the

ClonDR tool and applied on both job search and netbeans-javadoc projects.

Fig. A.1 Job search project browsed by CloneDR.

151

Appendix 1

Fig. A.2 Some statistics of job search project based on CloneDR.

Fig. A.3 Job search project analysed by CloneDR.

152

Appendix 1

Fig. A.4 Some statistics of netbeans-javadoc project based on CloneDR.

Fig. A.5 netbeans-javadoc project analysed by CloneDR.

153

Appendix 1

A.1 Clonesets Snapshots

Here we list different types of software clones which are recognised by both approaches.

Fig. A.6 Clone set of type 1 (Identical clone).

Fig. A.7 Clone set of type 2.

154

Appendix B

Source Code

In this part, we provide the source code of the program simulation based on our adaptation.

This program presents the selection process among services and requests. The program built

in Java using eclipse-standard-kepler.

=================StableMarriage==================

import j a v a . u t i l . * ;

/ * *

* An i m p l e m e n t a t i o n o f t h e s t a b l e marr iage a l g o r i t h m

*

*−−

* @author Hosam AlHakami (STRL , DMU, UK)

* hosam . alhakami@myemail . dmu . ac . uk

−−−* /

p u b l i c c l a s s S t a b l e M a r r i a g e {

/ / Number o f men (= number o f women)

p r i v a t e i n t n ;

/ / P r e f e r e n c e t a b l e s (s i z e nxn)

155

Appendix 2

p u b l i c i n t [] [] j o b P r e f ;

p u b l i c i n t [] [] a p p l P r e f ;

p r i v a t e s t a t i c f i n a l boolean DEBUGGING = f a l s e ;

p r i v a t e Random rand = new Random () ;

/ * *

* C r e a t e s and s o l v e s a random s t a b l e marr iage problem o f s i z e n , where n i s

* g i v e n on t h e command l i n e .

* /

/ * *

* C r e a t e s a marr iage problem o f s i z e n w i t h random p r e f e r e n c e s .

* /

p u b l i c S t a b l e M a r r i a g e (i n t n) {

t h i s . n = n ;

j o b P r e f = new i n t [n] [] ;

a p p l P r e f = new i n t [n] [] ;

f o r (i n t i = 0 ; i < n ; i ++) {

j o b P r e f [i] = new i n t [n] ;

c r e a t e R a n d o m P r e f s (j o b P r e f [i]) ;

a p p l P r e f [i] = new i n t [n] ;

c r e a t e R a n d o m P r e f s (a p p l P r e f [i]) ;

}

}

/ * *

* Pu t s t h e numbers 0 . . v . l e n g t h − 1 i n t h e v e c t o r v i n random o r d e r .

* /

p r i v a t e void c r e a t e R a n d o m P r e f s (i n t [] v) {

/ / Cr ea t e a v e c t o r w i t h t h e v a l u e s 0 , 1 , 2 , . . .

f o r (i n t i = 0 ; i < v . l e n g t h ; i ++)

v [i] = i ;

156

Appendix 2

/ / Cr ea t e a random p e r m u t a t i o n o f t h i s v e c t o r .

f o r (i n t i = v . l e n g t h − 1 ; i > 0 ; i −−) {

/ / swap v [i] w i t h a random e l e m e n t v [j] , j <= i .

i n t j = r and . n e x t I n t (i + 1) ;

i n t temp = v [i] ;

v [i] = v [j] ;

v [j] = temp ;

}

}

/ * *

* R e t u r n s a s t a b l e marr iage i n t h e form an i n t a r r a y v , where v [i] i s t h e

* man marr i ed t o woman i .

* /

p u b l i c i n t [] [] s t a b l e J o b () { / / j o b o p t i m a l

/ / I n d i c a t e s t h a t woman i i s c u r r e n t l y engaged t o

/ / t h e man v [i] .

i n t [] [] c u r r e n t = new i n t [n] [n] ;

f i n a l i n t NOT_ENGAGED = −1;

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++)

c u r r e n t [i] [0] = NOT_ENGAGED;

/ / L i s t o f j o b s t h a t are n o t c u r r e n t l y engaged .

L i n k e d L i s t < I n t e g e r > f r e e J o b s = new L i n k e d L i s t < I n t e g e r > () ;

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++)

f r e e J o b s . add (i) ;

/ / n e x t [i] i s t h e n e x t a p p l i c a n t t o whom i has n o t y e t proposed .

i n t [] n e x t = new i n t [n] ;

/ / computeRanking () ;

whi le (! f r e e J o b s . i sEmpty ()) {

157

Appendix 2

i n t m = f r e e J o b s . remove () ;

i n t w = j o b P r e f [m] [n e x t [m]] ;

n e x t [m] + + ;

p r i n t D e b u g ("m=" + m + " w=" + w) ;

i f (c u r r e n t [w] [0] == NOT_ENGAGED) {

c u r r e n t [w] [0] = m;

} e l s e {

i n t m1 = c u r r e n t [w] [0] ;

i f (p r e f e r s (w, m, m1 , " j ")) {

c u r r e n t [w] [0] = m;

f r e e J o b s . add (m1) ;

} e l s e {

f r e e J o b s . add (m) ;

}

}

}

/ / c a l c u l a t e LD

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++) {

i n t c ;

f o r (i n t j = 0 ; j < j o b P r e f . l e n g t h ; j ++) {

c = j o b P r e f [i] [j] ;

i f (c == c u r r e n t [i] [0]) {

c u r r e n t [i] [1] = j + 1 ;

}

}

}

/ / c a l c u l a t e CONT

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++) {

i n t c = 0 , d = 0 ;

f o r (i n t j = 0 ; j < j o b P r e f . l e n g t h ; j ++) {

158

Appendix 2

i f (c u r r e n t [i] [0] == j o b P r e f [i] [j]) {

c = j + 1 ;

}

}

f o r (i n t j = 0 ; j < a p p l P r e f . l e n g t h ; j ++) {

i f (a p p l P r e f [c u r r e n t [i] [0]] [j] == i) {

d = j + 1 ;

}

}

c u r r e n t [i] [2] = Math . abs (c − d) ;

c u r r e n t [i] [3] = Math . abs ((c u r r e n t [i] [1] + c u r r e n t [i] [2]) / 2) ; / / c a l c u l a t e

/ / w e i g h t

}

re turn c u r r e n t ;

}

p u b l i c i n t [] [] s t a b l e A p p l () {

/ / I n d i c a t e s t h a t j o b i i s c u r r e n t l y engaged t o

/ / t h e man v [i] .

i n t [] [] c u r r e n t = new i n t [n] [n] ;

f i n a l i n t NOT_ENGAGED = −1;

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++)

c u r r e n t [i] [0] = NOT_ENGAGED;

/ / L i s t o f a p p l c a n t s t h a t are n o t c u r r e n t l y engaged .

L i n k e d L i s t < I n t e g e r > f r e e A p p l = new L i n k e d L i s t < I n t e g e r > () ;

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++)

159

Appendix 2

f r e e A p p l . add (i) ;

i n t [] n e x t = new i n t [n] ;

whi le (! f r e e A p p l . i sEmpty ()) {

i n t m = f r e e A p p l . remove () ;

i n t w = a p p l P r e f [m] [n e x t [m]] ;

n e x t [m] + + ;

p r i n t D e b u g ("m=" + m + " w=" + w) ;

i f (c u r r e n t [w] [0] == NOT_ENGAGED) {

c u r r e n t [w] [0] = m;

} e l s e {

i n t m1 = c u r r e n t [w] [0] ;

i f (p r e f e r s (w, m, m1 , " a ")) {

c u r r e n t [w] [0] = m;

f r e e A p p l . add (m1) ;

} e l s e {

f r e e A p p l . add (m) ;

}

}

}

/ / c a l c u l a t e LD

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++) {

i n t c ;

f o r (i n t j = 0 ; j < j o b P r e f . l e n g t h ; j ++) {

c = a p p l P r e f [i] [j] ;

i f (c == c u r r e n t [i] [0]) {

c u r r e n t [i] [1] = j + 1 ;

}

}

}

160

Appendix 2

/ / c a l c u l a t e CONT

f o r (i n t i = 0 ; i < c u r r e n t . l e n g t h ; i ++) {

i n t c = 0 , d = 0 ;

f o r (i n t j = 0 ; j < a p p l P r e f . l e n g t h ; j ++) {

i f (c u r r e n t [i] [0] == a p p l P r e f [i] [j]) {

c = j + 1 ;

}

}

f o r (i n t j = 0 ; j < j o b P r e f . l e n g t h ; j ++) {

i f (j o b P r e f [c u r r e n t [i] [0]] [j] == i) {

d = j + 1 ;

}

}

c u r r e n t [i] [2] = Math . abs (c − d) ;

c u r r e n t [i] [3] = Math . abs ((c u r r e n t [i] [1] + c u r r e n t [i] [2]) / 2) ; / / c a l c u l a t e

/ / w e i g h t

}

re turn c u r r e n t ;

}

/ * *

* R e t u r n s t r u e i f f w p r e f e r s x t o y .

* /

p r i v a t e boolean p r e f e r s (i n t w, i n t x , i n t y , S t r i n g o p t i m a l) {

f o r (i n t i = 0 ; i < n ; i ++) {

i n t p r e f ;

i f (o p t i m a l == " j ") {

p r e f = a p p l P r e f [w] [i] ;

161

Appendix 2

} e l s e {

p r e f = j o b P r e f [w] [i] ;

}

i f (p r e f == x)

re turn true ;

i f (p r e f == y)

re turn f a l s e ;

}

/ / T h i s s h o u l d n e v e r happen .

System . o u t . p r i n t l n (" E r r o r i n a p p l P r e f l i s t " + w) ;

re turn f a l s e ;

}

p u b l i c vo id p r i n t M a r r i a g e R e g (i n t [] [] m, S t r i n g o p t i m a l) {

i n t i ;

i f (o p t i m a l == " j ") { / / j o b s o p t i m a l

System . o u t . p r i n t l n (" S t a b l e Matches (Reques t + S e r v i c e) : " + " \ n "

+ " Reques t Opt imal ") ;

f o r (i = 0 ; i < m. l e n g t h ; i ++) {

System . o u t . p r i n t ("R" + (i + 1) + " => " + "S" + (m[i] [0] + 1)

+ " \ t \ t ") ;

i f (i % 3 == 0) {

System . o u t . p r i n t (" \ n ") ;

}

}

} e l s e i f (o p t i m a l == " a ") { / / a p p l i c a n t s o p t i m a l

System . o u t . p r i n t l n (" S t a b l e Matches (S e r v i c e s + R e q u e s t s) : " + " \ n "

+ " S e r v i c e Opt imal ") ;

f o r (i = 0 ; i < m. l e n g t h ; i ++) {

System . o u t . p r i n t ("S" + (i + 1) + " => " + "R" + (m[i] [0] + 1)

+ " \ t \ t ") ;

i f (i % 3 == 0) {

162

Appendix 2

System . o u t . p r i n t (" \ n ") ;

}

}

}

}

p u b l i c vo id p r i n t M a r r i a g e E x t (i n t [] [] m, S t r i n g o p t i m a l) {

i n t i ;

i f (o p t i m a l == " j ") { / / j o b s o p t i m a l

System . o u t . p r i n t l n (" S t a b l e Matches (Reques t + S e r v i c e) : " + " \ n "

+ " Reques t Opt imal ") ;

f o r (i = 0 ; i < m. l e n g t h ; i ++) {

System . o u t . p r i n t ("R" + (i + 1) + " => " + "S" + (m[i] [0] + 1)

+ " \ t " + " LD= " + m[i] [1] + " \ t " + " CONT = "

+ m[i] [2] + " \ t " + " WGT = " + m[i] [3] + " \ n ") ;

/ *

* i f (i % 2 ==0) { Sys tem . o u t . p r i n t (" \ n ") ; }

* /

}

} e l s e i f (o p t i m a l == " a ") { / / a p p l i c a n t s o p t i m a l

System . o u t . p r i n t l n (" S t a b l e Matches (S e r v i c e s + R e q u e s t s) : " + " \ n "

+ " S e r v i c e Opt imal ") ;

f o r (i = 0 ; i < m. l e n g t h ; i ++) {

System . o u t . p r i n t ("S" + (i + 1) + " => " + "R" + (m[i] [0] + 1)

+ " \ t " + " LD= " + m[i] [1] + " \ t " + " CONT "

+ m[i] [2] + " \ t " + " WGT = " + m[i] [3] + " \ n ") ;

/ *

* i f (i % 2 ==0) { Sys tem . o u t . p r i n t (" \ n ") ; }

* /

}

} e l s e i f (o p t i m a l == " e ") {

163

Appendix 2

f o r (i = 0 ; i < m. l e n g t h ; i ++) {

System . o u t . p r i n t ("R" + (i + 1) + " => " + "S" + (m[i] [0] + 1)

+ " \ t \ t ") ;

i f (i % 3 == 0) {

System . o u t . p r i n t (" \ n ") ;

}

}

}

}

p r i v a t e void p r i n t D e b u g (S t r i n g s) {

i f (DEBUGGING) {

System . o u t . p r i n t l n (s) ;

}

}

}

164

	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Background & Motivation
	1.2 Research Objectives
	1.3 Research Questions
	1.4 Original Contributions
	1.5 Research Methodology
	1.6 Criteria of Success
	1.7 Thesis Outline

	2 Background and Related Research
	2.1 Introduction
	2.2 Stable Matching Problem
	2.2.1 Overview
	2.2.2 Stable Marriage Problem
	2.2.2.1 The Gale-Shapley Algorithm
	2.2.2.2 Optimal Stable Marriage Problems
	2.2.2.3 Stable Marriage with Incomplete Lists (SMI)
	2.2.2.4 Stable Marriage with Ties (SMT)
	2.2.2.5 Stable Marriage with Ties and Incomplete List

	2.2.3 Hospitals/Residents Problem
	2.2.4 Stable Roommates Problem

	2.3 Clone Detection
	2.3.1 Overview
	2.3.2 Clone Relation Terms
	2.3.3 Definition of Code Cloning
	2.3.4 Detection Techniques and Tools
	2.3.4.1 Text-based Technique
	2.3.4.2 Metrics-based Technique
	2.3.4.3 Token-based Technique
	2.3.4.4 Tree-based Technique
	2.3.4.5 PDG-based Technique

	2.4 Service Selection
	2.4.1 Overview
	2.4.2 Qos-based Service Selection
	2.4.3 Semantic Matching
	2.4.4 Service Availability

	2.5 Search-Based Optimisation
	2.5.1 Overview
	2.5.2 SBSE Ingredients
	2.5.3 Common Search Algorithms
	2.5.3.1 Hill Climbing
	2.5.3.2 Simulated Annealing
	2.5.3.3 Genetic Algorithms

	2.6 Conclusion

	3 SMP Extensions
	3.1 Overview
	3.2 Dual Proposed
	3.2.1 Overview
	3.2.2 Dual Proposed Algorithm
	3.2.3 Selective Strategy
	3.2.4 Semantic Equivalence
	3.2.5 Evaluation

	3.3 Dual Multi Allocation
	3.3.1 Overview
	3.3.2 Dual Multi Allocation Algorithm

	3.4 Conclusion

	4 SMP-Based Clone Detection
	4.1 Overview
	4.2 Similarity Measurements
	4.3 Metrics
	4.4 Detection Process
	4.5 SMP-based Clone Detection
	4.5.1 The Scenario
	4.5.1.1 The stage of Building the Preference Lists
	4.5.1.2 The Stage of Running the SMP Algorithm
	4.5.1.3 Extended SMP Algorithm (Dual-Multi-Allocation) for Clone Detection

	4.5.2 Discussion

	4.6 Conclusion

	5 SMP-Based Service Matching
	5.1 Overview
	5.2 Dual-Proposed for Service Selection
	5.2.1 Dual-Proposed Scheme
	5.2.2 Service Matching

	5.3 Cloud Service Availability
	5.4 Discussion
	5.5 Conclusion

	6 Evaluation
	6.1 Clone Detection
	6.1.1 Introduction
	6.1.2 Case Study (Job Search System)
	6.1.2.1 Overview
	6.1.2.2 Related Technology
	6.1.2.3 System Design

	6.1.3 Clone Detection Experiment
	6.1.3.1 Recall and Precision
	6.1.3.2 Discussion

	6.2 Service Selection
	6.2.1 Case Study
	6.2.1.1 A Hotel Reservation Example
	6.2.1.2 Discussion

	6.2.2 Experiment for Service Selection

	6.3 Conclusion

	7 Conclusion and Future Work
	7.1 Summary of the Thesis
	7.2 Contributions Revisited
	7.3 Success Criteria Revisited
	7.4 Thesis Limitations
	7.5 Future Work

	References
	Appendix A Screen-shots
	A.1 Clonesets Snapshots

	Appendix B Source Code

