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Abstract

Maintaining a balance between convergence and diversity of the population in

the objective space has been widely recognized as the main challenge when

solving problems with two or more conflicting objectives. This is added by an-

other difficulty of tracking the Pareto optimal solutions set(POS) and/or the

Pareto optimal front(POF) in dynamic scenarios. Confronting these two issues,

this paper proposes a Pareto-based evolutionary algorithm using decomposition

and truncation to address such dynamic multi-objective optimization problem-

s (DMOPs). The proposed algorithm includes three contributions: a novel

mating selection strategy, an efficient environmental selection technique and

an effective dynamic response mechanism. The mating selection considers the

decomposition-based method to select two promising mating parents with good

diversity and convergence. The environmental selection presents a modified
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truncation method to preserve good diversity. The dynamic response mecha-

nism is evoked to produce some solutions with good diversity and convergence

whenever an environmental change is detected. In the experimental studies,

a range of dynamic multi-objective benchmark problems with different charac-

teristics were carried out to evaluate the performance of the proposed method.

The experimental results demonstrate that the method is very competitive in

terms of convergence and diversity, as well as in response speed to the changes,

when compared with six other state-of-the-art methods.

Keywords:

Dynamic multi-objective optimization, Evolutionary algorithms,

Decomposition, Diversity

1. Introduction

Over the past decades, evolutionary multi-objective optimization (EMO) has

been of interest to researchers due to the inherent characteristics of evolutionary

algorithms (EAs) when addressing problems with no less than two conflicting

goals. Specifically, EAs are able to find a set of trade-off solutions that ap-5

proximate to the POF. Therefore, multi-objective optimization evolutionary

algorithms (MOEAs) have been widely applied in many real-world engineering

scenarios [1]. The main challenge for MOEAs in dealing with multi-objective

optimization problems (MOPs) is determining how to balance diversity and

convergence1 during the optimization process.10

A particular kind of real-life MOPs, called dynamic multi-objective opti-

mization problems (DMOPs), have objective functions, constraints and/or pa-

rameters that may be time variant [2]. DMOPs pose considerable challenges

to optimization algorithms due to the dynamism of various problems [3][4][5].

Moreover, the change frequency and change severity are two important param-15

1Convergence and diversity in the paper refer to the objective space, except where explicitly

stated otherwise.

2



eters that play an important role in influencing the performance of DMOEAs

[3][6]. The change frequency [2] defines the number of generations from one

environmental change to the next. High severity of change [2] requires algo-

rithms that have good ability to search because when the POS changes in the

dynamic environment, the population may lose the ability to trace the changing20

POS. Even though MOEAs have great advantages for solving MOPs, they also

have limitations in solving these problems. The reason is that the values of

the objective functions may vary when there are environmental changes. Thus,

MOEAs are supposed to be greatly improved to quickly find the POS or POF

before the next environmental change [7][8] comes. In recent years, dynamic25

multi-objective evolutionary algorithms (DMOEAs) have been extensively ap-

plied in many areas, such as scheduling [9][10], control [11][12][13], planning

[14][15][16][17][18], design [19] and machine learning [20]. Although traditional

MOEAs [21][22][23] dealing with MOPs can accelerate the converging speed of

the population, one drawback in solving DMOPs is that they sometimes lack30

adequate diversified solutions to help the population jump out of the current

optimum.

Additionally, detection of whether a change has occurred is a critical part

during the evolutionary process. Reevaluating solutions [9][3][8][24][7][6] and

checking the population’s statistical information [2][25][26] are two main ways35

to detect a change. The approach of reevaluating solutions is employed by

reevaluating members at every generation. Although this approach is easy to

implement, it needs additional function evaluations. Checking the population’s

statistical information is a good way as it doesn’t need function evaluation-

s. However, it can cause false positives for detector changes. Jiang et al. [4]40

introduced a steady-state manner to detect changes. In the manner, the popula-

tion’s individuals are checked in random order one by one to determine whether

a discrepancy exists between their previous objective values. If a discrepancy is

found, the change is successfully detected and the rest of the population’s mem-

bers do not need to be checked. However, the population members also need45

to be reevaluated. Hence, this paper, the approach of reevaluating solutions is
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selected to detect the environmental change. Moreover, less detectable environ-

mental changes [27] pose a big challenge for DMOEAs. We can not deal with

such issues now and leave it as one of our future works. The main contributions

of this study are summarized as follows.50

1. An effective mating selection method was developed to select well con-

verged and diversified parents, and the main goal was to generate good

offsprings.

2. In environmental selection process, an improved truncation method was

to improve the diversity of whole population.55

3. In order to quickly react to environmental change, a good change response

mechanism based an exploration strategy and an exploitation strategy

was designed.

The paper is structured as follows. Section 2 describes some basic defini-

tions, related works and motivation. Section 3 presents the proposed algorithm60

in detail. Section 4 presents the experimental setting for comparison. Section

5 gives experimental results and a comparison of the algorithm to other algo-

rithms. A further discussion of the algorithms is offered in Section 6. Finally,

conclusions are drawn in Section 7.

2. Background65

2.1. Dynamic Multi-objective Optimization

In this paper, we consider that minimization problems and DMOPs [2][28]

can be presented as follows:























min F(x, t) = (f1(x, t), f2(x, t), ...fm(x, t))T ,

s.t.g(x, t) ≤ 0, h(x, t) = 0,

x ∈ [L,U ],

(1)

where t represents the time variable, and x = (x1, x2, ..., xn)
T is the decision

variable vector. [L,U] = {x=(x1, ..., xn)|li ≤ xi ≤ ui, i = 1, 2, .., n} is the70
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decision space, where L = (l1, ..., ln)
T and U = (u1, ..., un)

T are the lower and

upper bounds, respectively. F = (f1, f2, ..., fm)T is the m-dimensional objective

vector and g(x,t) ≤ 0 and h(x,t) = 0 are the inequality and equality constraints.

The definition of DMOPs is a standard formula proposed by Farina et al. [2]

and the formula is used in most literature [28][4]. Thus, constrained DMOPs75

are not considered in this paper. The time variable, t, is associated with the

generation number of the EA; t is calculated as follows [2][5]:

t =
1

nt

⌊
τ

τt
⌋, (2)

where τ is the generation number, nt is change severity and τt is change fre-

quency.

Definition 1. Pareto Dominance [21] : Assume that p and q are any two in-80

dividuals in the population; p is said to dominate q, written as f(p) ≺ f(q) if

fi(p) ≤ fi(q) ∀i ∈ 1, 2, ...,m and fj(p) < fj(q) ∃j ∈ 1, 2, ...,m.

Definition 2. Pareto Optimal Set (POS): x is the decision vector; Ω is the de-

cision space; F is the objective function. A solution is said to be nondominated

if it is not dominated by any other solutions in Ω. Thus, the POS [2][29] is the85

set of all nondominated solutions and can be defined mathematically as follows:

POS := {x ∈ Ω|¬∃x∗ ∈ Ω, F (x∗) ≺ F (x)}. (3)

Definition 3. Pareto Optimal Front (POF): x is the decision vector; Ω is the

decision space; F is the objective function. Thus, the POF is the set of all

nondominated solutions with respect to the objective space and can be defined

mathematically as follows:90

POF := {y = F (x)|x ∈ POS}. (4)

Due to the dynamic change of the POS and POF, Farina et al. [2] classified

DMOPs into four different types.

• Type I: The POS changes with time but the POF is fixed.
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• Type II: Both the POS and POF change with time.

• Type III: The POS remains fixed, while the POF changes with time.95

• Type IV : Both the POS and POF remain fixed.

We mainly deal with the first three types of changes in dynamic multi-objective

optimization, although the Type IV change may also occur in some cases.

2.2. Related Works

Many DMOEAs have been proposed in recent years and existing approaches100

[30][5] can be classified into the following categories: convergence-based method-

ologies, diversity-based methodologies, and other methodologies [31][6] accord-

ing to their ways of managing dynamics [4].

As its name suggests, convergence-based approaches are used to improve

the convergence of the population, so as to guide the population to converge to105

the next POF. Current convergence-based methods mainly include the memory

strategy and prediction technique. Memory approaches [7][32][33][34] memo-

rize the previously obtained POS to track the new POS when the environment

has regularities. The memory approaches record past historical information to

quickly respond to the new environmental change. Peng et al. [34] proposed110

a memory strategy that preserves some promising solutions. When the envi-

ronment changes, the method usually selects some nondominated solutions and

stores them in a memory pool. Because these elite individuals in memory pool

are optimal with best convergence and diversity in past environment. Thus,

the approach can increase diversity to some extent. After that, these elite solu-115

tions are selected by nondominated selection, and are reused to adapt the new

environment. While it is critical to accelerate convergence of the population,

for non-periodic problems or the early stages of periodic problems, memory

approaches are not as effective as we wish.

Prediction-based mechanisms always apply past population information to120

forecast some information of the next population and re-initialize the population

through certain prediction models. An appropriate prediction model is rather
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essential for the accuracy and effectiveness of the prediction strategy whenever

there is an environmental change. Prediction approaches can provide a guiding

direction for the evolution of the population towards the POF. In 2006, Hatza-125

kis et al. [32] proposed a feed-forward prediction strategy (FPS). In 2013, Zhou

et al. [3] proposed a population prediction strategy (PPS). FPS and PPS use

the autoregressive model to predict population, which is effective in solving D-

MOPs in some degree. However, there are some difficulties for FPS in solving

these DMOPs which have a nonlinear correlation between decision variables.130

This is because FPS only predicts the boundary points of the population, which

can not reflect the whole population. In addition, because of the lack of his-

torical information accumulation, PPS has low convergence in the early stage.

Muruganantham et al. [35] proposed a prediction model based on the Kalman

Filter (MOEA/D-KF). The MOEA/D-KF technique involves a prediction step135

and a measurement step estimates the current state a priori. In the subsequent

measurement, a priori estimate from the MOEA/D-KF is updated to obtain a

posteriori. It is applied to the whole population to direct the search towards

the next POS instead of the expansion or contraction of the POS or POF mani-

fold. The large prediction errors result in the poor performance of the obtained140

solutions.

Diversity-based techniques can be classified into two categories according to

the period of enhancing the diversity, which are diversity introduction and diver-

sity preservation. Diversity introduction is recognized as the response technique

to the environmental changes. Specifically, whenever there is an environmental145

change, diversity introduction is evoked to generate some diversified solutions to

increase the diversity of the population. For example, hyper-mutation method-

s [36][8][37][38] and random producing solutions [8][12][25] are commonly used

to help the population escape from the current positions. Additionally, other

modified diversity maintenance strategies [39][40] have been adopted to improve150

the population’s diversity. On the other hand, diversity preservation is not usu-

ally designed to explicitly react the changes of environment; instead it mainly

focuses on the innate diversity preservation of the optimization algorithms. In
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dCOEA[7], a multipopulation method is proposed to enhance the population

diversity in a competitive and cooperative way. In DTAEA[30], a dynamic two-155

archive EA is developed to maintain two co-evolving populations, which have

complementary effects on enhancing the population diversity. Properly increas-

ing the population’s diversity can make the converged population jump out of

the current optimum when the environmental change is detected. Appropriate

diversity enhancement is essential and rewarding for algorithms to track the160

changing environment, whereas excessive diversity strengthening may result in

low convergence of the algorithms. Based on this idea, many DMOEAs have

been proposed, such as co-evolutionary algorithms [7], memetic computing [14],

the modeling approach [5] and other methods [38][41][29][42][43].

Aside from the aforementioned approaches, the Particle swarm optimizer165

(PSO) can deal with MOPs. Proposed by Kennedy et al. [44], PSO is composed

of plenty of particles. PSO also has good performance with DMOPs. Helbig et

al. [31] introduced a dynamic Vector Evaluation Particle Swarm Optimisation

(DVEPSO) algorithm to solve DMOPs. Due to outdated memory and diversity

loss, PSO easily moves into local optima when the environmental change is170

detected. Ant colony optimisation (ACO) is an optimization algorithm based

on the natural behavior of ants. It has the ability to deal with multi-objective

problems due to its flexibility in being able to add multiple colonies, or multiple

pheromone and heuristic matrices. ACO also can be applied to DMOPs because

it has the ability to retain useful information when an environmental change175

occurs. Eaton et al. [45][46][47] proposed some approaches based on ACO to

cope with a dynamic railway junction rescheduling problem. They found that

ACO has a role to play in a dynamically changing environment and it can deal

with real-world dynamic problems.

2.3. Motivation180

Multi-objective evolutionary algorithm based on decomposition (MOEA/D)

[23] is a competent aggregation-based methodology in the community of EMO.

Numerous studies have been conducted to improve the quality of MOEA/D in
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static EMO in recent years. Nevertheless, there is little research that relies

on improvements of MOEA/D to address DMOPs. Additionally, as already185

mentioned, current studies on EMO mainly focus on either introducing the

diversity to react to environmental changes or maintaining the diversity during

the process of optimization. Not many investigations have been explicitly carried

out to enhance diversity during the period when searching and reacting occur

simultaneously.190

In this paper, we put forward a novel Pareto-based evolutionary algorithm

using decomposition and truncation (PDTEA) to handle DMOPs. In PDTEA,

the decomposition-based algorithm is first adapted to enhance the diversity of

the whole population during the optimization process. Then the aggregation

functions [23] and Pareto-dominance [21] relationship are used to improve the195

convergence speed of the population. On the basis of these two steps, a new mat-

ing selection strategy, an effective environmental selection technique and a mech-

anism to handle change in the environment are proposed. The decomposition-

based approach is used to select two well-converged and well-diversified mating

parents during the mating selection. In addition, an improved truncation op-200

eration [22] is adopted during environmental selection for density estimation

[22][48][49]. If a change is detected, the mechanism to handle changes uses t-

wo strategies including an exploration strategy and an exploitation strategy to

adapt to the new environment. The first strategy is to explore an individual of

the population based on the direction of the individual and its nearest individual205

which can search for good solutions in the area. The exploitation strategy uses

individual variation to enhance convergence. We can use historical information

to guide evolution for periodic problems. For each generation, PDTEA select-

s the best solutions in each subregion to generate new solutions to accelerate

convergence. In the environmental selection, an improved truncation procedure210

from that of SPEA2 [22] is used to preserve a good distribution of the population

for the next generation.
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3. Proposed Algorithm

In this section, the decomposition-related preparatory procedure is described

first. In order to handle DMOPs, determining how to select efficiently mat-215

ing parents producing offsprings and preserving good solutions are critical to

DMOAs. Thus, a procreation procedure and environmental selection are pro-

posed. Furthermore, a mechanism to handle changes is introduced and we

present an overall framework for the proposed algorithm. Finally, we analyze

the computational complexity of the compared algorithms and PDTEA.220

3.1. Decomposition-related preparatory procedures

Given that decomposition-based methodologies are designed to be applied to

the evenly distributed reference points in the objective space to ensure diversity

before the evolution, a set of reference points w = (w1, ..., wM )T is produced

through a systematic approach [50][51][52], where wi ≥ 0 for all i ∈ {1, ...,M};225

M is is the number of objectives, and
∑M

i=1 wi=1. The reference points are

evenly distributed on an M − 1-dimension unit simplex, which is a normalized

hyperplane. The required generated number of reference points H is closely

related to the number of considered divisions along each objective p, which can

be denoted by the following formula:230

H =

(

M + p− 1

p

)

, (5)

where M is the number of objectives.

Thereafter, the initialization population P0 is normalized in the hyperplane

in which the set of reference points is located. First, the ideal point zmin =

(z1min, z
i
min, ..., z

M
min)

T and the worst point zmax = (z1max, z
i
max, ..., z

M
max)

T of

the population P0 are calculated respectively, where zimin and zimax are the235

smallest and the biggest value of the i-th objective in the objective space. Thus,

the normalized member x can be calculated as follows [49]:

f̂i(x) =
fi(x) − zimin

zimax − zimin

, (6)
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where f̂i(x) denotes the i-th normalized objective of member x. Thus, the

objective vector of the normalized individual x in the population can be denoted

as (f̂1(x), f̂i(x), ..., f̂M (x))T , where x ∈ P0.240

There are several reputable aggregation functions in MOEA/D which convert

a multi-objective problem vector into a scalar optimization problem. The first

approach is called the Weighted Sum Approach [23]. Its scalar optimization

function can be presented as follows:

g(x|w) =

M
∑

i=1

wifi(x), (7)

The solution with the minimization value of g(x|w) is regarded as the best solu-245

tion with the best convergence within the reference point w = (w1, w2, .., wM )T .

The second approach is the Tchebycheff Approach [23] defined as follows:

g(x|w) = min
1≤i≤M

{wi|fi(x) − zimin|}, (8)

The third approach is the Penalty-based Boundary Intersection Approach(PBI)

[23], presented as follows:

g(x, zmin) = d1 + θd2, (9)

where d1 = ||(f(x)−zmin)
Tw||

||w|| and d2 = ||f(x)− (zmin + d1
w

||w||)||.250

Afterwards, each individual in the population is associated with the reference

directions that are generated through reference points and the origin. The refer-

ence directions are meant to divide the population into N subregions. For each

normalized individual in the population, the perpendicular distance between it

and the reference directions is computed. The individual is associated with the255

reference direction which has the smallest perpendicular distance. This is illus-

trated in Fig.1. Each individual associated with the reference direction is given

an aggregation function value [52] through one specific aggregation function [23].

3.2. Procreation procedure

The procreation procedure is adopted to produce offspring individuals from260

the parent population. The procedure includes two equally critical steps: mating
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Figure 1: Association of population members and matching selection

selection and generating offspring. The former is to select two mating parents

using a specific strategy. Generating offspring, as its name suggests, is used to

produce offspring solutions through genetic operators from the chosen mating

parents. To enhance the diversity of the population, different from the original265

MOEA/D, which selects two mating parents from the neighborhood, the pro-

posed mating selection randomly chooses two parents from the N subregions.

After computing the aggregation function values of the individuals associated

with the same reference direction, the solution with the best aggregation func-

tion value is selected as one of the mating parents. Another mating parent is270

chosen in the same way. It can be obtained from Fig.1 that the mating selection
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in PDTEA improves the convergence of the algorithm because individuals with

the best aggregation function values are selected as mating parents to produce

solutions with good convergence. Considering the association regulation, it is

likely that some reference directions have several associated individuals or no275

individuals. If the chosen subregion does not have associated solutions, it will

never be selected. For another situation, when all individuals are only in a

subregion, parent individuals are randomly selected by the binary tournament

selection [21] from the population.

Then, the offspring generation procedure, using the mating parents to pro-280

duce the offspring population through the genetic operator, is followed as the

mating selection. As for the operator of genetics, in theory, any can be selected

to achieve the operator of genetics. In this paper, the simulated binary crossover

(SBX) [21] and polynomial mutation (PM) [21] are used as the crossover oper-

ator and mutation operator, respectively. The details of the procreation proce-285

dure are shown in Algorithm 1.

3.3. Environmental selection

The environmental selection is designed to preserve the good solutions of

the convergence and diversity performance after the reproduction procedure.

The process of environmental selection is presented as follows. The Pareto-290

domination relationship has been proved to be an effective approach to cope with

MOPs with two or three goals. Given that most existing DMOPs are problems

with no more than three objectives, the non-dominated sort in NSGA-II [21]

is first conducted on the combination of the parent and offspring population,

after which all the solutions in the union are compared with each other to find295

the non-dominated levels (i.e., F1, ..., Fl, ..., where l ≤ N ), where each solution

belongs to [21]. Then, each nondomination level from F1 is included in a new

population P until the size of P equals to, or first time exceeds the predefined

threshold.

In the so-called critical layer Fl, in order to maintain the diversity of the300

population, we apply the modified truncation operation changed from that of
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Algorithm 1 Procreation procedure

Input:

N, P(parent population)

Output:

R(offspring population), Q(combination of parent and offspring)

1: Compute the normalized objective vector of parent population by Eq. 6

2: Associate each member in the normalized parent population with the refer-

ence direction and decompose the objective space into N subregion.

3: Give an aggregation function value of each member in each subregion by

one specific aggregation function [23] and find the member of the smallest

aggregation function value in each subregion.

4: for i: = 1 to N do

5: Randomly select two individuals with good aggregation function value

from N subregions as the mating parents.

6: Generate a new solution using the chosen parents through SBX and PM

[21].

7: end for

8: Combine parent and offspring into Q.

SPEA2 [22]. The nearest Euclidean distance of the individuals in the critical

layer Fl to individuals of selected new population P is computed as follows:

d(q, P ) = min
p∈P
||f(q)− f(p)||, (10)

where q ∈ Fl. Then, the distance of Fl is sorted and the individuals of Fl

with bigger distance are selected for population P . In this way, the whole305

population’s diversity is maintained instead of only in the critical layer. Fig. 2

gives an example to illustrate the reason. Assume that the green points represent

the individuals of F1, the red and black points belong to the critical layer F2.

Assume that two individuals of F2 need to be selected. In order to improve

the whole population’s diversity, the red points with the bigger distance are310

reserved.
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Figure 2: Truncation operation.

3.4. Dynamic response mechanism

In order to cope with the two challenges of DMOPs, that is tracing the chang-

ing POS and enhancing diversity, in the period of environmental response, this

paper proposes a dynamic response strategy based on exploration and exploita-315

tion [29][34]. Exploration guides the whole population to evolve to the region of

the next environmental change. Exploitation is applied to adequately search the

region that has been located with a local search approach to find more solutions

with good convergence and diversity in the decision space.

The exploration strategy is to explore the possible area in which the new320

population may situate and maintain the diversity of the population to some

degree. The direction of individuals can help to guide the convergence of the

population and improve diversity in the decision space. Suppose that xi
t =

15



Algorithm 2 Environmental selection

Input:

N(population size), Q(combination of parent and offspring)

Output:

P(new population)

1: {F1, F2, ...Fl, ...} ← NonDominatedSorting(Q).

2: while |P |+ |Fi| ≤N do

3: P ← P ∪Fi, i ←i+1;

4: end while

5: Calculate the distance of individual of Fl using Eq. 10.

6: Individuals of Fl are sorted by distance and we add individuals of Fl with

bigger distance to population p.

(xi1
t , xi2

t , ..., xin
t )(i = 1, 2, ...N) is the i-th individual population at time t, where

N is the population size. For each individual xt in population t, there is an325

individual in population t-1 (Pt−1) having the nearest distance to xt, which can

be found using the following equation:

x
j
t−1 = arg min

y∈Pt−1

‖y − xi
t‖2, j = 1, 2, ..., N (11)

where y is an individual of population at time t-1. Then, the direction of the

i-th individual at time t is defined as follows:

Di
t = xi

t − x
j
t−1, (12)

Then, a variance σt is defined as:330

σt =
N

min
i=1
‖ Di

t ‖, i = (1, 2, ...N) (13)

where ‖ Di
t ‖ is the length of the the i-th individual’s direction and σt is the

minimum length of the individuals’ direction. Then individuals at time t + 1 are

generated by the individuals of time t, the moving direction of each individual

and the variance according to the following formula:

xi
t+1 = xi

t +Di
t +N(0, σt) (14)
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Figure 3: Exploration of the individual.

where N(0,σt) is a random number generated by a Gaussian distribution with335

a mean of zero and standard deviantion of σt. Fig. 3 gives the explanation

of how to explore individuals. First, the responding nearest individual of xi
t in

Pt−1 is found according to Eq. 11 and then the direction of each individual and

the defined variance in terms of Eq. 12 and Eq. 13 are computed. Lastly, N

individuals are generated by means of Eq. 14. The main steps of the exploration340

strategy are described in Algorithm 3.

After exploring the region of the new POS, another strategy using local

search is used to exploit the area around the present POS. First, vector dj =

(d1j , d
2
j , ..., d

n
j ) is defined, then the distances between individual xi

j and the low

and upper boundary are calculated, and dji representing the smaller distance is345
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denoted as:

dji = min{|xji − li|, |xji − ui|}, (15)

where j = 1,2,...,N; i = 1, 2,..., n; li and ui are the low and upper boundaries,

respectively. Fig. 4 represents the process of selecting dj . Then the j-th indi-

vidual at time t+1 is denoted as xj
t+1 = (xj1

t+1, x
j2
t+1, ..., x

jn
t+1), and x

ji
t+1 can be

calculated by the following formula:350

x
ji
t+1 = x

ji
t +N(0, dji) (16)

where xi ∈ [li, ui], d = (d1, d2, ...dn), n is the dimension of the decision space

and dji is the variance of the Gaussian white noise. The process of exploiting

is illustrated in Fig. 4. The steps of the exploitation strategy are presented in

Algorithm 3.

Algorithm 3 DynamicResponse()

Input:

N, Pt, Pt−1

Output:

Pexploration, Pexploitation, P(parent population);

1: Find the individual in Pt−1, x
j
t−1 closest to the xi

t using Eq. 11.

2: Calculate Dt and the variance σt using Eq. 12 and Eq. 13, respectively.

3: Generate N individuals according to Eq. 14 as Pexploration.

4: Calculate dj using Eq. 15.

5: Generate N individuals according to Eq. 16 as Pexploitation.

6: Combine the two obtained populations and set the combined population as

Pcombine, Pcombine = Pexploration ∪ Pexploitation.

7: Select N individuals from Pcombine by Algorithm 2 and set the population

as P.

It should be noted that the proposed change response method is different355

from prediction approaches. Prediction approaches need past historical infor-

mation to predict the next population. Hence, the proposed approach first uses

exploration-based strategy to guide the whole population toward the promising
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Figure 4: local search of individual.

region’s evolution. The exploration strategy can generate some solutions close

to the new POS to improve convergence of the population. Moreover, to achieve360

the exploration, the exploitation strategy is employed to search for some prefer-

able individuals using local search when the environment changes. Hence, the

strategy based on exploration and exploitation can benefit the population to

adapt to the new environment quickly.

3.5. Overall framework of the proposed algorithm365

The overall framework of PDTEA is proposed in Algorithm 4. First, the

initial procedure produces the initializing population P0, time t=0 and itera-

tion generation gen. Afterwards, in every iteration, environmental changes are

detected. If there is a change, the response mechanism is invoked. Otherwise,
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the optimization process is imposed on the whole population during which the370

reproduction procedure and environmental selection are adopted to produce the

next generation’s initialized population. Within the optimization process, the

reproduction procedure is used to generate offspring individuals. Then, envi-

ronmental selection is exerted on the set including the parent population and

the offspring. In the following subsections, the detailed implementation of each375

component in PDTEA is exhibited step by step.

Algorithm 4 The overall framework of PDTEA

1: Initialize a population P0 and N reference directions, set time period t=0,

set iteration generation gen=0.

2: while not terminate do

3: if there is an environmental change then

4: DynamicResponse();

5: t=t+1;

6: end if

7: Apply mating selection and genetic operators to generate offsprings by

algorithm 1.

8: Select solutions from the combination of parents and offsprings by algo-

rithm 2.

9: gen=gen+1.

10: end while

3.6. Computational complexity of the compared algorithms and PDTEA

The optimization algorithm consumes the most computational resources of

the compared algorithms and PDTEA. The computational complexity of each

optimization algorithm and PDTEA are analyzed as follows:380

(1) DNSGA-II: From the original paper of DNSGA-II [9], the optimization

algorithm is NSGA-II [21] and the computational resource is spent on non-

dominated sorting O(M(2N)2), crowding-distance assignment O(M(2N)log(2N))
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and sorting O(2Nlog(2N)). The overall computational complexity is O(MN2),

M is the number of objectives and N is the population size.385

(2) PPS: PPS [3] chooses RM-MEDA [53] as the MOEA optimizer. In RM-

MEDA, the computational complexity of RM-MEDA includes modeling,

reproduction and the selection operator. The modeling cost is O(nN); n is

the number of the decision space. The reproduction spends O(nK); K is the

number of clusters. The selection operation is NSGA-II [21]. Therefore,390

the overall computational complexity is O(MN2).

(3) MOEA/D: As introduced in Section 4.2, the computational complexity

mainly depends on updating neighboring solutions. It costs O(MNT) com-

putations; N is the population size, and T is the number of subproblems.

Therefore, the overall computational complexity is O(MNT).395

(4) SGEA: SGEA [4] is introduced in section 4.2 and it consumes during steady-

state evolution and environmental selection. The whole steady-state evo-

lution part takes O(MN2) computations and the environmental selection

procedure spends O(MN2) computations. Therefore, the overall computa-

tional complexity is O(MN2).400

(5) Dy-NSGA-II: Dy-NSGA-II [6] adopts NSGA-II as the optimization algo-

rithm. The computational complexity of NSGA-II has been analyzed and

it is O(MN2).

(6) PDTEA: For the overall framework of each generation, the main computa-

tional resource in PDTEA is consumed by environmental selection and the405

offspring reproduction. Two strategies also need computational resources

when an environmental change is detected. Identifying the ideal point and

worst point requires a total of O(MN) computations, and association of

population members to H reference points requires O(MNH) computation-

s. The offspring reproduction (line 7 of Algorithm 4) requests O(MN2),410

where M is the number of objectives and N is the population size. The

computational complexity of environmental selection (line 8 of Algorithm

4) is O(MN2). Therefore, the overall computational complexity of PDTEA

in each generation is O(MN2).
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Due to these analyses, the computational complexity of PDTEA is similar to415

the compared algorithms except MOEA/D.

4. Experimental Design

In this section, we introduce test problems, the compared algorithms, per-

formance metrics and parameter settings.

4.1. Test Problems420

Twenty-one dynamic multi-objective test instances (FDA1−5, dMOP1−3,

JY 1− 9, dMOP2iso, dMOP2dec, FDA5iso and FDA5dec) were used to assess

our algorithm. Farina et al. [2] proposed the FDA test suite and Goh et al.

[7] proposed the dMOP test suite. FDA and dMOP have linear correlations

between decision variables and are widely used to assess the performance of425

DMOEAs [3][4]. However, the POS of real world problems is not so simple. The

JY test suite, which has a linear correlation between the decision variables, was

proposed by Jiang et al. [28], some of which has nonlinear correlation between

the decision variables. It introduced characteristics, such as mixed POFs and a

nonmonotonic and time-varying relationship between variables, which are very430

competent and beneficial when testing the performance of algorithms. Helbig et

al. [54][55] proposed some new DMOPs with a complicated POS, and dynamic

multi-objective benchmark functions were selected to assess the performance of

the algorithm.

4.2. Compared Algorithms435

In this section, the proposed algorithm is compared with six popular D-

MOEAs. They are the MOEA based on decomposition (MOEA/D)[23], the

dynamic version of NSGA-II (DNSGA-II)[9], the population prediction strate-

gy (PPS)[3], a steady-state and generational evolutionary algorithm (SGEA)[4],

a dynamic version of the Non dominated Sorting Genetic Algorithm II(Dy-440

NSGA-II) [6] and the dynamic vector evaluation particle swarm optimization

(DVEPSO) [31] . A brief description of each compared algorithm follows:
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(1) DNSGA-II: NSGA-II [21] is a classical algorithm based on Pareto-

dominance. In order to adapt to dynamic optimization problems, Deb et al.

[9] modified the commonly utilized NSGA-II to track the POF. Some popula-445

tion members are replaced with either randomly produced solutions or mutated

solutions of existing population solutions when a change occurs.

(2)PPS: PPS predicts a whole population rather than isolated points. In

PPS[3], the POS is divided into two parts: the population and manifold. PPS

chooses a univariate autoregression model to predict the next population center450

by the archived population centers over a number of continuous time series.

Similarly, previous manifolds are used to predict the next manifold. The initial

population is initialized by the predicted center and manifold when an environ-

mental change occurs.

(3)MOEA/D: MOEA/D provides an efficient way to optimize MOPs. MOEA/D455

can decompose a multi-objective optimization problem into a number of scalar

optimization subproblems and optimize them simultaneously[23]. Each sub-

problem is optimized from information of its several neighboring subproblems.

The neighborhood of subproblems is composed through the distances between

their aggregation coefficient vectors. The diversity of population is controlled460

by the diversity of subproblems and the convergence of the population is vul-

nerable to the neighborhood of each subproblem and solution update in this

neighborhood.

(4)SGEA: SGEA can make use of the fast and steady tracking ability of

steady-state algorithms and the good diversity preservation of generational al-465

gorithms for solving DMOPs. Mating selection parents are selected either from

the parents’ population or the archive population, and environmental selection

preserves good solutions for improving the convergence speed of the population.

Some old solutions with good diversity are reused and information from the pre-

vious environment and new environment are used for reacting to environmental470

changes when a change is detected.

(5)Dy-NSGA-II: Azzouz et al. [6] proposed a new dynamic NSGA-II(Dy-

NSGA-II) based on an adaptive hybrid population management strategy in-
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cluding memory, local search and random strategies. The local search approach

is used to guide the population towards the promising regions according to find-475

ing direction in search space. The memory approach is used to store former

information of the POS that is exploited to help the population quickly track

the POS when the change degree is small. The role of the random approach is

to deal with environmental change having a large severity.

(6) DVEPSO: DVEPSO was proposed by Helbig et al. [31] to solve DMOP-480

s. DVEPSO was inspired by the vector evaluation particle swarm optimization

algorithm. It uses various ways to manage the archive solutions and knowl-

edge sharing through local and global update approach for the search process.

When an environmental change occurs, a percentage of the swarm’s particles

are reinitialized and all particles’ pbest and the swarm’s gbest are reevaluated.485

4.3. Performance Metrics

In this section, performance metrics, which can evaluate convergence, distri-

bution and diversity of the obtained solution set, are introduced.

1)Generational Distance (GD): Veldhuizen et al. [7][34] presented the GD

metric, which measures the convergence of the population. The GD indicator490

is defined as follows:

GD(POFt, Pt) =

∑

v∈Pt
d(POFt, v)

|Pt|
, (17)

where d(POFt, v) = minu∈POFt

√

∑m
j=1(f

v
j − fu

j )
2 is the minimum Euclidian

distance between v and the point in POFt. POFt is a set of uniformly dis-

tributed Pareto optimal points in the POF at time t; Pt is the solution obtained

by the algorithms.495

2)Inverted Generational Distance(IGD): IGD [3][29] is a metric, which as-

sesses the convergence and diversity of the obtained solution set. The IGD is

calculated as follows:

IGD(POFt, Pt) =

∑

v∈POFt
d(v, Pt)

|POFt|
, (18)
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where d(v, Pt) = minu∈Pt

√

∑m

j=1(f
v
j − fu

j )
2 is the minimum Euclidian distance

between v and the point in Pt. POFt is a set of uniformly distributed Pareto op-500

timal points in the POF at time t; Pt is the solution obtained by the algorithms.

The IGD [3] performance metric is a comprehensive index and is developed to

measure the convergence and diversity of the algorithm’ obtained solutions.

3) Hypervolume Difference(HVD): The HVD [8][4][56] measures the gap be-

tween the hypervolume of the obtained POF and that of the true POF.505

HVD(POFt, Pt) = HV (POFt)−HV (Pt), (19)

where Pt is the solution obtained by the algorithm at time t and POFt is the

solution of the true POF at t time. HV (S) is the hypervolume of a set S. The

reference point for the computation of hypervolume is (zt1+0.5, zt2+0.5, ..., ztM+

0.5), where ztj is the maximum value of the jth objective of the true POF at t

time and M is the number of objectives.510

4.4. Parameter Settings

The experimental parameters were set as follows. The population size was

N=100. The dimensions of the test problem’s decision space were n=20. For

change detection, 5% of the population was randomly selected and re-evaluated

to detect environmental changes. It should be noted that re-evaluated approach-515

es for change detection assume there is no noise in function evaluations. Each

algorithm ran independently 20 times on all problems, and there were 120 en-

vironmental changes. Due to its selection in many papers [57][58], the PBI

method is employed in this paper and we set θ = 5.0. The Wilcoxon rank-sum

test [59] was used to point out significance between different results at the 0.05520

significance level. The parameters of the MOEAs compared algorithms were ref-

erenced from their original papers. Some key parameter settings in the papers

were listed as follows:

1)MOEA/D: The size of subproblems was set to 100. In order to deal with

FDA4 and FDA5, 1000 weight vectors were generated by the simplex-lattice525

design [51]; these were reduced to 100 using SPEA2 [22]. The neighborhood size
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and the maximal number of solutions that could be replaced were set to 20 and

2, respectively. Additionally, the aggregation function used in the experiment

was the PBI method, where θ = 5.0.

2) For all algorithms, the crossover probability was pc=0.8 and its distribu-530

tion index was η=20. The mutation probability was pm =1/n and its distribu-

tion η=20.

We did not tune the parameters one by one to get better experimental results.

If some parameters in algorithms are adjusted separately, we can get better

experimental results. Therefore, the parameter settings of all algorithms were535

the same to ensure that the comparisons were fair.

5. Experimental Results and Analysis

In order to compare the effect of change frequency on the compared algo-

rithms in dynamic environments, the severity of change was fixed to 10, and

the frequency of change was set to 20, 25 and 30, respectively. The statistical540

results of seven algorithms and the mean and standard deviation values of GD,

IGD and HV are shown in Table 1, Table 2 and Table 3, respectively. The best

values obtained by the seven algorithms are highlighted in bold face, and the

Wilcoxon rank-sum [59] test was carried out to indicate significance between

different results at the 0.05 significance level.545

5.1. Results on FDA and dMOP problems

It can be obtained from Table 1 that PDTEA has the minimum values of

GD on the majority of FDA and dMOP test suites whose decision variables are

linearly related. The smaller values of GD imply that the algorithm had better

convergence than the other algorithms. On the whole, PDTEA significantly550

shows the best convergence among all the compared algorithms on most test

problems. For all the problems, at whatever the frequency of change was set,

PDTEA significantly performed better than DNSGA-II, PPS, Dy-NSGA-II

and DVEPSO. PDTEA surpassed MOEA/D on all FDA and dMOP problems
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except FDA2 and dMOP1. However, when compared with SGEA, PDTEA555

failed to show better competition on FDA2, FDA3 and dMOP1. The reason is

that the POS of FDA2 and dMOP1 remain fixed. MOEA/D and SGEA preserve

many solutions from the last population, which has considerable convergence

merits when addressing those DMOPs with unchanged POS.

As shown in Table 2, PDTEA’s IGD performance metric was the best in560

most of the test problems except FDA2, FDA3 and dMOP1. Therefore, not

only did PDTEA have better distribution than the other methods, but also

significantly surpassed others in terms of convergence. For FDA2 and FDA3

test instances, the IGD values of SGEA were the best and those of PDTEA

ranked the second, proving that the distribution and convergence of PDTEA565

were only weaker than SGEA in dynamic changes. As for dMOP1, the values

of IGD on MOEA/D were the smallest, which were smaller than SGEA and

PDTEA. The conclusion can be made that PDTEA performs moderately on

problems like dMOP1.

The HVD values were roughly similar to the IGD values on FDA and dMOP570

displayed in Table 2 and Table 3. The difference is that the number of HVD

values on which PDTEA performed best is one more than that of the IGD

values. Specifically, for FDA3, PDTEA significantly outperformed all the other

approaches in terms of the HVD metric. In addition, PDTEA ranked the second

on problem dMOP1 rather than the third, which can be seen in Table 2. Perhaps575

the main reasons for the analogous performance are they are comprehensive

metrics that measure both distribution and convergence. Obviously, PDTEA is

preferable to the other algorithms on most FDA and dMOP problems. However,

it is slightly inferior to SGEA on FDA2 and dMOP1 indicating SGEA is also

promising as a means to solving DMOPs. It should be mentioned that PDTEA580

showed significantly competent performance on FDA4 and FDA5 in terms of

GD, IGD and HVD values, indicating that PDTEA is the most effective and

outstanding methodology for solving problems with three goals.
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Table 1: Mean and SD of GD indicator obtained by seven algorithms.
Prob (τt, nt) DNSGA-II PPS MOEA/D SGEA Dy-NSGA-II DVEPPSO PDTEA

FDA1
(20,10) 1.864e-2(1.627e-3)‡ 1.415e-1(5.298e-2)‡ 1.537e-1(1.577e-2)‡ 1.328e-2(2.806e-4)‡ 7.360e-2(7.220e-4)‡ 8.075e-2(7.122e-3)‡ 1.202e-2(7.950e-4)
(25,10) 1.299e-2(3.769e-4)‡ 9.393e-2(4.835e-2)‡ 1.198e-1(9.871e-3)‡ 1.018e-2(1.377e-4)‡ 4.100e-2(5.309e-4)‡ 7.256e-2(3.417e-2)‡ 8.455e-3(3.708e-4)
(30,10) 1.053e-2(3.025e-4)‡ 7.388e-2(3.935e-2)‡ 9.629e-2(5.029e-3)‡ 8.245e-3(1.123e-4)‡ 2.765e-2(3.690e-4)‡ 2.332e-2(7.571e-2)‡ 6.534e-3(2.104e-4)

FDA2
(20,10) 5.411e-2(3.267e-3)‡ 1.476e-2(8.575e-4)‡ 4.994e-3(7.572e-4) 3.586e-3(9.473e-5) 1.180e-2(1.330e-4)‡ 7.104e-2(2.024e-2)‡ 8.256e-3(1.592e-4)
(25,10) 5.617e-2(1.164e-3)‡ 1.413e-2(5.813e-4)‡ 4.264e-3(1.831e-4) 3.502e-3(8.584e-5) 1.166e-2(4.926e-5)‡ 6.870e-2(1.537e-2)‡ 8.053e-3(2.219e-4)
(30,10) 5.816e-2(1.801e-3)‡ 1.376e-2(5.729e-4)‡ 4.117e-3(1.821e-4) 3.457e-3(9.602e-5) 1.168e-2(1.448e-4)‡ 1.677e-2(1.230e-1)‡ 7.937e-3(2.582e-4)

FDA3
(20,10) 9.314e-2(1.592e-3)‡ 2.272e-1(8.867e-2)‡ 1.481e-1(8.468e-3)‡ 5.619e-2(1.395e-3) 1.080e-1(1.410e-3)‡ 1.027e-1(3.532e-2)‡ 6.570e-2(1.694e-3)
(25,10) 9.317e-2(8.440e-4)‡ 1.893e-1(7.075e-2)‡ 1.375e-1(1.344e-2)‡ 5.285e-2(1.294e-3) 8.351e-2(1.484e-3)‡ 9.870e-1(1.537e-2)‡ 6.100e-2(1.129e-3)
(30,10) 9.452e-2(9.969e-4)‡ 1.424e-1(8.271e-2)‡ 1.284e-1(8.314e-3)‡ 5.225e-2(8.291e-4) 7.340e-2(1.911e-3)‡ 7.415e-2(7.984e-1)‡ 6.033e-2(1.436e-3)

FDA4
(20,10) 2.716e-1(1.760e-2)‡ 1.842e-1(6.403e-3)‡ 2.635e-1(3.234e-3)‡ 1.281e-1(9.409e-3)‡ 3.161e-1(4.494e-3)‡ 1.977e-1(1.300e-2)‡ 6.588e-2(3.115e-3)
(25,10) 2.148e-1(6.485e-3)‡ 1.616e-1(5.173e-3)‡ 1.775e-1(8.682e-3)‡ 8.998e-2(2.275e-3)‡ 2.390e-1(5.087e-3)‡ 1.925e-1(2.482e-2)‡ 5.152e-2(2.452e-3)
(30,10) 1.758e-1(5.891e-3)‡ 1.475e-1(4.414e-3)‡ 1.295e-1(5.197e-3)‡ 7.018e-2(1.593e-3)‡ 1.887e-1(1.628e-3)‡ 1.896e-1(6.469e-2)‡ 4.047e-2(1.145e-3)

FDA5
(20,10) 9.726e-1(2.030e-2)‡ 8.127e-1(7.952e-3)‡ 8.611e-1(1.847e-2)‡ 7.696e-1(4.309e-3)‡ 8.095e-1(6.878e-3)‡ 9.679e-1(1.282e-2)‡ 6.946e-1(1.691e-3)
(25,10) 9.036e-1(1.108e-2)‡ 7.953e-1(3.834e-3)‡ 7.596e-1(2.250e-2)‡ 7.344e-1(3.012e-3)‡ 7.474e-1(8.601e-3)‡ 8.629e-1(1.384e-2)‡ 6.817e-1(1.260e-3)
(30,10) 8.565e-1(1.298e-2)‡ 8.125e-1(6.188e-3)‡ 7.338e-1(1.033e-2)‡ 7.131e-1(1.657e-3)‡ 7.009e-1(8.171e-3)‡ 7.132e-1(3.750e-2)‡ 6.838e-1(1.710e-3)

dMOP1
(20,10) 3.921e-2(7.894e-3)‡ 6.045e-2(1.052e-1)‡ 1.086e-2(5.786e-3) 2.394e-3(5.232e-4) 3.708e-2(9.088e-3)‡ 3.268e-2(4.673e-1)‡ 2.964e-2(3.848e-3)
(25,10) 2.529e-2(7.177e-3)‡ 5.223e-2(1.215e-1)‡ 7.279e-3(1.386e-3) 1.712e-3(1.835e-4) 2.331e-2(2.401e-3)‡ 3.261e-2(1.141e-2)‡ 1.582e-2(4.326e-3)
(30,10) 1.968e-2(3.241e-3)‡ 5.365e-2(1.157e-1)‡ 7.203e-3(1.030e-2) 1.417e-3(1.137e-4) 1.337e-2(1.933e-3)‡ 2.918e-2(5.267e-2)‡ 1.047e-2(3.073e-3)

dMOP2
(20,10) 2.098e-1(8.638e-3)‡ 1.776e-1(6.551e-2)‡ 1.444e-1(2.056e-2)‡ 1.602e-2(3.434e-4) 9.847e-2(2.689e-3)‡ 9.132e-2(5.086e-2)‡ 1.680e-2(5.605e-4)
(25,10) 1.323e-1(2.636e-3)‡ 1.256e-1(5.719e-2)‡ 1.105e-1(6.435e-3)‡ 1.213e-2(3.596e-4)‡ 5.630e-2(1.145e-3)‡ 8.128e-2(5.718e-2)‡ 1.133e-2(5.974e-4)
(30,10) 8.803e-2(2.438e-3)‡ 9.210e-2(5.865e-2)‡ 8.814e-2(5.897e-3)‡ 9.625e-3(1.275e-4)‡ 3.695e-2(6.275e-4)‡ 5.519e-2(4.356e-1)‡ 8.540e-3(3.605e-4)

dMOP3
(20,10) 1.775e-2(9.973e-4)‡ 1.229e-1(5.109e-2)‡ 1.615e-1(1.980e-2)‡ 1.333e-2(3.327e-4)‡ 7.586e-2(2.004e-3)‡ 6.055e-2(1.385e-1)‡ 1.197e-2(5.173e-4)
(25,10) 1.321e-2(3.710e-4)‡ 1.073e-1(3.057e-2)‡ 1.173e-1(1.992e-2)‡ 1.034e-2(2.003e-4)‡ 4.123e-2(9.276e-4)‡ 5.040e-2(3.146e-2)‡ 8.623e-3(2.076e-4)
(30,10) 1.047e-2(2.192e-4)‡ 6.286e-2(3.212e-2)‡ 9.716e-2(1.076e-2)‡ 8.245e-3(1.123e-4)‡ 2.744e-2(5.346e-4)‡ 3.421e-2(1.884e-1)‡ 6.605e-3(2.807e-4)

JY1
(20,10) 1.762e+1(8.565e-1)‡ 1.692e-1(6.709e-2)‡ 1.151e-1(1.058e-2)‡ 1.559e-2(6.386e-4)‡ 8.217e-2(1.634e-3)‡ 2.588e-1(4.986e-2)‡ 9.586e-3(4.041e-4)
(25,10) 1.671e+1(4.753e-1)‡ 1.221e-1(5.465e-2)‡ 7.844e-2(2.199e-3)‡ 1.149e-2(2.399e-4)‡ 4.405e-2(8.706e-4)‡ 2.360e-2(3.931e-2)‡ 6.274e-3(3.619e-4)
(30,10) 1.514e+1(8.146e-1)‡ 8.030e-2(4.914e-2)‡ 6.057e-2(6.768e-3)‡ 9.020e-3(1.383e-4)‡ 2.742e-2(4.653e-4)‡ 1.208e-2(2.813e-3)‡ 4.560e-3(1.964e-4)

JY2
(20,10) 4.356e-1(6.730e-2)‡ 1.918e-1(4.131e-2)‡ 1.337e-1(1.732e-2)‡ 4.922e-2(4.734e-4) 1.040e-1(2.018e-3)‡ 2.499e-1(4.207e-2)‡ 5.153e-2(7.873e-4)
(25,10) 5.042e-1(4.582e-2)‡ 1.479e-1(6.333e-2)‡ 1.078e-1(7.429e-3)‡ 4.895e-2(3.005e-4) 6.517e-2(1.196e-3)‡ 8.327e-2(7.531e-2)‡ 4.922e-2(2.708e-4)
(30,10) 4.368e-1(9.359e-2)‡ 1.055e-1(3.218e-2)‡ 9.790e-2(9.117e-3)‡ 4.846e-2(3.016e-4)† 5.602e-2(6.958e-4)‡ 7.661e-2(3.757e-3)‡ 4.827e-2(2.962e-4)

JY3
(20,10) 3.932e-1(1.442e-1)‡ 3.810e-1(5.487e-2)‡ 2.211e-1(7.559e-3)‡ 2.018e-1(8.245e-3)‡ 2.546e-1(1.934e-2)‡ 1.282e-1(3.389e-1)‡ 8.511e-2(5.979e-3)
(25,10) 3.682e-1(1.233e-1)‡ 3.335e-1(3.841e-2)‡ 2.381e-1(3.418e-2)‡ 2.133e-1(8.664e-3)‡ 2.455e-1(1.960e-2)‡ 1.245e-1(2.544e-1)‡ 7.582e-2(3.673e-3)
(30,10) 3.982e-1(9.665e-2)‡ 3.060e-1(2.381e-2)‡ 2.096e-1(7.009e-3)‡ 2.137e-1(8.311e-3)‡ 2.497e-1(7.664e-3)‡ 9.193e-2(5.267e-1)‡ 7.224e-2(3.069e-3)

JY4
(20,10) 1.801e+1(5.105e-1)‡ 5.227e+0(2.046e-1)‡ 4.975e-2(4.604e-3)‡ 1.000e+1(8.669e-1)‡1.016e+1(1.427e-1)‡ 9.952e-1(3.199e-2)‡ 1.894e-2(6.205e-4)
(25,10) 1.915e+1(2.748e-1)‡ 5.415e+0(1.527e-1)‡ 3.267e-2(2.640e-3)‡ 1.195e+1(3.581e-1)‡1.035e+1(3.881e-1)‡ 8.942e-1(3.024e-2)‡ 1.498e-2(5.121e-4)
(30,10) 1.960e+1(2.436e-1)‡ 5.560e+0(1.671e-1)‡ 2.369e-2(1.400e-3)‡ 1.313e+1(3.972e-1)‡1.129e+1(2.292e-1)‡ 7.635e-1(3.311e-1)‡ 1.305e-2(2.644e-4)

JY5
(20,10) 1.112e+0(6.984e-2)‡ 2.223e-2(2.002e-2)‡ 3.474e-3(7.823e-4)‡ 2.090e-3(6.080e-4)‡ 3.433e-3(6.811e-4)‡ 8.866e-3(2.073e-2)‡ 1.827e-3(8.456e-5)
(25,10) 1.303e+0(1.244e-1)‡ 2.021e-2(1.891e-2)‡ 2.693e-3(3.153e-4)‡ 1.335e-3(1.282e-4) 2.237e-3(4.041e-4)‡ 8.063e-3(4.317e-2)‡ 1.381e-3(1.031e-4)
(30,10) 1.380e+0(1.582e-1)‡ 1.103e-2(1.082e-2)‡ 2.402e-3(4.442e-4)‡ 1.167e-3(9.441e-5)† 1.868e-3(1.423e-4)‡ 2.296e-3(3.308e-3)‡ 1.133e-3(5.977e-5)

JY6
(20,10) 7.082e+0(1.840e-1)‡ 1.604e+1(3.532e-1)‡ 5.825e+0(3.664e-1)‡1.846e+0(9.442e-2)‡8.556e+0(1.972e-1)‡6.781e+0(2.587e-1)‡1.013e+0(1.003e-1)
(25,10) 5.804e+0(1.103e-1)‡ 1.475e+1(2.855e-1)‡ 4.250e+0(3.032e-1)‡1.259e+0(3.185e-2)‡6.293e+0(6.657e-2)‡5.688e+0(3.276e-1)‡ 4.968e-1(3.689e-2)
(30,10) 5.050e+0(1.446e-1)‡ 1.368e+1(3.494e-1)‡ 3.221e+0(1.542e-1)‡ 8.267e-1(6.778e-2)‡ 4.873e+0(1.158e-1)‡3.587e+0(3.066e-1)‡ 2.951e-1(4.685e-2)

JY7
(20,10) 8.493e+0(9.949e-1)‡ 9.174e+1(2.054e+0)‡3.592e+0(6.285e-1)‡3.022e+0(5.353e-1)‡1.566e+1(5.778e-1)‡8.464e+0(4.330e-1)‡1.384e+0(1.574e-1)
(25,10) 6.372e+0(1.049e+0)‡7.898e+1(1.483e+1)‡3.090e+0(4.115e-1)‡2.018e+0(3.703e-1)‡9.530e+0(2.387e-1)‡2.462e+0(2.941e-1)‡ 9.891e-1(2.298e-1)
(30,10) 4.638e+0(6.230e-1)‡ 7.163e+1(4.035e+0)‡2.910e+0(4.077e-1)‡1.453e+0(6.021e-1)‡5.771e+0(3.838e-1)‡1.385e+0(2.200e-1)‡ 7.183e-1(1.633e-1)

JY8
(20,10) 9.263e-2(4.034e-2)‡ 1.417e-2(1.196e-2)‡ 8.558e-3(2.091e-4)‡ 3.611e-3(7.295e-4) 7.562e-3(4.957e-4)† 8.824e-3(1.619e-2)‡ 7.574e-3(6.901e-4)
(25,10) 1.108e-1(2.387e-2)‡ 1.367e-2(1.108e-2)‡ 7.634e-3(3.519e-4)‡ 3.198e-3(2.707e-4) 5.539e-3(3.458e-4) 7.993e-3(4.722e-2)‡ 6.075e-3(4.148e-4)
(30,10) 8.958e-2(3.374e-2)‡ 7.658e-3(5.931e-3)‡ 7.408e-3(2.984e-4)‡ 3.148e-3(1.278e-4) 5.334e-3(1.805e-4) 7.043e-3(7.130e-4)‡ 6.282e-3(4.827e-4)

JY9
(20,10) 3.421e+1(4.725e+0)‡ 6.874e-1(1.983e-1)‡ 1.866e-1(1.652e-2)‡ 1.503e+0(4.961e-2)‡ 1.962e-1(2.442e-2)‡ 4.899e-1(4.554e-2)‡ 9.162e-2(5.189e-3)
(25,10) 3.178e+1(2.542e+0)‡ 4.915e-1(1.315e-1)‡ 1.311e-1(9.550e-3)‡ 8.932e-1(4.751e-2)‡ 1.372e-1(7.311e-3)‡ 4.641e-1(1.458e-1)‡ 5.580e-2(4.308e-3)
(30,10) 3.285e+1(2.760e+0)‡ 3.102e-1(4.210e-2)‡ 9.892e-2(8.895e-3)‡ 5.420e-1(4.423e-2)‡ 7.669e-2(4.564e-3)‡ 1.044e-1(3.882e-2)‡ 3.724e-2(3.756e-3)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding

algorithm, respectively.

5.2. Results on JY problems

Compared with FDA and dMOP problems, JY problems [28] are a new585

benchmark suite with several complex characteristics including a nonmonotonic

and time-varying relationship among decision variables. Apart from that, the

changing types of some problems vary with time from one to another during the

optimization process. It can be obtained from Table 1 that PDTEA significantly

performed best over other approaches on most JY problems except JY2, JY5590

and JY8. As for the JY2 problem, PDTEA only showed less convergence than

SGEA but obvious significance than the other five methods. In addition, as

changing frequency increased, the superiority of SGEA was not so significant.

It is likely that PDTEA would outperform SGEA if the frequency of change

were to increase to some certain value. When it comes to JY5, PDTEA almost595

performed as well as SGEA. It might be concluded that the less the changing
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frequency, the better PDTEA performs. For JY8, whose geometry and the

number of mixed segments of the POF vary over time, PDTEA performed better

than SGEA, which suggests that the decomposition-based mating selection of

PDTEA may have had a negative effect on the convergence.600

It can be seen from Table 2 that the IGD values of PDTEA were smallest on

almost all tested problems except JY3, JY5 and JY8, indicating that PDTEA

showed almost best diversity and convergence on almost all of the DMOPs apart

from JY3, JY5 and JY8. PDTEA only showed worse performance than SGEA

on JY5. Additionally, the HVD values of all the compared algorithms can be605

found in Table. 3. Obviously, the HVD values of PDTEA only performed worse

than the other methods on JY5 and JY8, which shows that the PDTEA’s com-

prehensive performance in terms of diversity and convergence was only worse

when solving problems like JY5 and JY8. All algorithms’ values of HVD on

JY5 were the same as those of IGD. It should be noted that PDTEA performed610

less effectively on JY8, since it only outperformed DNSGA-II, and it performed

equally to PPS. However, it also showed worse performance when compared

with SGEA. To conclude, the diversity and convergence of PDTEA is worse

than that of SGEA on JY5 and JY8. The reason might be that both JY5 and

JY8 have the fixed POS, suggesting that PDTEA has less competent perfor-615

mance when solving DMOPs with an unchanged POS. Additionally, PDTEA

demonstrated more significant effectiveness and superiority than most existing

DMOEAs when addressing problems with considerable complicated geometry

and rather sophisticated characteristics.

5.3. Results on FDA5iso, FDA5dec, dMOP2iso and dMOP2dec620

The flat regions and a deceptive POF were proposed by Huband et al.[60]

and Helbig et al. [55][54] introduced some dynamic problems with new dynamic

features. We selected FDA5iso, FDA5dec, dMOP2iso and dMOP2dec to com-

pare the algorithms with (τt, nt) = (25, 10) and obtained GD, IGD and HVD

metric values in Table 4. The Wilcoxon signed-rank test [59] was carried out at625

the 0.05 significance level to indicate statistically significant differences between
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Table 2: Mean and SD of IGD indicator obtained by seven algorithms.
Prob (τt, nt) DNSGA-II PPS MOEA/D SGEA Dy-NSGA-II DVEPSO PDTEA

FDA1
(20,10) 2.022e-2(1.976e-3)‡ 9.571e-2(3.441e-2)‡ 8.544e-2(9.330e-4)‡ 1.819e-2(1.620e-3)‡ 7.570e-2(5.666e-3)‡ 4.829e-2(5.155e-2)‡ 1.332e-2(6.584e-4)
(25,10) 1.421e-2(3.613e-4)‡ 6.604e-2(3.547e-2)‡ 6.438e-2(1.213e-3)‡ 1.330e-2(1.366e-3)‡ 4.610e-2(4.380e-3)‡ 3.632e-2(2.321e-1)‡ 1.018e-2(3.993e-4)
(30,10) 1.205e-2(4.914e-4)‡ 5.370e-2(2.807e-2)‡ 5.292e-2(1.494e-3)‡ 1.087e-2(1.171e-3)‡ 2.937e-2(6.704e-4)‡ 1.305e-2(6.150e-2)‡ 8.522e-3(5.577e-4)

FDA2
(20,10) 6.706e-3(2.176e-4)‡ 7.825e-3(5.325e-4)‡ 2.753e-2(2.357e-3)‡ 4.974e-3(7.323e-4) 6.543e-3(1.878e-4)‡ 3.485e-2(4.802e-3)‡ 5.982e-3(4.199e-4)
(25,10) 6.501e-3(6.459e-5)‡ 6.955e-3(2.784e-4)‡ 2.946e-2(5.005e-3)‡ 5.122e-3(1.072e-3) 6.332e-3(1.560e-4)‡ 3.277e-2(4.400e-3)‡ 5.980e-3(1.518e-3)
(30,10) 6.603e-3(8.957e-5)‡ 6.614e-3(2.717e-4)‡ 2.643e-2(3.046e-3)‡ 4.839e-3(5.128e-4) 6.756e-3(9.676e-4)‡ 1.974e-2(1.816e-3)‡ 5.973e-3(9.855e-4)

FDA3
(20,10) 5.210e-2(3.113e-3)‡ 1.528e-1(7.604e-2)‡ 6.140e-2(2.408e-3)‡ 2.959e-2(2.174e-3) 7.132e-2(4.040e-3)‡ 3.918e-1(3.327e-2)‡ 5.300e-2(4.052e-3)
(25,10) 5.290e-2(7.743e-3)‡ 1.164e-1(6.148e-2)‡ 5.257e-2(5.005e-3)† 2.369e-2(2.295e-3) 5.149e-2(3.292e-3)† 3.720e-1(6.858e-2)‡ 5.292e-2(3.894e-3)
(30,10) 5.065e-2(2.640e-3)‡ 7.363e-2(7.362e-2)‡ 4.360e-2(1.692e-3)‡ 2.134e-2(1.366e-3) 3.752e-1(5.124e-3) 1.346e-1(8.375e-1)‡ 5.132e-2(3.434e-3)

FDA4
(20,10) 2.112e-1(1.108e-2)‡ 1.473e-1(3.328e-3)‡ 2.773e-1(5.374e-3)‡ 1.379e-1(6.425e-3)‡ 2.764e-1(2.216e-3)‡ 1.089e-1(6.663e-3)‡ 7.660e-2(8.632e-4)
(25,10) 1.813e-1(2.338e-3)‡ 1.330e-1(2.631e-3)‡ 2.091e-1(5.342e-3)‡ 1.071e-1(2.072e-3)‡ 2.219e-1(4.870e-3)‡ 1.038e-1(1.866e-2)‡ 7.122e-2(6.186e-4)
(30,10) 1.595e-1(3.965e-3)‡ 1.251e-1(2.425e-3)‡ 1.699e-1(2.862e-3)‡ 9.273e-2(1.382e-3)‡ 1.850e-1(1.533e-3)‡ 9.585e-2(4.792e-2)‡ 6.832e-2(5.677e-4)

FDA5
(20,10) 8.349e-1(8.508e-3)‡ 7.660e-1(6.588e-3)‡ 8.848e-1(8.084e-3)‡ 7.492e-1(3.612e-3)‡ 8.130e-1(5.386e-3)‡ 1.197e+0(5.857e-3)‡6.785e-1(6.646e-4)
(25,10) 8.049e-1(7.269e-3)‡ 7.491e-1(5.610e-3)‡ 8.181e-1(3.189e-3)‡ 7.212e-1(2.172e-3)‡ 7.643e-1(6.382e-3)‡ 1.162e+0(1.359e-2)‡6.730e-1(6.550e-4)
(30,10) 7.823e-1(5.725e-3)‡ 7.659e-1(5.297e-3)‡ 7.661e-1(2.102e-3)‡ 7.042e-1(1.473e-3)‡ 7.280e-1(6.642e-3)‡ 1.064e+0(4.287e-2)‡6.695e-1(7.259e-4)

dMOP1
(20,10) 2.210e-1(3.168e-1)‡ 5.467e-2(1.023e-1)‡ 1.144e-2(6.079e-4) 1.371e-2(3.039e-3)‡ 4.112e-2(8.497e-3)‡ 1.966e-1(3.453e-1)‡ 2.406e-2(2.293e-3)
(25,10) 2.647e-2(7.036e-3)‡ 5.096e-2(1.106e-1)‡ 9.018e-3(7.697e-4) 1.035e-2(1.980e-3)† 2.987e-2(3.784e-3)‡ 1.891e-1(8.319e-1)‡ 1.601e-2(3.623e-3)
(30,10) 3.674e-2(4.653e-2)‡ 5.448e-2(1.100e-1)‡ 7.980e-3(2.465e-4) 9.112e-3(1.514e-3) 2.346e-2(1.926e-3)‡ 6.292e-2(4.614e-1)‡ 1.290e-2(3.270e-3)

dMOP2
(20,10) 1.989e-1(1.225e-2)‡ 1.822e-1(8.113e-2)‡ 8.473e-2(2.104e-3)‡ 2.102e-2(2.355e-3)‡ 9.864e-2(5.531e-3)‡ 9.063e-1(3.020e-2)‡ 1.741e-2(5.740e-4)
(25,10) 1.298e-1(8.245e-3)‡ 1.271e-1(7.074e-2)‡ 6.663e-2(1.200e-3)‡ 1.508e-2(1.760e-3)‡ 5.563e-2(4.724e-3)‡ 8.926e-1(7.577e-2)‡ 1.264e-2(8.063e-4)
(30,10) 1.128e-1(3.101e-2)‡ 8.432e-2(6.315e-2)‡ 5.459e-2(1.006e-3)‡ 1.276e-2(1.156e-3)‡ 3.620e-2(2.281e-3)‡ 5.131e-1(5.181e-1)‡ 9.958e-3(3.647e-4)

dMOP3
(20,10) 2.009e-2(1.623e-3)‡ 8.324e-2(3.417e-2)‡ 8.441e-2(1.740e-3)‡ 1.715e-2(1.032e-3)‡ 7.960e-2(4.563e-3)‡ 8.216e-2(4.080e-2)‡ 1.374e-2(7.663e-4)
(25,10) 1.456e-2(4.768e-4)‡ 7.419e-2(2.220e-2)‡ 6.444e-2(1.629e-3)‡ 1.304e-2(1.645e-3)‡ 4.477e-2(3.142e-3)‡ 8.104e-2(7.943e-2)‡ 1.047e-2(4.878e-4)
(30,10) 1.227e-2(8.990e-4)‡ 4.464e-2(2.205e-2)‡ 5.267e-2(1.498e-3)‡ 1.087e-2(1.171e-3)‡ 2.957e-2(1.437e-3)‡ 6.462e-2(1.661e-1)‡ 8.925e-3(7.248e-4)

JY1
(20,10) 2.523e-1(3.422e-2)‡ 1.032e-1(4.086e-2)‡ 7.128e-2(1.643e-3)‡ 2.946e-2(9.175e-4)‡ 7.284e-2(1.041e-3)‡ 9.763e-2(1.396e-2)‡ 1.261e-2(4.350e-4)
(25,10) 1.415e-1(1.427e-2)‡ 7.835e-2(3.517e-2)‡ 5.535e-2(7.810e-4)‡ 2.255e-2(1.231e-3)‡ 4.602e-2(5.334e-4)‡ 8.198e-2(3.088e-2)‡ 9.635e-3(2.646e-4)
(30,10) 9.371e-2(1.336e-2)‡ 5.365e-2(3.063e-2)‡ 4.644e-2(6.062e-4)‡ 1.799e-2(7.981e-4)‡ 3.299e-2(7.575e-4)‡ 7.110e-2(3.324e-3)‡ 7.950e-3(1.965e-4)

JY2
(20,10) 5.832e-2(5.740e-4)‡ 1.361e-1(2.756e-2)‡ 8.769e-2(1.643e-3)‡ 5.810e-2(7.660e-4)‡ 8.971e-2(1.195e-3)‡ 1.786e-1(1.377e-2)‡ 5.199e-2(3.655e-4)
(25,10) 5.473e-2(4.618e-4)‡ 1.113e-1(3.998e-2)‡ 7.457e-2(6.048e-4)‡ 5.431e-2(3.039e-4)‡ 6.710e-2(4.497e-4)‡ 9.021e-2(3.740e-2)‡ 5.024e-2(1.327e-4)
(30,10) 5.289e-2(3.052e-4)‡ 8.574e-2(2.066e-2)‡ 5.136e-2(4.026e-3)‡ 5.294e-2(5.343e-4)‡ 5.998e-2(3.502e-4)‡ 8.835e-2(4.011e-3)‡ 4.963e-2(1.268e-4)

JY3
(20,10) 2.736e-1(2.811e-3) 3.477e-1(1.993e-2)‡ 3.227e-1(4.731e-3)† 3.329e-1(1.212e-2)‡ 3.242e-1(8.134e-3)† 3.103e+0(4.162e-2)‡ 3.152e-1(3.821e-3)
(25,10) 2.742e-1(1.318e-2) 3.321e-1(1.473e-2)‡ 3.334e-1(2.141e-2)‡ 3.317e-1(5.784e-3)‡ 3.164e-1(2.027e-3)‡ 2.901e+0(1.293e-1)‡ 3.089e-1(2.988e-3)
(30,10) 2.685e-1(1.281e-3) 3.219e-1(7.532e-3)‡ 3.136e-1(4.026e-3)† 3.319e-1(8.720e-3)‡ 3.129e-1(1.710e-3)† 1.350e+0(7.902e-1)‡ 3.070e-1(2.158e-3)

JY4
(20,10) 3.880e-1(2.407e-2)‡ 6.734e-1(2.965e-2)‡ 7.875e-1(1.599e-3)‡ 1.423e+0(1.375e-1)‡1.414e+0(6.990e-2)‡ 8.283e-1(1.813e-2)‡ 2.216e-2(6.820e-4)
(25,10) 3.201e-1(1.186e-2)‡ 5.667e-1(3.582e-2)‡ 6.082e-1(1.062e-3)‡ 1.354e+0(7.506e-2)‡1.231e+0(2.916e-2)‡ 7.673e-1(1.559e-2)‡ 1.959e-2(2.429e-4)
(30,10) 3.003e-1(8.792e-3)‡ 4.879e-1(3.009e-2)‡ 4.993e-1(1.310e-3)‡ 1.346e+0(7.247e-2)‡1.105e+0(5.621e-3)‡ 7.082e-1(5.987e-2)‡ 1.858e-2(1.823e-4)

JY5
(20,10) 3.002e-2(2.614e-4)‡ 1.726e-2(1.282e-2)‡ 1.031e-2(3.394e-4)‡ 4.703e-3(1.805e-4) 6.002e-3(2.497e-4)‡ 4.252e-2(6.329e-3)‡ 5.600e-3(9.765e-5)
(25,10) 3.006e-2(3.037e-4)‡ 1.611e-2(1.217e-2)‡ 9.420e-3(2.687e-4)‡ 4.345e-3(4.604e-5) 5.615e-3(1.348e-4)‡ 3.927e-2(1.988e-2)‡ 5.454e-3(1.298e-4)
(30,10) 3.000e-2(2.518e-4)‡ 1.069e-2(7.531e-3)‡ 8.560e-3(4.505e-4)‡ 4.260e-3(3.994e-5) 5.474e-3(3.634e-5)‡ 2.143e-2(2.059e-3)‡ 5.371e-3(1.736e-4)

JY6
(20,10) 3.674e+0(1.557e-1)‡ 7.642e+0(1.858e-1)‡ 3.711e+0(1.884e-1)‡1.027e+0(3.530e-2)‡4.480e+0(1.265e-1)‡6.771e+0(7.680e-2)‡3.135e-1(4.329e-2)
(25,10) 3.079e+0(1.148e-1)‡ 7.088e+0(1.697e-1)‡ 2.405e+0(1.866e-1)‡ 7.111e-1(1.492e-2)‡ 3.297e+0(4.110e-2)‡6.445e+0(7.806e-2)‡2.507e-1(1.768e-2)
(30,10) 2.825e+0(1.197e-1)‡ 6.598e+0(1.615e-1)‡ 1.807e+0(1.081e-1)‡ 5.033e-1(2.724e-2)‡ 2.568e+0(6.526e-2)‡2.996e+0(2.261e-1)‡1.617e-1(2.109e-2)

JY7
(20,10) 3.506e+0(5.065e-1)‡ 2.932e+1(9.855e-1)‡ 1.822e+0(4.354e-1)‡1.625e+0(2.611e-1)‡6.164e+0(1.835e-1)‡5.789e+0(1.205e-1)‡7.771e-1(1.084e-1)
(25,10) 2.745e+0(6.109e-1)‡2.517e+1(5.143e+0)‡1.674e+0(2.402e-1)‡1.145e+0(1.955e-1)‡3.846e+0(1.546e-1)‡5.636e+0(7.069e-2)‡5.700e-1(1.426e-1)
(30,10) 2.035e+0(3.533e-1)‡2.242e+1(2.122e+0)‡1.633e+0(3.053e-1)‡ 9.161e-1(3.725e-1)‡ 2.296e+0(2.833e-1)‡ 8.886e-1(1.888e-1)‡ 4.539e-1(1.098e-1)

JY8
(20,10) 7.302e-1(3.018e-2)‡ 1.340e-2(6.890e-3)‡ 2.655e-2(1.055e-3)‡ 1.765e-2(2.714e-3)‡ 9.249e-3(2.396e-4) 4.010e-2(3.687e-3)‡ 1.107e-2(6.598e-4)
(25,10) 1.845e-1(2.101e-2)‡ 1.310e-2(6.314e-3)‡ 2.395e-2(1.112e-3)‡ 1.640e-2(2.055e-3)‡ 8.470e-3(2.188e-4) 3.615e-2(1.343e-2)‡ 1.068e-2(7.110e-4)
(30,10) 9.661e-2(3.540e-2)‡ 9.744e-3(3.355e-3)† 2.165e-2(6.311e-4)‡ 1.482e-2(1.163e-3)‡ 8.738e-3(2.785e-4) 1.595e-2(6.655e-4)‡ 9.747e-3(5.968e-4)

JY9
(20,10) 5.278e-1(1.465e-1)‡ 3.798e-1(1.192e-1)‡ 1.207e-1(9.859e-3)‡ 1.061e+0(3.599e-2)‡ 1.359e-1(1.624e-2)‡ 2.192e-1(1.212e-2)‡ 6.820e-2(3.114e-3)
(25,10) 2.710e-1(4.191e-2)‡ 2.786e-1(7.439e-2)‡ 8.756e-2(3.907e-3)‡ 6.365e-1(2.567e-2)‡ 9.810e-2(6.914e-3)‡ 2.063e-1(2.769e-2)‡ 4.255e-2(3.721e-3)
(30,10) 1.898e-1(3.239e-2)‡ 1.783e-1(2.386e-2)‡ 6.427e-2(2.989e-3)‡ 3.881e-1(3.593e-2)‡ 5.865e-2(2.314e-3)‡ 9.646e-2(3.540e-2)‡ 3.024e-2(3.049e-3)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding algorithm,

respectively.

DPTEA and the other algorithms.

It can be observed from Table 4 that most algorithms obtained worse metric

values on the problems with dynamic features, implying the problem is chal-

lenging for DMOEAs. PDTEA can deal with a majority of problems except630

dMOP2iso according to three metrics. The result of SGEA on dMOP2iso in-

dicates that SGEA is a top performer on the problem. This is because SGEA

uses the steady-state population update to significantly improve performance.

For FDA5dec with a deceptive POF, PDTEA shows superior performance by

IGD and HVD values, while the GD value indicates SGEA has a good conver-635

gence performance. The reason is that PDTEA uses the exploration strategy to

improve the population’s diversity. Hence, the exploration strategy is helpful to

deal with the deceptive POF. Nevertheless, the steady-state update in SGEA

may cause the loss of diversity.
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Table 3: Mean and SD of HVD indicator obtained by seven algorithms.
Prob (τt, nt) DNSGA-II PPS MOED/D SGEA Dy-NSGA-II DVEPSO PDTEA

FDA1
(20,10) 4.300e-2(2.244e-3)‡ 1.895e-1(6.078e-2)‡ 2.333e-1(1.146e-2)‡ 3.834e-2(1.308e-3)‡ 1.456e-1(2.940e-3)‡ 5.924e-1(1.328e-1)‡ 3.071e-2(1.565e-3)
(25,10) 3.161e-2(9.773e-4)‡ 1.312e-1(5.529e-2)‡ 1.735e-1(5.942e-3)‡ 2.910e-2(8.150e-4)‡ 9.219e-2(3.057e-3)‡ 5.350e-1(3.679e-1)‡ 2.318e-2(7.701e-4)
(30,10) 2.603e-2(6.239e-4)‡ 1.079e-1(4.846e-2)‡ 1.405e-1(3.301e-3)‡ 2.370e-2(7.385e-4)‡ 6.457e-2(8.117e-4)‡ 1.965e-1(7.857e-2)‡ 1.873e-2(6.241e-4)

FDA2
(20,10) 3.700e-3(4.726e-5)‡ 6.030e-3(7.555e-4)‡ 4.819e-3(3.115e-4)‡ 1.416e-3(7.176e-5) 1.694e-3(4.451e-5) 5.757e-2(4.152e-3)‡ 1.795e-3(5.410e-5)
(25,10) 3.603e-3(4.255e-5)‡ 4.726e-3(4.091e-4)‡ 4.328e-3(3.221e-4)‡ 1.354e-3(5.905e-5) 1.567e-3(3.004e-5) 5.373e-2(1.365e-2)‡ 1.695e-3(6.501e-5)
(30,10) 3.625e-3(3.846e-5)‡ 4.160e-3(4.043e-4)‡ 3.937e-3(2.520e-4)‡ 1.305e-3(3.147e-5) 1.513e-3(5.223e-5)† 1.580e-2(2.888e-3)‡ 1.612e-3(4.386e-5)

FDA3
(20,10) 6.141e-1(8.121e-3)‡ 6.884e-1(8.552e-2)‡ 6.081e-1(1.576e-2)‡ 6.305e-1(4.217e-3)‡ 5.438e-1(2.658e-3)† 7.549e-1(1.005e-1)‡ 5.385e-1(5.719e-3)
(25,10) 6.131e-1(3.949e-3)‡ 6.207e-1(5.123e-2)‡ 6.071e-1(1.052e-2)‡ 6.304e-1(5.186e-3)‡ 5.358e-1(5.895e-3) 7.216e-1(2.401e-1)‡ 5.435e-1(9.520e-3)
(30,10) 6.078e-1(9.149e-3)‡ 5.669e-1(4.842e-2)‡ 6.148e-1(1.314e-2)‡ 6.283e-1(4.156e-3)‡ 5.321e-1(4.930e-3) 7.021e-1(1.437e-1)‡ 5.440e-1(1.093e-2)

FDA4
(20,10) 1.483e+0(1.691e-1)‡ 7.520e-1(6.948e-2)‡ 2.895e+0(3.242e-1)‡ 4.563e-1(3.336e-2)‡ 9.812e-1(3.785e-2)‡ 2.370e+0(1.096e+0)‡ 2.818e-1(2.986e-2)
(25,10) 1.003e+0(6.214e-2)‡ 6.289e-1(7.650e-2)† 2.831e+0(6.348e-1)‡ 3.461e-1(2.412e-2)‡ 7.293e-1(2.886e-2)‡ 2.241e+0(6.837e-1)‡ 2.748e-1(3.788e-2)
(30,10) 8.370e-1(8.353e-2)‡ 5.564e-1(5.340e-2)‡ 1.957e+0(1.705e-1)‡ 2.891e-1(1.578e-2)‡ 5.862e-1(4.255e-2)‡ 1.940e+0(1.110e+0)‡ 2.664e-1(2.647e-2)

FDA5
(20,10) 3.601e+1(4.455e+0)‡ 1.338e+1(6.259e-1)‡ 1.492e+1(1.017e+0)‡ 1.000e+1(1.141e-1)‡ 1.334e+1(1.745e-1)‡ 1.463e+1(3.254e+0)‡ 9.753e+0(3.413e-1)
(25,10) 2.941e+1(7.330e+0)‡ 1.308e+1(4.447e-1)‡ 1.064e+1(2.645e+0)‡ 9.335e+0(1.100e-1)‡ 1.187e+1(4.144e-1)‡ 1.404e+1(6.101e+0)‡ 8.937e+0(3.635e-1)
(30,10) 2.213e+1(2.746e+0)‡ 1.364e+1(6.859e-1)‡ 1.085e+1(1.744e+0)‡ 8.978e+0(7.031e-2)‡ 1.086e+1(1.032e-1)‡ 1.059e+1(1.368e+0)‡ 8.438e+0(4.538e-1)

dMOP1
(20,10) 5.498e-2(3.952e-2)‡ 5.190e-2(6.327e-2)‡ 5.988e-2(5.389e-2)‡ 1.185e-2(1.760e-3) 3.302e-2(1.107e-2)† 2.148e-1(3.849e-1)‡ 3.967e-2(6.508e-3)
(25,10) 3.060e-2(4.669e-3)‡ 4.891e-2(7.690e-2)† 2.367e-2(6.687e-3)† 1.079e-2(7.090e-4) 2.139e-2(2.097e-3)† 1.106e-1(1.057e-1)‡ 2.627e-2(5.365e-3)
(30,10) 2.486e-2(6.735e-3)‡ 4.986e-2(7.822e-2)‡ 2.645e-2(1.407e-2)‡ 1.039e-2(1.180e-3) 1.769e-2(1.376e-3)† 8.269e-2(6.790e-1)‡ 1.923e-2(2.757e-3)

dMOP2
(20,10) 3.382e-1(1.719e-2)‡ 1.921e-1(5.218e-2)‡ 2.417e-1(1.807e-2)‡ 5.080e-2(2.276e-3)‡ 2.162e-1(4.985e-3)‡ 1.169e-1(2.806e-1)‡ 4.440e-2(1.102e-3)
(25,10) 2.505e-1(8.660e-3)‡ 1.484e-1(3.318e-2)‡ 1.844e-1(1.076e-3)‡ 3.794e-2(1.402e-3)‡ 1.327e-1(2.045e-3)‡ 1.167e-1(1.535e-1)‡ 3.203e-2(1.139e-3)
(30,10) 1.862e-1(9.728e-3)‡ 1.235e-1(4.645e-2)‡ 1.383e-1(5.131e-3)‡ 3.132e-2(8.382e-4)‡ 9.364e-2(3.087e-3)‡ 1.252e-1(1.082e-1)‡ 2.553e-2(7.872e-4)

dMOP3
(20,10) 4.283e-2(1.595e-3)‡ 1.682e-1(6.011e-2)‡ 2.324e-1(1.437e-2)‡ 3.764e-2(9.953e-4)‡ 1.503e-1(5.054e-3)‡ 6.142e-2(2.673e-1)‡ 3.044e-2(5.003e-4)
(25,10) 3.196e-2(6.185e-4)‡ 1.497e-1(3.668e-2)‡ 1.734e-1(1.230e-2)‡ 2.891e-2(1.309e-3)‡ 9.148e-2(1.714e-3)‡ 6.042e-2(3.305e-1)‡ 2.352e-2(5.831e-4)
(30,10) 2.600e-2(5.605e-4)‡ 9.361e-2(4.172e-2)‡ 1.383e-1(5.131e-3)‡ 2.370e-2(7.385e-4)‡ 6.413e-2(1.502e-3)‡ 5.082e-2(4.340e-1)‡ 1.923e-2(6.725e-4)

JY1
(20,10) 5.907e-1(1.133e-1)‡ 4.118e-1(2.625e-1)‡ 1.499e-1(6.632e-3)‡ 3.480e-2(9.830e-4)‡ 1.314e-1(1.980e-3)‡ 3.430e-1(8.559e-2)‡ 1.884e-2(1.057e-3)
(25,10) 2.837e-1(3.402e-2)‡ 2.859e-1(2.335e-1)‡ 9.570e-2(1.582e-3)‡ 2.591e-2(9.782e-4)‡ 7.435e-2(1.468e-3)‡ 2.979e-1(1.195e-1)‡ 1.331e-2(5.519e-4)
(30,10) 1.702e-1(3.413e-2)‡ 1.743e-1(1.404e-1)‡ 7.301e-2(3.872e-3)‡ 2.032e-2(8.670e-4)‡ 4.922e-2(7.967e-4)‡ 1.136e-1(6.779e-3)‡ 1.040e-2(3.656e-4)

JY2
(20,10) 5.603e-2(1.870e-3)‡ 3.306e-1(1.381e-1)‡ 1.856e-1(1.631e-2)‡ 4.015e-2(1.616e-3)‡ 1.450e-1(2.584e-3)‡ 3.368e-1(3.809e-2)‡ 2.249e-2(9.314e-4)
(25,10) 4.375e-2(1.056e-3)‡ 2.640e-1(2.085e-1)‡ 1.273e-1(5.896e-3)‡ 2.956e-2(3.739e-4)‡ 8.052e-2(1.239e-3)‡ 2.928e-1(1.209e-1)‡ 1.621e-2(4.039e-4)
(30,10) 3.699e-2(7.544e-4)‡ 1.262e-1(8.128e-2)‡ 9.855e-2(4.355e-3)‡ 2.433e-2(1.054e-3)‡ 5.498e-2(1.045e-3)‡ 1.328e-1(8.415e-3)‡ 1.327e-2(5.006e-4)

JY3
(20,10) 3.174e-1(3.666e-3)‡ 6.458e-1(1.579e-1)‡ 4.577e-1(4.695e-2)‡ 3.933e-1(3.848e-3)‡ 4.413e-1(4.363e-2)‡ 4.926e-1(1.773e-1)‡ 7.453e-2(1.846e-2)
(25,10) 8.320e-1(1.379e-1)‡ 5.245e-1(9.359e-2)‡ 4.826e-1(9.230e-2)‡ 3.931e-1(9.337e-3)‡ 3.949e-1(7.090e-3)‡ 4.667e-1(2.612e-2)‡ 4.564e-2(9.354e-3)
(30,10) 2.529e-1(1.004e-3)‡ 4.494e-1(4.571e-2)‡ 4.059e-1(2.067e-2)‡ 3.847e-1(3.411e-3)‡ 3.793e-1(6.760e-3)‡ 1.955e-1(6.821e-2)‡ 3.694e-2(6.385e-3)

JY4
(20,10) 5.889e+1(2.960e+0)‡ 6.524e+0(4.657e-1)‡ 1.700e-1(6.621e-3)‡ 1.186e+1(3.073e+0)‡ 1.240e+1(8.111e-1)‡ 2.222e+0(6.154e-2)‡ 2.006e-2(1.806e-3)
(25,10) 6.595e+1(1.556e+0)‡ 7.777e+0(5.481e-1)‡ 1.259e-1(4.254e-3)‡ 1.878e+1(1.743e+0)‡ 1.345e+1(1.694e+0)‡ 1.797e+0(5.719e-2)‡ 1.161e-2(5.339e-4)
(30,10) 6.952e+1(1.205e+0)‡ 9.057e+0(4.784e-1)‡ 9.688e-2(1.972e-3)‡ 2.362e+1(1.635e+0)‡ 1.797e+1(1.334e+0)‡ 9.887e-1(3.104e-1)‡ 7.736e-3(4.818e-4)

JY5
(20,10) 4.021e-2(4.752e-4)‡ 3.355e-2(2.917e-2)‡ 1.333e-2(1.810e-3)‡ 5.793e-3(3.624e-4) 7.601e-3(4.839e-4)‡ 9.641e-2(1.876e-2)‡ 6.820e-3(9.863e-5)
(25,10) 4.009e-2(7.241e-4)‡ 3.172e-2(2.849e-2)‡ 1.119e-2(2.976e-4)‡ 5.155e-3(8.379e-5) 6.792e-3(2.615e-4)‡ 8.439e-2(5.620e-2)‡ 6.356e-3(1.675e-4)
(30,10) 3.987e-2(5.252e-4)‡ 1.885e-2(1.530e-2)‡ 9.599e-3(3.563e-4)‡ 4.967e-3(7.639e-5) 6.447e-3(8.220e-5)‡ 3.366e-2(4.186e-3)‡ 6.113e-3(1.205e-4)

JY6
(20,10) 5.001e+1(5.374e+0)‡ 1.612e+2(9.428e+0)‡ 4.476e+1(4.721e+0)‡ 5.125e+0(2.886e-1)‡ 6.080e+1(3.477e+0)‡ 1.435e+1(1.568e+0)‡ 2.289e+0(2.739e-1)
(25,10) 3.873e+1(3.437e+0)‡ 1.423e+2(6.050e+0)‡ 2.593e+1(3.280e+0)‡ 3.016e+0(8.995e-2)‡ 3.583e+1(9.710e-1)‡ 1.286e+1(3.624e+0)‡ 1.009e+0(9.436e-2)
(30,10) 3.802e+1(5.311e+0)‡ 1.275e+2(6.544e+0)‡ 1.603e+1(1.551e+0)‡ 1.848e+0(1.407e-1)‡ 2.339e+1(1.112e+0)‡ 2.154e+1(3.342e+0)‡ 5.425e-1(9.196e-2)

JY7
(20,10) 9.007e+1(3.014e+1)‡ 3.216e+3(1.406e+2)‡ 7.379e+1(3.722e+1)† 2.422e+1(1.324e+1)‡ 1.623e+2(9.064e+0)‡ 1.618e+1(7.514e+0)‡ 2.098e+1(6.473e+0)
(25,10) 6.520e+1(3.066e+1)‡ 2.597e+3(5.573e+2)‡ 7.869e+1(2.450e+1)† 1.567e+1(6.116e+0)‡ 6.575e+1(3.209e+0)‡ 1.583e+1(5.669e+0)‡ 1.154e+1(7.707e+0)
(30,10) 3.969e+1(1.323e+1)‡ 2.181e+3(2.780e+2)‡ 7.703e+1(2.633e+1)† 1.449e+1(1.411e+1)‡ 2.769e+1(6.033e+0)‡ 9.104e+0(1.384e+1)‡ 7.341e+0(4.059e+0)

JY8
(20,10) 1.914e-1(1.077e-1)‡ 1.286e-1(1.068e-2)† 1.137e-1(1.323e-3)† 1.136e-1(1.861e-3) 1.239e-1(9.948e-4)‡ 2.220e-1(5.343e-2)‡ 1.229e-1(1.922e-3)
(25,10) 2.874e-1(1.167e-1)‡ 1.256e-1(1.010e-2)† 1.130e-1(9.782e-4) 1.133e-1(1.845e-3)† 1.197e-1(1.197e-3)‡ 2.042e-1(6.474e-2)‡ 1.196e-1(1.188e-3)
(30,10) 2.446e-1(1.513e-1)‡ 1.195e-1(4.787e-3)† 1.135e-1(8.246e-4)† 1.123e-1(7.565e-4) 1.187e-1(8.832e-4)‡ 2.030e-1(7.083e-4)‡ 1.177e-1(1.290e-3)

JY9
(20,10) 2.637e+0(1.372e+0)‡ 2.216e+0(1.234e+0)‡ 4.308e-1(7.594e-2)‡ 3.383e+1(3.126e+0)‡ 4.645e-1(1.305e-1)‡ 2.462e+0(2.785e-1)‡ 3.942e-1(4.581e-2)
(25,10) 1.086e+0(2.715e-1)‡ 1.505e+0(6.530e-1)‡ 2.321e-1(2.075e-2)‡ 1.632e+1(2.263e+0)‡ 3.104e-1(3.374e-2)‡ 2.257e+0(7.408e-1)‡ 1.670e-1(2.980e-2)
(30,10) 5.382e-1(2.185e-1)‡ 7.922e-1(1.233e-1)‡ 1.413e-1(9.201e-3)‡ 8.089e+0(1.616e+0)‡ 1.335e-1(1.009e-2)‡ 1.660e+0(1.565e-1)‡ 9.230e-2(1.814e-2)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding algorithm,

respectively.

Table 4: Mean and SD of three indicators obtained by seven algorithms.
Prob Indicator DNSGA-II PPS MOED/D SGEA Dy-NSGA-II DVEPSO PDTEA

dMOP2iso

GD 1.194e-2(5.983e-4)‡ 1.550e-1(3.726e-2)‡ 6.358e-1(2.142e-2)‡ 1.149e-3(5.529e-4) 1.419e-2(4.974e-3)‡ 1.484e-2(4.007e-2)‡ 7.463e-3(4.445e-3)
IGD 1.686e-2(4.237e-3)‡ 1.005e-1(2.228e-2)‡ 6.289e-2(2.740e-2)‡ 9.146e-3(1.352e-3) 2.171e-2(3.435e-3)‡ 6.523e-2(2.871e-1)‡ 1.218e-2(4.827e-3)
HVD 1.744e+0(5.602e-2)‡ 2.026e+0(5.944e-2)‡ 2.275e-1(1.183e-1)‡ 8.544e-2(1.564e-3) 1.690e-1(1.015e-2)‡ 2.106e-1(5.957e-1)‡ 8.705e-2(6.377e-3)

dMOP2dec

GD 3.365e+1(3.737e-1)‡ 5.308e+2(3.812e+2)‡ 3.029e+1(5.737e-1)‡ 2.485e+1(5.487e-2)† 2.968e+1(1.489e-1)‡ 5.971e+1(2.738e-1)‡ 2.353e+1(1.608e-1)
IGD 6.951e+1(1.387e+0)‡ 3.487e+1(1.439e+0)‡ 2.845e+1(1.739e-1)‡ 2.514e+1(5.164e-2) 2.877e+1(1.450e-1) 6.537e+1(2.076e-1)‡ 3.803e+1(1.699e-1)
HVD 2.501e+1(1.045e+0)‡ 6.753e+1(2.136e+1)‡ 5.366e+1(2.141e+1)‡ 1.667e+1(2.588e-1)‡ 8.885e+1(1.284e-1)‡ 5.503e+1(1.097e+6)‡ 1.340e+1(7.925e-1)

FDA5iso

GD 4.543e-1(3.533e-3)‡ 1.101e-1(1.857e-3)‡ 4.024e-2(2.496e-3)‡ 1.155e-2(5.787e-4)† 1.454e-2(1.524e-3)‡ 4.786e-1(9.949e-3)‡ 1.013e-2(3.621e-4)
IGD 1.235e+0(2.063e-3)‡ 1.476e-1(8.385e-4)‡ 2.448e-1(1.161e-2)‡ 8.911e-2(1.152e-3)‡ 1.101e-1(7.448e-4)‡ 7.593e-1(1.337e-2)‡ 7.690e-2(2.543e-4)
HVD 2.782e+0(2.16e+0)‡ 3.563e+1(8.623e-1)‡ 1.250e+1(4.814e-1)‡ 2.033e-1(2.133e-2)‡ 1.205e+1(1.090e+0)‡ 2.008e+0(9.148e-2)‡ 1.545e-1(5.989e-2)

FDA5dec

GD 2.701e-1(3.562e-4)‡ 1.622e-1(2.157e-3)‡ 2.161e-1(2.602e-2)‡ 1.042e-1(3.431e-3) 2.483e-1(5.233e-3)‡ 1.452e+0(7.315e-2)‡ 1.186e-1(3.131e-3)
IGD 9.731e-1(1.381e+0)‡ 1.847e-1(7.031e-3)‡ 1.513e-1(2.171e-3)‡ 1.447e-1(2.321e-3)‡ 2.647e-1(4.475e-3)‡ 1.444e-1(4.900e-2)‡ 9.458e-2(5.894e-2)
HVD 6.903e-1(2.104e-2)† 3.777e+1(8.481e-1)‡ 3.203e+0(7.053e-1)‡ 7.031e-1(1.722e-2)† 1.631e+1(1.819e+0)‡ 5.471e+0(8.644e-2)‡ 6.878e-1(1.031e-2)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding algorithm,

respectively.

5.4. Comparing evolutionary processes of different algorithms640

In order to clearly compare the algorithms’ performance, evolution curves

of the average IGD values are drawn up in Fig. 5. It can be observed that

PDTEA could quickly respond to environmental changes on most of the test

problems. For FDA1, dMOP2 and dMOP3, the IGD values of PDTEA are

relatively smaller than others in the early stage before the 30th environmental645

change, after which the IGD values of PDTEA are bigger than that of PPS.

The reason might be that PPS requires considerable accumulation of historical
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information to respond to environmental changes. Additionally, PPS can make

the best use of the accumulated historical information to accurately predict

the whole population, thereby performing best at the latter stages. For FDA4650

and FDA5, the evolution curve of PDTEA’s IGD values is almost the lowest

in the whole stage of evaluation, proving that PDTEA significantly performed

better than the others. One possible reason is that decomposition-based mating

selection can assist the optimization when dealing with three-objective dynamic

problems. However, it can be seen from the indicator’s evolution curves of655

FDA2 and dMOP1 that PDTEA showed slightly overall worse performance than

SGEA. Since SGEA uses more past solutions, including half of old solutions, to

cope with the dynamics, it is superior to the others when addressing problems

with fixed POS. SGEA can quickly approximate to the new POS when the

environmental change comes. Lastly, for FDA3, PDTEA and SGEA showed660

best performance in turn every 20 environmental changes, which can be found

in Fig. 5 (c). Because the density of solution on POF can vary from time and

the population can not have good distribution.

It is clear from Fig. 6 that PDTEA had the best performance on JY4, JY6

and JY7 among all the compared algorithms. Given that the POF of JY4 is665

discontinuous and JY6-JY7 are multimodal problems, PDTEA is very suitable

and outstanding for addressing those problems with discontinuous POF and

multimodality. For JY1 and JY5, all the algorithms’s performances were simi-

lar to those of FDA1 and dMOP1, respectively. For JY2 and JY8, PDTEA and

PPS had slightly better performance than the other approaches in turn, which670

can be obtained from Fig. 6 (b)(h). This implies that PDTEA and PPS have

relatively but not very significantly better performance when solving DMOPs

whose varying POFs have geometry of mixed segments or oscillate among sev-

eral modes with the changing environment. For JY3 with a time-varying and

nonmonotonic relationship between variables, all the compared approaches do675

not show encouraging results and their performances did not have any statis-

tical regularity. Therefore, most existing algorithms must be greatly improved

to address these kinds of problems, which is one of our future goals. Lastly, for

32



JY9, which had a mixed changing type and a dramatic environmental change

during the evolution, PDTEA had better steady performance on JY9, suggest-680

ing it can handle geometry of mixed segments. Lastly, for JY9, PDTEA could

tackle the problem, performing better than the other methods except for the

period of dramatic change, which indicates that PDTEA is excellent for solving

the problem with varying types of changes, but is less effective when dealing

with dramatic changes that occur during optimization.685

5.5. Comparison of the distribution of the final obtained population

In order to compare the performance of the final obtained population, we

selected FDA1, dMOP2, JY2 and JY6 to draw the final population distribution

of seven algorithms. Six moments were selected to analyze results on FDA1,

JY2 and JY6 as shown in Fig. 7, Fig. 9 and Fig. 10 . Eight moments were690

selected in Fig. 8. The figures indicate that PDTEA had better convergence

and distribution in the early stages, implying it can quickly respond to environ-

mental changes. The reason might be that the exploitation and exploration in

the dynamic response strategy can help the population to respond to the envi-

ronmental changes accurately and quickly. It is obvious that PPS is worse than695

the other algorithms because historical information stored by PPS at the early

stages is very small. For multimodal problem JY6, PDTEA performed better

than the other algorithms which can be seen from Fig 10. Thus, when deal-

ing with difficult problems, PDTEA has a significant advantage over the other

algorithms, especially in the speed at which it can respond to environmental700

changes.

6. Discussion

In the section, we discuss the influence of change, different components of

PDTEA, different dimensions of the decision space and the statistical analysis.

33



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120

0.01

0.02

0.03

0.04

(a) FDA1

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120

0.005

0.01

0.015

0.02

(b) FDA2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120

0.05

0.1

0.15

0.2

(c) FDA3

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

(d) FDA4

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

(e) FDA5

0 20 40 60 80 100 120
0

0.5

1

1.5

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

(f) dMOP1

0 20 40 60 80 100 120
0

0.5

1

1.5

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120
0

0.05

0.1

(g) dMOP2

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

IG
D

 

 
PDTEA
DNSA−||
PPS
MOEA/D
SGEA
Dy−DNSA−||
DVEPSO

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

(h) dMOP3

Figure 5: Evolution curves of average IGD values for eight problems with nT

=10 and τT=30.
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Figure 6: Evolution curves of average IGD values for nine problems with nT

=10 and τT=30.

6.1. Influence of severity of change705

Severity of change (nt) is a critical parameter in the dynamic environment,

and it can affect an algorithms’ performance. In the experiments, τt was fixed to
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(g) PDTEA

Figure 7: Solution sets obtained by seven algorithms at six different time steps

on FDA1.
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(g) PDTEA

Figure 8: Solution sets obtained by seven algorithms at eight different time

steps on dMOP2.

25, and nt was set to 5, 10 and 20, for severe, moderate, and slight environmental

changes, respectively. The statistical results of HVD for each algorithm are

shown in Table 5 and we can observe sensitivity to the severity of change.710

It is clear that severity of change can greatly affect the algorithms’ perfor-

mance, and algorithms have better performance when increasing the value of

nt. In most cases, PDTEA had better performance. However, PDTEA was sur-

passed by SGEA in three problems, which were FDA2, dMOP1 and JY5. The

reason, as previously explained, is that SGEA has great superiority when solv-715

ing problems with fixed POS due to the use of half of past solutions. PDTEA is
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(g) PDTEA

Figure 9: Solution sets obtained by seven algorithms at six different time steps

on JY2.
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(g) PDTEA

Figure 10: Solution sets obtained by seven algorithms at six different time steps

on JY6.
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Table 5: Mean and SD of HVD indicator obtained by seven algorithms.
Prob (τt, nt) DNSGA-II PPS MOEA/D SGEA Dy-NSGA-II DVEPSO PDTEA

FDA1
(25,5) 8.183e-2(3.005e-3)‡ 1.434e-1(3.225e-2)‡ 3.247e-1(3.218e-2)‡ 4.603e-2(1.861e-3)‡ 2.751e-1(1.169e-2)‡ 5.171e-1(1.104e-1)‡ 3.204e-2(1.497e-3)
(25,10) 3.161e-2(9.773e-4)‡ 1.312e-1(5.529e-2)‡ 1.735e-1(5.942e-3)‡ 2.910e-2(8.150e-4)‡ 9.219e-2(3.057e-3)‡ 5.350e-1(3.679e-1)‡ 2.318e-2(7.701e-4)
(25,20) 2.981e-2(5.145e-4)‡ 7.074e-2(3.218e-2)‡ 1.127e-1(1.042e-3)‡ 2.398e-2(5.062e-4)‡ 4.614e-2(8.779e-4)‡ 5.162e-1(9.599e-2)‡ 2.191e-2(4.834e-4)

FDA2
(25,5) 6.855e-3(1.973e-5)‡ 4.837e-3(1.868e-4)‡ 4.439e-3(2.066e-4)‡ 1.364e-3(5.985e-5) 2.548e-2(3.327e-5)‡ 5.549e-2(6.760e-2)‡ 1.669e-3(5.053e-5)
(25,10) 3.603e-3(4.255e-5)‡ 4.726e-3(4.091e-4)‡ 4.328e-3(3.221e-4)‡ 1.354e-3(5.905e-5) 1.567e-3(3.004e-5)‡ 5.373e-2(1.365e-2)‡ 1.695e-3(6.501e-5)
(25,20) 1.959e-3(2.324e-5)‡ 3.799e-3(1.912e-4)‡ 3.870e-3(2.173e-4)‡ 1.202e-3(6.124e-5) 2.395e-2(3.386e-5)‡ 4.598e-2(5.790e-2)‡ 1.528e-3(5.790e-5)

FDA3
(25,5) 6.434e-1(4.620e-3)‡ 7.462e-1(2.940e-2)‡ 6.258e-1(7.965e-3)‡ 6.358e-1(8.007e-3)‡ 5.722e-1(2.552e-2)‡ 7.696e-1(3.242e-1)‡ 5.250e-1(1.324e-3)
(25,10) 6.131e-1(3.949e-3)‡ 6.207e-1(5.123e-2)‡ 6.071e-1(1.052e-2)‡ 6.304e-1(5.186e-3)‡ 5.358e-1(5.895e-3)‡ 7.216e-1(2.401e-1)‡ 5.435e-1(9.520e-3)
(25,20) 5.530e-1(7.847e-3)‡ 4.819e-1(4.278e-3) 5.494e-1(7.184e-3)‡ 5.686e-1(1.886e-3)‡ 6.073e-1(1.280e-2)‡ 5.896e-1(3.336e-1)‡ 5.259e-1(5.835e-3)

FDA4
(25,5) 1.887e+0(3.262e-1)‡ 1.260e+0(1.566e-1)‡ 6.478e+0(1.365e+0)‡ 8.329e-1(1.060e-1)‡ 1.023e+0(4.581e-2)‡ 2.448e+0(5.700e-1)‡ 3.237e-1(4.058e-1)
(25,10) 1.003e+0(6.214e-2)‡ 6.289e-1(7.650e-2)‡ 2.831e+0(6.348e-1)‡ 3.461e-1(2.412e-2)‡ 7.293e-1(2.886e-2)‡ 2.241e+0(6.837e-1)‡ 2.955e-1(3.828e-2)
(25,20) 4.911e-1(3.633e-2)‡ 5.500e-1(6.511e-2)‡ 1.113e+0(2.818e-1)‡ 2.587e-1(1.319e-2)‡ 4.224e-1(2.435e-2)‡ 2.197e+0(5.637e-1)‡ 2.322e-1(2.365e-2)

FDA5
(25,5) 4.502e+1(3.865e+0)‡ 1.763e+1(7.349e-1)‡ 6.404e+1(2.463e+0)‡ 1.154e+1(3.654e-1)‡ 1.364e+1(2.219e-1)‡ 1.508e+1(5.243e+0)‡ 1.079e+1(4.487e-1)
(25,10) 2.941e+1(7.330e+0)‡ 1.308e+1(4.447e-1)‡ 1.064e+1(2.645e+0)‡ 9.335e+0(1.100e-1)‡ 1.187e+1(4.144e-1)‡ 1.404e+1(6.101e+0)‡ 8.937e+0(3.635e-1)
(25,20) 1.607e+1(9.427e-1)‡ 1.207e+1(3.792e-1)‡ 1.012e+1(3.472e-1)‡ 8.646e+0(7.250e-3)‡ 9.929e+0(8.702e-2)‡ 1.375e+1(4.264e+0)‡ 8.259e+0(2.324e-1)

dMOP1
(25,5) 4.456e-2(4.453e-3)‡ 2.883e-2(6.744e-3)‡ 2.321e-2(2.816e-3)‡ 1.091e-2(1.226e-3) 1.442e-1(2.064e-3)‡ 2.140e-1(1.050e-1)‡ 3.308e-2(3.344e-3)
(25,10) 3.060e-2(4.669e-3)‡ 4.891e-2(7.690e-2)‡ 2.367e-2(6.687e-3)‡ 1.079e-2(7.090e-4) 2.139e-2(2.097e-3)‡ 1.106e-1(1.057e-1)‡ 2.627e-2(5.365e-3)
(25,20) 1.611e-2(3.232e-3)‡ 7.657e-2(1.230e-1)‡ 4.029e-2(5.678e-2)‡ 1.132e-2(6.872e-4) 1.388e-1(2.421e-3)‡ 2.140e-1(1.050e-1)‡ 2.825e-2(5.193e-3)

dMOP2
(25,5) 5.609e-1(1.856e-2)‡ 2.165e-1(2.420e-2)‡ 2.959e-1(2.139e-2)‡ 6.372e-2(2.517e-3)‡ 4.217e-1(1.445e-2)‡ 1.077e-1(2.307e-1)‡ 4.479e-2(1.749e-3)
(25,10) 2.505e-1(8.660e-3)‡ 1.484e-1(3.318e-2)‡ 1.844e-1(1.076e-3)‡ 3.794e-2(1.402e-3)‡ 1.327e-1(2.045e-3)‡ 1.167e-1(1.535e-1)‡ 3.203e-2(1.139e-3)
(25,20) 1.304e-1(5.091e-3)‡ 7.825e-2(1.137e-2)‡ 1.324e-1(3.746e-3)‡ 3.271e-2(6.417e-4)‡ 1.669e-1(1.854e-3)‡ 8.188e-2(2.040e-1)‡ 3.092e-2(1.430e-3)

dMOP3
(25,5) 8.148e-2(2.456e-3)‡ 1.275e-1(2.827e-2)‡ 3.259e-1(1.904e-2)‡ 4.770e-2(2.509e-3)‡ 4.682e-2(9.946e-4)‡ 1.128e-1(2.266e-1)‡ 3.258e-2(1.354e-3)
(25,10) 3.196e-2(6.185e-4)‡ 1.497e-1(3.668e-2)‡ 1.734e-1(1.230e-2)‡ 2.891e-2(1.309e-3)‡ 9.148e-2(1.714e-3)‡ 6.042e-2(3.305e-1)‡ 2.352e-2(5.831e-4)
(25,20) 1.962e-2(5.024e-4)‡ 5.733e-2(1.895e-2)‡ 1.093e-1(3.119e-3)‡ 2.335e-2(6.692e-4)‡ 2.703e-1(5.256e-3)‡ 7.981e-2(1.261e-1)‡ 2.138e-2(4.702e-4)

JY1
(25,5) 1.305e+0(1.015e-1)‡ 2.212e-1(1.241e-1)‡ 2.422e-1(1.349e-2)‡ 3.280e-2(6.632e-4)‡ 3.232e-1(1.137e-2)‡ 2.969e-1(1.243e-1)‡ 2.060e-2(8.445e-4)
(25,10) 2.837e-1(3.402e-2)‡ 2.859e-1(2.335e-1)‡ 9.570e-2(1.582e-3)‡ 2.591e-2(9.782e-4)‡ 7.435e-2(1.468e-3)‡ 2.979e-1(1.195e-1)‡ 1.331e-2(5.519e-4)
(25,20) 4.549e-2(5.111e-3)‡ 9.524e-2(3.309e-2)‡ 5.959e-2(2.294e-3)‡ 2.013e-2(1.801e-4)‡ 3.464e-2(2.929e-4)‡ 2.935e-1(1.481e-1)‡ 1.201e-2(4.367e-4)

JY2
(25,5) 1.485e-1(6.735e-3)‡ 1.599e-1(3.594e-2)‡ 2.778e-1(1.714e-2)‡ 3.895e-2(1.044e-3)‡ 3.693e-1(1.551e-2)‡ 3.168e-1(7.824e-2)‡ 2.501e-2(1.830e-3)
(25,10) 4.375e-2(1.056e-3)‡ 2.640e-1(2.085e-1)‡ 1.273e-1(5.896e-3)‡ 2.956e-2(3.739e-4)‡ 8.052e-2(1.239e-3)‡ 2.928e-1(1.209e-1)‡ 1.621e-2(4.039e-4)
(25,20) 2.387e-2(1.168e-3)‡ 6.721e-2(3.798e-2)‡ 8.160e-2(4.343e-3)‡ 2.350e-2(8.381e-4)‡ 5.076e-2(9.899e-4)‡ 2.340e-1(1.040e+0)‡ 1.533e-2(5.397e-4)

JY3
(25,5) 3.923e-2(3.374e-3)† 4.885e-1(3.166e-2)‡ 4.505e-1(3.031e-2)‡ 3.914e-1(4.500e-3)‡ 4.138e-1(1.380e-2)‡ 4.864e-1(1.012e-2)‡ 3.857e-2(3.313e-3)
(25,10) 8.320e-2(1.379e-1)‡ 5.245e-1(9.359e-2)‡ 4.826e-1(9.230e-2)‡ 3.931e-1(9.337e-3)‡ 3.949e-1(7.090e-3)‡ 4.667e-1(2.612e-2)‡ 4.564e-2(9.354e-3)
(25,20) 6.155e-2(1.550e-3)‡ 5.422e-1(6.236e-2)‡ 5.037e-1(2.202e-1)‡ 3.797e-1(1.663e-3)‡ 4.120e-1(1.633e-2)‡ 4.689e-1(1.052e-2)‡ 5.414e-2(1.452e-2)

JY4
(25,5) 5.720e+1(1.524e+0)‡ 4.938e+0(4.226e-1)‡ 2.626e-1(9.550e-3)‡ 2.716e+1(3.081e+0)‡ 1.179e+1(7.914e-1)‡ 1.859e+0(1.092e-2)‡ 2.203e-2(2.269e-3)
(25,10) 6.595e+1(1.556e+0)‡ 7.777e+0(5.481e-1)‡ 1.259e-1(4.254e-3)‡ 1.878e+1(1.743e+0)‡ 1.345e+1(1.694e+0)‡ 1.797e+0(5.719e-2)‡ 1.161e-2(5.339e-4)
(25,20) 7.413e+1(1.644e+0)‡ 8.316e+0(3.782e-1)‡ 8.409e-2(1.010e-3)‡ 3.864e+1(6.004e+0)‡ 2.820e+1(1.781e+0)‡ 1.894e+0(1.224e-2)‡ 1.164e-2(6.821e-4)

JY5
(25,5) 7.769e-2(4.573e-4)‡ 2.364e-2(3.535e-2)‡ 1.276e-2(7.456e-4)‡ 5.325e-3(1.842e-4) 3.166e-1(2.041e-4)‡ 7.326e-2(4.881e-2)‡ 6.534e-3(3.213e-4)
(25,10) 4.009e-2(7.241e-4)‡ 3.172e-2(2.849e-2)‡ 1.119e-2(2.976e-4)‡ 5.155e-3(8.379e-5) 6.792e-3(2.615e-4)‡ 8.439e-2(5.620e-2)‡ 6.356e-3(1.675e-4)
(25,20) 2.489e-2(5.315e-4)‡ 2.648e-2(1.165e-2)‡ 9.494e-3(1.063e-3)‡ 5.238e-3(2.091e-4) 3.149e-1(1.211e-4)‡ 8.128e-2(1.151e-1)‡ 6.326e-3(1.971e-4)

JY6
(25,5) 3.690e+1(5.930e+0)‡ 1.620e+2(3.108e+0)‡ 1.198e+2(5.909e+0)‡ 5.736e+0(2.315e-1)‡ 6.281e+1(3.644e+0)‡ 1.305e+1(5.680e-1)‡ 4.809e+0(6.579e-1)
(25,10) 3.873e+1(3.437e+0)‡ 1.423e+2(6.050e+0)‡ 2.593e+1(3.280e+0)‡ 3.016e+0(8.995e-2)‡ 3.583e+1(9.710e-1)‡ 1.286e+1(3.624e+0)‡ 1.009e+0(9.436e-2)
(25,20) 1.542e+1(7.155e-1)‡ 1.166e+2(3.860e+0)‡ 1.072e+1(7.602e-1)‡ 1.382e+0(7.687e-2)‡ 1.666e+1(5.055e-1)‡ 1.242e+1(1.590e+0)‡ 3.428e-1(5.661e-2)

JY7
(25,5) 1.406e+2(9.227e+0)‡ 3.082e+3(7.492e+1)‡ 1.737e+2(6.857e+1)‡ 2.437e+1(1.076e+1)‡ 1.050e+2(2.805e+0)‡ 1.547e+1(3.543e+0)‡ 3.015e+1(9.744e+0)
(25,10) 6.520e+1(3.066e+1)‡ 2.597e+3(5.573e+2)‡ 7.869e+1(2.450e+1)‡ 1.567e+1(6.116e+0)‡ 6.575e+1(3.209e+0)‡ 1.583e+1(5.669e+0)‡ 1.154e+1(7.707e+0)
(25,20) 1.081e+1(4.012e+0)‡ 1.298e+3(6.982e+2)‡ 1.012e+2(3.669e+1)‡ 2.038e+1(7.160e+0)‡ 2.941e+1(1.588e+1)‡ 1.542e+1(4.867e+0)‡ 7.462e+0(2.405e+0)

JY8
(25,5) 1.728e-1(7.540e-2)‡ 1.353e-1(2.225e-2)‡ 1.095e-1(1.028e-3)† 1.079e-1(1.091e-3) 1.177e-1(1.011e-3)‡ 1.050e-1(5.222e-2)‡ 1.188e-1(2.196e-3)
(25,10) 2.874e-1(1.167e-1)‡ 1.256e-1(1.010e-2)‡ 1.130e-1(9.782e-4)† 1.123e-1(1.845e-3) 1.197e-1(1.197e-3)‡ 2.042e-1(6.474e-2)‡ 1.196e-1(1.188e-3)
(25,20) 3.334e-1(2.358e-0)‡ 1.206e-1(6.823e-3)† 1.141e-1(5.583e-4)† 1.131e-1(1.679e-3) 1.189e-1(1.125e-3)‡ 1.575e-1(1.612e-2)‡ 1.184e-1(1.026e-3)

JY9
(25,5) 1.471e+0(5.374e-1)‡ 1.371e+1(1.178e+0)‡ 5.317e+0(1.455e+0)‡ 2.991e+1(5.959e+0)‡ 5.053e-1(1.220e-1)‡ 2.306e+0(3.822e-1)‡ 1.237e-1(1.885e-2)
(25,10) 1.086e+0(2.715e-1)‡ 1.622e+0(1.559e+0)‡ 2.321e-1(2.075e-2)‡ 1.632e+1(2.263e+0)‡ 3.104e-1(3.374e-2)‡ 2.257e+0(7.408e-1)‡ 1.670e-1(2.980e-2)
(25,20) 2.284e-1(9.692e-2)‡ 7.529e-1(7.997e-2)‡ 1.210e-1(2.609e-2) 1.573e+0(2.091e-1)‡ 1.906e-1(6.282e-2)‡ 2.304e+0(3.855e-1)‡ 2.004e-1(4.336e-2)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding algorithm,
respectively.

less sensitive as the severity of change increases. The reason might be because

the exploration and exploitation strategies are used to find the new POS and it

can quickly react to the change of environment. But for JY9, as nt increases,

the performances of PDTEA decreases. The likely explanation is that JY9 is720

a novel problem that cyclically switches from type I to II, then to type III

[2] and the frequency of type changes also influences the performance of the

algorithms. It therefore poses a new challenge that the algorithm needs a mix

of solutions with good diversity and convergence. PDTEA possibly needs a new

method to deal with the problem.725

6.2. Study of different components of PDTEA

PDTEA consists of three critical components including a dynamic handling

mechanism to respond to the environmental changes, mating selection and en-

vironmental selection. In order to study the role of each component in dynamic

optimization, the original PDTEA was transformed to three versions. The first730
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Table 6: Mean and SD of GD, IGD and HVD indicator obtained by four algo-
rithms.
Problem Indicator PDTEA-S1 PDTEA-S2 PDTEA-S3 PDTEA

FDA1
GD 4.846e-2(8.728e-4)‡ 9.373e-3(4.516e-4)‡ 2.043e-2(3.262e-3)‡ 8.455e-3(3.708e-4)
IGD 5.228e-2(2.548e-3)‡ 1.039e-2(1.125e-3)‡ 1.248e-2(1.605e-3)‡ 1.018e-2(3.993e-4)
HVD 1.129e-1(2.184e-3)‡ 2.381e-2(5.390e-4)‡ 2.423e-2(8.443e-4)‡ 2.318e-2(7.701e-4)

FDA4
GD 3.580e-1(1.031e-2)‡ 4.731e-2(1.902e-3)‡ 2.095e-1(2.027e-2)‡ 4.196e-2(4.196e-2)
IGD 2.689e-1(6.976e-3)‡ 7.617e-2(1.111e-3)‡ 8.623e-2(1.666e-3)‡ 7.122e-2( 6.816e-4)
HVD 3.759e+0(3.403e-1)‡ 3.171e-1(2.032e-2)‡ 9.531e+0(2.610e+0)‡ 2.748e-1(3.788e-2)

dMOP2
GD 7.227e-2(1.845e-3)‡ 1.378e-2(5.748e-4)‡ 1.977e-2(2.413e-3)‡ 1.133e-2(5.974e-4)
IGD 6.465e-2(1.687e-3)‡ 3.110e-2(3.710e-4)‡ 1.284e-2(9.086e-4)† 1.264e-2(8.063e-4)
HVD 1.663e-1(4.807e-3)‡ 3.803e-2(1.146e-3)‡ 3.137e-2(1.424e-3) 3.203e-2(1.139e-3)

JY2
GD 6.520e-2(8.731e-4)‡ 4.921e-2(2.469e-4)† 6.910e-2(2.289e-3)‡ 4.922e-2(4.922e-2)
IGD 6.367e-2(6.016e-4)‡ 5.116e-2(2.632e-4)‡ 5.034e-2(8.467e-5)† 5.024e-2(1.327e-4)
HVD 8.634e-2(2.049e-3)‡ 1.712e-2(6.111e-4)‡ 1.833e-2(2.474e-4)‡ 1.621e-2(4.039e-4)

JY3
GD 2.532e-1(5.274e-3)‡ 7.569e-2(3.502e-3) 1.019e-1(3.161e-2)‡ 7.582e-2(3.673e-3)
IGD 3.193e-1(3.121e-3)‡ 3.194e-1(2.857e-3)† 3.099e-1(1.846e-3)† 3.089e-1(2.988e-3)
HVD 4.007e-1(7.498e-3)‡ 4.804e-2(8.135e-3)‡ 5.134e-2(8.335e-3)‡ 4.564e-2(9.354e-3)

JY5
GD 1.483e-3(7.523e-5)† 1.532e-3(7.385e-5)† 4.532e-3(1.630e-3)‡ 1.481e-3(1.031e-4)
IGD 5.516e-3(1.491e-4)† 5.655e-3(5.158e-5)‡ 5.550e-3(6.510e-5)† 5.454e-3(1.298e-4)
HVD 6.414e-3(1.149e-4)‡ 6.458e-3(1.217e-4)‡ 6.800e-3(2.193e-4)‡ 6.356e-3(1.675e-4)

JY8
GD 6.199e-3(3.711e-4)‡ 6.333e-3(6.022e-4)‡ 1.328e-2(1.699e-3)‡ 6.075e-3(4.148e-4)
IGD 1.483e-2(1.940e-3)‡ 1.054e-2(7.244e-4) 1.073e-2(6.697e-4)† 1.068e-2(7.110e-4)
HVD 1.165e-1(1.657e-3)† 1.116e-1(2.070e-3) 1.183e-1(9.848e-4)† 1.196e-1(1.188e-3)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding
algorithm, respectively.

version (PDTEA-s1) does not use the dynamic handling mechanism to respond

to environmental changes, and it re-evaluates the current population whenever

the environmental change occurs. The second version (PDTEA-s2) uses tour-

nament selection to replace mating selection. PDTEA-s3 utilizes nondominated

sort and crowding distance and then selects N individuals as environmental se-735

lection. These three variants were compared with the original PDTEA with the

setting of (τ, nt)=(25,10). The statistical results are shown in Table 6 includ-

ing the average and standard deviation values of three metrics. The Wilcoxon

rank-sum[59] is set to the 0.05 significance level.

As can be seen from Table 6, PDTEA significantly surpassed other versions740

in most problems including FDA1, FDA4 and JY2, indicating that each compo-

nent is essential and indispensable for enhancing the performance of PDTEA.

For dMOP2, PDTEA surpassed others in terms of GD and IGD values, while

PDTEA-S3 outperformed PDTEA with respect to the HVD indicator. One

possible explanation is that PDTEA-S3 mainly adopts the crowding distance745

other than the truncation operator to maintain diversity. Specifically, the for-

mer is beneficial for the algorithms to preserve the boundary points, while the
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latter does not have this benefit in the critical layer during the latter period of

optimization. Moreover, the preservation of boundary points can contribute to

the decrease of the HVD value. As for JY3, PDTEA significantly exceeded the750

other versions in terms of IGD and HVD. However, the GD value of PDTEA

is not as good as that of PDTEA-S2. Combining these two discoveries, we can

conclude that PDTEA can maintain adequate diversity when conducting the

mating selection, which is good for the algorithms’ diversity and convergence,

presented on the values of HVD and IGD values. Nevertheless, overuse of di-755

versity introduction may lead to low convergence, which can be found on the

GD values of PDTEA-S2. For JY5 whose POS remains unchanged, PDTEA

showed better performance than PDTEA-S3 in terms of all selected indicators,

with equal performance to PDTEA-S1 and PDTEA-S2. The conclusion can be

drawn that the dynamic handling mechanism and mating selection do not have760

such big benefits when solving problems with fixed POS. The reason might be

that the diversity introduced by these two strategies may misguide the evolution

of the population. When it comes to JY8, PDTEA was better than the others

in terms of GD, indicating that the three mechanisms are beneficial for the con-

vergence of PDTEA. However, PDTEA performed worse than PDTEA-S2 and765

equal to PDTEA-S3 in terms of IGD and HVD values, which suggests that the

mating selection and truncation operation of PDTEA do not have much help

to enhance the diversity of population when solving problems whose geometry

and number of mixed segments of POF vary over time.

It can be concluded that PDTEA, consisting of three key components, is770

superior to other modified versions. The finding clearly demonstrates the sig-

nificant and indispensable role of each component in coping with a dynamic

environment. The role that different parts play in PDTEA will be further

explained. In order to enhance the diversity of the population during optimiza-

tion, different well-diversified solutions from different regions of the associated775

reference points are chosen as the mating parents in the mating selection. It

therefore maintains the overall diversity of the population. Additionally, as

an excellent selection strategy which has been demonstrated, the Pareto-based
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dominance selection strategy is applied to choose first-class offspring solutions,

so as to speed up the overall convergence of the population during the evolution.780

Besides that, the modified truncation operation is used to estimate the density

of the population from an overall perspective. Eventually, in order to quickly

and accurately trace the changing environment, the exploration and exploita-

tion strategies in the dynamic handling mechanism are adopted. The former

one is to explore the possible area in which the new population may locate,785

thereby responding to the environmental changes in a quick manner, which can

also maintain the diversity of population to some degree. The latter one is used

to generate some some well-converged and well-diversified solutions around the

situated POS of the next environmental changes. The algorithm can therefore

exploit the promising area adequately and completely. The dynamic handling790

strategy is able to enhance the population diversity in the responding stage.

Overall, diversity and convergence can be simultaneously achieved both during

evolution and in the environmental changes’ response phrases.

6.3. Study of different dimensions of the decision space

In order to study the influence of the decision space size on algorithms’795

performance, some experiments were conducted on FDA1, FDA4, dMOP2, JY1,

JY5 and JY9. The relevant parameter settings are described as τt=25, nt=10

and n=10, 20 and 30, respectively. The statistical results of HVD for each

algorithm are presented in Table 7.

In Table 7, PDTEA is shown to have obtained a better performance on a ma-800

jority of problems than other algorithms except JY5. Moreover, it can be clearly

seen from Table 7 that the size of the decision space can significantly affect the

algorithms’ performance. For most problems, the algorithms’ performance is

sensitive to the size of the decision space and the effect is aggravated when the

size of the decision space becomes bigger and bigger. Overall, the size of the805

decision space plays an important role in affecting the algorithms’ performances.

When size is decreased, the algorithm can obtain good performance.
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Table 7: Mean and SD of HVD indicator obtained by seven algorithms.
Prob n DNSGA-II PPS MOEA/D SGEA Dy-NSGA-II DVEPSO PDTEA

FDA1
10 1.381e-2(1.010e-4)‡ 3.242e-2(1.702e-2)‡ 9.614e-2(8.779e-4)† 1.231e-2(1.035e-4)‡ 4.614e-2(8.779e-4)‡ 1.183e-1(2.870e-2)‡ 1.020e-2(4.625e-4)
20 3.161e-2(9.773e-4)‡ 1.312e-1(5.529e-2)‡ 1.735e-1(5.942e-3)‡ 2.910e-2(8.150e-4)‡ 9.219e-1(3.057e-3)‡ 5.350e-1(3.679e-1)‡ 2.318e-2(7.701e-4)
30 6.255e-2(1.124e-3)‡ 4.734e-1(1.038e-1)‡ 9.221e-2(2.098e-2)‡ 5.826e-2(6.508e-4)‡ 1.382e+0(1.443e-1)‡ 8.080e-1(5.695e-1)‡ 3.591e-2(8.950e-4)

FDA4
10 4.883e-1(4.208e-2)‡ 3.055e-1(1.415e-2)‡ 4.224e-1(2.435e-2)‡ 2.135e-1(7.402e-3)‡ 4.224e-1(2.435e-2)‡ 1.339e+0(6.831e-2)‡9.154e-2(3.805e-2)
20 1.003e+0(6.214e-2)‡ 6.289e-1(7.650e-2)† 2.831e+0(6.348e-1)‡ 3.461e-1(2.412e-2)‡ 7.293e-1(2.886e-2)‡ 2.241e+0(6.837e-1)‡2.748e-1(3.788e-2)
30 1.882e+0(8.413e-2)‡ 1.453e+0(1.482e-1)‡ 4.228e+0(8.993e-2)‡ 8.860e-1(8.931e-2)‡ 2.244e+0(1.994e-1)‡7.716e+0(2.955e-1)‡7.684e-1(8.104e-2)

dMOP2
10 5.751e-2(2.333e-3)‡ 3.333e-2(1.165e-2)‡ 1.669e-1(1.854e-3)‡ 1.601e-2(9.204e-4)‡ 1.669e-1(1.854e-3)‡ 4.672e-2(5.196e-2)‡ 1.204e-2(3.930e-4)
20 2.505e-1(8.660e-3)‡ 1.484e-1(3.318e-2)‡ 1.844e-1(1.076e-3)‡ 3.794e-2(1.402e-3)‡ 1.327e-1(2.045e-3)‡ 1.167e-1(1.535e-1)‡ 3.203e-2(1.139e-3)
30 5.423e-1(1.815e-2)‡ 3.563e-1(4.873e-2)‡ 2.185e-1(3.719e-3)‡ 7.870e-2(2.237e-3)‡ 1.573e+0(1.757e-1)‡ 4.916e-1(1.888e-1)‡ 4.618e-2(3.519e-3)

JY1
10 3.235e-2(3.464e-3)† 1.575e-2(1.610e-2)† 3.464e-2(2.929e-4)† 8.771e-3(5.104e-4)† 3.464e-2(2.929e-4)† 8.151e-2(3.620e-3)‡ 4.747e-3(3.274e-5)
20 2.837e-1(3.402e-2)‡ 2.859e-1(2.335e-1)‡ 9.570e-2(1.582e-3)‡ 2.591e-2(9.782e-4)‡ 7.435e-2(1.468e-3)‡ 2.979e-1(1.195e-1)‡ 1.331e-2(5.519e-4)
30 1.031e+0(2.424e-1)† 1.224e+0(8.92e-1)† 6.957e-1(1.359e-3)† 5.907e-2(1.687e-3)† 9.720e-1(1.986e-1)† 6.871e-1(3.485e-1)‡ 1.855e-2(4.562e-4)

JY5
10 3.883e-2(2.413e-4)‡ 8.555e-3(7.394e-5)‡ 9.149e-3(1.211e-4)‡ 4.707e-3(2.954e-5)‡ 3.149e-3(1.211e-4) 4.194e-2(4.568e-2)‡ 4.334e-3(4.594e-5)
20 4.009e-2(7.241e-4)‡ 3.172e-2(2.849e-2)‡ 1.119e-2(2.976e-4)‡ 5.155e-3(8.379e-5) 6.792e-3(2.615e-4)‡ 8.439e-2(5.620e-2)‡ 6.356e-3(1.675e-4)
30 4.178e-2(1.347e-3)‡ 8.037e-2(8.027e-2)‡ 2.005e-2(1.782e-4)‡ 6.690e-3(3.148e-4) 9.956e-3(2.022e-4)‡ 4.387e-1(7.671e-2)‡ 7.837e-3(2.047e-4)

JY9
10 7.915e-2(4.125e-2)‡ 1.487e-1(3.327e-2)‡ 1.906e-1(6.282e-2)‡ 6.784e-2(2.965e-2)‡ 1.906e-1(6.282e-2)‡ 8.367e-1(6.005e-2)‡ 9.061e-3(4.98e-4)
20 1.086e+0(2.715e-1)‡ 1.505e+0(6.530e-1)‡ 2.321e-1(2.075e-2)‡ 1.632e+1(2.263e+0)‡ 3.104e-1(3.374e-2)‡ 2.257e+0(7.408e-1)‡1.670e-1(2.980e-2)
302.750e+0(1.864e+0)‡7.467e+0(4.728e+0)‡ 2.900e-1(2.691e-2)‡ 1.212e+2(1.252e+1)‡1.929e+0(5.702e-1)‡5.641e+0(1.255e-2)‡1.762e-1(4.512e-2)

‡ and † indicate PDTEA performs significantly better than and equivalently to the corresponding algorithm,
respectively.

6.4. Statistical Analysis

In order to take into account the tracking ability of the DMOEAs, the for-

mal wins and losses approach by Helbig et al. [61] were used to compare the810

performance of the algorithms. All statistical tests were performed at the 95%

confidence level. The relevant parameter settings are described as τt=25 and

nt=10. Experimental results of seven algorithms on the IGD metric are pre-

sented in Table 8.

It can be observed in the Table 8 that PDTEA obtained the best rank on815

FDA1, FDA4 and dMOP2. Therefore, the results indicate PDTEA can obtain

good performance when tracking the moving POF. However, PDTEA ranks

second and SGEA ranks first on JY5. SGEA obtained better IGD average

values than PDTEA on most of the time steps. The reason is that SGEA can

reuse half of the old solutions to adapt to a new environment.820

6.5. Study of influence on population diversity

Introducing diversity for environmental changes is considerably important.

In order to empirically study influence on population diversity, we can introduce

η% mutated individuals[9] of current population into the new population, and

use (100-η)% individuals by the response mechanism proposed in Algorithm3.825

Thus, the new population is composed of η% (0 ≤ η ≤ 100) mutated individuals

and (100-η)% promising individuals generated in Algorithm3. We call this ver-

sion of PDTEA as PDTEA-v1. We select FDA1 and dMOP2 with the setting
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Table 8: Wins and Losses on FDA1, FDA4, dMOP2 and JY5 using IGD.
Prob result DNSGA-II PPS MOEA/D SGEA Dy-NSGA-II DVEPSO PDTEA

FDA1

Wins 67.56 73.53 6.47 70.69 31.09 49.53 94.88
Losses 44.94 38.97 106.03 41.81 81.41 62.97 17.63
Diff 22.63 34.56 -99.56 28.88 -50.31 -13.44 77.25
Rank 4 2 7 3 6 5 1

FDA4

Wins 38.47 53.06 17.28 82.81 37.59 57.13 107.40
Losses 74.03 59.44 95.22 29.69 74.91 55.38 5.09
Diff -35.56 -6.37 -77.94 53.13 -37.31 1.75 102.30
Rank 5 4 7 2 6 3 1

dMOP2

Wins 28.31 79.63 34.44 80.22 59.41 12.97 98.78
Losses 84.19 32.88 78.06 32.28 53.09 99.53 13.72
Diff -55.88 46.75 -43.63 47.94 6.31 -86.56 85.06
Rank 6 3 5 2 4 7 1

JY5

Wins 11.69 53.69 45.56 112.13 73.00 12.22 85.47
Losses 100.81 58.81 66.94 0.38 39.50 100.28 27.03
Diff -89.13 -5.13 -21.38 111.75 33.50 -88.06 58.44
Rank 6 4 5 1 3 7 2

of τt = 25 and nt = 10 to study the influence on population diversity. With

the variation of η, η = 0 means PDTEA-v1 is the original PDTEA and η =830

100 indicates the new population consists entirely of mutated individuals. The

statistical results of three metrics are shown in Table 9.

It can be seen from Table 9 that, for η = 0, PDTEA-v1 gains the best per-

formance on FDA1 and dMOP2. When η increases, the results of PDTEA-v1

on three metrics notably decrease. For this reason, too many mutated individ-835

uals are introduced, and population diversity loss may affect the performance

of algorithms.

Table 9: Mean and SD of GD, IGD and HVD indicators of PDTEA-v1 on FDA1
and dMOP2.

Prob Indicator η=0 η=20 η=40 η=60 η=80 η=100

FDA1

GD 8.455e-3(3.708e-4) 8.810e-3(2.273e-4)‡ 8.970e-3(3.455e-4)‡ 9.353e-3(1.840e-4)‡ 9.939e-3(2.825e-4)‡ 3.568e-2(1.099e-3)‡
IGD 1.018e-2(3.993e-4) 1.713e-2(2.231e-3)‡ 2.324e-2(1.005e-3)‡ 2.753e-2(5.837e-4)‡ 3.445e-2(9.804e-4)‡ 4.547e-2(2.119e-3)‡
HVD 2.318e-2(7.701e-4) 2.844e-2(3.900e-4)‡ 3.194e-2(2.335e-4)‡ 3.544e-2(5.099e-4)‡ 4.120e-2(5.791e-4)‡ 9.376e-2(1.034e-3)‡

dMOP2

GD 1.133e-2(5.974e-4) 1.495e-2(4.809e-4)‡ 1.913e-2(5.144e-4)‡ 2.205e-3(3.691e-4)‡ 2.845e-2(3.434e-4)‡ 5.235e-2(8.778e-4)‡
IGD 1.264e-2(8.063e-4) 1.713e-2(2.231e-3)‡ 2.154e-2(6.776e-4)‡ 2.550e-2(6.462e-4)‡ 3.257e-2(1.047e-3)‡ 5.029e-2(1.863e-3)‡
HVD 3.203e-2(1.139e-3) 4.178e-2(1.197e-3)‡ 4.824e-2(1.430e-3)‡ 4.946e-2(1.061e-3)‡ 5.132e-2(6.991e-4)‡ 1.308e-1(2.406e-3)‡

6.6. Study of influence on exploration

In order to investigate the influence of the deviation of the Gaussian distri-

bution on exploration, some experiments were conducted on JY1, JY2 and JY6840

with the setting of τt = 25 and nt = 10. The deviation of Eq. 14 was set to 0, σt,
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5σt and 10σt. In response change, we only use the exploration strategy without

the exploitation strategy. The version of PDTEA is denoted as PDTEA-v2.

The experimental results about three metric values by different deviation of

the Gaussian distribution are list in Table 10. It can be observed that when845

σ=σt, PDTEA-v2 gains the best results on the JY1, JY2 and JY6, implying

that the exploration is quite vulnerable to the influence of deviation. When the

deviation is set as 0, 5σt or 10σt, PDTEA-v2 slightly has difficulty in solving

dynamic environment. Therefore, when the deviation is large or small, it may

negatively affect the exploration.850

Table 10: Mean and SD of GD, IGD and HVD indicators of PDTEA-v2 on JY1,
JY2 and JY6.
Prob Indicator σ=σt σ=0 σ=5σt σ=10σt

JY1

GD 1.041e-2(1.406e-4) 1.185e-2(4.381e-4)‡ 1.492e-2(3.337e-4)‡ 2.409e-2(5.928e-4)‡
IGD 1.394e-2(6.969e-5) 1.514e-2(3.636e-4)‡ 1.818e-2(2.551e-4)‡ 2.598e-2(4.926e-4)‡
HVD 2.123e-2(2.779e-4) 2.378e-2(8.150e-4)‡ 2.991e-2(7.138e-4)‡ 4.617e-2(1.044e-3)‡

JY2

GD 5.054e-2(2.522e-4) 5.150e-2(9.933e-5)‡ 5.169e-2(9.116e-5)‡ 5.523e-2(6.955e-4)‡
IGD 5.152e-2(1.025e-4) 5.196e-2(1.776e-4)‡ 5.269e-2(7.554e-5)‡ 5.587e-2(2.382e-4)‡
HVD 2.716e-2(3.823e-4) 2.995e-2(4.797e-4)‡ 3.534e-2(3.822e-4)‡ 5.146e-2(6.575e-4)‡

JY6

GD 1.726e+0(1.216e-1) 1.960e+0(8.428e-2)‡ 2.116e+0(9.400e-2)‡ 2.572e+0(4.394e-2)‡
IGD 8.617e-1(5.390e-2) 9.834e-1(4.969e-2)‡ 1.034e+0(3.971e-2)‡ 1.250e+0(1.938e-2)‡
HVD 4.623e+0(4.507e-1) 5.441e+0(4.576e-1)‡ 5.676e+0(3.838e-1)‡ 7.601e+0(2.339e-1)‡

7. Conclusions and future work

DMOEAs studies have many real-world applications, like greenhouse control

[12] and circular antenna design [62]. In order to effectively deal with DMOPs,

we have present a Pareto-based evolutionary algorithm using decomposition and

truncation for dynamic multi-objective optimization. The algorithm consists of855

three parts: a novel mating selection strategy, an efficient environmental selec-

tion technique and a dynamic response mechanism. When a change is detected,

the loss of population diversity may be of limited coverage. Thus, a dynamic

response mechanism including exploration and exploitation strategies is used to

adapt to the new environment. Moreover, a mating selection strategy and an860

environmental selection technique are used to promote the convergence speed of

the population. Experimental results demonstrate that, when compared with
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several popular DMOEAs on a number of DMOPs, PDTEA is a very competi-

tive algorithm for dealing with DMOPs, especially for handling three objective

problems, a disconnected POF and multimodal problems.865

Several extensions are possible for future work:

• Firstly, although PDTEA has great advantages over other algorithms,

some new dynamic optimization approaches need to be designed to solve

multimodal problems [28]. The reason is that time-changing multimodal-

ity is a considerable challenge for an algorithm’s performance. Moreover,870

a large change in severity may require the ability to search the new POS

when a change occurs. The proposed dynamic response mechanism can

combine with diversity introduction technology to improve the popula-

tion’s diversity.

• Secondly, the DMOEAs have demonstrated the ability to handle con-875

strained DMOPs [63] and solving constrained DMOPs is a prospective

research. This paper only considers DMOPs instead of constrained D-

MOPs. Dealing with constrained DMOPs is our work for the future.

• Last but not least, new dynamic benchmarks [64] and performance metrics

[65] are also needed for evaluating the performance of algorithms.880
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