
VIPR: A Visual Interface Tool for Programming

Semantic Web Rules

Kerry-Louise Skillen Liming Chen William Burns
De Montfort University, UK De Montfort University, UK Ulster University, UK

School of Computer Science and

Informatics

School of Computer Science and

Informatics

School of Computing and

Engineering

Leicester, England Leicester, England Newtownabbey, Northern Ireland

kerry-louise.skillen@dmu.ac.uk liming.chen@dmu.ac.uk wp.burns@ulster.ac.uk

Abstract—Semantic technologies have evolved from the initial

purpose of supporting semantic integration and information

exchange for the semantic web, towards a generic set of

engineering tools for knowledge modelling, representation and

inference. However, there is still much work required within the

area of Semantic computing and the area highlights a key

research challenge involving the complexity in engineering

Semantic rules and associated dedicated models. Many existing

tools focus on the creation of models, but concentrate on

providing support for domain experts, isolating users with no

knowledge engineering experience. This paper aims to address

this issue by introducing a novel approach to enable the visual

creation of Semantic web rules, for use within ontological models

and context-aware applications. The developed tool, known as

VIPR, aims to provide a user-friendly, interactive approach to

aid in the creation of Semantic rules for ontologies. The work

describes the design process involved in creating VIPR and

presents the results of a comparative user evaluation. The

research highlights the extent to which this tool has on improving

the usability and intuitiveness of creating rules in an interactive

environment and assesses how the tool can improve the

learnability level for users with no prior knowledge engineering

experience.

Keywords—semantic technologies, knowledge engineering,

ontology, user modelling, rules, programming, interface, HCI,

pervasive, SWRL

I. INTRODUCTION

With advances in the use of technology for Ambient
Assisted Living (AAL), the need for context-aware,
personalised services is increasingly prevalent and has been
aided through the development of knowledge modelling,
representation and inference models in rceent years [1]. The
Semantic Web is proposed as an advanced version of the
current WWW, offering an enhanced infrastructure that is used
to promote knowledge sharing, allowing new research into the
areas of mobile computing and pervasive technologies. The use
of Semantic technologies have been noted in several research
studies, with a large focus on the representation and reasoning
of users through profile modelling and context-aware
personalisation [2]. For the Semantic Web to function as
required, machines must have access and understanding of
structured collections of data and models, with the inclusion of
rules to allow for reasoning and inference of meaning.

Semantic technologies have enabled context-aware
applications to link information and allow data exchange
across multiple platforms, through the provisioning of formal
modelling languages. In particular, knowledge-engineered
models (such as the use of ontological models) have been used
to support the specification of domain conceptualisations for
the purpose of facilitating information sharing, representation
of user needs and profiles [1] and knowledge inference [3] in
context-aware applications.

This paper presents an interactive web-based tool (VIPR) to
allow the visual programming of Semantic rules for ontological
user models. In particular, focus is on developing ontology-
based rules using the Semantic Web Rule Language (SWRL)
[4] and how this can enhance a user’s experience in visually
developing personalised rule sets for their own ontologies. The
remainder of the paper is structured as follows. Section II
presents related work within the field of Semantic rule
creation, highlighting the use of rule representation languages
in user modelling and provides an overview of existing tools
that facilitate the management of SWRL rules. Section III
introduces the system architecture of VIPR and presents the
design methodology adopted to implement the tool. Following
this, Section IV presents the results of a comparative user
evaluation with 10 computer science researchers on the use of
VIPR compared to an industry standard tool for generating
SWRL rules. Subsequently, findings are summarised and
conclusions are drawn within Section V.

II. RELATED WORK

Currently, there is much work still required within the area

of Semantic computing, in order to realise the widespread

uptake of Semantic technologies [2], with a key challenge

focusing on the complexity involved to achieve this. Research

within the area of knowledge representation and modelling has

sparked developments in specialised modelling languages.

SWRL and RuleML[5] have developed as two popular

Semantic rule representation languages for knowledge

engineers. A rule can be described as a conditional instruction,

which tells a user “what” must happen to achieve a desired

outcome. RuleML is the predecessor of SWRL and is

recognised as a standardised representation language for

Semantic rules. The primary purpose of rule representation via

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228182195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

these languages is to simplify the process of translating rules

into a format that is machine-readable. Semantic rules are

typically used by reasoning engines (such as Jess [6] and

Pellet [7]) and as a result need to be converted into XML.

Syntactically, SWRL is an extension to OWL with a new

conditional format. Its primary purpose is to enable the

integration of rules within ontology models, thus extending

the existing OWL-DL language (a description logic language

used for ontologies). Logical rules are increasingly becoming

an important factor within the area of context-aware

computing. Rules enable applications to be tailored to suit the

needs of the end-user. One of the challenges that users within

the domain of knowledge engineering face is the complexity

involved in creating models that contain rules [180]. While

there are many existing rule editors available to aid in rule

construction, many are built into other integrated editor

environments (IDE) and are still overly complex for the

novice user. By novice user, this refers to any person who is

not a knowledge engineer (i.e. no experience in the designing,

developing or maintaining ontological models), however, may

exhibit some knowledge of the domain.

Recent research has sparked the development of rule-based

editor environments to promote the self-management of

SWRL rules for knowledge-engineered models. Existing

IDE’s such as Protégé [8] or SWOOP [9] have been

developed, as well as graphical-based editors [10][11] for

ontology and SWRL rule visualisation. Protégé is regarded as

one of the most widely used ontology editors, but a key issue

with this environment is the ‘information overload’ of the

tool’s built-in functionalities and ‘messy’ visualisation

techniques [11]. The work in [12] describes the development

of Axiomé, an open-source rule editor to support the Protégé

ontology editor. This tool made use of rule-base graphing, rule

paraphrasing and visualisation of SWRL rules to aid

understanding of how SWRL rules are built. Axiomé is

developed as a plug-in for Protégé and therefore the user

interface theme matches that of the ontology editor. While this

could be beneficial to users that are familiar with Protégé, the

complexity involved in learning the environment and

functionalities of the tool may discourage novice users. One of

the key challenges in understanding SWRL is in the initial

interpretation of complex rules and learning of the

surrounding environment, particularly for novice users.

The Ontology Rule Editor (ORE) [13] is an open-source

Java application which is used to manage SWRL rules within

ontology models. The tool presents a graphical interface to

allow users to create and test Semantic rules. ORE is built for

advanced end-users and as a result, the tool limits its audience

and fails to provide support for the novice user. In contrast to

this, the work in [14] presents a Java Rule Editor (JRE) that

aims to help non-specialist users to understand SWRL rules

via techniques such as rule visualisation. The work presents a

rule management tool, which deconstructs the SWRL rule into

its antecedent and consequent allowing the user to add rule

variables for each. Table 1 highlights some comparative rule

tools available and their existing limitations within their

respective domain. Many existing methods rely on the user

manually creating the rules, which can be a complex and time-

consuming task as the rule set increases in size [14]. Existing

rule editors aim to provide interfaces to allow users to visually

edit, manage ontology models and/or rules, but are domain

specific or present a high level of complexity and assume

basic knowledge/understanding of underlying concepts.

TABLE I. TABLE TO OUTLINE VARIOUS COMPARATIVE SWRL RULE

MANAGEMENT TOOLS CURRENTLY AVAILABLE, WITH LIMITATIONS PRESENTED

Tool Limitation

JRE (Java Rule

Editor) [14]

Portability, accessibility for all users. No

categorisation of rules.

ORE (Ontology

Rule Editor)

[13]

Complex interface, tool is targeted towards

advanced users and computer scientists only.

Lack of intuitive interface design.

SWOOP [9]

Lack of focus on SWRL rule creation, editing

and management. Users must have prior
knowledge engineering experience.

Protégé [8]

Both complexity and learnability levels are

high. Users must have knowledge engineering
experience.

Axiomé [12]

Not independent of a reasoning engine. No

support for the translation of SWRL rules into
human readable syntax or format.

HomeCI [15]

Only supports rules within a specific domain,

it can be difficult to learn the rule syntax and
construction.

SWRL Tab (plug-in

for Protégé)

As with Protégé, the tab only acts as a visual

plug-in but no guidance is given, no visual

aids. Users must have some prior knowledge

of ontology engineering and SWRL.

Beyond semantic modelling, existing tools such as the

HomeCI [15] tool have focused on the development of a

visual rule programming environments for specific domains.

HomeCI is a visual rule editor that enables the creation of

machine-readable rules for use in smart environments. The

tool presented an intuitive user interface that can be used

within the healthcare domain and aims to provide an

interactive system that involves both the patient carer and the

patient in creating personalised rules for home monitoring.

Similar to this, the work presented within this paper focuses

on the visual programming of Semantic rules for use in

ontology models, which could be applied to user profiling

models within healthcare. The Visual Interface for

Programming Semantic Rules (VIPR) supports the interactive

creation of Semantic rules using an intuitive design, where the

user can easily deconstruct the components of the rule into

manageable sections and therefore understand what rule they

are creating and why.

III. DESIGN & IMPLEMENTATION

A. System Architecture

As presented in Figure 1, VIPR is implemented in a three-
tiered architecture, consisting of a bottom Data layer, a middle
Logic/Rule Serialisation layer, and a top Presentation/User
Interface layer.

Fig. 1. Tiered system architecture for the VIPR system consisting of three

separate layers, (1) the data layer where all data is stored, (2) the rule
processing, generation and serialisation layer and (3) the top user interface

layer.

The Presentation layer facilitates the VIPR interface, which
contains five components: (1) the ontology URL import, where
users load in a URL to initialise the ontology, (2) the rule
object initialisation, where class and property concepts are
created from the content derived within the loaded ontology,
(3) the drag-and-drop visual editor, where the user visually
interacts with concepts by dragging them into allocated drop
areas for rule creation, (4) the SWRL rule output, which
presents a visual output of the rule created on screen and (5)
the SWRL rule export, allowing the newly created rule to be
appended to the ontology. The Logic Rule/Serialisation layer
contains the components that enable the core functionality of
VIPR. These include the generation of OWL/XML output, the
serialisation of JSON/XML and rule translation from JSON-
OWL/XML. (1) The bottom Data layer of VIPR is where the
ontology model is stored and loaded in via a URL into the web
interface.

B. SWRL Rule Syntax

One of the disadvantages of ontological modelling is the

model’s inability to express complex rules. Within the domain
of personalisation, ontologies cannot naturally express all
human attributes, needs, wants or characteristics, due to the
complex nature and population of people. As a result, this work
has implemented the use of designed semantic rules to
facilitate the personalisation of user services through SWRL
rule sets. Semantic reasoning engines (used to reason about
rules) are used to infer logical consequences from a set of
asserted facts (i.e. axioms within an ontology model). The use
of rules is a powerful way to represent additional concepts that
cannot naturally be inferred using OWL or RDF. Ontology
languages are unable to express complex formations, such as
satisfying more than one condition at the same time.

The SWRL rule language specifies a rule with the
following notation as shown in Figure 2. The SWRL format is

similar to a simple Horn-like rule structure that is built upon
the knowledge base of OWL to increase expressivity in
ontology models. Generally, a rule defines a cause-effect
relation among a collection of entities that are specific to a
domain of knowledge [1]. An OWL ontology written in the
abstract SWRL syntax is built using a defined sequence of
axioms and facts. An axiom can be defined as ‘starting point’
of reasoning. Axioms can be class atoms, sub-class atoms or
property atoms within an ontology model. SWRL rules (known
as rule axioms) are used as an extension to the existing class or
property axioms within ontologies, and are used to extend their
current reasoning capabilities.

Fig. 2. The SWRL rule structure, where a consequent rule atom within the

rule construct must follow every antecedent rule atom.

Each rule is made up of two parts, the body (known as the

antecedent of the rule) and the head (known as the consequent

of the rule. In the domain of context-aware user

personalisation, the antecedent of each SWRL rule can be

used to represent a conjunction (or union) of user preferences.

For example, in the following rule shown in Figure 3, the first

line constrains any individuals from the UserProfile class that

have a health condition (via the hasHealthCondition property).

In this example, a variable name can be assigned to the

UserProfile class. If the variable ‘?up’ is assigned to the class

UserProfile. In this rule, the user has a sight impairment

resulting in them being ‘Blind’, and the individual name is

assigned to the hasHealthCondition property. In the rule

consequent, it specifies that if the user meets all these

aforementioned constraints, then the HelpDelivery class will

be affected. The Audio class within the HelpDelivery class

will have two major property changes. The MediaType will be

set to Audio as default and the MediaVolume will be set to

Vol_High. The hasMediaType property is linked within an

ontology model to the HelpDelivery class (connected using an

object property).

Fig. 3. As illustrated, the SWRL rule shows if a user profile has a health

condition of blindness, then various media must be in audio format and played
loudly.

The hasMediaVolumeLevel is also linked to this class, but its

range is set to Vol_High and its domain is set to PlayAudio.

This SWRL rule is quite specific in that individuals from the

model are used to restrict the rule. Generic rules can be

created in a similar way, which can be used across several

application domains. Such rules can be described using

variable states (e.g. ?hd for HelpDelivery or ?u for User).

B.C. Application Design & Implementation

Yan and Guo [16] identified a set of universal web

usability guidelines that should be adhered to when designing

interactive user interfaces. In particular, emphasis is placed on

the idea of a ‘user-centric’ design approach to human

computer interaction (HCI). This approach focuses on the

system development being driven by the requirements of the

user and not what is technically required. Such an approach

was followed through the design and development of VIPR.

The user interface design of VIPR was heavily influenced by

current web standards on usability and HCI. The general

layout consists of the main header bar containing the options

to load in the URL for the user’s ontology file, a How to Use

help guide for using the tool and a button to allow the user to

log out of VIPR.

The left side of the interface contains several Rule Objects

that are associated with the ontology that has been loaded by

the user. These objects are split into two types, namely the

Class objects and the Property objects. Further to this the

Property objects are split again into sub-categories of Data

Property objects and Object Property objects. Each type of

object is placed under the relevant heading and can be moved

to any droppable area. VIPR uses a ‘drag and drop’ interface

where users can select each of the Rule Objects and move

them across the screen for rule creation. As shown in Figure 4,

when an object is selected, dragged and dropped, the icon

appears with a ‘variables’ box underneath, displayed within a

green background. The Rule Objects are dragged and then

dropped onto each of two specified droppable areas. Once

dropped, the user may then begin to create the structure of the

rule. VIPR makes use of both jQuery and jsPlumb [17] to

provide an interactive view of the rule creation process. Every

rule object will have a blue connection point attached to it in

the shape of a circle. The user is able to connect two rule

objects by clicking on a connection point and pulling a dashed

connector line from one rule object to another.

Fig. 2.Fig. 4. The Rule Objects within VIPR are selectable and

draggable, and highlight when selected.

If a connection is not made between the objects, the rule will

not output as valid SWRL. VIPR allows the user to design and

personalise their SWRL rules via the use of free-text variable

and individual names (where the user can enter any name they

wish). Upon the initial load of the ontology file the user can

view all available rule objects, however, they are unable to

specify any variables until they drop that particular object into

a droppable area. Once dropped, input boxes appear directly

underneath the rule object. For class objects the user can add a

variable only, however, for the property objects the user may

specify a variable name and an individual name. Both the use

of connections and variable naming is presented in Figure 5.

Fig. 3.Fig. 5. The VIPR interface, allowing users to connect rule

objects via jQuery and also specify a variable and/or individual name to the
objects.

Located to the right of the Rule Objects are the Droppable

Rule areas. These are split into two distinct areas with the

purpose of separating the SWRL rule into manageable

sections. The top droppable area is labeled IF and the bottom

area is labeled THEN. This technique is used to separate the

structure of the SWRL rule for the user to clearly identify

where each rule object should be placed. SWRL rules are

structured with an antecedent (body) and a consequent (head),

similar to that of conditional programming logic via ‘IF-

THEN’ rules. The rule reads as: IF something is specified

THEN the outcome will be the result of what is specified. The

two droppable areas are colour coded and when a rule object

is dragged on top of each, the background colour changes to

signify that it is a valid droppable zone, as shown in Figure 6.

Fig. 4.Fig. 6. The droppable areas as displayed within VIPR, with

background highlighting to show the valid dropping areas for various rule

objects.

The final component of VIPR is regarded as the most

significant area for the output of the newly created SWRL

rules. The Rule Output area is where the SWRL rule is

displayed in OWL/XML format and can then be downloaded

to the new ontology file, as shown in Figures 7 and 8. This

output is displayed after the user selects ‘Output SWRL Rule’

and allows the user to view what they have created. The user

may cancel and begin a new rule clicking on the ‘Restart’

button, where the interface reloads all of the ontology objects.

Fig. 5.Fig. 7. The Rule Output area showing the result of a SWRL

rule created using VIPR.

 VIPR allows for easy visualisation of ontology classes and

sub-properties, via the use of draggable objects on screen

(each containing images which relate to the ontology concept).

The user drags specific objects to two designated ‘drop’ areas.

These areas have been purposely designed to differentiate the

two conditions of any SWRL rule. Semantic rule design

involves the use of knowledge modelling. This requires the

analysis of the domain of knowledge (for example, the

ontology model would focus on a specific domain); the

identification of application processed and related entities. The

purpose is to establish core relationships between specific

entities, which are aided via the use of rules.

Fig. 6.Fig. 8. The implemented visual interface for VIPR as

displayed within the Google Chrome browser.

Upon dragging and dropping the rule objects to the two

designated areas, the user can then view the current output of

that rule by clicking on ‘Output Rule’. The interface displays

the output of the rule in an ontology-compatible XML format,

known as OWL/RDF. On the client-side, VIPR is written

using jQuery (based on JavaScript) and JavaScript Object

Notation (JSON). JSON is a lightweight data interchange

format that uses human-readable text to transfer data objects

that are made up of simple attribute-value pairs. It is used as

an alternative language to XML to transmit data between the

back-end web server and VIPR. As shown in Figure 9, JSON

is made up of attribute-value pairs consisting of the ontology

class or property name and the variable(s) linked to this. This

JSON list will allow for easy manipulation and generation of

the required XML output. In order to generate the output of

the rule as XML an external JavaScript library called

JSON2XML [18] was used. This library was used to convert

the JSON rule snippets to the XML equivalent and jQuery was

used to ‘bind’ the variable and individual names to specific

class or property concepts.

Fig. 7.Fig. 9. Snippet of JSON notation used to create the ontology

classes and properties. Each JSON object contains the class or property name

and associated variables.

Once the JSON format is converted to XML, JavaScript is

then used to ‘attach’ specific snippets of XML code to each

draggable rule object. Each rule object that is shown has a

class or property name and an associated variable or

individual name with it. Generally, when creating a rule the

user is able to specify the variable or individual names linked

to each ontology entity. VIPR allows the user to edit the

individual or variable name associated with specific rule

properties. This ‘binding’ of variable and individual names is

completed using jQuery to attach specific naming to different

parts of the rule. For example, the user may drop both the

class ‘UserProfile’ and a property ‘hasLanguage’ in the rule

body. They can then click on the ‘hasLanguage’ property

object and type in their own individual name. In this case, the

individual name would usually be a language such as

‘English’ or ‘Spanish.’ Once they have entered this, the name

is then appended to the JSON in the server-side and serialised

into XML for the rule output. This gives the user an added

form of flexibility when constructing the rule.

C.D. Development Tools

VIPR was developed as a responsive, cross-browser

compatible and interactive web interface. The tool was built

upon the basis of existing Web 2.0 technologies such as

HTML5 and CSS3 and implemented using jQuery. JavaScript,

JSON and XML were combined to facilitate the development

of the client-side logic for rule creation. A key feature of

VIPR focuses on the use of visual representation of Semantic

rules, where the user can connect different ontology concepts

and personalise the contents, then convert this layout to

display the underlying XML through simple button selections.

The tool also allow the user to save the new SWRL rule into

their initial .OWL file, where the new SWRL rule is appended

to the .OWL file that has been initially loaded in and

downloaded to user’s computer.

IV. USER EVALUATIONS

The developed tool VIPR was involved in a comparative

user evaluation involving 10 participants, recruited from

within the Smart Environments Research Group (SERG) at the

Ulster University, and consisted of a combination of computer

science PhD students and researchers. Existing research

highlights issues with Semantic rule creation and how difficult

it can be to learn the processes involved in ontological

modelling via rules and reasoning. The outcome of the

evaluation was therefore to identify the strength of VIPR

regarding three aspects of the Learnability of the SWRL rule

creation process,   the Usability of the visual programming

interface and   the Efficiency of SWRL rule creation.

A. Participants

VIPR was evaluated on a total of 10 user participants

(male n=4 and female n=6). Nielson suggested that

conducting a usability study on very large numbers of users

proved wasteful of both resources and time [19]. He stated

that the majority (over 2/3) of all usability issues are identified

when conducted on just 2-3 users. Participants were both male

and female and were aged between 25 and 42 years old (mean

age=28.8). VIPR was evaluated and benchmarked against the

use of Protégé for SWRL rule creation. The evaluation was

therefore split into two divisions, focusing on evaluating these

factors firstly within VIPR and subsequently within Protégé.

Participants were asked to use VIPR first as it contained a help

guide (for using VIPR and Protégé). Participants were

categorised into two groups. Groups 1 were classed as novice

users and Group 2 as experienced users, although both groups

of users were researchers within the field of computing.

Participants initially self-rated their experience levels through

standardised questionnaire feedback, where Group 1 (n=5)

exhibited little to no prior experience within the field of

knowledge engineering, while participants in Group 2 (n=5)

exhibited an average to high level of experience.

B. Tasks

At the beginning of each evaluation session, participants

were given a participant instruction sheet containing the tasks

to be completed using VIPR and Protégé. Such tasks included

the completion of a SWRL rule and interpretation of a SWRL

rule using both tools. Participants were also given an

information sheet detailing the research area and evaluation

and the overall purpose of the study, a consent form and a

sheet to write down their interpretation of a SWRL rule from

within Protégé.   Participants were required to work through

the instructional sheet and create a Semantic rule based on a

sample user profile ontology model [1]. This model provided a

pre-defined narrative within the area of user profile

personalisation of smart-phone assistive services. The

participants were electronically guided through the web

interface and were asked to perform the two tasks that were

provided on the instruction sheet. They were required to

complete the tasks using VIPR, and then replicate the same

tasks using Protégé. The tasks focused on creating and

interpreting Semantic rules that adjust the media format and

deliver mode smart-phone services, based on a user’s profile.

The evaluation focused on collecting the following

parameters:

1) The average time taken to create and export an

SWRL rule using VIPR and Protégé.

2) The average time taken to interpret an SWRL rule

within VIPR and Protégé.  

3) A qualitative measure on the benefits of using a visual

programming   interface.  

4) Any limitations of VIPR as a result of usage.

5) Does VIPR reduce the overall learning curve

associated with the   management of SWRL rules,

when compared to an industry standard   package?  

Upon completion of the tasks, all participants were asked

to complete an online questionnaire that identified their

perceptions, thoughts and feedback on the usability, efficiency

and learnability of VIPR. Questionnaire design was heavily

based on the IBM Computer Usability Satisfaction

Questionnaire [20].

C. Results & Discussion

All of the participants completed the tasks correctly, with

varying completion times. Participants within both user groups

took less time to complete the tasks using VIPR compared to

Protégé. The longest total time recorded using VIPR was 11

minutes and 59 seconds, with the longest time using Protégé

totaling over 14 minutes. Participants took on average a total

of 4 minutes and 30 seconds to create a valid SWRL rule

within VIPR. Comparatively, participants took on average 2

minutes and 54 seconds longer to complete the same task

within Protégé. For the interpretation task, participants took on

average a total of 2 minutes and 26 seconds to write down

their understanding of a rule within VIPR. In comparison, they

took more time to interpret the same rule within Protégé, with

an average total of 2 minutes and 29 seconds. Within the

novice and experienced user groups, all participants were

asked to complete the tasks of creating a rule and interpreting

a rule using both VIPR and Protégé. The aim was to identify

how easily they could do these and what problems occurred.

Evaluating VIPR with Novice Group 1: All participants

were asked if they were able to easily load the ontology into

VIPR and drag the rule objects, with all responding ‘Yes.’

Similarly, Group 1 participants were asked to evaluate the

overall ease of use of the VIPR tool, with all responding as

‘Very easy.’ Furthermore, all participants within Group 1 were

able to successfully use VIPR to create a valid SWRL rule,

despite having little to no prior experience in the area. On a

scale of 1- 5, with 1 being ‘Very Difficult’ and 5 being ‘Very

Easy’, 4 out of 5 participants in Group 1 scored the ability of

creating a rule as ‘4’, with 1 participant scoring a ‘5.’ All

participants made use of the help resources within VIPR and

watched the available screencast to learn how to create rules

using the tool. The researcher observed each participant as

they watched the help screencast. Subsequently, all

participants found that the help resources within VIPR were

sufficient. Every participant liked VIPR’s interface design,

particularly commenting on the use of colour and imagery to

aid understanding in differentiating rule classes, properties and

drop areas. A summary of this is presented in Figure 10.

Fig. 8.Fig. 10. Overview chart displaying a summary of the VIPR

questionnaire responses from participants within the novice user group.

Evaluating Protégé with Novice Group 1: In general,

participants felt that the lack of help within Protégé effected

their ability to create a valid rule and felt intimidated by the

environment overall. However, novice participants were able

to identify and interpret rules in Protégé in a similar time to

VIPR, only interpreting on average 3 seconds quicker within

VIPR. 4 out of 5 participants found the process of creating the

same SWRL rule much more difficult using Protégé than

within VIPR. As shown in Figure 11, all participants were

able to successfully load the ontology file into Protégé, but

results show that all participants from Group 1 disliked

creating and interpreting rules using Protégé, particularly

when compared to VIPR. They commented that Protégé’s

editor was simple, however, ineffective, with no help guides

or error control included. Participants struggled with the

SWRL syntax and expected help from built-in error messages.

When evaluating the use of Protégé to create rules,

participants from Group 1 found the process difficult.

Fig. 11. Overview chart displaying a summary of the Protege evaluation

responses from participants within the novice user group.

Participants were able to successfully load the ontology and

found this aspect simple, with just 1 participant rating this as

‘Difficult.’ The majority of participants (4 out of 5) rated the

overall ease-of-use of the tool as either a ‘4’ or a ‘5’

(‘Difficult’ or ‘Very Difficult’). Interestingly, 2 participants

noted that they were only able to understand the SWRL syntax

within Protégé as they had used VIPR’s help guide previously.

Evaluating VIPR with Experienced Group 2: All

participants within Group 2 were able to create a SWRL rule

in VIPR and interpret the rule shown on-screen with no issues.

All participants were able to successfully create the rule,

output the OWL/XML on-screen and then download the new

rule and open it within Protégé. Due to their previous

experience, these tasks took minimal effort and time, and all

participants liked the process involved using VIPR’s “drag-

and-drop” interface. Experienced participants felt the user

interface and usability of VIPR were excellent, and

commented on the intuitiveness of the entire system. Such

results are presented within Figure 12.

Fig. 9.Fig. 12. Overview chart detailing the questionnaire responses

from Group 2 participants when evaluating the VIPR tool.

All participants were able to easily load the ontology

model into VIPR and create an SWRL rule with no issues.

Participants also rated the ease-of-use of the VIPR tool as a

‘5’ as they found it very easy and straightforward. All

participants were also able to successfully interpret a rule as

shown in VIPR, with no reported issues. Overall, experienced

participants completed both tasks of creating and interpreting

SWRL rules in less time than when using Protégé.

Evaluating Protégé with Experienced Group 2: In general,

experienced participants found creating a rule within Protégé

more difficult and less efficient than when they used VIPR. 3

out of 5 participants rated the process of creating a SWRL rule

as a ‘1’ or ‘2’. The remaining participants found the process

quite easy, however, noted that they could not remember the

full syntax required, rating it a ‘3’ and ‘4.’ When asked if they

liked using Protégé to create rules, 4 out of 5 participants from

Group 2 responded with “No.” They commented that the help

was “insufficient and annoying” (Participant 1, Group 2) and

the error messages were “confusing and complicated”

(Participant 2, Group 2). Figure 13 presents a summary of this

feedback.

Fig. 13. Overview chart detailing the questionnaire responses from Group 2

participants when evaluating Protégé.

As a whole, participants within Group 2 disliked the help built

into Protégé and stated that the main problem was the lack of

tutorials for writing the syntax. 4 out of 5 participants rated

Protégé’s help as a ‘1’ or a ‘2’ as a result. All Group 2

participants were able to interpret a rule in Protégé with no

problems. 3 out of 5 rated this process as a ‘3’ and the

remaining participants scored it a ‘4.’ All participants from

Group 2 interpreted the rule quickly and with little help.

D. Findings

Overall findings of the work support the hypothesis that

there is a clear need for a visually user-friendly tool that is

dedicated to allowing users of differing knowledge levels to

create their own Semantic rules and import these seamlessly

into ontology models. The initial evaluation results

demonstrate that both novice and experienced users can

undertake the process of creating the rules at a faster rate in

VIPR than the universal standard, Protégé. The help guide

included within VIPR was a significant advantage over

Protégé’s built-in documentation and enabled users of any

level to create and interpret rules at a faster rate using VIPR.

Despite this, the majority of participants felt the inclusion of a

more comprehensive help guide would be useful. The use of

help points at each step of the rule creation process would

distinguish this tool from existing works. The ‘drag-and- drop’

style visual programming interface was favoured over

Protégé’s basic rule editor.

V. CONCLUSIONS

This paper presented the design, development and
evaluation of a web-based visual interactive interface for the
programming of SWRL rules. The need for a dedicated SWRL
creator tool was highlighted and the shortcomings in related
work was discussed. The overall aim was to evaluate and
identify the impact that the tool had on improving the overall
usability, efficiency and learnability levels of a user when
creating Semantic rules. The evaluation of VIPR was carried
out on both a novice and experienced groups of users. The aim
was to produce a comparative evaluative study, where VIPR
challenged the use of Protégé as a tool to simplify the
development of Semantic rules for use in ontological models.

 As a result of initial user evaluations, VIPR was found to be
intuitive, easy to use and produced valid SWRL for every
participant. Errors were highlighted on-screen and participants
were able to easily identify the errors and fix these with no
issues. However, VIPR currently only supports the loading of
one base ontology model, where further work to the tool could
include the incorporation of dynamic content over time.

VI. REFERENCES

[1] K.-L. Skillen, L. Chen, C. D. Nugent, M. P. Donnelly, W. Burns, and I.

Solheim, “Ontological user modelling and semantic rule-based reasoning
for personalisation of Help-On-Demand services in pervasive

environments,” Futur. Gener. Comput. Syst., vol. 34, pp. 97–109, 2014.

[2] L. Ding, P. Kolari, Z. Ding, S. Avancha, T. Finin, and A. Joshi, “Using
ontologies in the semantic web: A survey,” in Ontologies, Springer US,

2007, pp. 79–113.

[3] A. K. Kalou, T. Pomonis, D. Koutsomitropoulos, and T. Papatheodorou,
“Intelligent Book Mashup: Using Semantic Web Ontologies and Rules

for User Personalisation,” 2010 IEEE Fourth Int. Conf. Semant. Comput.,

pp. 536–541, Sep. 2010.
[4] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.

Dean, “SWRL: A semantic web rule language combining OWL and

RuleML,” W3C Memb. Submiss., vol. 21, p. 79, 2004.
[5] “RuleML: Rule Mark-Up Language.” [Online]. Available:

http://wiki.ruleml.org/index.php/RuleML_Home. [Accessed: 01-Apr-

2016].
[6] E. J. Friedman-Hill, “JESS: The Java Expert System Shell,”

http://herzberg.ca.sandia.gov/jess, 2014. [Online]. Available:

http://www.jessrules.com/jess/docs/45/.

[7] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical owl-dl reasoner,” Web Semant. Sci. Serv. agents World Wide
Web, vol. 5, no. 2, pp. 51–53, 2007.

[8] S. C. for B. I. Research, “Protégé - A free, open-source ontology editor

and framework for building intelligent systems.” [Online]. Available:
http://protege.stanford.edu/. [Accessed: 27-Mar-2016].

[9] C. P. University of Maryland, “SWOOP - Semantic Web Ontology

Editor,” 2014. [Online]. Available: https://code.google.com/p/swoop/.
[Accessed: 16-Apr-2016].

[10] J. Bak, M. Nowak, and I. Engineering, “Graph-based Editor for SWRL

Rule Based Motivation Graph-based Editor,” 2013.
[11] N. Catenazzi, L. Sommaruga, and R. Mazza, “User-Friendly Ontology

Editing and Visualization Tools: The OWLeasyViz Approach,” 2009

13th Int. Conf. Inf. Vis., pp. 283–288, Jul. 2009.
[12] S. Hassanpour, M. O’Connor, and A. Das, “Axiomé: A Tool for the

Elicitation and Management of SWRL Rules.,” in OWLED, 2009.

[13] “ORE: Ontology Rule Editor.” [Online]. Available:
http://sourceforge.net/projects/ore/. [Accessed: 18-Jan-2016].

[14] R. Guozheng, F. Zhiyong, and J. Biao, “JRE: A Visual Semantic Rule

Management Tool,” Softw. Eng. Knowl. Eng. Theory Pract., vol. 162, pp.
651–660, 2012.

[15] M. Beattie, J. Hallberg, C. Nugent, K. Synnes, I. Cleland, and S. Lee, “A

collaborative patient-carer interface for the self- management of

dementia,” in International Conference on Smart Homes and Health

Informatocs, 2014.

[16] P. Yan and J. Guo, “The research of Web usability design,” 2010 The
2nd International Conference on Computer and Automation Engineering

(ICCAE), vol. 4. Ieee, pp. 480–483, Feb-2010.

[17] “jQuery - Cross Platform JavaScript Library.” [Online]. Available:
http://en.wikipedia.org/wiki/JQuery. [Accessed: 23-Jan-2015].

[18] “XML to JSON: A Converter.” [Online]. Available:

http://www.thomasfrank.se/xml_to_json.html. [Accessed: 24-Jan-2015].

[19] J. Nielson, “Why You Only Need to Test with 5 Users,” Nielson Norman

Group, 2015. [Online]. Available: http://www.nngroup.com/articles/why-

you-only-need-to-test-with-5-users/. [Accessed: 22-Feb-2016].
[20] J. R. Lewis, “IBM computer usability satisfaction questionnaires:

psychometric evaluation and instructions for use.,” Int. J.

Human‐Computer Interact. 7.1, vol. 1, pp. 57–78, 1995.

VII.

