
Opacity in Internet of Things with Cloud Computing

Wen Zeng, Maciej Koutny, Paul Watson
School of Computing Science, Newcastle University

Newcastle upon Tyne NE1 7RU, U.K.
wen.zeng.wz@gmail.com, {maciej.koutny, paul.watson}@ncl.ac.uk

Abstract—Internet of Things (IoT) with Cloud Computing
(CC) is a new paradigm incorporating a pervasive presence of a
wide range of things/objects which can interact with each other
and cooperate, creating new services and reaching common goals.
This will lead to more intelligent smart environments in a wide
range of applications. In this context, protecting the Internet
of Things with Cloud Computing (IoTwCC) against interference,
including service attacks and viruses, becomes paramount. In this
paper, we introduce a transition system representation to capture
the information flow in IoTwCCs, and then investigate the opacity
of the information flow model. In addition, we introduce a threat
model to describe the actions of the system, and propose entropy
as a security metrics to quantify the amount of information
related to a service that might be exposed to other users or
adversaries. It turns out that the opacity of the system is affected
by the availability of the services. As a result, the trade-off
between opacity and service availability can be analyzed.

Keywords—availability, entropy, information flow security, opa-
city, security metrics

I. INTRODUCTION

An increasing number of system developers use cloud
technologies to provide IoT services. The key idea is that
all edge devices and IoTs send information periodically to an
application platform located in the cloud. The platform stores
all the data and provides specialized interfaces that can be used
by third parties to create their IoT applications. Moreover, there
are platforms pursuing the idea of creating public and private
clouds that can be deployed in a local environment. These
platforms not only enable the existence of local intelligence
but can also exchange information and services with external
systems. Therefore, they can easily become instances of IoT.

Federated cloud systems (FCSs) increase the reliability and
reduce the cost of computational support. However, the large
number of services and data involved creates security risks due
to the dynamic movement of the entities on the cloud system.
As a result, the integration of IoT with cloud computing creates
new security challenges that must be overcome in order to
advance IoTwCC into the real world [1], [2].

A key role of information flow security is to ensure that
information propagates throughout the execution environment
without security violation; in particular, that no secure informa-
tion is leaked to unauthorised subjects. It has been recognised
that communication channels can create threats that can affect
IoT entities. In IoTwCC, the information flow will follow a
hierarchical pattern, as a central entity will receive information
from every ‘thing’ [1]. Moreover, if an adversary targets an IoT
enabled system in a distributed scenario, they might be able to
retrieve processed information instead of raw data [1], which
could help the attacker to access and control system services.

Therefore, in this study, we will analyze the information flow
security and opacity in IoTwCC.

There exists prior work addressing workflow security; for
example, the flow-sensitive analysis of programs [3], [4], [5].
The paper [6] proposed to partition workflows over a set of
available clouds in such a way that security requirements are
met. Using Petri nets to model workflows, [7], [8], [9], [10]
introduced flow sensitive security models to capture secure
information flow in CC systems. However, the observation of
the information flow, which leads to the notion of opacity, has
not been analyzed there.

Opacity has been used to analyze the information-hiding
properties of protocols and programs, and [11], [12], [13]
proposed to use Petri nets to specify the opacity of information
flow, and adapted opacity to labeled transition system. More-
over, [14], [15] studied the problem of information hiding in
systems characterized by the presence of randomization and
concurrency. Having said that, the existing studies have been
strongly theoretical in the way they approached information
hiding and opacity. In this paper, we make initial steps to
bridge a gap between the theory of opacity and its practical
application.

The paper is organized as follows. In Section II, a basic
model for information flow in IoTwCC is presented. Then, the
opacity of system is discussed in Section III. In Section IV,
we look at the probabilistic behaviour of the system. Then
in Section V, we propose entropy-based opacity metrics to
evaluate the information flow security of IoTwCC. The trade-
off between opacity and service availability is analyzed in
Section VI. Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we describe a simple transition system
model to capture the information flow in IoTwCC.

We assume that P and E are finite non-empty sets of
respectively platforms (e.g., clouds, devices, computer, and
‘things’) and entities (or entity names). In what follows, an
entity can have several different copies, and these copies may
reside in different platforms. We further allow multiple copies
of a single entity to be present in a single deployment platform.
As a result, a state will be understood as any finite multiset s
over the set E×P . Thus, for example, if s(a, p) = 4 then we
know that in the current state there are 4 copies of entity a
residing in platform p. The elements of E×P will be referred
to as actual entities. We will say that an actual entity (e, p) is
present in a state s if s(e, p) > 0.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228182876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Definition 1 (ifm): An information flow model for IoTwCC
is a pair

IFM = (A, sinit) , (1)

where A is a finite set of actions and sinit is an initial state.
It is assumed that each action is a pair

φ = (in, out) (2)

such that its components

in = (e1@p1, . . . , ek@pk) and
out = (ek+1@pk+1, . . . , ek+m@pk+m)

specify finite tuples of entity-platform pairs. �

One might easily extend the class of allowed action types
to include, e.g., checking of the presence of certain entities.

Definition 2 (single action execution): An action φ as in
(2) is enabled at state s if

φin = {(e1, p1), . . . , (ek, pk)} ≤ s .

Such an action can then be executed leading to a new state

s′ = s− φin + φout ,

where φout = {(ek+1, pk+1), . . . , (ek+m, pk+m)} while ‘−’
and ‘+’ denote multiset subtraction and addition, respectively.

We denote this by s
φ−→� s′. �

The above definition captures the enabling and execution
of a single action. The next definition lifts this to any group
of actions executed simultaneously.

Definition 3 (multiset action execution): Consider a multi-
set K = {φ1 . . . , φn} such that each φi is an action enabled
at state s and, moreover,

Kin = (φ1)in + . . .+ (φn)in ≤ s .

Then K can then be executed leading to a new state

s′ = s−Kin +Kout ,

where Kout = (φ1)out + . . .+ (φn)out .

We denote this by s K−→� s′. �

Definition 4 (reachable states): The set of reachable states
of the information flow model as in (1) is the minimal set
of states RS containing sinit and such that if s ∈ RS and
s

K−→� s′, for some K, then s′ ∈ RS . �

We have provided basic notions related to the syntax and
operational semantics of an information flow model. It allows
straightforward capture of various notion of information flow
for IoTwCC.

The inherent complexity of IoT is due to the fact that
multiple heterogeneous entities located in different contexts
can exchange information with each other [1]. In such service-
based computing system, information sharing means that the
behaviour of one user may appear visible to other users or
adversaries, and observations of such behaviours can poten-
tially help adversaries to build covert channels. Therefore, it is
necessary to analyze the information leakage. Here we consider
using opacity [11], [12], [13] as a promising technique for
analyzing information flow security in IoTwCC.

III. OPACITY IN IOTWCC

In this section, we will show how opacity can be used to
analyze the security property of IoTwCC systems.

Opacity is a uniform approach for describing security
properties expressed as predicates [13]. A predicate is opaque
if an observer of the system is unable to determine the truth
of the predicate in a given run of the system. In this section,
we will discuss one of the versions of opacity in the context
of workflows executed on IoTwCC systems.

Let IFM = (A, sinit) be a information flow model as in
(1). A run of IFM is a finite sequence

ξ = κ1 . . . κn (n ≥ 0) (3)

such that there are states sinit = s1, . . . , sn+1 satiafying
si

κi−→� si+1, for i = 1, . . . , n. The set of all runs of IFM
will be denoted by RUN (IFM).

To model the different capabilities for observing the system
modeled by IFM one can use observation functions:

obs : RUN (IFM)→ Obs∗

where Obs be a set of observables. In what follows, we
consider a state observation function obs for which there is
a map obs′ associating obs′(K) ∈ Obs∪ {ε} with every K as
in Definition 3, in such a way that

obs(ξ) = obs′(κ1) . . . obs′(κn)

for every run ξ = κ1 . . . κn in RUN (IFM).

Given the observation function obs, we are now interested
in whether an observer can establish a property γ (a predicate
over system runs) for a run of IFM having only access to
the result of the observation function. As one can identify γ
with its characteristic set, i.e., the set of all those runs for
which it holds, we want to find out whether the fact that the
underlying run belongs to γ ⊆ RUN (IFM) can be deduced
by the observer on the basis of an observed execution of
the system. Moreover, we are interested in the final opacity
predicate γZ , defined as the set of all the runs ξ as in (3)
satisfying sn+1 ∈ Z, for some set of states Z [13]. Intuitively,
this means that we are interested in finding out whether an
observed run of the system represented by IFM ended in one
of secret (or sensitive) states belonging to Z. Note that we are
not interested in establishing whether the underlying run does
not belong to γ; to do this, we would consider the property
γ̄ = RUN (IFM) \ γ.

We then say that γ is opaque w.r.t. obs if, for every run
ξ ∈ γ, there is another run ξ ∈ γ̄ such that obs(ξ) = obs(ξ′).
In other words, if all runs in γ are covered by the runs in γ̄:

obs(γ) ⊆ obs(γ̄) .

A. Case study

As a case study adapted to our purposes, we will use a
medical research application [16] in which data from a set of
patients’ heart rate monitors is analyzed, and then the results
are sent to the things, as illustrated in Figure 1. Informally, the
process can be described as follows:

Fig. 1. The medical research application example, which includes four services and five finds of data.

- A patients’ data is sent through the local network by
user . The data (d0) is a file with a header identifying
the patient (name and patient number), followed by a
set of heart rate data recoded over a period of time.

- A service (serv :s0) reads the data, and changes the
name of the data into (d1), then sends the data to
service (serv :s1).

- A service (serv :s1) strips off the header, leaving only
the heart rate data (d2).

- A third service (serv :s2) analyzes the heart rate data,
and produces results (d3).

- Finally, service (serv :s3) sends the data (d4) to
user/medical device , and then the ‘medical device’
can provide appropriate service for the patient based
on the received data.

Analyzing the heart rate data (serv :s3) is costly and would
benefit from a cheap, scalable resources that are available
on public clouds. However, considering that storing medical
records on a public cloud can breach confidentiality, some
organizations prefer to deploy the whole workflow on a secure
private cloud. Such a policy may overstretch the limited
resources available on the private cloud, resulting in degraded
performance and negative impact on other applications. To
address this problem, the partitioning of the application be-
tween a private cloud and a public cloud could provide a better
solution.

In our case study, we consider an integration of IoT with
CC. We use two clouds (X , and Y), one local network
LN , and a number of processes, which together form a
medical research application. The proposed workflow operates
on sensitive medical data processed on the private cloud, and
anonymised data that can be deployed on the public cloud.
Cloud X hosts services serv :s0 and serv :s1 . Cloud Y hosts
two service providers: service provider 1 includes serv :s12 and
serv :s13 ; and service provider 2 includes serv :s22 and serv :s23 .

Figure 2 shows the basic structure of the execution scenario
for the medical research application. The generic behaviour of
medical research application is shown in Table I. It starts with
a data sent from user to serv :s0 , through a local network.
The data is forwarded to service serv :s1 . Service serv :s1 then
selects one of the two providers, service provider 1 or service
provider 2, and then sends d2 to the selected service providers.
After receiving the data, serv :s12 or serv :s22 produces d3 and
sends it to serv :s13 or serv :s23 , respectively. Finally, serv :s13
and serv :s23 sends d4 to user and medical device . Crucially,
an observer of the system is not allowed to discover the identity
of the selected provider.

TABLE I. THE SEQUENCE OF INTERACTIONS BETWEEN THE
COMPONENTS OF THE MEDICAL RESEARCH APPLICATION SYSTEM.

Actions Entities Sender Receiver

κ1 d0 user serv :s0

κ2 d1 serv :s0 serv :s1

κi
3 d2 serv :s1 serv :si2 (i=1,2)

κi
4 d3 serv :si2 (i=1,2) serv :si3 (i=1,2)

κi
5 d4 serv :si3 (i=1,2) user

κi
6 d4 serv :si3 (i=1,2) medical device

1) Case one: We assume that no provider is discrimi-
nated against. Moreover, messages communicated between the
clouds X, Y and local network are visible, and messages inside
the clouds are invisible. However, the observer has no means
of detecting their content (but can observe the specific cloud
from which a message originated or was sent to). This can be
captured by the following observation function:

obs′(κ1) = a obs′(κ2) = ε
obs′(κ13) = b obs′(κ23) = b
obs′(κ14) = ε obs′(κ24) = ε
obs′(κ15) = d obs′(κ25) = d
obs′(κ16) = e obs′(κ26) = e

Using opacity, we may show that visible interactions do
not reveal the identity of the provider supplying the service. To
see this, we consider a property γ consisting of all execution
scenarios where the first provider supplied the services, i.e.,
executions of the following form:

ξ1 = κ1κ2κ
1
3κ

1
4κ

1
5κ

1
6

ξ2 = κ1κ2κ
1
3κ

1
4κ

1
6κ

1
5

The set of observations generated is therefore given by
obs(γ) = {obs(ξi) : i = 1, 2}, where

obs(ξ1) = {abde}
obs(ξ2) = {abed}

We then note that γ̄ comprises, among others, executions of
the following kind:

ξ1 = κ1κ2κ
2
3κ

2
4κ

2
5κ

2
6

ξ2 = κ1κ2κ
2
3κ

2
4κ

2
6κ

2
5

The set of observations generated therefore satisfies obs(γ̄) ⊇
{obs(ξi) : i = 1, 2}, where

obs(ξ1) = {abde}
obs(ξ2) = {abed}

Hence obs(γ) ⊆ obs(γ̄), and so γ is an opaque property. As
a result, it is never possible to say for sure that it was the

Fig. 2. Information flow in a cloud based medical research application.

first provider who supplied the service. Since the argument is
completely symmetric, we can conclude that the identity of
providers is kept secret.

2) Case two: We assume that cloud Y is public and cloud
X is private. Messages communicated between the clouds X, Y
and the local network are visible, messages inside of cloud Y
are visible, messages inside of cloud X are invisible. This can
be captured by the following (static) observation function:

obs′(κ1) = a obs′(κ2) = ε
obs′(κ13) = b obs′(κ23) = c
obs′(κ14) = d obs′(κ24) = e
obs′(κ15) = f obs′(κ25) = g
obs′(κ16) = h obs′(κ26) = k

We consider the property γ consisting of all execution
scenarios where the first provider supplied the services (the
executions are the same as the first case). The set of observa-
tions they generate is given by obs(γ) = {obs(ξi) : i = 1, 2},
where

obs(ξ1) = {abdfh}
obs(ξ2) = {abdhf}

When the second provider supplied the services, the set of
observations generated is obs(γ̄) = {obs(ξi) : i = 1, 2}, where

obs(ξ1) = {acegk}
obs(ξ2) = {acekg}

Hence obs(γ)\obs(γ̄) 6= ∅, and so γ is not an opaque property.
Thus, it is now possible to say that it was the first provider
who supplied the services.

From these two case studies we can see that an observation
cannot establish a predicate if for any run of the system
in which the predicate is true, there is a run for which the
predicate is false, and the two runs are equivalent under the
defined observation function.

In this section, we only considered how security polices can
affect the information flow security. We have not yet taken into
account the likelihood of violating the opacity requirement;
instead, we simply reported whether a given system is opaque
or not. This yes/no outcome might be not satisfactory in
practice, especially when system behaviours have unequal
likelihood of occurring. In the case where the probability of
one run is significantly higher than the probability of another
one, the observer may have good reasons to believe that the
predicate is none the less true. Therefore, in the next section,

we will analyze the probabilistic behaviour of the system and
measure the opacity of security properties.

IV. PROBABILISTIC BEHAVIOURS

We now consider the probabilistic opacity in cloud systems
which will allow us to reason about quantitative characteristics
of security properties.

Firstly, we consider the probability distributions on random
variables of execution traces. Let D be a finite set with a
discrete probability distribution. A discrete random variable X
is a surjective function which maps the elements of D (events)
to values of a countable set (e.g., integers), with each value
in the range having probability greater than zero, and R is
the finite range of X , i.e., X : D → R(D) [17]. For each
d ∈ D, we write p(d) for its probability, i.e., 0 < p(d) ≤ 1
and

∑
d∈D p(d) = 1.

The system can be considered as a communication channel,
and a discrete random variable X constructed to model a
finite set of possible traces performed by the end users/entities
during their interactions with the system. Each trace is a
finite sequence of actions performed by the end user/entity,
i.e., ξ = κ1 . . . κk, which captures the way in which an end
user reaches the finial action κn from the initial action κ1
when requesting a specific service. In addition, each trace
is associated with a positive probability, and the sum of the
probabilities of all possible traces is 1.

In this study, we require that the number of traces of the
system is finite, and ξ, . . . , ξn are all the finite traces generated
by the system. In order to consider the probabilistic behaviour
and opacity, we assume that for the traces in the system we
have

∑n
i=1 p(ξi) = 1.

Following the definition of observation function in Sec-
tion III, we then have a number of distinct observed traces,
ψ1 . . . , ψm, such that {ψ1 . . . , ψm} = obs({ξ, . . . , ξn}).
The probability of each observed trace ψi is p(ψi) =∑
ξj∈obs−1(ψi)

p(ξj). Clearly, the observed traces form a dis-
tribution as

∑m
i=1 p(ψi) = 1.

We now consider that an IoTwCC system includes:

- a finite set of actions, A, modelling the interactions
between the server and the end users/entities;

- a finite set of observables, Obs, during the interactions
between the end users/entities and the system;

- a set of actual traces, T , modelling the sequences
of actions performed by the end users/entities during
interacting with the system;

- a set of observed traces, O, which can be obtained
from the actual traces;

- a family of probability distributions, µT , each of
which is built on all actual traces of an entity inter-
acting with the server; and

- a family of probability distributions, µO, each of
which is built on all observed traces obtained from
the actual traces.

It is assumed that the random variables on the traces
are obtained by repeated experiments. For any specific end
user/entity, let all possible traces of a user/entity requesting a
service located in the system be denoted by

T = {ξi | 1 ≤ i ≤ n} and
n∑
i=1

p(ξi) = 1 .

The observed traces can be viewed as projections of the
actual traces, thus, we have

O = {ψi | 1 ≤ i ≤ m} and
m∑
i=1

p(ψi) = 1 .

Therefore, information about the actual users’ behaviour can be
partially deduced by observing system traces. Under repeated
observation of actual traces, one can derive the probability
distribution for the projections of the possible traces for end
users/entities.

In our threat model, we assume that there are two types
of actions, hidden and observable actions, which are related to
high security level and low security level, respectively. Actions
labeled hidden are confidential and invisible to the adversaries,
and actions labeled observable are public and observable to the
adversaries. The classification can be based on the security
preserving mechanisms or policies applied in the computing
system. Therefore, the actions can be described as the union
of two disjoint sets:

A = high] low

For each trace, some part of it may be hidden and some part
observable, which makes some traces equivalent to the others
when only considering observable actions. Therefore, adver-
saries can derive some confidential information by building
sets of equivalence classes from the observations.

V. ENTROPY-BASED NOTIONS OF OPACITY

In this section, entropy is used to measure the opacity of
the system.

A. Shannon’s Measure of Entropy

Shannon’s information theory [18] can be used to quantify
the amount of information a system may leak and the way in
which this depends on the distribution of inputs.

Definition 5 (Shannon entropy): Let X be a random vari-
able, x range over the set of values which X may take, and

p(x) denotes the probability that X takes the value x. The
entropy of a discrete random variable X is denoted by H(X)
and defined by H(X) =

∑
x p(x) log2

1
p(x) . �

The entropy measures the average information content of a
set of events. In the extreme case of an event with probability
1, the entropy is 0. On the other hand, if the probability
distribution is uniform, the entropy is maximal.

Definition 6 (conditional entropy): The conditional en-
tropy H(X|Y) measures the uncertainty about X , given the
knowledge of Y = y. It is defined as: H(X|Y) = H(X,Y)−
H(Y) where the joint entropy H(X,Y) of a pair of discrete
random variables (X,Y) with a joint distribution p(x, y) is
defied as H(X,Y) =

∑
x∈X

∑
y∈Y p(x, y) 1

log2 p(x,y)
. �

Given two random variables, X and Y , the conditional entropy
captures dependencies between random variables, when the
knowledge of one may change the information about the other.
If H(X|Y) = 0, there is no uncertainty about X knowing Y ;
and if X and Y are independent (i.e., p(x, y) = p(x)p(y)),
then H(X|Y) = H(X), meaning that the knowledge of Y
does not change the uncertainty on X .

The concept of mutual information is a measure of the
amount of information that one random variable contains about
another random variable.

Definition 7 (mutual information): Let p(x, y) be the joint
distribution of two random variables, X and Y . The mu-
tual information I(X;Y) between X and Y is given by:
I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X). �

If X and Y are independent, then knowing X does not give
any information about Y and vice versa, so their mutual
information is zero. At the other extreme, if X and Y are
identical then all information conveyed by X is shared with
Y . As a result, in the case of identity, the mutual information
is the same as the uncertainty contained in X (or Y) alone,
namely the entropy of X (or Y as identical X and Y have
equal entropy).

Channel capacity is defined as the maximum mutual infor-
mation, C = maxp(x)I(X;Y), where the maximum is taken
over all possible input distributions p(x). The channel is said
to be memoryless if the probability distribution of the output
depends only on the input at that time and is conditionally
independent of previous channel inputs or outputs.

B. Entropy-based Opacity

We consider possible traces of an end user interacting with
a service provider in the system as random variables, and
define the quantity of observations of the computing system
by using the concept of mutual information between the actual
traces and observations.

Definition 8: Consider any specific user u requesting ser-
vice s. The quantity of entropy-based information (uncertainty)
loss to user u in the computing system is defined as:

I = I(Tu,s;Ou,s) = H(Tu,s)−H(Tu,s|Ou,s)

where Tu,s and Ou,s denote the random variables for the user’s
actual traces Tu,s and observation traces Ou,s, respectively;
H(Tu,s) is the entropy (uncertainty measurement) of traces

in Tu,s, and H(Tu,s|Ou,s) is the conditional entropy of Tu,s,
given the observation Ou,s (the remaining uncertainty Tu,s
after observing Ou,s). This yields entropy-based πI-opacity.
�

1) Case Study: Consider again the case of Section III-A.
There are four different actual traces that can be generated by
the system and we assume p(ξi) = 1

4 , for all i.

In the first case, there are two different observed traces,
obs = {δ1, δ2}, and we have: p(δ1) = p(δ2) = 1

2 For Tu,s =
{ξ1} and Ou,s = {δ1}, we then obtain

I(ξ1; δ1) = H(ξ1)−H(ξ1|δ1)

= 4 · 14 log2 4− (2 · 12 log2 2) = 1

The mutual information between ξ1 and δ1 is therefore 1,
yielding π1-opacity.

In the second case, there are four different observed traces,
obs = {δ1, δ2, δ3, δ4}, and we have: p(δ1) = p(δ2) = p(δ3) =
p(δ4) = 1

4 . We then obtain:

I(ξ1; δ1) = H(ξ1)−H(ξ1|δ1)

= 4 · 14 log2 4− (4 · 14 log2 4) = 0

The mutual information between ξ1 and δ1 is 0, yielding π0-
opacity.

IoT is a hugely demanding environment due to the poten-
tially unbounded number of things (resources and subjects).
As the above discussion focused on the case of one end user
interacting with the system, it is still necessary to define the
security measurement for all end users in the system.

C. Channel Capacity

We now define opacity measurement based on the concept
of channel capacity. Let us consider the security preserv-
ing mechanisms providing secure communication channels
for clients and services in the information theoretical sense.
The channel’s capacity is the maximum mutual information
between T and O over all possible end users/entities w.r.t. to
requesting a service s, where T and O respectively denote the
random variables of T (the set of actual traces) and O (the set
of observed traces).

Definition 9: Channel capacity is defined as

C = maxu∈U I(Tu;Ou) ,

yielding π̂C-opacity. �

1) Case Study: Consider the second case of Section III-A
again. We assume there are two end users u1 and u2 sending
(κ1) data d0 to serv :s0 . The sum of the probabilities of all
traces performed by all the users is 1. The probability of all
possible traces of u1 is 2

3 , and that of u2 is 1
3 . The possible

actual traces of each user and conditional probabilities of each
user’s traces are as follows:

End Users Actual Traces Probability
2
3 .u1 ξ1 = κ1κ2κ

1
3κ

1
4κ

1
5κ

1
6

1
6

ξ2 = κ1κ2κ
1
3κ

1
4κ

1
6κ

1
5

1
6

ξ3 = κ1κ2κ
2
3κ

2
4κ

2
5κ

2
6

1
3

ξ4 = κ1κ2κ
2
3κ

2
4κ

2
6κ

2
5

1
3

1
3 .u2 ξ1 = κ1κ2κ

1
3κ

1
4κ

1
5κ

1
6

1
8

ξ2 = κ1κ2κ
1
3κ

1
4κ

1
6κ

1
5

1
8

ξ3 = κ1κ2κ
2
3κ

2
4κ

2
5κ

2
6

3
8

ξ4 = κ1κ2κ
2
3κ

2
4κ

2
6κ

2
5

3
8

The observations are therefore as follows:

End Users Observed Traces Probability
2
3 .u1 obs(ξ1) = abdfh 1

6

obs(ξ2) = abdhf 1
6

obs(ξ3) = acegk 1
3

obs(ξ4) = acekg 1
3

1
3 .u2 obs(ξ1) = abdfh 1

8

obs(ξ2) = abdhf 1
8

obs(ξ3) = acegk 3
8

obs(ξ4) = acekg 3
8

The entropy-based information loss due to the behaviour
of u1 is Iu1(Tu1 ;Ou1) = H(1

6 ,
1
6 ,

1
3 ,

1
3) = 1.9183.

The entropy-based information loss due to the behaviour
of u2 is Iu2

(Tu2
;Ou2

) = H(1
8 ,

1
8 ,

3
8 ,

3
8) = 1.8113.

The channel capacity of the system is therefore given by
C = maxu∈U I(Tu;Ou) = 1.9183, yielding π̂1.9183-opacity.

Note that different security preserving mechanisms or poli-
cies might produce different observations. Given a computing
system, it is necessary to study the relations among the security
policies applied by the system from the point view of the
resulting degree of security.

VI. TRADE-OFF BETWEEN OPACITY AND SERVICE
AVAILABILITY

We continue the case study of Section V-C, assuming that
if service provider 1 breaks down then service provider 2 is
used as a replacement. If the availability of service provider 1
is x, we obtain the following:

End Users Observed Traces Probability
2
3 .u1 obs(ξ1) = abdfh 1

6 · x
obs(ξ2) = abdhf 1

6 · x
obs(ξ3) = acegk 1

3 + 1
6 · (1− x)

obs(ξ4) = acekg 1
3 + 1

6 · (1− x)
1
3 .u2 obs(ξ1) = abdfh 1

8 · x
obs(ξ2) = abdhf 1

8 · x
obs(ξ3) = acegk 3

8 + 1
8 · (1− x)

obs(ξ4) = acekg 3
8 + 1

8 · (1− x)

We therefore have:

Iu1
(Tu1

;Ou1
)=H(

1

6
·x, 1

6
·x, 1

3
+

1

6
· (1−x),

1

3
+

1

6
· (1−x))

Iu2
(Tu2

;Ou2
)=H(

1

8
·x, 1

8
·x, 3

8
+

1

8
· (1−x),

3

8
+

1

8
· (1−x))

Figure 3 shows the channel capacity based opacity of the
system against the availability of service provider 1. Since in
real life distributed systems the number of the parameters is
quite high, in our study the following ones were kept fixed:
the probability of all possible traces of u1 was set to 2

3 , and
that of u2 to 1

3 .

Fig. 3. The trade-off between service availability and opacity.

The graph of Figure 3 clearly indicates that a system with
high level of availability of service provider 1 would suffer
from low degree of opacity or, in other words, high information
leakage.

VII. CONCLUSIONS

In this paper, we proposed a simple model for tracking the
information flow in IoTwCC systems. Opacity, as a promising
technique for unifying a range of security properties, has been
used to analyze the behaviour of a system. A medical research
application example was given to discuss how observing a
system’s behaviour can help attacker to infer information about
the system. Entropy was introduced to quantify the amount of
information related to a service that might be exposed to the
attackers. Moreover, channel capacity was used to measure the
maximum of information loss among all end users. Finally,
we investigated how the opacity of a system is affected by the
availability of services.

The study presented in this paper can help to track and
control the secure information flow in complex computing
systems, and analyze the impact of different resource allocation
strategies.

VIII. ACKNOWLEDGEMENTS

We would like to thank the referees for their comments
and useful suggestions. This research was supported by the

973 Program Grant 2010CB328102, NSFC Grant 61133001,
and EPSRC UNCOVER project.

REFERENCES

[1] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Computer
Networks, vol. 57, no. 10, pp. 2266 – 2279, 2013, towards a Science
of Cyber Security Security and Identity Architecture for the Future
Internet.

[2] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497 – 1516, 2012.

[3] G. Smith, “A new type system for secure information flow,” in In
CSFW14. IEEE Computer Society Press, 2001, pp. 115–125.

[4] S. Hunt and D. Sands, “On flow-sensitive security types,” in Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’06. New York, NY, USA:
ACM, 2006, pp. 79–90.

[5] A. Russo, A. Sabelfeld, and A. Chudnov, “Tracking information flow
in dynamic tree structures,” in Proceedings of the 14th European Con-
ference on Research in Computer Security, ser. ESORICS’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 86–103.

[6] P. Watson, “A multi-level security model for partitioning workflows
over federated clouds,” Journal of Cloud Computing, vol. 1, no. 1, pp.
1–15, 2012.

[7] K. Knorr, “Dynamic access control through petri net workflows,”
in Proceedings of the 16th Annual Computer Security Applications
Conference, ser. ACSAC ’00, 2000, pp. 159–167.

[8] ——, “Multilevel security and information flow in petri net work-
flows,” in 9th International Conference on Telecommunication Systems
- Modeling and Analysis, Special Session on Security Aspects of
Telecommunication Systems, 2001.

[9] W. Zeng, C. Mu, M. Koutny, and P. Watson, “A flow sensitive security
model for cloud computing systems,” CoRR, vol. abs/1404.7760, 2014.

[10] W. Zeng, M. Koutny, and P. Watson, “Verifying secure information flow
in federated clouds,” in IEEE 6th International Conference on Cloud
Computing Technology and Science (CloudCom), 2014.

[11] J. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling opacity using
petri nets,” Electron. Notes Theor. Comput. Sci., vol. 121, pp. 101–115,
February 2005.

[12] J. Bryans, M. Koutny, L. Mazar, and P. Ryan, “Opacity generalised
to transition systems,” in Formal Aspects in Security and Trust, ser.
Lecture Notes in Computer Science, 2006, vol. 3866, pp. 81–95.

[13] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” Int. J. Inf. Sec., vol. 7, no. 6, pp.
421–435, 2008.

[14] M. E. Andrés, C. Palamidessi, P. Van Rossum, and G. Smith, “Comput-
ing the leakage of information-hiding systems,” in Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2010, pp. 373–
389.

[15] M. E. Andrés, C. Palamidessi, P. van Rossum, and A. Sokolova,
“Information hiding in probabilistic concurrent systems.” in QEST’10,
2010, pp. 17–26.

[16] P. Watson and M. Little, “Multi-level security for deploying distributed
applications on clouds, devices and things,” in IEEE 6th International
Conference on Cloud Computing Technology and Science, CloudCom
2014, Singapore, December 15-18, 2014, 2014, pp. 380–385.

[17] A. Renyi, Probability Theory. North-Holland Publishing Company,
1970.

[18] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

