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Abstract 

 

Background: Over the last four decades, the use of water soluble polymers in rational formulation design has 

rapidly evolved into valuable drug delivery strategies to enhance the safety and therapeutic effectiveness of 

poorly soluble drugs, particularly anticancer drugs. Novel advances in polymer chemistry have provided new 

generations of well defined polymeric architectures for specific applications in polymer-drug conjugate design. 

However, total control of crucial parameters such as particle size, molecular weight distribution, polydispersity, 

localization of charges, hydrophilic-lipophilic balance and non site-specific coupling reactions during 

conjugation has been a serious challenge. Objective: This review briefly describes the current advances in 

polymer-drug nanoconjugate design and various challenges hindering their transformation into clinically useful 

medicines. Method: Existing literature was reviewed. Results: This review provides insights into the significant 

impact of covalent and non-covalent interactions between drug and polymer on drug loading (or conjugation) 

efficiency, conjugate stability, mechanism of drug release from the conjugate and biopharmaceutical properties 

of poorly soluble drugs. The utility values and application of Quality by Design principles in rational design, 

optimization and control of the Critical Quality Attributes (CQA) and Critical Process Parameters (CPP) that 

underpin the safety, quality and efficacy of the nanoconjugates are also presented. Conclusion: It was apparent 

that better understanding of the physicochemical properties of the nanoconjugates as well as the drug-polymer 

interaction during conjugation process is essential to be able to control the biodistribution, pharmacokinetics, 

therapeutic activity and toxicity of the nanoconjugates which will in turn enhance the prospect of successful 

transformation of these promising nanoconjugates into clinically useful nanomedicines.   
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1.0 Introduction 
 

Poorly soluble drugs represent more than 40% of the drugs in the product development pipelines while  about 

60% of the synthetic analogues and 90% of approved drugs have been reported to have poor solubility, poor 

permeability or both (1) presenting major challenges in formulation design and product development which in 

turn impact therapeutic outcomes. In corollary most of the potent drug candidates discovered through high-

throughput screening, combinatorial chemistry, informatics and miniaturization failed to reach the market 

because of poor biopharmaceutical properties. Those that made it to the market exhibit poor pharmacokinetics 

and inadequate bio-distribution resulting in unwanted and toxic side effects.  

It is common knowledge that drug molecules have to be soluble in water to be readily delivered to the cellular 

membranes therefore aqueous solubility of active pharmaceutical ingredients is a key parameter in formulation 

design and product development (2). In the same vein they need to exhibit some hydrophobic characteristics in 

order to cross absorption membranes. Therefore a balance of both properties is required for the delivery of 

water-insoluble drugs to therapeutic target sites. This requirement has presented significant difficulties in 

development and delivery of poorly soluble drugs because they tend to be eliminated from the gastro-intestinal 

tract before they have opportunity to dissolve fully and be absorbed into the circulation especially when 

administered orally. Also, because some poorly soluble drugs exhibit low molecular weight and short biological 

half-life they tend to have large volume of distribution, short circulation time, slow and ineffective absorption as 

well as low systemic bioavailability. Consequently relatively small amount of the drug reach the target site 

requiring the use of high and multiple daily doses which could lead to wasted dosing, low efficacy, potentially 
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serious undesirable side effects and in some cases therapeutic failure and multiple drug resistance (3,4). In order 

to solve these problems, extensive research efforts have been focused on drug-polymer complexes (conjugates) 

in the past four decades.  Biodegradable hydrophilic polymers with bio-mimetic characteristics are frequently 

used to control the particle size, surface characteristics, solubility and release mechanisms of various poorly 

soluble drugs. In general, incorporation of bioactive agents into hydrophilic polymers has shown tremendous 

advantages over the free drugs, including increased solubility in biological fluids, enhanced drug absorption and 

bioavailability (5-7);  reduced systemic toxicity and better tolerability (8); passive tumour targeting due to 

enhanced permeability and retention(EPR) effect (9) promoting accumulation and preferential uptake of the 

active drugs by targeted cells; improved pharmacokinetics, biodistribution, programmed drug release profile and 

therapeutic effectiveness (7,10-12) as well as ability to bypass some mechanisms of drug resistance (13). They 

also protect the bioactive agents from premature degradation and reduce the cost of production. This enormous 

potential of polymer-drug conjugates is due to their small size and large surface area-to-volume ratio which 

enable good tissue penetration and high cellular uptake. This phenomenon is of great value in optimization of 

drug therapy and site-specific drug targeting. However in spite of the extensive research efforts todate in this 

area, the development of novel polymer-drug nanoconjugate systems with well defined homogeneous 

architecture and drug loading efficiency that can maximize plasma concentration and site-specific targetting 

efficiency as well as minizing toxic side effects is an ongoing challenge. Therefore transformation of polymer-

drug conjugates into clinically useful medicines for clinical evaluation and regulatory approval has been a 

difficult task. This article reviews the challenges and recent advancements in polymer-drug conjugates as well 

as the role of rational formulation design in hearnessing the potentials of these nanostructures to develop 

efficient drug delivery tools for poorly soluble drugs. 

Presently, many poorly soluble active pharmaceutical ingredients (APIs) are produced by organic solvent 

synthesis and crystallization techniques (e.g. ibuprofen) which usually require large volumes of the solvent (e.g. 

hexane, heptane, methanol etc.) to ensure complete dissolution of the components. In most cases, the solvents 

are removed by various techniques including vacuum drying, spray drying, fluidized bed drying, lyophilisation 

etc. making the process more cumbersome and expensive. In the same vein almost all techniques reported in 

literature, for the preparation of polymer-drug conjugates, involve the use of organic solvent and toxic chemical 

initiator. However the residual amount of solvent remaining in the final product has not been addressed to date 

which could be of serious safety and environmental concerns. The International Committee for Harmonization 

(ICH) has published a guideline for limits of residual solvents in pharmaceutical products including class 1 

solvents to be avoided, class 2 solvents to be limited and class 3 solvents with low toxicity potential (14). It is 

however important to note that solvents trapped within complex molecular structures are usually difficult to 

access or quantify. Hence development of solvent free drug delivery systems would be of great value. 

The needle-like ibuprofen and ciprofloxacin crystals produced from the solvent crystallization (Fig. 1) exhibits 

strong cohesive and viscoelastic characteristics rendering it very difficult to formulate and research efforts to 

date have not been able to establish the desired improvement in its characteristics. Therefore new rational 

formulation approaches to optimize effective delivery of poorly soluble drugs represent a significant unmet 

need.  

One approach towards improved therapeutic application of poorly soluble drugs is the preparation of amorphous 

polymer-drug conjugates which contain drugs in a physically bound (dissolved, dispersed, included or adsorbed) 

state or chemically linked (covalent bond) to the polymer backbone or as side groups from which the drug is 

delivered by chemically or biologically induced cleavage of the bond. This approach involves transformation of 

the crystalline active pharmaceutical ingredients (API), which is usually preferred in manufacturing due to their 

physicochemical stability, into amorphous form which is less stable. Therefore research efforts have been 

focused on stabilizing nanosized amorphous API particularly for poorly soluble drugs because the amorphous 

form is known to exhibit higher saturation solubility and dissolution velocity due to its ability to generate 

supersaturated drug solution during dissolution compared with the crystalline form (15,16).  The higher 

dissolution rates have also been linked to higher bioavailability in vivo provided that supersaturation is sustained 

for sufficient period of time for absorption to occur (17-19). Stable amorphous polymer-drug nanoconjugate 

formulations are highly promising because they combine nanoscale formulation with enhanced solubility and 

bioavailability which may provide a platform for reduced dosing, toxicity and undesirable side effects of the 

API as well as controlled release and site specific nano-targeted drug delivery. Therefore this review will 

present the concept of low energy green approach where poorly soluble drugs are converted into stable size-

controlled amorphous nanoconjugates in entirely aqueous system as well as the impact of polymer-drug 

interaction on drug loading efficiency and biopharmaceutical properties of the drug.  
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Figure 1: Representative photomicrographs of poorly soluble drugs A) ibuprofen and B) ciprofloxacin crystals 

 

 

 

     

1.1 Polymer-drug conjugates 

 

Polymer-drug conjugates (PDCs) are drug loaded polymeric nanoparticles in which the bioactive molecule 

(drug, protein, peptides, hormones, enzymes, growth factors etc.) is covalently attached to a water-soluble 

polymer backbone through a physiologically labile bond to protect the bioactive molecule from premature 

degradation providing longer systemic circulation time as well as enhancing absorption and bioavailability. The 

longer blood circulation time increases the probability for the conjugate to interact with its target providing the 

platform for enhanced therapeutic effectiveness and improved therapeutic index. In this case physicochemical 

properties of the PDCs such as particle size, surface charge, conformation and biocompatibility will dictate the 

efficiency of target delivery. Examples of PDCs include polymer-drug nanoconjugates; biologically active 

polymers; polymer-protein conjugates; polymer-antibody conjugates; drug loaded polymeric micelles and 

polymer-DNA complexes (polyplexes) for gene delivery etc. (11,24-26). Because of their distinctive 

pharmacokinetic profiles, they are considered as new chemical entities relative to their parent drugs, not 

conventional pharmaceutical dosage formulation or drug delivery systems that simply physically entrap the drug 

(5,7,11,26).  

Polymer therapeutics, first described by Prof Ruth Duncan in 1990s, was the ‘melting pot’ for the current 

plethoral of successful innovative and clinically important polymeric nanomedicines (polymer-drug conjugates) 

with remarkable physicochemical and biopharmaceutics properties. For instance, many polymer-protein 

conjugates have been approved for marketing since the 1990s such as Zinostatin stimalmer (styrene maleic 

anhydride neocarzinostatin, SMANCS), Adagen
®
 (PEG-adenosine deaminase) and Oncaspar

®
 (PEG-

asparaginase). In the early 2000s the FDA approved subcutaneous injection of PEG-inteferon conjugates (PEG-

Intron; PEG-ASYS) for the treatment of chronic hepatitis C and recently (2011) PEG-interferon α-2b (Sylatron) 

was approved as adjuvant therapy for the treatment of high-risk melanoma (27) while PEG-interferon β-1a is 

currently being tested in clinical trials (Phase III) for the treatment of multiple sclerosis (28). 

In designing these nanostructures conjugation strategies are of prime importance. Some of the techniques 

described in the literature include enzymatic conjugation of doxorubicin with poly(ethylene glycol) multiblock 

copolymer through cleavable oligopeptide groups (29); grafting approaches such as oligopeptide sequences and 

reductive disulfide bonding (30); and construction of biodegradable star HPMA copolymer-drug conjugates by 

modifying PAMAM dendrimers with polyHPMA grafts through enzymatically cleavable or reducible linkers to 

facilitate degradation of high molecular weight polymers (31). For example the star polymer- doxorubicin 

conjugate has been shown to exhibit prolonged systemic circulation, increased tumour accumulation and 

therapeutic effectiveness in lymphoma tumour bearing mice (32). Another example is Opaxio, formerly branded 

as Xyotax, which is a conjugate of poly(L-glutamic acid) and paclitaxel. Poly(L-glutamic acid) was chosen 

because it is biodegradable and its breakdown product  (L-glutamic acid) can enter normal metabolic process 

rather than being cleared through renal excretion. The γ-carboxylic acid side chains of the L-glutamic acid is 

conjugated to the 2´ hydroxyl of paclitaxel through ester bond. Therefore the hydroxyl group is not available for 

binding to the tubulin for the required pharmacological activity, rendering it inactive. However the conjugate 

A B 
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exhibited higher maximum tolerated dose, water solubility and greater efficacy than paclitaxel formulated in 

Cremophor EL/ethanol. Recently the synthesis of biodegradable multiblock poly(HPMA) conjugates with well-

defined physical and chemical properties has been conducted by a combination of reversible addition-

fragmentation chain transfer (RAFT) polymerization and click chemistry (33,34). This technique involves three 

major stages including RAFT polymerization of HPMA using an enzyme sensitive Gly-Phe-Leu-Gly (GFLG) 

moiety containing a chain transfer agent (CTA) with a terminal alkyne group to modify the polymer; 

introduction of of a terminal azide to produce an α-alkyne (ω-azido-telechelic poly(HPMA) and finally the 

synthesis of biodegradable multiblock poly(HPMA) by click chemistry in the presence of a copper catalyst. 

The concept of covalently conjugating a cleavable bioactive material (low molecular weight drug, protein, 

peptide, hormone, enzyme etc.) to hydrophilic polymer carrier (polymer-drug conjugates) through 

physiologically labile bond was first proposed by Helmut Ringsdorf in 1975 (35). This has been further 

explored to increase drug solubility, enhance disease specific targeting, control drug release, reduce drug 

toxicity, facilitate drug absorption across biological barriers and improve therapeutic effects of bioactive 

molecules (24,36,37). 

Although there have been significant advances in the synthesis, characterization and understanding of in vitro 

and in vivo activities of the PDCs for about 40 years and is still attracting huge research interest especially in 

clinical oncology, none of the polymer-drug conjugates under intensive research efforts have yet reached the 

market (7,38). The slow progression of transforming polymer-drug conjugates into clinically useful medicines 

for clinical evaluation and regulatory approval has been associated with clinical failure as a result of ‘wrong 

conjugate rational design’ that yielded non-specific drug release and biodistribution with deprived 

pharmacokinetic profiles (39). We hypothesize that the clinical failure may be linked to the obvious drawbacks 

of the polymer-drug conjugates which include heterogeneous composition, structure and particle size relative to 

conventional dosage forms. The heterogeneity of the polymeric conjugates may have resulted from the 

polydispersity and varying molecular weights of the polymer content, lack of control over the active site on the 

polymer backbone to which the drug is conjugated and lack of control over the chemo- and regio-selective 

conjugation of bioactive molecule containing multiple functional groups. The usual consequence is non-specific 

drug release profiles which may contribute to the failure at clinical trial stage. Therefore size-controlled rational 

design of polymer-drug nanoconjugate formulation tailored to predictive and controlled drug release would be 

of great value to enhance the propensity of clinical success of polymeric drugs. In this vein the inherent 

heterogeneity in polymeric nanoparticles could be reduced or eliminated by developing polymers with low 

polydispersity index or by conjugating bioactive molecule to the terminal reactive site on the polymer or by 

blocking undersirable conjugation of competing functional groups on the bioactive molecule through the use of 

protection moieties. In the same vein the modifiable physicochemical properties of these polymer-drug 

nanoconjugates (PDNs) including high surface to volume ratios, tunable size, surface functionality and their 

ability to interact with their environment can provide unique platform for the development of novel and more 

effective therapeutic and diagnostic agents for future treatment of difficult diseases such as cancer (40).  

In our opinion apart from the covalent polymer-drug conjugation, the interaction of nanoconjugates with their 

environment through non-covalent forces such as van der Waals, hydrogen bonding, electrostatic, hydrophobic 

and steric interactions should be considered because it may lead to non-intuitive behaviours of the conjugates 

which are critical for designing effective polymeric nanomedicines. We noticed that this phenomenon has not 

received any siginificant research attention in literature. Therefore more attention should be focused on 

quantitative understanding of the non-covalent polymer-drug nanoconjugate with respect to its stabilization, 

transport, drug release mechanism and drug uptake which underpin efficacy and stability of the nanoconjugates. 

These critical factors could reveal new insights into better rational nanoconjugate design and guide future 

criteria for rational formulation design which may accelerate transformation of PDCs into clinically useful 

nanomedicines. Other challenges include difficulty in achieving reproducible batch-to-batch synthesis and 

inadequate analytical tools for characterization of the complex multicomponent polymer conjugates (38,41). 

Therefore it has been difficult to satisfy the drug product quality and regulatory requirements including the 

metabolic fate of the conjugates relative to traditional formulations.  

Current literature is replete with research efforts on quantitative techniques to evaluate homogeneity of the drug 

and ligand distribution in the preparation of PAMAM dendrimers (42,43) and the effect of physical instability 

(aggregation) of HPMA-folate conjugate on folate receptor-mediated uptake (44). Sophisticated analytical 

techniques such as small angle neutron scattering (SANS), 2D 
1
H NOESY and TOCSY NMR and pulsed 

gradient NMR have been used to characterize polymer-drug nanoconjugates (45,46). The release of the drug 

from the polymeric carrier as well as its safety and efficacy, are critical parameters that should also be 

monitored as the nanoconjugates frequently exhibit altered biodistribution and pharmacokinetics (47,48). If the 

release of the drug from the conjugates occurs prematurely during the systemic transport, undesirable side 

effects and toxicities may arise, reducing the overall safety profile of the drug. On the other hand the drug must 
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be released upon reaching the target site of action in order to achieve therapeutic efficacy. Presently anticancer 

drug conjugates Opaxio
®
 ((PGA-paclitaxel conjugate) and Etirinotecan Pegol (NKTR-102) – a PEG-irinotecan 

conjugate (Fig. 2), are in Phase III clinical trials in women with ovarian and metastatic breast cancers 

respectively (49).  

Therefore rational design of polymeric nanoconjugates should provide a critical balance between conjugate 

stability and drug release kinetics which impact their safety and efficacy. Intensive research efforts in this area 

are ongoing and hopefully some polymer-drug conjugates will be approved for clinical use very soon.  
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1.2 Polymeric nanoconjugates: innovative, not innocent drug delivery systems 

 

Ideally, a drug delivery system (DDS) should deliver bioactive molecules to specific site at a specific time and 

in a specific pattern over a specific period of time however it is well documented that the conventional dosage 

forms have not met these criteria hence it has been a huge challenge to achieve effective delivery of drugs to the 

target site. Therefore there have been intensified research efforts to develop novel and innovative drug delivery 

systems that will provide controlled and site specific delivery of bioactive molecules. In this vein, both 

pharmaceutical and chemical approaches have been explored in drug delivery design. The pharmaceutical 

approaches include coating the active drugs with pH-sensitive polymers, biodegradable coatings, time-

dependent delivery strategies and incorporation of drugs into therapeutic systems like liposomes and 

microspheres. On the other hand the chemical approach involves prodrug design in which a latent derivative of 

the drug is prepared, which is not active but is capable of delivering the active drug by chemical or enzymatic 

triggers. The use of macromolecules in prodrugs design as a strategy to achieve targeted drug delivery has 

attracted considerable interest in recent years including natural and synthetic polymers, polysaccharides, 

proteins, lipoproteins, peptides, lectins, antibodies etc. Other polymeric DDS developed include slow release of 

water soluble drugs, enhanced solubility and bioavailability of poorly soluble drugs, delivery of two or more 

drugs from the same formulation, controlled release of highly toxic drugs, targeted delivery systems etc. DDS 

are usually classified in terms of their structures and mechanisms of drug release. For instance in matrix based 

systems, the drug is dispersed in a polymeric matrix and its release is controlled by drug diffusion or matrix 

erosion. In hydrophilic matrices drug release is controlled either by matrix swelling or slow dissolution of the 

matrix while drug release from stimuli responsive systems is controlled by changes in stimuli such as pH or 

temperature. Membrane based systems involves dispersion of drug in the polymer membrane where drug release 

is controlled by diffusion or osmotic pressure.  

Initially the main focus of formulation design was on constant or sustained release DDS in order to enhance 

patients’ adherence especially in the treatment of chronic conditions. The versatile structure of polymers with 

potential opportunities for combined hydrophobic and hydrophilic characteristics as well as favourable polymer-

polymer, polymer-drug and polymer-solvent interactions, provided suitable research platforms to design and 

prepare formulations with specific characteristics and functionalities (50-52). For example polymer-drug 

nanoconjugates (PDNs) are nanosized constructs which exhibit enhanced saturated solubility, high passive 

tumour-targeted drug delivery by the enhanced permeability and retention (EPR) effect and improved 

pharmacotherapy. The uniqueness of PDN includes surface modification of poorly soluble drugs as well as 

control of particle-size, particle size distribution, specific surface area and drug-loading efficiency which are 

crucial parameters that govern excellent clinical performance of poorly soluble drugs including anticancer 

agents. Some examples of the particles size and drug-loading efficiency of anticancer PDNs reported in 

literature are presented in Table 1. This phenomenon provides a platform for developing both new and existing 

polymeric materials and their combinations as drug delivery tools for effective delivery of poorly soluble drugs. 

Some examples of patents for nanoconjugates are presented in Table 2. In this regard, rational design of 

polymer-drug nanoconjugates is vital to achieving the true potentials of polymer therapeutics including 

enhanced clinical success and regulatory approval. 

One area of polymer-drug formulation design that has received less attention is the influence of potential 

pharmacological action of some polymers on the overall therapeutic effects of the active drug molecule. Most 

natural and synthetic biocompatible biomaterials used as drug carriers are thought to be inactive with no other 

role than delivering the active molecule to the target site of action. However many studies have demonstrated 

that some natural polymers such as chitosan exhibit remarkable pharmacological activity and may contribute 

significantly to the overall therapeutic effects of the active molecule. For instance, Bajaj et al., 2012 reported the 

unique ability of chitosan derivative to suppress endotoxin-mediated pro-inflammatory cytokine production in 

macrophages (53). Chitosan (cationic polymer) has also been reported to exhibit hemostatic activity due to its 

ability to interact with the anionic cell membrane of the red blood cells resulting in platelet activation and clot 

formation (54). It promotes wound healing process (55) and shows bacteriostatic activity against broad spectrum 

of microorganisms (56). Since these activities were not anticipated during the formulation design, the effects are 

most often ignored in data analysis which may lead to overestimation of the delivery capacity of the biomaterial 

and/or erroneous prediction of the clinical value of the active drug. It goes without saying that these innovative 

drug nanocarrier systems may not be innocent afterall. Therefore understanding the implications of these 

additional effects in drug product development would be of great value. 
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Table 1: Examples of particle size and loading efficiency of polymer-drug nanoconjugates 

 

Drug Copolymer used Average size 

(nm) 

Loading Efficiency 

(%) 

Reference 

Paclitaxel mPEG-PLLA-PMMD 

 

70 – 90 14.3  (57) 

 

 mPEG-PCL-poly(q-

caprolactone) 

 

< 150 39.58 (58) 

 PCL-PEG-PCL 

 

20.5 

 

4.8 (59) 

 

Doxorubicin 

 

PLGA-PEG 

 

61.48 

 

99.09 

 

 

(60) 

 

 PEG-PLLA 

 

188.43  (61) 

 

 PEG-PBLA 

 

50 – 70 50 - 60 

 

(62) 

 

 PEG-polycaprolactone 

 

20 56.7 (63) 

 PEO-poly(ethylene oxide)-

PBLA 

20 – 30 65 (64) 

 

PEG – polyethylene glycol; mPEG – methoxy PEG; PLLA – poly(L-lactic acid); PMMD – poly(3(S)-methyl morpholine-

2,5-dione); PCL – poly(ε-caprolactone); PLGA – poly(DL-lactic-co-glycolic acid); PLLA -  poly(L-lactic acid); PBLA 

– poly(β-benzyl-L-aspartate); PEO – polyethylene oxide 

 

 

 

 
Table 2: Examples of patents for polymer-drug nanoconjugates 

 

Patent Publication No. Publication 

Year 

Inventors Reference 

Nanoconjugates and 

nanoconjugate formulations 

WO2011079279A3 

 

2011 Cheng and Tong (65) 

 

     

Small molecules ligand-drug 

conjugates for targeted cancer 

therapy 

US20110085974A1 2011 Leland et al. (66) 

 

Nanoconjugates able to cross 

the blood-brain barrier 

 

US20150031745A1 

 

2015 

 

Mirkin et al. 

 

 

(67) 

 

     

Polymalic acid based 

nanoconjugates for imaging 

EP2694117A1 2014 Black et al. (68) 

 

     

Therapeutic Nanoconjugates WO2009038776A1 2009 Manneh (69) 

 

     

Aptamer-coated paclitaxel-

polylactide nanoconjugates: 

Formulation and cancer 

targeting 

WO PCT/US2010/062030 2010 Cheng and Tong (70) 

 

 



9 

 

2.0 Rational design of nanoconjugate formulations 

 

Rational design of polymer-drug nanoconjugates was based on the model proposed in 1975 by Helmut 

Ringsdurf for the delivery of anticancer drugs (35) consisting mainly of five components including a natural or 

synthetic polymeric carrier, low molecular weight hydrophobic bioactive molecule(s), a bioresponsive spacer, 

targeting group and a solubilizing group (Fig 3). The polymer carier should ideally be water-soluble, 

biocompatible (non-toxic and non-immunogenic) and biodegradable as well as exhibiting suitable functional 

groups for the attachment of drug or spacer respectively. If non-biodegradable polymer is used, its size must be 

lower than the renal threshold to ensure excretion in order to prevent undesirable accumulation in the body. 

Soluble polymers with molecular weight below 50,000 Da can be excreted through the glomerular kidney 

filtration providing evidence for their biocompatibility. However selection of suitable polymer(s) and a robust 

conjugation technique are very critical steps in successful polymer-drug nanoconjugate design (71,72). In the 

same vein polymers with maximum molecular weights that are within the renal excretion threshold should be 

considered because polymers exhibit diferrent conformations and levels of hydration in aqueous solutions 

depending on their size and molecular weights (73). It was envisioned that the pharmacologic properties of a 

PDN model could be manipulated by changing the physical and chemical properties of the polymer such as 

molecular weights, coil structure, steric effects, copolymer composition, polyelectrolyte charges, flexibility of 

polymer chain etc. This would provide a template for the design of various PDNs with specific applications. For 

example, introduction of solubilizing groups (e.g. pyrrolidone or acrylamides) into the polymer chain provides 

non-toxic and non-immunogenic characteristics as well as increasing the solubility of poorly soluble drugs 

thereby improving its bioavailability and therapeutic effects. Fast or slow drug release rate can be modulated by 

placing a bioresponsive spacer group between the drug and the polymer chain especially in polymer-enzyme 

conjugates where direct fixation of enzymes to the polymer chain can lead to loss of enzymatic activity (74,75). 

The widely used hydrolysable or biodegradable chemical links between the polymer and bioactive molecule 

(e.g. ester, orthoester, peptidyl, amide, carbonate, anhydride and urethane) must be sufficiently mild to ensure 

effective conjugation and efficient drug release without any adverse effect on its biological activity. It must also 

allow controlled release of the active drug from the nanoconjugate at the site of pharmacological action. The 

linkers should be degraded by a physiological trigger (e.g. change in pH, presence of enzyme such as esterases, 

lipases or proteases) in the intracellular compartment in order to release the drug at the site of pharmacological 

action. On the other hand the linkers should be stable in the blood stream to prevent premature drug release (76). 

Degradability of the polymer has been associated with the type of drug conjugated to the polymer. For example 

when the peptidyl linker, Glycine-Glycine (GG) was used for the delivery of HPMA copolymer-Doxorubicin 

conjugates, it was non-biodegradable (77). However when the same linker was used with HPMA copolymer-

Mephalan conjugate it was biodegradable (78). The first polymer-drug conjugate to undergo clinical evaluation 

was Dextran-doxorubicin conjugate (AD-70, DOX-OXD) (79). The authors conjugated oxidized dextran 

(70,000 g/mol) with doxorubicin to form a Schiff base which was tested in patient volunteers. The trial was 

discontinued due to high liver toxicity at maximum tolerable dose of 40 mg/m
2
 compared with free doxorubicin. 

A more successful clinical trial was observed with the synthetic copolymer N-(2-hydroxypropyl) 

methacrylamide (HPMA). HPMA copolymer-Doxorubicin conjugate (PK1, FCE28068) was prepared by 

binding doxorubicin to the carboxy terminus of the degradable tetrapeptidic linker through an amide bond with 

drug loading efficiency of 8.5%.  In a phase I clinical trial on 36 patient volunteers diagnosed with non-small 

cell lung cancer (NSCLC), colorectal cancer, and anthracycline-resistant breast cancer, only two partial and two 

minor responses were observed at a dose of 80 mg/m
2
 doxorubicin equivalent. The success was based on the 

fact that the typical side effects of anthracyclines such as congestive heart failure were not observed providing 

the rationale for further clinical trials of the conjugate. It was evident in literature that polymer-drug conjugation 

improves the pharmacokinetic profile of poorly soluble drug at the cellular level (8); increases plasma half-life 

and volume of distribution; reduces renal and hepatic clearance; protects the drug against premature degradation 

and introduction of a targeting group provides transport to site of action could boost the therapeutic index of the 

conjugate (80-82). 
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Figure 3: Representation of the components of polymer-drug conjugates. 

 

2.1 Tumour targeted polymer-drug nanoconjugates   

 

The initial focus of PDC design was on the delivery of anticancer agents because they are often limited by poor 

water solubility, metabolic instability and relatively low therapeutic index due to dose-dependent toxicity as 

well as the complexity and severity of cancer progression. Polymeric nanocarriers have been utilized to increase 

therapeutic efficacy of anticancer agents by nanotargeted delivery (passive or active targeting) where more drug 

molecules are available at the target site while systemic drug exposure is reduced (26). In corollary the main 

goal of anticancer therapy is to deliver a dose high enough to achieve cytotoxicity within the tumour tissues 

without any significant toxicity to other vital organs emphasizing the need for targeted drug delivery strategy. 

On the other hand the cascade of pathogenesis of cancer is complex due to the ability of tumour to progress 

from a non-angiogenic to angiogenic phenotype (angiogenic switch). They only become clinically detectable 

after a sufficient tumour mass expansion which is dependent on increased expression of positive (pro-) 

angiogenic regulators secreted by the tumour cells such as vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF), transforming growth factor beta (TGF-β) and platelet derived growth factor 

(PDGF), and decreased expression of negative angiogenic regulators such as thrombospondin-1, endostatin and 

angiostating as well as angiogenic balance within the tumour cells (83-85). Therefore the focus of treatment 

involves prevention of vascular endothelia cells from responding to the range of pro-angiogenic molecules 

secreted by the tumour cells (direct angiogenesis inhibitors e.g. endostatin, vitaxin, angiostatin, and tumstatin) 

and blocking the activity of pro-angiogenic factors or their receptors by indirect angiogenesis inhibitors such as 

gefitinib (Iressa
®
), trastuzumab (Herceptin

®
) and bevacizumab (Avastin

®
). However tumour cells possess 

intrinsic propensity to develop acquired drug resistance due to their genomic instability in addition to the poor 

biopharmaceutical properties of anticancer drugs. These phenomena explain the complications involved in 

delivering active drugs to the tumour cells providing potential research opportunities in tunable therapeutic 

intervention and targeted delivery systems. For example conventional anticancer therapy is transported through 

the blood circulation to all tumour cells which are distant in tumour tissues where they are less accessible to the 

chemotherapy drugs (Fig. 4). Therefore there is need for advanced anticancer drug formulations designed to 

target tumour cells as well as tumour-associated endothelial cells and tumour microvessels which have 

distinctive phenotypic and functional characteristics that are easy targets for selectively designed formulations. 

One strategy is to combine anti-angiogenic agent with anti-cancer agent to provide synergistic inhibitory effect. 

Fixed dose combination of therapeutic agents with different biochemical targets has attracted great research 

interest in the recent past especially for cancer treatment in order to improve their therapeutic effectiveness in 

terms of enhanced efficacy and reduced toxicity as discussed above. 

Anti-angiogenic formulations could be administered more frequently at low doses (metronomic schedule) to 

prevent the undesirable toxicity and side effects such as bone marrow suppression, hypersentivity reactions, 

anaphylaxis, pulmonary toxicity, gastrointestinal disturbances and secondary malignancy which are associated 

with the maximum tolerable dose (MTD) of the anticancer drugs (86). Presently most of the angiogenesis 

inhibitors are poorly water soluble drugs with low therapeutic index and are delivered through systemic routes 

in organic and toxic solvents therefore biodistribution and pharmacokinetics profiles are non-specific. Also the 

chemical instability and short half-life of this class of drugs may reduce their resident time in the tumour cells as 
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well as their therapeutic effectiveness. It is apparent that formulating these drugs as polymeric nanomedicines 

with target-specific recognition moiety to selectively target the metabolically active endothelium that support 

tumour growth and the tumour cells as well as the site-specific release of the anticancer agents will offer 

accumulation in the tumour vasculature; longer systemic circulation time; improved bioavailability; chemical 

stability and improved therapeutic index with minimized systemic toxicity. It is therefore apparent that PDNs 

with a wide variety of structural architecture and chemical properties could be developed to unlock and harness 

the potentials of these nanoconjugates for fit-for-purpose design of more sophisticated advanced polymeric 

nanomedicines. A combination of increasing understanding of the molecular mechanisms of tumour 

pathogenesis and emerging technological advancements has provided insights into new molecular targets and 

opportunity to design more effective polymer-drug nanoconjugates. Examples of polymer therapeutics targeted 

to tumour angiogenesis are presented in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Illustration of transportation of anticancer therapy through blood circulation 
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Table 3: Examples of tumour targeted polymer-drug conjugates 

 

Drug Polymer-drug conjugate Linker Target Reference 

Campothecin HPMA copolymer-campothecin 

(MAG-CPT) 

 

Ester DNA topoisomerase I  (87,88) 

 

 PGA-campothecin (CT-2106) 

 

Amide 

 

DNA topoisomerase I (89)  

 PEG-campothecin 

(pegamothecan) 

 

Ester 

 

DNA topoisomerase I (90,91) 

 Carboxymethyl dextran-

exatecam (IDF 310) 

 

 

Amide 

 

DNA topoisomerase I (92) 

 Cyclodextrin-campothecin  

(IT-101) 

 

Amide DNA topoisomerase I (93,94) 

Curcumin PEG-curcumin 

 

Ester Jun activation domain 

binding 1 (Jab1) 

 

(95) 

Wortamannin HPMA copolymer-WTN 

 

Ester Phosphoinositide 3-

kinase 

(96) 

 

Doxorubicin 

 

Oxidized dextran-Dox (AD-70) 

 

Schiff base 

 

Reactive Oxygen 

Species; DNA 

alkylating 

 

 

(79) 

 

 HPMA copolymer-Dox (PK1, 

FCE28068) 

 

Peptidyl linker Aromatase inhibitor; 

DNA alkylating 

 

(8,97) 

 

 HEMA copolymer-Dox-

galactosamine(PK2, FCE 28069) 

 

Peptidyl linker Aromatase inhibitor; 

DNA alkylating 

 

(81) 

 

Paclitaxel HPMA copolymer-paclitaxel 

(PNU 166945) 

 

Ester Angiogenesis 

inhibitor 

(72) 

 PGA-paclitaxel Ester Angiogenesis 

inhibitor 

(98) 

 

 

 

    

2.1.1 Passive targeting 

 

Tumour-specific targeting is usually achieved by PDNs through enhanced  permeability and retention (EPR) 

effect due to the unique pathophysiological characteristics of the solid tumour including  

i) vascular abnormality such as leaky blood vessels which is likely to allow preferential extravasation of 

circulating macromolecules and  

ii) lack of effective intratumoural lymphatic drainage which can lead to polymer retention and passive 

accumulation of macromolecules and nanosized particles in the tumour tissues.  

This phenomenon has led to increased uptake, accumulation and retention of macromolecules by solid tumours 

up to 100-folds compared to free drug with the prospect of increasing the therapeutic index due to lack of 

intratumoural lymphatic clearance. In contrast, the low molecular weight active drug diffuses rapidly and 

indiscriminately into both normal and tumour cells through the systemic circulation thereby causing undesirable 

side effects and fast renal clearance (11,12,99,100). Size of the polymer carrier is an important parameter when 

designing polymer-drug conjugate because of its influence on the extent of accumulation in the tumour cells and 

the pharmacokinetic profile of the active drug. For example the normal renal threshold is between 30 and 50 

kDa therefore polymers with molecular weight range of 20 to 200 kDa are often used (101). Although the 

optimum size of the polymer-drug nanoconjugate required for effective accumulation in the tumour by EPR 
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effect is not yet known, direct observation of the tumor vasculature has demonstrated a tumor-dependent cut off 

size of 200 nm – 2 μm (102,103) while nanoparticle-dependent studies indicated cut off size of 200 nm – 1.2 μm 

(104). In the same vein polymer nanoconjugates with molecular diameter 5 – 20 nm has been reported to exhibit 

excellent intratumoural penetration (uptake) comparable to liposomes and nanoparticles (105). It is well 

documented that polymer-drug nanoconjugates can increase the therapeutic index of anticancer agents through 

enhanced permeability and retention (EPR) effect (99,100,106-109). Other factors influencing the 

biodistribution of macromolecules include charge density, conformation, hydrophobicity and immunogenicity 

of the polymer. 

 

2.1.2 Active targeting 

The active targeting approach requires incorporation of target-specific recognition moiety (e.g. antibodies, 

antibody fragments, oligosaccharides, hormones, growth factors, ligands, peptides or other small molecules) 

into polymer-drug conjugate to provide selective localization at the target site for effective delivery of the 

bioactive drug. The linker and targeting group must possess appropriate functionality to facilitate effective 

conjugation to ensure its stability in the blood circulation. The major advantage of this phenomenon is the 

physical delivery of the PDNs directly to the target cells ensuring they remain at their intended site of action. 

For example, antibodies provide excellent binding affinity and greater target selectivity than other targeting 

moieties such as oligosaccharides and peptides. However they have a large size which can have significant 

effect on their targeting properties. In this case receptor-active antibody fragments such as recombinant single-

chain variable fragments (ScFv) have been utilized to generate numerous vascular target-specific antibodies 

which have been successfully adapted in cancer chemotherapy. The ScFv, often produced in bacterial cultures, 

have reduced size but they still retain the specificity of the antibody.  In most cases the antibodies or antibody 

fragments were directly conjugated to the bioactive drug molecule, not as targeting group on the polymer-drug 

conjugate (35,110,111). Overall, the selection of appropriate targeting moiety is underpinned by the specificity, 

affinity and binding efficiency of the targeting group as well as a balance between the binding efficiency and 

drug release. It would be interesting to investigate the impact of the conjugation process on the specificity and 

binding capacity of the targeting group. 

An ideal target in a diseased tissue should overexpress unique identifiable cell surface markers compared to the 

normal cells in order to increase the probability of drug binding, cellular uptake and therapeutic effects of the 

nanoconjugates. Several studies have shown that vascular targeted polymer-drug conjugate integrated with 

active homing ligands exhibited strong and selective adhesion to the microvasculature providing a selective 

delivery of high concentration of anticancer agent.  For example HPMA copolymers containing cyclic Arg-Gly-

Asp peptides have been developed for targeting αvβ3 integrins expressed on angiogenic tumor blood vessels 

and other tumor cells. The anticancer and antiangiogenic agent, geldanamycin (aminohexylgeldanamycin), was 

conjugated to the polymer backbone through a lysosome-degradable GFLG (Gly-Phe-Leu-Gly) linker and the 

molecular weight was maintained at 40 kDa to ensure renal clearance after administration (112-116). The 

authors reported significantly higher localization of drug-loaded HPMA copolymer containing the 

arginylglycylaspartic acid (RGD) peptide (target moiety) in tumour cells and tumour growth suppression in 

prostate cancer bearing mice compared to control without a targeting moiety. They demonstrated that careful 

selection of targeting group can enhance the delivery and efficacy of cancer chemotherapy. In similar studies 

peptides that can specifically recognize and selectively bind to tumour vasculature with high affinity have been 

screened for delivery of cytotoxic compounds such as doxorubicin (117) and proapoptotic peptides (118).   

From the foregoing it is apparent that both passive and active tumour-targeted polymer-drug conjugates have 

enormous potential for cancer therapy as they improve therapeutic index of the angiogenic agents by increasing 

their half-life, their water solubility and exposure time to the tumour endothelial cells while toxicity is reduced 

(119). Initially most research efforts were focused on receptor-mediated drug targeting and polymer-drug 

conjugates bearing tumour-specific ligands including antibodies, peptides and saccharides were developed to 

improve selectivity of anticancer agents (19,24). However there is substantial literature evidence that even in the 

absence of the ligands PDC exhibits prolongs blood circulation time and promotes passive tumour targeting by 

reducing the particle size to nanometer range and the enhanced permeability and retention (EPR) effect which 

play a significant role in delivering anticancer drugs directly to the tumour site.  
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2.2 Polymer-drug nanoconjugates targeting other diseases   

 

The novel therapeutic applications of PDNs have been extended to many drugs in various human pathologies 

apart from anti-cancer drugs, especially poorly soluble drugs with low therapeutic index, high toxicity, 

inconsistent pharmacokinetic profile and poor bioavailability. For example phloridzin (PRZ), a competitive 

inhibitor of sodium-glucose cotransporters (SGLT1 in the intestine and SGLT2 in the kidney), is an effective 

antidiabetes drug. However when taken orally phloridzin is almost entirely converted into phloretin by 

hydrolytic enzymes in the small intestine, therefore it is not used orally. Ikumi et al. prepared γ-PGA–PRZ 

nanoconjugate using a nonbiodegradable linker, which protected the drug from enzymatic hydrolysis. They 

reported significant suppression of glucose-induced hyperglycaemia and there was no significant changes in the 

free PRZ after oral administration of the nanoconjugate (120). Peptoids (N-substituted glycine), an endotoxin 

neutralizer have potent antimicrobial activity and is completely resistant to proteolysis. However its poor water 

solubility and nonspecific toxicity have limited its use in systemic treatment of sepsis. Vicent et al. 

demonstrated that PEG-peptoid 7 (PTD7) nanoconjugate containing diglycil spacer (PEG-2G-PTD7) showed 

significantly enhanced solubility and remarkable decrease in toxicity in the macrophages. The nanoconjugates 

also induced significant improvement from sepsis in the murine model, compared with the free drug. The 

authors suggested that nanoconjugate-based endotoxin neutralizers decreased plasma levels of proinflammatory 

cytokines and may provide novel approaches to treatment of sepsis (121). Other applications of polymer-drug 

nanoconjugates include rheumatoid arthritis (122), inflammation (123),regenerative medicine e.g. for wound 

healing (124), ischemia (125) and osteoporosis (126) etc.  

2.3 Types of polymer-drug conjugates 

 

The location of the reactive groups on the polymer chain to which the drug is covalently attached determines the 

type of polymer-drug conjugate that will be produced.  These reactive groups could be located at the end of the 

polymer chain or at pendant positions forming the ‘end group’ and ‘pendant group’ systems respectively (71). 

In the end group systems conjugation can occur at either or both extreme ends of the polymer chain whereas in 

the pendant group system the number of pendant reactive groups on the polymer chain can be controlled to 

accommodate same or different bioactive drugs by using biodegradable spacers (Fig 5). Polyethylene glycol 

(PEG) is the most widely used polymer in the synthesis of end group polymer-drug conjugates because of its 

simple structure, easily activated for conjugation, controlled permeability potentials, non-toxicity, reduced 

immunogenicity and antigenicity, resistance to surface adsorption, enhanced solubility and stability, inexpensive 

as well as prolonged circulation time. It is very popular in protein PEGylation where lysine-, histidine- or 

cysteine- amino group of the bioactive protein is conjugated to PEG by replacing the hydroxyl end group (127). 

For instance PEGylation of bovine adenosine deaminase via amide bond (Adagen
®
) was approved by FDA in 

1990 and commercialized by Enzon Pharmaceuticals Inc for the treatment of severe immunodeficiency diseases 

with 6.4 times blood circulation time than the unmodified protein (128). 

Other examples of PEG- protein conjugation include PEG-L-asparaginase conjugate (Oncaspar
®
) approved in 

1994 for the treatment patients with acute lymphoblastic leukaemia exhibiting lower immunogenicity than the 

native protein. PEG-α-interferon (α-IFN) conjugate (PEG-INTRON
®
) approved in 2000 for the treatment of 

hepatitis exhibited plasma circulation time of 8 times greater than the native IFN protein. PEGylation with 

peptides, oligodeoxynucleotides, antibody and antibody fragments and anticancer drugs have also been reported 

with enhanced pharmacokinetics, superior uptake, longer blood circulating time and increased solubility of the 

unmodified drug respectively (127,129-133). 

The pendant group systems consist of different types of polymers which may contain single reactive pendant 

group or specifically synthesized to control the number of reactive pendant groups along the polymer chain. For 

instance the drug will firstly be chemically linked to an acrylic group through an ester or amide bond followed 

by copolymerization of the monomer-drug complex with other hydrophilic acrylic monomers such as acrylic 

acid, vinyl pyrrolidone, 2-hydroxyethyl methacrylate or dimethyl acrylamide providing a controlled 

hydrophobic-hydrophulic balance (HLB). This balance underpins the stability of the conjugate, copolymer 

swelling and drug diffusion through the polymer matrix. Biodegradable spacers may also be incorporated 

between the drug and the copolymer backbone to prevent premature hydrolysis of the conjugate. The number 

pendant reactive groups may be controlled by preparing alternating copolymers to provide repeating unts of of 

the reactive groups along the copolymer chain allowing different types of bioactive molecules to be linked to the 

same copolymer chain. For example HPMA copolymers have been used widely to prepare water soluble 

pendant group conjugated systems for the delivery of anticancer agents such as doxorubicin which has ben 
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clinically tested, paclitaxel and campothecin (8).  Biodegradable peptide linker (Gly-Phe-Leu-Gly) was included 

in the conjugate design to ensure stability of the conjugate within the systemic circulation as well as premature 

release of the drug after cellular uptake. Because HPMA is non-degradable, the low molecular weight (MW 

30,000 Da) was chosen to ensure renal elimination of the copolymer and tumour-targeting effect was acieved 

through enhanced drug permeability and retention (EPR) phenomenon (134,135). Maeda et al. developed 

SMANCS a conjugate of poly(styrene-co-maleic acid/anhydride) (SMA) and neocarzinostatin (NCS) an 

antitumour protein covalently bonded by amide group for the treatment of hepatocellular carcinoma (136). NCS 

on its own exhibits very short plasma halflife and very toxic causing bone marrow suppression. However 

SMANCS conjugate exhibited hydrophobic characteristics with higher accumulation in the tumour tissue than 

normal tissue as well as reduced immunological reactions. The tumour-targeted and hydrophobic characteristics 

of SMANCS have been utilized in the formulation of highly stable oily preparations (e.g. SMANCS/Lipidol) for 

anticancer drug delivery through tumour-feeding arteries which has been shown to be one of the most efficient 

targeting strategies for this type of formulations (137,138). Research efforts in polymer-drug conjugate design 

with pendant groups of acrylic derivatives has been extended to other bioactive molecules including analgesics 

(paracetamol and salicylic acid) (139), anti-thrombogenic agents (Triflusal) (140), non-steroidal anti-

inflammatory agents (ketoprofen and ibuprofen) (141), vitamin E (142). 
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Figure 5: Typical end-group and pendant polymer-drug conjugate based on HPMA copolymer 

modifications.   
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2.3.1 Multiple drug-polymer conjugates for cancer treatment 

 

Most drug delivery systems including polymer-drug conjugates are used for the delivery of single bioactive 

agent however the increasing complexity of chronic disease conditions and evolution of multiple drug resistance 

render single drug therapy less effective especially in chronic conditions such as cancer and antibiotic 

resistance. Therefore combinations bioactive agents are being explored to co-transport required drugs to the 

target site of action in order improve therapeutic outcome. However, in order to optimize the advantages of 

fixed dose combination therapy, it is important to combine bioactive agents with independent mechanisms of 

action and different cellular targets to provide synergistic or additive therapeutic effects as well as reducing 

potential side effects and drug resistance. Detailed review of the propects of polymer-drug conjugates in 

combination therapy has been presented by Greco and Vicent (143). The authors identified four distinct 

formulation strategies for the polymer-based combination therapy including polymer-drug conjugate plus free 

drug (S1); polymer-drug conjugate plus polymer-drug conjugate (S2); single polymer carrying a combination of 

two or more drugs (S3) and polymer-directed enzyme prodrug therapy (PDEPT) (S4). It was noted that only S1 

has been clinically explored and S3 was favoured because of their ability to simultaneously deliver multiple 

drugs to the same site of action and the potential synergistic drug effects. Example of such multiple drug-

polymer conjugate is presented in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Example of multiple drug-polymer conjugate with multiple spacers for cancer treatment 
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Administration of combination of anticancer drugs with diferent biological targets can improve therapeutic 

index by enhancing therapeutic effectiveness and reducing toxicity. This phenomenon has been explored to 

provide remarkable improvement of therapeutic outcome in the treatment of childhood leukaemia and 

Hodgkin’s disease (143). For example doxorubicin (DNA intercalator) was combined with ara-C (DNA 

polymerase inhibitor) in the treatment of acute nonlymphocitic leukaemia in order to inhibit DNA synthesis and 

repairs. In the same vein administration of leucovorin prior to 5-fluorouracil (5-FU) in colorectal cancer has 

been reported to enhance the affinity and binding of 5-FU to thymidylate synthetase thereby blocking its action. 

Other drug combinations for cancer therapy include adryamicin and cyclophosphamide; cyclophosphamide, 

adryamicin and 5-FU; cyclophosphamide, methotrexate and 5-FU; cyclophosphamide, methotrexate, 5-FU, 

vincristine and prednisone; paclitaxel and carboplatin for ovary and lung cancer; paclitaxel, carboplatin and 

vinorelbin for non small cell lung cancer etc. The ability to tailor different combinations of poorly soluble drugs 

as well as their drug loading efficiency in the polymer conjugate provides a platform for synergistic and bi-

specific effects especially in anticancer therapy. The synergy phenomenon allows administration of lower 

concentrations of each agent, with increased efficacy and decreased toxicity.  They also offer controlled rate, 

extent and duration of drug delivery over a well-defined time interval, providing a platform for custom design of 

nanomedicines to achieve the desired therapeutically effective plasma concentration and avoid large fluctuations 

associated with large and multiple dosing which can lead to undesireable side effects, organ damage, or toxicity. 

2.4 Selection of suitable polymers 

  

Selection of a suitable polymer and a targeting moiety is essential for the effectiveness of the PDNs. Many 

polymers have been investigated as potential candidates for drug delivery however it is important that the ideal 

polymer is inherently biodegradable, non-toxic and non-immunogenic. It should exhibit low poly dispersity 

(high homogeneity) with one reactive group for protein conjugation to avoid crosslinking and many reactive 

groups for small active molecules to achieve appropriate drug loading (conjugation efficiency) and longer 

residence time for prolonged action or to allow effective drug distribution. When non-biodegradable polymers 

are used, those with sufficiently low molecular weight (less than 30 – 40 kDa) should be considered to allow 

renal elimination preventing polymer accumulation in the body. The most commonly used polymers in PDN 

design include natural polymers [chitosan, dextran, dextrin, pullulan, mannan, proteins, hyaluronic acid]; 

synthetic polymers [N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer, poly(ethyleneimine) (PEI), 

ploy(acroloylmorpholine) (PAcM), poly(vinylpyrrolidone) (PVP), polyamidoamines, divinylathermaleic 

anhydride/acid (DIVEMA) copolymer,poly(styrene-co-maleic acid/anhydride (SMA), polyvinyl alcohol (PVA)] 

and pseudosynthetic polymers [polyglutamic acid (PGA), poly(L-lysine), poly(malic acid), poly(aspartamides), 

poly((N-hydroxyethyl)-L-glutamine) (PHEG)] (144-149).   

 

2.4.1 Natural polysaccharides 

 

Chitosan 

Chitosan (CT) is a unique cationic aminopolysaccharide containing randomly distributed β-1,4-linked 

glucosamine and N-acetyl-D-glucosamine units. It is prepared by N-deacetylation of chitin, a natural 

polysaccharide found in the exoskeleton of insects, shrimps, crabs and lobsters as well as fungi (150). CT has 

attracted increasing research attention due to its abundant availability, low production cost, nontoxicity, 

biocompatibility, biodegradability (through hydrolytic degradation by enzymes e.g. lipase, lysozyme, amylase), 

ability to form nanoparticles and hydrogels, ability to enhance drug penetration through mucosal tissues by 

opening tight junctions as well as its bioadhesive properties and inherent pharmacological properties (150). 

Chitosan is soluble in acidic pH where its amine groups are protonated to produce reactive cationic functional 

group (protonated amine D-glucosamine monomeric unit) which provides unique features such as pH-dependent 

solubility, complexation with anionic macromolecules such as proteins and nucleic acids as well as molecular 

interaction with small bioactive molecules. Chitosan has been used in the construction of several drug delivery 

systems including hydrogels, nanogels, nanoparticles, polyelectrolyte complexes (PEC) etc. PECs are formed 

spontaneously by mixing oppositely charged polyelectrolytes in solution without any chemical crosslinker due 

to high hydrogen bonding capacity and high affinity for oppositely charged molecules. For example we have 

reported the thermodynamic changes and surface modification induced by intermolecular interaction between 

the carboxylate ion of ibuprofen and the protonated amino group of chitosan (low energy green technique) 

(151). We demonstrated a remarkably amplified affinity between the chitosan and ibuprofen leading to 

formation of eutectic amorphous nanoparticle complex (nanoplex) which corresponded to higher saturated 

solubility and dissolution velocity dictated by chitosan concentration. Crystalline ibuprofen with rod-like shape 
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and particle size of 453.88 ± 29.8469 x 97.12 ± 5.4267 μm (aspect ratio 5.16 ± 1.15) was converted into 

spherical amorphous nanoplex with particle size of 14.96±1.162 - 143.17±17.5247 nm. We also designed 

ternary chitosan-ibuprofen-gellan nanogel prepared by a combination of electrostatic nanoassembly and 

temperature-dependent ionic gelation techniques. Chitosan-gellan PEC exhibited a core-shell microcomplex 

structure with average particle size of 48.61±18.899 μm (15.93 – 87.45 μm) in which chitosan was the core and 

gellan the shell (Fig. 7). In that study the intermolecular interaction between ibuprofen and chitosan was 

amplified by controlled drug/polymer molar ratio, controlled solubility and charge screening to produce 

ibuprofen-chitosan nanoplex. The ternary nanogel exhibited enhanced skin penetration, permeability and rate of 

transdermal release of ibuprofen (152).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Photomicrographs of polymer-ibuprofen conjugates A) chitosan-gelan polyelectrolyte complex;  

B) pure ibuprofen crystals; gellan-ibuprofen conjugates C) below and D) above critical conjugation 

concentrations; E) chitosan-ibuprofen conjugate; F) chitosan-ibuprofen-gellan conjugate 
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Dextran 

Native dextrans (MW 10
7 
to 10

8
) are naturally synthesized by a large number of bacteria including Leuconostoc 

mesenteroids, Leuconostoc dextranicum and Streptobacterium dextranicum belonging to the family 

Lactobacillaceae. Dextrans derived from Leuconostoc mesenteroids are of particular interest in pharmaceutical 

formulation because they contain 95% a-1,6-glucopyranosidic linkages and 5% 1,3-linkages. Clinically useful 

dextrans are obtained by partial depolymerization of the native dextran by acid hydrolysis and fractionation. 

They are soluble in water, formamide, dimethylsulfoxide (DMSO) but insoluble in alcohol and acetone however 

their high polarity and high molecular weight limits their transcellular absorption across the bilipid biological 

membrane. Dextrans are usually very reactive, for instance they form alkoxide dextranate with alkali and 

alkaline earth metals and may be oxidized to form dextran derivatives.  

Dextran can be attached to the bioactive drug to form a prodrug several techniques including direct linkage, 

attachment through intercalated spacer arm, use of modular ligand and tissue specific receptor ligand. In the 

direct linkage model the active drug would be released in a predictable manner. However the enzyme may not 

have access to the bulky dextran matrix due to their large molecular size therefore the regeneration of the parent 

drug molecule would be exclusively governed by the pH-dependent hydrolysis. Incorporation of spacer arm 

between the drug and the polymer carrier provides opportunity to vary the terminal functional group of the 

spacer arm in order to achieve the desired covalent bond. The spacer arm can also reduce the steric hindrance 

effect of the macromolecule thereby enhancing the accessibility of enzyme into the dextran matrix. On the other 

hand spacer can be used to protect enzyme-labile dextran prodrugs by customized construction that only allows 

pH-dependent hydrolysis to liberate the drug. Dextran-drug conjugates such as dextran esters, dextran ethers 

and dextran amides are reversible while dextran-enzyme conjugates, dextran-metal complexes and dextran-

hormone complexes are irreversible. In any case, the active drug will be released from the dextran prodrug by 

cleavage of the covalent bond between drug and dextran (polymeric carrier) through hydrolysis or enzymatic 

action.  

Literature is replete with application of dextran conjugates in site-specific drug delivery especially in colon-

directed drug delivery. For example 5-Aminosalicylic acid (5-ASA) is an effective drug for the treatment of 

inflammatory bowel disease however it is rapidly absorbed in the stomach and small intestine so that only a 

negligible amount reaches the colon. This problem was overcome by preparing azo-coupled dextran-5-ASA 

conjugate prodrug which effectively delivered 5-ASA to the colon (153).  In a similar study Lee et al. developed 

dextran-nalidixic acid (NA) ester as colon-specific prodrug. They demonstrated that nalidixic acid was not 

detected at pH 1.2 (HCl buffer), pH 6.8 (phosphate buffer) during a 6 h drug release study at 37
o
C however 41% 

of the drug was released when the prodrug was incubated with the cecal contents for 24 h at 37
o
C suggesting 

that dextran-NA may be chemically stable during its transit along the gastrointestinal tract and colon targeted 

delivery was evident (154). Methyl prednisolone was also covalently bonded to dextran using succinic acid and 

glutaric acid as the linkers and hydrolytic kinetic studies showed that the conjugation facilitated the delivery of 

the drug to large bowel (155).  

The effectiveness of tumour targeting is underpinned by the extent of drug penetration into the tumour tissue 

and the rate of drug elimination from the tissue especially in brain tumour where the antitumour agent is 

introduced directly into the intrcrania space. To verify this concept, Dang et al. synthesized methotrexate 

(MTX)-dextran conjugate by covalently linking MTX to dextran through a short-lived ester bond (MTX-ester-

dextran) and a long lasting amide bond (MTX-amide-dextran). They reported that the cytotoxicity of the MTX-

ester-dextran and MTX-amide-dextran were equivalent to unmodified MTX however the conjugation resulted in 

shifting of dose-response curve to a lower dose (156). Also, Ichinose et al.synthesized dicarboxymethyl dextran 

conjugate of cisplatin by immobilizing cisplatin to dextran polymer chain through six-membered chelating 

coordinate bond which exhibited remarkably longer half-life and better tumour inhibition activity than pure 

cisplatin in the colon (157). Charged dextran derivatives such as carboxymethyl dextran, dextran sulphate and 

diethylaminoethyl dextran can also form complexes with several small bioactive chemical entities due their 

huge numbers of hydroxyl groups available for complexation and can be extensively explored as drug carrier 

systems because they are biocompatible, biodegradable, non toxic, non immunogenic and non antigenic. For 

example the conjugate of paclitaxel with carboxymethyl dextran through amino acid linker exhibited better 

antitumour activity than paclitaxel alone (158). The more pronounced effects of cationic conjugates has been 

attributed to the presence of a high load of negatively charged sialic acid residues on cancer cell surface 

facilitating effective cationic conjugate absorption. In our laboratory we have investigated the impact of cationic 

diethylaminoethyl dextran (Ddex) on crystal behaviour and micromeritics properties of ibuprofen in ibuprofen-

Ddex conjugate crystanules (159). We have also investigated the direct effect of ibuprofen-Ddex interaction on 

the solubility, dose distribution, dissolution velocity, pre-compression and compression charactistics of 

ibuprofen (160,161). Pure ibuprofen exhibited poor solubility, poor flow and compression characteristics due to 

its hydrophobic structure, rod-like shape, cohesive and viscoelastic properties. However we noted that Ddex 



20 

 

increased the solubility of ibuprofen by entropy-driven mechanism of solubilization which also translated into 

increased dissolution velocity and dissolution efficiency (complete release) within 168 h at low concentrations 

of Ddex compared with pure ibuprofen. Evaluation of the mechanism of densification during tapping and 

compression processes revealed that the presence of Ddex consistently improved primary and secondary particle 

rearrangement up to 7 folds compared with pure ibuprofen while deformation and fragmentation were limited 

significantly. 

In a similar study we have utilized low energy ‘green’ technique to prepare electrostatic self-assembly of 

ibuprofen-Ddex nanoconjugates for extended release of ibuprofen. We demonstrated that a new eutectic product 

was formed from ibuprofen-Ddex intermolecular interaction producing spherical amorphous nanocojugates with 

average particle size range of 85.20±4.4461 to 157.10±10.0214 nm which also translated into higher dissolution 

efficiency dictated by concentration of Ddex compared with pure ibuprofen (45). 

     

Cyclodextrins 

Cyclodexreins (CDs) are cyclic oligosaccharides containing six, seven or eight glucopyranose units 

ccorresponding to α-, β- and γ-cyclodextrins respectively each containing α-1,4-glycosidic linkages. They have 

a truncated cone structure with a hydrophilic exterior and hydrophobic interior providing a unique hollow cavity 

structure that can host small molecular weight hydrophobic drugs and facilitate their solubilization in aqueous 

medium to improve their bioavailability. This unique structure provides a platform for incorporating various 

bioactive molecules hence their utility values as drug delivery carriers (162). CDs and their derivatives are 

widely used as formulation excipients in more than 35 pharmaceutical products with well established 

monographs in official compendia including United States Pharmacopoeia and National Formulary as well as 

Euripean Pharmacopoeia. When administered orally CDs are poorly absorbed from the gastrointestinal tract so 

they are generally considered safe in orally formulations. However parenteral injections of CDs have been 

reported to cause renal toxicity therefore only α-CD is currently being used in parenteral formulations at very 

low concentrations (163). Toxicity of CDs has been linked to depletion of membrane lipids such as cholesterol. 

Cholesterol depletion could triger alteration of several cell functions (membrane damage) such as cytoskeletal 

organization, compositions of cellular proteins and membrane fatty acids as well as cell morphology. A good 

correlation between solubilization capacity of CDs for cholesterol, their haemolytic activity and cytotoxicity has 

been reported (164) while literature reports on CD-induced apoptosis was not conclusive. Overall it would be 

important to take their effect on cell membrane into cognizance when designing CD-drug conjugates.     

 

2.4.2 Synthetic polymers 

 

Polyethylene glycol  
Polyethylene glycol (PEG) is synthesized by polymerization of ethylene oxide to produce methoxy-PEG or diol-

PEG using methanol or water as initiator respectively. It is an attractive polymer for conjugation because of its 

unique quality attributes such as high solubility in water and various organic solvents, nontoxicity, non-

immunogenicity and tunable polymer chain. It has been widely used in the synthesis of polymer-protein 

conjugates because of its ability to protect protein against enzymatic degradation by steric hindrance reducing 

its uptake by the reticuloendothelial system (RES) (165,166). PEGylation, first described by Abuchowski et al., 

(167,168) is a well established technology approved by the FDA for the modification of protein, peptides or 

non-peptide small bioactive molecules by covalent linking of one or more PEG polymer chains (usually as 1:1 

PEG: protein ratio) in order to improve the pharmacokinetic profile (such as increased plasma half-life and 

longer systemic circulation), increase solubility, stability, bioavailability and therapeutic efficacy of the 

bioactive molecules as well as reducing antigenicity and immunogenicity of non-human proteins. Safety and 

conjugation efficiency of PEG depend on its molecular weight, site of conjugation and the surface chemistry of 

the linkers as well as the presenting clinical condition. Therefore protein PEGylation has provided the platform 

for the development of numerous polymer-drug conjugates for the treatment of various disease conditions. For 

example two PEG-interferon conjugates were approved by the FDA in the early 2000s as subcutaneous 

injections for the treatment of chronic hepatitis C. PEG-interferon α-2a (Pegasys®) consists of recombinant 

human alfa-2a interferon conjugated to a single branched PEG of molecular weight 40,000 g/mol while PEG-

Intron® contains recombinant human interferon alfa-2b conjugated to a single chain PEG of molecular weight 

12,000 g/mol. Neulasta
®
, a PEGylated recombinant granulocyte colony-stimulating factor (G-CSF) containing 

20,000 g/mol PEG was approved in 2002 by the FDA as subcutaneous injection for the treatment of cancer to 

minimize chemotherapy-induced neutropenia.  Neulasta
®
 exhibited prolonged systemic circulation and reduced 

renal elimination of the PEGylated GCSF compared to the unmodified protein which enabled single injection 

per chemotherapy cycle compared with the 10 injections per day required for the G-CSF alone (38,169-171). 
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Recently PEG-interferon conjugates have been developed further to extend their uses to other clinical indication 

for instance PEG-interferon α-2b (Sylatron) has been approved in 2011 as an adjuvant therapy for the treatment 

of high risk melanoma (27) while PEG-interferon-β-1a conjugate is in Phase III clinical trial for the treatment of 

mulstiple sclerosis (28). Other PEGylated products include PEG-asparaginase (Oncaspar®) (172), PEG-

adensoine deaminase (Adagen®) (173), and PEG-growth hormone receptor antagonist (Somavert®) (174). 

Therefore large scale synthesis of PEGs with specific molecular weight and molecular weight distribution for 

various pharmaceutical applications over two decades has generated very useful post marketing database 

relating to their functions and clinical outcomes. Although there were concerns that the cost of manufacture may 

hinder commercialization of PEGylated products, pharmacoeconomic studies have demonstrated their cost 

effectiveness (175). Moreover as the first generation of PEGylated products begin to come off patents the 

advent of generic products will further reduce the cost of manufacturing.  

PEGs are not biodegradable hence conjugates with hydrodynamic diameter of about 7 nm are usually preferred 

in order to avoid renal filtration (176). In the same vein conjugates of this size have potential for systemic 

accumulation resulting in undesirable side effects. They also exhibit low drug loading capacity because they 

cotain only one or two terminal hydroxyl groups on the linear polymer chain that can be activated for 

conjugaton (91). Nonetheless frantic research efforts have been made in this regard by synthesizing branched 

and multiarm PEGs which are biodegradable. For instance, multiarm PEG-camptothecin conjugate (EZN-2208) 

was synthesized by coupling a 40 kDa 4-pronged multiarm PEG with a poorly soluble drug, camptothecin 

(CPT) derivative, a potent topoisomerase II inhibitor. A glycine spacer was used to link the each arm of the PEG 

to the 20-hydroxyl group of CPT. The conjugate exhibited a remarkable increase in aqueous solubility 

(approximately 1000 folds); higher drug loading efficiency (3.7%w/w) compared to the linear PEG-CPT 

conjugate (1.7%w/w); longer blood circulation time with 207-fold increase in tumour exposure and superior 

antitumour efficacy in xenograft models of breast, colorectal and pancreatic cancer. The conjugate (EZN-2208) 

is still under clinical investigation for the treatment of patients with metastatic breast cancer (177,178)    

It is important to note that PEGylated proteins most often lose their pharmacological activity. For instance, the 

PEGylated α-interferon PEGASYS
®
 retains only 7% of the antiviral activity of the native protein however 

pharmacokinetics and in vivo performance were remarkably improved (170). In order to overcome this 

challenge site-specific conjugation techniques have been developed where the enzyme transglutaminase was 

selectively PEGylated at the glutamine moiety of the protein to achieve degradable PEG-protein linkages and 

maximize the return of protein bioactivity (179). The extended polymer chain provides a hydrodynamic radius 

of about 5 – 10 times greater than the native protein thus preventing rapid renal clearance and prolonging the 

systemic circulation time of the bioactive agents. In the recent past special spacers and linkers between the drug 

and the polymer have been developed to release the drugs from the conjugates under predetermined specific 

conditions. Examples include N-cisaconityl acid spacer and hydrazon linker which are cleaved by acidic pH of 

the endosome.  

The other concern regarding PEGylated products is the safety profile. For example intravenous administration 

of PEGylated liposomal doxorubicin (Doxil
®
) has been associated with infusion reactions in less than 10% of 

patient population which can be managed clinically. Hypersensitivity reactions due to PEG-induced anti-PEG 

IgM antibody production have also been reported (180). However the specificity of the anti-PEG antibody and 

standardization of its assay are not very clear and immunosuppressive strategies have been suggested to 

minimize the risk of such reactions. In spite of the current improvements on the application of PEGylation 

techniques and its established clinical values, some PEG conjugates with very high toxicity profile have been 

withdrawn from use or clinical trials. For instance PEG-L-asparaginase (Oncaspar®) presently used in the 

treatment of paediatric acute lymphocytic leukaemia (ALL) showed very poor tolerance during a Phase II 

clinical trial in advanced ovarian cancer patients and the trial was stopped (181). Another example is 

Peginesatide (Omontys
®
) a PEG conjugate of erythropoietin-stimulating peptide designed for the treatment of 

anaemia in haemodialysis patients with chronic kidney disease. The conjugate showed similar activity to human 

recombinant erythropoietins requiring less frequent administration with good safety profiles in patients on 

haemodialysis during the pre-approval clinical trial however higher rates of adverse cardiovascular events were 

reported in patients not on dialysis. The product was approved by the FDA in 2012 but was later withdrawn 

from the market in 2013 due to reports of serious hypersentivity reactions including life-threatening 

anaphylaxis. It has been noted that the mechanisms of the unexpected toxicity of this conjugate are not yet 

understood therefore evaluation and quantification of conjugation-induced changes in physicochemical and 

biopharmaceutical properties of the bioactive molecules as well as batch to batch quality and process control 

would be of great value to understanding such mechanisms and improving polymer-drug conjugate design in 

general.     
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N-(2-hydroxypropyl)methacrylamide (HPMA) 
The drug carrying and delivery capacity of the hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) 

synthetic copolymers have been widely investigated (149,182-184). For example, HPMA copolymer-

doxorubicin conjugate (PK1, FCE28068) was the first of the series of synthetic polymer-anticancer drug 

conjugates developed in 1994 which entered clinical trial as anticancer agents (185,186). PK1 (MW 30kDa) 

containing 8.5%w/w doxorubicin consists of the anticancer anthracycline antibiotic doxorubicin attached to the 

HPMA copolymer backbone through tetrapeptide sequence glycylphenylalanylleucylglycine (GFLG) which is 

degradable by lysosimes (187). PK1 was reported to show remarkable stability as well as increased 

accumulation of doxorubicin in melanoma tumour (17 – 70 folds) and decreased cardio- and bone marrow 

toxicity in animals compared to free doxorubicin. Clinical evaluation of PK1 (phase II studies) demonstrated 

good tolerability with no doxorubicin side effects such as alopecia and cardiotoxicity at low doses up to 180 

mg/m
2
 and 1680 mg/m

2
 respectively. However the clinical efficacy was not significant, only 6 partial responses 

were reported out of 56 volunteers in phase II studies (188). Therefore further research efforts were focused on 

formulation strategies to improve the delivery efficiency of HPMA copolymers including pH-modulated drug 

delivery systems and developing biodegradable forms of the copolymer with well defined physicochemical 

properties including star HPMA copolymer-drug conjugates and multiblock poly(HPMA) conjugates. The 

unique characteristics of HPMA copolymer include ability of the side chains (bioactive molecule, targeting 

groups, reactive groups and spacers) to be attached relatively easily through functionalized comonomers 

providing a wide array of conjugates containing a variety of drugs such as dexamethasone, taxanes, 

campothecin etc. However the cleavage of the polymer-linker must release and reactivate the bioactive molecule 

at the targeted site of action. Therefore the drug linkers are usually designed to ensure hydrolytic stability during 

systemic transport and allow enzymatic cleavage by lysosomal enzymes at the target site. Model enzyme studies 

have shown that factors such as length and sequence of the peptide structure, structural conformation of the drug 

and drug loading capacity played significant roles in the stability and drug release kinetics of the conjugates. 

 

Dendrimers 

Many dendrimers and peptide dendritic polymers have been investigated as biomaterials used in polymer-drug 

conjugation because they have unique structural architecture with tunable physicochemical characteristics 

including surface charge density, surface functionality of the reactive groups, water solubility, conjugate 

stability and resistance to protyolitic digestion. They are hyper branched star-like three dimensional polymers 

with cavities between adjacent branches which provide a platform for conjugation of drugs directly to the 

surface of the polymer and drug encapsulation as well as facilitating solubilization of poorly soluble drugs. 

Compared with linear polymeric analogues such as PEG and HPMA the highly branched and globular 

architecture of these dendritic macromolecules exhibit properties such as increased water solubility, very low 

intrinsic viscosity and nanosize as well as increased cellular uptake and longer blood circulation time leading to 

increased drug accumulation at the target site (tumour). Positively charged poly(amidoamine) (PAMAM), 

poly(ethyleneimine) (PEI) and poly(propyleneimine) (PPI) denrimers can complex with DNA as gene carrier 

while their potential use in the delivery of drug across biological membranes such as transdermal (189), 

intestinal epithelia cells (190), human placenta (191) and blood-brain barrier (192-194) are currently being 

investigated. They exhibit features such as modifiable surface groups, multifunctional moieties and 

monodispersed nanoscale size. Literature is replete with the fact that PAMAM denrimers formed covalent and 

non-covalent complexes with poorly soluble drugs in aqueous solution which enhanced their solubility acting as 

vehicles for targeted drug delivery and controlled drug release (195). Their strong affinity for nucleic acids, 

lipid, proteins and bile salts can lead to disruption of biological activities and potential toxicity. Therefore the 

use of dendrimer based drug delvery systems in clinical evaluations has been limited due to concerns about 

biocompatibility and toxicity. Research efforts are being focused on surface modification of the dendrimer to 

increase their biocompatibility. 

 

Polymeric micelles 

Polymeric micelles are amphiphilic block-copolymers which have ability to self aggregate to form nanosize (1 – 

200 nm) self assemblies consisting of the ‘inner core’ or ‘core’ and ‘outer shell’ or ‘corona’. The inner core 

consists of the hydrophobic block which entraps the poorly soluble drugs and provides stability as well as 

controlled drug release characteristics. The most commonly used hydrophobic block as inner core for polymeric 

micelles include poly(D,L-lactide), poly(L-lactic acid) (PLLA), poly(DL-lactic-co-glycolicacid) (PLGA), 

polycaprolactone (PCL) and poly(β-benzyl-L-aspartate) (PBLA) etc. (60). The corona consists of the 

hydrophilic block which represents the surface functionality which protects the polymeric micelles against inter-

micellar annihilation or precipitation and cell adhesion (196). PEG is the most extensively used hydrophilic 

block coronas in polymer micelles-drug delivery because of its highly hydrophilic nature, widespread 
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acceptance, abundant availability, low molecular weight, availability of a large number of hydroxyl groups, 

non-toxic nature, biocompatibility and ability to resist uptake by the reticuloendothelial system (RES). However 

other hydrophilic polymers such as poly(N-vinyl-2-pyrrolidone) (PVP), poly(vinylalcohol) (PVA), PEI have 

been investigated. As amphiphilic copolymers they form core-like aggregates (micelles) which enclose the 

hydrophobic regions into the inner core surrounded by the hydrophilic corona at specific polymer concentration 

commonly referred to as critical micelle concentration (CMC) in the range of 10
-6

 to 10
-7

 M (197). This unique 

phenomenon provides the platform for encapsulation and solubilization of poorly soluble drugs in the 

hydrophobic region (inner core) of the micelle while the surface can be modified or tailored to achieve desired 

in vivo pharmacokinetic properties of the polymer-drug conjugates. It is however important to note that when 

administered, dilution of the polymeric micelle-drug formulations occurs rapidly in the body resulting in 

reduced concentration of the micelle below its CMC and its stability may be compromised. An ideal polymeric 

micelle exhibits high drug loading capacity, biocompatibility, stability and controlled drug release however their 

CMC and other physicochemical properties are underpinned by the type and length of the hydrophilic and 

hydrophobic blocks. For instance greater hydrophobicity and longer hydrocarbon chain length of the block 

copolymer are associated with low CMCs (198-200).  

Most of the polymeric micelles invstigated did not contain any covalent bond between the drug and the micellar 

carrier hence may not be classified as polymer-drug conjugates. However some covalent polymeric micelles-

drug conjugates have been developed including poly(ethylene glycol)b -poly(ε-caprolactone) polymeric 

micelles containing chemically conjugated docetaxel (201). Recently continuous research efforts have been 

focused on the development of stimuli responsive (smart) and target specific polymeric micelles. Smart 

polymeric micelles have ability to respond to changes in environmental stimuli such as pH, ionic strength, 

temperature or externally applied heat, magnetic or electric fields, or ultrasound through conformational and/or 

electrostatic changes which can influence drug stability and release pattern. For instance the microenvironment 

of certain diseased areas such as tumors, inflammation or infarction are in hypoxic conditions which may cause 

extensive cell death resulting in drop of pH to about 6.5 below the normal blood pH of 7.4 (202,203). Also, 

remarkable pH changes may occur during the the normal physiological processes such as cellular uptake 

through endocytosis where the pH of the late endosomes may drop to 5.0 providing a gradient for triggering dug 

release (204). In these cases the polymer backbone can be made pH sensitive by including acidic (i.e. carboxylic 

and sulfonic acids) or basic (i.e. ammonium salts) groups that undergo protonation or deprotonation in response 

to changes in pH which inturn can lead to site specific drug release. An example of such smart polymeric 

micelles is doxorubicin conjugated to the side chain of the micelle-forming blocks exhibiting both time and pH 

dependent drug release with increased release at low pH (endosomal) conditions (205).  

3.0 Preparation of polymer-drug nanoconjugates 

 

Preparation of polymer-drug nanoconjugates involves either dispersion of the active drug in preformed 

polymers or in situ polymerization of monomers. It is well known that hydrophobic polymers can form 

nanoassembly during precipitation from dilute aqueous solutions at critical association concentration, similar to 

micelles of surfactants. Therefore nanoprecipitation requires water-miscible solvents at low concentrations, 

where the drug molecules are in a dispersed state, to ensure separation into nanodomain when non-solvent is 

added. The commonly used concentrations (e.g. 4 mg/ml) facilitate formation of nanoparticles with uniform size 

distribution. The process of polymer-drug nanoconjugate formation involves hydophobizing the water-soluble 

polymer with the poorly soluble drugs followed by nanoprecipitation at critical micelle concentration. For 

example Hornig et al. dispersed aqueous solution of ibuprofen-sodium salt or naproxen in DMSO under 

continuous stirring for 24 h followed by addition of appropriate quantities of dextran and N,N-

carbonyldiimidazole (CDI) with continuous stirring for 24 h at 80
o
C to allow reaction between the drug and the 

polymer. The final product was isolated by precipitation in large volume of water and washed several times 

followed by vacuum drying (206). This is a simple process however complete removal of the residual amount of 

organic solvent cannot be assumed. Therefore an efficient approach for complete exchange of solvent against 

water such as dialysis is recommended. We have utilized a combination controlled intrinsic solubility, 

polymer/drug ratios and charge screening techniques (dialysis) to prepare ibuprofen-Ddex and ibuprofen-

chitosan nanoconjugates at room tempearature without any organic solvent or toxic chemical initiator, providing 

a platform for low energy green and environmental friendly techniques (45,151,152). 
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3.1 Dispersion of active drug in preformed polymers 

 

Several methods involving dispersion of drugs in preformed polymers that have been successfully utilized to 

prepare polymeric nanoparticles are discussed below. 

 

3.1.1 Solvent emulsification-diffusion (SED) 

 

SED involves preparation of oil-in-water emulsion. The  oil phase (volatile organic solvent) containing the 

polymer and drug is emulsified with the aqueous phase containing the stabilizer (usually PVA) for a 

predetermined period of time to form primary emulsion using a high shear mixer. Dichloromethane, acetone, 

methylene chloride, ethanol, chloroform and tetrahydrofuran (THF) have been widely used as the volatile 

organic solvents however ethylacetate is now preferred because of its better safety profile. Two emulsification 

strategies are possible including single emulsions e.g. oil-in-water (o/w) and double emulsions e.g. water-in-oil-

in-water (w/o/w). These techniques usually require high speed homogenization or ultrasonication. The emulsion 

is then dispersed in large volume of water under continuous magnetic stirring at room temperature or under 

reduced pressure to allow diffusion and evaporation of the organic solvent leading to the formation of 

nanoparticle suspension. The nanoparticles are recovered by ultracentrifugation and washing with distilled water 

followed by lyophilization to obtain the solid polymer-drug nanoconjugates. Selection of organic solvent is 

critical to a successful formation of the nanoconjugates. For example partially soluble organic solvents (e.g. 

ethyl acetate, polyethylene glycol) that can dissolve both drug and polymer as well as easy to be removed safely 

are preferred. Also, the type of solvent, process parameters such as temperature, solvent evaporation technique, 

surfactant concentration, molecular weight of polymer, volume of internal aqueous phase can influence the 

particle size (PS), particle size distribution (PSD), zeta potential, polydispersity index and drug loading 

efficiency. This technique is most commonly used for the preparation of solid-lipid and polymeric 

nanoparticles. For example Niwa et al. prepared nafarelin-loaded PLGA nanospheres using a novel emulsion 

phase separation method as formulation strategy for encapsulation of hydrophobic drugs (207,208). As 

mentioned above, complete removal of the organic solvents cannot be assumed hence green environmentally 

friendly solvents are often preferred. 

 

3.1.2 Nanoprecipitation or solvent displacement  

 

This method is based on interfacial deposition of polymer after the displacement of the organic solvent (partially 

soluble in water) from a lipophilic solution. This process involves rapid diffusion of the organic solvent into the 

aqueous phase which decreases interfacial tension between the two phases and increase in surface area. This 

phenomenon facilitates formation of fine droplets of the organic solvent even in the absence of mechanical 

stirring. The main disadvantage of this technique is low drug-entrapment efficiency especially for water soluble 

drugs. However modification of pH and ionic strength enhanced the drug loading efficiency of highly water-

soluble procaine hydrochloride-loaded PLGA nanoparticles as reported by Fessi et al. (209). In most cases the 

solvent that gives the highest solubility of the chosen drug is selected however solvent-stabizer interaction 

should be taken into cognizance. Literature is replete with different techniques of controlled precipitation for 

drug loaded nanoparticles. For example NanoMorph
®
 technology has been used for many drug molecules which 

are in preclinical studies (210). The process involves preparing a suspension of the drug in organic solvent at 

higher temperatures to form a solution followed by a rapid mixing with a cooled aqueous solution containing the 

stabilizer in order to induce rapid nucleation and form spherical amorphous nanoparticles. When external factor 

such as ultrasonic waves is coupled with precipitation or any altered process parameter that could facilitate high 

gravity reactive precipitation, smaller PS and narrow PSD are often achieved (211).  

 

3.1.3 Salting-out 

 

This technique is widely used because of its high yield potential, simplicity of operation, quick run and purity of 

final product. It does not require thermal treatment hence could be useful for the incorporation of thermolabile 

drugs. As described by Allemann et al., the process entails the addition of a hydrophilic polymer stabilizer to a 

saturated solution of electrolyte (e.g. sodium chloride, calcium chloride and magnesium acetate) containing 

PVA as stabilizer, to form a viscous gel without the use of any high shear forces or surfactant. The polymer and 

drug are dissolved separately in organic solvent, usually acetone because of its solubilizing characteristics and 
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its ability to separate out from aqueous solution during salting out process. Subsequently the viscous gel is 

added to the organic phase with continuous stirring to form o/w emulsion. Water is then added in sufficient 

quantity to allow complete diffusion of acetone into the aqueous phase (salting out of the organic solvent) 

resulting into the formation of nanospheres, followed by cross-flow filtration to remove the electrolyte and 

organic solvent. In theory, dilution of the emulsion in a large volume of water reduces the concentration of the 

salt and electrolyte in the continuous phase leading to reverse salting out effect and precipitation of the polymer 

to produce the nanoparticles (212). It has been reported that poly(trimethylene carbonate) (PTMC)-

dexamethasone nanoconjugate produced by salting out technique exhibited a size range of 183 – 251 nm and 

that the effect of polymer concentration and stirring rate on the particle size were less prominent compared to 

single emulsion technique (213). Other techniques include supercritical fluid technology; dialysis; micro- and 

nano- encapsulation; surface-mediated drug loading such as electrostatic drug loading and hydrogen bond-

stabilized drug loading; diffusion mediated drug loading etc.  

3.2 Polymerization of monomers 

 

On the other hand methods involving polymerization of monomers include emulsion polymerization (214); 

miniemulsion polymerization (215); microemulsion polymerization (216); surfactant-free emulsions 

polymerization (217); interfacial polymerization (218); free radical polymerization (219) etc. We recommend 

that the choice of any of these techniques should be governed by critical quality attributes including safety 

profile, tunable degradation kinetics, ease of preparation, drug loading efficiency, efficient drug release kinetics, 

site-specific drug delivery and therapeutic effectiveness. 

4.0 Drug loading strategies 

 

Although there have been significant advancements in synthesis, characterization and in vivo therapeutic effects 

of polymer-drug conjugates, a successful loading of poorly soluble drug onto water soluble polymer and 

quantitative evaluation of the underpinning factors dictating their tunable size, stabilization, transport and drug 

delivery have been difficult. These factors which include physicochemical properties of the drug and polymer, 

method of drug loading, the local environment such as type of solvents, ionic strength, pH, temperature etc. are 

crucial in designing polymer-drug conjugates with controlled release profiles and predictable therapeutic 

effectiveness.  

In most cases, drug loading capacity is underpinned by either covalent or non-covalent interaction between the 

polymer and drug. Covalent approach involves diffusion based loading strategy to form chemically bonded 

conjugates where the binding sites must be accessible and protected against possible hinderances such as 

electrostatic repulsion, steric repulsion, entropic repulsion etc. On the other hand non-covalent systems 

involving dynamic association (including hydrophobic, electrostatic, hydrogen bonding and steric 

immobilization) between drug and polymeric carriers within their local aqueous environment allow the loaded 

drug to diffuse to the surface of the corona and the target environment during drug delivery (220,221). The 

overall balance between these cooperative forces within the polymer-drug system is vital to the architecture, 

conformational flexibility, thermodynamic stability and the drug release mechanism from the conjugate. It is 

important to note that both covalent and non-covalent approaches require optimal loading capacity and efficient 

drug delivery at the target site of action; however which of the forces is dominant will govern the relative 

amount of bound drug, conjugate behaviour, drug release profile as well as therapeutic effectiveness of the 

nanoconjugate. It is apparent that exploring the impact of both covalent and non-covalent forces in polymer-

drug nanoconjugate systems on drug loading efficiency, conjugate stabilization, conjugate transport and uptake 

as well as therapeutic effectiveness would provide a platform for future rational formulation design criteria that 

could facilitate transition of polymeric nanomedicines into clinical use. 

Recent pharmaceutical research efforts have shown that design of polymer-drug conjugate formulations at 

molecular level are superior to conventional techniques in terms of therapeutic efficacy because of their ability 

to solubilize the hydrophobic drug, increase drug load, maintain the integrity of the polymer-drug complex 

under different thermodynamic and mechanical conditions, facilitate transport and control drug release at 

targeted site. For example one of the most widely used polymer in preparation of polymeric nanoparticles for 

the delivery of anticancer drugs is poly(lactic acid) (PLA) because of its excellent safety profile, tunable 

degradation kinetics and ease of synthesis (222). PLA-drug nanoconjugate has been prepared by co-

precipitation technique however the naoconjugates exhibited some formulation challenges such as ‘burst’ drug 
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release, low drug loading capacity and heterogeneous composition.  These formulation challenges contributed to 

the difficulty in clinical translation and application of PLA-drug nanoconjugates. 

In order to address these challenges, Tong and Chen developed PLA-drug nanoconjugates using drug-initiated 

ring-opening polymerization (ROP) of lactide followed by nanoprecipitation which enhanced loading efficiency 

remarkably as well as controlled drug release kinetics, narrow particle size distribution and negligible ‘burst’ 

drug release (223,224). The authors used low molecular weight PLA to achieve high drug loading however 

stability of nanoconjugates could be of great concern because low molecular weight PLA with short polymer 

chain has low polymer saturation point (psp) and could limit PLA-drug interaction which could lead to 

nanoconjugate disassembly. Increasing the hydrophobicity of PLA is one possible solution to enhance polymer-

drug interaction and improve the stability of nanoconjugates. However, the side-chain methyl groups of PLA 

cannot be further modified making it difficult to modulate the hydrophilic/lipophilic balance of PLA.  Therefore 

drug loading of polymeric nanoparticles prepared from conventional coprecipitation of drug and polymer are 

usually very low. For example, Yin et al. (225) used camptothecin (Cpt)/mPEG-PheLA100 (5:95w/w) diblock 

copolymer to prepare Cpt-loaded nanoconjugates which exhibited particle diameter of 134 nm and 

polydispersity of 0.27 while drug loading efficiency was 28%. When they changed the Cpt/mPEG-PheLA100 

ratio to 25:75w/w the drug loading efficiency decreased to 5.5% indicating that increasing the amount of drug 

beyond the polymer saturation point will decrease conjugation efficiency. The authors also utilized hydroxyl-

containing anticancer drugs (camptothecin (Cpt), paclitaxel (Ptxl), docetaxel (Dtxl) and doxorubicin (Drb)) to 

initiate controlled ring-opening polymerization of phenyl O-carboxyanhydride (Phe-OCA) derived from L-

phenylalanine in order to enhance non-covalent hydrophobic characteristics and drug loading efficiency of the 

polymer. They prepared the drug-poly(Phe-OCA) conjugates (Cpt-PheLAn, where n is the degree of 

polymerization) by nanoprecipitation followed by self-assembly of Cpt-PheLAn conjugates in water to form 

nanoconjugates with well controlled physicochemical properties. They reported that poly(PheLA-OCA)-Cpt 

nanoconjugates exhibited  100% drug loading efficiency at PheLA-OCA/Cpt ratios of 25:1; 50:1 and 100:1 with 

narrow particle size distribution (100 – 125 nm), sustained drug release profiles without ‘burst’ drug release, 

remarkable stability in human serum with negligible aggregation and controlled cytotoxicity compared with 

PLA nanoconjugates  (225).  In this case it is possible to predict the drug loading efficiency from the PheLA-

OCA/Cpt ratio used during polymerization. Theefore it is very important to control vital parameters such as 

hydrophilic/hydrophilic balance, polydispersity index and polymer-drug ratios to be able to tune the particle 

size, drug loading efficiency, drug solubility, drug release profiles, biodistribution, pharmacological activity and 

toxicity of the nanoconjugates. Further examples of polymer-anticancer nanoconjugates with their particles size 

and drug-loading efficiency are presented in Table 1. 

In similar studies Hornig et al., 2009 reported drug loading efficiency of 37 to 71% for a chemically synthesized 

ibuprofen-dextran (dextran ester) conjugates (206). Also 30% loading efficiency of ibuprofen in polymer-coated 

SiO2 particles (226); 10% ibuprofen loading in lipid nanoparticles e.g. smectic cholesterol ester nanoparticles 

(227) and 9% ibuprofen in Eudragit polymeric nanoparticles (228) have been reported. The core-shell 

ibuprofen-Ddex nanoparticles prepared by complex coacervation technique also contained 32% ibuprofen (229). 

Jiang et al. (230) prepared ibuprofen-loaded Ddex nanoparticles with an average of 200nm size and 73-74% 

loading efficiency using Ddex and polylactide polymers crosslinked with glutaraldehyde. In all these studies 

toxic chemical reagents such as glutaraldehyde, anhydrous tetrahydrofuran (THF), dimethylsulfoxide (DMSO), 

N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), methanol, ether and acetone were used 

which may constitute some safety and environmental concerns and non of the reports provided an account of the 

residual amount of organic solvent in the final product. Although the International Committee for 

Harmonization (ICH) has published a guideline (ICH Q3c) stating the limits for level of residual solvents 

allowed in drug products during normal manufacturing processes as supported by safety data and toxicity (ICH, 

2011), solvents trapped within complex molecular structures of the conjugates are usually difficult to identify 

and quantitatively assessed. In an effort to avoid the use of organic solvents, we have utilized controlled 

electrostatic self-assembly in aqueous media to prepare ibuprofen (IB)-diethylaminoethyl dextran (Ddex) 

nanoconjugates (45) and ibuprofen (IB)-chitosan (CT) nanoconjugates (152). The intermolecular attraction 

between IB and Ddex/CT was amplified by optimizing the chemical potentials of both drug and polymer with 

controlled drug/polymer ratio, order of drug/polymer addition, critical association concentration (cac), intrinsic 

solubility (pH modulation) and charge screening (dialysis). These simple low energy green processes converted 

the rod-like ibuprofen crystals (453.88 ± 29.8469 x 97.12 ± 5.4267 μm) into nanoconjugates with particle size 

range of 85.2 ± 4.4461 to 157.10 ± 10.0214 nm, however they associated to form loose aggregates whose size 

increased from 323.30 ± 11.7144 to 1009.12 ± 28.7991 nm with increasing concentration of Ddex. The drug 

loading efficiency of IB-Ddex nanoconjugates increased from 91.60 ± 0.1617% at 1:0.5 ibuprofen-Ddex weight 

ratio to a maximum of 99.65 ± 0.42777 % at 1:4 weight ratio followed by a steady decrease. Similarly, the IB-

CT nanoconjugates exhibited spherical nanostructures with remarkable decrease in particle size (p < 0.05; n = 
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120) as concentration of chitosan increased (Figure 7E, 6F), losing the rod-like crystalline structure of pure 

ibuprofen. As chitosan concentration increased, particle size of IB-CT nanoconjugates decreased to sizes within 

nanometre range (14.96±1.1621 – 143.17±17.5247 nm) however loose physical aggregates of size range 223.58 

± 10.5762 to 701.33 ± 33.1684 nm were noted with increasing concentration of chitosan. A maximum of 98.75 

±5.6619 % drug loading efficiency was achieved at 26.24 x 10
-3

 g/dm
3
 chitosan similar to the trend of Ddex. We 

also investigated ternary polymer-drug-polymer conjugates as multifunctional controlled transdermal drug 

release strategy for poorly soluble drugs (151). The study focused on preparing a ternary ibuprofen-chitosan 

nanoassembly core in gellan shell in order to control the release properties of the nanoencapsulated ibuprofen. 

We noted that chitosan-gellan polyelectrolyte complex (PEC) without ibuprofen produced spherical core-shell 

microparticles between 15.93 and 87.45 μm (Figure 7A). The maximum drug loading efficiency obtained in the 

ternary nanoconjugates was 96.67 ± 8.4838 %.  

From the foregoing, it is obvious that exploring the chemical potentials of polymers and bioactive agents to 

amplify and control polymer-drug conjugation at molecular level can produce new generations of polymeric 

nanoconjugates with well defined and tunable architecture. However specific parameters such as molecular 

weight, polydispersity, charge density and hydrophilic-hydrophobic balance must be well controlled in order to 

modulate the conjugate biodistribution, fate, biological activity and toxicity. Also, design of innovative 

polymer-drug nanoconjugates with targeting potential as well as validated techniques for conjugate 

characterization would be crucial for successful clinical and regulatory approval.   

We have noted some research efforts on formulation factors such as type of drug loading solvents, hydrogen-

bond stabilized drug loading and electrostatic drug loading, however it is important to note that optimization of 

polymer-drug conjugate design requires understanding of the interaction between polymer and drug and its 

impact on the physicochemical properties of the drug. In theory a higher drug loading efficiency and 

stabilization are desirable for therapeutic success however the number of accessible binding sites (polymer 

saturation point), critical association concentration (cac) of the drug and polymer as well as drug diffusion 

capacity may limit drug loading efficiency significantly. Currently research attention is being focused on 

polymer conjugates bearing both diagnostic and therapeutic agents to provide multifunctional carrier systems 

with potential combinatorial advantages.   

In order to improve the physical, technical and biopharmaceutical characteristics of ibuprofen we have explored 

temperature quenching technique in combined aqueous crystallization and in situ granulation of ibuprofen to 

prepare ibuprofen-Ddex conjugate. It was noted that the intermolecular interaction between ibuprofen and Ddex 

produced a closely packed conjugate crystanules of ibuprofen crystals within the polymer matrix (Fig. 8A, 8B). 

On the other hand the self assembly technique produced a core-shell structure where ibuprofen molecule was 

internalized within the matrix (Fig. 8C, 8D). In this case the presence of Ddex changed the crystal habit from 

rod-like crystalline powder to self-assembled spherical, plate-like and amorphous interpenetrating crystal-

granule conjugates (crystanules) with remarkably reduced crystal size and controlled (extended) release profiles 

relative to pure ibuprofen.   
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FIGURE 8: SEM Micrographs of internalized ibuprofen in Ddex spherical structure using combined 

crystallization and granulation A) below and B) above melting point of ibuprofen; C) low energy self-assembly 

technique and  D) high energy conjugation technique 

 

5.0 Optimization of nanoconjugates formulations 

 

Formulation of polymer-drug nanoconjugates involves solvent diffusion technique where a solvent-in-water 

emulsion with partial water-miscibility is prepared and the bioactive molecules is nanosized by dissolving it in 

the solvent which is then added to a nonsolvent or by solvent evaporation to precipitate the nanoparticles in the 

presence of polymers or surfactants as stabilizing agents. It is important to note that selection of the solvent and 

stabilizer is critical to producing conjugates of nanometre range. In general, solvents with high water miscibility 

and stabilizers that can produce stable emulsions are usually preferred (231). The nanosized drugs can also be 

covalently or non-covalently conjugated to the polymer backbone directly or via biodegradable spacers or 

linkers as discussed above. For example Hornig et al. prepared dextran-drug conjugates by functionalizing 

water soluble biopolymer dextran with poorly water soluble drugs (ibuprofen and naproxen) through in situ 

activation of of the carboxylic acid group with N,N-carbonyldiimidazole (CDI) to produce hydrophobic 

derivative which self-assembled by nanoprecipitation into nanoparticles with 37 – 71% drug loading efficiency 

(206). In this case the degree of substitution (DS) and the preparation technique dictate the particle size, particle 

size distribution, polydispersity index (PDI) and drug loading efficiency of the resulting nanoparticles.   

The robustness and stability of nanoconjugate formulation is underpinned by various formulation and process 

variables including selection of appropriate solvent, appropriate electrostatic and steric stabilizers and their 

optimum quantities as well as suitable polymer to drug ratio. The commonly used steric stabilizers are polymers 

while the electrostatic stabilizers include surfactants and electrolytes. For instance a suitable working polymer to 

drug ratio as a steric stabilizer is 0.05:1 to 0.5:1 however this should be investigated for each specific 

formulation. Higher concentrations of electrostatic stabilizers above the plateau of the adsorption isotherm can 

decrease the diffuse region of the electric double layer leading to a decrease in zeta potential and decreased 

physical stability. It is important that stabilizers accumulate at the interface of the nanosized drug particles to 

A 
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provide steric or electrostatic barriers however the type and amount of stabilizers do have remarkable effects on 

the physical stability and in vivo behaviour of nanoconjugates. For example orally admistered nanojugates may 

come in contact with the electrolytes in the gastro intestinal tract reducing electrostatic stability in vivo therefore 

optimal concentration of stabilizers or mixture of stabilizer is important to prevent such in vivo instability.  

 

5.1 Quality by Design (QbD) principles 

 

Pharmaceutical formulation of polymer-drug nanoconjugates is a complex and multistage process, therefore in 

order to produce the best nanoconjugate formulation the relationship between controllable formulation variables 

and the critical quality attributes must be well understood. One approach to this phenomenon is by changing one 

variable at a time (OVAT) while keeping the others as constant which may be laborious, expensive, time-

consuming with unpredictable errors and sometimes not reproduceable from batch to batch. Therefore a more 

efficient and economical systematic approach that utilizes statistical tools is required to predefine quality target 

product profile (QTPP) and the overall desired product quality based on excellent understanding of formulation 

and process variables. This approach, Quality by Design (QbD), has been explored by pharmaceutical industry 

to identify and evaluate the best practices for key elements in drug product development including Design of 

Experiment (DoE), risk assessment, process analytical technology (PAT), critical quality attributes (CQAs), 

QTPP and process characterization. The concept provides the rational balance between experiments, resources 

and time required for pharmaceutical formulations however it requires a sound understanding of the relationship 

between the vast number of possible formulation and process variables as well as their combined effects on 

product quality, safety and therapeutic efficacy with specific cognizance of quality risk management (QRM) in 

order to optimize formulation design and process techniques (232). Design of experiment is used to construct a 

design space where multidimensional interactions and combinations of input variables and process parameters 

are interrelated to demonstrate the influence of several independent variables on the system performance which 

may not be feasible with the traditional OVAT approach. One of the most popular DoE utilized in 

pharmaceutical development is the Response Surface Methodology (RSM) involving generation of 

multifactorial or polynomial mathematical relationships within and among the variables followed by mapping of 

the response within the experimental domain in order to select the optimal process parameters. Examples of 

RSM include Box-Behnken statistical design (BBD), central composite design, three-level factorial design and 

D-optimal design however BBD is more cost-effective because it requires fewer experimental runs and reduced 

time of optimization process. In this case it is possible to utilize the statistical design of experiment priciples to 

screen and optimize formulation variables identifying the desirable combination of excipients within the design 

space for a model drug-polymer nanoconjugate specific for the indicated therapeutic activity.  

For example as mentioned above, the architecture of polymer-drug nanoconjugates is maintained by either weak 

non-covalent or strong covalent bonds which may be broken prematurely either during storage by temperature 

changes or by pH changes and enzymatic action in vivo leading to nanoconjugate instability. Therefore 

formulation of polymer-drug nanoconjugates requires a thorough control of process parameters and formulation 

variables such as type of stabilizer, stabilizer concentration, polymer/drug ratios and processing factors such as 

mixing time, mixing rate, temperature, ionic strength, pH etc. because stability of the final product is critical to 

its safety and efficacy in vivo.      

Application of QbD approach in polymer-drug formulation will provide a unique opportunity of continuous 

quality improvement that is required for safer, elegant and more effective product with excellent quality. The 

uniqueness of this approach is underpinned by the fact that the product and process performance characteristics 

are scientifically designed to meet the specific objectives; therefore the risk of failing to achieve the desired 

clinical attributes is quite low. The International Conference on Harmonization (ICH) Q8, Q9 and Q10 

guidelines present the principles and strategies for the implementation and continuous improvement of QbD 

(233-235). 

Crcarevska, et al. utilized the QbD concept to develop optimized microsponges as drug delivery carrier for 

topical gels using double emulsion-solvent diffusion technique in a rotor-stator homogenizer. They identified 

and justified the QTPP parameters (dosage form, route of administration, dosage strength, pharmacokinetics, 

stability, drug product quality attributes and container closure system) relative to the available literature data. 

They concluded that the relationship between the identified critical process parameters (CPP) and critical quality 

attributes (CQA) such as particle size and pasticle size distribution was well defined within the design space 

using one factor response surface method of DoE. However the residual organic solvents (acetone, class 3 and 

dichloromethane, class 2) in the final product (microsponge gel) as well as the degradation products may be 

critical to the safety of the product (236). Visser et al. also optimized the extemporaneous formulation of 

orodispersible films (ODF) using the QbD approach. The design space was determined using the Design 
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Expert
®
 Software with predefined minimum and maximum CPP values. They demonstrated the influence of the 

CPPs on the CQAs using rational design of ODF, for example, increasing amount of glycerol rendered the ODF 

stickier which resulted into an undesirable decrease in tensile strength but a favourably low Young’s modulus. 

They concluded that the optimal formulation for drug-loaded ODFs require slightly higher percentage of 

hydroxypropylmethyl cellulose (HPMC) (9.81 - 9.84%) and lower percentage of glycerol (12.27 – 12.35%) 

(237) compared with 9.0 and 22.1% previously reported for HPMC and glycerol respectively (238).  

Nanoconjugate formulation presents various challenges such as ‘burst’ drug release profile of 80 – 90% drug 

release within the first 10 h which could lead to systemic toxicity. Also, very low loading efficiency (1 – 

5%w/w) is common in nanoconjugate systems, requiring large amount for therapeutic activity.  For example, 

encapsulation efficiency of PLA-drug nanoconjugates varies from 10 to 90%w/w depending on the amount and 

intrinsic properties of the drug as well as its interaction with the polymer. Free non-conjugated drug may self-

aggregate within the conjugate which may be dificult to remove, resulting in large heterogeneity in PS and PSD. 

Presently there is limited application of QbD principles to systematic development of nanoconjugates in 

literature. However in order to address these problems, many researchers have focused on ring opening 

polymerization (ROP) of lactide (LA) followed by nanoprecipitation of the resulting PLA-drug conjugate (223-

225). The drug release from the nanoconjugate was tuned by controlled cleavage of the lactate ester bond 

between the drug and polymer by hydrolysis in the physiological solution. This technique increased loading 

efficiency remarkably to 100%w/w with negligible ‘burst release and narrow PSD. However since PLA is 

hydrophobic, water and ions (H
+
 and OH

-
) do not have access to the ester linkage resulting in slow drug release 

profile. For example only 50% of camptothecin (CPT) was released from CPT-PLA nanoconjugate in phosphate 

buffer saline after two weeks at 37
o
C. Although this phenomenon can reduce side effects of CPT, it may be 

difficult to achieve maximum plasma concentration for therapeutic activity. In order to improve the efficacy of 

CPT-PLA nanoconjugate CPT was conjugated to terminal carboxylate group of the polylactide via hydrolysis-

labile amino ester linker, to facilitae hydrolysis of the ester, using ROP technique. This was followed by 

coprecipitation with methoxy-poly(ethylene glycol) to facilitate self-assembly into nanoconjugates with well 

controlled physicochemical properties such as PS < 100nm; narrow PSD and controlled release kinetics. 

Improved release of CPT was reported without burst release.   

6.0 Nanoconjugate characterization 

 

The inadequate characterization of polymer-drug conjugates in literature has been linked to their poor 

preclinical results and failure of being transformed into clinical use (38). Some important parameters 

underpinning the physicochemical characteristics and pharmacological properties of PDCs include molecular 

weight and polydispersity of the polymer, conjugates’ particle size (PS) and particle size distribution (PSD), 

conjugates stability during manufacture and storage, drug loading efficiency, polymer-drug interation, drug 

release profiles and mechanism etc. Generally hydrophilic polymer carrying hydrophobic drug payloads have 

intrinsic tendency to form intramolecular aggregates and intermolecular interaction which may influence the 

limits of detection of the active drug by the assay techniques used and a consequent significant effect on the in 

vitro assay results. Current research efforts are exploring new quantitative analytical tools for the 

characterization of complex PDCs. Nanoconjugates are usually characterized by particle size (PS), particle size 

distribution (PSD), homogeneity and shape using dynamic light scattering (DLS) and scanning electron 

microscope respectively. The physical and chemical interaction between polymer and drug can be evaluated by 

Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies while thermal 

properties such as crystalline transformation, melting and degradation tempetures are investigated by 

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) and stability profiles are 

determined by accelerated thermal and photo stability of the nanoconjugates. By varying the formulation and 

process variables the particle size and their distribution can be tuned precisely. For example PS and PSD of the 

nanoconjugates strongly depend on the solvent used, concentration of the polymer solution as well as the degree 

and characteristics of the substituents. Hornig et al. have shown that nanoconjugates prepared by dialysis or 

dropping technique do not differ in their structure however PS tend to increase from 102 to 309 nm as degree of 

substitution increased from 0.5 to 2.08 while polydispersity index increased from 0.065 to 0.2333 suggesting 

remarkably reduced uniformity in PSD (206). They hypothesized that the hydrophobic ibuprofen molecules are 

located in interior of the nanoconjugate because it is well documented that dextran nanoparticles exhibit 

hydrophobic core. This hypothesis corresponds with our findings in ibuprofen-Ddex conjugates where ibuprofen 

molecule was internalized into the Ddex shell structure (Fig. 8C, 8D) (159). 

In order to optimize characterization of polymer-drug nanoconjugates and enhance the opportunity of successful 

translation into clinically useful nanomedicines, future trend of characterization techniques should include 
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molecular recognition of the polymer matrix at specific receptor at the cellular level including the specific drug 

targeting ligands. 

7.0 Nanoconjugate stabilization 

 

Polymers act as nanoparticle stabilizers by adsorption at the solid-liquid interface reducing the interfacial free 

energy which may lead to increased rate of nucleation of the drug substance. They also accumulate in the 

hydrodynamic layer between adjacent particles preventing their collision and subsequent aggregation 

(instability) by steric hindrance. Ionic polymers provide both steric hindrance and electrostatic repulsion to 

stabilize the nanoconjugates. However because of their higher solubility in water relative to non-ionic polymers, 

they exhibit reduced adsorption onto the particle surface hence reduced degree of supersaturation and reduced 

rate of nucleation of the drug resulting in increased particle size. We have demonstrated that concentrations of 

polymer above its polymer staturation point (psp) increased the size of the conjugate steadily (45). As 

mentioned above the selection of the suitable type of polymer and its optimal concentration are crucial for 

stabilizing the nanoconjugates as well as maintaining stability throughout the product life cycle. Adsorption of 

the polymer onto the drug particle surface is governed by thermodynamic and kinetic processes (151).  

 

 

7.1 Steric stabilization 

 

Steric hindrance can be achieved by providing effective barrier around the surface of the nanoparticle by 

surfactant or hydrophilic polymer in order to prevent aggregation when the particles approach each other. The 

physical properties of the stabilizer such as ligand flexibility, overall charge density, solubility and extent of 

polymer-drug interaction will dictate the efficiency of steric stabilization. In theory, thicker coatings of the 

stabilizer around the particle will increase interparticle distance and are therefore desirable for stability. On the 

other hand saturation of the particle surface with polymer may reduce drug diffusion or inhibit accessibility of 

drug release triggers such as enzymes. Hence there must be a balance between particle stability and drug release 

at the site of action for therapeutic effectiveness. Irrespective of the method used in preparing the 

nanoconjugates, the type of polymer is very important as the affinity of the polymer for the drug surface 

regulates its adsorption kinetics. In essence if the particle-particle affinity is greater than particle-polymer 

affinity, aggregation will occur depending on the drug/polymer ratio, particle size, particle size distribution as 

well as electrostatic and steric repulsions within the system. In theory, addition of sufficient amount of polymer 

in a good solvent would decrease interfacial tension at solid-liquid interface allowing complete coating of the 

drug particles to ensure steric repulsion and hence ensuring nanoconjugate stability. However pooly water 

soluble drugs with few H-bonding and greater hydrophobic interaction with the organic solvent may prevent the 

alignment of the drug particle in aqueous medium leading to insufficient coating by the stabilizer. Insufficient 

amount of polymer and/or slow adsorption of polymer onto the drug surface will result in uncoated particles, 

leading to particle aggregation as a result of particle-particle interaction. In general, the stability of drug 

nanoparticles in polymer is underpinned by interrelated factors including solvent characteristics, amount of 

polymer adsorbed (surface excess), affinity of the polymer to the drug surface, as well as adsorption kinetics. 

However if there is no affinity between the polymer and the drug particle surface, the attractive forces between 

drug particles become dominant due to depletion of polymer molecules between interparticle spaces.  Higher 

affinity translates to faster adsorption which leads to production of smaller particle sizes. It is apparent that a 

good understanding of the drug-polymer interactions from the theoretical models as well as the effects of the 

physicochemical properties of drug and polymer on particle size, would facilitate better control of 

nanoconjugation process and the stability of the resulting nanoconjugates.  It has been suggested that similar 

surface free energy between the drug and the polymer can provide better particle stabilization however specific 

drug-polymer interactions are more important deciding factors for the stability of the resulting particles (239). 

The authors reported that larger particles were obtained when both drug and polymer have the same –OH 

functionality.  

Polymers with higher hydrophobicity and greater number of functional groups for H-bonding exhibit greater 

adsorption to the surface of poorly soluble drugs producing smaller nanoconjugates while those with higher 

molecular weights provide better stabilization. 

The tendency of nanoconjugates to form reversible loose aggregates (flocculation) or irreversible aggregates 

(coagulation) are common phenomena in nanosystems underpinned by intermolecular (van der Waals) forces of 
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attraction. Therefore a drug that is successfully loaded onto a polymer backbone with maximum drug-loading 

efficiency must be stabilized in correlation with in vitro and in vivo release profiles as well as specific disease 

targeting and therapeutic effectiveness. Also, variation between pure solvents under ideal in vitro conditions and 

the in vivo biological fluids due to the inherent complexity of the biological environments and processes, may 

impact the stability and functionality of the nanoconjugate. For example, Cho et al. reported a remarkable over 

estimation of nanoparticle uptake into biological cells relative to the in vitro study due to nanoparticle 

sedimentation (240). It ia apparent that rational design of polymer-drug nanoconjugates requires careful 

assessment of the forces that are needed to stabilize the nanosystem. 

 

7.2 Electrostatic stabilization 

 

The renowned Derjaguin, Landau, Verway and Overbeek (DLVO) electric double layer theory of electrostatic 

repulsion may explain the fundamental stabilization mechanism for nanoconjugate systems. Dispersed drug 

molecules will normally acquire a charge from the dispersion medium through selective adsorption of specific 

ionic species from the medium; ionization of functional group situated on the surface of the particle (e.g. 

COOH) depending on the pH of the medium or difference in dielectric constant between the particle and the 

medium leading to particle-particle repulsion coordinated by counterions. Hence there is interplay of van der 

Waals forces of attraction and electrostatic repulsion forces (241). Higher zeta potential ensures separation of 

the particles by the electrostatic repulsive forces thereby stabilizing the system. The repulsive force, which can 

be estimated, depends on the ionic strength of the medium as well as the degree of the surface charge screening 

and temperature of the medium. For a physically stable nanosystem solely stabilized by electrostatic repulsion, a 

minimum zeta potential of ±30 mV is required for stability however when there is combination of electrostatic 

and steric stabilization ±20 mV may be sufficient (242). Therefore interaction between drug molecule and 

oppositely charged polymer may alter the surface charge density and the overall stability of the system.  

8.0 Conclusion  

 

Increasing evolution of poorly soluble drug candidates from high throughput screening and the increasing 

complexities of drug therapies as well as the increasing challenges of multiple drug resistance and therapeutic 

failure underpins the need for rational design of polymeric nanomedcines to develop innovative and more 

effective therapies. The versatility of the polymer architecture, conjugate conformation and bioresponsiveness 

provide a suitable platform for the rational design of polymer-drug nanoconjugates as a tool for effective 

delivery of poorly soluble drugs. In this vein, intensive research efforts have been made to develop novel and 

innovative polymer-drug conjugate systems that will provide controlled and site-specific delivery of bioactive 

molecules. However some unforeseen challenges have limited the successful transformation of this polymer 

therapeutics into clinically useful nanomedicines. Therefore none of the investigated polymer-drug conjugates is 

yet to reach the market. Nonetheless, the identified challenges have provided useful knowledge, understanding 

and experience to enable rational design of more robust and stable polymer-drug nanoconjugates for effective 

delivery of poorly soluble drugs. It is apparent that better understanding of the molecular bases of diseases and 

their progression, rational formulationof polymer-drug nanoconjugates as well as better characterization 

techniques are essential in order to meet the quality and regulatory requirements for successful transformation of 

PDNs into clinically useful nanomedicines. 
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