
What were we all looking at? Identifying objects of collective visual 

attention 

We aim to identify the salient objects in an image by applying a model of visual 

attention. We automate the process by predicting those objects in an image that 

are most likely to be the focus of someone's visual attention. Concretely, we first 

generate fixation maps from the eye tracking data, which express the ground truth 

of people's visual attention for each training image. Then, we extract the high 

level features based on the bag-of-visual-words image representation as input 

attributes along with the fixation maps to train a support vector regression (SVR) 

model. With this model, we can predict a new query image’s saliency. Our 

experiments show that the model is capable of providing a good estimate for 

human visual attention in test images sets with one salient object and multiple 

salient objects. In this way, we seek to reduce the redundant information within 

the scene, and thus provide a more accurate depiction of the scene. 

Keywords: visual attention; bag of visual words; eye tracking; support vector 

regression 
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1 INTRODUCTION 

The massive amount of text and image data generated and spread by social media every 

day forms a publicly available global source of data representing the collective interest 

of all those who regularly use Facebook, Twitter and other sites. The data offers a 

stream of what people experience and what they are interested in, what they are thinking 

and doing in real time. The possibilities for data mining in this stream are many, varied 

and enormous. For example, it is possible to extract stories and items that are 

significantly more interesting than the rest automatically on the basis of assigned 

popularity ratings. Wu & Huberman (2007) provide a statistical model of collective 

attention based on novelty which describes the lifetime of stories on Digg.com. It is a 

simple proposition to tag and archive stories that are statistical outliers and which attract 
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exceptional attention. Hashtags in tweets on Twitter can be monitored automatically and 

analysed (Lehmann, Gonçalves, Ramasco, & Cattuto, 2012). In this work, the authors 

describe different profiles describing the lifetimes of hashtags. Some may increase in 

frequency, rise to a peak, and then decay, while others are triggered by a specific event 

causing a peak followed by a decay in interest. They apply lexical analyses to the 

hashtags in the clusters corresponding to the profiles and identify common themes. 

Subjects of collective interest and attention can be continuously monitored and recorded. 

What then of applying the same ideas of automatic object extraction to images 

and video feeds? Together with GPS data, these provide very rich opportunities for 

describing topics of immediate collective interest and attention of those in particular 

locations. One data mining service offers to tag corporate branding appearing in images, 

so a company can monitor where its brand appears at anywhere and any time 

(“gazeMetrix” ).  Google has taken out a US patent (Zhao & Yagnik, 2012) for a means 

of automatic object identification in video streams. If successful this will enable 

automatic tagging, not just of specific corporate branding, but of any object the systems 

have been trained to recognise. 

 

Figure 1. Google’s patent describes a system that can automatically tag photos via 

object recognition. 



This has the potential to mark up in close to real time, the content of all images 

and video feeds available to the system.  The problem is now not being able to see the 

woods for the trees. Unless there is some way of identifying what the salient objects are 

in each image or video frame, the interesting objects of collective visual attention will 

be lost in a stream of redundant information about all of the other objects that happen to 

appear in the same shot. 

Our work is aimed at identifying salient objects in an image by applying a model 

of visual attention, which is designed for subsequent object recognition in images.  We 

aim to provide the means of making automatic object recognition sensitive to visual 

attention.  We are able to predict those objects in an image that are most likely to be the 

focus of someone’s visual attention on the basis of an analysis model that has been 

trained using eye tracking data obtained from many people viewing a large set of 

training images. The model is further enhanced by including automatic detection of high 

level salient features.  The potential for this filter is very significant for being able to 

identify common objects likely to attract visual attention in images and video streams 

taken by different people in the same location and the same time. 

In this paper, we describe the model and then show how well the predictions of 

saliency in a series of test images match with eye tracking data collected from 

participants viewing the same images. 

2 RELATED WORK 

The computational model of visual attention was first introduced by Itti, Koch, & 

Niebur (1998). Specifically, they proposed using a set of feature maps from three 

complementary channels, which were intensity, colour, and orientation. The normalized 

feature maps from each channel were then linearly combined to generate the overall 

saliency map. Based on this, many other researchers have since suggested 



improvements. Meur, Callet, Barba, & Thoreau (2006) adapted the Itti model to include 

the features of contrast sensitivity functions, perceptual decomposition, visual masking, 

and centre-surround interactions. Privitera & Stark (2000) have improved the Itti model 

by adding symmetry as an additional feature. The above approaches are all based on 

low-level image features, such as intensity, colour, and orientation. We categorize these 

kinds of visual attention models as “bottom-up” models. 

Studies from psychophysics and neurobiology indicate that, as well as bottom-

up factors, top-down factors play an important role in attracting a person’s attention 

(Frintrop, Rome, & Christensen, 2010). In order to obtain a better simulation of 

attention getting, the bottom-up and top-down approaches to saliency are fused to obtain 

a single focus of attention. Many factors may influence the visual attention. One of 

these is how attention is driven by current tasks. Wolfe, Cave, & Franzel (1989) 

proposed a model that takes this into consideration by modulating the weights of the 

feature maps depending on the task at hand. For example, if searching for a vertical 

green bottle, the model would increase the weights of the green and vertical orientation 

feature maps to allow those features to be attributed more saliency. Another important 

aspect of top-down factors is the people’s knowledge of the outer world. That can be 

divided into two subcategories. One is the relationship between object and context. 

Oliva, Torralba, Castelhano, & Henderson (2003) proposed a method that regards 

context information, which means searching for a person in a street scene is restricted to 

the street region; the sky region is ignored. The contextual information is obtained from 

past search experiences in similar environments. Another subcategory is the prior 

knowledge about the target. In most cases, some particular types of objects are more 

likely to attract people’s attention. Therefore, another way to add top-down components 

to a model is to use object detectors. Cerf, Frady, & Koch (2009) indicated that faces 



and text strongly attract attention. They added a conspicuity map indicating the location 

of faces and text to the Itti model, and showed that it improves the ability to predict eye 

fixations in natural images. While adding object detectors improved the model, it’s 

limited by the number of the object detectors, and hard to generalize to the generic 

category. 

Gaze fixations provide the best indication in real-time of the focus of visual 

attention of a person, so one way to improve the predictive ability of the visual attention 

model is to exploit actual eye tracking data. Zhang et al. (2011) proposed a time delay 

neural network model that trained on the real eye tracking data, but their work aimed to 

simulate the time sequence of the eye gazes. Liang, Fu, Chi, & Feng (2010) used real 

eye tracking data as ground truth to refine a region based attention model with a Genetic 

Algorithm (GA). Their results showed that the refined model outperformed the original 

one. However, their refined model still only used low-level image features as the basis 

for optimization using the eye tracking data. This limited the extent to which 

improvement in performance was possible. Kienzle, Wichmann, Schölkopf, & Franz 

(2006) produced a visual saliency model directly from human eye movement data using 

a support vector machine (SVM). However, their training set only contained grey scale 

images. Judd, Ehinger, Durand, & Torralba (2009) trained a binary SVM classifier on a 

large colour database using both low-level and high-level image features. They treat the 

notion of visual attention as a binary classification problem, although they use some 

mathematical trick to enable the model to output continuous saliency value. However, 

since their models are binary classifiers, they won’t be able to directly compare the 

saliency of different images or even compare salient regions within the same image. 

3 Our Model of Visual Attention 

We try to simulate the collective visual attention of people. Intuitively, if most people 



looked at the same place in an image, and the duration of attention is relatively long, 

then that area should be relatively salient, i.e. there may be something interesting in that 

area. On the contrary, if there isn’t any interesting thing in an image, people might look 

around on the image, i.e. the fixation pattern should be scattered. 

Based on that assumption, we propose a new visual attention model that learns 

from eye tracking data. The main differences with previous learning-based approach are: 

onefirst, we generate a continuous fixation map as the ground truth of visual attention, 

and treat the learning problem as a regression problem. Thus, we hope to train a model 

that not only can determine salient areas in an image, but also can tell how salient this 

area is. Second, since the bag-of-visual-word image representation has successfully 

used in category recognition (Csurka, Dance, Fan, Willamowski, & Bray, 2004), we 

introduced a new type of high level features − the probabilities of each visual word 

occurs in the salient areas − into the visual attention model.Two, we introduced a new 

type of high level features that using the probabilities of each visual word occurs in the 

salient areas. With this type of high level features, we can overcome the limitation of 

the object detectors, help us to find out any kind of objects that people are interested in. 

The whole procedure is as follow: First, we generate fixation maps from the eye 

tracking data of multiple users which express the ground truth output for each training 

image. Then, we extract the image features, including low-level and high-level features, 

and use these features as input attributes along with the gaze fixation map outputs from 

the eye tracking data to train a support vector regression (SVR) model. A diagram of the 

training phase for our model is presented in Figure 2 (a). After we train our SVR model, 

we can extract image features from a new image (not belonging to the training set) and 

use them to predict its saliency. A diagram of the prediction phase of the model is given 



in Figure 2 (b). The training data, including images and corresponding eye tracking data, 

we use is from Judd et al. (2009). 

3.1 Generating Fixation Maps 

We need to convert the eye tracking data to a suitable fixation map, which is able to  

accurately reflect the gaze ground truth to train our SVR model. In order to extract the 

interesting objects and even events from a series of images, we need a fixation map with 

continuous saliency value that can indicate the different saliency value within different 

parts of an image, or across different images. 

Intuitively, the area that the more people look at or the longer people look at 

should have higher saliency value. Thus, to produce the fixation maps, firstly, we 

generate a fixation sum map             from the eye tracking data, where m  and 

n  represent the size of the corresponding image. The value of ( )sum
F  is: 
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Eye tracking database:
1003 images, 15 observers.
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Figure 2. The diagram of the training phase of the computational attention model. 

 

 



Where ,i jN  is the total number of the gaze fixations at the point ( , )i j  across all 

observers. 

Then, the fixation sum map, which is a grid with discrete values, is smoothed by 

convolution with a Gaussian kernel to obtain a continuous fixation map F : 

 
( )sum

F G F . (2) 

Here, G is the Gaussian kernel with a cut-off frequency of 8 cycles per image, 

about 1 degree of visual angle (Einhäuser, Spain, & Perona, 2008), to match the 

approximate area that an observer sees at high focus around the point of fixation. 

3.2 Features Used for Support Vector Regression 

We use image features that are associated with bottom up attractors of visual attention 

(low-level features) and top-down attractors (high-level features). 

3.2.1 Low-level features 

There are a variety of image features that are physiologically plausible and have been 

shown to correlate with visual attention. The features we use are: 

 The local energy of the steerable pyramid filters (Simoncelli & Freeman, 1995); 

 Intensity, orientation and colour centre-surround operators (Itti & Koch, 2000); 

 The values of the red, green and blue channels as well as the probabilities of 

each of these channels. The probability of each colour is computed from 3D 

colour histograms of the image filtered with a median filter at 6 different scales 

(Judd et al., 2009); 

 The saliency map generated by the model described by (Aude Oliva & Torralba, 

2001). 



3.2.2 High-level features 

Some particular types of objects (such as face, person, text, etc.) are more likely to 

attract people’s attention. To get a better prediction of the human’s visual attention, we 

need to know the category on the images. The bag-of-word image representation (BoW) 

is successfully used in category recognition (Csurka et al., 2004)(Csurka, Dance, Fan, 

Willamowski, & Bray, 2004). Based on this image representation, many methods were 

proposed to recognize generic category in the images (Tuytelaars, Lampert, Blaschko, 

& Buntine, 2010). We proposed a new type of high level feature, which based on the 

bag-of-visual-word image representation, to link the category information on the image 

with their saliency. 

In the bag-of-visual-word image representation, the visual word in one image 

may be the components of different categories, such as face, person, etc. In our case, we 

try to link this category information with the saliency. We consider there are two classes 

in the images - the salient and the non-salient. Then we want to know the probability of 

each visual word occurs in each class. So, we can calculate the conditional probabilities 

of visual word iw  given class kz directly from the training data. In order to avoid 

probabilities of zero, these estimates are computed with Laplace smoothing: 
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Where W  is the size of the vocabulary, videlicet, the number of visual words. 

(w , )i jN a  is the number of times visual word iw  occurs in the image area ja . This area 

could either be salient or non-salient. 

Given one image, the ( )i kP w z  is computed at each visual word to get a discrete 

visual word map. We convolve it with a Gaussian kernel to get a continuous probability 



map, which indicates the probabilities of the visual words in the corresponding image 

are salient. These probability maps are used as the high-level feature. 

3.3 Training the SVR model 

The database we used contains 1003 images. To speed up the training and prediction 

processes, once we have extracted the features from the image, we reduce the 

feature matrices to 160×160. However, there are still 160×160×1003=25,676,800 

samples. If we use a kernel for our SVR training, the trained model will have a large 

number of support vectors, making the prediction quite slow. Therefore, to further 

decrease computational complexity we train the SVR model without a kernel (Ho & Lin, 

2012). 

Mathematically, the model can be written like this: 

 
Ts b w f   (4) 

where s is the salient value at an area in the image, b  is the bias of the model 

and w  is the weight vector for each feature. Both b  and w  are learned from training 

data. The f is the features vector. 

To fix the misclassification cost constant C and   in the loss function of  -SVR, 

we conducted an exhaustive grid search with the grid points equally spaced on a log 

scale. According to the results of a grid search of parameters, the constant C is set to 1, 

and   is set to 0.0039. 

4 Experiment to Evaluate the Ability of the Visual Attention Model to 

Predict Actual Fixations 

We conducted an experiment to see how well predictions about which objects in a scene 

were predicted to be most salient aligned with actual eye tracking data. Two sets of test 



images were used with two different groups of participants, one for each study. In one 

study, images consisted of scenes with one obvious object (Scene Type 1) and in the 

other study, images contain two or more obvious objects (Scene Type 2). We selected 

several scenes from around the De Montfort University campus and took photographs: 

Scene Type 1 contained 16 images and Scene Type 2 contained 21 images. Please note 

that the images we used for testing are not included in the original image dataset used 

for training our model. 

In both scene types, the set of images was presented to participants for a total of 

3 seconds each. No instructions were given about what the participant should look at. In 

such a way, we expect we can get the general idea of what the people think are 

interesting in these images. 

All trials were carried out with the participant seated at a desk in front of a 20’ 

widescreen monitor. Eye movements were recorded with a Tobii X120 eye tracker 

located beneath the monitor. After the initial calibration sequence, all of the images 

were presented in sequence without any pause between them. After the trial, the purpose 

of the study was explained to the participant and their consent was obtained to use their 

data in the further analysis. An individual trial lasted approximately 5–7 minutes. 

 Low-level features with eye tracking (LFET): here the SVR model trained with 

low level image features and eye tracking data was used to produce a saliency 

map based on low level features in the test image  

 Low-level as well as high-level features with eye tracking together (LHFET): 

here the output from the SVR model that was learned with low level as well as 

high-level feature. 



 Low-level features only (LF): as a control condition, a saliency map was 

generated using low level image features only. The map was generated by open 

source gaze data analysis software (Adrian, 2013). 

We wished to establish whether our models (LFET and LHFET) produced better 

results in predicting the salient areas of the test images than a saliency map produced 

without exploiting eye tracking data and high level features (LF). 

4.1 Measuring how well the saliency map can predict actual gaze positions 

A saliency map is essentially a two-dimensional grid of probabilities. The elements in 

the grid are pixels. The probabilities refer to the likelihood that a gaze event will occur 

on just that pixel. For many pixels, the probabilities will be close to 0. Areas of the 

image where the probabilities are higher can be colour coded, resulting in a heat-map 

visualisation of the probabilities of a hit by a gaze event. The gaze events we have used 

are fixations rather than individual gaze points. The eye tracker delivers 60 

measurements of gaze position each second, or one every 16 milliseconds 

(approximately). A fixation is a cluster of gaze points where the duration equated to the 

number of points in the cluster, and is represented by the average x and y position of the 

points within the cluster. The Actual Eye Tracking data is also represented as a map of 

locations in relation to the two-dimensional grid. People make very roughly about 3 to 4 

fixations per second, giving 9 to 12 fixations over 3 seconds for each participant. The 

fixation data from all participants viewing a particular image is collected onto one map. 

There is no temporal sequence of fixations and consequently no scan path. 

A measure of how close the saliency map is the map of actual fixations is 

needed for meaningful quantitative comparisons to be made. There are several 

candidate metrics, such as: Receiver Operating Characteristics (ROC), correlation-based 



measures (Rajashekar, Linde, Bovik, & Cormack, 2008), Earth Mover’s Distance 

(EMD), etc. Among these metrics, ROC is the most widely used in the community. 

Therefore, in this paper, we use the area under the ROC curve (AUC) to quantitatively 

evaluate the visual attention model. For a saliency map, one can convert it to only 

salient and non-salient areas depend on a threshold. For any particular value of the 

threshold, there is some fraction of the fixation points which are located in the salient 

areas (true positive rate), and some fraction of points which were not fixation points but 

labelled as salient anyway (false positive rate). Varying over all such thresholds yields a 

ROC curve and the area beneath it is generally regarded as an indication of the 

classifying power of the detector. The AUC score range between 0 and 1, the larger 

value indicates better prediction of the model. 

4.2 Scene Type 1: Test images with one highly salient object only 

The image set contained 16 images taken around the university campus, indoors and 

outdoors. All included just one prominent object that could be expected to attract the 

viewer’s attention. In some cases the object was a person, in some an automobile or 

vehicle, and in others an object such a sign on a door. Participants recruited from staff 

and students in the faculty took part. We expected there to be no difference between the 

LFET maps compared with the LHFET map if there were no high level features (faces, 

figures or cars) present in the image. It is of course possible that features in the image 

might be mistakenly classified as high level features resulting in these areas being given 

higher saliency. We expected that both the LFET and LHFET maps would give 

significantly better predictions of actual gaze positions than the LF only map. Three 

sample images from this set and the maps associated with these are shown in Figure 3. 

The ROC curves of these images are shown in Figure 4. 



We conducted a t-test to test if there are significant differences between LHFET, 

LFET and LF. The p-values of the t-test are shown in Table 1. To see how big the 

differences are between these models, the average differences between them are also 

shown in the table. 

From the Table 1, we can see that for Scene Type 1, the results of LHFET as 

well as LFET are both better than LF,  the average improvement is about 6% for both of 

them, but the results of LHFET is not better than LFET. 
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Figure 3. The sample of images and corresponding eye tracking data as well as results of 

visual attention models. The left three columns are the results of three visual attention 

models, the fourth column shows the actual eye tracking. Each row shows a sample of 

images, the number below each images is the AUC score of the model for the image. 

 

 
The ROC curves of the image in 

the first row of Figure 3. 

 
The ROC curves of the image in 

the second row of Figure 3. 
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Figure 4. The ROC curves of the three example images shown in Figure 3. Different 

colours represent different models. The horizontal axis is the false positive rate, the true 

positive rate is on the vertical axis. Note that the curves of LHFET and LFET in the left 

two charts are too similar, so they look like there is only one curve left. 
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Table 1. The p-values of the t-test of whether there are significant differences between 

LHFET, LFET and LF for scene type 1. 

Alternative hypothesis: 
LHFET is larger 

than LF 

LFET is larger 

than LF 

LHFET is larger than 

LFET 

The p-values of the null 

hypothesis: 
<0.0001 <0.0001 0.3917 

The average difference: 5.91% 5.81% 0.10% 

 

4.3 Scene Type 2: Test images with many possible salient areas or objects 

The study was similar to Study 1, although different participants were used. The images 

were of ‘busy’ scenes taken from the centre of the campus at lunchtime. We took 21 

images in total. All images contained several high level features, either faces, figures or 

vehicles or a combination of these. We expected a clear difference between the LFET 

and LHFET maps. We also expected a number of different salient objects with different 

probabilities of attracting fixations. Three sample images from this set and the maps 

associated with these are shown in Figure 5. 

The p-values of the t-test of if there is a significant difference between LHFET, 

LFET and LF, as well as the average differences are shown in Table 2. 

From the results of the t-test, we can see that, for Scene Type 2, the results of 

LHFET as well as LFET are both better than LF, and the results of LHFET is also better 

than LFET. The average improvement of the LHFET is about 4% in this scene type. 

4.4 Evaluation based on the images’ content 

In addition, we divided the whole image set into two categories based on if there are 

high level features in the image. So we get two image sets: image set 1—image with 

high level features; image set 2—image without high level features. 

The values of the areas under the ROC curves of the two image sets are showing 

in Figure 6. 



The p-values of the t-test of if there are significant differences between LHFET, 

LFET and LF, as well as the average differences are shown in Table 3. 

From the results of the t-test, we can see that for both image sets, the results of 

LHFET and LFET are both better than LF, and the results of LHFET is also better than 

LFET for image set 1, but not better than LFET for image set 2. 
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Figure 5. The sample of images and corresponding eye tracking data as well as results of 

visual attention models. The left three columns are the results of three visual attention 

models, the fourth column shows the actual eye tracking. Each row shows a sample of 

images, the number below each images is the AUC score of the model for the image. 

 

Table 2. The p-values of the t-test of whether there are significant differences between 

LHFET, LFET and LF for scene type 2. 

Alternative hypothesis: 
LHFET is larger 

than LF 

LFET is larger 

than LF 

LHFET is larger than 

LFET 

The p-values of the null 

hypothesis: 
<0.0001 <0.0001 0.0031 

The average difference: 
4.28% 2.69% 1.59% 

 



5 Discussion and Future Work 

From the results of our experiments, we can see that it is apparent that people will 

subconsciously focus their attention on the salient object in the image, either for the 

images with only one salient object in it or the images with multiple salient objects in it, 

and ignore the background (see Figure 3 and Figure 5, the results of AET). Having a 

computational model to simulate this ability will be very useful for identifying 

interesting objects in a scene. 
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Figure 6. The values of the areas under the ROC curves of both image sets. The 

horizontal axis is index of images, the values of the areas under the ROC curve is on 

the vertical axis.  On the left of the dotted line is the images belong to image set 1, on 

the right is the images belong to image set 2. 

 

Table 3. The p-values of the t-test of whether there are significant differences between 

LHFET, LFET and LF, as well as the average differences for both image set. 

 Alternative hypothesis: 
LHFET is larger 

than LF 

LFET is larger 

than LF 

LHFET is larger 

than LFET 

image 

set 1 

The p-values of the null 

hypothesis: 
<0.0001 <0.0001 0.0097 

The average difference: 4.84% 3.65% 1.19% 

image 

set 2 

The p-values of the null 

hypothesis: 
0.0106 0.0074 0.9432 

The average difference: 4.28% 2.69% 1.59% 

 



With respect to the visual attention model, using the actual eye tracking data to 

train the model improves the prediction of human fixations (for both scene types). 

Intuitively, training a model with real eye tracking data will allow us to effectively 

weight our image feature detectors, leading to a better result. Looking for the first row 

in Figure 3 for example, the edge of the door has a relatively large colour contrast, so 

the LF model marks this area as the most salient area. However, what people actually 

pay attention to is the sign on the door (see the AET image). The model trained with eye 

tracking data adjusts the weight of that type of feature, making the edge of the door less 

salient (see the LFET result), which better reflects real conditions. 

As one might expect, the images with high-level features in it perform better 

with the model that seeks out high level features. Regarding the images without high-

level features, there is no significant difference between the high-level and low-level 

trained models, however, using high-level features can perform slightly worse (see the 

average difference between LHFET and LFET for image set 2, in Table 3). This is 

because the high-level feature we used sometimes is not that accurate. And this is 

probably caused by the polysemy of the visual words that some features that look very 

similar but they actually belong to different categories. This also suggests one way to 

improve this model is to find a better way to make use of the high-level features in the 

images. 

The model can be used to determine the most interesting parts of a new image. 

Part of our current work is the automatic tagging of the salient regions of images 

through known databases of objects in a bag-of-words model (Csurka et al., 2004). Here, 

there are several image representation methods, such as: dense sampling of image 

patches using a regular grid, scale-invariant features extracted by Hessian-Laplace or 

Harris-Laplace detectors, etc. However, these methods maybe not the most appropriate 



for category recognition as it cannot differentiate the object from background.  While 

others (such as Google (Zhao & Yagnik, 2012)) concentrate on automatically tagging 

everything it recognises in an image, we argue that a scene or image is better defined by 

its most salient parts, and therefore can provide an easier way of categorizing the image 

which is useful for modern social media purposes. Furthermore, by fusing image data 

acquired from a number of individuals from different viewpoints, we should be able to 

define a more sophisticated saliency model for the scene by consensus. Acquiring such 

data has become far easier with the advent of GPS data coupled with global image 

directories such as Facebook, Twitter and Instagram. With other techniques, like 

hashtags, it also can be used to track identified highly salient objects. So for example, 

'elephant runs loose in the city centre of Penang' could be constructed automatically 

from lots of uploaded images where the most salient object is recognised as an elephant, 

all images suddenly occur at the same time, and all occur in the same small area 

identified by GPS location as being Penang. 

A simple example of tagging only salient parts of images can be seen in Figure 7. 

Where traditional tagging may identify the lamppost and telephone box, these are not 

considered important by the saliency image. Additionally, where the tagging software 

may label these people as pedestrians, modelling through many images and GPS data 

may instead infer these people as students due to the location being known to be a 

university campus. 

6 Conclusions 

In this paper, we have proposed a computational visual attention model aimed at finding 

the most interesting objects in an image, and we discuss using it to identify objects of 

collective visual attention. We proposed a new type of high level feature that based on 

the bag-of-visual-word image representation, which can find the saliency on different 



categories. The visual attention model takes advantage of the low-level and high-level 

features of the images, using the actual eye tracking data as the ground truth of visual 

attention to train a SVR model. We have also conducted the experiments to evaluate the 

model. The results of the experiments show that for both image set—images with one 

salient object and images with many salient objects—using the actual eye tracking data 

to train the model improves predicting the human fixations, and it is more helpful for 

the images with many salient objects. For the images with high-level features, adding 

the BoW based high-level feature to the model will result in a better prediction of 

human fixations, whereas for the images without high-level features in it, adding the 

BoW based high-level feature to the model will not get a better prediction. 
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