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ABSTRACT8

This paper explains the root cause of instabilities which tend to arise in pressure reducing9

valves (PRVs) under low flow conditions. It was found that the loss of stability in PRVs is a direct10

result of an increase in the static valve/network gain as the valve position gets smaller, thus making11

pressure changes more sensitive to valve position adjustments. If the valve controller is tuned at12

medium valve openings characteristic of normal operating conditions, the increased gain at low13

valve openings can cause the control system to be too aggressive in its valve position adjustments14

leading to oscillations. The manuscript provides a mathematical derivation of the gain equation15

for a simplified pipe-PRV-pipe model. The obtained gain equation curve is then used to derive the16

formula for a gain compensator whose purpose is to keep the static gain constant across an entire17

range of permitted valve openings. A simplified network transient model is then used to recreate a18

real-life PRV instability event and show the remedial effects of the gain compensator.19

Keywords: pressure reducing valve, instability, static gain, gain compensator.20

INTRODUCTION21

Energy and resource efficient operation of water distribution networks (WDNs) relies on an22

adequate choice of pressures at critical nodes within the network and an appropriate control of23
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these pressures such that they are maintained close to setpoints regardless of the changes in nodal24

demands. It is up to engineering judgment to select the desired pressure values at controlled nodes25

in the WDN bearing in mind that a minimum pressure, e.g. 15, is required at the tap to provide26

an adequately high flow rate and prevent low pressure failures (Ghorbanian et al. 2015) whilst an27

increase in pressure inside the pipes beyond the required minimum elevates the risk of pipe bursts28

and leads to higher losses of water from the existing leaks (Thornton and Lambert 2005). An29

appropriately designed pressure control system within a WDN will provide good setpoint tracking,30

i.e. pressure values reflect the changes in the setpoint, good disturbance rejection, i.e. nodal31

pressures are kept close to the setpoint regardless of demand changes, and additionally will not32

cause large pressure transients in the system (stability). Although all three above requirements are33

important, stability is crucial for the infrastructure since pressure transients put additional strain on34

WDN components and, if high enough, can lead to pipe bursts.35

Pressure in WDNs is often controlled by pressure reducing valves (PRVs). A PRV is a valve36

combined with a controller in a form of a feedback control loop, as depicted in Fig. 1. The purpose37

of this feedback controller is to maintain the outlet pressure at a constant value or to follow a38

predefined trajectory irrespectively of inlet pressure and flow (demand) variations. The controller39

receives an error signal e calculated as a difference between the downstream pressure setpoint H set
d

40

and the measured downstream pressure Hd, and acts on this signal such that the error is minimized,41

i.e. Hd ≈ H set
d

. If Hd < H set
d

the controller actuates the valve to increase the valve opening and42

thus the outlet pressure. In the opposite case valve opening is decreased. The valve/WDN system,43

also referred to as a plant, is subject to unknown disturbances in the form of demand changes,44

which can be described as variations in orifice areas Aori f ice at the ends of demand nodes. If we45

remove the feedback the system under study (i.e. the plant plus the controller) is called open-loop,46

as opposed to full system with feedback which is referred to as closed-loop. This is a typical control47

system and its properties, in particular stability, should be analyzed in the context of control theory48

(e.g. Ogata 2010). From the point of view of the technology in which the controller is implemented49

PRVs can be divided into two categories: hydraulically controlled valves and electrically controlled50
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valves. A hydraulic PRV is typically based on a pilot valve loop where the current outlet pressure51

is compared with the set-point defined by the preload of a spring in the pilot valve (Prescott and52

Ulanicki 2003). In addition to a hydraulic PRV two types of electronically controlled PRVs are53

available: (a) a hydraulic PRV such as the one mentioned above in which the set-point is adjusted54

by an electronic actuator and (b) a standard valve coupled with an electronic feedback controller55

which directly actuates the valve position. Both valves in the engineering jargon are referred to as56

electronically controlled PRVs.57

Since PRVs are a crucial component of every WDN, pressure control with PRVs has been a58

widely researched topic. Unfortunately, most of the existing publications on pressure control are59

focused on steady-state behavior with omission of controller and plant dynamics. A good review of60

the state of the art in this area is given by Vicente et al. (2015). Traditionally PRVs have been used to61

maintain a desired pressure immediately downstream of the valve but recently, the so called remote62

real time control (RRTC) of water distribution networks (WDNs) where the controlled pressure is at63

a remote node within a network has been of interest to a number of research groups. Campisano et al.64

(2012) proposed a simple linear controller for real time control (RTC) of a motorized valve using65

a steady-state model of a WDN. Similar idea was used for planning of remote real time controlled66

PRVs for the Oppegård municipality in Norway (Berardi et al. 2015). In this case steady-state67

WDN model incorporated pressure dependent background leakage. The same authors developed68

a software module called WDNetXL to support their methodology (Giustolisi et al. 2015). The69

methodology was further refined by Campisano et al. (2016) through inclusion of the criteria for70

target node selection, allowing multiple valves to control pressure at the same target node and by71

considering controller calibration methods as well as wireless communication protocols. Page et al.72

(2016) proposed an innovation to the design of real-time proportional controllers assuming that73

the information about the flow through the PRV is available. Recently there has been a positive74

trend to consider and understand dynamic behavior of valve/WDN systems. As an example, Creaco75

et al. (2017) performed a simulation study of a RTC valve model combined with an unsteady flow76

simulator with pulsed nodal demands. In this particular simulation study the results showed some77
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pressure and flow oscillations but the authors concluded that the steady-state model was a good78

approximation for the design of the RTC schemes and PRV stability was not discussed in the paper.79

Dynamic behavior of PRVs was also tested experimentally, although none of the empirical80

research based publications known to authors deal with PRVs during unstable operation, only with81

stable dynamic response to disturbances. Before we move on to further discussions on PRVs’82

dynamic behavior it is worth pointing out that PRVs alike other dynamic systems may show an83

oscillatory response (e.g. to incoming pressure waves) but this is not to be confused with unstable84

response. Stable response may be sinusoidal as long as its amplitude decays in time whilst instability85

manifests itself with a growing output for a bound input, e.g. a sinusoid of an amplitude growing86

in time. As pointed out in Janus and Ulanicki (2017) PRV instability is likely to cause pressure87

transients but itself is a sole result of dynamic properties of the system, as shall be discussed in88

the later sections of this manuscript. Instabilities are not caused by pressure transients and in fact89

can be shown (numerically) to occur in rigid-column simulations where pressure transients are90

not modeled. Dynamic behavior of PRVs was first analyzed by Brunone and Morelli (1999) who91

measured the response of an automatic control valve to changes in the position of the valve at92

the confluence node downstream of the PRV. The results show higher pressure oscillations under93

lower flows than higher flows which supports the findings of this manuscript. The publication also94

introduces a technique to obtain the flow-rate curve of a valve through unsteady-state tests, which95

offers better estimation accuracy, especially under lower flows. Meniconi et al. (2015) measured96

pressure waves produced during partial a partial closure and opening of a valve downstream of a97

PRV and initially analyzed the waves using a wavelet transform. Experimental studies on dynamic98

response of PRVs were taken forward in Meniconi et al. (2016) and Meniconi et al. (2017) who99

performed further laboratory experiments to monitor the behavior of their PRV under different flow100

conditions. The authors observed pressure oscillations resulting from the movement of the valve101

element but since the tested range of flows was quite narrow and, as explained and demonstrated102

through simulation in Ulanicki and Skworcow (2014) and later in Janus and Ulanicki (2017), PRVs103

tend to become unstable under sufficiently low flows, instability was not observed.104
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Since no article has yet discussed specifically the matter of PRV stability whilst the engineering105

community needs to deal with often disastrous, as shall be briefly shown below, incidents of PRV106

instability in WDNs, there is an urgent need to understand why such incidents occur and how107

they can be prevented. Understanding stability is especially important where the valve element108

is directly actuated by an electronic controller in RTC schemes. There are two potential reasons109

for the instability in control schemes in general: (a) increase in the value of the system gain (here110

increase of the static valve/WDN gain due to the nonlinearity of the valve/WDN system against111

flow) and (b) increase in the value of the delay in the system due to long actuation times or too long112

a sampling period. Whilst the latter can be avoided by proper system design, this paper focuses113

on the former, which is caused solely by the property of the valve and the network. The aim of114

this paper is to explain this phenomenon in a theoretical manner and derive a precise analytical115

relationship between the valve opening and the static gain of the valve/WDN system.116

How severe a PRV instability can be is demonstrated in one such instability event which occurred117

in a large-scale pressure control scheme installed in a WDN of one of the major cities in the UK. The118

above-mentioned instability event is illustrated in Fig. 2 which shows how the valve outlet pressure119

and valve position began to oscillate under low valve openings (and hence low flow conditions)120

whilst the PRV managed to regain stability later in the day when the flow increased and the valve121

settled into a larger opening. The above event incurred serious financial and environmental costs122

as it caused multiple pipe burst across the network resulting in the loss of water and the loss of123

service to the consumers. Although, in this case the PRV under study was controlled electronically124

by a programmable logic controller (PLC) the root-cause of instability is common for all types of125

PRVs, only the remedy will be different for electronically controlled and mechanically controlled126

PRVs and shall be subjects of future research papers.127

The paper is organized as follows. First, the effects of the static valve/WDN gain on feedback128

control system stability are demonstrated using a classical control root-locus technique applied to129

a lumped ordinary differential equation (ODE) model designed to qualitatively represent transient130

behavior of a WDN. Second, a theoretical formula for the static gain of a simplified valve/WDN131
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system consisting of an upstream pipe, PRV, and a downstream pipe is derived using implicit132

function theorem applied to static network equations. Next, 15-min measurements of flows and133

pressures obtained from a real network are used to calibrate the simplified hydraulic model such134

that both the model and the real network exhibit the same static hydraulic properties. The calibrated135

model is then used to generate the static valve/WDN gain vs. valve position curves for different136

values of the pressure dependency coefficient α in the pressure-dependent demand model. The137

curve for a chosen value of α is then used to derive the model of the static gain compensator, the138

purpose of which is to keep the static gain at a constant value for all permitted valve openings.139

Finally, the simplified network transient model is used to recreate a real-life PRV instability event140

briefly described above and to show the remedial effects of the gain compensator.141

EFFECT OF STATIC GAIN ON STABILITY OF A FEEDBACK SYSTEM142

The aim of this section is to explain the effect of the static gain of the open-loop valve/WDN143

system on the stability of the closed-loop system bearing in mind that a water distribution network144

equipped with a PRV is an example of a closed-loop control system (e.g. Ogata 2010) and can be145

represented in a simplified block-diagram form as in Fig. 1. The physical meaning of the static146

gain of the valve/WDN system in the context of pressure control is the ratio between the change147

in the downstream (outlet) pressure Hd and the change in the valve position x in steady-state, i.e.148

K (x) = dHd/dx. The static gain depends on the valve opening (operating point) x signifying that149

the system is nonlinear. In broader terms, the valve/WDN system is nonlinear and distributed, i.e.150

it is described by nonlinear partial differential equations (PDEs). The approach usually adopted151

by control engineers in such a situation is to design a controller for a given operating point x152

using an approximate lumped model described by a linear time invariant (LTI) ordinary differential153

equation (ODE) or a system of LTI ODEs. Subsequently, the controller parameters are adapted to154

changes in the operating point, which is referred to as gain scheduling. A generic LTI ordinary155

differential equation has the the following form:156

an y
(n)
+ an−1 y

(n−1)
+ ... + a1 y

(1)
+ a0 y = bm u(m)

+ bm−1 u(m−1)
+ ... + b1 u(1)

+ b0 u (1)157
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The above equation can be then transformed from differential form in time domain into an algebraic158

form in the new Laplace s domain using the Laplace transform (e.g. Hazewinkel, M. 1994) and159

rearranged to produce the ratio between the output and the input. This ratio is called the transfer160

function and is shown in Eq. 2.161

P (s) =
Y (s)

U (s)
=

bm sm
+ bm−1 sm−1

+ ... + b1s + b0

an sn
+ an−1 sn−1

+ ... + a1 s + a0

(2)162

The polynomials in the numerator and the denominator can be then factorized using general algebra163

P (s) =
bm (s − z1) (s − z2) ... (s − zm−1) (s − zm)

an

(

s − p1

) (

s − p2

)

...
(

s − pn−1

) (

s − pn

) (3)164

where the roots of the numerator, z1...zm, are called zeros of the transfer function and the roots of165

the denominator, p1...pn, are referred to as the poles of the transfer function. The zeros and the poles166

are either real or appear in complex conjugate pairs. The poles and zeros completely characterize167

Eq. 1 and hence provide a complete description of the system dynamics. In particular the poles168

directly define the homogeneous solution of the differential equation, yh (t) =

i=n
∑

i=1

Ci epi t , where Ci169

denotes a constant coefficient next to the i-th exponential term of the solution. In other words the170

poles of the transfer function are the eigenvalues of the differential equation. Clearly, if the poles171

have negative real parts the homogeneous solution decays to zero and the system is stable. If at172

least one pole has a positive real part the homogeneous solution diverges to infinity and the system173

is unstable. The poles and the zeros can be plotted in the complex plane where the horizontal axis174

represents the real partsℜ(s) and the vertical axis represents the imaginary partsℑ(s). The transfer175

function of the closed-loop system displayed in Fig. 1 is Gclosed (s) =
P (s) C (s)

1 + P (s) C (s)
, where P (s)176

is the plant transfer function and C (s) is the controller transfer function. The expression in the177

numerator is called open loop transfer function Gopen (s) = P (s) C (s) and represents the transfer178

function of the system in the absence of feedback. If the parameters of the plant or the controller179

change so do the poles of the closed-loop system. If only one parameter is being varied, typically180

the static gain of the open loop system, the poles of the closed-loop system will move along curves181
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in the complex ℜ(s) − ℑ(s) plane and such a graphical method of stability analysis is called182

root-locus (Evans 1950). The steady-state gain of the transfer function in Eq. 2 equals b0/a0 and183

corresponds to the static gain of the valve/WDN system K (x) = dHd/dx at a given operation point.184

As the gain increases these, hopefully originally stable, poles travel along the root-loci and, at185

some point, depending on the properties of the plant and the controller, may cross the imaginary186

axis where the closed-loop system becomes unstable. For the purpose of demonstrating how the187

static open loop gain affects the stability of the closed-loop system using classical control theory188

the authors developed examples of conceptual lumped models describing the downstream pressure189

head Hd in response to the changes in the valve position x. The first model is depicted in Fig. 3190

and was formulated based on the physical understanding of one-dimensional unsteady flow. It is191

hypothesized that the response of downstream pressure to the changes in valve position can be192

described as a superposition of two responses: (a) inertial response describing acceleration and193

deceleration of the mass of water under an assumption of zero compressibility, i.e. rigid column194

model and (b) the transient response, i.e. pressure oscillations due to water compressibility effects.195

It is also hypothesized that whilst the inertial response is a function of valve position, the transient196

response is a function of the change of valve position, i.e. the rate of valve closure/opening.197

Provided that the valve closes with a sufficiently small rate, i.e. dx/dt ≈ 0 the transient response198

will be close to zero and the output will exhibit a predominantly inertial character, which is199

conceptually in agreement with what is observed in practice. The inertial response is modeled200

with a first order lag element
K1

τ s + 1
whilst the oscillatory response is described with a canonical201

second order system
K2ω

2
n

s2
+ 2 ζ ωn s + ω2

n

, where τ denotes the system time constant, ωn denotes the202

natural frequency and ζ is the damping ratio (see e.g. Ogata 2010). As an alternative conceptual203

lumped model of a valve/WDN system we can use a Maxwell model of a mass supported in parallel204

by a spring and spring with a damper (see Fig. 4). The Maxwell model exhibits similar behavior to205

the inertial-oscillator model described above - oscillations superimposed on slow inertial response.206

The transfer function of the Maxwell model between the force applied to mass m and the mass207
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position is as follows:208

PMaxwell (s) =
s +

E2

η

s3
+

E2

c
s2
+

E1+E2

m
s +

E1 E2

m η

(4)209

where E1 is the spring constant of the left spring, E2 is the spring constant of the right spring, m210

is the mass of the body supported by the springs and η is the viscous friction coefficient of the211

damper. To visualize the dynamic behavior of the Maxwell model to a unit step change in the212

external force the following values of model parameters were assumed: m = 4 kg, E1 = 6.60 N/m,213

E2 = 8.59 N/m and η = 48.9 N·s/m. These values are used as an example and they are not214

calibrated to any particular valve/WDN system. The step response of the Maxwell model is plotted215

in Fig. 5 and shows typical effects of inertial and oscillatory components similar to those exhibited216

by the previously described inertial-oscillator model (see Fig. 6). The root locus plot for the217

closed-loop feedback control system from Fig. 1 in which the valve/WDN plant is represented by218

the above Maxwell model with additional actuator inertia is shown in Fig. 7. The control system219

has four poles marked with crosses and one zero marked with a circle. Three poles come from220

the Maxwell model and one from the actuator. When the gain increases from zero to infinity the221

dominant real pole (closest to the imaginary axes) approaches the zero, the fast actuator real pole222

goes to ’real’ negative infinity whilst the two remaining complex poles diverge to the ’complex’223

infinity. The closed-system loses stability at the moment where the static gain K reaches the value224

of 1.41 at which point the two conjugate complex poles cross from left half plane (LHP) to right225

half plane (RHP). The initial value of the static gain of the Maxwell model K0 = 0.605, so even a226

moderate increase of the gain from 0.605 to 1.41 can lead to instability and the same is likely to be227

true for real valve/WDN systems.228

NETWORK MODEL229

Model schematic230

In order to simplify our theoretical static gain calculations presented in the next section as well231

as dynamic simulations used to recreate the real-life PRV instability event briefly described in the232

Introduction, the hydraulic model was reduced to just three components: the upstream pipe, the233
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valve, and the downstream pipe. The rest of the network, shown in dotted lines in Fig. 8 was not234

modeled. Instead, it was assumed that the demands in all major nodes could be represented as235

pressure dependent outflow from the end of the downstream pipe and modeled with a modified236

Toricelli’s orifice equation: Q(c(t),H4(t)) = c(t) (H4(t) − z4)α in which the pressure dependency237

coefficient α may differ from the original Toricelli’s value of 0.5 (see Ferrante et al. (2014)).238

However it needs to be noted that the value of α in this study is likely to be different from the one in239

Ferrante et al. (2014) since we consider the pressure at the entry to a district metering area (DMA)240

whilst Ferrante et al. (2014) used the average pressure within the DMA. Since pressure changes at241

the nodes far down in the network constitute just a fraction of the changes in the DMA inlet pressure,242

the pressure dependency coefficient is likely to be lower from the ones reported by Ferrante et al.243

(2014), although this remains yet to be proven. In the equation above z4 denotes the elevation of244

node 4, H4 is the pressure head at node 4 and c(t) denotes the time-varying equivalent total orifice245

area at the end of the downstream pipe, i.e. DMA inlet (see Fig. 8).246

The system is thus modeled as pressure-driven, not demand-driven. The demand-driven ap-247

proach is not valid for dynamic systems because it reverses causality between flow and pressure.248

In demand-driven approach often used in steady-state calculations the flow is forced and the nodal249

pressures are calculated to produce the desired flows. In other words, changes in nodal pressure250

values are the effect of flow variations, whilst in physical systems it is the flow which is driven251

by pressure difference. Whilst such reversal of causality allows us to predict steady-state nodal252

pressures in a network under given demands, such an approach is not valid in dynamic simulation253

in which dynamic effects of inertia and water compressibility must not be neglected. In partic-254

ular, demand-driven approach applied to dynamic system simulation neglects energy dissipation255

through openings (leaks and orifices at demand nodes) which occurs when the incoming pressure256

forces excess water outside of the system. This leads to a higher buildup of potential energy inside257

the system, resulting in overestimation of pressure wave amplitudes – see Jung et al. (2009) for258

comparison of both approaches on larger network models.259
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Model equations260

Algebraic model261

The algebraic steady-state model of the system depicted in Fig. 8 is composed of four algebraic262

equations representing pressure drops across all three components of the network: the upstream263

pipe, the PRV, and the downstream pipe, supplemented with flow continuity equation. The resulting264

system of equations can be written as F(x, y) = 0 where265

F(x, y) =



Hin − Hu − R1 Q2

Hu − Hd −
1

Kv (x)
Q2

Hd − Hout − R2 Q2

Q − c (Hout − z4)α

(5)266

in which x denotes the valve position and y = (Hu Hd Hout Q)T .267

Dynamic model268

The dynamic simulation model of the upstream and downstream pipe is composed of two269

water-hammer equations solved with the well-known method of characteristics (Wylie and Streeter270

1993) which transforms the two partial differential water-hammer equations into two ODEs which271

are solved for each internal point along the length of the pipe, i.e. ∀i ∈ {2, .., n − 1}, where272

n is the number of nodes in the conduit. In a short form these two ODEs can be written as273

two characteristic equations: C+ : Hi = Cp,i − B Qi and C− : Hi = Cm,i + B Qi. where274

Cp,i = H∗
i−1
+B Q∗

i−1
− R Q∗

i−1

���Q∗i−1

��� and Cm,i = H∗
i+1
−B Q∗

i+1
+ R q∗

i+1

���q∗i+1

��� in which B =
a

g A
and275

R =
λ ∆x

2 g D A2
, ∆x is the distance between internal pipe nodes and ∗ denotes the value of the variable276

recorded in the previous time step. The initial flow value Q0 in the system and the piezometric head277

values at points 2, 3, and 4 (see Fig. 8) required for the solution of the water-hammer model are278

obtained from Eq. 5 for c(t = 0) = c0 and x(t = 0) = x0. All internal node flow values within the279

pipes are assigned the initial flow value Q0, i.e. ∀i ∈ {1, .., n} : Qi = Q0. The internal head values280

Hi are obtained through a linear interpolation between the boundary head values. The boundary281
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conditions for the water-hammer model are listed in Table 1. Both pipes combined are discretized282

into n − 1 segments, in which node m represents point 2, node m + 1 = point 3, whilst node n283

represents point 4 in Fig. 8.284

CALCULATION OF THE STATIC GAIN OF THE VALVE/WDN SYSTEM285

It is argued in this paper that the static valve/WDN gain strongly depends on valve position, i.e.286

K = K (x). The gain is low for large valve opening and increases gradually as the valve opening287

is reduced. The increase in the value of the gain as the valve position changes from x = 80% to288

x = 30% can be as high as 5 fold which presents a challenge for designing an effective controller.289

Since valve position influences the flow, the plant gain is also dependent on flow, i.e. K = K (Q(x)).290

As shall be shown below, for a PRV-controlled DMA under a constant Hd we can determine a291

unique relationship between x and Q and since Q increases as the valve is opened, K is high for low292

flows making the valve less stable under low-flow conditions and supporting the generally accepted293

opinion that PRVs become unstable under small flows.294

From definition K (x) = dHd/dx and can be calculated from the system of equations given295

in Eq. 5 using the implicit function theorem (see e.g. Hubbard and Hubbard 2015) which states296

that if we have an implicit system of nonlinear equations F(x, y) = 0, such as one given in Eq. 5,297

and it satisfies some mild conditions on its partial derivatives, then we can calculate the vector of298

derivatives:
dy

dx
= −Fy

−1 Fx where Fx represents the vector of derivatives of F with respect to x299

and Fy represents the matrix of derivatives of F with respect to y. Through differentiation of our300

system of equations given in Eq. 5 we obtain:301

Fx =

*...........,

0

2
1

[Kv (x)]3

dKv

dx
Q2

0

0

+///////////-

(6)302
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303

Fy =

*...........,

−1 0 0 −2 R1 Q

1 −1 0 −2
1

[Kv (x)]2
Q

0 1 −1 −2 R2 Q

0 0 −α c (Hout − z4)α−1 1

+///////////-

(7)304

where y = (Hu Hd Hout Q)T . By visual inspection we can see that the columns of Fy are linearly305

independent and thus Fy is invertible with a non-zero determinant:306

det Fy = −

[
1 + 2 α c (Hout − z4)α−1 Q

(

R1 + R2 +
1

[Kv (x)]2

)]
(8)307

We can also see that Fx has only one non-zero element Fx (2) and thus in order to calculate308

dHd/dx we only require to determine F−1
y

(2, 2). Then309

dHd

dx
=

dy(2)

dx
= −F−1

y
(2, 2) · Fx (2) (9)310

After applying a co-factor expansion with respect to row 2 and column 2 we obtain the following311

relationship for F−1
y

(2, 2)312

F−1
y

(2, 2) =
1 + 2 R2 Q α c (Hout − z4)α−1

det Fy

(10)313

which after substitution into Eq. 9 yields the following equation for the static gain of the valve/WDN314

system displayed in Fig. 8315

dHd

dx
=

1 + 2 R2 Q α c (Hout − z4)α−1

1 + 2 α c (Hout − z4)α−1 Q
(

R1 + R2 +
1

[Kv (x)]2

) · 2
1

[Kv (x)]3

dKv

dx
Q2 (11)316

where Q = c (Hout − z4)α317

Static gain of an isolated PRV318

Before we begin to analyze Eq. 11 let us first look at a simple case of an isolated PRV where319

Q = const and Hu = const and calculate the static gain of the PRV in this isolated scenario in which320

13 Janus and Ulanicki, March 4, 2018



the PRV has no interaction with the rest of the network. We can accomplish this task two-fold.321

First, we can investigate a single valve equation, i.e. the second equation in Eq. 5322

Hu − Hd −
Q2

[Kv (x)]2
= 0 (12)323

which can be rearranged to yield an explicit relationship for downstream head, Hd = Hu −Q2/K2
v
.324

Differentiation of Hd vs. x under the assumption that dHu/dx ≡ 0 and dQ/dx ≡ 0 yields325

dHd

dx
=

d

dx

(

Hu −
Q2

[Kv (x)]2

)

= 2 Q2 1

[Kv (x)]3

dKv (x)

dx
(13)326

which shows that the valve gain is inversely proportional to the valve capacity Kv in third power.327

Although the term dKv/dx has some influence on the value of the valve gain, dHd/dx is most328

sensitive to K3
v
, which shows that the change in the valve gain between low and high valve openings329

(e.g. nonlinearity in the control system) is not so much a result of a hydraulic nonlinearity in the330

valve but the fact that the valve capacity itself is low under low openings. We can also see that the331

isolated PRV gain described by Eq. 13 is equal to the second factor in the connected valve/WDN332

gain given by Eq. 11 demonstrating that the static gain of the valve/WDN system is a product333

of interaction between the static gain of the isolated PRV and the hydraulic characteristics of the334

WDN, specifically pipe resistances/conductivities and the pressure dependency coefficient of the335

demand(s).336

Another way of looking at the isolated PRV gain is through the elements of the matrix Fy.337

Under assumption that Q = const the elements in rows 1, 2 and 3 in column 4 of Fy become338

null and Fy turns into a lower triangular matrix for which the determinant is a multiplication of339

all elements along the leading diagonal (1 in our case) and F−1
y

(2, 2) = 1/Fy (2, 2) = −1. Hence,340

dHd/dx = Fx (2) and satisfies Eq. 13.341

Gain of the PRV connected to the network342

Pressure and flow in the valve/WDN system is a result of an interaction between the valve343

(valve characteristic) and the water distribution network (system curve). The theoretical system344
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curve depends on the assumed demand model, namely its pressure dependency characteristics. In345

the extreme case where demands are assumed to be forced and independent from nodal pressures346

the system curve Q (Hd) is constant and equal to the total demand in the system. In the general347

case with demands depending on pressures the total flow Q through the PRV will increase with the348

downstream head, Hd. In such a case, i.e. with pressure-dependent demands, we can see that the349

static gain of the isolated PRV described by Eq. 13 and the second term in Eq. 11 is scaled by the350

first term in Eq. 9 which considers the properties of the WDN, i.e. pipe resistances, valve capacity351

and pressure dependency characteristics.352

As shall be shown in numbers in the next section, this scaling function is always lower than353

unity which means that the interaction between the network and the valve leads to the reduction354

of the static valve/WDN gain compared to the isolated PRV gain. This behavior is very intuitive355

and can be easily explained. Changing valve position x leads to the change in the energy loss356

across the valve which in turn alters the total (potential + kinetic) energy in the system. In the357

isolated case, or where demands are forced, i.e. Q = const the kinetic energy remains constant358

and hence variation in x leads to the change in potential energy only, i.e. nodal pressures. In the359

scenario with PRV connected to WDN and with pressure dependent demands both potential energy360

(nodal pressures) and kinetic energy (flow) are affected by the changes in x and thus the variation361

in nodal pressures will be lower as some part of the total energy is being diverted into kinetic362

energy. Therefore, dHd/dx will always be lower in the valve/WDN system with pressure dependent363

demands compared to the isolated PRV scenario. The relationship between the closed-loop gain of364

the PRV connected to the network and the gain of the isolated PRV can be written as:365

Kconnected (x) = f (p) Kisolated (x) (14)366

where p is a vector of parameters characterizing the hydraulic properties of the network, the valve,367

and pressure-dependency of the demands. If we look at the first term in Eq. 11 we can see that368

f (p) < 1 since R1, R2 and Kv are always greater than zero.369
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CASE STUDY370

This manuscript began with a brief description of a real-life instability event which occurred in371

a large-scale pressure control scheme installed in a WDN of one of the major cities in the UK. This372

instability event shall be used here as a source of data for the case-study which aim is to test the373

validity of the theoretical work presented above and to showcase via simulation the applicability of374

the proposed remedy against instabilities for electronically controlled PRVs.375

The instability event under study is shown in Fig. 2 consisting of two subplots. The top subplot376

shows the outlet pressure pout from the PRV whilst the bottom subplot shows the valve position x.377

The pressure set-point set at 0.65 bar is marked with a thick dashed line and the ±0.1 bar dead zone378

between which the valve element is not actuated is shown with two horizontal thick solid lines.379

In both subplots the time scale corresponds to the morning hours of the day where the instability380

event occurred. The instability began around 5.37 a.m. with relatively small pressure oscillations381

between 0.25 bar and 1.0 bar which then went completely out of control around 6:24 a.m. when the382

valve opening started to oscillate between the minimum and the maximum allowed values of 0%383

and 80% respectively resulting in downstream pressure variations between 0 and 4 bars. Around384

6:45 a.m. the amplitude of pressure oscillations began to decrease as a result of increasing flow385

through the valve. Although the flow is not displayed in the plots, it can be inferred from the valve386

position. As shall be shown later in Fig. 10 a direct positive and mildly nonlinear relationship exists387

between flow and valve position in the PRV-controlled system under study and this relationship388

is likely to be similar for other valve/WDN systems operating under the constant outlet pressure389

setpoint. Around 8:20 a.m. the oscillations decayed and the system resumed normal operation and390

began to keep the outlet pressure at the setpoint value of 0.65 ± 0.1 bar. This return to stability391

coincided with an increase in flow rate through the valve.392

The PRV under study is fed by a fixed head reservoir with static pressure head Hin = 186.5393

m connected to the PRV through ∼ 10 km pipe of 0.8 m diameter. The PRV is set to drop the394

upstream pressure to 106.5 m which, considering pressure losses in the upstream pipe, results in395

an average pressure head drop of about 75 m. The downstream pipe goes for a distance of about 2396
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km after which it starts dividing into a dense network of pipes feeding different DMAs in the city.397

The PRV is controlled electronically by a PLC implementing a time-discrete proportional integral398

derivative controller (PID).399

The work presented in this section proceeds as follows. First, pipe resistances of the simplified400

static pipe-PRV-pipe model from Fig. 8 are calibrated, given the PRV characteristic obtained from401

the measurements, such that the static hydraulic characteristic of the model matches that of the real402

network. This calibrated simplified static model is then used to derive the static gain curves of the403

valve/WDN system and to calculate the formula for the gain compensator which aim is to keep the404

static gain of the system constant within the entire permissible valve opening range. The positive405

effects of the gain compensator on the valve stability are then tested via dynamic simulation.406

Valve capacity curve407

The valve capacity curve was provided by the manufacturer and additionally calculated from 15-408

min measurements of flow, upstream and downstream pressures, and valve position. As pictured409

in Fig. 9 the manufacturer’s capacity curve and the measured capacity curve are significantly410

different indicating that either the valve was not made to the specification or, more likely, that411

the valve’s capacity had changed over time due to wear and tear of internal components. The412

manufacturer’s capacity curve and the capacity curve from the measurements were obtained via413

nonlinear curve fitting and are plotted in Fig. 9 with a thick solid and thick dash-dotted line,414

respectively. The obtained capacity curve equations are as follows. The manufacturer’s valve415

capacity curve: Kv,manu = 0.2360 x2
+ 0.2491 x, the valve capacity curve from the measurements:416

Kv,meas = 0.1597 x2 − 0.01129 x The shaded surface between both curves represents the valve417

capacity uncertainty region indicating that the change of valve capacity over time needs to be418

accounted for at a controller design stage.419

Relationship between valve position and flow420

Data points obtained from 15-min measurements of flow and valve position and plotted in Fig. 10421

as gray dots show that for our valve/WDN system a direct and slightly nonlinear relationship exists422

between valve position and flow. This relationship was found to be quadratic with the line of best fit423
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given as Q(x) = 0.1155 x2
+0.3458 x which is marked in Fig. 10 with a thin dashed line. From the424

control point of view the existence of such a relationship allows us to infer the flow rate from the425

valve position or vice versa. This additional information can be used as a surrogate measurement426

for control purposes or sensor fault diagnosis. In this paper, valve position and flow measurements427

obtained from the case study were used to calibrate the static hydraulic properties of our simplified428

pipe-PRV-pipe model shown in Fig. 8 such that the model and the real network exhibit similar429

hydraulic characteristics. For this purpose we used the valve capacity curve obtained from the430

measurements, as explained in the section above. Our simplified model is governed by the system431

of equations given in Eq. 5. As we can see, the parameters which can be used to calibrate the432

hydraulic characteristics are the upstream and downstream pipe resistances R1, R2 and the pressure433

dependency coefficient α. During calibration it was found that α was not a sensitive parameter.434

Hence, for simplicity, we assumed α = 0.5, as in the Toricelli’s equation.435

Since the pipe resistance coefficients, i.e. R1 and R2 lump three parameters characterizing the436

pipes’ hydraulics, i.e. length L, absolute roughness ǫ and diameter D we cannot uniquely find the437

right combination of these three parameters in this study. They are nevertheless very important438

in dynamic simulations as they affect in different ways how the pressure builds up and propagates439

across the network. The product of L and D2 (multiplied by π/4) determines the total volume440

of water in the pipes and thus the amount of inertia in the system. The higher the inertia the441

higher the amplitude of pressure waves produced during valve closure/opening as the forces acting442

on the closing element are proportional to the accelerating/decelerating mass. The pipe length L443

determines the period of pressure waves departing from/arriving at the PRV for a given wave speed.444

The absolute pipe roughness ǫ determines the amount of dissipative friction forces in the system445

and affects the pressure drop in the pipe in steady-state as well as the amount of pressure wave446

attenuation during transient flow. Bearing this in mind the calibrated parameters R1 and R2 were447

first adjusted such that the model characteristics matched the measurements. Then the information448

about pipe friction coefficients and upstream and downstream pipe diameters was taken from site,449

allowing the authors to adjust the pipe lengths L1 and L2. In case some of the above information is450
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not available and need to be assumed the results of the transient simulations may differ significantly451

from the measurements in terms of pressure wave period, pressure wave amplitudes and amplitude452

attenuation. These discrepancies may be reduced during further calibration on a dynamic model by453

adjusting, specifically, the values of pipe lengths, pipe diameters, and pipe roughness coefficients.454

As mentioned above, the pressure dependency coefficient α was found to be an insensitive455

parameter. The verbal explanation of this fact is as follows. An increase in α will produce a higher456

flow for a given value of pressure head H4 or orifice opening c (see Fig. 8). If the flow increases and457

H3 is kept constant, i.e. by the PRV, then the valve needs to open in order to reduce the pressure458

drop which is proportional to Q2. Hence Q and x will increase/decrease in the same direction and459

the Q vs. x curve will not change by much. Nevertheless, we should bear in mind that the value of460

α has a significant impact on the transient flow as it determines how much potential energy entering461

with the wave as pressure is lost in the system as the water is ejected through the orifices (openings)462

at individual nodes or, in our case, at the end of the downstream pipe.463

The effects of R1 and R2 on the Q vs x characteristic of our simplified hydraulic model are464

as follows. If R1 is increased then the pressure drop in the upstream pipe will be more sensitive465

to flow, thus H2 will decrease more with respect to Q and hence we will need to have a higher466

valve opening x for a given flow, since the pressure drop across the PRV will need to be smaller467

to maintain constant downstream pressure. The curve will move left if R1 is increased. If R2 is468

increased then the pressure drop in the downstream pipe will be more sensitive to flow, thus H4469

will be lower for a given flow and the flow, since it’s pressure dependent, will decrease. Hence, we470

will have lower flows for the same opening. The curve will move down if R2 is increased.471

The calibration was performed manually. The obtained model properties are as follows: L1 =472

5, 000 m, L2 = 10, 000 m, D1 = D2 = 0.8 m, ǫ1 = ǫ2 = 0.003 m, z4 = 50 m. The calibrated473

curve is shown in Fig. 10 with a thick dash-dotted line. As we can see, the curve matches the474

measurements and is closely aligned with the line of best fit (thin dashed line). Additionally, we475

also plotted the curve for Kv = Kv,manu, i.e. for the manufacturer’s valve capacity characteristic.476

Since the manufacturer’s valve capacity is higher from the measured one the system would allow477
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higher flows for a given valve opening and therefore the curve (thick solid line) lies above the478

measurements.479

Valve gain analysis480

The calibrated parameter values and the measured valve characteristic were fed into Eq. 11 and481

used for subsequent calculation of the static valve/WDN gain vs. valve opening for different values482

of α. Additionally, Eq. 13 was used to calculate the isolated PRV gain, i.e. for Q = const and483

Hu = const. The resulting curves were plotted in Fig. 11. As predicted, the static valve/WDN gain484

decreases with valve opening. The difference in gain between low and high valve openings is most485

severe for the isolated PRV case and becomes smaller in the connected valve/WDN case due to the486

reducing effects of the WDN, i.e. dependency of flow on pressure. This interaction between the487

PRV and the rest of the network was already explained earlier on in the text - see Eq. 14. Fig. 11488

shows that the gain vs. valve position curve becomes less steep as α increases. Whilst the gain can489

change from 1 at x = 80% to 6 at x = 20% for α = 0.5, this change can be as severe as 1 to 10 for490

α = 0.3.491

The gain values were calculated for two valve characteristics: the manufacturer’s characteristic492

Kv,manu (shown in solid line) and the measured characteristic Kv,meas (shown in dashed line). As493

can be seen, both curves lie close together for medium valve openings between 30% and 60% and494

began to diverge at extreme values close to the minimum and maximum allowed openings of 20%495

and 80% respectively. The valve capacity has a larger impact on the Q vs. x characteristic (see496

Fig. 10) which means that the flows will be different for the same valve openings. Specifically,497

given that both PRV gain characteristics are similar and the gain is such that the valve begins to498

oscillate at around 30%, the valve with the manufacturer’s characteristic (e.g. brand new valve) will499

begin to oscillate at a higher flow than the valve with the measured characteristic (e.g. old valve).500

The gain curve for Kv = Kv,meas and α = 0.5 was approximated with a third order polynomial501

using nonlinear curve fitting. The obtained gain equation is given below.502

Kconnected (x) = K (x) = −1.201 × 10−5 x3
+ 3.162 × 10−3 x2 − 0.3186 x + 12.23 (15)503
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Eq. 15 shall be later used to formulate a nonlinear gain compensator used to prevent PRV instability504

under low flows conditions.505

Fig. 12 shows the impact of our simplified network model parameters, i.e. R1, R2 and the valve506

characteristic Kv (x) on the scaling function f (p) featured in Eq. 14. For this purpose the first term507

of Eq. 11 representing f (p) was split into three different individual terms: f R1
= 2R1Q dQ/dα,508

f R2
= 2R2Q dQ/dα, fKv

= 2(1/Kv (x))2Q dQ/dα where dQ/dα = αc (Hout − z4)α−1. Using these509

three new terms f (p) can now be represented as:510

f (p) = f (R1, R2,Kv (x), α) =
1 + f R2

1 + f R1
+ f R2

+ fKv

(16)511

f R1
, f R2

and fKv
were plotted in Fig. 12 for α = 0.3 and α = 0.5. As shown, all three terms show a512

stronger relationship vs. x for higher α values. We can also see that the most dominant parameter513

is fKv
, although the scaling effects of R1 and R2 become significant at higher openings. What this514

means is that if, i.e. R1 or R2 are increased the gain value at lower openings will remain similar515

whilst the gain reduction at larger openings shall be higher. The overall scaling factor f for α = 0.3516

and α = 0.5 was plotted in thick solid and thick dashed line respectively. As explained earlier using517

Eq. 14 the scaling factor is always less than unity.518

Control loop structure519

The valve/WDN control loop structure (see Fig. 13) and controller parameters are as follows.520

The valve with a known capacity characteristic described above is controlled with a time discrete521

PID with the following gains: Kp = 0.5%/m, Ki = 0.05%/(m s) (i.e. Ti = 10s), Kd = 0 (m s)/%;522

and with sampling time ts = 0.1s. The actuator is modeled as a first order system with time constant523

of 0.1s. The valve opening and closing rates are limited at ± 100/87 %/s to reduce the risk of524

transients. The rate-limited actuator output then goes through a backlash block with a deadband of525

0.8%. The rate limiter and the deadband are embedded within the Actuator block and are not shown526

in the block diagram. The controller error e is the difference between the downstream pressure527

head setpoint H set
d

=106.5m and the downstream pressure measurement Hmeas
d,ave

(m) averaged using528
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a moving average filter with a buffer size of 300 data points updated every 0.02s and followed by529

a zero-order-hold of 0.1s. To reduce the amount of control effort the control system is only active530

when |e| ≥ 0.5m, i.e. the outlet pressure head Hd is allowed to vary ±0.5m - see Dead zone block531

in Fig. 13.532

Nonlinear compensator for stability improvement533

One way to combat the nonlinearity in the valve/WDN system resulting from the dependence534

of static gain on valve position is to introduce a nonlinear compensator in the forward path of535

the feedback system which will scale the control signal depending on the current measurement536

of the valve position, such that the gain is constant (or near constant in practice) over the entire537

permitted range of valve openings. Placement of the nonlinear compensator in the feedback system538

structure is indicated in Fig. 13 with a dashed rectangle. The compensator receives the valve539

position measurement from the valve actuator and calculates the correcting factor either from a540

look-up table or from an analytical formula, such as the one derived below for our system. It541

is recommended that the PID is tuned at the typical valve position xtyp around 40%-50%. The542

correcting factor can then be calculated from the following formula.543

k (x) =
Kp(x = xtyp)

Kp(xmeas)
(17)544

where x is the actual valve position, xmeas is the measured valve position and xtyp is the typical545

valve position for which the controller was tuned. If during operation of the control system the546

valve position changes from xtyp to x, the gain, as seen by the controller, will theoretically remain547

the same as for x = xtyp.548

K = K (x) k (x) = K (x)
K (x = xtyp)

K (xmeas)
≈ K (x = xtyp) (18)549

The above equation is valid if xmeas ≈ x, i.e. we have an accurate measurement of valve position and550

we have a perfect compensation model k (x) under all operating conditions. In practice, K , const551

since x , xmeas and the compensator model will never be perfect. However, in theory, assuming552
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perfect valve position measurements and perfect gain compensation the PID gains, i.e. Kp, Ki and553

Kd tuned for the typical valve position should, in theory, be valid and satisfying the control system554

design criteria across the entire operating range of the PRV. The static gain correction formula555

was obtained from Eq. 17 assuming the model hydraulic structure in Fig. 8, α = 0.5, Kv = Kv,meas556

and the typical valve position xtyp = 50% for which the fitted polynomial curve (see Fig. 11) was557

calculated to be:558

k (x) =
K (xtyp = 50%)

K (x)
=

2.340

−8.280 × 10−6 x3
+ 2.450 × 10−3 x2 − 0.2658 x + 10.54

(19)559

k (x) curve was plotted in Fig. 14. The plot shows that the scaling function k (x) ≡ 1 for x = xtyp,560

in our case x = 50% whilst k (x) < 1 for x < xtyp and k (x) > 1 for x > xtyp, thus maintaining the561

plant gain at a constant value equal to K (x = xtyp).562

Valve/WDN simulation with and without static gain compensator563

The purpose of the transient simulation described in this section is to recreate the instability564

event visualized in Fig. 2, and to show the improvement in the stability of the control system after565

the introduction of the static gain compensator. We aim to demonstrate the validity of the theoretical566

concepts introduced earlier in this manuscript and derived via static analysis by testing them in a567

transient simulation scenario with control, actuation and sensing loop taken from the real-life case568

study. Although the transient model was not properly calibrated on dynamic data we shall see that569

the simulation results and the actual instability event are indeed very similar. The second aim of570

this simulation study was to demonstrate that instabilities in valve/WDN systems can occur with571

zero disturbance, i.e. with smooth inputs, in order to reinforce the idea that the loss of stability in572

PRVs is mainly a result of changing static plant gain and is not in any way caused by transients,573

although an incoming pressure wave or change in demand can trigger the instability earlier if the574

valve/WDN system is already operating close to instability. A similar simulation study was already575

performed by Janus and Ulanicki (2017).576

The simulations were performed on the simplified hydraulic model shown schematically in577
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Fig. 8 using water-hammer equations solved with the method of characteristics, given the boundary578

conditions in Table 1 and assuming that the wave speed a = 1, 200 m/s. The hydraulic parameters,579

i.e. L1, L2, D1, D2, ǫ1 and ǫ2 were calibrated earlier from the information provided in the measured580

Q vs. x curve given in Fig. 10 and from site information about pipe roughness and diameters. The581

model was created and simulated in Simulink™and MATLAB 2015a™.582

The control, actuation and sensing loop shown in Fig. 13 was modeled as follows. The dead-583

zone was described with a User Specific Function block with code (abs(u)>dead_zone)*u where584

u is the block input. The rate limit on the actuator is implemented as a Rate Limiter block whilst585

the actuator backlash is implemented using the Backlash block. The discrete PID controller was586

modeled using the PID Controller Block with Backward Euler integration method and minimum587

and maximum output limits at 10% and 80% respectively. The pipes were discretized such that an588

appropriate ratio between the selected time step ∆t = 0.02 s and the spacial step∆x was maintained589

allowing proper capture of the characteristics at internal pipe nodes given the wave speed a.590

The instability, with no gain compensator, was recreated by reducing the open orifice area at the591

end of the downstream pipe in a linear fashion over 1 hr from an initial value Ainit = 1.3141×10−2 m2
592

to the final value of 3.141 × 10−3 m2, i.e. by 0.01 m2. Aori f ice was then held at the final value for593

the next 30 minutes after which the ramp reversed direction and the orifice area increased back to594

the initial value in the next hour. Hence, the total simulation time was equal to 2.5 hrs but in order595

to better display the occurring oscillations the limits on the x axis in the simulation results plots596

(see Fig 15) were reduced to 0.5 h and 2.0 h respectively.597

The top subplot in Fig. 15 shows that as the orifice area gradually got smaller so was the total598

flow qPRV in the network. In order to maintain a constant downstream pressure head (H3) whilst the599

flow was being reduced the valve was closing in an almost linear fashion. In the scenario without600

the gain compensator (dark solid line) the pressure was within the allowed band for the first hour601

until the valve opening reached the value of about 30% under which the PRV lost stability and began602

to oscillate. The oscillations were rising in amplitude for the next half an hour whilst the open603

orifice area was kept at a constant and minimum value. The valve began to slowly regain stability,604
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which manifested itself in a gradual reduction of the oscillation amplitude as Aori f ice was being605

increased and finally resumed normal operation at t ∼ 1.8 h when the valve opening increased to606

about 40%. This simulated valve behavior is very similar to the observed real-life instability event607

(see Fig. 2) where the valve lost stability at x = 30% and regained stability at x = 60%.608

In the case with the static gain compensator in place (light solid line) we can see that the valve609

did not oscillate at low flow since the gain compensation formula lowered the static gain such that610

it didn’t reach the critical vale for which the system becomes unstable. However, it has to be noted611

that this gain compensation task was achieved with a perfect compensator, i.e. without a mismatch612

between the simulation model and the model used to derive the compensator. Additionally, a very613

simple hydraulic model was used in the study which represented all distributed nodal demands614

by one time-varying orifice area. In real-life applications care must be taken that the uncertainty615

with regards to model structure and model parameters is taken into account during the design of616

a PRV controller or otherwise an appropriate robust field tuning method needs to be developed.617

Even though we had a perfect compensation model we can see in the middle subfigure in Fig. 15618

that the gain compensated valve/WDN system also begins to oscillate, albeit very slightly, between619

1 and 1.1 hrs. It is suspected that these small oscillations are due to a limit cycle produced by620

the nonlinearities in the control-loop, i.e. dead-zone, backlash, and 0.1s zero-order-hold. It is621

suspected that the most significant nonlinearity at small openings is due to the backlash which,622

having a fixed value of 0.8%, becomes proportionally large when the opening is small. Also, the623

±0.5m dead-zone might have contributed to pressure variations, since it is a well-known fact that624

dead-zones in feedback control loops lead to limit cycles.625

Based on the results of the above case study and the theoretical developments described in626

the first half of this manuscript we can formulate the following practical recommendations for a627

hydraulic engineer working in pressure management of WDNs. First, with all pressure control628

schemes incorporating a valve of any type, an engineer should be aware that the static gain between629

valve opening and outlet pressure can increase significantly as the valve opening is reduced, which630

in turn can lead to valve/WDN system instability under low flow conditions. The engineer should631
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therefore first assess the gain at the nominal valve opening via theoretical calculation or from632

online measurements and later check the gain at the minimum flow conditions. If the difference633

between the nominal and the maximum gain is large, one should perform further analysis of634

system stability. The gain can be calculated from the valve characteristic curve combined with635

the network characteristics. However since the latter is difficult to obtain it is recommended that636

downstream pressure responses to step change e.g. +0.5% in valve opening are recorded in open-637

loop configuration, i.e. with disconnected feedback loop, at different flow rates. By taking the638

ratio between the pressure increase and the valve position change ∆Hd/∆x in steady-state we will639

calculate the static gain vs. valve position curve which can be used to design a gain compensator to640

be used in line with an electronic controller such that the overall static gain of the system remains at641

approximately constant value over an entire flow range. For hydraulic PRVs in which the controller642

is implemented in hardware it is necessary to introduce modifications to the pilot control loop in643

order to achieve similar compensation effects. This is the subject of the authors’ current research.644

In cases where a modification to the control loop cannot be made, the risk of instability can be645

reduced by narrowing down the operating range of the control valve, such that the opening does not646

exceed the 30%−70% range. If due to high variability of flows the range of openings is high it may647

be possible to install a cascade of valves in which the upstream valve is a normal actuated valve648

with a time-scheduled opening trajectory following a diurnal demand pattern whilst the downstream649

PRV acts as a second step in pressure reduction whilst maintaining a constant outlet pressure.650

CONCLUSION651

This manuscript demonstrated that the static gain of a valve/WDN system decreases with valve652

opening, making outlet pressure more sensitive to valve position changes at low openings. This653

increase in valve gain at small valve openings and thus, flows, can alone explain why valves tend to654

become unstable under low-flow conditions, which was proved through simulation. The changing655

nature of the static valve/WDN gain is due to an inherent property of a valve whose capacity656

increases with valve opening, as well as hydraulic properties of the rest of the water distribution657

network. For simple networks an analytical relationship between the static valve/WDN gain and658
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valve opening can be derived, whilst for larger networks an empirical procedure will need to be659

developed in order to be able to measure the static gain variability and then use this information660

to design countermeasures preventing the PRVs from oscillating. One such countermeasure,661

i.e. static gain compensator was tested here and proved to eliminate valve instability under low662

flow conditions. Such gain compensation is an easy solution for electronically controlled valves,663

however care must be taken that a robust solution to such compensation formula is sought in664

the future which is resilient to biased, delayed and noisy valve position measurements and to the665

mismatch between the network model and the real system. Similar compensation solution can be666

sought for hydraulically controlled PRVs, although the problem is likely to be more complicated667

as the control system there is realized mechanically which is harder to modify than programmable668

electronic controllers. It is envisaged that through appropriate alterations to control structures of669

both types of valves we can make them more stable and hence reduce the risk of occurrence of670

PRV-related and destructive transient effects in water distribution networks. It is possible that671

further improvements can be made through appropriate selection of the type of the control valve672

and its sizing in order to reduce the nonlinearity and narrow down the operating range of the valve673

hence reducing the difference between the minimum and the maximum static gain. However, the674

problem of varying static gain will still persist and will have to be accounted for during controller675

design, e.g. via static gain compensation.676
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The following symbols are used in this paper:681

A = pipe cross section area;

Aori f ice = orifice opening area;

a = pressure wave speed;

c = equivalent total orifice area at the end of the downstream pipe;

D = pipe diameter;

e = error signal;

f = gain scaling factor;

f R1
, f R2

, fKv
= gain correcting factors due to upstream pipe, downstream pipe and valve capacity

G = transfer function;

H = pressure head;

Hu, Hd, H set
d

, Hout , Hin = upstream, downstream, downstream setpoint, outlet, and inlet pressure head;

K = plant gain;

Kconnected, Kisolated = connected and isolated PRV gain

Ke = fluid’s bulk modulus of elasticity;

Kp, Ki, Kd = proportional, integral, and derivative gains of a PID controller;

Kv = valve capacity;

Kv,manu, Kv,meas = valve capacity from manufacturer’s data and measurements;

k = gain compensation coefficient;

L = pipe length;

pout = outlet pressure;

Q = flow;

R = pipe resistance;

s = Laplace variable;

Ti = PID controller’s integral time constant;

t = time;

td = time delay;

ts = sampling time;

u = control signal;

x, xtyp, xmeas, x0 = valve position, typical valve position, measured valve position, initial valve position;

y = output;

z = elevation;

α = pressure dependency coefficient;

ǫ = absolute pipe roughness;

λ = Darcy-Weisbach friction coefficient;

ωn = natural frequency;

ρ = fluid density;

τ = time constant;

ζ = damping ratio;

682
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TABLE 1. Boundary conditions for the water-hammer model.

Upstream reservoir PRV upstream

H1 = Htank Hm = Cp,m − B1 Qm

Q1 =
Htank − Cm,1

B1

Qm = 0.5 Kv
2

(

− (B1 + B2) +

√

(B1 + B2)2 − 4 Kv
−2

(

Cm,m+1 − Cp,m

)

)

PRV downstream Outlet orifice

Hm+1 = Cm,m+1 + B2 Qm+1 Hn = Cp,n − B2 Qn

Qm+1 = Qm Qn = g c2
(

−B2 +

√

B2
2
− 2

g c2

(

zn − Cp,n

)

)
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Fig. 1. Block diagram representation of a closed-loop feedback system including valve/WDN plant

and a controller.
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Fig. 2. PRV instability event recorded in a large-scale pressure control scheme in one of the major

cities in the UK.
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Fig. 3. Block diagram of the lumped inertial-oscillatory model of a valve/WDN system.
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Fig. 4. Schematic diagram of the physical Maxwell model.
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Fig. 5. Step response of the Maxwell model to a unit step in the input.
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Fig. 6. Step response of lumped inertial-oscillator model of a valve/WDN to a unit step in the input.
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Fig. 7. Root-locus of the closed-loop system with the Maxwell model plus actuator inertia.
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Fig. 8. Schematic of the hydraulic model used for dynamic simulation and calculation of static

gain.

41 Janus and Ulanicki, March 4, 2018



Fig. 9. Valve capacity according to the manufacturer’s data and the measurements. Dashed lines

denote 95% confidence intervals for the fitted curves.
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Fig. 10. Relationship between total flow Q and valve position x for the distribution system under

study and the simplified pipe-PRV-pipe model.
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Fig. 11. Valve/WDN gain K against valve position x for different values of pressure dependency

coefficient α.
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Fig. 12. Impact of R1, R2 and Kv on the scaling function f (p) between Kconnected (x) and

Kisolated (x).
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Fig. 13. Valve/WDN closed-loop model structure adopted from real-life system and implemented

in the mathematical model used for the transient simulation study.
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Fig. 14. Nonlinear gain compensator curve k (x) used for scaling the Valve/WDN plant gain K in

the transient simulation study.
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(red) and without (black) gain compensation.
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