A General Algebra of Business Rules

for Heterogeneous Systems

Frederick V. Ramsey

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Software Technology Research Laboratory
De Montfort University

March 2007

Table of Contents

ADSITACE cvvvuivnecrirniiiniiscniiriseirisicnnnsiie e sestsaessessesaesssseessssssrs shsssosnessesssressnnes i
Table Of CONLENLS .ecvvviriiruerriirinniininiineireatssessesstsssnstessssssosessassatssesssessussssenssnsosassnnssens ii
LiSt Of FIZUIES .vvuvevirersiiennisissicriinstssessisssssseensaasiosesssssseressassesasnsssnsaassssessessssassesensssassans vi
List of Tablesccoevuvvvennnininens eeeeentir ettt st s b s s e s R b e EseRE e et st SRR sesEssaes vii
" List Of LAStNES wvvvresssroerrrren e oo nessse e i
 ACKNOWIEAZEMENLS .o.uvreieiitirtetintrnreerirnrcnis s b s ssaesesasaens ix
PUbBLiCALIONS .ecvvevviiviiiinriiiiniiiriiitiiiiiisscs e sss st et s sse s st sress s st sssasinssnsaressessaasranans X
Chapter 1 INTOQUCLION wouviunuieeririnirisissisesnensmssessssssessessesesnsessssssstosssessessssssesssassess 1
1.1 Motivation for this ReSEarch.....ccirivesiscsnsesisiecrniiieiiesisiees 2
1.2 - Original Contributions of this Research.........ccccoeerresrinienrarinnnnsisinssensessesennes 3
1.3 Organization of this TheSiS......cecuvruruerissreresrnsissenesseresiinnisessesnssessssaesesssssennes 4
Chapter 2 Business Rules — A REVIEW ..cvvccvivvniinnnininieinsenininenusesin 6
2.1 Business Rules and Forward ENGiNEEring.........evsrsererssrsrsssrssersssnsssnessasnosssnns 6
2.2 Business Rules and Reverse Engineering........ocovevvniisiencsnnunnscsmsoenes 8
2.3 Formal Models of Business RUIESccuvunninvesensmnnsnsiiniisnnenniesnnssssnens 9
24 General Properties of Extractable Business Rules.......ovesuevireennvnvnvcscnsnresnnans 12
2.5 Program SHCING...ccivmmerieniniiiiiscnirsscscsnseenisisssnsesinsrsesassiisisrssesisssses 14
2.6 Formal Methods, Reverse Engineering, and Code EXtraction......couvceevesisninrurens 15
2.7 Business Rule EXtraction.....cciuinsnismsicscsimiesninesssnsesssnsnsrssessensassssnsssssnns 19
2.8 A General Classification of Rule Extraction Techniques.......oovvvveseininneieesnen 29
2.9 Problems with Existing Rule Extraction Approaches.........ccevevvvevusreisnnresinanens 32
Chapter 3 General Formal Framework for Rule EXtraction........c.ccovveveesusesiinernisens 34
3.1 Set-Baséd Formal Frameworkcccuiviiinenecrniisinonnenssissnnsssssnmnmesn 34
3.2 Evaluation of the Framework — C Languageccoevevvsrisesenississisoressercsesanses 38
3.3 Evaluation of the Framework — Wide Spectrum Languageccoevesernssiereeas 41
34 ODSEIVALIONS woevvircriiseeeristiiiisiiis st sessssinsssesaesssssssestsressessisesssnssssesaes 46
Chapter4 Temporal Logic and RUlEscceeenmnncinininiiicninmnemsimemenemess 48
4.1 A State-Based Model 0f 2 Rulecccvvvvicivnnnninnininninonoinmneiions 48
4.2 A Very Basic Temporal View of Rules.....cocuuvureevniniinsmsiniscnsnivessneneisinsnens 52
4.3 Temporal Logic and Interval Temporal LOZIC «..vcovviiininiesiesnsnnensmsismnesiaces 53

ii

4.4 Previous Temporal Representations of State Propertiesccveevevvverieeeeneennns 59
4.5 A Temporal, State-Based Model of a Rule.......coccrvrvennicinnricnninincnininnieenes 61
4.6 Rules versus Rule EXCCULION toviiiiceiireicsirinnrnsintiisiennnreereesssseersessasescesssasacens 65
4.7 ODSEIVALIONS reevieriiiniiiiiitcstiiintinessese s sesnssesossesaastessesstessnsasesessassstssnsssessenns 68
Chapter 5 Rule Algebra — Fundamentals.......cooccccevineenincinecnininncccnneincnnenennenenes 70
5.1 Rules, Total Rules, and Rule Systems.......cccceevirvieireerunnnicccsinniericeseenensunenssnns 70
5.2 Rule Domain, Rule Codomain, and Rule Universeccccceveveeerereerennvencreneen 78
5.2.1 Rule DOmAIN.uccviiviiiiinienriieisiseeinesssssssessesssssssssssesssssesssesesassaressnes 79
5.2.2 Rule COAOMAIN ucucerrireeererrrirtoreecresnsrnsessesseseninsasssssesssessensrsoreranssssees 80
5.2.3 Rule UNIVETSE ..evuiiiriiiiiiiniiiieiiticisnctisiesnneseessseersnsesasssassssesssessesssens 81
5.3 Rule Satisflabilit...cvereeriiiiirririiirenrnrsreeiceieenerseesessesiesss e sesssesssssssssssesseessens 81
5.4 Injective, Surjective, and Bijective RUIES.....ccoervecrerrerierrrensirivenreeneesiessenseessensens 82
5.4.1 INJEctive RUIES cvovviviviiiiisenietinieniesiestiiesteesie s sesseesessnessesasssesasnans 82
542 Surjective RUIES c..cuviiiniiiiiercer e snrestieesne e esteseesneessessesseeesnesnasserses 83
5.4.3 BijectiVe RUIES..cc.iviveiriirirtieeneceternennsvestsstenentersssesssnsersssessessessnessnnenns 83
5.5 Inverse Rules and Invertible RUIEScoeveererrenseniinierenennnenienineeseinnnnnnennees 83
5.6 Sequentially Relating TWO Rules....coccccriinirnnciinininininiesininennsnsnsesenensnennns 84
5.6.1 Sequentially Associating Rules using the General Rule Form............... 84
5.6.2 Sequential Composition With ChOpcocuereeiiimrcriiniinesrnnensesieneenssnenens 87
5.7 Reflexive and Irreflexive RUIEScovcceerirnrecnninieniininennneerisreesnsessesasenenes 93
5.7.1 Reflexive RUIES..cuiiiiinriiieiineieentnesnseseeinenessensesssessssssssessenssrsasens 93
5.7.2 Trreflexive RUIES ..ottt cseenessre s 95
5.8 Symmetric, Antisymmetric, and Asymmetric Rules.......cccovivrivmineisisiennnensenens 96
5.8.1 Symmetric Rules......coouiiriviniimiininiiciiniecenenseeeresnssenenes 96
5.8.2 Antisymmetric RUles......covveeeiiiiinrccrinrenreesetcicnnnesresressnes e saesvnnes 105
5.8.3 Asymmetric Rules....covvviiimmmniiniiiiiiiccnnncceninecesesecsneeannens 107
5.9 Transitive RULES .c.covvviiiniiiiiciriiecre st seesreseses e s snesessesenessaens 108
Chapter 6 Rule Algebra — Advanced ConCeptsovivevvisinvssiesissincconnnnssiesnensnnens 110
0.1 NESHNG o iviermrniriirer s e s ns 110
6.2 RECUTISION ..ciiiiiiiiiiiticinireini bbb sse st e sraessressnessunennsnsssans 120
6.3 Guarded COmPOSIION. ..iviiiviiisiiecresssesrestisistcresiieensisassesssressereesesserssneesenes 123
6.4 Parallc] COmMPOSItION ..uvvviicrieriererririeersensesieessssssisserisesssasssesssesssessssessessreessnes 125
6.5 Equivalent RUles oot 127
6.6 Rules in Programming StruCtUIESocceeiuerresrtissnirmnennsrseieonaeirsesessesseeenneenee 130
6.6.1 If-Then-EISE StIUCIUIESevvereeeerrerncesseserssosenraennerueisransssessossessessesserees 131
6.6.2 WHhile StIUCUTIES «ueeiriiiiiieiiiienitinicniesinessersts s snnesesessesssaessnsensees 134
6.6.3 Indexed FOr-Loop StrUCIUTES....cooeiniiivirinirencrsenesenareressesserosessorenes 135
6.7 Some Other Interesting RUIES ..cvivirircverriinieniniinninriicieinenensennneessresenneeesnees 136
6.7.1 Excluding a Rule State with Negationccovcvvivicrinneinccnvssnnenecninnins 136
6.7.2 Enforcement of Specific Criteria....ccoummimiineineennensieensensennen 137
6.7.3 System INVEIer...cccovvrrmniisienienninnsne e s e sesaes 137
6.7.4 1dentity RUIE ..ccooecririvriiiinniiciniiiinene s sesnnsnes. 137
6.7.5 Any Possible Rule State.....cocvvenvinninnniiiir e 138

iii

- Chapter 7 Analysis of Rules in Models and Specificationscocvveeereesusussccnisennes 139

7.1 Analysis of Rules from a Finite State Machine.......c.coceevrrcrisniervessnniisncrunnens 139
7.2 Analysis of Rules from a Specification.......c..cceviveresnnisessisnseennsenniniesisinnens 150
7.3 Rule Analysis and the Statechart APproachceeveeieeevsresesunsinsssnnieesisians 173
7.3.1 Overview of StateCharts.......occccievescrtetsrensscsusessismsnssisessensasresesnsrsisees 174
7.3.2 Previous Application of Statecharts to Legacy Code Analysis............. 175
7.3.3 Visual Formalisms of Rule-Based Legacy Code Structures................ 177
7.3.3.1 Statechart of the If-Then-Else Structure.........ceveerirnrsuirunnens 179
7.3.3.2 - Statechart of the While Structure........cocvviirnnnsesvecsvrsvennnnne 181
7.3.3.3 Statechart of the Indexed For-Loop Structureceeeeceneenes 181
7.3.3.4 Statechart of the Switch Structure.......coeveverseriissiierrasnereenns 182
7.3.4 Representing Extracted Rules with Statecharts........ccccevveevevrccrvcsninens 183
7.3.5 The Value of Statecharts in Legacy Code Analysiscccceeereerersisrennes 193
Chapter 8 Analysis of Rules in Legacy Codecocviriniercnarisisssensssssesnensesnenns 194
8.1 Using Rules to Build a Database for Legacy Code Analysiscoruvereerersennes 194
8.2 Representing WSL Program Slices as Rules s s 213
Chapter 9 Applying the Rule Algebra to Specify New Rulesccovvviniercrirnnnnne 237
9.1 Refining an Existing Rule with New RUIES.......cccovrvereniricrsirecnrsnensesnsnnssesenns 237
9.2 Analyzing the New Rules Using the Rule Algebra........cooviisniiiirecnsenrannnns 243
Chapter 10 Observations regarding the Rule Algebra and its Application............... 246
10.1 Onthe Rule Algebra......cciceiiininricienennnnsnesiiiesssisniisieseeosecsissassose 247
10.2 Onthe Application of the Rule Algebra........ccoeirinninininnneninicsnsssiesnnnns 248
10.2 Comparison with Existing Models and Approaches.........ccoomveercrcniniesisrereons 251
Chapter 11 Conclusions and Recommendations for Future Research........ccoeveinenee 254
LI VISION wetretrerarammmsnserinsensessesrsssssssssssessasssssssssssssssssssssssssssmessssesssessessessisessssesss 254
11,2 ACKIEVEIMENLS...oitiiiiruinriiitiiiirieneestisscssosisssssstsssessesssssmsesssssssssesssssssreseesse 255
11.3 Future Research DIrections....coiuviiimisieniinirinmiiiieimimsoesn 257
11.3.1 Equivalence and ISOMOTPhiSm.....c.cevrvnsunrsvrsrirsssresersnsmnessacsssessnisisssees 257
11.3.2 Alternative Rule FOImScocvvuiceirnieniniiinimicnnniisncnenmneinessesnns 259
11.3.3 Interdependence, Independence, and Interference........cccoreriesvercnsneians 261
11.3.4 Detemporalization......ceeciesisesrmnseessessssnnsesssosessssessssrassnssssssassnsssaesaes 263

11.3.5 Formal Proof of Equivalence of Specific Statechart
‘Constructs and Specific Rule Formulas.......cocueiiicemennissicsnvenssrennnen 263
11.3.6 Metadata About Rules.......ccoonvieicriininsiniinnininnnnennnimninsinn. 264
11.3.7 Automated Tool Using the Rule Algebra.....c.cocinuiivncinninnieseenisnnnns 264
REMEIENCES couviviritiriiitiieisiirenssasinnnsr st sassbs e stsb et saeanssnsbssnssas e snes 265
Appendix A — Supporting Lemmas for the Rule Algebrac.cciiviininiinnienniinnne. 278

iv

Appendix B — Formal Transformation of Rules Extracted from a Specification 280
Appendix C — Formal Transformation of I/O Rules in Legacy Codecceeuereruneee 294
Appendix D — Formal Transformation of Rules Extracted from WSL Slices 307
Appendix E — Formal Transformation of Rules Created to Refine a Specification 329

Appendix F ~ Creating Rules to Describe a Simple Hardware Systemcoeveueuee. 340

5.1-1
5.1-2

5.6.1-1
5.6.2-1
5.7.1-1
5.7.1-2
5.7.2-1
5.8.1-1
5.8.1-2

5.8.2-1
5.8.2-2
5.9-1
7.1-1
7.3.3-1
7.3.3-2
7.3.3.1-1
7.3.3.1-2
7.3.3.2-1
7.3.3.3-1
7.3.3.4-1
7.3.4-1
7.3.4-2
7.3.4-3
7.3.4-4
7.3.4-5
7.3.4-6
7.3.4-7a
7.3.4-7b
8.1-1
9.1-1

List of Figures

Three-State Rule System with Rules

Sharing a Common Rule Conditionc.ocecceverveeneerenressmsnsresesnesusnssennss 74
Three-State Rule System with Rules :

Sharing a Common Rule State.......ccccovvvmnrerrnninnsenrnennniinninssinnn, 76
Three-Sequence State Transition Diagram.......cecevveeeveevenniencnninnieiecnne, 85
Three-State State Transition Diagramccceieevsennnniinniniinicsiineinninenn. 87
One-State RefleXive SYSIEM ..cvvviivienimucisinnserssiessenneinessniinnnesnenemsmnies 93
Two-State Reflexive SYStem.....cccuinriieniniinsemnicinininenmninmnems. 94
Two-State Irreflexive SYStemcoeevinevsicnccniisrernnininiineeeee. 96
Two-State Symmetric SYSteM....cocvieriniirensirursrunieniessnsnsosoriesnninsrsonssnssions 97
State Sequences Resulting from Sequentially Composing with chop

both Rules Describing a Two-State Symmetric System.......cevveererenes 102
Two-State ASymmetric SYSteML......convereerersnsinisrmnincsnmsinsssisiinenenesenens 105
Two-State System that Is Neither Symmetric nor Asymmetric...........u... 106
Three-State Transitive SYStEML..u.cceirrerisrnsirsrssiescsnssnesnisinsisnesessmsemssereess 108
Three-State Finite State Machine.........ccouereererveveninenninnnernnevenisini 139
A Simple Two-State SYSteM.....c.cvuirsrivirirerenrssinnsnisnnnenennenesesennssns 178
A Simple Two-State Statechart........c.covversisinsesnnreniinenieieenemercns 179
Generic Visual Formalism of the 'if-then-else’ Structurecoocvvuveeruvenens 180
Generic Visual Formalism of the 'if-then’ Structure.........occoeveivinnsnennan. 181
Generic Visual Formalism of the 'while’ Structureooeevnvcereiisvnsrennene 181
Generic Visual Formalism of the Indexed 'for-loop' Structure.........cvcu... 182
Generic Visual Formalism of the 'switch' Structure.........cccovvvuiiriiniricnns 183
StateChart fOr FUle72.aeereviereiriricirersiresreresreenssssemmseresseeeesssesssssessenesssssns 185
StAtEChATT fOT FUIET 2.5veeieirssreerirecrissressessrsineisissssrssertersesssssssensseseressssasseee 186
Statechart fOr Fules .coeennrnsiissnsesisisiisisreniisisssno 187
StateChart fOr FUIE7 2 geveverrervesseereiserisnrierisisinsiiieeissesssinneenecessssessarersessssanns 187
StateChart fOr FUle72..uveisvsceesicoseesineiesssnnsnsnsnisisiees e 188
Statechart fOr 7uley 2 fu.viviiniiniiinnnie . 189
Statechart for rulez.q, rules2.p, aNA TUIET D¢ cvvvreererrreirireecsereensessseninins 190
‘Statechart for rule; .4, rules .., and ruley,z.f ... 191
Statechart for Procedure printerrorline Legacy Code......c.ovuvuvninnvierennnnns 206
Statechart for Refined State Sequence get_pin.....ecviienirieenicnsnnnen 242

vi

4.3-1
4.3-2
4.3-3
4.3-4
4.3-5
4.3-6
4.3-7
4.3-8
8.1-1

List of Tables

Syntax Of ITL .ovuiviiiniitiictcctii st 54
Semantics Of ITL ...ttt saesaessenenns 55
- Frequently used non-temporal derived CONSLIUCES ..ooveerierririeesneisninarinnecnnsne 56
Frequently used temporal derived CONSLIUCEScovvevviiinenseinrensinenisecseines 56
Frequently used concrete derived CONSLIUCEScovviieeiiseenneirerisinsessennennns 57
Frequently used derived constructs related to €Xpressions.......cvveecseenennens 57
Propositional axioms and rules for ITL........ccceccineineninnincncninnsincennensennee 58
Summary of selected ITL lemmas used in this researchc.ccocvvivriennnnen. 59
Legacy code analysis database......cccecvevmrrersnnnncnienncninncinnennnens 211

vii

3.2-1

3.2-2

3.2-3
3.3-1
3.3-2
3.3-3

334

List of Listings

A Simple Rule-Based Program in the C Language.......oocvvvvevrrevnrreivseisenns 38
Rule Extraction from the C Language Program ,

Using the Inclusion Approach of (3.1-2) cec.eerereerersereenans rverereserresaee 40
Rule Extraction from the C Language Program

Using the Exclusion Approach of (3.1-3)...ccccuvvnniiinnnnnennisnsinieennen 41
A Second Simple Rule-Based Program in the C Language......cocevervinnane 43
The Equivalent Program in WSL.....ccccevvvvinviinninnnieniniemenmennenon. 44
Rule Extraction from the WSL Program o

Using the Inclusion Approach of (3.1-2)ccvverininennininiensieneinianiennes 45
Rule Extraction from the WSL Program

Using the Exclusion Approach of (3.1-3)....c.ccccvnmnmnicnnnnnnenninnniniens 46

viii

Acknowledgements

When I was young, my parents often reminded me that I would be measured by
the company that I keep. In the conduct of this research, I have had the good fortune to
keep some very good company. It is with great pleasure that I now offer my sincerest

thanks to the some of those that helped me along this journey:

o To my supervisor Professor Hussein Zedan for the guidance, direction,
patience, encouragement, wisdom, and knowledge he offered. My wish to
those who decide to pursue their dream of an advanced degree — may you be
fortunate enough to find an advisor like Professor Zedan.

e To Dr. James Alpigini for his belief and encouragement in my work, and for
his commitment of his time and energy in the support of my efforts.

e To Dr. Antonio Cau for his patience and insights in answering my many
questions about ITL.

e To Professor Hongji Yang for his confidence and spirit, especially in the
early days when I was just finding my way.

o To Dr. Francois Siewe for his unselfish commitment of several long days in
front of a whiteboard with me, at a time when it made all the difference.

. To all my colleagues, past and present, at the lab. You have made my days
in the lab some of the most enjoyable times of my professional life.

e And to my loving wife, Ellen, for her love, friendship, patience, and humor

as we travel through this life together.

I dedicate this opus to the memory of my loving parents, Mr. and Mrs. E. M. Ramsey,
Jr., gone from this world but never forgotten. Together, they taught me the most

important thing that I will ever know — the power of education.

Publications

Ramsey, F. V. & Alpigini, J. J. (2002). A simple mathematically based framework for
rule extraction using Wide Spectrum Language. Proceedings of the 2nd IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM 2002),

44-52.

Ramsey, F. V. & Alpigini, J. J. (2002). Rough sets, guarded command language, and
decision rules. Proceedings of the Third International Conférence Rough Sets and
Current Trends in Computing (RSCTC 2002), Lecture Notes in Computer Science
2475, 183-188.

Ramsey, F. V. & Alpigini, J. J. (2002). A simple mathematically based framework for
rule extraction from an arbitrary programming language. Proceedings of the 26th
International Computer Software and Applications Conference (COMPSAC 2002),
763-772.

Alpigini, J. J., Neill, C. J. & Ramsey, F. V. (2001). Classification of rule extraction
techniques from knowledge-based systems. Proceedings of the IASTED International
Conference on Modeling and Simulation, 60-64. '

Chapter 1

Introduction

Rules give structure to knowledge. Programs use rules to dictate or constrain
specific decisions or actions. Rules are incorporated into these systems based on either
the experiences or expectations of the organization or a subset of knowledgeable
individuals, so that all users of these systems are guided by the same knowledge and
constrained to identical behaviors. Rules provide the semantic functionality of a
system and represent the knowledge core around which that system is developed and
maintained. Regardless of their specific form and implementation, these rule-based
programs can be viewed as knowledge systems because the rules express specific

domain knowledge in a usable form.

Within these programs or knowledge systems, rule revisions are typically made
based on one of two factors: the organization’s ever increasing understanding of its own
successful practices, and the organization’s response to a changing operational climate.
These revisions reflect the real-time response of the organization to both internal and
external changes, and also reflect the growing organizational knowledge and memory,
and the associated ‘state-of-the-organization.” As these rules have typically been tested,
revised, and updated continuously, they represent a substantial and valuable intellectual

asset.

Unfortunately, these rule revisions and updates are all too often made only
within the code of these rule-based knowledge systems. As a result, no other accurate
written records or documentation of these rules exists. When it becomes necessary to
re-engincer these existing systems and/or create replacement systems, these valuable
rules are frequently not reused because the legacy program code is the only valid source
of these rules, and their extraction from the legacy code is thought to be too difficult.
The problem is further exacerbated when a legacy re-engineering project potentially
involves rule recovery from complex systems employing multiple programs in multiple
languages. Failure to capture and reuse these rules means that the refined knowledge

embodicd in these rules could be, either temporarily or permanently, lost in the new

system.

1.1 Motivation for this Research

This work was motivated by an interest in rules, their forms, and their
importance, and by the recognition of the potential value of rule extraction from
heterogeneous legacy systems. Based on the literature review at the initiation of this
research, most rule extraction techniques reported in the literature have one or more
major shortcomings that compromise their usefulness or applicability to rule extraction
from heterogeneous systems. As discussed in detail in Chapter 2, these critical
problems include substantial variations regarding exactly what constitutes a rule, the
language specificity of many existing approaches and related tools, the functional
requirement that the individual responsible for rule extraction be expert both in the
knowledge domain and the program domain, inconsistencies associated with different
individuals using different approaches for different languages, and the lack of
mathematical formalism in most rule extraction approaches. Taken together, these five

critical problems initially seemed rather daunting.
With further reflection, three core questions emerged.

1. What exactly is a rule? Specifically, can a general, succinct, formal, and
robust rule definition be formulated that can be used to create, analyze,

decompose, and/or understand rules?

2. Can a rule algebra be developed that allows the formal and consistent
application of a formal general rule model to the extraction of rules and,

as appropriate, to the creation of new rules?

3. Can a general framework be created that allows application of this rule
model and rule algebra to the identification, analysis, and extraction of
rules from legacy systems regardless of system, domain, platform, size,
or language?

If these three questions can be answered, the reverse or re-engineering of legacy

systems, and the forward engineering of new systems, can potentially be significantly

improved. If these three questions can be answered, existing rule-based systems can be

analyzed and new rule-based replacement systems can be developed using a consistent

and complementary level of mathematical formality that is not typically applied to such

tasks. The research presented in this thesis addresses these three core questions.

1.2 Original Contributions of this Research

This research makes an original and significant contribution in at least seven

areas. Each area of original contribution is described briefly below.

L.

A general formal framework for rule extraction, applicable to a wide

range of legacy languages, is presented.

A formal general model of a rule is developed, general in that it can be
adapted to the variety of languages and programming paradigms that
might be encountered in different legacy code applications. Using
Interval Temporal Logic (ITL), a rule is defined formally as a temporal
conjunctive relationship between a state sequence describing the rule

conditions and a future state sequence describing the rule outcome.

Using ITL and this temporal rule model, a rule algebra is developed to
describe the set of operations that can be applied to compose, decompose,
or transform rules. Using ITL, forty-three new lemmas are developed as

part of this rule algebra and are presented in this thesis.

Within the context of this rule model and the associated rule algebra,
various compositional paradigms are described including sequential
composition; nesting; recursion; deterministic and non-deterministic
guarded composition; and disjoint parallel composition. Using these
compositional paradigms, rule-based representations of typical legacy
code structures —~ the if-then-else structure, the while structure, and the

indexed for-loop — are developed.

The strong correspondence between rules as defined in this research and
statecharts is demonstrated. Using rule and statechart concepts, generic
visual formalisms are developed for four common legacy-code
programming structures. These statecharts are subsequently applied to
represent rules extracted from different legacy programs. Whereas

statecharts are typically used in the creation of new event-driven systems,

this work demonstrates that statecharts are an effective approach for

analyzing and displaying hierarchical, non-event driven legacy systems.

6. The applicability of this rule model and rule algebra is demonstrated by
applying them to the extraction, transformation, and analysis of rules

from a diverse set of existing and legacy systems.

7. In addition to these reverse engineering applications, the forward
engineering application of the rule model and rule algebra is
demonstrated by developing rule-based descriptions of new software and

hardware systems.

1.3 Organization of this Thesis

This thesis is organized as follows:

In Chapter 2, a review of the relevant literature related to rules and rule
extraction is presented. Reviewed topics include rule definitions and rule models in
both the forward and reverse engineering domains, code extraction, program slicing,
and other reverse engineering methodologies relevant to rule extraction. Based on this
literature survey, a nine-way general classification of rule extraction techniques is

presented. The shortcomings of current rule extraction techniques are discussed. .

In Chapter 3, a critical element necessary for a formal approach to rule
“extraction from legacy code is presented — a general formal framework applicable to a
wide range of legacy languages. Under this rule extraction framework, general
mathematical formality is introduced by describing a program as a set of language
elements and structures, such that the program can be then partitioned into program

structures that are or are not rules, and then analyzed accordingly.

In Chapter 4, a formal general model of a rule is developed. Starting with a
state-based model of a rule, the temporal ordering of rule conditions and rule outcomes
is considered. Other formalizations using temporal logic to represent and reason about
the temporal relationships between states and/or state properties are reviewed. Using
Interval Temporal Logic (ITL), a rule is defined formally as a temporal conjunctive

relationship between a state sequence describing the rule conditions and a future state

sequence describing the rule outcome.

In Chapters 5 and 6, a rule algebra is presented to describe the set of operations
that can be applied to compose, decompose, or transform rules that describe specific
state sequences. This rule algebra is developed incrementally by considering
fundamental systems and the corresponding relationships between the state sequences
that compose these systems. In developing this rule algebra, significant attention is
given to composing rules and rule systems to describe larger and more complex state
sequences. Various compositional paradigms are demonstrated with this rule algebra.
Using these compositional paradigms, rule-based representations of typical legacy code

structures are developed.

In Chapters 7, 8, and 9, the formal rule extraction framework of Chapter 3, the
formal temporal rule model of Chapter 4, and the rule algebra of Chapters S and 6 are
applied to the extraction of rules from a variety of existing systems, specifications, and
legacy code, and to the forward engineering of new rule-based systems. Rules are
extracted from a finite state machine, a detailed formal specification, a block of legacy
Pascal code, and slices of a Wide Spectrum Language (WSL) program. In concert with
this rule algebra, the use and value of statecharts for legacy code analysis is
demonstrated. In addition to these rule extraction (ie., reverse engineering)
applications, the temporal rule model and the rule algebra are applied to the forward
engineering of rule-based systems. These various reverse and forward applications are
presented to demonstrate the wide-ranging applicability of the rule concepts developed

in this research.

In Chapter 10, observations are presented regarding the development and

application of the rule algebra, based on the work presented in Chapters 5 through 9.

In Chapter 11, some concluding remarks are presented and recommendations are

made for possible future work relating to ideas introduced in this thesis.

Chapter 2

Business Rules — A Review

In this chapter, a review of current definitions and models of business rules in
both the forward and reverse engineering domains is presented. Formal models of
business rules are reviewed. Rule attributes common among these various definitions
and models are identified, and a general definition of a business rule is proposed.
Program slicing is briefly reviewed, including the application of program slicing to
reverse engineering and other domains. The use of formal methods for code extraction
and reverse engineering is reviewed. Rule extraction experiences are reviewed. Based
on this literature survey, a nine-way, general classification of rule extraction techniques

_is developed. The critical shortcomings of current rule extraction techniques relative to
their usefulness or applicability to the reverse engineering of heterogeneous systems and

~ the forward engineering of new code or specifications are discussed.

2.1 Business Rules and Forward Engineering

Ulrich (1999) presented a two-part general definition of business rules adbpted
from the Object Management Group. Part 1 asserts that rules are declarations of
policies or conditions that must be satisfied, and Part 2 declares that rules govern the
manners in which businesses operate. The GUIDE Business Rules Project, as presented
in Rouvellou et al. (2000), offered the following: "A business rule is a statement that
deﬁries or constrains some’ aspect of the business. It ’is’ intendéd to assert business
structure or to control the behavior of the business.” This definition was extended to

distinguish between constraint, invariant, derivation, and classification rules.

Perkins (2000) defines business rules as capturing or implementing precise
business logic in processes, procedures, and systems. Business rules may include term
definitions, data integrity constraints, mathematical and functional derivations, logical
inferences, processing sequences, and relationships among data. A good business rule
has three basic characteristics: (1) a rule is an expiicit expression; (2) a rule is
declarative, not procedural; and (3) a rule should be expressed in a single coherent
model, used to express all kinds of business rules. Business rules can be implemented

as metadata, process-driven approaches, and procedure-driven approaches.

Leite and Leonardi (1998) propose a business-rule taxonomy, where business
rules are either functional or non-functional. Functional rules specify an organization's
action, whereas non-functional rules are standards or relationships that the organization
must observe. Non-functional rules are further divided into macro-system and quality
rules. Macro-system rules describe policies and impose a constraint, whereas quality
rules specify characteristics of an organization's standards or expectations regarding its

processes or products.

For business process modeling, Presley and Rogers (1996) present a business
rule model as an ontology. For the purposes of the model, this ontology is defined as a
set of objects that make up a given domain, the associated properties, and the
relationships among these objects that are represented in the domain terminology. This
approach facilitates knowledge capture of both physical and conceptual objects and

their associated relationships.

Odell (1995) investigated the nature of business rules in the context of object-
oriented analysis and design using UML. Three types of constraint rules were
identified: stimulus/response, operation constraint, and structure constraint. In addition,
two types of derivation rules were identified: inference and computation.
Stimulus/response rules specify WHEN and IF conditions that must be true for an
operation to be triggered. Operation constraint rules specify conditions that must be
true before and/or after an operation. Structure constraint rules specify policies or
conditions about objects and their associations that cannot be violated. Inference rules
specify that if certain facts are true, a specific conclusion can be inferred. Computation
rules achieve their results with processing algorithms. With respect to their use, rules
allow experts to specify policies or conditions in small autonomous units using explicit

statements.

Ross (1997) defined a business rule as "a constraint or test exercised for the
purpose of maintaining the integrity (i.e., correctness) of data." Using this definition,
seven general rule classifications or families are identified: instance verifiers, type
verifiers, position verifiers, functional verifiers, comparative evaluators, mathematical

evaluators, and project controllers. Within each family, rules are classified into atomic

‘types based on the specific type of computation the rule performs. In this data-centric

approach, "rules compute."

‘Theodoulidis et al. (1992) investigated the temporal aspects of business rules.
Three categories of rules were identified: constraint, derivation, and event-action.
Constraint rules deal with both 'thé stat‘ic' and transition integrity of structural
| componerits of the system. Derivation rules define how new static and transition
components can be derived from existing system components (including other derived
components), with exactly one derivation rule for each derived component. Event-
action rules deal with the invocation of procedures, expressing conditions under which

‘these procedures would be triggered.

2.2 Business Rules and Reverse Engineering

For the purposes of reverse engineering and legacy system analysis, Ulrich
(1999) narrowed the general definition offered by the Object Management Group and
concluded that a business rule is a “combination of conditional and imperative logic that

~ changes the state of an object or data element.”

" For the reverse engineering domain, Sneed and Erdos (1996) defined business
rules as a set of conditional operations attached to a given data result or output.
Bhsiness rules are composed of four elements: results, arguménts, assignments, and
conditions. Arguments for business rules may come from many different sources
" including databases, user inputs from a terminal or window, or from other programs.
Assignment and condition statements may be located throughout the program.
Therefore, the authors conclude that the only easily locatable element of the business
' rule within an existing program is the result. Therefore, to identify or extract business
rulés, one must identify or know what data or output the rules produce. This definition

based on output data was critical to their approach to business rule extraction.

In extracting business rules from existing systems, Shao and Pound (1999)
concluded that business rules are declarative and not procedural, and they may or may
not be stated explicitly within an organization except in existing program code.
Business ruleé are classified into three groups ~ structural rules, behavioral rules, and

constraint rules. Structural rules are statements about data objects within an

organization's business. Behavioral rules are statements about the dynamic aspect or
events in an organization's business. Constraint rules are about the conditions under

which an organization operates.

2.3 Formal Models of Business Rules

Relatively few formal models of business rules exist, either in the forward or
reverse engineering domains. This section presents a detailed review of those formal
business rule models, with particular focus on formal representations of rule

conditionals and rule-directed state transitions.

Alagar and Periyasamy (2001) present a formal specification language for
formalizing business rules and business actions. This language, Business Transaction
Object Z or BTOZ, is an extension of the Object-Z specification language. In general, a
business rule is defined as a constraint on a business transaction, as specified or defined
by the organization. A business system is formally defined as the tuple (B, R, A), where
B is a set of business objects, R is a set of business rules, and A is a set of agents. Evéry
agent A is responsible for enforcing rules in a single category and is aware of the
business objects B to which these rules apply. Every rule, R, is a basic predicate,
abstracting a single business rule. Within this system, business actions are subject to
business rules. A business action is formally defined as a generated signal (4, o,),
identifying that agent A receives rule r regarding an operation o." In general, each rule r

is written as a logical expression.

Huang et al. (1998) defined a business rule as a function, constraint, or
transformation of inputs to outputs. Consistent with their research approach to use
program slicing to extract rules from legacy COBOL systems, a business rule was
formally defined as a program segment F that transforms a set of input variables / into a
set of output variables O, such that O = F(I). The subsequent forward representation of
an extracted rule as a formula requires three elements: the domain variable of interest
(i.e., the left-hand side of the formula); the expression for determining that domain

variable (i.e., the right-hand side of the formula); and the conditions under which the

formula holds.

Fu et al. (2001) studied the extraction and representation constraint rules —
statements that define or constrain some aspect of a business. Operationally, constraints
describe the specific conditions under which an organization operates and can appear in
many forms. Focusing on this constraint reasoning, a predicate logic based language,
Business Rule Language or BRL, was proposed. Within BRL, real world business
objects or concepts are represented as structures. A structure is recursively defined as
S(Sy,...,Sn), where S is the structure name and each element S; is a structure that is a
component of S. If a given structure § contains no components, it is a primitive
structure; otherwise, it is a composite structure. A constraint specifies the allowable or
valid states for a given structure S. BRL has relatively limited expressive power and
includes only a small number of built-in predicates for representing the semantics of
constraints captured from the reverse engineering of legacy systems. Four types of
constraints are supported by BRL: Type I - constructs the domains for structures; Type
IT - restricts the number of instances of a given structure; Type III - specifies the
relationships between two or more structures; Type IV - specifies the number of other

structures that can be associated with a specific structure.

Ungureanu and Minsky (2000) defined a business rule for business-to-business
e-commerce as a Law-Governed Interaction or LGI. The core concept of LGI is a
policy, P, defined as the four-tuple <M, G, CS, L>, where M is the set of messages
regulated by this policy, G is a group of agents that exchange messages from the set M,
CS is the set of control states describing the attributes of G and the state of the
individual agents within G such that there is only one CS per G, and L is the enforced
set of laws that regulate the exchange of messages between members of G. Events
involving members of G that are subject to a law L of a policy P are considered
regulated events. For every active agent x in G, there is a controller C that assures the
enforcement of L for every event at x. The control state CS; of a given agent x can be

changed by primitive operations, subject to the requirement of L. Primitive operations

used for the testing and update of control-state include true/false evaluation, addition,

subtraction, removal, replacement, deliver, and forward.

To deal with the problem of the same antecedent conditions causing outcome
conflicts due to multiple rules, Grosof et al. (1999) proposed a generalized version of

Courteous Logic Programs (CLP). In this approach, rules are initially represented as

10

declarative Ordinary Logic Programs (OLP) with well-founded semantics, as described
by van Gelder et al. (1991). In an OLP, the head or outcome of a rule is the
consequence of a series of logically connected atoms. These atoms form the body,
premise, or antecedent conditions of the rule. Given that many contract terms involve
conditional relationships, a rule in the e-commerce contract domain may involve an
antecedent that contains multiple conjoined conditions. Rule conflict occurs when the
antecedent conditions of multiple rules are satisfied, but the resulting consequences
conflict. CLP extends the well-founded semantics of OLP to include prioritized conflict
handling. Rule prioritization information is derived from available information such as
relative specificity, recency, and authority. As a result, some rules are subject to
override by other higher priority conflicting rules. Rules in CLPs are then transformed

back into a semantically equivalent OLPs.

Plexousakis (1995) analyzed and simulated business processes using the high-
level logic programming language GOLOG. GOLOG is based on extending the
situation calculus, a first-order language for representing dynamic and evolving
domains where all changes within a domain are the result of named actions, to include
complex and perceptual actions. Under this approach, business processes are
represented as actions that affect the domain state. In the situation calculus and in
GOLOG, A is a set of actions and S is a set of situations. For an action ¢€ A and s € S,
the execution of action & on situation s is described by do(¢; s). Whereas all actions in
the situation calculus are assumed to be primitive and deterministic, GOLOG allows
complex actions through sequencing, iteration, and non-deterministic choice. GOLOG
allows the specification of necessary pre- and/or post-conditions associated with a
specific action. Using GOLOG, complex actions are decomposed into primitive

actions, and the GOLOG language interpreter essentially acts as a theorem prover.

Koubarakis and Plexousakis (1999) presented a formal framework for business
process modeling using concepts of concurrent logic programming and situational
calculus. In the process submodel, actors performing actions change the situation, ie.,
the current state of a system. Actions can be primitive or complex. Actions are
considered primitive if decomposition reveals no additional information of interest.
Primitive actions are formally defined as the tuple <precondition, effect>, where

precondition and effect are represented by formulas written in a formal first-order model

11

language. With these primitive actions, complex actions are formed using the syntax
and semantics of ConGolog (De Giacomo et al, 2000), a concurrent version of
GOLOG. Complex actions can be defined recursively and may include sequencing,
waiting for a condition, non-deterministic choice of action, non-deterministic choice of
action parameters, if-then-else conditionals, while-do iteration, non-deterministic
iteration, concurrency, prioritized concurrency, non-deterministic concurrent iteration,
interrupts, procedures, and do nothing. System state restrictions are imposed in the
constraints ‘submodel, where static and dynamic constraints are expressed using
situation calculus and the symbols defined in the other relevant submodels. Although
not explicitly defined as such, these actions and constraints function as the business

rules that change the system state.

Herbst (1995) presents a meta-model of business rules for use in business
systems analysis. This model extends the event-condition-action (ECA) rule model
from the active database domain to an event-condition-action-action (ECAA) structure
applicable to general business prbcesses. Under this extension, every rule has exactly
one event, no more than one condition, and only one or two actions — those resulting
from the then portion of an if-then construct when the conditions are true, or those
resulting from the else portion if-then-else when the conditions are not true. Events and
" conditions can be elementary or complex and can include recursive relationships.
ECAA rules can be transformed into one or two ECA rules by negating the condition.
Although this construct is not strictly formal, variations of this general construct are

widely used in the logical formulation, modeling, and representation of business rules

(Herbst et al., 1994).

2.4 General Properties of Extractable Business Rules

Although the research presented in the previous sections focused on specific
issues relative to distinct needs, numerous commonalities exist with respect to what
constitutes a business rule, in either the forward or reverse engineering domains. Based
on the spectrum of definitions, models, criteria, and attributes presented in the available

literature, the following general and informal specification of the properties of business

rules is proposed:

12

Business rules are explicit. They are known, articulated, and subsequently
included in the program code that constitutes the knowledge-based system.
That these rules are known and stated explicitly presupposes the knowledge

that they are importaht and therefore worth stating.

Business rules are precise. They are unambiguous relative to their

knowledge and use domains.

Business rules are logically or mathematically operative on input data to
create output data. This can be any combination of predicate logic and math
operations taking the form of a constraint or transformation, and may

consider the static, dynamic, and temporal state of the input data.

Business rules are imperative. If the predicate requirements are satisfied, the
rule must be executed and it must be executed now. However, the specific
temporal attributes of 'now' must be defined relative to the knowledge and
use domains encompassed by the rule. For example, 'now' in an airline
cockpit is significantly different that 'now' on a university campus.
Therefore, a rule specification may presume instantaneous execution or may
include specific values and conditions for this imperative element.
Regardless of the imperative specifications, logically, a rule must always be
executed. A complete rule that can be ignored or postponed indefinitely is

not arule.

Business rules are declarative and not procedural. A business rule identifies
a possible output data state as either required or prohibited, but it does not
specify the steps that must be taken to achieve or prohibit such a state

transition.

This rule property description — explicit, precise, operative, imperative, and declarative

(EPOID) - provides a consistent basis to compare and assess different rules and

implementations in both the forward and reverse engineering domains. This new

description provides a rational basis for exploring the role of knowledge and semantics

in rule formation. Furthermore, this rule property description helps avoid confusion

with other rule-driven knowledge applications and domains, where the objectives may

13

include the discovery, application, or recovery of implicit, imprecise, or associative

‘rules’ from data.

2.5 Program Slicing

Several comprehensive reviews of program slicing techniques have been
conducted (Tip, 1995; Binkley and Gallagher, 1996). Conceptually, program slicing is
a decomposition technique where only those program statements contributing to a
| particular action or computation are identified and extracted. Tip (1995) defined a
program slice as the subset of statements and control predicates of a given program that
potentially influence the values computed at a specific point in that program. Weiser
(1982) offered a formal definition of a slice S as a executable program extracted from
program P by eliminating statements zero or more statements, such that S and P halt on
- the same state trajectory T associated with input I. Francel and Rugaber (1999) offered
a formal definition of a program slice relative to statement § and variable X as only

those code statements that might affect the value of X at statement S.

’Program slicing can be differentiated in numerous different ways. Dynamic
slicing versus static slicing is one common distinction. Dynamic slicing assumes fixed
or specific data input for the program of interest; such that only the code reached, based
on that specific data, is identified as the dynamic slice. In dynamic slicing, only the

code statéments traversed in the specific execution associated with that specific data are
preserved as part of the slice. All other code, on the paths not taken based on the data
provided, is eliminated from the slice. For example, depending on the specific data
input, one branch of an IF statement would be executed and included in the slice,
- whereas the other would not be reachable and thus would‘ be excluded. Static slicing
makes no assumptions and imposes no limitations regarding the input data; therefore, all
code that could be reached, given any data input, is identified as the static slice. In this
case, both branches of an IF statement would be included in the slice. Statements can
~be gathered or eliminated by backward or forward traversal of the program code.

Indeed, backward versus forward is another means of partitioning for different slicing

techniques.

Al slicing techniques require the a priori specification of a slicing criterion. For

static slicing, this slicing criterion is the pair, that being the program statement location

14

and variables. For dynamic slicing, specific input values are added and the slicing
criterion becomes the triple, namely, input data, program statement location, and

variables.

Numerous variants and hybrid approaches exist. Alternative algorithms abound
for slicing under various circumstances of slicing objective, language, and programming
logic. Specific implementations of program slicing in the reverse engineering domain
include: condition-based slicing, forward slicing, and backward slicing (Ning et al.,
1993); conditioned slicing (Fox et al.,, 2000; Danicic et al., 2005); generalized program
slicing, recursive slicing, and hierarchical slicing (Huang et al, 1998); assignment
reference slicing (Sneed and Erdos, 1996); transform slicing (Lanubile and Visaggio,
1997); forward dynamic object-oriented slicing (Song and Huynh, 1999); amorphous
slicing (Binkley et al., 2000); semantic slicing (Ward 2001; Ward et al., 2005); and
high-level architecture slicing (Zhao, 2000). In addition to its use in reverse
engineering, program slicing has been successfully applied to other domains including
software debugging, program understanding, parallelization, program differencing,

program integration, software maintenance, and compiler tuning.

2.6 Formal Methods, Reverse Engineering, and Code

Extraction

The term formal methods refers to methods that have a sound basis in
mathematics. To date, there has been little research specifically performed in applying
formal methods to the specific problem of business rule extraction. However, the use of
formal methods in related areas is well-studied. Therefore, this section reviews the
application of formal methods to reverse engineering and re-engineering projects in

general, and to the problem of code extraction in particular.

Liu et al. (1997) reviewed the use of formal methods in the re-engineering of
computing systems. A five-away classification of formal methods was developed based
on model-based, logic-based, algebraic, process algebra, and net-based approaches.
Within the context of this five-way classification, existing formal methods were
reviewed with respect to their previous application in any reverse engincering domain.
Consistent with their observation that formal methods are "both over-sold and under-

used," only 4 of the 24 specific formal methods reviewed had been applied to reverse

15

engineering. None of the reviewed formalisms was applicable to all three re-

engineering stages: restructuring, reverse engineering, and forward engineering.

In research conducted as part of the REDO project, Bowen et al. (1993)
described the use of formal methods in recovering specifications from COBOL
applications. The overall focus of’ this research was to improve the maintainability,
validation, transportability, and documentation of large software systems. The general
process was to transform COBOL code using a succession of higher-level languages to
produce a structured specification in Z++, an object-oriented extension of Z. Input
- COBOL code was cleaned and transformed into equivalent UNIFORM code. The
intermediate language UNIFORM was developed to facilitate precise verification and
code transformation. The UNIFORM code was subsequently transformed into a first
order functional language. This first order functional language was then used to create
the Z++ representation. With each intermediate step, implementation details were lost
in favor of greater abstraction. Using the recovered specifications, a specification-based
approach to maintenance was proposed based on exact the semantic associations

between code and specifications.

Blazy and Facon (1997) applied formal methods to the partial evaluation, also
known as program specialization, of Fortran 90 code. The objective of the overall
approach was program understanding via the creation of specialized program segments
based on specific input values. First, an inter-procedural pointer analysis of the code
was performed. A formal specification of that analysis Qas developed with different
formalisms, including inference rules with global definitions, as well as set and
relational operators. These formal specifications were subsequently used to implement

“the reduced or specialized program.

Villavicencio and Oliveria (2001) combined both formal and semi-formal
methods to reconstruct a formal specification from C language legacy code. The semi-
- formal method was code slicing, implemented first to reduce the code complexity and
associated requirements of implementing formal semantics for all program variables at
the same time. The functional semantics of the resulting code slices were then

expressed in the HASKELL programming language. The formal basis for specification

16

identification and extraction was the 'algebra of programming' applied in reverse order,

starting with the identified output variables of interest.

Gannod and Cheng (1999) applied both informal and formal methods to the
reverse engineering of large systems written in the C language into formal
specifications. The overall reverse engineering process involved the construction of an
informal high-level model of the software, an informal low-level model of the software
including a call graph, and then, using these informal models, the selection of a specific
module to which formal methods were applied. One of the major advantages of using
both formal and semi-formal methods in a combined approach is that by using a semi-
formal technique to guide the formal technique, the resulting formal specification will
be organized based on the structure of the original program. The strongest post-
condition predicate transformer (sp) and order-preserving transformations were applied
to the selected module to develop an as-built formal specification. The strongest post-
condition is the strongest condition R that is true after program S executes, when the
starting specified condition Q is true. This was accomplished by the definition of C
language syntax in terms of the formal semantics of the strongest post-condition
predicate transformer. Eight different C programming language constructs were
analyzed, including various assignment operators (e.g., = and +=), alteration constructs
such as if and if-else, iteration operators such as the do-while, while, and for constructs,
and function calls (Gannod and Cheng, 1996). Semantic formal equivalents using terms
of the Dijkstra guarded command language were developed. The resulting as-built
formal specification was then generalized using a formally defined abstraction match to
remove undesired algorithmic and implementation details. These techniques have been
incorporated into a suite of four tools specifically designed to assist with the
understanding and reverse engineering of C language programs (Gannod and Cheng,

2001).

Zhou et al. (1999) present a language independent technique for formally
assessing the critical behavior of a legacy system. By inserting assertion points at
appropriate locations within the legacy code, the state of specific system attributes or
variables can be monitored and understood. This approach facilitates system
understanding by monitoring system states, as opposed to explicitly identifying or

assessing code functionality. Within the context of rule extraction, this approach

17

requires sufficient a priori knowledge regarding specific rule locations within the code
to assign assertion points at appropriate locations to sufficiently monitor system

behavior.

Lanubile and Visaggio (1997) presented a formal method for extracting reusable
function code from pooﬂy sinictured programs using the concept of the transform slice.
Transform slicing potentially avoids the capture of extraneous code, as occurs with
other slicing approaches. Transform slicing requires knowledge that a function is
~ performed in the code and that the function is partially specified in terms of input and

output data. Thus, a three-part slicing criterion is required for transform sliéing: the
function location, the input variables, and the output variables. Domain knowledge is
used to identify the input and output variables. To assist with this problem of
specifying the function location, a scavenging approach, using more generalized
transform slicing, is used to generate a set of candidate functions from the program
code. This candidate set reduces the magnitude of human intervention required to
- establish a starting point in the program code for extraction of a particular function. Tan
and Kow (2001) implemented this transform slicing approach to identify the code

‘elements that implement program functionality in SQL programs.

Fu et al. (2001) present a formal language for representation andb presentation of
business ruleskthat have beexi extracted from legacy codé. The problem of presenting
extracted business rules as code fragments to a general audience is identified. Given
that constraints can takev many forms, the presentaiion of these constraint rules must be
'adapvted to a speciﬁc user. The need for a new formal language is based on the
observation that an extracted constraint can be obscure and difficult to comprehend
whe\xi‘ expressed using s;)me loW-level formalisms. The proposéd language, Business
Rule Langhége or BRL, is a pfedicate logic based language with a relative small
number of built-in predicates focusing on constraint reasoning. Four types of
constraints are supported and can generally be described as domain construction,

instance restriction, relationship constraint, and instance association.

Yang et al. (2000) proposed the application of abstraction to reverse engineering
problems and system specification recovery. For the purposes of this research,

* abstraction was defined as the act of hiding irrelevant details. A five-way taxonomy for

18

abstraction was developed: weakening abstraction, hiding abstraction, temporal
abstraction, structural abstraction, and data abstraction. Re-engineering wide spectrum
language (RWSL) was developed to implement this abstraction approach. RWSL is a
multi-layered wide spectrum language with a sound formal semantics. Case studies
were presented describing the recovery of system specifications from programs written
in C and ADA. Whereas this research focused on the extraction of system
specifications, as opposed to extraction of individual code elements or rules, this
approach is potentially an effective way of addressing the need for both a syntactic and

semantic understanding of a program prior to rule identification and extraction.

Ward (2001) describes a formal transformation-based approach to source code
analysis and manipulation, including code extraction. This approach uses Wide
Spectrum Language (WSL), a general programming language with a theoretical
foundation and with semantics that are defined. formally (Ward, 1989). The general
approach is the representation of a program, or a specific program element, as a function
between the initial state of a given system prior to program execution and the final state
of that system after program termination. By using a provable, mathematically sound
transformation from a given programming language to WSL, a provably equivalent
WSL program can be created. Then, by using provable program transformations within
WSL, code can be moved, deleted, or merged, as appropriate, and equivalent higher
level abstractions of the original program can be developed as needed. This general
procedure of stepwise refinement using provable semantic-preserving changes for WSL
transformations is described in Bull (1990). Using these equivalent WSL programs, the
original program logic can be analyzed, specifications derived, or new code generated
using a mathematically sound transformation from WSL to the new programming
language. This approach has been successfully used to analyze and/or re-engineer
programs where the original program code was in ADA, IBM Assembler, BASIC,
CICS, COBOL, and Pascal (Bennett et al., 1992; Ward, 1999; Yang and Bennett, 1994;
Zedan and Yang, 1998).

2.7 Business Rule Extraction

Sneed and Jandrasics (1988) reviewed the requirements of transforming software

code back into specifications. Three distinct semantic levels of software, each with

19

 different abstraction levels, were described: the physical level, consisting of discrete
units of code; the logical level, existing in some form of meta language describing the
logical processing units; and the conceptual level, a set of abstract entities and the
relationships among these entities. This conceptual level is what is typically referred to
as the Speciﬁcation. In retransforming code bzick to a specification, the rule analyst
must bridge the gap between the physical level where the program exists, and the
‘conceptual level where the business model exists. Although software can be best
altered or enhanced at the conceptual level, this view is frequently blocked by
implementation details at the physical level. A general re-engineering plan is proposed
~ where program elements at the physical level are mapped to design elements at the
logical level. The resulting data and program design elements are then mapped to
system specifications at the concept level. Within this conceptual or specification level,
two alternative abstraction models are possible: macro, modeling the target system as

processes and objects; and micro, modeling the target system as elementary function

and data elements.

Aiken et al. (1993) reported on attempts to recover business rules, domain
information, and data architectures from the Department of Defense's heterogeneous
computer applications. These programs and databases included homegrown database
management systems, COBOL databases, assembly language code, and MUMPS
databases. The most difficult aspect of this re-engineering project was the discovery of
buéiness rules and data entities from the different types of legacy systems. To
accomplish this, a "divide and conquer" approach was implemented. During the top-
down phase, user screens, reports, and policy statements were reviewed to establish a
high-level "as-is" business rule and data model framework. Using this high-levei
framework, the individual business and data model components were broken into
individual components and analyzed. The bottom-up phase included the use of CASE
tools, and the review of a traceability matrix, the data dictionary and data model, and
suppor;ing physical documents. Final rule identification and ektraction appears to have

been largely a manual process.

~Ritsch and Snced (1993) contrasted two alternatives for extracting system
knowledge and business rules contained in an existing system: static analysis and

dynamlc analysis. Static analysxs considers program data structures and program source

20

code, including user interfaces. Dynamic analysis attempts to identify how a system,
subsystem, or object responds to various inputs, including system function and
performance as viewed by the user. Static analysis of the program source code and
database schemes can yield information regarding database structure, database contents,
entity relationships, program structure, control flow structure, decision logic, file access,
and other program communications. However, static analysis cannot identify which
program components are actually used, provide performance information, or relate
program elements to a specific business function. Given these weaknesses of static
analysis, and the typical inadequacy of system documents and the unavailability of the
original system developers, a dynamic analysis methodology was proposed. This
dynamic analysis approach identifies business rules as pairs of pre- and post-assertions,
matching input with a specific program slice. The tool developed for this dynamic
analysis consists of four elements: an instrumentor, a test monitor, an assertion
generator, and a database auditor. The instrumentor inserts reporting probes at multiple
locations with the program. The test monitor captures and stores the contents of the
input-output panel or file for each transaction. The assertion generator matches the
input and the program path with the output of each system transaction. With this, two
assertion specifications are generated, one based on the input data, and one based on the
output data. The database auditor logs the before-transaction state and the after-
transaction state of each database file. These can then be compared and the ficlds
altered by the transaction identified. Output from the assertion generator and the

database auditor can then be combined into either formal or informal specifications.

Ning et al. (1993) described the concept of reusable component recovery, where
functional components of legacy systems are identified, extracted, adapted, and reused
in new system development. Whereas this approach has many advantages such as
reuse, platform flexibility, and size reduction, the approach requires a thorough analysis
and understanding of the legacy code, which is described as a "difficult, human
dependent, and time-consuming task." To assist with this task, a tool-assisted program
segmentation approach to component recovery and rule recovery was described. This
two-step approach consists of a focusing step that facilitates the identification and
combination of functional elements, and a factoring step that facilitates extraction of the

focused functional elements into reusable packages. The focusing operation helps the

21

analyst identify program code that is semantically related but may not be physically
adjacent. Five focusing operations are used: selecting specific statements, call hierarchy
analysis, condition-based slicing, forward slicing or ripple effect analysis, and backward
slicing. Focusing creates localized functional code segments. In the factoring
operation, these code segments are extracted and packaged into independent modules.
For identifying and extracting reusable components from legacy COBOL systems, this
program segmentation approach has been implemented in an Andersen Consulting
proprietary tool, COBOL/SRE. This tool supports a variety of code analysis and
understanding approaches, including system-level analysis, concept or functional
' pattern recognition, data model recovery, and program-level analysis. In addition to the
program segmentation approach described above, other program-level analysis features
include: parsing and syntax-directed text browsing; flow analysis, including call graphs

and control flow graphs; complexity analysis; and anomaly detection.

Petry (1996) proposed a general methodology for rule extraction from programs
using the concept of HyperCode, the transformation of a program source code into a
hypertext-linked format to enable navigation through the program. The objective is to
speed the learning and understanding of the program logic. By allowing easy
| navigation from one part of the code to another, rule extraction proceeds should proceed
faster as compared with manual extraction. A general methodology for the use of
HyperCode in rule extraction was presented. First, data entities of interest are
’ identified. Second, the database-enforced relationships between these entities are
identified. Third, the program code is parsed and the CRUD (create, retrieve, update or
delete) actions taken by the program on these data items are identified. At this point,
comments that create hypertext links are inserted into the program code, creating the
basis for the HyperCode document. Finally, the various procedures, processes, and
algorithms contained within the program are analyzed. This final step is the basis for
the rule extraction process. Each program block is reviewed by the analyst and
classified as either part of an overhead process, a decision process, an elementary
process, or an algorithm. By eliminating the overhead processes, and understanding the
relationships between the remaining decision processes, elementary processes, and

algorithms, the business rules are identified and extracted. A prototype implementation

using COBOL source code was presented.

22

Sneed and Erdos (1996) observed that, at that time, little work had been done on
business rule extraction from real programs because the concept of business rule
extraction had not been adequately expressed in an operational framework. It was
observed that business rules can be extracted from source code only when four
preconditions are met. First, variable names must be meaningful and informative.
Second, the critical output data must be identifiable. Third, tools must be available to
strip the program code to the essential elements. Fourth, data flow within the program
must be identifiable. Reflecting their definition of business rules (presented in a
preceding section) and the associated conclusion that the only easily locatable element
of a business rule is the result, a reengineering tool was developed that uses the data
result as a point of entry for rule extraction from COBOL programs. Using this tool, the
first step of the rule extraction process is the identification of all assignment statements,
including the location within the code where the target result is assigned. Next, the
conditions that trigger these assignments are identified. These conditions are then
linked with the associated assignments. The program is reduced to only those
statements, the business rule, that create the target result. With this tool, the user

identifies the result, and the other business rule elements are identified automatically.
Huang et al. (1998) identified five business rule extraction criteria:

1. The extracted business rules must be a faithful representation of the

software.

2. Different groups will require different representations of the extracted
business rules. Therefore, business rules must be represented in a

hierarchical manner.

3. Business rules must be expressed in the domain vocabulary of the

specific business application.

4. Because of the size and/or complexity of most activities, automatic rule
extraction will be difficult, if not impossible. Therefore, the ideal rule

extraction tool should be interactive and allow human assistance.

5. The extracted business rules should be in a form that is usable in other

software maintenance activities, mapping between rule and code, and

vice versa.

23

Consistent with their data transformation definition of business rules, a data-centered
approach to rule extraction from COBOL programs was used. This rule extraction
approach involved four steps: variable identification; slicing criterion identification;
code extraction using generalized program slicing; and rule representation. The first
step was to identify the important variables that are or can be used to express business
rules. Only a small subset of the many code variables in typical business application is
suitable for expressing business rules. Code variables were classified into various types,
such as domain data, program data, local data, global data, input data, output data,
constant data, or control data. This classification can be conducted by either parsing the
code directly or by analyzing dependence graphs. Once this classification has been
conducted, two heuristic rules were presented to identify input and output variables as
domain variables of interest. Having identified these critical domain variables, the
slicing criterion was established and the relevant code was then extracted using
generalized program slicing. The objective of generalized program slicing is to extract
only the code that either affects or is affected by the identified critical domain variables.
Six additional heuristic rules for slicing criterion and slicing algorithm identification
were presented. Given the complex nature of most rules, recursive slicing, or high-level
abstraction and hierarchical slicing was recommended for most circumstances. The
final step was rule presentation. Three alternatives were identified, depending on the
targeted user of the extracted rule: code view, where rules are represented as code
fragments; formula view, where rules are represented as variables and functions; or
input-output dependency view, depicting the dataflow relationships among the
variables, Selection of the specific representation of the extracted business rules is

dependent on the target audience that will be using the business rules.

Sneed (1998) described a well-defined four-phase re-engineering process. First,
the legacy software is measured. Next, the legacy code is reverse engineered to capture
the design and evaluate to potential for reuse and re-engineering. Then, the legacy code
is reorganized, restructured, or otherwise converted into separate reusable modules.
Finally, these re-engineered modules are tested against the original legacy code to
ensure functional equivalence. A software workbench, SOFT-REORG, developed to
support this four-phase re-engineering process was described. SOFAUDIT evaluates

legacy systems using seven complexity metrics and seven quality checks. SOFREDOC

24

extracts design information from the code and associated data structures. SOFRECON
allows program restructuring and program conversion. SOFRETEST allows testing of
the reengineered programs against the original. With respect to program understanding
and rule extraction, SOFREDOC provides ten basic views of the target program: data
tree; procedure tree; decision tree; data flow diagram; macro table; constant table;
business rules; call hierarchy; object reference diagram; and data reference diagram. To
identify specific business rules, the data results of interest are identified by the user, and
the SOFREDOC tool uses data flow and control flow slicing to identify the expression
path for each selected data result. Versions of the tools have been developed for
Assembler, PL/1, and COBOL.

Shao and Pound (1999) observed that business rules may be implemented in
different ways in different parts of the system and different techniques may be required
to recover them. Rule extraction techniques were classified into two broad groups, data
understanding techniques and program understanding techniques. The objectives of
data understanding techniques are to recover conceptual data models. Inputs for data
understanding techniques are schema, data, program code, and transactions. Data
understanding techniques are useful in recovering structural rules buried in the data and
associated metadata, but they do not identify rules contained in the application
programs. The objectives of program understanding techniques are to recover business
rules, especially constraint and behavior rules, from these application programs. Input
for program understanding techniques is straightforward — the program source code.
The great majority of current program understanding techniques attempt to extract and
describe the components of a given program syntactically. However, syntactic analysis
does not reveal or consider the meaning of the program, and thus there is a growing
interest in trying to extract and understand programs semantically. With regard to this
semantically based approach, most techniques rely on a knowledge-based approach, and
few tools currently exist. Most program understanding techniques do not analyze the
recovered code or rules in relation to the database systems. Program-understanding
techniques are most useful where business rules are embedded in programs only. To
address this problem, a conceptual plan was presented for a data-centered, program
understanding approach that attempts to integrate both data understanding and program

understanding techniques. Using this approach, both databases and programs are

25

analyzed together to extract constraints that may be located in application programs,
data dictionaries, triggers, or stored procedures. The proposed approach consisted of
three stages: preparation, extraction, and presentation. The preparation stage includes
schema tools and parsing tools. The parsing tools are used to convert a program into a
generic representation so that different source programs in different languages can be
analyzed together. Schema tools are used to extract the conceptual data model. The
extraction tools are used to analyze the generic programs and databases created with the
parsing tools and schema tools, respectively. The presentation tools allow the extracted
- business rules to be presented differently to different users in a form that is most

meaningful to them.

Sellink et al. (1999) investigated restructuring of programs written in mixed
languages, in this case COBOL interspersed with CICS. The inclusion of CICS in
programs results in a unique challenge in that an event-driven system structure is
created independent of the host language, in this case, COBOL. Whereas this research
was conducted to demonstrate the substantial improvement that could be achieved in
maintainability, the experiences are equally as important and applicable to rule
extraction through the improved understandability of program code. This program
restructuring approach involved four steps. First, exception handling by the problematié
CICS statements, including the HANDLE statement, was eliminated. Next, GOTO
logic, which result in unstructured code, was removed, and control flow was structured
into a series of subroutines, in this case PERFORM structures in COBOL. Next, the
processing logic was restructured by removing explicit jump instructions and
eliminating redundant code. Finally, the code was repartitioned so that the transaction
processing logic was isolated from the business logic or rules. With this approach, all
CICS commands are replaced with COBOL CALLSs to a wrapper, allowing elements of
the old program functionality and the associated the event-driven structure to be
implemented in a modern language such as C++ or Java.

Ulrich (1999) described a process of code segmentation and code reduction to
facilitate rule identification and extraction. In general, business rule extraction requires
a high-level assessment of the target application so that the system can be segmented
prior to actual rule extraction. This segmentation process may include resolving

 identified program weaknesses, restructuring convoluted logic, splitting large modules,

26

and variable name rationalization or enrichment. Although these code improvement
techniques may ultimately simplify the rule extraction process, the time and effort
required to accomplish these high-level assessment tasks should be carefully considered
before beginning. Only about 20 to 30 percent of source code within a given
application relates to actual business rules; the remaining 70 to 80 percent of the code
typically deals with non-business logic, such as physical operation, execution, and
environment requirements. A general procedure for identifying and subsequently
discarding this non-business logic and code was presented. This procedure requires the
identification of specific code or program elements that will not contain business rules,
including syntactically dead logic, semantically dead code, initialization logic,
input/output logic, output area and report build logic, /O status checking, error handling
logic, data structure manipulation, special environment logic, and extraneous and
superfluous logic. Once identified, these non-rule program and logic structures can be
ignored, and the remaining portions of the code searched for program and logic
structures that may contain business rules. These rule-containing structures may include
those leading to the creation of a specific output variable, those linked to a specific
conditional, or those specifically associated with an input transaction. Rules that are

identified can then be logged for evaluation and possible reuse.

Numerous researchers have investigated the use of visualization techniques to
elicit program structure from a variety of different program languages. Whereas an
understanding of program structure does not explicitly identify business rules, enhanced
program structure understanding can assist the rule analyst in the identification of

critical program segments that may contain important business rules.

Call graphs represent the most basic and possibly the most widely used visual
representation of program structure. Call graphs identify and present calls between
entities in a program, thereby representing binary relationships between entities in a
program. Murphy et al. (1996) conducted an empirical quantitative evaluation of five
different call graph extractors for the C language. Substantial variation in output was
observed between the five extractors, with most returning different call information
from the same test program. This was largely due to different treatment of program

elements such as macros, function pointers, and inconsistent interpretations of syntactic

constructs.

27

Other researchers have extended the call graph paradigm to further enhance user
~ functionality and facilitate program structure understanding. Feijs and de Jong (1998)
described a proprietary 3-D visualization system in' which various program module
types are displayed as different LEGO-like bricks, and the interrelationships of these
modules are depicted as different colored arrows. The resulting interconnected web of
program modules and relationships are displayed such that different views, scales, and
levels of information can be selected by the analyst. Mancoridis et al. (1999) developed
a graphical clustering tool that created a system decomposition diagram by treating
clustering as an optimization problem. Within a test system, modules and dependencies
are mapped to Module Dependency Graph (MDG). Formally, a MGD is the set (M, R)
where M is the set of named modules within a system and R is the set of dependencies
between modules. The graphical clustering tool, Bunch, generates a visually simplified
graph through the automatic and user-directed specification of subsystems or clusters of
program modules. In contrast to completely automatic systems, this approach is
especially useful in programs with a large number of modules, as the number of
potential subsystem partitions grows exponentially with the number of program

modules. -

Storey and Muller (1995) investigated the use of a specialized nested graph
technique, the fisheye technique, in the visualization of program structures in very large
legacy systems. Nested graphs are composed of nodes, representing software artifacts,
and of arcs, representing dependencies between these artifacts including call
dependencies. Nodes and arcs can be either atomic or composite. Composite nodes
represent software subsystems, and composite arcs represent a collection of
dependencies. Through the nesting of nodes, the hierarchical structure of the system
can be represented. Nested graphs allow multiple levels of abstraction to be visualized.
Fisheye techniques allow the user to investigate a specific subsystem graph by
selectively highlighting nodes within a specified area of interest, while simultaneously
reducing the remaining portion of the graph. This traditional fisheye approach was
expanded with the Simplified Hierarchical Multi-Perspective (SHriMP) technique,
which creates views that can show multiple graphical perspectives of the program

concurrently.

28

2.8 A General Classification of Rule Extraction Techniques

As different legacy knowledge systems present different challenges, most rule
extraction experiences presented in the literature include the use of multiple extraction
techniques. Based on this literature survey, the following nine-way, general
classification of rule extraction techniques is presented. In practice, actual rule
extraction typically involves several of these nine techniques used in a sequential

manner.

Semantic Enrichment — This class of techniques assists the human analyst in the
semantic understanding of the program and the associated business rules. Semantic
enrichment can be applied to any program entity name — variables, constants, functions,
procedures, etc. Numerous researchers (Shao and Pound, 1999; Sneed and Erdos, 1996;
Ning et al,, 1993; Aiken et al., 1993) have identified the importance of meaningful and
understandable entity names as a critical element of rule extraction. This technique
attempts to address, at the most basic level, the recurrent need to link the semantic
elements of the system at the conceptual level with the syntactic elements of the code at
the operational level. The value of this technique is directly related to the unavoidable
fact that most rule extraction techniques still involve a high level of human intervention

and interpretation in the rule extraction process.

Code Reduction — This class of techniques deletes those portions of program

code that do not contain business rules. By eliminating this extraneous code, the
manual or automatic process of rule extraction is made that much easier. The
eliminated code typically involves program overhead activities, including input/output
activities, error handling, and any special environment requirements. Code reduction
has been directly used by a number of researchers to simplify the rule extraction overall
task (Ulrich, 1999; Sneed and Erdos, 1996; Petry, 1996). Given that 70 to 80 percent of
a typical program is not related to business rules (Ulrich, 1999), code reduction can be
used to significantly reduce the magnitude df the rule extraction task. Within the
context of the EPOID extractable business rule definition, any program element that is

not logical or mathematically operative could be eliminated via code reduction.

Program Segmentation and Restructuring — This class of techniques focuses on

the process of breaking large blocks of program code into smaller, autonomous

29

segments or objects that can be more easily managed, reassembled, and understood.
The general classification of program segmentation and restructuring may include code
reorganization, reformatting, and remodularization. ~Numerous researchers have
incorporated code segmentation into their overall rule extraction strategy (Ulrich, 1999;
Sneed, 1998; Ning et al., 1993; Aiken et al,, 1993) to brmg semantically related portions
of the code together physically. The substantial value of code segmentation and
restructuring in program understandmg had been demonstrated experimentally
(Penteado et al 1999; Sellink et al., 1999).

Data Structure/Model Analysis — This class of techmques focuses on the

identification and/or recovery of database conceptual data models so that these models
can then be used to support other specific rule recovery techniques. These techniques
typically focus on the recovery of relationship, structure, and constraint information that
may be available from the schema and associated metadata (Shao and Pound, 1999).
These techniques may also include deriving or ixnposing data models on legacy systems
that may have been developed without a formal data model (Axken et al., 1993), or
extracting data structures from program code (Petry, 1996). Although these data models
may or may not contain any explicit business rules, information obtained through data
structure/model analysis is typically a critical input to other rule extraction techniques.
Entities recovered using these techniques directly address the EPIOD rule requirement

that data elements of a rule be precise; that is, unambiguous relative to their knowledge

and use domains.

Program Structure Analysis — This class includes a broad spectrum of techniques
designed to identify the program hierarchy of functions, procedures, subroutines,
paragraphs, objects, etc. Speciﬁc implementations by various researchers relative to
rule extrabtion include call hierarchy analysis (Ning et al., 1993); procedure tree and
decision tree analyses (Sneed, 1998); a three-step process of local analysis, use 'ana]ysis
(a recursive step), and global analysis (Gannod and Cheng, 1996); and a hypertext-
assisted approach (Petry, 1996).

Data Flow Analysis — This class of techniques identifies the steps by which data
inputs become program outputs, and may include the analysis of program decision logic

and control flow. Researchers that have directly considered data flow relative to

30

business rule extraction include Sneed (1998), Huang et al. (1998), and Gannod and
Cheng (1999). The output of these data flow techniques can be used to directly address
the operative component of the EPOID business rule definition; that is, rules operate on
input data to create output. In doing so, these techniques are ultimately critical to the
identification of those portions of the program code where specific, individual rules may

be located within a given program.

Program Slicing — Closely allied to data flow analysis, this class of techniques
focuses on identifying the specific path of data flow through a program relative to a
specific single statement and variable. Widely used in other aspects of reverse
engineering, researchers who have used slicing for rule extraction include Huang et al.
(1998), Sneed and Erdos (1996), and Ning et al. (1993). Because program slicing can
be used to identify input data and the logical/mathematical operations that are
performed on that data, program slicing directly addresses the explicit, precise, and

operative elements of the EPOID extractable rule definition.

Visualization — Whereas visualization itself is not a rule extraction technique, it
is a critical element for program understanding. Visualization can be applied to data
structure, program structure, and data flow, with each returning a critical and unique
contribution to the total understanding. Researchers who have included visualization as
part of a business rule or specification extraction process include Sneed (1998) and

Gannod and Chen (1996).

Transformation/Conversion — This class of techniques is typically associated

with formal methods and involves the transformation of program code into a higher-
level abstracted language. This transformation is accomplished by converting a target
code element to an equivalent abstraction in the selected formal language. As program
implementation details are purposefully dropped during the transformation/conversion
from the target functional language, the resulting abstraction is less cluttered
syntactically, making it easier to identify the important semantic elements. Whereas
transformation/conversion has not been used solely for the purpose of rule extraction, it
has been used in specification/design recovery and code extraction. Researchers who

have used transformation/conversion for specification/design recovery and code

31

extraction include Bowen et al. (1993), Gannod and Cheng (1999), Yang et al. (2000),
and Villavicencio and Oliveria (2001).

2.9 Problems with Existing Rule Extraction Approaches

Based on this literature survey, rule extraction techniques reported in the
literature have one or more critical shortcomings that compromise their usefulness or
applicability to rule extraction from heterogeneous systems. A discussion of these

specific problems follows.

Firstly, there is substantial variation among researchers and practitioners
regarding exactly what constitutes an rule. Although this is not a research failure per se,
it does highlight the fundamental issue that various researchers and practitioners have
different end-points, or expectations, regarding the rule analysis and/or extraction
process. As a result, it may be difficult, or impossible, for one to use another's specific
methodology or associated tool if that methodology or tool embodies different
expectations regarding what constitutes an rule. This lack of a clear standard regarding
what constitutes an rule makes the development, implementation, and assessment of a
general rule analysis and/or extraction process, consistgnt across languages and
platforms, very difficult. The target of the extraction process must be clearly defined,
and agreed and accepted prior to initiating a rule extraction project on a heterogeneous,

multiple language system.

Secondly, many existing approaches and the related tools are language specific.
Frequently, they are focused on unique and language-specific syntax, or on language-
specific structures, such as pointers in the C language. Although these approaches were
developed to address the specific problems or circumstances presented by a given
language, such language specificity may compromise the use of many approaches

across different languages in a heterogeneous language environment.

Rule extraction from any existing program requires both the syntactic and
semantic understanding of the code. Whereas syntacti¢ analysis of a given language
program can be eventually automated (subject to the problems raised above), semantic
analysis of that program code requires a knowledgeable expert. Many of the reviewed

rule extraction techniques attempt to classify, organize, and present language syntax in

32

such a way as to aid in the human-based semantic extraction. Ultimately, the
knowledgeable human must intervene, interpret the organized information, and then
perform the actual rule identification and extraction. This yields the third major
problem: the individual responsible for rule extraction must be expert both in the
domain of the target rules, and in the domains of the various program languages in
which these rules have been coded. Such multiple domain experts will be, by their very

nature, extremely rare.

Traditionally, this problem has been addressed by the organization of an
extraction team of multiple expert individuals that, as a unit, satisfies the multiple
domain expertise requirement identified above. However, this management approach
results in the fourth problem: the unavoidable inconsistencies of different individuals

using different approaches for different languages or environments.

Fifthly, many rule extraction techniques are not mathematically formal or
complete. The absence of mathematically formal, or semi-formal, elements in most
current extraction techniques ultimately results in an underlying uncertainty regarding
the completeness of the technique. An unintended omission of a critical rule or critical
case would be certainly embarrassing, probably costly, and in the case of certain critical
systems, possibly catastrophic. Most current techniques provide little basis for
estimating the completeness of the extraction process and for assessing the possibility
that a rule has been overlooked. Therefore, any final statement regarding the success of

a given rule extraction exercise can be only a reasoned opinion, instead of a

demonstrable and supportable fact.

Finally, few of the rule models from the reverse engineering domain have been
applied in the forward engineering domain, and vice versa. In the absence of a
sufficiently general rule model, rules that are extracted from legacy code may have to be
transformed into a new rule model before those rules can be used the forward

engineering of new specifications and code.

33

Chapter 3

A General Formal Framework for Rule Extraction

In this chapter, a critical element necessary for a formal approach to rule
extraction from legacy code is presented — a general formal framework applicable to a
wide range of legacy languages. Under this rule extraction framework, general
mathematical formality is introduced by describing a program in an arbitrary program
language as a set of language elements and structures. Using this framework, if rule
structures can be adequately specified in terms of that program language, a program can
be definitively partitioned into program structures that either are or are not rules. In
circumstances where a rule cannot be adequately defined, an alternative, less definitive
exclusionary approach is presented. This framework is assessed in relation to two

programming languages.

3.1 Set-Based Formal Framework

Every programming language consists of a finite set of language elements. For
the purpose of this analysis, elements are the atomic units of a language that have a
single meaning, function, purpose, or otherwise represent‘ a single value, entity, group,
or class. In general, these language elements may include numerical values; variables;
mathematical operators; logical operators; assignment operators; language-specific
reserved or key words; language-specific punctuation, separators, delimiters, and

terminators; and other language-specific commands or tokens necessary for the

execution of the program code.

For this analysis, a state-based model of programming is adopted. A state is a
function mapping a set of variables to a set of values. Programs are created to
instantiate specific states and sequences of states. These states are defined, expanded,
modified, selected, and/or sequenced by the programmer to reflect specific knowledge
of a given domain. These state manipulations are achieved by the choice of specific
program language elements. In a given programming language, two explicit examples
of this state model are the type statement and the assignment statement. With the type
statement, a specific state variable of a defined type is created. With an assignment

statement, a value is bound to a specific variable. Whereas these two examples are

34

direct implementations of the state model of programming, within the context of this
state model, all program elements support, either directly or indirectly, the underlying

objective of defining, expanding, modifying, selecting, and/or sequencing states.

For any given programming language, the syntactic composition required to
create specific instances of the various language elements is explicitly stated or defined.
For example, mathematical operators may be represented as a single symbol (+, -, *, or
/), and a variable may be defined as a series of not more than 255 letters and numbers
starting with a letter. Such instantiation syntax constitutes what most programmers
know and practice as “the language.” In all languages, these syntactic requirements

limit the total number of possible unique instances of these language elements.

For a program written in a given language, a subset of the available language
elements is used to create the specific language structures that form that unique
program. These structures are constructed from language elements arranged by the
programmer in a specific and unique sequence to accomplish an intended task. In the
state model of programming, these tasks and the corresponding program structures
always relate to the definition, expansion, modification, selection, and/or sequencing of
specific states. A basic example of such a structure is the single line of code 'x := 1;'.
Composed of the language elements of variable, assignment operator, number, and
terminator, this structure dictates that, when executed, the then current state will be
modified such that the value 1 is bound to the variable x. Within 'a program, multiple
language structures can be connected and ordered, and a multi-state state sequence is
defined by these ordered language structures. 1f logical branching is incorporated as a
program structure, varying state sequences may result from the same program structure.
Thus, a complex structure, composed of multiple program structures, can describe a
wide, and possibly infinite, set of state sequences. However, regardless of the final
complexity of the structures used and regardless of the potential for an infinite set of
state sequences, in all finite programs, the total number of language structures contained

in that program is limited and therefore knowable.

If extractable rule forms can be defined in terms of the set of language elements
and structures, and all structures in a given program identified, then each identified

structure can be assessed as to whether it is, or is not, a rule by whether it matches a

35

previously specified rule structure. If all program structures are identified and can be
compared in a two-value manner (yes/no) against the specified rule structures, then the
rule analyst can assert, with mathematical certainty, that all rules of specific form(s)
have been extracted from the program. If the identified program structures can be
~assessed only in a three-value manner (yes/no/maybe) against possible rule structures,
then the location and magnitude of any uncertainty regarding what may or may not be a

rule can be quantified.

These concepts can be expressed symbolically using set builder notation. For
‘any programming language, let E be the set of all elements of that language, and S be
the set of all language structures that can be formed from these elements, subject to the
syntactic constraints of the language. The set of all rules, R, that can be formed in that

language can be defined as:
R ={x]xe SAf(XES)} (3.1-1)

where the function f is an extractable rule definition function that specifies the

properties that a rule must have in terms of the language elements and structures.

In the given language of interest, any program, P, can be defined as a finite
subset of all structures S, or P < S. Finally, the set of all extractable rules, Rg,

contained in program P can be defined as:

Re = {z|ze P AzeR} (3.1-2)

With these equations, the functional requirements of this approach are clear.
First, a general rule definition must be developed and expressed as a function in terms
of specific language elements and structures, as required by (3.1-1). Second, all
structures contained in a given program must be efficiently identified and elicited. If
both requirements can be achieved, then the rule extraction process reduces to the
intersection of these two sets, as described in (3.1-2), and all rules within a given
program can be identified with certainty. This inclusion approach provides a two-value

solution to the rule extraction problem in that all structures within a given program

either are, or are not, a rule.

36

If an acceptable extractable rule definition function cannot be achieved, then an
alternative or exclusion approach can be formulated, using this same general
framework. Using the previously defined sets P, a given program, and Rg, all
extractable rules within that program, the structures in that program that are not rules

can be described as the relative complement of these two sets, or:
P-Re = {z]|]zeP A zgR} (3.1-3)

Using this alternative approach, two requirements must be satisfied. First, and as
before, all structures within the program must be efficiently identified and elicited.
Second, those structures that are not rules, i.e., z € R in (3.1-3), must be identified. In
practice, programmers and rule analysts will probably know that certain language
structures cannot be rules. A comment is one obvious example common to all
languages. Other specific cases of non-rules will depend on the language, and the
presumed attributes of rules. Thus, in the absence of a rigorous definition of what is a
rule, this alternative, or exclusion, approach provides a three-value solution to the rule
extraction problem: no, maybe, and yes. With this approach, some structures will be
tagged with certainty and excluded from consideration as non-rules; the classification of

the remaining structures remains uncertain, as some will, and some will not, contain

rules.

Both approaches, given in (3.1-2) and (3.1-3), have their place in practice, each
with their associated advantages and disadvantages. If an explicit, precise, and
acceptable definition of an extractable rule can be developed, such as the extractable
rule definition function f in (3.1-1), then the inclusive approach of (3.1-2) can be
implemented and all rules can be identified with two-value certainty. If such an
explicit, precise, and acceptable rule definition is unavailable, then the alternative
exclusionary approach (3.1-3) can be implemented. Although incomplete, this approach
limits and identifies portions of code where rules may exist subject to the certainty and

specificity of the criteria used to exclude non-rule structures.

37

3.2 Evaluation of the Framework — C Language

To assess the application of this framework, the inclusion and exclusion rule-

extraction approaches presented in (3.1-2) and (3.1-3), respectively, were evaluated.

For each of these analyses, a simple rule-based program written in the C language was
developed and is presented in Listing 3.2-1. In this program, a simple user input, 1 or 0,

is accepted from the keyboard, and then a reply value of yes or no is assigned and

displayed based on a simple rule using the user input. By design, the code is very

~ simple to provide the basis for clear and unambiguous examination. .

21
.22

" Listing 3.2-1: A Simple Rule-Based Program in the C Language

#include <stdio;h> :
#include <string.h>

int main(void)

{

}

char reply_yes[10] = "Yes";
char reply_no{10] = "No";
charreply[10};

char user_jinput ;

// This is a demo program
printf("Enter 1 or 0 : ");
user_input = getc(stdin);

L if(user_input == ' ‘

strepy(reply, reply_yes);

else

{
|3
printf("Answer: %s \n", reply);

strcpy(reply, reply_no);

return(0);

This example code contains twelve structures. These structures are: two library

reference structures (lines 1 and 2); a single program block structure (lines 3, 4, 21, and
22); four type definition structures (lines 5 through 8); one comment structure (line 9);
one input capture structure (line 11); two output display structures (lines 10 and 20); and

38

one logical if structure (lines 12 through 19). Note that the one logical if structure is

composed of multiple, smaller structures.

For the implementation of (3.1-2), an extractable rule definition function is
required. One element of the definition of an extractable business rule presented in
Section 2.4 is that an extractable business rule must be logically or mathematically
operative. Using this rule attribute and considering the requirement that a rule be a
structure, the extractable rule definition function for this analysis will be whether a
given structure is logically or mathematically operative. Any structure that contains a
logical or mathematical operator will be declared a rule; any structure that does not

contains a logical or mathematical operator will be declared a non-rule.

On applying this extractable rule definition function to the previously
enumerated list of structures in the demonstration code, only one structure is found to fit
the criteria of being mathematically or logically operative — the one logical if structure
located at lines 12 through 19. This rule structure is highlighted in Listing 3.2-2. No
other mathematical or logical operators exist. The other structures either contain no
operators, or contain only assignment operators, e.g., the four type definition structures
at lines 5 through 8. Subject to the continued acceptance of the extractable rule
definition function used in this example, one can be mathematically certain, using the
set requirements specified in (3.1-2), that all rules contained in the target program have

been identified.

For the implementation of the alternative exclusionary approach of (3.1-3), no
extractable rule definition function is required. Instead, only a basic understanding of
both extractable rules and the C language is needed. For this analysis, it is assumed
with certainty that comments, library references, output/display structures, and
block/control statements cannot contain rules. This allows the elimination of lines 1, 2,
3, 4,9, 10, 20, 21, and 22 as non-rules. It is further assumed with certainty that a rule
must be operative (i.e., it must do something); this allows the elimination of lines 7 and
8 as they contain no operators of any kind. These eliminated structures are struck
through in Listing 3.2-3. Thus, four structures are left that have not been eliminated, as
presented in Listing 3.2-3: lines 5, 6, 11, and 12 through 19. Subject to a continued

acceptance of the criteria used to eliminate the non-rule structures, one can be certain

39

#include <stdio.h>

1

2 #include <string.h>

3 int main(void)

4

5 char reply_yes[10] = "Yes";
6 char reply_no[10] = "No";

7 char reply[10];

8 char user_input ;

9 // This is a demo program

10 printf("Enter 1 or 0: ");

11 user_input = getc(stdin);

12 if(user_input =="'1")

13

14 strepy(reply, reply_yes);
15

16 else

17 {

18 strepy(reply, reply_no);
19 b

20 printf("Answer: %s \n", reply);
21 return(0);

22 }

Note: The extracted rules are shown in bold.

Listing 3.2-2: Rule Extraction from the C Language Program
Using the Inclusion Approach of (3.1-2)

that the eliminated structures contain no rules. However, uncertainty remains with
respect to whether the remaining code does, or does not, contain any rules, and if so,

" what those rules are.

The value of the exclusionary approach comes with iterative application. With
one application using a relatively general definition of what is not a rule, fifty percent of
the code was eliminated. From a practical perspective, this dramatically reduced the
effort necessary by a rule analyst in the further analysis of the target code. For example,
if on further inspection and reflection, it is determined that all type definition statements
cannot be rules, then lines S and 6 can be eliminated. With this elimination, only two
structures remain that can be rules ~ the user input structure of line 11 and the logical if

structure of lines 12 through 19. Thus, with two iterations applying the exclusionary

40

I

5 char reply_yes[10] = "Yes",

6 char reply_no[10] = "No";

F charreply[10}:
8——————char-user—input

5 Thisisad

11 user_input = getc(stdin);

12 if(user_input =='1")

13

14 strepy(reply, reply_yes);
15

16 else

17 {

18 strepy(reply, reply_no);
19 |8

H———————eturn{0);

2Z—t

Note: The eliminated structures are shown in sirikethrough.

Listing 3.2-3: Rule Extraction from the C Language Program
Using the Exclusion Approach of (3.1-3)

approach of (3.1-3), the original program containing twelve structures has been reduced
to two structures that may, or may not, contain rules. Therefore, in the absence of a
formal definition of an extractable rule, as required for the application of the inclusion
approach of (3.1-2), the exclusion approach of (3.1-3) allows an orderly approach to
significantly reducing the size of the code that must be assessed for rules using other

means.

3.3 Evaluation of the Framework — Wide Spectrum Language

To assess the issue of language specificity under this general framework, a
second program analysis and rule extraction was conducted. This second assessment

was implemented based on the translation and transformation of an original source

41

program into an equivalent Wide Spectrum Language (WSL) program. Rule analysis
and extraction was then performed on the equivalent WSL program.

With regard to rule extraction from heterogeneous systems, a WSL-based
approach has numerous potential advantages. Firstly, using provable, mathematically
sound transformations, programs in a variety of languages can be converted into WSL,
thereby allowing its use with potentially any source language. Secondly, extraction
methodologies for the WSL code could be developed and applied to the transformed
programs with the certain knowledge that the underlying logical or mathematical
objectives of those methodologies would be uniformly applied regardless of the original
system language or paradigm. Thirdly, performing analyses in a single language, WSL,
will allow the consistent execution of code analysis or rule extraction strategy regardless
of the initial program language. Fourthly, different programs, written in different
languages, different styles, and with different levels of extraneous code, e.g., error
handling code, could be consistently abstracted using WSL. Finally, rules derived from
different original source programs can be expressed easily in a common, consistent

form.

As before, both the inclusion and exclusion rule-extraction approaches presented
in (3.1-2) and (3.1-3), respectively, were evaluated. For these evaluations, a second
rule-based program, written in the C language, was developed and is presented in
Listing 3.3-1. This program accepts the user input of two numerical values from the
keyboard, mathematically manipulates these two input values to determine a test value,
then assigns and displays a reply value based on the comparison of this test value
against a specified criterion. Although more sophisticated than the previous case
preséntcd in Listing 3.2-1, this code is very simple to provide the basis for clear and

unambiguous examination.

This C code contains 22 structures. These structures are: three library reference
structures (lines 1, 2, and 3); a global constant definition (line 4); a single program
block structure (lines S, 6, 31, and 32); five type definition structures (lines 7 through
11); one comment structure (line 12); two input capture structures (lines 14 and 16);
three output display structures (lines 13, 15, and 30); five sequential mathematical

assignments (lines 17 through 21); and one logical if structure (lines 22 through 29).

42

W N -

—— A\ 00 ~1 O\

0

13
14

15
16

17
18
19
20
21

22
23
24
25
26
27
28
29

30

31
32

Listing 3.3-1: A Second Simple Rule-Based Program

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#define CRITERION 20
int main(void)
{
char reply_yes[10] = "Yes";
char reply_no[10] = "No";
char reply[10];
char buffer[80];
double inputl, input2, test ;
// This is a demo program
printf("Enter first input: ");
inputl = atof(gets(buffer));
printf("Enter second input: ");
input2 = atof(gets(buffer));
test = inputl + input2 ;
test =test+ 2 ;
test=test * 2,
test = test + input2 ;
test =test+ 2 ;
if(test >= CRITERION)
{
strcpy(reply, reply_yes) ;
else
{
strepy(reply, reply_no) ;
b
printf("The answer: %s \n", reply);
return(0);
}

in the C Language

This rule-based program was translated into WSL. The resulting WSL program

is presented in Listing 3.3-2. This equivalent WSL program contains only seven

structures, as compared to the 22 structures in the original C program. These structures

are: one variable declaration structure (line 1, terminating on line 10); two output

43

display structures (lines 2 and 4); two input capture structures (lines 3 and 5); one
mathematical operation reflecting the transformation of the multi-line local procedure in
the C code into a semantically equivalent single statement (line 6); and one logical if
structure (lines 7 through 9) that incorporates related output display. This dramatic
reduction in the total number of structures highlights one of the major potential
advantages of this transformation approach to rule extraction and identification, namely,
that using WSL allows the substantial simplification or abstraction of a target program
code. Whereas not all circumstances will result in the magnitude of code reduction
observed here, the elimination of code that is superfluous to the logical functioning of
the program, either through translation into the streamlined syntax of WSL or through
the transformation of source code into semantically equivalent WSL code, greatly aids
in the comprehension of the program and the corresponding identification of program

components of interest.

VAR < inputl := 0.0, input2 := 0.0, test := 0.0 >
PRINFLUSH("Enter first input: ");
inputl ;= @String_To_Num(@Read_Line(Standard_Input_Port));
PRINFLUSH("Enter second input: "); ’
input2 := @String_To_Num(@Read_Line(Standard_Input_Port));
test :=inputl * 2+ input2 *3+6;
IF test >= 20
THEN PRINT("Answer: Yes")
ELSE PRINT("Answer: No") FI;
0 ENDVAR

A B W

— D 00 ~J

Listing 3.3-2: The Equivalent Program in WSL

That an extractable business rule must be logically or mathematically operative,
as presented in the definition of an extractable business rule in Section 2.4, was used
again as the basis for the extractable rule definition function required for the
implementation of (3.1-2). Upon applying this extractable rule definition function to
the previously enumerated list of structures in the demonstration code, only two
structures are found to fit the criterion of being mathematically or logically operative —
the mathematical assignment of the test Qalue (line 6) and the one logical if structure
(lines 7 through 9). These rule structures are highlighted in Listing 3.3-3. No other

“mathematical or logical operators exist. The other structures either contain no

44

operators, or contain only assignment operators. For example, since the function calls
in lines 3 and 5 are for string input and manipulation only, and are not related to the
mathematical or logical manipulation of these strings, these structures are determined
not to contain any rules. Therefore, subject to the continued acceptance of the
extractable rule definition function used in this example, one can be mathematically
certain, using the set requirements specified in (3.1-2), that all rules contained in the

example program have been identified.

VAR < inputl := 0.0, input2 := 0.0, test := 0.0 >:
PRINFLUSH("Enter first input: ");
inputl := @String_To_Num(@Read_Line(Standard_Input_Port));
PRINFLUSH("Enter second input: ");
input2 := @String_To_Num(@Read_Line(Standard_Input_Port));
test ;= inputl * 2 +input2 *3 + 6 ;
IF test >= 20

THEN PRINT("Answer: Yes')

ELSE PRINT("Answer: No'"') FI;
ENDVAR

—\D QO NI\ BN =

o

Note: The extracted rules are shown in bold.

Listing 3.3-3: Rule Extraction from the WSL Program
Using the Inclusion Approach of (3.1-2)

For the implementation of the alternative exclusion approach of (3.1-3), no
extractable rule definition function was required, only a basic understanding of both
extractable rules and the WSL language is needed. For this analysis, it is assumed with
certainty that variable declarations, output/display structures, and simple input capture
structures cannot contain rules. This allows the elimination of lines 1, 2, 3, 4, 5, and 10
as non-rules. These eliminated structures are struck through in Listing 3.3-4. Thus,
only two structures remain that have not been eliminated — line 6 and lines 7 through 9.
Subject to a continued acceptance of the criteria used to eliminate the non-rule
structures, one can be certain that the eliminated structures contain no rules. However,
given the approach and the associated lack of an adequate rule definition, uncertainty
must remain with respect to whether the remaining code does or does not contain any

rules.

45

A . Q@ 10 a—N LG Rand
6 test := inputl * 2 + input2 *3+6;
7 IF test >= 20
8
9

THEN PRINT("Answer: Yes")
ELSE PRINT("Answer: No") FI;
10— ENDVAR

Note: The eliminated structures are shown in strikethrough,

Listing 3.3-4: Rule Extraction from the WSL Program
Using the Exclusion Approach of (3.1-3)

3.4 Observations

Although purposefully limited in scope, these studies highlight the requirements,
similarities, advantages, and limitations of the application of this general framework and
the two related approaches to rule extraction. Both the inclusion and exclusion
approaches require the identification of all structures contained in the target code.
Complex structures that may be composed of multiple structures or structures within
structures must be resolved and decomposed into relatively simple structures that can be
analyzed against a rule definition or rule model, in this case, the extractable rule
definition function of (3.1-3). Given the very limited size of these demonstration
programs, identification of all structures at the appropriate level of detail was a simple,
straightforward matter. However, if the original target program is lengthy, or if the
original program language is either poorly documented or little known to the rule
analyst, or both, then the identification of all program structures in the original program
can be a formidable mechanical and logical task. Given lengthy source code, the
possible number of structures will increase exponentially with the number of lines of
code, making it difficult to efficiently identify all structures within a program. As
demonstrated in the WSL examples, program conversion potentially allows the
substantial simplification or abstraction of the target program code, thereby reducing the
potential magnitude of the problem. Nonetheless, the 'state explosion' associated with

lengthy code represents a potentially significant scalability issue regarding the

46

application of this formal framework to real world rule extraction problems, regardless

of the language on which the extraction activities are based.

The two approaches to rule extraction differ dramatically with regard to the
necessity for and application of a suitable rule definition. The inclusion approach,
based on (3.1-2), requires an explicit, precise rule definition. If such a rule model or
rule definition can be developed and applied to the target program language, then all
rules can be extracted from the target program code with absolute, mathematical
certainty. Conversely, the exclusion approach, based on (3.1-3), requires no a priori
definition of what constitutes a rule, only an ordered understanding of what is not a rule.
Consistent with that compromise, the exclusion approach affords no mathematical
certainty whether the extracted structures contain only rules or other non-rule structures.
Therefore, all subsequent research presented in this thesis will use the inclusion

approach.

Therefore, to achieve the stated goal of developing a suitable formal
methodology for rule extraction to legacy code, two obstacles must be overcome.
Firstly, a flexible but formal model of a business/knowledge rule must be developed that
can be applied to a diversity of legacy code. Secondly, a formal approach regarding the
potential scalability issues in real-world code must be devised. A formal model of a
business/knowledge rule is presented in Chapter 4 and an algebra describing the
application of that rule model is presented in Chapters 5 and 6. Potential scalability

issues are addressed in Chapter 7 using the visual formalisms of statecharts.

47

Chapter 4

Temporal Logic and Rules

One of the critical impediments identified in Chapter 2 is the lack of a general
rule definition that can be applied uniformly and consistently in the analysis of legacy
code and in the execution of the corresponding rule extraction. In this chapter, a formal,
general model of a rule is developed, general in that it can be adapted to the variety of
languages and programming paradigms that might be encountered in different legacy

code applications.

4.1 A State-Based Model of a Rule

A state is a function mapping a set of variables to a set of values. As most
legacy code languages can be analyzed readily in terms of state variables and the
operations that change the values bound to those variables, it is convenient' to
conceptualize most legacy code programs, and the rules contained therein, in terms of
states and state transitions. Therefore, a simple rule can be described informally as a
state transition from an initial state to a final state occurring only when a specified well-
fdrmed conditionayl is satisfied. Using ’this descriptive model of a rule, consider the

following three-tuple:

<%, C> | (4.1-1)

where:
Z = set of valid states, such that Sinial, Sinat € Z,
8= transition relationship, relating Siiiat tO Spinat, and

C= properly formed condition that must be satisfied for the state
transition relationship described by 8 to occur.

Several general points merit note regarding this general descriptive model.
Firstly, the state variables used in X can represent any component, object, or property of
interest. Secondly, no limitations are placed on the nature of the transition relationship
8. This transition is expressed as a relation and not a function to allow for non-

deterministic rules. Therefore, for a given rule, multiple alternative final states may

48

result for a single initial state. Thirdly, the use of the state descriptors initial and final
are relative to a single rule, where each transition described by a rule will have an initial
and final state. Within this context, more sophisticated rules and rule-based programs
can be formed by defining multiple rules and linking those rules together, such that the

Sfina1 T€SUlting from one rule may then be used as the s, for a subsequent rule.

A critical issue in the refinement of the basic rule model presented in (4.1-1) is
the nature of the condition, C, that must be satisfied for the transition from Siniria1 tO Sgnai,
as described by the transition relationship 8, to proceed. As described below, the form
of this conditional is a critical factor in determining whether a given structure

constitutes a rule. Consider the following simple assignment:
x:=1 4.1-2)

Using the rule model presented in (4.1-1), this assignment is not a rule, as it does not
include a condition. To include a condition, this simple assignment can be rewritten as

the following if-then conditional:
if true then x := 1 (4.1-3)

In both cases, x will always evaluate to 1. Although the second form (4.1-3) includes a
condition (i.e., ‘if rrue’), the form of the conditional dictates that x always evaluates to
1. To that end, no state knowledge is required to evaluate x. In either form, the variable
x always will be assigned a value of 1. Thus, both statements are unconditionally true.
Borrowing from the concepts associated with the programming language PROLOG,

statements that are always unconditionally true are facts (Bratko, 2001), and not rules.

Formally, this argument can be made using propositional logic. Let the atomic
proposition Q represent (4.1-2) and let the conditional presented in (4.1-3) be described
using implication as true > Q. From propositional logic, true > Q = Q. Therefore,
(4.1-2) and (4.1-3) are logically equivalent. Based on this proven logical equivalence,

because (4.1-2) is not a rule by definition, (4. 1-3) is not a rule by extension.

49

Now consider the following modified if-then conditional:
if y=truethenx:=1 ' 4.14)

In this case, the evaluation of x to 1 depends on the state of y. The state of x is no longer
certain. This conditional is formed such that the future value of x is dependent on the
value of y, and not on the invariant form of the condition as in the previous example.
Extending the previous analysis using propositional logic and letting the atomic
proposition P represent y = true, (4.1-4) can be represented using implication as P > Q.
Without additional knowledge regarding the current state of P and the applfcation of an
inference rule, no further simplification of (4.1-4) can be made, | supporting the

conclusion that (4.1-4) if fundamentally different than (4.1-2) or (4.1-3).

Therefore, for the purposes of defining a rule, the properly formed condition
criterion relates to the mathematical form of the conditional relative to expressing the
conditions in terms of a state and the associated state variables. Consider the following
rule-based, two-line program describing a simple two-variable state space and

incorporating the conditional presented in (4.1-4):

y = true (4.1-52)
if y=truethenx:=1 (4.1-5b)

. Consisting of an assignment and an if-then rule, this rule-based program will always
evaluate x to 1. However, this certain evaluation is based on the limited expression of
knowledge within the program, i.e., that y is specified in the program to be true, and not
based on the mathematical or logical form of the rule conditional. Whereas one may
consider this a trivial rule, it is potentially a properly formed rule in that the final
assignment of x is not constrained by the mathematical or logical form of the
conditional controlling‘the aSsignment of x. If the knowledge about the state space
being modeled wére‘expanded such that y might vary, then x could vary also. In this
case, this rule-based program is limited only by the knowledge of the state space
relative to the interaction of the state variables, and not by the fundamental form used in

the expression of the rule.

50

Therefore, the general concept presented in (4.1-1) is modified such that a

business or knowledge rule is formally defined by the three tuple:

<Z%8,C> (4.1-6)
where:

2= setof valid states, such that Sinirial, Sinai € Z,

8= transition relationship, relating Siniias tO Sfinas» and

C= condition that must be satisfied for the state transition relationship

described by 8 to occur, and must be properly formed relative to
the state such that C(s) = true for s € X.

Whereas this research typically discusses the condition C as a logical conditional of an
imperative/procedural language, no limitation is imposed with regard to how this
condition may be implemented. For example, C could be dependent on a event,
including the receipt of a message, such that the initiation, ongoing execution, or
completion of such an event would evaluate C to true. Similarly, C could be expressed
in terms of a group of concurrent actions, or the truth of the conditional is based on
some set of temporal actions set of past, current, or future behaviors. The general rule
definition presented in (4.1-6) has been constructed to permit the analysis of rules in a
wide range of specifications and program codes and to support various forms of rule

implementation within those specifications and program codes.

To further focus on the state outcome of this state-based model of a rule, the
concept of a rule state is introduced. A rule state is the state (or state sequence, as will
be discussed later in this chapter) that results from the implementation of a rule, that is,
the state that results from the transition relationship 8 of a properly formed rule, as

described in (4.1-6). The rule state of the general rule described in (4.1-6) is Sgnar

Refining the requirements associated with the rule condition, explicitly
incorporating the rule state concept, and generalizing to eliminate the use of initial and
final, the three-tuple formal definition presented in (4.1-6) can be expressed in an

alternative form:

51

C(s)=true A s'=8(s) for s5,5'€e = 4.1-7)

where:
§'= rule state, resulting from the transition specified by 8,
8 = transition relationship, relating s to s, and
C(s) = rule condition to be satisfied, expressed in terms of the state s.

4.2 A Very Basic Temporal View of Rules

Implicit in the description presented in (4.1-7) is a temporal ordering of states.
As previously defined, the outcome of the rule is the rule state. As the transition to rule
state s’ is conditioned on the environment being in state s, thereby satisfying the
condition specified by C, and as no environment can be in two states at the same time,
the rule state s" must occur after state s. These general temporal properties of (4.1-7)

can be described in the following simplified form:

C(s) A Shumr for s,5'€e X 4.2-1)

where:

§'= rule state described by the transition relationship § (relating s to
s") and occurring in the future relative to s, and

C(s) = rule condition to be satisfied, expressed in terms of the state s.

As a conjunctive structure, (4.2-1) is true only if both elements of the conjunction hold
~ if the condition expressed in terms of a state s is satisfied and if the state is moved in
the future into some state s’ as defined by the transition relationship 8. Using the model
presented in (4.2-1), rules can be described as a conjunctive structure that specifies both
a state that satisfies the rule condition and a future rule state. Extending this
description, a rule defines a temporal relationship between states. As these temporal
aspects are critical to a formal model of a rule, the following section describes temporal
logic and Interval Temporal Logic, as 'tools for expressing rules and reasoning with

rules.

52

4.3 Temporal Logic and Interval Temporal Logic

Temporal logic is a powerful tool for the formal reasoning about time and the
behavior of dynamic systems without requiring the introduction or use of explicit time
variables. Using temporal logic, time concepts relative to a sequence of states can be
expressed using different temporal operators, including always (o), sometimes (0), and
next (o). A comprehensive review of the development and implementation of temporal
logic is presented in Manna and Pnueli (1992, 1995).

This research uses Interval Temporal Logic (ITL), a flexible notation for
propositional and first-order reasoning about periods of time (i.e., intervals) in hardware
and software. ITL can be used to reason about both sequential and paralle] composition,
and includes powerful and extensible specification and proof techniques for reasoning
about critical properties such as safety and liveness (Moszkowski, 1996). As Cau and
Zedan (1997) have demonstrated that most imperative programming constructs can be
represented as formulas in ITL, it is well suited for the analysis of legacy code as well
as the analysis and specification of other non-legacy constructs. Detailed descriptions
of ITL can be found in Moszkowski (1986, 1994, 2000, 2003) and the ITL homepage
(STRL, 2006).

Fundamental to ITL is the concept of the interval — a (in)finite sequence of states
that describes the behavior of a program or specification over time. Using the states s in
X, intervals of time, i.e., sequences of states, can be constructed from Z°, the set of all
non-empty sequences of states. Such an interval of states is represented by ¢ and the
length of that interval is one less than the number of states in that interval. Under this
definition, a single state is a valid interval, and the length of a single state interval is
zero. As intervals can themselves be composed of intervals, ITL is highly adaptable to
both abstraction and refinement, as intervals can be either aggregated or partitioned,

depending on the specific circumstances.

Intervals in ITL are described by expressions and formulas. The syntax of ITL
is presented in Table 4.3-1, where z is an integer value, a is a static variable (i.e., a
variable that does not change within an interval), A is a state variable (i.e., a variable
that can change within an interval), v is a static or state variable, g is a function symbol,

and p is a predicate symbol. Formulas may or may not include temporal operators. A

53

state formula, in this research denoted by w, is a formula that contains no temporal
operators. The verity of a state formula for a given interval, that is, a sequence of states,

is assessed based by the first state in that interval.

Table 4.3-1 Syntax of ITL

Expressions
exp = z|a|A|glexpy,...,ezpy) |10 f
Formulae '
fu= plezpy,....expn) | =f | fin f2| Vo« fskip| f1;fa] f*

Source: [TL home page at http://www.cee.dmu.ac.uk/~cau/idhomepage/

The formal semantics of ITL is listed in Table 4.3-2. The informal semantics of
some of the ITL constructs key to the analysis of rules and the research presented herein

include:
. skip — unit interval

o f1 3 2 holds over an interval if that interval can be decomposed (or
“chopped”) into a two intervals, a prefix and suffix interval, such that f;
holds over the prefix interval and f; holds over the suffix. If the interval
is infinite, then f; must hold for that interval. The ; operator is read as

‘1Ch0p-’9

) f' holds if the interval is decomposable (i.e., chopable) into a finite
number of intervals such that f holds for each of them. If the interval is
infinite, it must be decomposable into an infinite number of finite

intervals for which fholds. The * operator is read as “chop-star,”
The following are some simple ITL formulas and their informal meanings.

o I = 1 holds for a interval if the value of I in the initial state of that
interval is 1, regardless of the value of / in any subsequent states that may

compose that interval. This formula can hold on a single state interval.

) I =2 A skip holds for a two-state interval if the value of / in the initial

state of that interval is 2.

54

Table 4.3-2 Semantics of ITL

Eal[U]] = UO(U)
Eolg(expr, .. . expn)] = §(Es[ezpi],. .., Eslexpnl)
o) X)) fu#
Eqlua: f] = { x(Val,) otherwgs}e
where u = {0/(a) | 0 ~, 0/ A My [f] = tt}
Mo [p(ezpi, ..., expn)] = tt iff p(&,[expy], .. - Exlezpn])
Mo[~f] = tt if M,[f} =1
Mlfin fo] = ttiff M;[f1] = tt and Mef2] = tt
MoV « f] = tt iff for all 0’ 5.t. 0 ~y 07, Mor[f] = tt
M [skip] = ttiff |o| =1
Molfi; fo] =t iff
(exists a k, s.t. Moy 4, [f1] = tt and
(o is infinite and My, . [f2] = tt) or
(o is finite and k < |o| and Moo [f2] = tt)))
or (o is infinite and M,[fi])
Mf*] = tt iff
if ¢ is infinite then
(exist I, ..., I, s.t. Iy =0 and
Mo, . [f] =tt and
forall 0 < i< mn,l; <41 and Moy, ..o, 1] = tt)
or
(exist an infinite number of }; s.t. Iy = 0 and
for all 0 <4, l; < liy1 and My o, [f] = tt)
else
(exist lp,...,ln 8.t. Iy =0 and I, = |o} and
forall 0 €i<n,l; <liy1 and M"‘-‘"""ux [7]1=tt)

Source: [TL home page &t http /www .cse dmu ac uk/~-cau/itihomepage/

. ol = 3 holds for interval if the value of I in the second state of that
interval is 3. Given that the ITL next operator o is defined as “skip ;”,

this formula is equivalent to the formula skip ; I =3 .

) I =4 ;=5 holds for interval if the value of I in the initial state is 4 and
in some later state, but not necessarily the second or next interval, the
value of I is §.

Some frequently used non-temporal derived constructs, temporal derived

constructs, concrete derived constructs, and derived constructs related to expressions are

presented in Tables 4.3-3 through 4.3-6, respectively.

55

Table 4.3-3 Frequently used non-temporal derived constructs

true
false
Hvfa
HhDFf
h=h
e f

MR PR PP)

0=0

-true

(=f1 A f2)
=fivfa

true value
false value
or

implies

(i D f2)A(fs D fi) equivalent

Yy e af

exists

Note: From the ITL home page st hitp:/fwww.cse.dmu ac uk/~cau/ithomepage/

Table 4.3-4 Frequently used temporal derived constructs

of
more
empty
inf
isinf (f)
finite
isfin (f)
fmore
of

of

®f
of
af
®f
@f

DHDHLDHHBHBDLDDDLBHDHIDD

skip; f
Otrue
-more

true ; false
inffaf

=inf

finite a f
more A finite
finite; f
—~Of
-~0O=f
Jitrue
=(®~f)
finite ; f ; true

>(®=f)

next

non-empty interval
empty interval

infinite interval

is infinite

finite interval

is finite

non-empty finite interval
sometimes

always

weak next

some initial subinterval
all initial subintervals
some subinterval

all subintervals

Source: ITL home page st hitp /www.cae dmu.ac uk/~cauitthomepage/

56

Table 4.3-5 Frequently used concrete derived constructs

if fo then f; else f2 (fo A f1) v (-ufo A f2) if then else

if fothen f, = if fothen f else empty if then
fin f = Oempty D f) final state
sfin f = =ffin(=f)) strong final state
halt f = D(empty = f) terminate interval when
shalt f = =(halt(~f)) strong terminate interval when
keep f = @(skip O f) all unit subintervals
keepnow f = O(skipa f) initial unit subinterval
b = isinf (isfin (£)*) infinite chopstar
fstar (f) = isfin (isfin (f)*) v

isfin (isfin (f)*) ; isinf (f) finite chopstar
while fo do fi (fon f1)* Afin ofy while loop

b

repeat fo until fi Jo i (while =f1 do f5) repeat loop

Source: [TL home page at http /fwww cse.dmu ac uk/~caw/itihomepage/

Table 4.3-6 Frequently used derived constructs related to expressions

Oezxp = a Olexp = a) next value

fin exp £ qa:fin{exp=a) end value

A:=erp = OA=exp assignment

€Ip) = exps = Oexpr = expq) equal in interval
€Tp; + erp; Z finite A (fin exp;) = exp, temporal assignment
erp; getsexps = keep (exp; «~ expy) gets

stable ezp = expgetsexp stability

padded exp £ (stable (exp) ; skip) v empty padded expression
erpy < expy; = (erp; «— expz) A padded exp, padded temporal assignment
goodindex exp = keep (exp +— exp v exp «— exp+1) goodindex

intlen (exp) E A {(I=0)a(Igets]I+1)a(l« exp) interval length

Source' ITL home page at htp /www.cae dmu ac.uk/~caw/ithomepage/

Propositional axioms and rules for ITL are presented in Table 4.3-7. Cau and
Moszkowski (1996) describe the development and implementation of a theorem prover
and proof checker tool for ITL using the SRI's Prototype Verification System (PVS).
This proof tool has been used to develop and verify an extensive library of ITL lemmas
(STRL, 2006). A summary of selected ITL lemmas from this library that are used in

this research is presented in Table 4.3-8.

57

Table 4.3-7 Propositional axioms and rules for ITL

ChopAssoc
OrChoplmp
ChopOrImp
EmptyChop
ChopEmpty ;
BiBoxChopImpChop
StateImpBi
NextImpNotNextNot

KeepnowImpNotKeepnowNot

BoxInduct
InfChop
ChopStarEqv
ChopstarInduct
MP

BoxGen

BiGen

rTrTrTrTTrT T T T TTTTTOTTT

(fos f1)i o = foi(f; f2)
(fov fi)s fo D (fos f2) v (f15 f2)
fos (fiv f2) D (fo; f1) v (fo; f2)
empty; f1 fi
fiiempty = fi :
D(fo O Ai) AD(f2 D f3) D (fo; f2) D (f1;f3)
p D dp :
Ofo D) --O-1f0
keepnow (fy) D —keepnow (—fp)
fonO(fo D ®fy) D Ofy
(foainf); f1 = (foninf)
3 = (empty v ((fo Anmore); f3))
(inf A foAO(fo D (fiAfmore); fo)) D fi
fodo f, F fo = F f
fo = F Of
fo = mfo

>

Source: ITL home page at http.//www.cse dmu. ac uk/~caw/itthamepsge/

This overview of ITL is provided as a bésis and background for the development
of the formal rule model presented later in this chapter and the rule algebra developed
throughout the remainder of this thesis. As necessary, the various elements of ITL

summarized in this section are used in the development of the rule model and rule

algebra presented in this thesis.

Lemmas introduced later in this chapter and

in

subsequent chapters to define this rule model and rule algebra have been developed as

part of this research using ITL.

58

Table 4.3-8 Summary of selected ITL lemmas used in this research

AndChopImp :

Fonf)sf) o (fosf) alfii)
ChopAndImp :

Ffos (i AS) 2 (o3 1) A (fos)
ChopOrEqy :

FGos ivi) = (fosf v (fosf)
NextAndNextEqvNextRule:

F(fonf) = f)implies F(0fon of)) = ofy)
NextChop :

F (oo = offos f)
OrChopEqyv :

F{ovinifd = (fosf) v (s f)
StateAndChop:

Fwafoifd = wafosf)
StateAndNextChop:

F(waofa)sf) = wa ofo:)
StateChop:

Fw;fyow

4.4 Previous Temporal Representations of State Properties

Various formations using temporal logic have been used to represent and reason
about the relationship between current and future states and/or state properties.
Although these formations are not always described as rules, they do demonstrate how

different states can be linked temporally to form coherent logical structures.

Lamport (1977) introduced the ‘leads to' operator to express a liveness property,

where a liveness property requires that something must eventually happen. The 'leads

to' operator was defined using temporal operators in Lamport (1980) as:

59

P>0Q T (4.4-1)

where P and Q are assertions. Under this form, if P is true, then Q will be true
eventually, either at the same time or at some later time. This concept was modified in

Owicki and Lamport (1982) where the 'leads to' operator was defined as:
o(P > 0Q) (4.4-2)

Under this formation of the 'leads to' operator, it is always true that if P ever becomes
true, then Q will be true at the same time or at some later time, where P and Q are either

immediate or temporal assertions.

Manna and Pnueli (1990) proposed a hierarchy of related formulations involving

implication and temporal operators, where P and Q are state formulas or assertions:

Entailment: oPoQ) (4.4-32)
Conditional guarantee: Po0Q (4.4-3b)
Simple obligation: 0P20Q (4.4-3¢)
Obligation of exceptional occurrences: PO OQAOP) (4.4-3d)
Response ‘ o(P > 0Q) (4.4-3¢)
Conditional persistence: o(P 2 00Q) (4.4-3)
Persistence-equivalent: P> 90oQ (4.4-3g)
Reactivity: ofP > o0Q (4.4-3h)

The interrelationship of some of these formulations is evident. Simple obligation is an
extension of conditional guarantee; conditional persistence is an extension of response;
and response incorporates entailment and conditional guarantee. Obligation of
exceptional occurrences is a specific instantiation of simple obligation, as the authors

observe that it guarantees that Q happens only after some occurrence of P.

Siewe et al. (2003) used ITL to express an ‘always-followed-by’ operator for

reasoning about security policies. This ‘always-followed-by’ operator is defined as:

60

a(f> 0(¢f; w)) (4.4-4)

where f is a temporal formula and w is a state formula.

4.5 A Temporal, State-Based Model of a Rule

As demonstrated in Section 4.4, temporal logic can be used to represent and
reason about the relationship between current and future states and/or state properties.
In these previous uses of temporal logic to express rule-like structures, implication has
been consistently used to express the logical relationship between the formulas
describing the current and future states. However, and as explained below, implication
has an undesirable property with regard to the formation of rules — the vacuously true
case. For implication, the vacuously true case exists when the antecedent is false and
the consequent is true. The basis for the vacuously true case is evident when an
implication, fp o of;, is expressed in its equivalent disjunctive form, -y v of;. In this
example, if of; is true, the implication (and its equivalent disjunctive form) will hold
regardless of the verity of the antecedent fp. Whereas the logical necessity of the
vacuously true case for implication is not questioned here, it does seriously weaken the
use of implication as the basis for the formation of rules. This is less a logical problem
and more an interpretive question of whether the definition of a rule using implication is
the best alternative for expressing the formal, state-relationship basis for a rule, as

developed above, and the informal expectations of what constitutes a rule, as previously
discussed in Chapter 2.

As described in the previous sections, a rule is a relationship between a state and
a future state. If the program is in a state or othcrwise moved to a state such that the
conscquent of an implication-form rule is satisfied, then that implication-form rule is
true by definition, even if the antecedent is false and the program is not in a state
satisfying the rule condition expressed by the antecedent. Stated another way, using
implication to form rules allows one to unequivocally declare that an implication-form
rule describing the relation between two states is true even though the rule condition
(ie., the implication antecedent) is not met; only the consequent need be true for an
implication-form rule to be true. The vacuously true case conflicts with the intuitive

expectations of a rule and informal requirements previously presented in Chapter 2 that

61

a rule be both explicit and precise with regard to what conditions must be met for the
rule to hold. Therefore, an alternative logical formation — other than implication - is

preferable for the formation and representation of rules.

Returning to the very basic temporal view of rules as presented in (4.2-1), a rule
is conceptually represented as a conjunction of a rule condition, expressed in terms of a
state, and a future state — the rule state ~ that results from the enforcement of the rule.
Generalizing this to consider sequences from X*, the set of all nonempty sequences of

states, (4.2-1) can be recast in a form amenable to the use of ITL:

C(6) A C'fuwre for 0,0'€ T* (4.5-1)

'0'=rule state (or sequence of states) occurring in the future relative to
o and described by the transition relationship §, relating o to ¢'
where ' = §(0).

C(c) =rule condition to be satisfied, expressed in terms of the state (or
sequence of states) ©.

The general state sequence and temporal concepts presented in (4.5-1) can be

formalized using ITL and a rule can be described as:

finof; 4.5-2)

where:

fi= temporal (or state) formula in ITL describing a sequence of states
(i.e., the rule condition) that must be met for the rule to hold.

JSi= temporal (or state) formula in ITL describing a sequence of states
(i.e., the rule state) that must occur for the rule to hold.

Regarding the correspondence between (4.5-1) and (4.5-2), f; describes the rule
condition 6 that must be met; fjdescribes the rule state ¢’ that must occur for the rule to
hold; and the use of the ITL next operator o specifies that the sequence of states
satisfying fi must occur in the future relative to the sequence of states satisfying fj
(subject to the specific semantics of the ITL next o operator as presented in Table

4.3-2). As this rule form uses conjunction, no vacuously true case exists. In this form,

62

the rule is true only if both the rule state, described by f;, is achieved and all rule

conditions, as expressed in fj, are satisfied.

One final element must be added to complete the formalization of the concepts
presented in (4.5-2). Remembering that a state is a function that maps a set of variables
to a set of values and that 8 is a transition relationship relating some state sequence © to
some future state sequence o', ¢' differs from ¢ based on changes to specific variables
as specified by the transition relationship 8. The variables that change values can be
formalized under ITL using the frame extension described by Cau and Zedan (1997).
Letting W be a set of state variables, then frame(W) denotes that only the variables in W
can possibly change in the transformation from o to ¢' as defined by 8. The formal
semantics of frame, expressed in ITL, are presented in Cau and Zedan (1997). This
frame extension can be applied to (4.5-2), and the general form of a rule can be defined

as:

W:fin of; (4.5-3)
where:
fi= temporal (or state) formula in ITL describing a sequence of states
that must be met for the rule to hold.
fi= temporal (or state) formula in ITL describing a sequence of states

that must occur for the rule to hold.

W= sect of state variables such that frame(W) denotes that only the
variables in W can possibly change in the state transformation that

occurs such that f; and of; hold.

Using the general form presented in (4.5-3), fi specifies the rule condition and f;
describes the rule state resulting from the rule. When it is self-evident or otherwise not

necessary that it be explicitly stated, W can be inferred and need not be shown.

As ITL temporal formulas include state formulas (special temporal formulas

whose verity is assessed based on only the first state of a sequence of states), (4.5-3) can

be restricted to only state formulas and expressed as:

W:w A ow (4.5-4)

63

where:

w;= state formula in ITL describing the first state in a sequence of
states that must be met for the rule to hold.

wj= state formula in ITL describing the first state in a sequence of
states that must occur for the rule to hold.

W= set of state variables such that frame(W) denotes that only the
variables in W can possibly change values in the state
transformation that occurs such that w; and ow; hold.

Using the general form presented in (4.5-4), w; specifies the rule condition and wj
describes the rule state resulting from the rule. Whereas the general form of (4.5-3) will
be typically used for the general representation and analysis of rules, the state-restricted
form of (4.5-4) will be occasionally used to express certain provable transformations

that, although of limited scope, are especially applicable to certain procedural legacy

code.

In Cau and Zedan (1997), a specification statement in ITL is described as having
the syntax of W: f. As fin this general specification statement is an ITL formula, f can
be instantiated with the ITL formula f; A of; and W : f; A of; is achieved. Therefore, the
general rule form of (4.5-3) can be viewed as an extension of the specification statement
that includes a conjunction of a sequence of states and a future sequence of states, in

this case described using the ITL next operator o.

Cau and Zedan (1997) describe the semantics of the specification statement W : f
as frame(W) A f. Extending these semantics, the semantics of (4.5-3) is given by
Sframe(W) A fin of. Applying propositional logic, specifically the elimination of
conjunction, f; A of; can be concluded from frame(W) A fi A of. This conclusion is
consistent with the previous assertion that W need not be explicitly stated when it is
self-evident or can be inferred from the specific rule instance.

This section closes with a final emphasis on the underlying concept that a rule is
a temporal relationship between states, originally introduced in (4.1-1) and temporalized
in (4.2-1). Let 0;and o; be two intervals of states such that 0;, 0; € Z* and let f; and f; be

valid temporal formulas expressed in ITL such that o; & f; and o) F f. By definition, if

finof; is true then there is a relationship pnse between o; and 0. Whereas this

64

relationship could be represented, with sufficient formal development, as G; Pre G; or
Prue(Ci, G;), this relationship will henceforth be described in terms of the general-form
rule f; A of; with the understanding that this general form rule describes the temporal

relationship between o; and ;.

4.6 Rules versus Rule Execution

As developed in this chapter, a rule is a relationship between a sequence of states
and a future sequence of states, and is formally described conjunctively using ITL as
finofi Rules can be developed, that is, the relationship described, either
observationally or prescriptively. If a program or specification is observed to exhibit a
sequence of states that satisfies f; and in the next state that program or specification
exhibits a sequence of states that satisfies fj, then this behavior can be described by the
rule f; A of,. (This observational construction is supported in propositional logic in that

P, g+ p A qg). Similarly, if a program or specification is observed to exhibit a sequence

of states that satisfies f, and in the previous state exhibits a sequence of states that
satisfies f;, then this behavior can also be described by the rule f; A of,. (Although ITL
contains no past time operators, this reverse strategy relies on the observation that there
is a sequence of states that satisfies fj, that prior to that sequence there is a sequence that
satisfies f;, and that of; is true relative to fi.) Alternatively, a rule developer may
prescribe or specify that, at some time, the program or specification will exhibit a
scquence of states that satisfies f; and in the next state will exhibit a sequence of states
that satisfies f The rule developer may describe this relationship by the rule f; A of;. In
all cases, and whether of observational or prescriptive origin, the relationship between

sequences of states satisfying f; and of; is described by the general-form rule f; A of;.

Whereas a rule may represent a relationship between states, it is only when a
rule is executed that the future sequence of states embodied in that rule can be achieved.
Therefore, a rule is executed at a specific time or under specific circumstances with the

expectation of a specific outcome. The implication form defining the execution of a

rule can be described by the following lemma:

65

LEMMA: ImpFormExecute

F fo A of; implies + foD (fo A of7)

Proof:
1 fonofi premise
2 Jo ' conditional proof assumption
3 fon of; 1, reiteration
4 fod (forofi) 2-3, O introduction

Using ImpFormExecute, the execution form of the rule fy A of; can be described using

implication as:
Jo2 (fon ofi) 4.6-1)

The formation may be clearer if this implication is read as ‘¥, is sufficient for fy A of1.”
Extending this interpretation, if the state, when the rule is executed, satisfies the rule
condition described by fy, this satisfaction is sufficient for the imposition and
enforcement of the relationship described by the rule fy A of;. And with the imposition
of the rule fyo A of;, the next state satisfies fi. Alternatively, using the traditional
description of implication as if...then, rule execution can be described as follows: if the
rule condition specified by fp is met then impose and enforce the rule fy A of; specifying

that the next state will satisfy f;,

With regard to the state sequences that may result from the rule execution form
presented in (4.6-1), two alternative state sequences can be described with the

equivalent disjunctive form of (4.6-1):

~fov (fon of)) (4.6-2)

As presented in (4.6-2), the state sequence resulting from the execution of the rule can
be described either by —fy or fo A of;. Stated another way, the execution of the rule
Jo A of; will result in either one of two state sequences — one satisfying fy A of; or one

satisfying —fp — depending on the state at the time of rule execution.

66

The requirements for and outcome of the execution of the rule fp A of; using

implication can be described by the following lemma:

LEMMA: RuleExecute

Ffoand - fo O (fo A of;) implies - of;

Proof:
1 f premise
2 foo(fonofy) premise
3 (oofo) Ao of)) 2, distribution of D over A
4 true A (fo D of1) 3, propositional reasoning
S fooofi 4, unit of A
6_ofi 1,5, MP

Under this lemma, if the program or specification is in a state satisfying fy, and the rule

fo A of is executed, where the logic of that execution is described by the implication

Jo2 (fo A of1), then the next state will satisfy f;.

RuleExecute highlights the critical differentiation between and the logical
separation of a rule and the execution of that rule. Rules define or describe the
relationship between the rule condition and the rule state, expressed formally as the
conjunctive relationship between a sequence of states satisfying fp and a future sequence
of states satisfying of;, or foA ofi. Rule execution describes the programmatic
implementation of how this rule is called, executed, and/or enforced. Whereas the rule
fo~ ofi may describe a relation between states and future states, this rule will only
describe a specific state change to a sequence of states satisfying of; only when the rule
is executed. This distinction is critical for the logical and analytical separation between
the knowledge that rules incorporate and the programmatic implementation of those
rules.

Although a slightly shorter proof for RulcExecute is possible, careful analysis of
the approach used yiclds another lemma regarding the representation of the

programmatic implementation of rules with implication.

67

LEMMA RuleExecuteEqvIimp

Ffoo(fonof) = foDof;

Proof:
1 foo(forofi) = fo2(for of)) tautology
2 foio(onofr) = (foDfo) A(foD of) 1, distribution of S over A
3 foo(foaof)) = true A (foD ofy) 2, propositional reasoning

4 foo(orof) = oo ofi 3, unit of A

RuieBxeputequImp demonstrates that the rule execution form fo O (fz A of)) is
logically equivélent to the simple implication form f, O of;. Using the conjunctive
model of a rule as presented in this thesis, RuleExecuteEqvImp supports a conclusion
that the common view of a single rule-like structure as implication is actually a logical
description of the execution of a rule and not a logical description of the rule itself,

“where a rule is a temporal relationship between two state sequences.

4.7 Observations

_ In this chaptei', a rule has been déﬁned formally as a conjunctive rélationship
between a state sequence and a future state sequeﬁce. This relationship is described in
ITL as the general-form rule f; A of, This rule form can be used to either describe or
specify, either observationally or prcscriptivély, a temporal relation between a state

sequence satisfying the rule condition f;, and a state sequence satisfying the rule state f.

Unlike the traditional use of implication to represent rules, this conjunctive form
avoids the troubling vacuously true case associated with implication. Using implication
to form rules allows one to unequivocally declare that an implication-form rule
- describing the relation between two states is true even though the rule condition (ie.,
the implication antecedent) is not met. This is troubling because the vacuously true case
~ conflicts with the intuitive expectations of a rule and informal requirements previously
presented in Chapter 2 that a rule be both explic‘it and precise with'rcgard to what
conditions must be met for the rule to hold. The conjurictiyve general-form rule f; A of;
avoids the prbblem. However, with courteous regard to the traditional (and arguably

incorrect) view of rules as implication, proof was given that the execution of the

68

general-form rule, described using implication as fo O (fo A of), is logically equivalent

to the simple implication form fp O of;.

A critical objective in the development of this rule model was the general
adaptability of the rule model to a variety of programming paradigms, so that it can be
applied in concert with the general rule extraction framework developed in Chapter 3.
However, as the goal of many rule extraction exercises is the development of a new
specification or program that will implement the extracted rules, this rule model should
be equally adaptable to forward engineering. In the next chapters, a rule algebra is
developed that describes how the general-form rule f; A of; can be used to describe

complicated state sequence in either the reverse or forward engineering domains.

69

Chapter 5

Rule Algebra — Fundamentals

The modern word algebra ériginates from the Arabic word al-jebr meaning
"reunion of broken parts" (Oxford, 1971) or "reduction of parts to a whole" (Merriam—
Webster, 1998); al-jebr is derived from the Arabic word jabara meaning "reunite, ...
consolidate, restore” (Oxford, 1971) or "to bind together" (Merriam-Webster, 1998).
‘Because the pext two chapters are focused on how rules can be created systematically
from component parts including other rules and then linked to form larger structures,

these origins of the word algebra are particularly enlightening and appropriate.

Numerous definitions for algebras or algebraic systems exist in the modern
mathematics and computer science canon (Birkhoff and MacLane, 1977; Buchi, 1989;
Burris and Sankappanavar, 1981; Gill, 1976; Hungerford, 1974; Levy, 1980; Stanat and
McAllister, 1977). For this thesis, a very general definition is used — that an algebra is a
structure composed of sets of objects and operations on those objects (Denecke and
Wismath, 2002). For this rule algebra, these objects are states and state sequences
specified by a rule or collection of rules. Using the general formal model presented in
Chapter 4, a rule algebra is presented that describes the set of operations that can be
applied to compose, decompose, or transform those rules to describe other sequences of
states. In this chapter, the fundamentals of this rule algebra are presented. Whereas
some relatively simple rules are analyzed in the development of the fundamentals of this
rule algebra, these simple rules are included to demonstrate how this rule algebra can be
used to describe other simple relations typically presented in the mathematical canon.
While simple, these fundamental rules and the associated proofs are far from trivial as
they provide the reader a sound basis for understanding both the rule model and the
more advanced elements of the rule algebra that follow. In the next chapter (Chapter 6),
advanced concepts associated with this rule algebra are developed using the

fundamentals presented in this chapter.

5.1 Rules, Total Rules, and Rule Systems

Consider the following general-form rule:

70

Jonofi (5.1-1)

This rule is satisfied if the rule condition fj is satisfied (i.e., true) and the next sequence
of states satisfies f;. Assuming the system currently exhibits a state sequence satisfying
fo, execution of this rule can be performed as described by ImpFormExecute and
RuleExecute (previously presented in Chapter 4), and of; can be concluded. However,
no information is provided regarding the future state sequence associated with or related

to the non-satisfaction of fp. Three cases exist if f; is false, as described below.

In the first case, as described above, no explicit representation is made with
regard to the next state sequence in the event of the non-satisfaction of the rule
condition fp. Stated another way, no complementary rule including —f as the rule
condition is specified. Therefore, in the event of —fp, the next state sequence and any
associated changes in system state are governed by other aspects of the system, and are
not described by this rule. These controlling elements may include but not limited to
the presence or absence of an overall frame axiom specifying that state variables do not
change unless explicitly changed. In the absence of any information about such aspects
such as an overall frame axiom, or unless redefined by a subsequent formula, the next
state after —fp is undefined.

In the remaining two cases, a rule addressing the non-satisfaction of the rule

condition is explicitly stated and a resulting rule state sequence specified. In these

cases, both the satisfaction and non-satisfaction of the rule condition are considered, and

these complementary rule pairs are referred to as total rules.

In the second case, if the rule condition f; is false, a complementary rule can be
defined that specifies the relationship between the state sequences satisfying —f; and a

next sequence of states satisfying fa:
—fon of2 (5.1-2)

Applying ImpFormExecute and RuleExecute, when the rule specified in (5.1-2) is

executed from a state sequence satisfying —f5 the next state sequence will satisfy f3.

71

The coordinated execution of the total rule defined by complementary rule pair

Jo A of; and —fp A ©f; is described by the following lemma:

LEMMA: TotalFormExecute

F fonofiand - —fy A of2 implies F (fp A Of1) v (—fo A Of2)

Proof:
1 fornof; premise
2 fHhAof premise
3 foo(foncfi) 1, ImpFormExecute
4 —fpD(=fonofy) 2, ImpFormExecute
5 fooofi 3, RuleExecuteEqvImp
6 —froofr 4, RuleExecuteEqvimp
7 (oo of) A(—fo D ofd) 5, 6, A introduction
8 (foaof)) Vv (=fon of) 7, propositional reasoning

Using TotalFormExecute and given the complementary rule pair fo A of; and —f; A of;,
the total rule execution form (fo A of1) V (=fo A of2) may be concluded. In this form, the
total rule execution form is a disjunction of the two complcmentéry general-form rules.
This total rule execution form corresponds with the logical form of the ITL expression
of the concrete derived construct if-then-else, as presented in Table 4.3-5, with the
notable exception that this total rule form (fo A of}) vV (=fs A of2) includes the ITL next
operator in the specification of the rule state. (The if-then-else construct is discussed in

detail in Chapter 6.)

The third case is a specialized form of the total rule presented in the previous
case. For this case, consider the rule W: (fo A of)). For those state sequences that do
not satisfy fj, a complementary rule can be defined that specifies that the system state

remains unchanged:

W: (~fon Ofmchanged) (5.1-3)

72

In this complementary rule, the temporal formula funchangea specifies that the system state

remains unchanged. The formal semantics of funchangea are defined as follows using an

interpretation M that gives meaning to expressions and formulas over an interval o:
Ms{{funchangeall = true iff for all v € W, 2[[stable(w)]] (5.1-4)

Because the semantics Of funchangea Specifies that all frame variable values remain stable
(using the ITL stable construct), the explicit statement of the frame W in rules of this

form will be omitted unless otherwise needed.

With this, the total rule defined by the complementary rule pair fo A of; and
“fo A Of unchanged 15 used to specify that a system exhibiting a state sequence satisfying fo
be moved in the next state to a state sequence satisfying f;. Otherwise, if the system
does not satisfy fy, all state variables remain unchanged in the next state. Applying
TotalFormExecute to the total rule described by fo A of7 and —fo A Ofunchangeas the total

rule execution form (fo A Of1) V (—fo A Ofunchangea) is concluded.

The specific use of form Ofunchangea to formalize the perpetuation of the system in
the unchanged state is important. The temporal formula Ofunchanged is defined in ITL as
SKIp ; funchangea, With skip adding one unit interval to the state sequence by definition.
The semantics of funchangea Specify that no variables in the frame may change value.
Therefore, the imposition of the temporal formula Ofunchanged Creates a sequence of two
identical states ...SnSpe7... Where sq = $ne7. Lamport (1994) describes such a transition
as a stuttering step, and Milner (1980) symbolizes such silent and unobservable
transitions between states as T. Whereas the possible removal of such silent steps in
some algebras is noted (e.g., Baeten and Weijland, 1990), the purposeful and uniform
use of Ofunchangea allows all rules, including those that intentionally do not result in a
state change, to be represented using the general rule form f; A of. The convenience
and advantages of this logical consistency will become evident as the rule algebra
presented herein is developed.
rules are discussed and/or analyzed within the context of a rule

Frequently,
system. For the purposes of this rescarch, a rule system is defined as a collection of two

or more related rules. Rules included in these rule systems may be presented

73

individually, expressed disjunctively (as described in the following paragraphs), or
composed in other ways (as described later in this chapter). As will be demonstrated,
some multiple rule systems may be transformable into .a single general-form rule, but
there is no requirement that this always hold. No formal restriction is placed on what

can be described as related with respect to defining a rule system.

The disjunctive association of rules from a given rule system is often a
convenient and powerful way to logically associate related rules into a single structure.
This disjunctive association may be allowed based on reasoning about the specifics of
given rule system, or may be allowed based on the application of propositional logic. In
certain rule systems, two rules may be related disjunctively because a third way is not
given. With respect to rules, this reasoning is generally analogous to, but not directly
derivative of, the law of the excluded middle. Alternatively, using propositional logic,
any rule, regardless of its verity, may be added disjunctively to a true rule (i.e., the law
of addition or v introduction). This section examines how rules can be disjunctively
associated, and under what circumstances such associations are accretive with regard to
a rule algebra in that useful transformations may be enabled by such associations. Four
disjunctive associations are examined: between rules that share a common rule
condition; between rules that share a common rule state; between two rules with

complementary rule conditions; and between two disjoint rules.

Consider the system depicted in Figure 5.1-1 containing three states (sy, s;, and

s2) and two transitions linking the three states.

“Figure 5.1-1: Three-State Rule System with Rules
Sharing a Common Rule Condition

74

Three state formulas, wo, w;, and w, are used to describe this system, where sg E wy,
s;Ewy, and sz Fw;. Multiple-state state sequences starting with one of the specified

states will also satisfy the respective state formula. The two state transitions included in
this system are described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

$0 Wop A Owy (5.1-52)
So Wo A OW (5.1-5b)
S -
2 -

As identified in (5.1-5a) and (5.1-5b), the rule conditions for both rules in this
system are satisfied by state sequences that begin with so. Given that these two rules
describe the two and only two relations associated with sy, these rules with a common

rule condition can be combined disjunctively as:
(wo A Owp) V (g A OW2) (5.1-6)

An equivalence transformation to transform these two disjunctively associated rules

sharing a common rule condition to a single general-form rule is presented in the

following lemma:

LEMMA: CommonRuleCondEqv

(o (fo/\ Ofl)V(fo/\ sz) Efo/\ O(f[sz)

Proof:

1 (onof)vifoncfd=(foncf)vfonaf) Tautology

2 (fonof)vforofd=fon(ofivof) 1, distribution of A over v
3 (onofdvifanof)=fonolfiv) 2, ITL (ChopOrEqv)

Applying CommonRuleCondEqy to (5.1-6) yields:

wp A O(wy V w2) 5.1-7)

75

This demonstrates how disjunctively associating two rules sharing a common rule
condition and then applying CommonRuleCondEqy to that disjunctive structure allows

the two related rules to be expressed as one equivalent general-form rule.

Consider the system depicted in Figure 5.1-2 containing three states (so, s;, and

sz) and two transitions linking the three states.

Figure 5.1-2: Three-State Rule System with Rules
Sharing a Common Rule State

Three state formulas, wy, w;, and w;, are used to describe this system, where sy E wy,
51k wy, and sz F w2, Multiple-state state sequences starting with one of the specified

states will also satisfy the respective state formula. The two state transitions included in
this system are described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

Y] Wp A OWp (5.1-8a)
$ Wi A Ow, (5.1-8b)
$2 -

As identified in (5.1-8a) and (5.1-8b), the rule states for both rules in this system
are satisfied by state sequences that begin with s;. Given that these two rules describe
the two and only two relations associated with sz, these rules with a common rule state

can be combined disjunctively as:

(wg A Ows) Vv (w1 A OW2) (5.1-9)

76

An equivalence transformation to transform these two disjunctively associated rules
sharing a common rule state to a single general-form rule is presented in the following

lemma.

LEMMA: CommonRuleStateEqv

Ffoncf)vfincfd=(ovidaof

Proof:
1 (orofdvifinofd=(oncf) v (fiacf) tautology
2 (forofdv(fonofy=(fovfi)Aoh 1, distribution of A over v

Applying CommonRuleStateEqv to (5.1-9) yields:
(wWo v wi) A Ow; (5.1-10)

This demonstrates how disjunctively associating two rules sharing a common rule state
and then applying CommonRuleStateEqv to that disjunctive structure allows the two

related rules to be expressed as one equivalent general-form rule.

Consider the following system of two rules that contain complementary rule

conditions:

Jonofi (5.1-11a)
—fo A Ofs (5.1-11b)

These two rules can be combined disjunctively to form:

(fonoft) v (=fon of2) (5.1-12)

(5.1-12) is the previously discussed total rule form. Applying propositional logic (ie.,

the distribution of v over A and A elimination) yields:

Jov—fo (5.1-13)

77

As demonstrated with (5.1-13), all state sequences will satisfy the rule conditions
included in the total rule form of (5.1-12). Whereas the verity of (5.1-12) can be
assured only by either of; or of;, (5.1-13) highlights, but does not prove, the basis for

the disjunctive association of two rules containing complementary rule conditions.

Consider the following system of two rules that exhibit no obvious relationship:

fonofi (5.1-142)
S2AOfs (5.1-14b)

Assuming one of these rules is known to hold for the given system, the other can be

added disjunctively to form:

(fonof) v (fa nof3) | (5.1-15)
Expanding (5.1-15) with propositional logic yields:

(fovf)a(efivfz) alfov ofs) A(cfivofi) (5.1-16)

~ Given the assumption that one of the two rules at (5.1-14a) and (5.1-14b) holds, the
verity of (5.1-15) and (5.1-16) is assured. However, in the absence of any additional
information regarding any other relationships between the contributing formulas and/or
the corresponding state sequences, no other revealing transformations can be made.
Although allowable within the propositional calculus (given an assumption that one of
the two rules is known to hold), disjunctively associating two rules that share no state

sequences or do not include complementary state sequences as rule conditions offers no

transformational advantage.

5.2 Rule Domain, Rule Codomain, and Rule Universe

Whereas rules as defined in this thesis are not functions, certain concepts that are
used to describe functions are useful in understanding rules. In this section, the

concepts of domain and codomain are adapted to rules, and the derivative concept of the

rule universe is introduced.

78

5.2.1 Rule Domain

The domain of a given rule is defined as the set of state sequences that satisfy the
rule condition associated with that given rule. Consider the following rule expressed in

terms of state formulas:
Wp A OwW; 5.2.1-1)

Under this rule, the rule domain is the set of all states (or initial states in state
sequences) that will satisfy the specified rule condition wy. Consider the following rule

expressed in terms of temporal formulas:
Jfonofi (5.2.1-2)

Under this rule, the rule domain is the set of all state sequences that will satisfy the

specified rule condition fj.

Formally, the rule domain domainn. for a general rule rule, defined as fy A of;,

is defined in terms of a state sequence G as:
domainn. = {c€ Z'| o Efo} (5.2.1-3)

Because the temporal formula f is inclusive of the state formula w, (5.2.1-3) describes
the rule domain for both (5.2.1-1) and (5.2.1-2). Future definitions and analyses are
expressed in terms of temporal formulas only, unless there is an explicit need for the
distinct presentation of the state formula case.

With respect to state formulas, it is tempting to think in terms of only a single
state satisfying a state formula, for example, soF wp. However, in ITL, any multiple
state sequence that starts with the specified single state also satisfies the associated state
formula. Continuing the previous example regarding the state formula wo, sos; F wo,
558152 & Wp, SoSm.. E Wo, €tc. Taken to the limit, an infinite number of state sequences

could satisfy the relevant state formula. Therefore, for the purposes of this thesis, any

time a state is specified as satisfying a given state formula, it is understood that all

79

multiple-state state sequences starting with that specified state will also satisfy that state
formula. Consistent with this convention, the term f‘minimum rule domain” is used to
describe the individual states that satisfy a given state formula, reflecting the
understanding that any multiple-state state sequences starting with any one of the
individual states specified in the domain will also satisfy the respective state formula.
This concept will also be used in describing the rule codomain and rule universe of rules

composed with state formula.

Because the rule domain is a set of states or state sequences, the rule domain for
a rule system is described as the union of the rule domains of the rules that comprise the
rule system. Formally, for a rule system rs consisting of n rules rule; through rule,, the

domain of the rule system rs is described as:
n
domain,, = \J domain,_, (5.2.1-4)
l "

5.2.2 Rule Codomain

The codomain or range of a given rule is the set of all rule states that are related

to the states in the rule domain. For a general rule rule, defined as fy A of; where 0 E f,
o' = 8,..(0), and ¢’k f}, the rule codomain is the set of all rule states that satisfy of;

when the rule condition fp is satisfied. The rule codomain codomain,,, for a general

rule rule is defined as:

codomainy. £ {0 € domainy, | 8mu(0) } (5.2.2-1)

For a rule system rs consisting of n rules rule; through rule,, the codomain of

the rule system rs is described as:

n
codomain,, = {J codomain,,, . (5.2.2-2)
‘]

80

5.2.3 Rule Universe

The rule universe represents all state sequences associated with a rule as part of

the rule condition or the rule state. Formally, the rule universe is defined as:
universen e = domain,, \J codomain,, (5.2.3-1)

As defined above, the rule universe includes all state sequences in the rule domain and
the rule codomain. The union described in (5.2.3-1) is feasible because both domain, ;.
and codomainp are defined as sets of state sequences. That domaing, and
codomain ;. are both sets of state sequences suggests that the codomain of one rule can

be the domain of another rule, thereby allowing rules to be related sequentially.

For a rule system rs, the rule universe for that rule system is defined similarly:

universe,s = domain,s \U codomain,s (5.2.3-2)

5.3 Rule Satisfiability

To be useful, rules must be satisfiable. A rule that is not satisfiable is both
trivial and useless; it cannot describe relationships between states and represents no
knowledge. Extending the definition of satisfiability from propositional logic, the rule
fo A of;is satisfiable if there exists some set of state sequences such that both the rule
condition and the rule state are satisfiable, i.e., fo = true and of; = true, and satisfiable in
such a way that conjunction defining the relation between fp and of; holds. Rule
satisfiability is closely allied to the concepts of rule domain and rule codomain, as

discussed below.

Formally, given a general rule rule defined as fy A of), the rule condition f; is

satisfiable if:
Joe X' | okfo (5.3-1)

The similarities of this formal definition of rule condition satisfiability with the

definition of the rule domain should be noted. Given the necessity of rule condition

81

satisfiability, a rule may not have the empty set for the rule domain. Similarly, the rule

state f; is satisfiable if:
do'e X | GEfi (5.3-2)

As a conjunctive relationship, rule is satisfiable if a rule state exists for every

state sequence that satisfies the rule condition. Formally, given the previously defined

rule where fy A of1, O F fo, 0 E f1, and ©' = §,,,(0), rule is satisfiable if :

Vo € domainm. | © (5.3-3a)
or
Vo € domainme | 8:ue(0) : (5.3-3b)

Stated another way, if a rule state is not associated with every state sequence that
satisfies the rule condition, the rule does not describe a valid relation. The similarities
of this formal definition of rule satisfiability with the formal definition of the rule

codomain should be noted.

These concepts are readily expandable to total rules and rule systems. For
example, given a total rule (fy A of}) v (<fs A 0f2), the complementary rule conditions f,
and —f; assure that all states will satisfy a rule condition. If f; and f; are properly

formed, as described in (5.3-3), then the satisfiability of the total rule is assured.

5.4 Injective, Surjective, and Bijective Rules

As defined in this thesis, rules are not functions, and certain concepts used to
describe functions may not be applicable to rules. The applicability of the terms
injective, surjective, and bijective to the description and analysis of rules is discussed in

this section.
5.4.1 Injective Rules

A rule is injective, or one-to-one, if all unique state sequences in the rule domain
result in unique state sequences in the rule codomain. Formally, given a general rule

~rule defined as fy A ofy, rule is injective if ;

82

Y 0y, 6o’ € domain, . AV ©,, 6;' € codomain,,
| ;o#00 D o0 (5.4.1-1)

Because 0p and 0y’ are elements of domain,,., then by definition, 6y E fp and 6o’ F fo.

Similarly, because 01, 6;' € codomain,,e, 6; F f; and ;' F f}.

5.4.2 Surjective Rules

A rule is surjective, or onto, if all state sequences in the rule codomain can be
reached from the rule domain. However, rule codomain has been previously defined in
terms of the rule domain, and by definition all state sequences in the rule codomain
must be associated with at least one state sequence in the rule domain. Therefore, all
rules are surjective rules. Therefore, a classification of rules as surjective is redundant,

and the term surjective is not used to describe rules.
5.4.3 Bijective Rules

A rule is bijective if that rule is both injective and surjective. Because all rules
are surjective rules, any rule that is injective is also bijective. Therefore, classification
of such rules as bijective is redundant, and the term bijective is not used to describe

rules.

5.5 Inverse Rules and Invertible Rules

Consider two rules, rule and rule'. By definition, rule’ may be described as the

inverse of rule if:

rule and rule' are injective rules
domain,. = codomain,,,
domain,e = codomain, ;.

arule = (Smle’)’l

an SR

If these criteria are met, then the sequential execution of rule and rule’ will leave the

system in the state that existed prior to the execution of rule.

An invertible rule is a rule that can have an inverse rule, although the inverse

rule need not be specified. Stated another way, for a rule to be invertible, all of the

83

above criteria must be met regarding the rule and the associated inverse rule. Failure to

meet these criteria can be used to demonstrate that a rule is not invertible.

5.6 Sequentially Relating Two Rules
5.6.1 Sequentially Associating Rules Using the General Rule Form

Consider the following general rule:
finof; (5.6.1-1)

This rule is a temporal formula that is itself composed of two temporal formulas - f;
describing the rule condition and f; describing the rule state. Because no limitation has
been placed on the temporal formulas used to express f; or f;, and because general-form
rules are themselves temporal formulas, rules can be used within rules to specify the
rule state and rule conditions in another rule. Instantiating f; with fo A of; and

instantiating f; with f; A of3, the general rule presented in (5.6.1-1) can be instantiated

- as:
(fo A of1) A O(f1 A Of2) (5.6.1-2)

In (5.6.1-2), the rule condition iS described by the rule fo A of; and the rule state is
described by the rule fi A of2. Because f; is used both in the specification of the rule
condition and the rule state, (5.6.1-2) describes a relationship between two related rules.
Composed in this form, this rule specifies the sequential relationship between the

common state sequences considered in two different rules.

This sequential composition using the general rule form is demonstrated using
the following example. Consider the system depicted in Figure 5.6.1-1 containing three

state sequences (O, Oy, and 0;) and two transitions linking the three state sequences.

84

Figure 5.6.1-1: Three-Sequence State Transition Diagram

Three temporal formulas, fo, f1, and f2, are used to describe this system, where o k fj,
o1 Ef1, and o2 Ff;. The two transitions included in this system are described in rule

form and organized based on the state sequence satisfying the corresponding rule

condition:

Oo Jonofi (5.6.1-3a)
o JiAof (5.6.1-3b)
(o)) -

Because these transitions share a state sequence (i.e., the final state sequence of one
transition is the initial state sequence of the another transition), the general rule form f; A
of; can be applied to relate the state sequences described by each rule. With is rule-form

sequential composition of these two rules, a new rule is formed that describes a state

sequence that may result from this system:

(fo A of1) A o(f1 A Of2) (5.6.1-4)

The following lemmas describe some possible manipulations and reductions of two
rules sequentially composed using the general rule form as the basis for composition.
NextAndDistEqv, used in the following proofs, is presented in Appendix A.

LEMMA: TwoSeqRulesEqvl

F (fonof) Ao(fi Aofy) = fon ofi A 0O

Proof:
1 (foaof)ao(fi acf)=(fonofi) aolfincf) tautology
2 (fanof) Ao(fi Aof)=fon ofiAnCfi A ocfz 1, NextAndDistEqv
3 (foAof) Aol Ach)=fon ofi n 00fs 2, idempotence of A

85

LEMMA: TwoSeqRulesEqv2
F (fanofi) Ao(fi ASf)) = fono(fi A Of2)

Proof:

1 (fonofi) Ao(fi AOf2)=foA ofi A oOf;

TwoSeqRulesEqvl
1, NextAndDistEqv

2 (fonof) Ao(fi A o) =fon ofi A ofs)

LEMMA: TwoSeqRulesImp
F (fo A of1) A O(fi A Of) implies | fy A 0Of;

Proof:

1 (fb‘/\ of1) A o(f1 A of2)
2 fonofi AoOf;
3 fonoof;

Premise
1, TwoSeqRulesEqv1
2, Aelimination

The outcomes of both TwoSeqRulesEqv2 and TwoSeqRulesImp are expressed in the
general rule form f; A of;. In both cases, the rule condition is fy. In TwoSeqRulesEqv2,

the rule state is (f; A of2). In TwoSeqRulesImp, the rule state is of>.

Applying TwoSeqRulesEqvl to (5.6.1-4), the equivalent form fo A of; A 00f; is

obtained and the sequential nature of the original structure is clear. Assuming that at the

time of rule execution the system satisfies fo, TwoSeqRulesEqv2 is applied in the

following execution of the rule presented in (5.6.1-4):

1 f

2 (orof)ao(fincf)
3 foro(fincfy)

4 fro(fono(fi A Of2)
5 olfiach)

6 ofiaocof;

7 oof;

premise

premise

2, TwoSeqRulesEqv2
3, ImpFormExecute
1, 4, RuleExecute

5, NextAndDistEqv
Aelimination

As demonstrated above, sequentially composing the rule system presented in (5.6.1-3a)

and (5.6.1-3b) using the general rule form into rule (5.6.1-4), and executing that rule

86

from a state sequence satisfying fj results in a state sequence that satisfies oof;. A
similar result can be achieved by using TwoSeqRulesImp. This general rule execution
strategy is applicable to many of the rule transformations that will be presented in the

chapter and will not be demonstrated again.
5.6.2 Sequential Composition with Chop

The ITL operator chop can be used to express the sequential composition of two
temporal formulas (Moszkowski, 1986). Consider the system depicted in Figure 5.6.2-1

containing three states (o, §7, and s2) and two transitions linking the three states.

Figure 5.6.2-1: Three-State State Transition Diagram

Three state formulas, wy, w;, and w;, are used to describe this system, where sp E wy,
s;Ewy, and 53 F wy. The two state transitions included in this system can be described

in rule form and organized based on the initial state in the state sequence satisfying the

corresponding rule condition:

S0 Wo A OW; (5.6.2-1a)
S; wi A OwW; (5.6.2-1b)
852 -

Because these two rules share a state sequence satisfying wy, the ITL operator chop can

be used to sequentially compose the two rules. Therefore, the entire system is described

as:
(wo A ©W)) 5 (W1 A OW2) (5.6.2-2)

The following lemma describes how two rules, constructed of state formulas and

sequentially composed using the ITL operator chop, can be expressed as single general-

form rule.

87

LEMMA: StateTwoChopRulesImp

F (wo A owp) ; (wr A Ow;) implies - wy A o(w; ; Owy)

Proof:
1 (wpAow);(wrAow) premise
2 wpA(ow;; (wr A Owy)) 1, ITL (StateAndChop)
3 owr;(wAow) 2, Aelimination
4 owr;wiAOw; OW 3, ITL (ChopAndImp)
5 ow;;ow 4, aelimination
6 o(w;;owy) 5, ITL (NextChop)
7 wo 2, aelimination
8 wyAo(wr;ows) 5, 7, aintroduction

Applying StateTwoChopRulesImp to (5.6.2-2) yields:
wo A O(wy ; Ow,) (5.6.2-3)

Using StateTwoChopRulesImp, two rules that have been sequentially composed using
chop can be expressed as a single general-form rule, where wy specifies the rule

condition and w; ; ow; specifies the rule state.
Applying NextChop to (5.6.2-3) and substituting the definition of the ITL next

operator o yields:
wo A SKIp ; wy ; skip ; w2 (5.6.2-4)

In this form, the sequential nature of the composition of (5.6.2-1a) and (5.6.2-1b) using
chop is clear. '

As previously discussed, a state formula is satisfied by a single state or the first
state in a multi-state sequence. Therefore, a second state formula can be chopped to the
second (or later) state of a given state sequence described by another state formula,
thereby satisfying the semantic requirements df the ITL chop operator that the two

chopped intervals share a common state. Therefore, the sequential composition model

88

can be expanded so that two total rules that do not share a common state formula, and

therefore common initial states, can be sequentially composed using chop.

Consider the following sequential composition using the ITL chop operator of

two general-form rules that do not share a temporal formula:

(wo A OWy) 5 (W2 A Ow3) (5.6.2-5)
Applying StateAndNextChop to (5.6.2-5) yields the following equivalent form:

wo A O(wy 5 (W2 A Ows)) (5.6.2-6)

With this equivalence transformation, the two chopped rules of (5.6.2-5) have been
transformed into a general-form rule that includes a chopped and nested rule in the rule
state. An alternative transformation of two chopped rules is described in the following

lemma.

LEMMA: StateTwoChopRulesImp2

B (wo A Of1) 5 (w2 A Of3) implies F wo A (Of1 5 w2) A (Sf1 5 of3)

Proof:
1 (wonof));(wancfy) premise
2 won(of; (w2 A Of3) 1, ITL (StateAndChop)
3 ofi;(wmanofy) 2, Aelimination
4 (ofisw) A(of; of3) 3, ITL (ChopAndImp)
5 w 2, Aelimination
6 won(Of1;w2) A(f1; Of3) 4, 5, aintroduction

Applying StateTwoChopRulesImp2 to (5.6.2-5) yields:
wo A (0w 3 w2) A (Owy 5.0w3) (5.6.2-7)

In this form, the sequential aspects of (5.6.2-6) are evident, because (5.6.2-7) is a
conjunction of three state sequences. And as a conjunctive structure, (5.6.2-7) can

manipulated with propositional logic to eliminate conjuncts as nccessary to achieve the

89

desired final form. Stated another way, either wp A (Of1 ; w2) or wp A (Of7 5 Of3) can be

concluded from StateTwoChopRulesImp?2.

Another alternative transformation of two chopped rules is described in the

following lemma.

LEMMA: StateTwoChopRulesImp3

F (wo A of) ; (w2 A Of3) implies F wp; w2 A Of1; Of3

Proof:

1 (wpAof)) ;(w2n0f3) premise

2 ((wonoft)sw) Al(wo A of1); Of3) 1, ChopAndImp

3 (wmAof)iw 2, A elimination

4 wopiwznOfi;w 3, AndChoplmp

5 (wmonof));ofs 2, A elimination

6 wo;ofsAcfi;ofs 5, AndChopImp

7 woiw2AOfi;w2AwW; Of3 AOf;0f 4, 6, A introduction
8 woswrAOfi;ofy 7, A elimination

Applying StateTwoChopRulesImp3 to (5.6.2-5) yields:
Wo; Wz A Ow; Owy . (5.6.2-8)

The sequential composition of two total rules is described in the following three

lemmas.

LEMMA: TwoTotalRulesChopEqvl

F ((Way A ©f3) V (=W, A Ofu)) s (Wey A Ofp) V (=W, A Ofy))
= (wa A Sfa) s (We, A Ofs,) V (Wa, A Ofa) s (mWs, A Ofy)
V (=Wa, A ©fa)) s (Wh, A Of5,) V (mWay A Ofa)) 3 (=, A ofs.)

~or

b (rulea,, v ruley,,) ; (ruley,,, v rules,,,)
= (mleamu ; mlebmu) v (mleamu ; mlebfahc) Vv (ruleafalu ; ruleb,m) \'% (I‘ulea/a,,, ; ruIEbe“)

‘where: ruleg,,., & (Way A ©fa)

90

mleafab‘ é ('ﬂwdo A o'ﬂZ)
ruley,,, = (Ws, A Ofp,)
ruley,,,, = (=W, A Ofy,)

Proof:

1 ((Way A Ofa) V (mWay A Ofa)) s (W, A Ofp) v (=W, A Ofp,)) tautology
= ((Wa, A Ofa,) V (=Wa, A Ofa)) 5 (Wh, A Ofp,) V (=Wp, A Of3,))

2 =(wgy A Ofa) s ((We, A Ofp,) V (=W, A Ofy)) I, ITL
V (=Wa, A Ofu,) s (W, A Ofp)) V (=Wp, A Ofp,)) (OrChopEqv)
3 =(Wa, A fa)s We, A Ofs) V (Way A Ofz)) 5 (—Ws, A Ofp,) 2,ITL

V (=W, A Ofa,) s (Wh, A Ofp) V (=W, A Ofa) 5 (=wp, A Ofp,) (ChopOrEqv)

LEMMA: TwoTotalRulesChopEqv2

F ((way A Ofa) V (=Wa, A Of2))) 5 (Ws, A Ofp,) V (=Wa, A Of,))
= wa, A O(fa, s (W, A Ofp,) V (=Wp, A Of5)))
V = Wa, A O(fa, s (Ws, A Ofp,) V (=Wp, A ofs,)))

or
b (rules,, v ruley,,) ; (rules,,, v rules,,)
= (Wa, A O(fy, ; (rules,,, v ruleq) v (=wa, A O(fa, ; (rules,,, Vv rulep,,)))

where: ruleg,,, = Wa, A fa,)
7 uleﬂ/ahl = ('_‘Wao A oﬁ‘z)
ruley,,, = (Ws, A Of5))
rulep, = (=ws, A Of5))

Proof:

1 ((Way A Ofa) V (—=Wa, A Ofa)) 5 ((Ws, A Ofs) v (=ws, A Ofp))) tautology

= ((Way A Ofs)) V (=Way A Of2)) 3 (Wo, A Ofp)) V (Wb, A Of.))

2 = (way A Sfy) s (Wo, A Ofp) V (W5, A ofs,)) 1, ITL
V (=Wa, A Ofs) s (Wo, A Ofp)) V (=W, A Of5)) (OrChopEqyv)
3 =wi, A 0(fs, i (Why A Ofp)) V (=Ws, A Of3,))) 2, ITL (State-
v =W, A Ofa, 3 (Why A Ofp)) ¥ (—Wh, A Ofp)))) AndNextChop)

LEMMA: TwoTotalRulesChopEqv3

b ((Way A Sfa)) V (=Way A Of2)) 5 (Wey A Ofp,) V (=Wh, A Ofp,))

91

= (W, A O(fa, 5 (Wo, A Of))))
V (Way A O(fa, s (—Ws, A Of3,)))
V (=Wa, A O(fa, s (We, A Sf))))
V (=Wa, A O(fa, s (=Ws, A f)))

or

+ (ruleg,m v ruleg,,) ; (ruley,,, v rules)
= (wg, A O(fy, ; rules,..)
V (Wa, A O(fy, 5 ruley,,))
V (=W, A O(fy, ; rules,,))
V (=Wa, A O(fy, ; rules,,))

where: ruleg,,, = (Wa, A Ofa))
mlea/au. & (_'Wao A Of;z)
rules,,,, % (Ws, A Ofy)
rulesy,,, = (=ws, A Ofy)

Proof:
1 ((Way A Ofa)) Vv (=Way A Ofa)) s (Wh, A Of)) V (=W, A Ofp,)) tautology
= ((Wa, A Ofa,) V (=W, A Of2))) s (Wo, A Ofp)) V (=W5, A Ofy))
2 =(Wa, ASa) s (Wh, A Ofs) V (Way A Ofs) 5 (mWs, A Ofp) 1, TwoTotal-
V (=wa, A Ofs) 3 (Why A O} V (=W, A Ofz) 5 (=W, A Of3) RulesChopEqvl
3 = (way A Ofa, s (Wo, A O)V (Way A O(fa, 5 (—Ws, A Of3))) 2, ITL (State-

V (=W A O(fa, 3 (We, A Ofs W) V (=W, A O(fa, 3 (=W, A ©f3.))) AndNextChop)

These lemmas are also expressed in terms of specific rule definitions to simplify
presentation and highlight the underlying rule structure(s). With TwoTotalRules-
ChopEqvl, two chopped total rules are decomposed to an equivalent disjunction of four
chopped individual rules describing the possible state sequence associated with the
original sequential composition. The individual rules that compose these four disjuncts
follow the typical two-by-two truth matrix pattern — true-true, true-false, false-true, or
false-false — reflecting the satisfaction or non-satisfaction of the rule conditions
associated with the two total rules used in the original sequential composition. With
TwoTotalRulesChopEqv2, the original chopped sequential composition of two total
rules is transformed into a disjunction of two general-form rules. With
TwoTotalRulesChopEqy3, the original chopped sequential composition of two total

rules is transformed into a disjunction of four general-form rules. Together, substantial

92

flexibility is provided with these three lemmas in transforming the chopped composition

of two total rules.

5.7 Reflexive and Irreflexive Rules

The concepts of reflexivity and irreflexivity as used in relations are extended to

describe the attributes of reflexive and irreflexive rules.
5.7.1 Reflexive Rules

A rule is reflexive if every state sequence in the rule domain is related to itself.

Formally, a rule rule is reflexive if:
Y 6 € domainy. 3 © € codomainge | 6 = 8ru(0) (5.7.1-1)

Implicit in this definition is that, for a given rule rule, all elements of the rule domain

are contained in the rule codomain, or domainye S codomain .

The simplest possible reflexive rule system can be built around a one-state
system., Consider the one-state reflexive system presented in Figure 5.7.1-1, containing

one state transition.

A

Figure 5.7.1-1: One-State Reflexive System

In this system, so = wp. The one transition included in this system can be described in

rule form and organized based on the initial state in the state sequence satisfying the

corresponding rule condition:

S0 Wo A OWg (5.7.1-2)

93

Graphically, a reflexive rule is represented by a loop from a state to itself, given that the

rule state must include the rule condition state.

As a demonstrative exercise, the rule at (5.7.1-1) can be sequentially composed
with itself using the general rule form f; A of; as a basis for sequential composition.

Instantiating both f; and £; with wy A owyp yields:
(wo A Owg) A 0(Wp A Owp) (5.7.1-3)

Applying TwoSeqRulesEqv to (5.7.1-3) yields the following equivalent rule expressed

in general rule form:
Wwo A O(wp A Owp) (5.7.1-4)

Applying NextAndDistEqv to (5.7.1-4) yields the following equivalent conjunctive
description of the state sequence associated with sequentially composing (5.7.1-2) with

itself:
Wg A OWp A COwWp (5.7.1-5)

Consider the two-state reflexive system presented in Figure 5.7.1-2, containing

two state transitions:

Figure 5.7.1-2: Two-State Reflexive System

In this system, so F wp and s; & w;. It is noted that this is a special case of that described

in (5.1-6). The two transitions included in this system can be described in rule form and
organized based on the initial state in the state sequence satisfying the corresponding

rule condition:

94

So Wo A Owp (5.7.1-6a)
So wo A OwWy (5.7.1-6b)
S -

Because all states in the rule domain exist in the rule codomain and a relation exists
between all members of the rule domain, described as wy A owp, and at least one

member of the rule codomain, the formal requirements for a reflexive system are met.

As identified in (5.7.1-6a) and (5.7.1-6b), both transitions in this system are
satisfied by state sequences that begin with so. These transitions for which sy satisfies

the rule condition can be combined disjunctively as:
(wo A Owg) V (Wo A OWy) (5.7.1-7)

Applying CommonRuleCondEqv to (5.7.1-5) yields:
wo A O(wo v Wi) (5.7.1-8)

The application of CommonRuleCondEqv allows the two-rule rule system of (5.7.1-6a)
and (5.7.1-6b), disjunctively associated in (5.7.1-7), to be expressed as a single general-
form rule. As highlighted with this transformation, this two-state reflexive system is a
simple example of a non-deterministic system expressible as a single rule. The
satisfaction of the rule condition wp is associated with two alternative future state

sequences — either a state sequence satisfying wy or a state sequence satisfying w;.

5.7.2 Irreflexive Rules

In an irreflexive rule, no state in the rule domain can be directly related to itself.

Formally, a rule rule is irreflexive if:

V 6 € domainye AV 6 € codomainu. |6 =8u(0)D0#0 (5721)

This definition supports the informal view that a state sequence satisfying the rule

condition cannot also satisfy the rule statc. Graphically, an irreflexive rule cannot

include a loop from a state to itself.

95

Consider the two-state irreflexive system presented in Figure 5.7.2-1, containing

one state transition:

Figure 5.7.2-1: Two-State Irreflexive System

In this system, so F wy, and s; E w;. The one transition included in this system can be

described in rule form and organized based on the initial state in the state sequence

satisfying the corresponding rule condition:

S0 WoAOw ' ‘ (5.1.2:2)
s -

Because this two-state irreflexive system contains only one state transition, the entire

- system is described as:
wo A OW; o (5.7.2-3)

This two-state irreflexive system is the simplest possible two-state system, because it
contains only one state transition and therefore is described by a single general-form

rule without manipulation.

5.8 Symmetric, Antisymmetric, and Asymmetric Rules

The concepts of symmetry, antisymmetry, and asymmetry as used in relations

are extended to describe the attributes of symmetric, antisymmetric, and asymmetric
rules. '
5.8.1 Symmetric Rules

A rule is symmetric if it is its own inverse. For a rule to be symmetric,
whenever that rule includes a transition from o to ¢, that rule must also include a

transition from ¢’ to 6. Formally, a rule rule is symmetric if:

96

Vo, 6'€ universente | 0' = 8,,(6) D 6 = §,,(6") (5.8.1-1)

Because there is no requirement in (5.8.1-1) that o and ¢' be unique, the simplest
possible symmetric rule involves a one-state system. In a one-state symmetric system

consisting of so, so & wp. The single state transition in this system, relating s to itself, is

described by the rule:
Wo A Owp (5.8.1-2)

This one-state symmetric system is also a one-state reflexive system, previously

described in Section 5.7.1.

Consider the two-state symmetric system presented in Figure 5.8.1-1, containing

Figure 5.8.1-1: Two-State Symmetric System

two state transitions:

In this system, sp # 51, So k= wp, and s; w;. The two transitions included in this system

can be described in rule form and organized based on the initial state in the state

scquence satisfying the corresponding rule condition:

50 Wo A Ow; (5.8.1-32)
$7 w; A Owp (5.8.1-3b)

Using these two individual state transitions, the entire system is described disjunctively

as:

(wo A Owp) V (W A OWp) (5.8.1-4)

97

Both the individual rules of (5.8.1-3a) and (5.8.1-3a), and the disjunctive system
description of (5.8.1-4) are used in the following paragraphs to describe the behavior of

this two-state symmetric system.

Because the two rules, (5.8.1-3a) and (5.8.1-3b), describing the state transitions
for this system share a state (i.e., because the rule state specified by one rule is the rule
condition of the other rule), the general rule form f; A of; can be applied to sequentially
compose these two rules to form a new rule that describes a state sequence associated
with this system. If the system is assumed to be in sy and using (5.8.1-3a) to express the
rule condition and (5.8.1-3b) to express the rule state, the following rule describes this

sequential association of the two rules:

(Wo A owr) A (W1 A Owp) (5.8.1-5)
TwoSeqRulesEqv2 is applied to (5.8.1-5) to obtain the following equivalent rule:

.wo A o(w; VA owo) | (5.8.1-6)

Either TwoSeqRulesEqvl can be applied to (5.8.1-5) or NextAndDistEqv can be
applied to (5.8.1-6) to obtain the following equivalent conjunctive description of the

state sequence associated with this rule:
Wo A Cwp A OOWg (5.8.1-7)

Alternatively, if the system is assumed to be in s, and using (5.8.1-3b) to express the
rule condition and (5.8.1-3a) to express the rule state, the following rule describes an

alternative sequential association of the two rules:
(w; A Onp) A o(yvo A Owy) (5.8.1-8)
TwoSeqRulesEqv2 is applied to (5.8.1-8) to obtain the following equivalent rule:

w1 A O(wp A OW)) (5.8.1-9)

98

Either TwoSeqRulesEqvl can be applied to (5.8.1-8) or NextAndDistEqv can be
applied to (5.8.1-9) to obtain the following equivalent conjunctive description of the

state sequence associated with this rule:
Wi A Owp A OOW; (5.8.1-10)

Both wy A ow; A 0Owp and w; A Owp A 0owy describe state sequences associated with
this symmetric system, depending on the initial system state such that either wp or w;

holds.

The chop operator can be used to compose the two individual rules describing
this two-state symmetric system. Assuming that the system is in s, (5.8.1-3a) and
(5.8.1-3b) can be sequentially composed, in that order, using chop and the resulting

state sequence is described as:

(wo A Owy) 3 (w1 A Owg) (5.8.1-11)
StateTwoChopRulesImp and NextChop are applied to (5.8.1-11) to yield:

Wy A Owy ; Owp (5.8.1-12)

With these transformations, the two chopped rules of (5.8.1-11) have been transformed

into one general-form rule incorporating chop only in the specification of the rule state.

Alternatively, if the system is assumed to be in s, (5.8.1-3b) and (5.8.1-3a) can
be sequentially composed, in that order, using chop and the resulting the state sequence

is described as:
(w; A owp) ; (wo A OW}) (5.8.1-13)

As before, StateTwoChopRulesImp and NextChop are applied to (5.8.1-13) to yield:

w; A Owp ; Ow; (5.8.1-14)

99

As before, the two chopped rules of (5.8.1-13) have been transformed into one general-

form rule incorporating chop only in the specification of the rule state.

Although both wy A ow; ; owp and wy A owyp ; ow; describe state sequences that
may result from this symmetric system, depending on the system state at rule execution,
the above analyses have assumed an initial state condition to limit the number of
possible cases and facilitate analysis. Now, consider the following case, where the total
description of this system, previously presented in (5.8.1-4), is used to describe both
possible cases. By using the total description of the symmetric system, no knowledge,
specification, or assumption of the initial system state is required. In this analysis, this
total description is composed with itself using chop and the resulting state sequence is

described as:
((wo A owy) v (w1 A owp)) 5 ((wg A ow)) v (Wr A OWp)) (5.8.1-15)

This sequential composition can be expanded, as described in the lemma

TwoSymRulesChop presented below, to represent the possible state sequences.

LEMMA: TwoSymRulesChop

F ((wo A owy) v (w; A owp)) 5 ((Wo A Owp) V (W1 A Owp))

2 (woAowp); (woAowp) Vv (wp A owy); (W) A Owp)
-V (w1 A owp) 5 (w1 A Owg) V (W1 A Owp) 5 (Wo A OW))

or
F (ruleg v rule)) ; (rulep v rule;)
= ruley;rulep v rulep;rule; v rulep;rule; v rule;; ruley

where: rulep = (wo A OW))
rule; = (wy A Owp)

Proof:
T ((wonow)) v (ws A owp)) i ((wonowp) v(wrAowp)) tautology
& ((wo A owy) v (wr A Owp)) 5 ((Wo A W) V (W) A Owp))
2 =((wo A ow)) Vv (wr A Owp)) s (Wa A OWy) 1, ITL (ChopOrEqv)

v ((wo A owp) v (W) A OWp)) 3 (W1 A OWp))

100

3 =(woAow); (won ow) Vv (w; A owp) ; (wo A Owy) 2, ITL (OrChopEqv)
v (wp A owy) 5 (Wi A Owp) V (W) A Owp) 5 (W1 A Owp)

4 =(wo A owp); (Wo A Owp) 3, commutivity of v
V (wo A owy) 5 (W1 A OWp)
v (w1 A owg) 5 (W1 A Owp)
v (W A Owp) ; (Wo A Owy)

This lemma is also expressed in terms of specific rule definitions to simplify

presentation and highlight the underlying rule structure(s).

Applying TwoSymRulesChop to (5.8.1-15) yields:

(wo A owy) 5 (wo A OW)

v (wo A owy) 5 (W1 A Owp)

v (w1 A Owp) 5 (w1 A Owp)

v (w1 A owp) 5 (wo A Ow)) (5.8.1-16)

With the application of TwoSymRulesChop, (5.8.1-15) is expanded and the four
possible state sequences resulting from the sequential composition of the rule (5.8.1-4)
with itself using chop are enumerated in the equivalent form of (5.8.1-16). The four
state sequences satisfying (5.8.1-16) are presented in Figure 5.8.1-1. These four
possible state sequences are organized based on the state that satisfies the rule condition

of the initial rule of the sequential composition.

By inspection of the four state sequences presented in Figure 5.8.1-2, the state
sequence sps;5o depicted in Figure 5.8.1-2b is subsumed by the state sequence sos;505;
depicted in Figure 5.8.1-2a. Similarly, the state sequence ssos; depicted in Figure
5.8.1-2d is subsumed by the state sequence ;505150 depicted in Figure 5.8.1-2¢. These
sequences are also consistent with the rules (5.8.1-12) and (5.8.1-14) derived based on
chopping the individual rules. These sequences of alternative states are consistent with
both the formal definition of a symmetric system, as presented at (5.8.1-1), and an
intuitive expectation of the behavior of a two-state symmetric (and irreflexive) system.
Using the complete rule-based description of this system presented in (5.8.1-4), the ITL
operator chop can be used to sequentially compose the rule-based structure (5.8.1-15)

that describes the possible state sequences associated with such a symmetric state

101

a. (Wo A OW1) M (Wo A OW])

So 5 So ’ 81
° . @ verere .
Wo skip w;

Wy skip wy

“b. (wo A owy) 5 (W1 A Owp)

S0 1 So
@ecressosussrvensssastriinass Py °
Wy Sklp Wy
wy skip wy

c. (wr A owp); (wr A Owp)

$; So S S0
[[4 ® L}
wy skip Wy

w; skip)

d. (wr A owp) i (wp A OWy)

$; So 5
™ ["e
Wy skip Wo

Wo skip W

Figure 5.8.1-2: State Sequences Resulting from Sequentially Composing
with chop both Rules Describing a Two-State Symmetric System

system. If the system state at the time of rule execution is known, the specific state

sequence can be determined.

Alternatively, the general rule form f; A of; can be applied using the complete
description of this system, previously presented in (5.8.1-4), to describe the state
sequence(s) that wiil result from the sequential composition of rule (5.8.1-4) with itself.
Again, by using the complete description of the system, no knowledge, specification, or
assumption of the initial system state is required. Using the general rule form f; A of;,

this rule-form sequential composition is as follows:
, ((wa'/\ ow)) v (wr A owo)) AkO((Wo A OW)) V (W A Owy)) | (5.8.1-17)

This rule-form composition can be expanded, as described in the lemma

- TwoSymRulesAsRule presented below, to identify the possible state sequences that

102

may result from such a sequential composition. The restriction that fy = —f; has been
added to this lemma to facilitate analysis and preclude the application of this lemma to a

one-state system.

LEMMA: TwoSymRulesAsRule

F((fo A of) v (f1 A f0)) A o((fo A Of1) v (fi A Of)) and + fp=—f; implies
F (fo A of1 A 00f) V (f1 A Ofo A ©Of))

Proof:

1 ((fonofdvfinofd)no((forof)v(finofs)) premise

2 fo=—fi premise

3 ((fonof) v (fincfy) ’ 1, ITL (ChopOrEqv)
A (o(fo A of1) v o(f1 A Ofy))

4 ((fornof) v (fi A ofo)) 3, NextAndDistEqv
A ((ofo A 00f1) v (of1 A 00fp))

5 (fonofincfunocf)V (fon ofi A Sfi A0OSH) 4, distribution of A over v
v (fi A ofo A Ofg A 0Of1) V (f1 A Ofo A Of) A OOfp) (three times)

6 (fo of1 ASfon oofn) v (fo A of A 0Sfo) 5, idempotence of A
v (fi A ofo A 0Sf) V (fi A Ofog A Of1 A ©Ofp)

7T (fo A Of1 A O—f1 A OOf) v (fo A Of1 A ©Ofp) 2, 6, equivalence
v (f1 A ©fp A 0Of1) V (fi A 0=f1 A Of1 A ©Ofp) substitution

8 (fo Afalse A 00f]) v (fo A Of1 A 00f5) 7, TemporalContra

v (f1 A Ofo A 0Of1) V (f1 A false A ©0f0)
9 false v (fon of1 A 0Of)) v (fi A ofo A OOf) Vv false 8, zero of A
10 (fy A of1 A 0Ofp) V (fi A Ofp A OOf)) 9, unit of v

Applying TwoSymRulesAsRule to (5.8.1-17) yields:
(wo A OW) A 0OWg) V (W) A OWp A OOW)) (5.8.1-18)

This transformation describes the two sequences of alternating states that result from the
rule-form sequential composition presented in (5.8.1-17). The minimum state
sequences satisfying (5.8.1-18) are 545150 OF 815051 As with the chop-form sequential

composition, these sequences of alternative states are consistent with both the formal

103

definition of a symmetric system and an intuitive expectation of the behavior of such a

system.

Using the general rule-form sequential composition presented in (5.8.1-17), an

alternative outcome is possible, as demonstrated in TwoSymRulesAsRule2:

LEMMA: TwoSymRulesAsRule2

F((fo A ofD) Vv (f1 A Sfo)) A o((fo A Of1) V (fi A Ofp)) and F fo=—f; implies
F (fon o(ft A Of0)) v (fi A O(fp A of1))

or

b (ruleg v rule;) A o(rulep v rule;) and F fp =—f; implies

F (foA oruler) v (fi A orulep)

where: rulep = (fo A of))
rule; = (f; A Ofp)

Proof:
I ((fonofyv{finofd)ao((foncfi)v(finofy)) premise
2 fo=—fi premise
3 (foaofi Aoofy) v(fi Aofonoofi) 1, 2, TwoSymRulesAsRule
4 (fono(fi A ofo)) v (fi A O(fo A Of))) 3, NextAndDistEqv

This lemma is also expressed in terms of specific rule definitions to simplify

presentation and highlight the underlying rule structure(s).

Applying TwoSymRulesAsRule2 to (5.8.1-17) yields:
(wo A o(w; A Owg)) V (Wi A ©(Wo A Owp)) (5.8.1-19)

~ With this transformation, (5.8.1-17) is transformed into a disjunction of two general-
form rules. Alternatively, (5.8.1-19) is equivalent to (5.8.1-18) because it can be
obtained directly from (5.8.1-18) by applying NextAndDistEqv.

Using the complete rule-based description of the two-state symmetric system
presented in (5.8.1-4), the general rule form f; A ofj can be used to sequentially compose
the rule-based structure (5.8.1-17) that describes the possible state sequences associated

with such a symmetric state system. These possible sequences can be described either

104

conjunctively or in general rule form. If the system state at the time of rule execution is

known, the specific state sequence can be determined.
5.8.2 Asymmetric Rules

Informally, a rule is asymmetric if it is not its own inverse. For a rule to be
asymmetric, whenever that rule includes a transition from 6 to ¢', that rule cannot also

include the transition from ¢' to 6. Formally, a rule rule is asymmetric if:
Vo, 6'€ universene | 6' = 8,(6) P 0= dr(0) (5.82-1)

Based on this formal definition, the simplest possible asymmetric system is a

two-state system containing one state transition:

Figure 5.8.2-1: Two-State Asymmetric System

In this system, $o # 51, So & wo, and s F w;. The one transition included in this system
can be described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

Y Wy A OwW; (5.8.2-2)
LY} -

Because this two-state asymmetric system contains only one state transition, the entire

system is described as:
Wg A OWy (5.8.2-3)

This system is also irreflexive, as previously discussed in Section 5.7.2. The

composition of two-state asymmetric rules into larger structures using either the general

105

rule form f; A 'éf,- or the ITL operator chop has been previously described in Sections
5.6.1 and 5.6.2, respectively.

Comparing the formal definition of rule symmetry presented in (5.8.1'-1) with
the formal definition of rule asymmetry presented in (5.8.2-1), a rule cannot be both
symmetric and asymmetric, as symmetry requires that ¢’ = 8,..,(0) O 0 = §,,,(0") and
asymmetry requifes that 6' = 8,,(0) P © = Snu(0"). However, a rule need not be

either symmetric or asymmetric. Consider the following two-state system:

/\

Figure 5.8.2-2: Two-State System that Is Neither Symmetric nor Asymmetric

In this system, so # 51, So F wp, and s; = wy. The two transitions included in this system

can be described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So Wo A Owp (5.8.2-4a)
So Wp A OW; (5.8.2-4b)
S -

Using these two individual state transitions, the complete system is described

disjunctively as:
(wp A ow)) v (wp A owp) ‘ (5.8.2-5)

Propositional logic and NextAndDistEqv are applied to (5.8.2-5), and the system

presented in Figure 5.8.2-2 is expressed as a single, equivalent general-form rule:

wp A O(wp v wy) (5.8.2-6)

106

Using the equivalent rule form (5.8.2-6) and considering the satisfaction relations bound
to this system, the minimum rule domain is {sp} and the minimum rule codomain is
{so0, s1}. Therefore, the rule universe for this system is {so, s;}. Referencing the formal
definition of rule symmetry presented at (5.8.1-1), there exists a transition from s, to s;
(described by the rule wo A ow;) but no transition from s; to 5o (and no corresponding
rule w; A owp). Therefore, the requirement for symmetry is not met. Referencing the
formal definition of rule asymmetry presented at (5.8.2-1), because there exists a
transition from sy to 5o (described by the rule wy A Owy), the requirement for asymmetry

that 0" = 8,.(0) P G = 8,4(0") is not met. Therefore, this system is neither symmetric

nor asymmetric. However, this system is reflexive, as discussed in Section 5.7.1.
5.8.3 Antisymmetric Rules

For a rule to be antisymmetric, whenever that rule includes a transition from o to
o' and a transition from o' to 0, ¢' and o must be equal. Formally, a rule rule is

antisymmetric if:
Y 0, '€ universene |0 =8nu1(0) A 0 =8n1(6") D 0=0 (5.83-1)

Using this formal definition, the simplest possible antisymmetric system
involves only one state, so, and one state transition described by the rule wo A owp where
soEwp. This one-state rule system is also reflective and symmetric, as previously
discussed in Section 5.7.1 and Section 5.8.1, respectively. As demonstrated with this
case, a rule can be both symmetric and antisymmetric.

The simplest possible two-state antisymmetric system is the two-state
asymmetric system presented in Figure 5.8.2-1. The minimum rule universe of that
system is {so, 5;}. There is only one transition from s to s; described by the rule wy A
ow; and s, # ;. Therefore, both the antecedent o' = Suie(0) A 0=3,(0") and the
consequent o= o' of the definition at (5.8.3-1) are false. Therefore, the implication
holds and requirements for antisymmetry is met. As demonstrated with this case, a rule

system can be both asymmetric and antisymmetric.

107

However, an antisymmetric system need not be either symmetric or asymmetric.
Consider the two-state system previously presented in Figure 5.8.2-2 that is neither
symmetric nor asymmetric. - The minimum rule universe of that system is {sop, s;}.
There exists a transition from s, to so described by the rule Wo A OWp and because sy = sy,
- the requirerhent that 6' = 8,;‘1,(0)} 0 = 8,u:(6") D 6 = 6" holds. There exists a transition
from sp to s; described by the rule wy A ow,, but there is no transition from s; to sp.
Because sp # s7, both sides of the required implication are false, and therefore’the
implication holds. Finally, there is no rule describing a transition from s, to s;, but
s;=s5. Therefore, the implication is vacuously true and the requirement is met.

Therefore, this system that is neither symmetric nor asymmetric is antisymmetric.

5.9 Transitive Rule Systems

Formally, a rule system rs is state transitive if:
Y 0, 0, 6" € universe,s | 6' =8,(0) A 6" =8,,(6") D 0" =8,(0) (59-1)

where 8,; represents any of the transition relations associated with rules comprising the
rule system rs. Although one-state and two-state systems can be transitive, these are not
addressed here. Consider the simple three-state symmetric system presented in

Figure 5.9-1, containing three state transitions:

Figure 5.9-1: Three-State Transitive System

108

In this system, sg # 1, S1 # S2, So # 82, So = Wy, 51 F wy and sz F wa. The three transitions

included in this system can be described in rule form and organized based on the initial

state in the state sequence satisfying the corresponding rule condition:

So - Wo A OwWj (5.9-2a)
So Wo A OW; (5.9-2b)
S7 Wi A Owy (5.9-2¢)
52 -

The minimum rule universe for this set of rules is {sp, 55, 52}. Based on this minimum
rule universe and given the rule set identified in (5.9-1a), (5.9-1b), and (5.9-1c), both

o' = 8,,(0) A 6" = §,(0") and 6" = §,,(0) holds. Therefore, this system is state transitive.

An important distinction is made here that this system must described as state
transitive and not just transitive. Consider the two rules that share a state, (5.9-2a) and
(5.9-2c). These two rules can be sequentially composed using the general rule form f; A

of; to describe the resulting state sequence:

(wo A Owy) A O(w; A OW2) (5.9-3)

TwoSeqRulesImp is applied to (5.9-3) to obtain the following state sequence:

Wy A OOwW; (5.9-9)

Comparing this inferred rule, wp A 0Ow;,, with the native rule wy A ow;, at (5.9-2b), the
sequential composition implemented in (5.9-3) requires one additional time step (ie.,
one additional next) to reach the state satisfying wa. Therefore, if rules (5.9-2b) and
(5.9-4) are executed from a state satisfying wy, the outcomes of those rule executions are
ow; and oowy,, respectively. Therefore, this system is described as state transitive but
not temporally transitive. This simple example highlights the temporal aspects of rules
and therefore one of the critical differences of the temporal logic approach to rules as
presented in this thesis, as compared to simple representations of rules in non-temporal

forms,

109

Chapter 6

Rule Algebra - Advanced Concepts

In this chapter, advanced concepts associated with the rule algebra are developed
using the rule algebra fundamentals presented in Chapter 5. Additional compositional
paradigms, including nesting, recursion, deterministic and non-deterministic guarded
composition, and disjoint parallel composition, are presented. Alternative models of
rule equivalence are discussed. Rule-based representations of typical legacy code

structures — the if-then-else structure, the while structure, and the indexed for-loop — are

developed.

6.1 Nesting

The general rule form f; A of; is a temporal formula composed of two temporal
formulas f; and f. Because either f; or f; can be instantiated with a rule, other rules can
be nested within a general rule form f; A of;, which in turn can be nested within another
rule. Such nesting can be the basis for rule encapsulation and program abstraction in the
reverse engineering domain, or the basis for rule expansion and program refinement in
the forward engineering domain. With nesting, numerous types of composite rules can
be created. In this section, several configurations are examined, and previous rule

formation models are reviewed within the context of nesting.

Consider the following nested rule, expressed in general rule form, where the

rule condition is a rule:
(wo A OW[) A OW; (6.1-1)

Expressed in this form, this rule conditions a property of the next state, described by wy,
on the concurrent satisfaction of another property in that same next state, described by
wi, and a property in the current state, described by wy. The following lemma describes

an equivalent aliernative expression of this nested rule.

LEMMA: NestRuleCondEqv

F (fonaf)Ach = foAo(finf)

110

Proof:

I (ornofdacfais(foncf)Aof tautology
2 (fonofdAcfz=fon(ofinch) 1, associativity of A
3 (fornof) ncfisfon olfi Af2) 2, NextAndDistEqv

Applying NestRuleCondEqv to (6.1-1) yields:
wg A o(w) A wn) (6.1-2)

In this equivalent form of (6.1-2), the logic of the original rule (6.1-1) is much more
explicit — that both w; and w; must hold in the next state and therefore w; A w; cannot
be a contradiction. Although an acceptable form, nesting of rules within the rule
condition must be done with great care, because the underlying rule logic may not be as

transparent as other equivalent forms of rule construction.

Consider the following nested rule, expressed in general rule form, where the

rule state is expressed as a rule:

wo A O(w] A OWy) (6.1-3)
Applying NextAndDistEqv, (6.1-3) is transformed to:

Wo A OW; A OOwW, 6.1-4)

This equivalent form conjunctively describes the state sequence associated with the
corresponding nested general-form rule (6.1-3). Because NextAndDistEqv is a logical
equivalence, the reverse transformation strategy holds, as the conjunctive state sequence

described in (6.1-4) can be transformed into the nested general-form rule (6.1-3).

Consider the following general-form rule which includes a rule nested in the rule

condition and a rule nested in the rule state:
(wp A OW)) A O(W2 A OW3) (6.1-5)

The rule nesting in (6.1-5) is highlighted by the following definitional substitution:

111

rulesis = rules.¢q A Orules).sp (6.1-6)

where:

rules;ss = Wop A OWy (6.1-62)

i>

mleg.l,ab w2 A OwW3 (6.1-6b)

The following lemma describes an equivalent expression of a double nested rule.
LEMMA: NestBothEqv

F (foA of)) A o(f2 A Of5) =f5 A O(fI AS2) A OOf;

Proof:

1 (onof)ao(fzncfs)=({fon of) Ao(fan of3) tautology

2 (forofn) Ao(fa A Sf3)=(fo A Of1) A (Of2 A OOf3) 1, NextAndDistEqv
3 (fonof)Ao(faAcfs)=fA(CfI AOS) A OOf; 2, associativity of A
4 (foAOf)) A O(fs A O =[5 A O(fi Af2) A OOf; 3, NextAndDistEqv

Applying NestBothEqyv to (6.1-6) yields:
wo A o(wj A W) A OOW; 6.1-7)
Applying NextAndDistEqv to (6.1-7) yields:
wo A o((w) A w2) A Cw;) 6.1-8)

Again applying definitional substitution to highlight rule nesting:

>

rules 1.9 = wo A Oruleg .94 (6.1-9)

where:

(w1 A w2) A Ow; (6.1-9a)

It>

rules ;o0

With the application of NestBothEqv and NextAndDistEqv, the double nested rule of
(6.1-6) has been transformed into an equivalent general-form rule with only a nested

rule state. One important benefit of this analysis is the clear identification that w; A w»

112

cannot be a contradiction if this rule is to hold. This is unambiguously depicted in both
(6.1-7) and (6.1-9a).

The nesting of rules in both the rule condition and rule state is the basis for the
rule-based form of sequential composition previously presented in Section 5.6.1.
Unlike rule-based sequential composition of Section 5.6.1, the double-nested rules as
presented in (6.1-5) and transformed by NestBothEqv need not share a common
temporal formula. Stated another way, sequential composition using the general rule
form, as previously discussed in Section 5.6.1 and addressed with TwoSeqRulesEqvl,
TwoSeqRulesEqv2, and TwoSeqRulesImp, is a special case of the double nesting
addressed in NestBothEqv. Consider the following example incorporating nested rules

in the rule condition and rule state that share a common temporal formula:

(wo A owp) A O(w; A OW)) (6.1-10)

Applying NestBothEqv (6.1-10) yields:

wo A O(W; A Wi) A OOW; (6.1-11)

Applying the idempotence of A to (6.1-11) yields:

Wy A OW) A OOW, (6.1-12)

Because the double nesting of (6.1-10) includes a common temporal formula, this
example conforms to the simple sequential composition model previously presented in
Section 5.6.1. Therefore, (6.1-12) could have been achieved by applying
TwoSeqRulesEqvl to (6.1-10). One distinct difference associated with the simple
sequential composition model based on shared temporal formula (supported by
TwoSeqRulesEqvl) and the double-nested compositional model (supported by
NestBothEqv) is that the simple sequential composition model does not include the

necessity that two different formulas in the same rule hold at the same time

(e.g., w1 A wa in rules ;.0,).

113

The nesting of total rules in both the rule condition and the rule state of a

general-form rule is described in the following lemmas.

LEMMA: TwoNestTotalRuleEqvl

b (o A) Y (o0 A i) A Oy A) v (o A Ofs)
= (A i) A O A)V (s A Ofs) A Oy A SFs)
A4 ((.'fao A ofa;) A o(ﬂ’a A ofbl)) v ((_"f;lo A Oﬁ'z) A o(_'fbo A Osz))

or

F (ruleg,, v rules,,) A o(rules,, v rules,,)
= (rule,, A oruley v (rule, A oruleb/n,”)
v (ruleg,,, A oruley,)V (ruleg,, n oruley,)

where: ruleg,, = (fa, A Ofa)
rulea,,, & (<fs, A Ofa)
rules,, = (fo, A Of3)
ruley,,, = (—fs, A Ofp,)

Proof:

1 ((fay A Ofa) v (ofa, A Ofa)) A O((Ffs, A Ofs) V (—fs, A Ofs))) tautology
= ((fao A Of;l) A4 (_‘.faa A ofﬂz)) A o((fbo A o.ﬁ’]) v (—'.ﬁ?o A O.sz))

2 =((fa,A0fa) V(oA Ofa)) 2, NextAnd-
A (O(fs, A Sfp,) V O(=fs, A Of5,)) DistEqv

3 =((fa A Ofa) A O, A Sf)) 3, Distribution
V (<o, A Sfa)) A O(fs, A Of3,)) of A over v

V ((fay A ofa)) A O(=fs, A Sf,))
V ((=fa, A ©fa,) A O(=fo, ASSs))
4 =((fo, A fa) AO(fo, A O)) - 3, Commutivity of
Vv (fay A Of2,) A S(=fs, A Of3,)) v
v ((—fa, A ofa) A O(fs, A Of,))
V ((=fa, A Ofa) A O(=f5, ASSH))

LEMMA: TwoNestTotalRuleEqv2

b Uag A eV (oA i) A O(fry A Ofs)V (fry A)
2 (fo, A O(fs, Afo,) AOOSs)V (—fa, A O(fa, Afs) A OOS)
 V{(fy A o(fy, A=fy) A 0Of5) V (=ifa, A Ofa, A —fs,) A OCS)

114

Proof:

L ((fay A Ofa) v (fay A Sfa)) A O((fo, A Ofy)) v (=5, A Of3,)) tautology
= ((fa, A fa)) V (fa, A Ofa)) A ((fo, A Ofp,) v (5fo, A Of5,))
2 =((fa, A Ofa) A O(fo, A Sp)) 1, TwoNestTotal-
V ((fay A Ofa) A O(—fs, A Of3,)) RuleEqvl
V ((=fa, A ofa)) A O(fo, A Of5))
v ((=fa, A fa) A O(—fo, AOS5,))
3 =((fo, A oo Afo) A COS) 2, NestBothEqv
V ({(fa, A o(fa, A =fp,) A ©Of3,)
V ((fa, A Ofa, Afo,) A OOfp,)
V ((=fa, A Ofa, A —fp) AOSS)

These lemmas are also expressed in terms of specific rule definitions to simplify
presentation and highlight the underlying rule structure(s). With TwoNestTotal-
RuleEqvl, a general-form rule composition of two nested total rules is decomposed to
an equivalent disjunction of four general-form rules, with each disjunct composed of an
individual rule from each of the two total rules. With TwoNestTotalRuleEqv2, the
original composition is decomposed to an equivalent disjunction of four conjunctive

series of state sequences.

With the nesting of two individual rules as a general-form rule as considered by
NestBothEqv, care must be exercised so that such a composition does not result in a
contradiction, thereby invalidating the original composition. This is demonstrated with
(6.1-7), where the term o(w; A wy) cannot be a contradiction. Because NestBothEqv is
an equivalence, if such a contradiction is created, then the original composition of (6.1-
6) is not valid. This problem can be avoided with the general-form rule nesting of two

total rules. By inspection of the corresponding terms in outcome of
TwoNestTotalRuleEqv2 — o(fa, A fo,)s O(fa, A =1fs)), Ofa, A fi,), and O(fy, A —fy) — a
contradiction is created only if either f;, or fs, is a contradiction. Otherwise, because
both are conjunctively associated with f;, and —f,,, no contradiction can result. Stated
another way, if two total rules, where each total rule has the form (f; A of) v (—f; A ofd)
for any i, j, and k, are valid, then the nested composition of those two total rules as a

general-form rule is valid.

115

The ITL operator chop can be used in creating nested rules. Consider the
following rule which includes both the chop operator and a nested rule in the

| speciﬁcatiqn of the rule state:
wo A O(wy 5 (W1 A OW2)) | (6.1-13)
Applying StateAndNextChop yields the following equivalent form:
(wo A owp) 5 (Wi A Ow) (6.1-14)

In this equivalent form, (6.1-14) is an example of sequential composition using chop as
previously described in Section 5.6.2. Applying StateTwoChopRulesImp allows (6.1-
14) to be transformed to:

wo A O(wy ; OWy) . , : 6.1-15)

Therefore, with the application of StateAndNextChop and StateTwoChopRulesImp, the
rule nesting of (6.1-13) has been eliminated and (6.1-13) has been simplified to the
general rule form of (6.1-15).

Consider the following nested rule that includes two general-form rules that are

chopped and nested in the rule state.
wo A O((wy A Ows) ; (w3 A Owy)) (6.1-16)

The overall structure of this rule can be clarified with some definitional substitutions:

wo A o(rules).i74 ; rules.1-17v) ' (6.1-17)
where:

rulesi;;a = Wi A Owz (6.1-17a)

rulesi.izp = wi A Owy (6.1-17b)

116

This rule is a general-form rule that includes two general-form rules nested in the rule
state. The following lemma allows the transformation of a nested rule that includes two

chopped rules in the rule state:

LEMMA: StateNestRuleStateChopEqv

F wo A o((wr A ©f2) s (W3 A Ofg)) = (wWo A Owg A 0Of) ; (w3 A Of))

or

F wo A o(rule; ; rulez) = (wo A Owp A 00f2) ; rule;

where: rule; = wj A oOfy
rule; = w3 A Ofy
Proof:
1 wo A o((wr A Sf2) 5 (W3 A Ofy) tautology
=wy A o((wy A Of2) s (w3 A Ofy))
2 =(wonolwrAof)):(wsAofy) 1, ITL (StateAndNextChop)
3 =(wpAows A OOf2); (w3 A Ofy) 3, NextAndDistEqv

This lemma is also expressed in terms of specific rule definitions to simplify

presentation and highlight the underlying rule structure(s).

Applying StateNestRuleStateChopEqv to (6.1-16) yields:

(wo A OWp A 0OW2) 5 (W3 A OWy) (6.1-18)

In this form, the sequence specified by the original rule is clear. However, applying
NextAndDistEqv and TwoScqRulesEqvl to (6.1-18) yields an equivalent rule

consisting of three component general-form rules:
((wo A owy) A O(wr A OW)) ; (W3 A OWy) (6.1-19)
Substituting defined rule names for the component rules yields:

(rules.1.20a A Orules..17a) s rulesi-17 (6.1-20)

where:

117

rulesizos = wo A ow; (6.1-20a)

And because rules;zo A Orulesiss is a general-form rule, an additional definitional

substitution can be performed:

rulesi.21a ; rules 117 | (6.1-21)

where:

rulesj.zia £ rulesi.zoa A Orulesi.iza ‘ (6.1-21a)

The net result of this analysis is that (6.1-16), (6.1-18), and (6.1-19) are
equivalent. Because StateNestRuleStateChopEqv, TwoSeqRulesEqvl, and NextAnd-
DistEqv are equivalence lemmas, all offer substantial flexibility when used together in
the forward transformation of rules into equivalent forms, or.the‘reverse transformation

of observed sequences into equivalent rules.

Although a wide variéty of rule nestings using chop are possible, some nestings
may have unanticipated consequences. Consider the following rule which includes both

the chop operator and a nested rule in the rule condition:
(wo s (wo A OW)) A oW, . (6.1-22)

The following lemmas describes the reduction of this form of nested rule.

LEMMA: NestRuleCondChopImpl

F (wo; (wo A Of)) A f2 implies F (wp; 0f)) A Ofs

Proof:
1 (wo;(woA of))) Aofy premise
2 wo;(wo A of)) ' 1, A elimination
3 woswoAwp;of; 2, ITL (ChopAndImp)
4 wo;of ' 3, A elimination
5 ofp 1, A elimination
6 (wo:of)) A Of; 4, 5, A introduction

118

LEMMA: NestRuleCondChoplmp2

F (wo; (wo A Of1)) A Owz implies F wp A Of

Proof:
1 (wo; (wo A of1)) A Of2 premise
2 wo;(wonofp) 1, A elimination
3 wo 2, ITL (StateChop)
4 of; 3, A elimination
5 wopAof; 3, 4, A introduction

Applying NestRuleCondChoplImpl to (6.1-22) yields:

Wo 3 OWp A Ows (6.1-23)

However, because ow; is chopped to the state formula wy, and because the satisfaction
of a state formula depends only on the first state of a multi-state sequence, the chopping
of ow; to wp holds if w; follows any state in the multi-state sequence satisfying wy.
Therefore, w; does not have to hold in the next state after the single state satisfying wy
but after some next state after the single state satisfying wy. Further, for ow; to hold, w;
must be satisfied by the next state after the state sequence satisfying wp. This is

demonstrated by the application of NestRuleCondChopImp2 to (6.1-22) which yields:

Wy A Owp (6.1-24)

Therefore, with this form of nested construction, the original rule (6.1-22) and the
derivative rule (6.1-23) will hold even if w; is satisfied by a state that occurred after the
state satisfying w,. Although not immediately evident from an initial inspection of (6.1-
22), the transformations presented at (6.1-23) and (6.1-24) demonstrate the potential
confusion and corresponding problems that may result from the nesting of a chopped

rule in the rule condition.

119

6.2 Recursion

As applied to rules, recursion describes the circumstance where a rule is defined
in terms of that rule. Expressed in terms of nesting, recursion is the nesting of a rule

within itself. An example of a simple recursive rule is:

rulesz.1 = fo A o(fi A ruless.s) (6.2-1)
Substituting the deﬁnition of rules.; into an instantiation of ruless.; yields:

Jon ‘o(fl Afon o‘(fl A ruless.1)) ; (6.2-2)
Applying NextAndDistEqv twice yields the equivalent form:

Sfo A of1 A ofy A 0Of; A COruless (6.2-3)

In this equivalent form, and with the continued substitution of the definition of rules .,

the sequence resulting from this recursive rule is clear:
fornofinofbA00fi ACOfHA Qoof, A ©OOrules.; (6.2-4)

Although rulesz; is a ideal initial example of rule recursion becauéé of its
simplicity, that simplicity compromises its applicability to more realistic situations.
Referencing the previous discussion in Section 5.1 regarding total rules, rulesz.
includes no specification regarding the state sequence that will result if the rule
condition f; is not satisfied. Therefore, consider the following recursive rule composed

as a total rule:
rulesz.s = (fo A O(fi A rules2.5)) V (~fo A Ofinchanged) (6.2-5)

The expansion resulting from the substitution of the definition of ruless.s into an

- instantiation of rules,.s is described by the following lemma,

120

LEMMA: RecursTotalRuleExpan

- (fI A O(fZ A rule)) v (_‘fl A Ofunchanged) =
(fi A Of2A of1 A 0Of2 A OOTUlE) V (f1 A Of2 A O—f1 A OOCfunchanged)
v ("'fl AN Oﬁmchanged)fl? A O(fl /\fz) A 00f3

where: rule = (fi A O(f2 A rule)) v (—f1 A Ofunchanged)
Proof:
1 rule = (fl A O(fg A rule)) \YJ rulefam premise
2 =i A2 ((fi A O(f2A rule)) v ruleguse))) 1, substitution of
V (=f1 A Sunchanged) equivalance
3 =({fiAnofin o((fi A O(f2 A rule)) v rulepus.)) 2, NextAndDistEqv
v ("‘fl A Of unchanged)
4 =1 A ofan (Offi A O(fy A rule)) v Orulepse)) 3, NextOrDistEqv
v (=fiA Oﬁmchanged)
5 =(fi A ofan o(fi A O(f2 A rule))) 4, Distribution of A over v

Vv (f1 A f2 A S(—f1 A Ofunchanged))

v (—‘fl A Of unchanged)
6 =(fi A ofan ofi A 00(fs A rule)) 5, NextAndDistEqv

v (f) A Of2 A O("Wf IA Oﬁnchanged))
v (ﬂfl A Of unchanged)

7 =(f; A Of2 A Of; A 0Of2 A OOTUlE) 6, NextAndDistEqv
\ (f} A Of 2A 0(—1f) A Oﬁmchanged))
v (ﬂfl A oﬁm('hanged)

8 =(fi A Of2A Of) A 0Ofz A OOTUlE) 7, NextAndDistEqv

v (fl A Of2 A O"‘fl A Oofumhanged)
Vv (""f 1A Oﬁn(’hange(l)

Applying RecursTotalRulcExpan to (6.2-5) yields the following equivalent

disjunctive structure:

(fo A Of1 A Ofy A 0Ofs A OOrUles.5)
v {fon of1 A o—fo A 00f, umrhangcd)

A% ("'fa A Ofum'hanged) (6.2-6)

With this expansion, the significance of the total rule form is clear. The state sequence
specificd by rules2.s can be expanded, consistent with the recursive definition of rules .

5, until the rule condition f5 is not met, that is, until =/o is true. If the first state sequence

does not satisfy fs, the third disjunct of (6.2-0), =fo A Of unchangea, SPeCifies the next state

121

as unchanged. If the first state sequence satisfies f; but the second state sequence does
not, the second disjunct of (6.2-6), fo A Of; A 0—fo A OOfunchangea, SPECIfies the third state
as unchanged. - This unchanged status of the third state is unchanged relative to the
second stéte which satisfies f; (as specified by of;) but not f. The sequence specified
in (6.2-6) can be expémded further, as needed, by the substitution of the definition of
rules ;.5 into (6.2-6) and the application of RecursTotalRuleExpan.

An important issue associated with recursive rules is termination of the rule.

Consider the following simple rule:
rules.7 & fb A O(fo Aruless.y) 6.2-7)

Substituting the definition of rulesz.7 into an instantiation of rules ;.7 and applying the

applying the appropriate ITL and propositional logic yields the equivalent form:
Jon ofo'/\ oofy A ooruless.7 (6.2-8)

If the initial rule condition fp is satisfied, then the rule state, that is, the next state
specified by the rulé, will also satisfy fo. Because all rule states reached by the rule
satisfy the rule condition, this recursive rule will never terminate. Therefore, for a
recursive rule to terminate, the rule codomain must contain at one least state that is not

in the rule domain. Formally, for the rule rulerecursive to terminate:
Jo€ codomain(rulerecursive) I (o¢ domain(ruleecursive)) (6.2-9)

A common application of rule recursion is to implement loops. Through the use
of counter variables or logical tests, for-loops, while-loops, or similar looping
programming structures can be created. - As many legacy and hon—legacy applications
include such looping structures, rule recursion offers a powerful rule-based technique

for reasoning about such code structures.

122

6.3 Guarded Composition

Dijkstra (1975, 1976) introduced the logical concept of a 'guarded command' to
allow operational non-determinacy with respect to the final system state based on, and
subject to, the current state of a given system. This guarded command approach was
originally conceived as a reliable method of evaluating and executing simultaneous I/O
interrupts, thereby avoiding machine deadlock resulting from the consistent and
deterministic choice and service of one interrupt over another. Guarded command
concepts have been explicitly incorporated into various programming languages
including Occam (Roscoe and Hoare, 1986) and WSL (Ward, 2001). Whereas the bar]
is frequently used as the guarded command operator to link unordered alternatives, in

this thesis, disjunction is used to compose rules into guarded command systems.

Although originally conceived to represent non-determinacy, guarded
composition can be used to implement both non-deterministic and deterministic choice
depending on the implementation of the guards. Under guarded composition, only those
logical structures bound to a guard that is satisfied by the current system state sequence
are candidates for selection and execution. If the guards do not overlap and each
guarded logical structure in the guarded composition is satisfied by a different system
state, deterministic choice results. Such a deterministic guarded structure functions like

the switch or case constructs found in many programming paradigms.

Within the context of the rule model presented in this thesis, the total rule form
(fo A Of1) v (=fy A Of2) is an example of a simple, deterministic guarded composition. In
this rule-based implementation of guarded composition, the rule condition of each rule
serves as the guard, guarding the next state sequence defined by the rule state formula.
For total rule (fp A of)) v (—fs A f2), the state sequence satisfying of; is guarded by fj in
that f; can occur in the next state only if the guard f is satisfied. Conversely, the state
sequence satisfying of2 is guarded by —fp in that J2 can occur in the next state only if the
guard f; is not satisfied (i.e., —fy is true). Because no state sequence can satisfy both f,
and —fy (i.e., fo A —=fo = false), the guards cannot overlap and deterministic choice is
implemented. Subject to the requirement that the rule conditions not overlap, this
approach to deterministic composition can be expanded as necessary by disjunctively

incorporating additional rules.

123

However, if two or more guards overlap such that they are satisfied by the same
state sequence, nondeterministic choice is implemented. ‘With such an overlapping
guarded command approach, multiple alternative state sequences can be associated with
a single guard state. Therefore, when a guarded command system with overlapping
guards is executed repetitively, different final states may result from the same initial
state. With regard to implementation, the selection of the one alternative state sequence
from the set of multiple alternative state sequences bound to a satisfied guard must be
random to meet the expectation of fairness with respect to the nondeterminacy.
Abandoning this random approach and adding a probabilistic technique to the selection
of a single rule state from the set of multiple alternative state sequences bound to a
satisfied guard forms the basis for a probabilistic guarded composition, analogous to a

probabilistic guarded command language (He et al., 1997; Morgan and McIver, 1999).

A simple nondeterministic guarded command system is described in terms of

general-form rules as:
(fo A of)V (fo A ©f2) V (<fo A Ufunchanged) (6.3-1)

The state sequences satisfying of; and of; are both guarded‘ by fo in that f; or f2 can
occur in the next state only if the guard f; is satisfied. Because these rules share a
common formula expressing the rule condition, (6.3-1) is transformed by applying

propositional logic to yield the equivalent form:
(foa(ofivofz)v(=fon of. unchanged) - (6.3-2)
Applying NextOrDistEqv to (6.3-2) yields the equivalent form:

(fo A Of1 V 2)) V (=fo A Ofunchanged) (63-3)

~With these transformations, the three-rule nondeterministic guarded command structure
of (6.3-1) has been transformed into a nondeterministic total rule — total in that all state
sequences will either satisfy fp or —fs, and nondeterministic in that a state sequence

satisfying either f; or f2 will follow one satisfying f5, Whereas (6.3-3) has been limited

124

to two rule conditions and three rule states, there are no limitations with regard to the

number or nature of the rules used to described a rule-based guarded command system.

Critical to the composition of any guarded command system is the unambiguous
representation of the logical expectations of the system. Consider the following

guarded command system disjunctively composed of two total rules:

((fO A Of]) v ("‘f oA Oﬁmchanged))
v ((fl A Of:?) v (_‘f:? A ofunchanged)) (6.3-4)

As previously discussed, a total rule is a simple implementation of a deterministic
guarded command system. Therefore, (6.3-4) can be described as a guarded command
system composed of two deterministic guarded command systems. However, careful
analysis of (6.3-4) demonstrates that such a composition yields a nondeterministic

guarded command system. Applying propositional logic to (6.3-4) yields:

forofyvzacfs)v(=fov—)A Ofunchanged) (6.3-5)

In this equivalent form consisting of three rules, it is evident that the guards may
overlap. If fp # f2, then the guards can overlap. Therefore, (6.3-5) is nondeterministic.
In contrast, the following rule system, not derivative of (6.3-4), is a deterministic

guarded command system as only one rule state can be satisfied:

(ﬁ) A Ofl) v (fZ A Of.?) v ("'Ub VfZ) A Of;mr,‘hanged) (6.3-6)

In presenting these contrasting examples, no assertion is made that either (6.3-5) or (6.3-
6) is correct or incorrect, better or worse, preferred or not. Instead, they are presented to
demonstrate the necessity of analyzing guarded command system formations to assure
that the implementations are consistent with the underlying logical expectations for that

system.

6.4 Parallel Composition

In contrast to the explicitly lincar execution order that results from sequential

composition, paralle] composition allows for two or more programming structures to be

125

executed concurrently. - Practically, parallel composition allows for two or more
programming structures to be executed under some defined model of concurrency.
 Parallel composition is expressed using the parallel operator | to connect the structures
that are to be executed in parallel. Applied to rules, (fo A of7) || (2 A of3) specifies that

the rules fo A of; and f2 A of; are to be executed concurrently.

Apt and Olderog (1997) identify three common types of parallel composition in
programs - disjoint parallelism, parallelism with share variables, and parallelism with
synchronization. Parallel rules with shared variables may potentially interfere with each
other, whereas parallel rules with synchronization 'requ ire rule execution to be
suspended and then restarted. Disjoint parallelism is the most restricted form of parallel
composition and is probably the most applicable to legacy code analysis. This section is

limited to the analysis of rules and rule formation within the context of disjoint

parallelism.

The concept of disjoint parallel programs was introduced by Hoare (1975) in an
attempt to define the conditions under which certain paralle] programs can be reduced to
equivalent sequential programs. Two programs are considered disjoint if neither change
the variables accessed and used by the other. Extending this concept to rules, two rules
are disjoint if neither rule updates variables used by the other rule in assessing
satisfaction of the rule condition or establishing the rule state associated with that rule
condition. Stated another way, for two rules to be disjoint, the variables in the frame of
one rule cannot be used in the other rule in the formulas that specify the rule condition

or the next rule state.

The variables in the frame of a formula have been previously described as W.
For the same formula, let V be the set of‘ all variables used to define, specify, or
calculate the new values of the variables in W. Because some variables in W may be
- used to calculate other variables in W, including the recursive definition of a new

variable value, V may include variables from W.

Thus, for any formula, there exists some set of variables V and W and that
formula may be described by the set of variable V.U W." Consider two formulas, f, and
f1, such that each is described by Vo U Wo and V; U W,. f; is independent of f; if the

variables of Vp do not include any variables in Wy, or Vo N W) = @, Similarly, f; i

126

independent of fj if the variables of V; do not include any variables in Wy, or V; " W,

= &. Therefore, the two formulas, fp and f;, are independent or disjoint of each other if:
(VoﬂW1=®) A (VI(\Wo:@) 6.4-1)

Expanding this concept to rules, let rule rule be a general-form rule defined as fp
A Of;. The variables in the frame of rule have been previously described in Section 4.5
as Wy For rule, let Vi, be the set of all variables used to specify fp and used in f; to
calculate the pext values of the variables in Wy,;.. Because some variables in W, may
be used to calculate other variables in Wy, Vng may include variables from W,,.

Consider parallel two rules, rule; and rulep, defined as fao A Ofa, and f,,o A Ofbl'

respectively. Parallel rules rule, and rule, are disjoint if:
(Vrule‘I N Wruleb =) A (Vruleb N "Vrule'2 =0) (6.4-2)

Because disjoint parallel rules are independent of each other with respect to the
variables used to express the rule conditions and updated in the rule states, they can be
expressed as sequential rules using either of the two previously presented techniques for

the sequential composition. Similarly, because they are disjoint, they may also be

expressed as parallel rules should the need arise.

6.5 Equivalent Rules

Numerous models of equivalence exist for comparing objects and structures in
computer science. This section offers a brief review of some of the more relevant
concepts as a basis for deriving equivalence models that are applicable to general-form
rules. The rule algebra presented in this research is used to demonstrate three forms of

rule equivalence ~ strong equivalence (or strong bisimulation), transformational
equivalence, and non-temporal equivalence.

Apt and Olderog (1997) declare two computations input/output equivalent if

they start in the same state and then result in the same final state. For parallel programs,

they extend this model to the notion of permutation equivalence, that two computations

are permutation equivalent if they are input/output equivalent and the sequences of

127

transitions in each computation are permutations of each other. Fokkink (2000)
describes two processes as trace equivalent if they can execﬁte exactly the same strings
of actions and observes that trace equivalence ignores the effect of branching and may
be inadequate in describing concurrency. Pitts (1997) describes two program
expressions as contextually equivalent if they can be interchanged in a program without
changing the program outcome. De Nicola and Hennessey (1984) offer a testing
- approach to demonstrate natural equivalence; two processes are equivalent if they pass

. exactly the same set of relevant tests.

Many formal models of equivalénce are relaied to the cohcept of bisimulation.
Park (1981) introduced the formal model of bisimulation as an approach to assessing the
equivalence of two finite automata. One automaton bisimulates another automaton if
there exists a single relationship that relates all states of the first automaton to the states
of the second automaton and relates all states of the second automaton to the states of
the first automaton. This concept has been extended to numerous computational
paradigms, including process graphs (Baeten and Weijland, 1990), finite transition
© systems (Arriold, 1994), and calculus of communicating systems (Milner, 1989). Under
 these paradigms, the system nodes, states, or agents and the transitions that connect
“them must be considered in the relationship that defines a bisimulation between two
systems. Fokkink (2000) offers a general and informal description of bisimulation
applicable to these computational paradigms — two processes are bisimilar if they can
execute the same string of actions and have the same branching structure. Many
bisimulation models and the corresponding equivalence models are differentiated as
weak or strong models, depending on whether the silent actions of two systems (i.e.,
those transitions that are invisible or unobservable to the external observer) must be
matched one-for-one. Using the concept of weak bisimulation, Milner (1989) offers a
model of observational equivalence where the external, observable behavior of two

systems follows the same pattern, but the internal behaviors of the two systems may
differ substantially. '

This thesis will use a general framework for equivalence based on the assertion
that two temporal formulas are equivalent if they are satisfied by the same state
" sequences. Because rules are themselves temporal formula, two rules are equivalent if

they are satisfied by the same state sequences.

128

Consider the following two rules:

ruless.; = JoA ofi (6.5-1)

ruless.2 = fo A Ofr (6.5-2)

Demonstrating the equivalence of these two rules requires either the assertion or proof
that fy = fo and of; = of;. With such substitutions, both rules describe and/or are
satisfied by the same state sequences. Such substitutions of individual temporal formula
yield the strongest claim of equivalence for the associated rules as no other
transformations or reductions on the original rules are required. Because the
equivalences between individual formulas forming ruless; and ruless., are
instantiations of a single relationship that is reflexive, symmetric, and transitive, rules.s.;

and ruless. are described as strongly equivalent.

Consider the following two rules, each composed of two rules:

>

(fo A of 1)) A O(f1 A Of2) (6.5-3)
(fo A of 1) A O(fi- A Of2) (6.5-4)

ruless.

>

rules.s4

Applying TwoSeqRulesEqv1 to each yields the equivalent forms:

fo A ofi A 0OOf; (6.5-5)
fonofirnoof (6.5-6)

In the absence of any knowledge that of; = of, the strong equivalence discussed above
cannot be claimed. However, applying TwoSeqRulesImp to (6.5-3) and (6.5-4) yields
(6.5-7) and (6.5-8), respectively:

Jo A oof; (6.5-7)

foncof2 (6.5-8)

Whereas (6.5-7) and (6.5-8) are identical (and therefore equivalent), TwoSeqRulesImp

is not an equivalence preserving transformation. Therefore, ruless; and rulesss are

129

considered transformationally equivalent. Alternatively, with these transformations,
ruless.3 and ruless.q4 are described as input/output equivalent, because both have been
transformed into a general-form rule that is satisfied by the same input, specified by the

rule condition fp, and is associated with the same output, as described by the rule state
0ofa.

Consider the following two rules:

ruless.9 = (fo A of1) A O(fi A Of2) (6.5-9)
ruless.10 = (fo A Of1) A O((fir A Of 1) A O(f1 A Of2)) (6.5-10)

Applying TwoSeqRulesImp to (6.5-9) yields:
Jon oofz (6.5-11)

Using NextAndDistEqv, TwoSeqRulesImp, and propositional logic, (6.5-10) is

transformed to:
Jo A coofy (6.5-12)

Comparing (6.5-11) and (6.5-12), and given that oof; # 000f;, ruless.¢ and rulegs.;o are
not transformationally equivalent. However, both rules are described as non-temporally
equivalent as they differ only by the number of skip constructs (i.e., the ITL next
operator o) chopped ahead of the common rule state f>.

Three forms of equivalence — strong equivalence (or strong bisimulation),
transformational equivalence, and non-temporal equivalence ~ have been presented in
this section. No doubt, other forms or other models of rule equivalence are possible.
The formalization of the models presented above and the development of alternative

equivalence models applicable to general-form rules remain open questions.

6.6 Rules in Programming Structures

In legacy programs, three programming structures are frequently used to

represent rules — the if-then-else programming structure, the while structure, and the

130

indexed for-loop structure. In this section, these three structures are examined in

relation to the general form-rule f; A of,.
6.6.1 If-Then-Else Structures

If-then-else programming structures are a common and widely used method in
many imperative-programming languages for implementing deterministic choice
between two complementary alternatives. An if-then-else structure such as ‘if P then Q
else R’ is commonly represented in non-temporal propositional logic as (P A Q) v
(=P A R) or the equivalent form (—=P v Q) A (P v R) (Hoare, 1985). As the latter form

includes the definition of implication, that form is equivalent to (P > Q) A (=P D R).

Moszkowski (1986) defines an if-then-else structure in ITL as:
if bthen wyelse w; = (b wy) A (=bDws) (6.6.1-1)

where b is a Boolean expression. As presented in Table 4.3-5, the ‘if fy then f; else f2’

structure in ITL is now defined as:
if fothenfielse fo = (fonf)) v(=forf) (6.6.1-2)

As previously mentioned, the conjunctive form (fo A f1) v (—fo A f2) and the implication
form (fy D f1) v (=fo D f2) are provably equivalent.

In this thesis, a variation of the current ITL definition is used, and the if-then-

else structure is implemented as a pair of general-form rules as:

if fo then of else ofz = (fo A of1) v (=fo A Of2) (6.6.1-3)

As previously described in Section 5.1, this rule form is also described as a total rule
because all possible cases of the rule condition are considered, either f or —fp. As
previously described in Section 6.3, this rule form is an example of a simple,

deterministic guarded composition that includes two non-overlapping guards, fp and —f;.

A more limited if-then programming construct is implemented by substituting

Sunchangea fOT f2, leaving the system in an unchanged state if the condition f; is not met.

131

The semantics of funchanges have been previously described in Section 5.1. Alternatively
and with a minor deviation from the general rule form f; A ofj, the silent transition

associated with Ofinchanges can be avoided with the use of the ITL construct empty:
if fothen of; = (fy A Ofy) v (—fo A empty) (6.6.1-4)

An important use of the if-then-else programming construct is in creating nested
if-then-else constructs. With such nested constructs, multiple guards can be applied
systematically and bound to specific outcomes. Within the context of rules, using
nested if-then-else constructs allows the hierarchical association of multiple rule states
to a given rule state. Using the rule-based definition of the if-then-else construct
presented in (6.6.1-3), a nested if-then-else is created by instantiating an if-then-else
construct as each of the respective rule states f; and f;. Consider the following example

of a nested if-then-else construct.
(wo A oruless.1.sa) V (—wo A Orulese.1.55) (6.6.1-5)

where:

il>

rulese.r.sa = ruless.isa,, vV ruless..sa,,

>

ruless.i.sp = ruless.t.ss,,, V ruless.1.sp,,
A
rulese.1.sa,, = (W66.1-50, A OW56.1.5a,)
l A
rules st say,, = (—W6.1-50, A OWs6.1.50,)

ruless.p.ss,,, = (W66.1-55 A OWs56.1.55,)

true

ruless.1.sb,,, = (—Wes.1-55, A OWs5.1.5,)
The following lemmas describe equivalence transformations of rule-based, nested if-
then-else constructs.

LEMMA: NestlfThenElseEqv] (proved at 4, below)

F (fon orule) v (=fo A orulep)
= (fo A orules,,) v (fon orulea,,) v (—fo A Oruley,) v (=fy A oru les,,.)

132

LEMMA: NestIfThenElseEqv2 (proved at 6, below)

b (fo A orule,) v (—fo A orulep)

= (foAOfa, A 0Sa) V (fo A O—fy, A OOf)
v (=fo A fs, A 00fs) V (—fo A 0—fy, A 0Of)

where: rule; = rule,, v rule,,,,
ruleb = ruleb,m v ruleb/w
rule,,, = (fo, A Ofa)
mlea/abe £ (=fa, A Oﬁ’z)
ruley,,, = (fs, A fs,)
Fulen, = (~fi, A Ofs)

Proof:
1 (fo A orule,) v (—fo A oruley) premise
= (fo A oruley) v (—=fp A oruley)
2 =(foAo(rule,,, Vv rules,,)) 1, definitional substitution

Vv (=fo A o(rules,,, Vv rules,,))

trus

3 =(foa(orule,,, v orule,,)) 2, NextOrDistEqv
v (—fo A (orules,,, v oruley,,)

4 =(fonome,,)V(fo norue,,) 3, Distribution of A over v
v (=fo A oruley,) v (—fo A orules,,)

5 =(fono(fy, ASfa))V (fo AO(—fo, A Ofa)) 4, definitional substitution
Vv (=fo A (fy, A Sfy) V (—fo A O(=fs, A Of5,))

6 =((foA ofy) A 0Sfy)V ((for 0—fs) A OOfs) 5, NextAndDistEqv and

v ((=fo A ofy) A 00fs) V ((ofo A O=fs) A OOf) propositional logic

With NestIfThenElseEqvl, a nested if-then-else construct is transformed into an
equivalent disjunction of four general-form rules. With NestIfThenElseEqv2, a nested
if-then-else construct is transformed to explicitly identify each pair of rule conditions

associated the each of the four rule states.

Applying NestlfThenElseEqv2 to (6.6.1-5) yields:

((Wo A OWe.5,1.54,) A OOWe6.1-5a,)

V ((Wg A O—=We.6.1.54,) A OOWE.6.1-5a;)

V ((—Wo A OWe6.1.55,) A ©OWe.6.1-5b,)

V ((—wo A O We.5.1.56,) A OOW56.1.55;) (6.6.1-6)

133

With this transformation, the state associations of the nested if-the-else structure of
(6.6.1-5) are clear. With this nested if-the-else structure, each of four state sequences is
associated with the satisfaction or non-satisfaction of three conditions defined by the

state formulas wp, Wse.1.505, and wsei.ss, Using this model, deeper if-then-else

structures can be created as necessary by using additional nesting to incorporate
additional conditions and rule states. Because NestIfThenElseEqvl and
NestIfThenElseEqv2 are equivalences, both can be applied to either expand or

encapsulate such nested structures as required.

6.6.2 While Structures

While structures are a common method in many imperative-programming
languages for implementing a conditional loop. Using ITL, Moszkowski (1986) defines

a while structure recursively as:
while wyp do wy £ if wy then (w;; while wy do wy) else empty 6.6.2-1)

Applying the Moszkowski (1986) model of the if-then-else structure from (6.6.1-1),
(6.6.2-1) is restated as: i

while wo do w; = (wp D (wr; while wp do wy)) A (=wp D empty) (6.6.2-2)

Applying the ITL definition of the if-then-else structure from Table 4.3-5, (6.6.1-1) is

restated as:

while wp do w; é (wo A (wy; while wp do w))) v (=wp A empty) (6.6.2-3)
Cau and Zedan (1997) define the while structure in terms of temporal formulas:

while fydofi = ((fo A f1) ; while fo do fi) v (—fy A empty) (6.6.2-4)
As presented in Table 4.3-5, the while structure in ITL is now defined using chopstar as:

while fodofi = (foaf)’ afin=f (6.6.2-5)

134

In this form, ITL operator fin denotes that the final subinterval of the interval defined by
the while construct does not satisfy the guard f.

Using the general rule form of this research, the recursion implicit in the while

structure is expressed using the if-then structure of (6.6.1-4) as:

while fp do f; = ((fo A of1) ; while fp do f3) v (—fo A empty) (6.6.2-6)
Aylternatively, a rule-based while structure is described using chop-star as:

while fodof 2 (fo A of1)" v (—fo A empty) (662-7)

6.6.3 Indexed For-Loop Structures

Consider the following general indexed for loop:
forA=btocdof; , (6.6.3-1)

where A is a state variable that can change value over the interval, and g and b are static
variables that cannot change in value over the interval. This indexed for loop can be

described in terms of ITL using the while structure as:

forA=btocdof) =(0A=b);rule (6.6.3-2)

where:
rule’ = while (A< c)do(fi;cA=A+1)

In the form, the index variable A is initialized with the assignment oA = b and
incremented by 1 after each interval described by f;. This incrementing is achieved with
the chopped assignment formula ©A = A + 1. The definition of assignment in ITL is
presented in Table 4.3-6. Applying the if-then definition of the while construct
presented at (6.6.2-6) and NextChop, the indexed for-loop is described as:

forA=btocdof; =(0A=b);rule (6.6.3-3)

where:

135

ruld (A < c)Aofi;0A=A+1); rule’)y v (=(A < ¢) Aempty)

6.7 Some Other Interesting Rules

In this section, several interesting instantiations of the general-form rule are
examined ~ interesting in that these simple rules unambiguously capture and express a

single fundamental concept.
6.7.1 Excluding a Rule State with Negation

Specific rule states can be excluded with negation, as demonstrated in the

following rule:
fon o—fi (6.7.1-1)

(6.7.1-1) is a maximally nondeterministic rule, because the satisfaction of this rule will
allow the system to exhibit in the next state any valid state sequences except those

satisfying f7.

Such a maximally nondeterministic rule is extremely expressive and therefore
very valuable in specific circumstances. Consider a set of state sequences described by
Jo that are extremely undesirable or troublesome. A simple 'get out of trouble' rule can
be formed as:

~ Jon ofo (6.7.1-2)

Under this rule, if the system exhibits a trouble state sequence described as fp, this rule
specifics that the system be moved in the next state to any valid state sequence other
than one satisfying f5, thereby moving the system out of the troublesome state sequence
associated with fo. Whereas the details of how a new state sequence satisfying —f; is to
be chosen are important in the refinement of this rule and ultimately the final
implementation of the system, this rule expresses clearly what is of critical importance
regarding reasoning about the system — in this case moving the system out of a
troublesome state immediately. Although such a simple representation may seem trivial

at first glance, it does succinctly and unambiguously express the intended notion - if the

136

system is in the undesirable state described by fy, get out of that undesirable state
immediately. To that end, such a rule-base representation in this minimal form achieves
what Dijkstra (1976) calls the "clear separation” between the mathematical concerns

about desired states and the specific engineering and implementation concerns regarding

how these states are achieved.
6.7.2 Enforcement of Specific Criteria

Consider the following simple rule:
—fo A fo (6.7.2-1)

Under this rule, if the system state does not meet the criteria specified by fo, then the
next state sequence is required to meet these criteria. As with the example in the
preceding section, this simple rule succinctly and unambiguously expresses the intended

notion — if a system does not meet the criteria expressed by fo, then require that the next
state meet those criteria.
6.7.3 System Inverter

An interesting rule variant can be formed by combining the concepts of Sections

6.7.1 and 6.7.1, as demonstrated in (6.7.1-2) and (6.7.2-1), into the following total rule

system:

(fo A 0f0) V (—fo A f0) (6.7.3-1)

In this form, (6.7.3-1) describes a system inverter relative to the state sequence specified

by fi. If the system state sequence satisfies fo, then the next state sequence must not, and

if the system state scquence does not satisfy fo, then the next state sequence must.

6.7.4 Identity Rule
An identity rule leaves the system state unchanged. A simple example of an
identity rule is:

fo A Ofunchanged (6.7.4-1)

137

If the rule condition fj is satisfied, then the system state remains in next state sequence.
With regard to typical programming constructs, the most common implementation or
use of an identity rule is as the non-satisfaction half of a total rule where the rule

condition fj of (6.7.4-1) is instantiated with —-.fco,,d,-,,-o,. to form —feondition A Ofunchanged-

That such an identity rule as expressed in (6.7.4-1) functions as the
programming construct skip relative to the satisfaction of fp is consistent with the
definition of the ITL next operator o. Referencing the definition of of the ITL next
operator o as presented in Table 4.3-4, Ofinchanges may be described as skip ; funchanged:

Substituting, (6.7.3-1) can be read as fp A SKipP ; funchanged-
6.7.5 Any Possible Rule State

Consider the following rule:
fo A otrue (6.7.5-1)

This rule can be satisfied by the satisfaction of the rule condition f; and by any valid
next state sequence, as the formula frue describes all states and is therefore satisfied by
any state sequence. With respect to finite state machines, Hartmanis and Stearns (1966)
described this as a "don't care” condition. Such a rule may be relevant if the system
designer does not care what the resulting system state is. Possible reasons for the use of
such a general rule are that a logical placeholder is needed, that the current system state

may be ignored, or that the system state may be reset by some subsequent action.

138

Chapter 7

Analysis of Rules in Models and Specifications

In this chapter, the formal rule extraction framework of Chapter 3, the formal
temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied
to the extraction of rules from a variety of existing systems and the analysis of those
rules. In Section 7.1, rules are extracted from an existing finite state machine; these
extracted rules are then used to identify the state sequence that results from the
application of an example input sequence to that machine. In Section 7.2, rules are
extracted from a detailed formal specification; with these extracted rules, alternative
formal transformations are presented, thereby allowing a formal, rule-based analysis of
the original specification. In Section 7.3, statecharts are investigated within the context
of the formal rule model and the corresponding rule algebra as developed in the
research; generic visual formalisms of various rule-based coding paradigms are

developed and the rules extracted in Section 7.2 are represented as statecharts.

7.1 Analysis of Rules from a Finite State Machine

In this section, rules are extracted from an existing finite state machine and

analyzed. Consider the finite state machine depicted in Figure 7.1-1 from STRL (2003).

{0, 1}

{2,3,4,5,6,7,8,9} {2,3,4,5,6,7,8,9}

{01 1' 2) 3; 4’ 5» 6; 7: 8y 9}

Figure 7.1-1: Three-State Finite State Machine

139

The system consists of three states (s, s;, and s2), and three state formulas, wp, wy, and

ws, are used to describe this system, where soF wy, sy w;, and sz wz. For the

purposes of describing this system, x is the next symbol read from the input and the
aéceptable input alphabet is the set {0, 1, 2,3, 4, 5, 6, 7, 8, 9}. For the purposes of this
analysis and consistent with the transitions depicted in Figure 7.1-1, this input alphabet
is dmded into two sets, a; = {0, 1} and a= {2,3,4,5,6,7,8, 9} The state transitions
| mcluded in this system can be described based on the staxtmg state, the recognized
input, and the ending state. Within the context of the general form rule, the starting
state and the recognized input are the rule conditions and the ending state is the rule
state. These five state transitions, described as rules and orgahized based on the state

satisfying the éorresponding rule condition, are as follows:

So (WoAXE aj) A Owy . (7.1-12)
0 (WoAXE az) AOwy (7.1-1b)
-8 (wiAXE€ a)) Aowy (7.1-1¢)
51 (WIAXE @) A Ow; (7.1-1d)
52 (mA(x€ea;vxe a))Aow (7.1-1e)

This set of five individual rules describes all five transitions in the finite state machine,

and can be combined disjunctively to describe the entire system as:

(WoAXE aj) A ow

V(W AXE az) Aows

v(wiAXE aj) A ow

V(W AXE a) AOw;

vVimaA(X€ a;vXE a;)) Aow; (7.1-2)

This rule system can be assessed by considering the individual rules that share a
common rule state. Consider the following rule-pair from (7.1-2) that shares the

common formula w; for the rule state:

((wonxe a))Aow) v((wAXE a)) Aow) (7.1-3)

140

TITTTRR ST T A bt T e adldldih-t g o -t R sl b ot oo - g S T T PR

Applying CommonRuleStateEqv and propositional logic to (7.1-3) yields the folloWing

equivalent form:
((Wo v wi) AX € aj) A Owy (7.1-4)

Consider the following rule-pair from (7.1-2) that shares the common formula

w, for the rule state:
(woAx€ a) A ow) vV ((wr Ax € ax) Aowy) (1.1-5)

Applying CommonRuleStateEqv and propositional logic to (7.1-5) yields the following

equivalent form:
((wo v W) AX € a2) A OW2 (7.1-6)

With these equivalent transformations, (7.1-2) is transformed by substituting
(7.1-4) and (7.1-6) for the rule pairs considered in (7.1-3) and (7.1-5), respectively, to
yield:

(((wo v Wi) AX € ar) A OW))
v ((woVwW)AXE a) A ows)
v (w2 A (X € a1 V X € a2)) A OW2) (7.1-7)

With (7.1-7), the finite state machine depicted in Figure 7.1-1, including the
corresponding five transitions presented in (7.1-1a) through (7.1-1e), is described by
three general-form rules.

Given that two component rules included in (7.1-7) share a common rule state

described by ws, a further simplification is possible. Consider the following rule-pair

from (7.1-7) that shares the common formula w for the rule state:

(wov W) AXE a)AowW)V((WmA(XEaIVXE @) AOw) (118

Applying CommonRuleStateEqv to (7.1-8) yields the following equivalent form:

141

(wovw))Ax€E a))v (A (X€E a;VXE a))) Aow: (7.1-9)
Applying propositional logic to (7.1-9) yields the following equivalent form:
{(wovwivw) Ax€E ay) v(we Aix € aj)) A owz (7.1-10)

With these equivalent transformations, (7.1-7) is transformed by substituting (7.1-10)
for the rule pairs considered in (7.1-8) to yield:

(((wo v wi) Ax € ar) A owy)
V({(((wovwivw)AXE a) v(waAXE a)) A owy) (7.1-1D

With (7.1-11), the finite state machine depicted in Figure 7.1-1, including the
corresponding five transitions presented in (7.1-1a) through (7.1-1e), is described by

two general-form rules.

As depicted in Figure 7.1-1, the finite state machine is initially in so. Therefore,

the initial behavior of this finite state machine prior to any input can be described as:
Wo (7.1-12)

Letting rulez;.;; represent the rule system presented in (7.1-11), the behavior of this
finite state machine in response to a single input from the input alphabet can be

described using the ITL operator chop as:
wo s rules.1.11 (1.1-13)

The behavior of this finite state machine in response to two inputs from the input

alphabet can be described as:
wo s ruley. .y s ruley .y (7.1-14)

For an infinite series of inputs from the input alphabet, the behavior of this finite state
machine can be described using ITL chop-star operator as:

142

wo s rulezinr (1.1-15)

Alternatively, rule composition based on the general rule form can be used to
describe the behavior of this system to multiple inputs. For this description, consider

the three-rule disjunctive description previously presented in (7.1-7):

(((wo v wi) Ax € aj) A Ow))
v ((wo v WHAXE @) A Oowy)
v (w2 A (XE a1 VX E a2)) A ow,) (7.1-7)

Letting (7.1-7) be represented by rule;;.7, a longer state sequence is described by

composing rules.;.7 with itself using the general rule form:
rulez1.7 A orulezi.7 (7.1-16)

Using the general rule form, (7.1-16) is composed with itself to describe even longer

state sequences:
(rules.p.7 A orules..7) A O(rulez 1.7 A orules.r.7) (7.1-17)

(7.1-17) is transformed using TwoSeqRulcEqvl (from Section 5.6.1) and yiclds the

equivalent form:
rules1.7 A orules.1.7 A ©Orule 1.7 (7.1-18)

Alternatively, (7.1-17) is transformed using TwoSeqRuleEqv2 (from Section 5.6.1) and

yiclds the equivalent form:
rules .2 A o(rulezz A orules.7) (1.1-19)

As previously demonstrated in Section 5.6.1, the forms of (7.1-17), (7.1-18), and

(7.1-19) are equivalent.

143

Considering the repetitive forms presented in (7.1-18) and (7.1-19), recursion
can be used to describe finite state machine behaviors. For multiple inputs, the behavior

of the finite state machine presented in Figure 7.1-1 is defined recursively as:
rulegsy e rulez ;.7 A Crulepsy (7.1-20)

As a demonstration of the use of this recursive rule, rulersy is instantiated using the

definition of rulepsm as:

rulepsu = rules1.7 A o(rulez1.7 A Orulegsy) (7.1-21)
Applying NextAndDistEqv to (7.1-21) yields:

rulez.1.7 A Orulez;.7 A OCrulepsu (7.1-22)
Applying the definition of rulersy at (7.1-20) to (7.1-22) yields:

ruley 1.7 A orules.1.7 A 00(rules 1.7 A Orulepsy) (7.1:23)
Applying NextAndDistEqv to (7.1-23) yields:

rules.1.» A orulez.1.7 A ©Orules 1.7 A 0OOrUlersy (7.1-24)

Given the recursive form of rulegsy, rulersy can be used to describe an infinite behavior
associated with the finite state machine presented in Figure 7.1-1. Alternatively, the
finite behavior associated the finite state machine (i.e., the behavior associated with a
finite input sequence) can be described by applying propositional logic to the infinite,
recursive description. For example, the application of propositional logic (conjunction

elimination) to (7.1-24) yields:

rulez 1.7 A orules ;.7 A oCrules).y (1.1:25)

144

With the transformation presented at (7.1-25), the recursive definition of the system
presented at (7.1-20) can be easily manipulated to yield the same description of the
system behavior previously presented at (7.1-18).

In the demonstration that follows, rulersy is used to identify the specific
sequence of states that results from a specific input. For this analysis, a minor algebraic
simplification is made to the various rule representations to transform terms containing
the set membership operator €. As originally defined, input to the system can be any
of the ten digits defined by the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In the original system
description of (7.1-1a) through (7.1-1e) and in the corresponding ruley ;.7 and rulersy,

input associated with each specific transition is described in terms of x such that x € a,

or x € a;, where a; = {0, 1} and a2 = {2, 3, 4,5, 6, 7, 8, 9}. Alternative terms are

defined such that:
yEX€a (7.1-263)
—y=X€ a (7.1-26b)

Applying these definitions to rulez..7 yields:

(((wo v W1) AY) A OWI)
v ((wo v W1) A=y) A Owy)
v (w2 A (y vV =Y)) A OW2) 1.127

Applying propositional logic to (7.1-27) to eliminate the tautology (y v —y) yields:

(((wo v wi) AY) A OW))
v ((Wo vV W) AY) A owy)
v (w2 A OW2) (7.1-28)

Henceforth, (7.1-28) is described as ruler.;.zs. The definition of rulersym is updated such

that:

rulepsy & rulerizs A Orulersu (1.1-29)

145

Instantiating the definition (7.1-29) with itself yields:
rulepsy = rulesyzs A O(rules .28 A Orulersy) (7.1-30)

; In the following demonstration, the input sequence 012 is tested against rulersy
~ to determine the system response. In terms of the original input variable x, the sequence
. is described as formula X A Ox A oox, where x = 0, ox = 1, and oox = 2. Using the
algebraic transformations described at (7.1-26a) and (7.1-2615), the input sequence 012
is represented as the formula y A oy A 0co—y. Decomposing this formula, y represents

x € a; which holds for x = 0. With the next term, oy represents ox € a; which holds for

ox = 1. And the final term, co—y represents oox € a,, which holds for cox = 2.

In this demonstration, four premises are asserted. In the first premise, a finite
state machine exists and is described by rulersy and the associated definitions. In the
second premise, the input stream to be processed by the finite state machine is described
by the temporal formula y A 0y A co—y. In the third premise, the finite state machine is
started in a state satisfying wyp. In the fourth premise, the relative uniqueness of the

three formulas describing the three states of finite state machine is asserted.

The processing of the input stream 012 with the finite state machine described

by rulegsu is as follows:

1 rulepsy premise
where:
rulepsu = rulez/.zg A orulepw
rulezy.28%= ((Wo v Wi) AY) A OW))
v (((wo v w1) A =y) A Owy)

V (w2 A OW2)
2 yaoyaoomy premise
3 9w premise
(wo 2 (=w; A =w2)) premise

A (W D (=wy A —w2))
A (w2 D (=wp A —w)))

5 rules;os A orulepsy , 1, definition substitution
6 rulerias 5, A elimination
7 'y 2, A elimination

146

10
11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27

28

29

30

wo O (—w) A —w2)

—1W; A —W2

—Wy

W2

(((wo v W) A Y) A OWY)

v (((wo v wi) A —y) A Owy)
V (w2 A OW2)

((true v false) A true A ow;)
v ((true v false) A false A owy)
v (false A owy)

(true A true A Owy)

v (true A false A owy)

v (false)

owp

oy

wr D (=wp A —W2)

owp D O(—wp A —w2)

ow; D O—Wp A O—W;

O—wg A O—nW2

O—Wy

O=W2

orulersm

o(ruler.1.28 A orulersm)
oruley .28 A o0rulersy
orulez.2s

o((((wo v W) A Y) A OWI)

v (((wo vV Wi) A =y) A OW)
v (w3 A OW2))

o(((wo v Wi) AY) A OWp)

v o(((wo v WI) A —1y) A OW2)
v o(wz A OW3)

(o((wo v Wi) A Y) A OOW))

v (o((wo vV Wi) A =y) A OOW)
v (ow; A OOWp)

((o(wo vV Wi) A OY) A OOW))
v ((0(wp V W) A O—y) A OOW2)

v (Owy A OOW?)

4, A elimination

3,8, MP

9, A elimination

9, A elimination

6, definition substitution

3,7, 10, 11, 12, prop. logic

13, unit of v, zero of A

14, unit of A, zero of A, unit of v
2, A elimination

4, A elimination

17, ITL. (NextImpNext)
18, NextAndDistEqv

11, 19, MP

20, A elimination

20, A elimination

5, A elimination

23, definition substitution
24, NextAndDistEqv

25, A elimination

26, definition substitution

27, NextOrDistEqv

28, NextAndDistEqv

29, NextAndDistEqv

147

31

32

33

34
35
36
37
38
39

- 40

41
42
43

45
46
47
48
49

50

51

52

((owp v ow;) A Oy A COW))
V ((owp vV ow;) A 0=y A OOW)
v (0w A OOWs)

((false v true) A true A oowy)
Vv ((false v true) A false A cow,)
v (false A cow)

(true A true A oowy)

V (true A false A cOws)

v (false)

oOowy

00—y

w; D (—qu A —|W2)

owy D o(—wp A —=ws)

ow; D (0—wy A O—w2)

oow; D o(0—wy A O—wy)
oow; D (00—wy A 00=1ur)
00—y A OO—Ww;

00— Wy

00wy

oorulep_w

00(rulez.1.28 A orulersi)
o(orules ;.28 A OOrulersy)
ooruley.j.0s A ©0COrulersy
oorule

oo((((wo v wi) Ay) A Oowy)

v (((wo v W) A —y) A OW)

v (W2 A OW2))

o(o(((wo v wi) A y) A owy)

v o(((wo v wi) A —y) A OW,)
v o(wz A Owy))

o((o((wo v W) A y) A COW))
v (o((wo v wy) A —y) A OOW?)
v (owz A OOW,))

o((o(wo v wi) A Oy A COW)

" v (o(wg V wi) A Oy A OOW;)

Vv (owz A 0OWy))

30, NextOrDistEqv
15, 16, 21, 23, 31, prop. logic
32, unit of v, zero of A

33, unit of A, zero of A, unit of v
2, A elimination

4, A elimination

36, ITL (NextImpNext)
37, NextAndDistEqv

38, ITL (NextImpNext)
39, NextAndDistEqv

34, 40, MP

41, A elimination

41, A elimination

25, A elimination

44, definition substitution
45, NextAndDistEqv

46, NextAndDistEqv

47, A elimination

48, definition substitution

49, NextOrDistEqv

50, NextAndDistEqv

51, NextAndDistEqv

148

53 o(((owo v ow) A Oy A OOWy) 52, NextOrDistEqv
v ((owp v OW1) A Oy A OOWy)
v (owz A 0OW2))

54 o((owy v ow) A Oy A OOwWy) 53, NextOrDistEqv
v o((owp V Ow;) A O—y A OOW»)
v o(ows A OOWy)

55 (o(owp Vv Ow;) A OOy A OOOW]) 54, NextAndDistEqv
v (o(owp V OWp) A CO=y A O0O0OW;)
v (cow; A cOOW,)

56 ((oowp Vv OOW) A OOy A 0OOW)) 55, NextOrDistEqv
v ((cowp V 0OW[) A 00—y A OOOW,)
v (oow; A COOW,)

57 ((false v true) A false A 0o0OW)) 34, 35, 42, 43, 56, prop. logic
v ((false v true) A true A 000Ow;)

Vv (false A coowy)

58 (true A false A coOW)) 57, unit of v, zero of v

V (true A triue A 0O0WU3)

v (false)
59 oocow, 58, zero of A, unit of A, unit of v
60 wy A Ow; A OOW; A OOOW; 3, 15, 34, 59, A introduction

With this processing of the input sequence 012, subject to the four premises, the

resulting state sequence is described at sequent 60 by the temporal formula:
Wo A OWj A OOW; A OOCW; (7.1-31)

Associating the states that are satisfied by these state formulas, the corresponding state

sequence is:
S0 S 8182 (7.1-32)

Although relatively lengthy, this analysis is quite straightforward. With each
recursive iteration, the verity of each rule element is assessed based on the available
information. These verities are then applied to the rule model, and propositional logic is

applied to determine which of the future states described by the rule model is true. For

149

example, in the first iteration, wy is true by premise; and y, isolated using propositional
logic at sequent 7, is true also by premise. Given that wy is true, the relevant portion of
the uniqueness assertion premise is isolated using propositional logic, and —w; and —w2
are concluded using modus ponens and propdsitional logic (at sequent 8 through 11).
The verity of each or their complement are substituted into the rule model and the only
formula that can hold is identified (at sequent 12 through 15). With this, ow; is shown
to hold, and the next iteration is performed. The process is repeated with minor
variations to account for the iterative application of rule model to describe the next
terms in the state sequence. The ITL lemma NextImpNext (préviously defined in Table
4.3-8) is applied (at sequent 18) to the relevant portion of the uniqueness assertion
premise to temporalize it. The definition of rulergy is applied i’ecursively to define the
next possible states in the state sequence (at sequent 24). In all cases, NextOrDistEqv
and NextAndDistEqv are applied to distribute the ITL next operator © across the
formula. With the ITL next operator o fully distributed, the verities of all known terms
are assigned, the formula reduced using propositional logic, and the only formula that
can hold is identified. With this, cow; is shown to hold (at sequent 34). The next
iteration is performed using the same logic, and ooow; is shown to hold (at sequent 59).
For a longer input sequence, this process of iteration and resolution is repeated as
needed.

Whereas the finite state machine of Figure 7.1-1 is purposefully limited in scope
to facilitate examination, this example does demonstrate that general-form rules can be
extracted from the graphical depiction of a finite state machine, and that those general-
form rules can be used to effectively describe the behavior of that finite state machine.
As demonstrated above, once extracted, these rules can be methodically applied to

identify the specific behavior of the machine for a specific input sequence.

7.2 Analysis of Rules from a Specification

In this section, rules are extracted from an existing concrete specification and
analyzed. The following specification for cash withdrawal from an automatic teller

~ machine, developed by Cau and Zedan (2000), is considered.

var ¢, M, Cu, {Card;: j € ac}, {Pin;, A;: i€ c}
arm_int

150

while true do (
while atm_non_empty do (
wait_customer;
read_card;
if card_disabled then take_disabled_card
else (
get_pin;
if max_pin then (
disable_card ;
take_disabled_card

)
else (
if pin_exit then take_card_pin_exit
else (
request_money ;
if money_exit then take_card_money_exit
else (
debit_account;
take_card_money
)
)
)
)
)
refill_atm
)

Based on a review of the specification and within the context of the rule extraction
framework presented in Chapter 3, this specification contains two types of rule
structures — the if-then-else structure and the while structure. The specification is
processed from the top down (i.e., outside in), analyzing each structure as it occurs, and

replacing that structure with the appropriate rule-based formation.

Starting with the outermost or top while structure, the entire specification is
represented as:
varc, M, Cu, {Card;: j € ac}, {Pin;, A;:i€ c}

atm_int
rulesz.q

Within the context of the general rule extraction framework and the stated context for
this analysis, the var declaration and the initialization atm_int are not rules in that they

are not if-then-else or while structures. However, they are included here for

151

completeness. In the above representation, ruley., represents the following portion of

the original specification:

while true do (
while atm_non_empty do (
wait_customer;
read_card;
if card_disabled then take_disabled_card
else (
get_pin;
if max_pin then (
disable_card ;
take_disabled_card

)
else (
if pin_exit then take_card_pin_exit
else (
request_money ;
if money_exit then take_card_money_exit
else (
debit_account;
take_card_money
)
)
)
)
)
refill_atm
)

Applying the rule-form definition of the while structure, previously presented at

(6.6.2-6), in this portion of the specification, rule; ., is defined as:

rule;z.q = (true A orulesap ; refill_atm) ; rulesz..)
V (—true A empty) (7.2-1)

Consistent with the disjunctive structure of the rule-form while structure, rulezz, is
presented as a disjunction of two rules, even though the falsity of the disjunct —true A
empty is certain. In this form, and consistent with the specification, rule;,., describes

an infinite sequence.

In (7.2-1), rule; ., represents the following portion of the original specification:

152

while atm_non_empty do (
wait_customer;
read_card;
if card_disabled then take_disabled_card
else (
get_pin;
if max_pin then (
disable_card ;
take_disabled_card

)
else (
if pin_exit then take_card_pin_exit
else (
request_money ;
if money_exit then take_card_money_exit
else (
debit_account;
take_card_money
)
)

)

Applying the rule-form definition to the top while structure in this remaining portion of

the specification, rule; ., is defined as:

rulerap = ((atm_non_empty
A owait_customer ; read_card; rule;;..) ; rulesz.p)
V (—atm_non_empty A empty) ’ (7.2-2)

In (7.2-2), rule; ;.. represents the following portion of the original specification:

it card_disabled then take_disabled_card
else (
get_pin;
if max_pin then (
disable_card ;
take_disabled_card

)

else (
if pin_exit then take_card_pin_exit
else (

request_money ;
if money_exit then take_card_money_exit

153

else (
debit_account;
take_card_money

)

Applying the rule-form definition to the top if-then-else structure in this remaining

portion of the specification, rulez. is defined as:

rulezz.. = (card_disabled A otake_disabled_card)
V (—card_disabled A oget_pin ; rule;s2.q) (7.2-3)

In (7.2-3), rule;.4 represents the following portion of the original specification:

if max_pin then (
disable_card ;
take_disabled_card

)
else (
if pin_exit then take_card_pin_exit
else (
request_money ;
if money_exit then take_card_money_exit
else (
debit_account;
: take_card_money
)
)

)

Applying the rule-form definition to the top if-then-else structure in this remaining

portioh of the specification, ruley2 4 is defined as: ‘

rules2q4 = (max_pin A odisable_card ; také_disabled_card) :
V (—mmax_pin A orule;..) (7.2-4)

, In (7.2-4), ruley ;.. represents the following portion of the original specification:

_ if pin_exit then take_card_pin_exit
else (

154

request_money ;
if money_exit then take_card_money_exit
else (

debit_account;
take_card_money

Applying the rule-form definition to the top if-then-else structure in this remaining

portion of the specification, rule... is defined as:

rulery.e = (pin_exit A otake_card_pin_exit)
Vv (—pin_exit A orequest_money ; rulezz.s) (7.2-5)

In (7.2-5), rule; ;s represents the following portion of the original specification:

if money_exit then take_card_money_exit
else (

debit_account;

take_card_money

Applying the rule-form definition to the if-then-else structure in this remaining portion

of the specification, rule s is defined as:

rulez s = (money_exit A otake_card_money_exit)
vV (—=money_exit '
A odebit_account ; take_card_money) (7.2-6)

The total rule rules,s contains two disjunctively connected rules reflecting the
satisfaction and non-satisfaction of the rule conditions money_exit and —money_exit.
Because there are no additional rules nested in this rule, the entire specification has been

assessed and the rule extraction is complete.

Based on this analysis, six rules have been extracted from the original

specification:

i>

rulezz.a = ((true A oruleza.p ; refill_atm) ; rulesz.n) v (—true A empty)

rules2.» = ((atm_non_empty A owait_customer ; read_card; ruley;.) ; rulezz.p)
Vv (—atm_non_empty A empty)

155

(card_disabled A otake_disabled_card)
V (—card_disabled A oget_pin ; rule; ;.4)

I

rulez ;..

rulesz.4 = (max_pin A odisable_card ; take_disabled_card)
V (—max_pin A orulez;..)

(pin_exit A otake_card_pin_exit)
V (—pin_exit A orequest_money ; rules..p)

>

ruless..

rulesa5 = (money_exit A otake_card_money_exit)
v (—money_exit A odebit_account ; take_card_money)

In this form, the specification can be analyzed as desired using ITL and other
techniques. Because these rules are temporal formulas that describe sequences of states,
the behavior of the specified system (that is, the sequence of states that results from the
execution of the specification) can be tested and assessed by manipulating these

formulas.

In the following analysis, the specific system behavior required to take money
from the automatic teller machine is assessed. Using the desired final state sequence
take_card_money as the goal (i.e., take_card_money is asserted to be true for this
specific analysis), the required state sequence necessary to reach this goal is assembled
from the extracted rules by startiﬁg with the desired final state sequerice and working
backwards through the rules. Within this goél—oriented re-assembly, those ponions of
the rules associated with state sequences that do not lead to the desired final state
sequence are discarded, and the remaining rules are re-assembled, leaving only those

rules that lead to the state sequence take_card_money.
Consider the extracted rule ruley ¢ that includes the goal take_card_money:

rulesay & (mdney__exit A otake_card_money_exit)
: v (—money_exit A odebit_account ; take_card_money)

The total rule ruleszy contains two disjunctively connected rules. However, only one
rule includes the goal take_card_money. Given the imposition of this goal, the rule
(money_exit A otake_card_money_exit) must evaluate false. Applying propositional

logic, this disjunct is eliminated and the remaining sequence is described as:

156

TULE72 f e cord_moncy = (—money_exit A odebit_account ; take_card_money)

Stated another way, 71l€7.2.f . cus_meney 1S the only half of the total rule rules2 s that leads

to and includes the sequence take_card_money.

Continuing to move backwards through the extracted rules, consider rules ;..

rule;z.. = (pin_exit A otake_card_pin_exit)
V (—pin_exit A orequest_money ; rulezz.s)

With the imposition of the goal take_card_money, the disjunct (pin_exit A
otake_card_pin_exit) must evaluate false because it does not include rules,s and
therefore cannot lead to the goal take_card_money. Applying propositional logic, this

disjunct is eliminated and the remaining sequence is described as:
TULE72-0 ke cotmoney = (—DIN_exit A Orequest_MONEY ; ruler.2 fiuy, o money)
Substituting the definition of rule7.2.f,u, cu money INLO TULET 2-6 e cars_meney YiEIAS:

TUle72 ¢ e s momey = (—Ppin_exit A orequest_money ; (mmoney_exit
A odebit_account ; take_card_money))

Continuing to work backwards through the extracted rules by eliminating disjuncts that
do not lead to the goal and expanding the remaining pruned rules by substituting

equivalences yields:

) A .
TUle72.d e cart money = (MAX_DIN A OTULET 2.0 10, s money)

TUlC7 2.0 ke ot meney = (—IMAX_pIn A O(—pin_exit A Orequest_money ;
(—money_exit A odebit_account ; take_card_money)))

(—card_disabled A oget_pin ; rules.2.d.s cut money)

>

rule 7.2-C take_card_money

TULET 2 ¢ e conimeney = (—Card_disabled A oget_pin ; (—max_pin
A O(—pin_exit A orequest_money ; (—money_exit
A odebit_account ; take_card_money))))

157

TULE7 2.5 mpe cunt ey = (@IM_NON_empty A OWait_customer ;
read_card; rule7.2-c . cans money)

TUl€72.b e cori meney = (GIM_non_empty A OWait_customer ; read_card;
(—card_disabled A oget_pin ; (—wmax_pin
A O(—pin_exit A orequest_money ; (—money_exit
A odebit_account ; take_card_money))))) ;

rule7.2-b take_card_money

With 72l€72.5 e cus_naeyr the state sequence that leads to take_card_money is identified
and described. Because rule;,., is a system rule and not a business/knowledge rule (that
is, the rule condition of rulesz, is true and therefore reflects no domain-specific

knowledge), rule;.,., is not included in this analysis.

With this methodical elimination of those elements of the various rules that do
not contribute to the defined goal, it is tempting to view the above analysis as a form of
backwards slicing. However, unlike most other slicing techniques that target program
code, this analysis considers state sequences explicitly described by ITL formulas.
Unlike traditional slicing that returns a fragment of code that leads to or from a specific
data state, this analysis yields the entire behavior of a system, representing a sequence
of states. Unlike traditional slicing where the result is the sliced code, this analysis
yields a formal description of a state sequence. Thus, if the above analysis is to be

viewed as slicing, it is best described as state sequence slicing.

With this series of reduced rules, reduced in that only the rules associated with
~ take_card_money are included, a variety of analyses are possible. For éxample, because
each of these take_card_money rules are general-form rules consisting of a rule
condition and a rule state in the form f; A of}, the rule conditions necessary to achieve

the goal take_card_money are easily identified by assessing the individual rules:

Rule Rule Condition
YUle7.2.b ke card_money atm_non_empty
TUle7.2.¢ ke _cai_money —card_disabled
TUl€7.2.4 wse_card_money —max_pin
rulez.. take_card_money —-pin_exit
YUle7.2.£ uke_card_money —money_exit

158

Whereas rule7.2.b uye cus_noney 1 @ cOmplete description of the state sequence that
includes take_card_money, partial state sequences that contribute to the complete
sequence described by 71l€7.2.b y, cus_money €20 be derived with the application of ITL and
the rule algebra of Chapters 5 and 6. These partial state sequences can be used to

describe and reason about the behavior of the rule in alternative ways. Consider

Tu le7-2 -b uke,_wd_money:

Tuler2.b i s money = (@tm_non_empty A owait_customer ; read_card,
(—card_disabled A oget_pin ; (—max_pin
A o(—pin_exit A orequest_money ; (—money_exit
A odebit_account ; take_card_money))))) ;
rule7.2.b ke cad_money

As presented, rule72.p wecwmny considers multiple instances of take_card_money,
because it includes a recursive reference to 7ule7.2-p uw_caimoney @S the last element of the
sequence. However, for the following analysis, only one instance of take_card_money
is considered. By limiting this to one instance of take_card_money, the requirements
and actions for one customer can be assessed. Therefore, for this analysis, all state
sequences after the first instance of take_card_money will be dropped. Assuming the
that formula describing the state sequence up to and including take_card_money is
known to hold for a given customer, this elimination of the trailing chopped sequence
(i.e., the recursive rules2.b wie_cua_nonsy) is allowed in ITL based on the semantics of chop.
Therefore, using this approach, the state sequence that precedes and includes a single

instance of take_card_money is:

atm_non_empty A owait_customer ; read_card ;

(—card_disabled A oget_pin ; (—max_pin

A O(—pin_exit A Orequest_money ;

(—money_exit A odebit_account ; take_card_money)))) (7.2-7)

Applying NextAndDistEqv to (7.2-7) yields:

atm_non_empty A owait_customer ; read_card;

(—card_disabled A oget_pin ; (—max_pin

A O—pin_exit A 0Orequest_money ;

(—money_exit A odebit_account ; take_card_money))) (7.2-8)

159

Applying pfopbsitional logic (conjunction elimination) to (7.2-8) yields:

owait_customer ; read_card;

(—card_disabled A oget_pin ; (—max_pin

A O—pin_exit A OOrequest_money ;

(—money_exit A odebit_account ; take_card_money)))

Applying ITL (AndChopImp) to (7.2-9) yields :

owait_customer ; read_card ; —~card_disabled

- A owait_customer ; read_card ; oget_pin ;
(—max_pin A o—pin_exit A OOrequest_money ;
(—money_exit A odebit_account ; take_card_money))

Applying propositional logic (conjunction elimination) to (7.2-10) yields: -

- owait_customer ; read_card ; oget_pin ;
(—max_pin A O0—pin_exit A OOrequest_money ;
(—money_exit A odebit_account ; take_card_money)))

Applying ITL (ChopAndImp) to (7.2-11) yields :

owait_customer ; read_card ; oget_pin ; —~max_pin

A owait_customer ; read_card ; oget_pin ; o—pin_exit

A owait_customer ; read_card ; oget_pin ; 0orequest_money ;
(—money_exit A odebit_account ; take_card_money)

Applying propositional logic (conjunction eiimination) to (7.2-12) yieldys:

~ owait_customer ; read_card ; oget_pin ; oorequest_money ;
(—money_exit A odebit_account ; take_card_money)

Applying ITL (ChopAndImp) to (7.2-13) yields :

owait_customer ; read_card ; oget_pin ;
oorequest_money ; ~money_exit '

A owait_customer ; read_card ; oget_pin ;
oorequest_money ; odebit_account ; take_card_money

(7.2-9)

(7.2-10)

(7.2-11)

(7.2-12)

(7.2-13)

(7.2-14)

160

With these transformations, the state sequence leading to take_card_money, as
presented in (7.2-7), has been transformed into a series of conjunctively connected
chopped state sequences. To demonstrate this, the following conjuncts are extracted
from (7.2-8), (7.2-10), (7.2-12), and (7.2-14) using propositional logic:

atm_non_empty (7.2-152)
owait_customer ; read_card ; —card_disabled (7.2-15b)
owait_customer ; read_card ; oget_pin ; —max_pin (7.2-15¢)
owait_customer ; read_card ; oget_pin ; o—pin_exit (7.2-15d)

owait_customer ; read_card ; oget_pin ;
oorequest_money ; —money_exit (7.2-15¢)

owait_customer ; read_card ; oget_pin ;
oorequest_money ; odebit_account ; take_card_money (7.2-150)

(7.2-15a) through (7.2-15f) are combined using propositional logic to form a single

statement:

atm_non_empty
A owait_customer ; read_card ; —card_disabled
A owait_customer ; read_card ; oget_pin ; —max_pin
A owait_customer ; read_card ; oget_pin ; o—pin_exit
A owait_customer ; read_card ; oget_pin ;
oorequest_money ; —money_exit
A owait_customer ; read_card ; oget_pin ;
oorequest_money ; odebit_account ; take_card_money (7.2-16)

With the above analysis, (7.2-7) has been transformed into (7.2-16). Both
describe the rule conditions that must be met prior to and the state sequences that lead to
a single instance of take_card_money. Whereas (7.2-7) describes the entire rule form
necessary to reach a instance of take_card_money, the state sequences and rule

conditions associated with (7.2-7) can be assessed easily using (7.2-16).

For example, because (7.2-16) is a conjunction, all conjuncts must hold.
Therefore, the rule condition atm_non_empty must hold to achieve take_card_money.

In addition to arm_non_empty, the state sequence satisfying owait_customer ; read_card

161

must hold and then the rule condition -—card_disabled must hold. In addition, a state
sequence satisfying owait_customer ; read_card ; oget_pin must hold and then the rule
~ condition —max_pin must hold. This continues for all conjuncts, including the final
conjunct that spéciﬁes that a state éequence satisfying owait_customer ; read_card ;

oget_pin ; oorequest_money ; odebit_account must hold before the state sequence

take_card_money.

With this individual éhd collective assessment of the cbnjuncts that compose
(7.2-16), the state sequence and rule condition ordering associated with (7.2-7) are
clearly, succinctly, and unambiguously presented. Let there be no misunderstanding —
(7.2-16) is not a replacement for (7.2-7). However, (7.2-16) allows a simple and clear
presentation of the conditions and behaviors associated with (7.2-7). Given that
(7.2-16) is formally derived from (7.2-7), conclusions can be drawn from (7.2-16) with
the certain knowledge that those conclusions are applicable to (7.2-7).

In (7.2-16), each of the conjuncts terminate with a rule condition or, in the case
of the last conjunct, the iarget sequence take_card_money. This pattern is explored as

another basis for rule transformation, analysis, and understanding, as follows.

The sequences described in (7.2-15a) through (7.2-15f) are derived from (7.2-7),
which is asserted to be a finite sequence. Therefore, each of the sequences (7.2-15a) -
through (7.2-15f) must be finite sequencés. Using the ITL sometimes operator ¢ (also
readable as eventuaHy), if two temporal fo‘rmulas fo and f; are finite, then f, ; f1 D Ofi
(Cau, 2006, personal communication). Thelfefore, from (7.2-15b), (7.2-15c¢), (7.2-154d),

and (7.2-15e), the following statements are concluded:

O—card_disabled ' - (7.2-17a)
O-max_pin I | o (7.2-17b)
Oo—-;pin_exit o H v - »4 (7.2;170)
Oﬁmohey_exit ’ : ; (7.2-17d)

Applying DiamondNextImpDiamond to (7.2-17¢) yields:

© Q-pin_exit -~ - : ' ' (7.2-18)

162

Applying propositional logic to (7.2-15a), (7.2-15f), (7.2-17a), (7.2-17b), (7.2-17d), and
(7.2-18) yields:

atm_non_empty A O—card_disabled A

Q—max_pin A O—pin_exit A O—money_exit

A owait_customer ; read_card ; oget_pin ;

oorequest_money ; odebit_account ; take_card_money (7.2-19)

With the application of parentheses to this conjunctive structure, the fundamental

general rule form structure of (7.2-19) is highlighted:

(atm_non_empty A O—card_disabled A
O—max_pin A O—pin_exit A O—money_exit)
A owait_customer ; read_card ; oget_pin ;
oorequest_money ; odebit_account ; take_card_money (7.2-20)

With this series of transformations, the state sequence necessary to achieve the
state sequence take_card_money, presented in (7.2-7), has been transformed to the
general-form rule presented in (7.2-20). With the form f; A of}, the rule condition f; is
described as the conjunction atm_non_empty A O—card_disabled A O—max_pin A
O—pin_exit A O0—money_exit and the rule state f; is described by the chopped sequence
wait_customer ; read_card ; oget_pin ; oorequest_money ; odebit_account ;
take_card_money. Stated another way, to achieve the sequence take_card_money,
atm_non_empty must hold, —card_disabled, —max_pin, —pin_exit, and —money_exit
must eventually hold, and the sequence wait_customer ; read_card ; oget_pin ;
ocrequest_money ; odebit_account ; take_card_money must hold. As before, (7.2-20)
is not a replacement for (7.2-7), nor is it intended to be. However, it does afford a
different analysis path with regard to understanding the conditions and the state

sequences that must hold to achieve the take_card_money.

In this analysis, the final transformation incorporating the ITL sometimes
operator O, presented at (7.2-20), is based on an extended series of individual
transformations starting with (7.2-7). These transformations are generalized with the

following lemma:

163

LEMMA: ChopRuleDiaRuleImp

F fon ofi; (2 A ofs)and &= fo A of1 5 (f2 A of3) D finite implies

F foaQf2A 0f15 0f3

Proof: ;
L. fornofis(f2A ofs) , ... premise
2 fonofi;(fa A Ofs) D finite premise
3 finite . 1,2, MP
4 ofis(fancfs) | 1, A elimination
5 ofiifincfizofs 4, ITL (ChopAndImp)
6 ofiifs , o ‘ 5, A elimination
7 0 , l , 3, 6, ITL ((finite A fa3f5) D Of3)
8 i : ' 1, A elimination '
9 fonlf ‘ ‘ : 7, 8, A introduction

10 ofisofs ' 5, A elimination

11 fonOfh A ofr; Of - 9,10, A introduction

The use of this lemma to simplify the transformation of a state sequence is
demonstrated with the following reanalysis of the reduced version of rule7.2.p ww_cars_soneys

. previously presented at (7.2-7). For convenience, (7.2-7) is reiterated:

 atm_non_empty A owait_customer ; read_card;
(—card_disabled A oget_pin ; (—max_pin
A O(=pin_exit A Orequest_money ; (—money_exit ;
A odebit_account ; take_card_money)))) (7.2-7)

Applying NextAndDistEqv to (7.2-7) yields:

atm_non_empty A owait_customer ; read_card;
(—card_disabled A oget_pin ; (mmax_pin
A (o—pin_exit A oorequest_money ; (—money_exit
A odebit_account ; take_card_money)))) ' (7.2-21)

Applying ChopRuleDiaRuleImp to (7.2-21) yields:

164

atm_non_empty A O—card_disabled A

owait_customer ; read_card ; oget_pin ; (—max_pin

A (0—pin_exit A oorequest_money ; (—money_exit

A odebit_account ; take_card_money))) (7.2-22)

Applying ChopRuleDiaRuleImp to (7.2-22) yields:

atm_non_empty A O—card_disabled A 0—max_pin

A Owait_customer ; read_card ; oget_pin ;

(o—pin_exit A oorequest_money ; (—money_exit

A odebit_account ; take_card_money)) (1.2-23)

Applying ChopRuleDiaRulelmp to (7.2-23) yields:

atm_non_empty A O—card_disabled A 0—max_pin

A Qo—pin_exit A owait_customer ; read_card ; oget_pin ;
oorequest_money ; (—money_exit

A odebit_account ; take_card_money) (7.2-24)

Applying ChopRuleDiaRulelmp to (7.2-24) yields:

atm_non_empty A O—card_disabled A O—max_pin
A Qo—pin_exit A 0—money_exit A
owait_customer ; read_card ; oget_pin ;
~oorequest_money ; odebit_account ; take_card_money (7.2-25)

To transform Qo—pin_exit to O—pin_exit, propositional logic, and ITL (Diamond-

NextImpDiamond) are applied to (7.2-25) to yield:

atm_non_empty A O-card_disabled A O—max_pin

A O=pin_exit A O—money_exit A

owait_customer ; read_card ; oget_pin ;

oorequest_money ; odebit_account ; take_card_money (7.2-26)

With (7.2-26), the transformation is complete because the chopped sequence
owait_customer ; read_card ; oget_pin ; oorequest_money ; odebit_account ;
take_card_money contains no general form rules of the form f; A of;. Although the strict

and total temporal ordering of (7.2-7) is not preserved with respect to when the various

165

conditions must be met (7 2-26) does provide an alternative view of the conditions and

sequences that compnse the total state sequence leading to take_card_money.

The preceding analyses have focused on only one portion of a set of rule, or
‘more specifically, the one path through the set of rules that leads to a single outcome.
In these preceding analyses, this involved Seleéting only thosé rules (i.e., the halves of a
total fule) that lead to the goal take_card_money. Alternatively, sets of total rules can
be analyzed. Analyzing the total ruie prechides the necéssity of state sequence slicing
on a specific outcome. By analyzing the total rules, all possible outcomes can be

assessed.

To demonstrate the analysis of an entire set of rules, five of the previously

extracted total rules are considered:

((atm_non_empty A owait_customer ; read_card; rule;z.c) ; rulesz.p)

rulezap =
v (—atm_non_empty A empty)
rulessc 2 (card_disabled A otake_disabled_card)
Vv (—card_disabled A oget_pin ; rulez.4)
rulez2.q = (max_pin A odlsable card ; take_disabled card)
V (—max_pin A Oruless..)
rulezz.. & (pin_exit A otake_card_pin_exit)

Vv (—pin_exit A orequest_money ; rulezzs)

ruleyz = (money_exit A otake_card_money._exit)
v (—money_exit A odebit_account ; take_card_money)

As previously discussed, ruleszq is always true and is implemented to assure the
repetitive and non-terminatirig ‘application of rulesss. Therefore, ruless is not

considered in thlS analys1s

In the followmg analysis, these ﬁve rules - ruleyz b Tulerae, rulersa, rulesse
and ruley . - are used as premises, and a transformation is derived that describes the
rule conditions and rule states associated with these five rules. One assumption is made

for this analysis. The rule conditions of these five rules — arm_non_empty,
ca?d__disabled, money_exit, max_pin, and pin_exit — are asserted to be state formulas.

_Given the expected operation of a typical ATM machine ~ that the satisfaction of these

166

individual conditions is based on the current state of the system and not some future

state or sequence of states — this is a reasonable assertion.

To implement these rule transformations, six lemmas are introduced -
AndChopDrop, ChopSwaplmpl, ChopSwaplmp2, ChopSwaplmp3, RuleChopTwo-
RuleImp, TwoChopRulesImp, and TwoChopRulesImp2. ChopSwapImpl, ChopSwap-
Imp2, and ChopSwapIlmp3 are used to replace an ITL formula (typically a general form
rule) in a chopped sequence with a transformed formula, thereby maintaining the order
and associations of the original chopped sequence. AndChopDrop, RuleChop-
TwoRuleImp, TwoChopRulesImp, and TwoChopRulesImp2 are used to separate and
collect the rule conditions and rule states of the two chopped rules and transform them
into a single general form rule. TwoChopRulesImp is a generalization of
StateTwoChopRulesImp3, previously presented in Section 5.6.2. In a deviation from
previously consistent use of the general rule form f; A of; in the development of other
lemmas that comprise this rule algebra, these lemmas are developed using f; A f; to
accommodate both the general rule form f; A of; and special cases such as f; A empty.
Given that f, can be instantiated with of, as needed in these lemmas, this alternative

form is fully expressive with regard to the general rule form used throughout this thesis.

LEMMA: AndChopDrop

F (fonf1) s f: implies - fonfisfe

Proof:
1 (onf))ife premise
2 foshnfiifa 1, ITL (AndChopImp)
3 fosf 2, A elimination
4 fo . 3, semantics of chop
5 fisfe 2, A elimination
6 forfiifo 4, 5, A introduction

LEMMA: ChopSwapImpl

- fosfi and b f; D f; implies F fo; f>

167

Proof:

1 fosfi premise
2 fiofy premise
3 fos/infoif 2, ITL (RightChopImpChop)
4_fosfa 1,3, MP

LEMMA: ChopSwapImp2

F foifo and - oo f implies - fi3f

Proof:
1 foif premise
2 foofi premise
3 fosf2Dfiif2 2, ITL (LeftChopImpChop)
1,3, MP

4 fiif2

LEMMA: ChopSwaplmp3

F foifiifs and & fiDf; implies & fo;f2:fs

Proof:
1 fosfisfs premise
2 fiofz premise

3 fi5fiDfasfs
4 foifisfsofoif2ifs
S foifaifs

2, ITL (LeftChopImpChop)
3, ITL (RightChopImpChop)
1,4, MP

LEMMA: TwoChopRulesImp

(o) (o Afs) implies b (foif) A (f135)

Proof:
1 (oaf)i(fanfs) ~ premise
2 ((fonfD)sf) Allfo ASD) 3 S3) 1, ITL (ChopAndImp)
3 (orf)if 2, A elimination
4 (foifd A (f1:f2) 3, ITL (AndChopImp)

168

5 (onf)fs 2, A elimination

6 (fo;f3)A(f1:f3) 5, ITL (AndChopImp)
T (fosf2) 4, A elimination

8 (1:/3) 6, A elimination

9 (fosf)A(f1:f3) 7, 8, A introduction

LEMMA: TwoChopRulesImp2

E (onft) s (2 Af) i fe implies = (fo;) A (fi3f33)

Proof:
L (oafD;(bAS)fe premise
2 (BAf3)ifs CP assumption
3 Sanfsifa 2, AndChopDrop
4 (anfs)sfs D fanfsifs 2-3, o introduction
5 (onfd);(af)ifs D (fonf)i(bafsif) 4 ITL (RightChopImpChop)
6 (oAf)i(fanfsifo) 1,5 MP
7 oA i3S9 6, TwoChopRulesImp

LEMMA: RuleChopTwoRuleImp

(o nf) s (2 Afs) v (fanf5)) implies & ((fosf2) A1 5D v (oS0 A (13 9)

Proof:
L (onf)s((anafn) v (s nfs) premise
2 ((fonf)s (A (o AfD s fanfs)) 1, ITL (ChopOrEqv)
3 (fonfD); (e nfa) CP assumption
4 (s (frifs) 3, TwoChopRulesImp
5 (oINS L)V {(fo s NS5 4, v introduction
6 foASD (s A S5 CP assumption
7 NN GRS 6, TwoChopRulesImp
8 (o5 0NV (o3) A5 f3) 7, v introduction
9 ((fos N1V (o3 fd A i fs) 8, commutativity of v
10 (o302 A G130 v (o fo) A i3 f5)) 2, 3-5, 6-9, v elimination

169

The general transformation strategy for this complete analysis of all state
sequences or behaviors associated with rule;;, (and rulesz.c, rulesz.q, rulesz.e, and
rule;2; by inclusion) is to cleave each contributory rule into the component rule
condition and rule state, and then add those components, in order, into the aggregate
“descriptions of rule conditions and corresponding system behaviors. This disassembly
and subsequent reassembly is performed using ITL and the rule algebra presented in this
research. Because this is an assessment of all possible behaviors associated with an
entire set of rules, these alternative behaviors are expressed disjunctively. The target
rules are processed in reverse order, that is, from the deepest rule upwards. In this way,
behaviors are transformed systematically, and each subsequent behavior associated with

a specific rule rests on the behavior defined by that rule's component rules.

This transformation of the five rules rulesa.s, rulesas., ruless.a, ruless., and
ruley s is presented in Appendix B. As the deepest rule, rule;2sincludes no other rules
and therefore, by definition, totally describes all behaviors associated with ruley.z.f
Therefore, rulez,.r needs no transformation. Therefore, rulem.,‘ is tfansformed first and
v incorporatés the behaviors associated with ruley.r. Thén, rulesy.q is transformed and
incorporates the behaviors derived from rulesz. and ruleszs Then, rulesz. is
transformed and incorporates the behaviors derived from ruley 2.4, rules .., and rules 2.
Finally, rules,p is transformed and incorporates the behaviors derived from rulezz.c

; rules 2.4, rulez .., and rulezz_f.

The transformations for rulesz.., rulezz.4, rulesz.e, and ruley 2 are presented in

Appendix B. The transformation for rule;_g-b is presented below:

(atm_non_empty ; —card_disabled ;
—max_pin ; —pin_exit , ~money_exit
A owait_customer ; read_card ; oget_pin ; oorequest_money ;
odebit_account ; take_card_money ; rule;23) (7.2-27a)

v (atm_non_empty ; —card_disabled ;
~max_pin ;—pin_exit ; money_exit
A owait_customer ; read_card ; oget_pin ; :
oocrequest_money ; otake_card_money_exit ; rule;z.5) (7.2-27b)

vr(atm _non_empty ; —card_disabled ; —max_pin ;pin_exit‘

“A owait_customer ; read_card ; oget_pin ;
ooctake_card_pin_exit ; rulesz.s) : (7.2-27¢)

170

v (atm_non_empty ; —~card_disabled ; max_pin
A owait_customer ; read_card ; oget_pin ;
odisable_card ; take_disabled_card ; rule;2.) (7.2-27d)

v (atm_non_empty ; card_disabled
A Owait_customer ; read_card ;
take_disabled_card ; rule;;.;) (7.2-27e)

Vv (—atm_non_empty A empty) (7.2-279)

Although (7.2-27) is a single disjunctive statement, each component disjunct is

numbered individually to facilitate discussion.

With the above transformation and given the premises rulezz.p, rules ., rule; ;.4,
rulez ., and rule; 2. (7.2-27) is proven to hold. Stated another way, for a system where
rules .y, rulezs.c, ruless.q, rules .., and rule; ¢ are known to hold, (7.2-27) describes the
behaviors that are associated with that system. Using (7.2-27) and knowing the verity
of the five rule conditions arm_non_empty, card_disabled, max_pin, pin_exit and
money_exit for a specific instance, the system behavior for that instance can be
determined. For example and as depicted in (7.2-27f), if —atm_non_empty is satisfied,
then empty holds and the system behavior described by rule; ., ends. Similarly and as
depicted in (7.2-27e), if atm_non_empty and then card_disabled holds, then
take_disabled_card holds (after both wait_customer and read_card hold). Alternatively,
using the transformation presented in (7.2-27), the rule conditions necessary for a
desired rule state can be identified. For example and as depicted in (7.2-27a), to achieve

the rule state take_card_money, the rule conditions atm_non_empty, —card_disabled,

—max_pin, —pin_exit, and —money_exit must hold and must hold in that order.

Another important issue with these transformations is that the recursive nature of
rule;,p is preserved. Specifically, each alternative behavior, except that behavior
associated with —arm_non_empty, ends with an instance of rule;2.. For example and
as depicted in (7.2-27d), if the rule condition atm_non_empty ; —card_disabled ;
max_pin is satisfied, then the sequence owait_customer ; read_card ; oget_pin ;

odisable_card ; take_disabled_card must hold and then that sequence is followed by

rulezz.p.

171

A critical issue in this overall approach is that the transformation of rule;2.» as
presented in (7.2-27) and the corresponding transformations of rule;z., rule; 2.4, and
rulezs.. as presented in Appendix B are disjunctively connected sets of general form
rules. Therefore, as a rule system of general form rules, these transformations can be
used for additional reasoning about the overall system. Just as the transformation of
rule;s.c is used to reason about rule;;, and so on, this transformation of rulezz.s
presented in (7.2-27) can be used td reason about other systems that include rule; 2.5,

this including this transformation itself.

The results produced with this transformation are consistent with the results
from previous analyses. For example, consider the results of the previous
transformation on the reduced rule rule.2.5 . s money Presented at (7.2-26) and reiterated

below for convenience:

(atm_non_empty A O—card_disabled A
O—max_pin A O—pin_exit A 0—money_exit)
A owait_customer ; read_card ; oget_pin ;
oorequest_money ; odebit_account ; take_card_money (7.2-26)

* Recall that (7.2-26) is a transformation of rule7.2.5 e i soney AN that 711€72.b s, cut money 15
the result of a state slicing analysis of rule;s.s, rules ., rulesz.q, rulesz.., and ruley ;10
identify only the portions of those rules that describe the sequence ending with
take_card_money. Therefore, (7.2-26) is compared against (7.2-27a) which, with the
exception of the recursive inclusion of rules,.s, describes the state sequence that ends
| with take_card_money. Both (7.2-26) and (7.2-27a) describe the same state sequence
starting with wait_customer and ending with take_card_money. Both (7.2-26) and
(7.2-27a) describe the same rule conditions that must be met: atm_non_empty,
ﬂcard_disabled, —max_pin, —pin_exit, and —money_exit. However, (7.2-27a) specifies
" the ordering with which these conditions must be met relative to each other. Therefore,
the transformation concluding with (7.2-27a) retains more information relative to the
original rules than the transformation concluding with (7.2-26). However, both are

consistent with each other.

In this section, a concrete specification is analyzed and the rules are extracted

using the rule algebra developed in this research. These extracted rules offer an

172

equivalent, more manipulatable, and more understandable depiction of the logic,
conditions, and nesting associated with each element of the original specification.
These six extracted rules, presented at (7.2-1) through (7.2-6), can be manipulated and
analyzed in numerous ways as demonstrated herein. However, the various rule analysis
examples are offered without prejudice. Which of these techniques are more, or less,
useful with respect to analyzing a given system depends on the overall expectations and
objectives of a specific rule extraction process. With the state slice of (7.2-7), only
those rule components leading to a specific outcome are identified. The transformations
(7.2-15a) through (7.2-15f) are derived from these state-slice rule components and are
examples of ordered individual sequences leading to the specific conditions that must be
met to achieve a specific outcome. These ordered individual sequences are
conjunctively connected into the single structure presented at (7.2-16). Using the
transformations (7.2-15a) through (7.2-15f), all rule conditions that must be met to
achieve a specific outcome and the associated state sequence that supports that outcome
are succinctly represented in a single structure in (7.2-26). All rule conditions and the
order in which they must be met to achieve all possible behaviors are succinctly
represented in a single structure in (7.2-27). Regardless of the speciﬁc scrutiny that is
subsequently applied, as demonstrated here, once a concrete specification is represented

as a set of equivalent general-form rules, a wide range of logical analyses are possible.

7.3 Rule Analysis and the Statechart Approach

Although conceptually sound, the general formal framework for rule extraction,
as previously presented in Chapter 3, may be compromised by the 'state explosion’
problem — the exponential growth of the number of states under analysis — if applied
directly to larger programs. Such a problem represents a potentially significant
scalability issue regarding the application of this formal framework to real-world rule
extraction problems. In this section, statecharts are used to address this problem.
Statecharts are an extension of the finite state machines used to represent rule systems in
Section 7.1. Coupled with the rule model introduced in Chapter 4 and the rule algebra
developed in Chapters 5 and 6, statecharts represent a robust approach to managing the

'state explosion' problem that may result in the extraction and analysis of rules in real-

world legacy systems.

173

7.3.1 Overview of Statecharts

Statecharts are a visual formalism for representing the behavior of state systems,
especially event-driven, reactive systems (Harel, 1987). In an attempt to counter
objections associated with conventional state transition diagrams, statecharts extend
state transition diagrams through the inclusion of hierarchy, concurrency, and broadcast
communication. To deal with the state explosion problem traditionally associated with
a finite state machine representation of larger systems, statecharts include depth so that
states and events can be well structured and hierarchical. Statecharts provide for the
clustering or abstraction of substates into supérstates, and the refinement of superstates
into supporting substates. Orthogonality between states, achieved by allowing
combinations of synchronization and independence, allows system concurrency.
Graphically, statecharts are an ideal aid to system understanding as they provide the
ability to move up or down, or zoom, between various levels of the user-defined system
abstraction. The semantics of statecharts as implemented in STATEMATE are
described by Harel and Naamad (1996). The semantics of UML-statecharts are
described by von der Beeck (2001).

- State transifions, chahges from one systemrs'tate to another's‘ystem state, are the
éore element of the event-driven, reactive systein described by statecharts. Harel (1987)
deséribes a state transition as "when event ot 6ccuf$ in state A, if condition C is true at
that time, the systém transfers to state B." These state transitions are depicted
graphically on statecharts as labeled arrows between two states. The general syntax of
these state transitions is a [C] / S where o is the event that triggers the state transition,
C is the guarding condition that must be true for the state transition to occur, and f is
the action that is executed when the transition occurs (Harel et al., 1990). All of the
elements are optional. In general, @ and C are inputs and £ is an output; however,
may also serve as an input, i.e., a triggering event, to a state transition in an orthogonal
system component, Although actions are represented as part of the transitions between
states, as in a Mealy automaton, actions may also be associated with the entrance to or

the exit from a specific state, thereby conceptually representing the system as a Moore

automaton (Harel, 1987; Harel et al., 1990). Multiple events, conditions, and actions

174

are allowed using Boolean combinations. Wide latitude is afforded regarding what can

be defined as an event, condition, or action.

The original motivation for statecharts was reactive systems. Such systems must
respond to multiple internal and external inputs, each occurring under different temporal
constraints. System changes must occur only when specific triggers occur and only
when the corresponding conditions are satisfied. State changes may occur
independently of or be synchronized with other subsystems, but will typically occur
subject to strict temporal requirements. An example of a complex reactive system is the

flight control system in a modern military jet.

Although not typically thought of as a temporally based reactive system, legacy
procedural code can be viewed under the same general model. Legacy system code is a
defined sequence of code that effectively creates an internal, but enforced, linear
temporal system logic. Procedures and functions are called in a specified order,
executed, and the mandated state changes made. Control is then returned to the calling
object. When executed or 'triggered,' test conditionals are evaluated, and state changes
are made subject to explicit instructions specified by the code bound to that conditional.
Although such legacy code typically does not involve concurrency and the external
inputs may be relatively limited in number and/or monotonic, legacy procedural code
can be described as a simple reactive system — simple in that the system logic is
explicitly linear with no concurrency requirement and reactive in that the system

behavior is determined by internal and possibly external events.
7.3.2 Previous Application of Statecharts to Legacy Code Analysis

The use of statecharts and finite state machines (FSMs) for legacy code and
reverse engineering analysis has been very limited. Although frequently used for new
model verification, there are very few reported cases of the use of statecharts or FSMs
for rule extraction or specification recovery from legacy systems. A review of these
applications of statecharts or FSMs to legacy code is presented in this section. Given
the limited experience in this area, some new system verification work involving
statecharts or FSMs that is potentially applicable to legacy system analysis is also

reviewed.

175

Britt (1994) describes the process of comparing a legacy pseudo-code
specification for a critical aircraft collision avoidance system with a replacement system
requirements specification developed using statecharts. This was largely a cross-
mapping exercise by two separate teams, with one team mapping the pseudo-code to the
statechart system, and a second team mapping the statecharts to the pseudo-code.
Although not explicitly stated, it appears that this mapping was primarily a manual,
human-driven process, as opposed to an automated comparison. The correlation
between the two systems was not straightforward, as one pseudo-code process might
map to several statechart transitions, or one statechart transition might map to several

pseudo-code processes.

Corbert et al. (2000) reported on the development and use of an integrated
collection of program analysis tools, called Bandera, that can be used to extract finite
state models from Java source code. Whereas finite-state verification techniques offer
potential with regard to checking hardware design, the authors opine that a major
+ impediment to practical application of finite-state verification techniques is the "model
construction problem." Currently, most FSM model construction is manual, which is
expensive, prone to error, and difficult to optimize. Further, unlike most system
development, which is performed in common general-purpose languagés, most model
checking programs accept specifications only in a highly specialized, tool-specific input
language. To address this semantic and syntactic gap, Bandera takes Java source code
as input and generates FSM model code for use in one of several existing verification
tools. Bandera was des1gned to achieve multiple functional criteria: use of existing
model checking technologles automated support for abstractions; model customization;
extensibility; and mtegratlon of testing and debugging techniques. Bandera consists of
a slicer, an abstraction engine, a model gene.rator'(including model checker language
generation), and a graphical user interface to facilitate component analysis. In model
building, three major techniques are applied in the construction of tractable models:
irrelevant'component elimination, data abstraction, and restriction of the components
that are included in the final model. The completed model can then be translated into

language for the model checkers Spin, SMV, or SAL.

Popovic et al. (2002) describe the extraction of FSMs from communication

software and their use in formal software verification and automated theorem proving.

176

FSMs are extracted as well-formulated formulas. As the original software was written
in C++ and all target FSMs were written as instances of the same class, automated
extraction was possible. The left-hand sides of the well-formulated formulas were
constructed by looking for two specific functions and extracting the associated state and
event names. The right-hand sides of the well-formulated formulas were constructed by
analyzing transition functions. These extracted, well-formulated formulas, representing
the FSMs in the original code, were then analyzed using the automatic theorem prover

THEO to compare the extracted FSMs against the original system specifications.

Giomi (1995) presents a series of techniques for extracting FSMs from hardware
description languages (HDLs) such as VHDL and Verilog. In these HDLs, system
behaviors can be described, after parsing, by a control flow graph and data flow
information. However, FSM description of the system requires the set of inputs, the set
of outputs, and a state transition graph consisting of states, state transitions, and
transition labels. Techniques are presented for implicitly and explicitly extracting FSMs
from HDL sequential behaviors. The implicit technique requires evaluating all
executable paths between wait states. The explicit technique requires the construction

and evaluation of an explicit state register defining the state machine at the clock edge.

Wang and Edsall (1998) investigated the extraction of FSMs from Verilog code
from an industrial/commercial operation. Faced with the substantial challenge of
extracting FSMs from different Verilog coding styles, a standardized FSM coding style
was implemented. By standardizing the coding style, a custom parser was created to
extract the FSMs directly from the Verilog code. These extracted FSMs were then
analyzed using various proprictary and commercially available analysis tools.
Verification activities included reachability and terminal state analysis, dynamic

verification of function coverage, and visual verification of the FSM bubble diagram.
7.3.3 Visual Formalisms of Rule-Based Legacy Code Structures

Recalling the underlying basis of the general rule model presented in Section
4.1, a rule is a formal description of a relationship between two states. As refined in
Section 4.2, a rule describes a temporal relationship between two states — a state and a
future state. As presented in Section 4.5, the general rule form f; A of; describes a rule

as a relationship between two state sequences, where f; describes the rule condition in

177

terms of the state séquence properties that must be met for the relationship to hold and
where f; describes the next state sequence that must occur for the relationship to hold.
Both in its basis and as formally implemented, a rule is a conditioned relationship
between two state sequences. And as demonstrated in this research, rules can be refined
so that rules — relationships between states — can be incorporated within other rules.
Therefore, because statecharts describe relationships between state sequences, because
statecharts allow for the explicit association of conditions with the transitions describing
these relationships, and because statecharts allow for the hierarchical representation of
state sequences within state sequences, there exists a strong correspondence between the
critical elements of rules as defined in this research and statecharts. In this section,

statecharts are used to represent rules.

In general, these statecharts will be represented using the STATEMATE syntax,
with any exceptions or assumptions noted. In the STATEMATE syntax, transitions are
labeled as « [C] / f, where « is the event that triggers the state transition, C is the
guarding condition that must be true for the state transition to occur, and £ is the action
that is executed when the transition occurs (Harel et al., 1990). All transition elements
are optibnaL '

As an introductory exercise to using statecharts to describe rules, consider the

| simple two-state system presented in Figure 7.3.3-1.

Figure 7.3.3-1: A Simple Two-State System

As noted in Chapter 5, this simple two-state system is irreflexive, asymmetric, and
antisymmetric. This system is the simplest possible two-state system, because it
_ contains only one state transition and therefore is described, without manipulation, by a

single general-form rule.

178

In this system, so = wy, and s; F w;. The one transition included in this system

can be described in rule form as wyp A ow,. In this rule, the rule condition is described

by wp and the rule state is described by w;.

This simple two-state system is represented as a statechart in Figure 7.3.3-2.

Figure 7.3.3-2: A Simple Two-State Statechart

States (or state sequences) are represented using rounded rectangles and the state
transition between the two states sp and s; is represented using the labeled arrow. The
rule condition wy is associated with this transition using the STATEMATE syntax
described above. For this transition, there is no event ¢ or action S associated with the
transition. Consistent with the rule wy A ow; describing the simple two-state system
presented in Figure 7.3.3-1, an interpretation of the simple statechart presented in Figure
7.3.3-1 is that the transition between state s, and state sy occurs only if the condition wp

is met. With the previous specification that s; F wy, the rule wy A ow; holds under this
statechart.

This example is purposefully simple to facilitate demonstration. To facilitate the
analysis and extraction of rules in legacy code, several generic visual formalisms of
rule-based legacy code structures have been developed using statecharts. Four common
rule-based legacy code structures are analyzed: the 'if-then-else’ structure, the 'while'
structure, the 'indexed for loop' structure, and the 'switch' structure. Using statechart

concepts, generic visual formalisms are developed for each of these legacy structures.
7.3.3.1 Statechart of the 'if-then-else' Structure

In Section 6.6.1, a rule-based 'if-then-else' structure is defined as:

(o~ of) v (~fon of2) (1.3.3.1-1)

179

With this rule pair, two state sequence relationships are described. Iff is satisfied, the
next state sequence must satisfy f;. Conversely, if —fp is satisfied, the next state
sequence must satisfy f;. Letting 0; represent the state sequence that satisfies f; (ie.,
o; F f1) and letting G represent the state sequence that satisfies f> (i.e., 62 E f2), the
generic visual formalism for the 'if-then-else' structure of (7.3.3.1-1) is presented in
Figure 7.3.3.1-1, |

(/o] (-]

o, o,

v

Figure 7.3.3.1-1: Generic Visual Formalism of the 'if-then-else' Structure

Within the super-state o, the branching between the state sequences ©; and o is
depicted with the C-connector. If the condition f; is satisfied, then the next state
sequence is 0;. That this condition is met is denoted by the labeling of the transition as
[fol, consistent with STATEMATE labeling conventions. Alternatively, if the condition

—fy is satisfied, then the next state sequence is G,.

A variation of the rule-based 'if-then-else’ structure is the 'if-then' structure. This

structure is defined in Sectibn 6.6.1 as:
(fo A of 1) v (—fo A empty) (7.3.3.1-2)

Letting ©; represent the state sequence that satisfies f; (i.e., 6; F f1), the generic visual

formalism for the 'if—then' structure of (7.3.3.1-2) is presented in Figure 7.3.3.1-2.

180

/] (]

e

Figure 7.3.3.1-2: Generic Visual Formalism of the 'if-then' Structure

7.3.3.2 Statechart of the 'while' Structure

In Section 6.6.2, a rule-based 'while' structure has been defined as a recursive

loop as:
while fy do of1 = ((fo A of)) ; while fydof)) v (o Aempty) (7.33.2-1)

In this structure, if fp is satisfied, the next state sequence must satisfy f;, and this
relationship between f) and of; exists until fj is no longer satisfied. Letting 6; represent

the state sequence that satisfies f; (i.e., o;F f), the generic visual formalism for the

'while' structure of (7.3.3.2-1) is presented in Figure 7.3.3.2-1.

”

o]
(/]

(/]

J

Figure 7.3.3.2-1: Generic Visual Formalism of the 'while' Structure

7.3.3.3 Statechart of the 'indexed for-loop' Structure

In Section 6.6.3, a rule-based indexed for-loop structure is defined in terms of a

'while' structure as :

181

forA=btocdofi = (0A =b); rule (7.3.33-1)

where:

rule =((A <) A ofi;0A=A+1); rule’) v (=(A < c) A empty)

Letting ©; represent the state sequence that satisfies f; (ie., 61 F fi), the generic visual

formalism for the indexed for-loop structure of (7.3.3.3-1) is presented in
Figure 7.3.3.3-1.

Figure 7.3.3.3-1: Generic Visual Formalism of the Indexed 'for-loop' Structure

This visual formalism incorporates two additional elements associated with the
STATEMATE statecharts. On entry to the super-state O, the index counter A is
initialized and set to b. This is denoted by the ns/ A := b statement. With each exit from
the state sequence oy, the index counter A is incremented by 1. This is denoted by the
xs/ A 1= A + 1 statement. With these two additions, the visual similarities between the
indexed for-loop and the 'while' statement are evident, reflecting the underlying logical

similarities.
7.3.3.4 Statechart of the 'switch' Structure

Consider the following guarded command statement:

(o~ o) D (fr A of) I ((—fo A —f1) AT (1.3.34-1)

This guarded command concept has various implementations in different languages,
including the switch statement in C and Java, the evaluate statement in COBOL, and the

case statement in Pascal and Ada. Although details vary with language, all

182

implementations of the switch-type construct follow the same general concept. As
discussed in Section 6.3, guarded command statements can be logically represented

with disjunction. Therefore, (7.3.3.4-1) can be represented as:

(fo A of2) V{f1 A of3) V((—fo A =f1) ACSY) (1.3.3.4-2)

Given three state sequences Oz, O3, and Oy, such that 6,k f2, 03 F f3, and O4F f4, the

generic visual formalism for the 'switch' structure of (7.3.3.4-1) is presented in Figure

7.3.3.4-1.

p \
C
(5] 41 \[or~4]
o, [o, o,
Tt

Figure 7.3.3.4-1: Generic Visual Formalism of the 'switch’ Structure

Similarities in both structure and function between 'switch' structures and 'if-then-else’
structures are noted frequently in comparisons of languages and language structures
(e.g., Sebesta, 2002; Scott, 2000). The similarities between the 'switch' structure in

Figure 7.3.3.4-1 and the 'if-then-else' structure in Figure 7.3.3.1-1 are evident.
7.3.4 Representing Extracted Rules with Statecharts

In this section, statecharts are used to depict the rules that were extracted from
the automatic teller machine specification in Section 7.2. In that section, the following

six rules were extracted from the original specification:

rulez2.a = ((true A oruley,.p refill_atm) ; ruleza..) v (—true A empty)

rule;2., = ((atm_non_empty A owait_customer ; read_card; rulezz.c) ; rulez2.p)
Vv (—atm_non_empty A empty)

rulezz.. = (card_disabled A otake_disabled_card)

Vv (—card_disabled A oget_pin ; rule;;.4)

183

ruleyzd = (max_pin A odisable_card ; take_disabled card)
V (—max_pin A orulez;..)

rule;z.. = (pin_exit A otake_card_pin_exit)
Vv (—pin_exit A orequest_money ; rule..5)

ruleza¢ = (money_exit A otake_card_money_exit)
V (—money_exit A odebit_account ; take_card_money)

To highlight how these hierarchical properties of statecharts allow for rules and the
corresponding state sequences to be embedded in each subsequent statechart, these six
rules will be processed from the top down. Statecharts are developed for each rule, and

each statechart depicts the state sequence that satisfies the corresponding temporal
formula in each rule. For example, o;,dem satlsfies rulezz.a, Orefilam Satisfies

refill_atm, etc. With the exception of the last rule, which contains no explicit rules,
each statechart includes a state sequence described by another rule. Just as the above
six rules describe a logical connection and hierarchy between one rule and the next, the

corresponding statecharts depict those connections and hierarchy graphically.

Starting with the first or top rule, rule; ., is defined as:
rule;z, = ((true A orules . ; refill_atm) ; rulera.q) v (—true A empty)

The statechart depicting the state sequences satisfying rule;2., is presented in Figure
7.3.4-1. The statechart for ruley., is based on the generic visual formalism for the
'while' structure as previously presented in Section 7.3.3.2. rule; ., is a system rule, and
the éorresponding state sequence is described such that it does not terminate. (The
termination case of —true is shown on this statechart for completeness.) This statechart
includes the state sequences described by rule;z., and refill_atm. After Orefill_aim, Orule; ;.4
is repeated. Thus, the formula (true A orulesz. ; refill_atm) ; ruleys., is satisfied by

Orule,,,, as depicted in this statechart.

184

Gmle7.2-a

[0-rulez 25]

v

Greﬁll_atm]

Figure 7.3.4-1: Statechart for rules.q

ruley 2, and the corresponding statechart for rules ., (presented in Figure 7.3.4-

1) include rule;z.5. The definition of ruley,.p is:

rulez2 = ((atm_non_empty A owait_customer ; read_card; rule;z.) ; rulez2.s)
V (—atm_non_empty A empty)

The statechart depicting the state sequences satisfying rulez is presented in Figure
7.3.4-2. The statechart for rule;,., is based on the generic visual formalism for the
'while' structure as previously presented in Section 7.3.3.2. In rulesz., branching
between two alternative state sequences is based on the rule condition atm_non_empty.
If atm_non_empty is satisfied, a state sequence described by wait_customer, then
read_card, and then rule;, . follows, and then rule;,; is repeated. With this series of
state sequences, the formula (atm_non_empty A owait_customer ; read_card ; rulesz.) ;
rules 2 is satisfied. If arm_non_empty is not satisfied, the state sequence satisfying
rule; 2., ends, and the formula —atm_non_empty A empty is satisfied. In this statechart,
this termination is depicted with the stubbed arrow. Given that Gy, ,, is part of Gy, ,
with the termination of rule;,.;, the state sequence described by rule;., continues with

refill_atm (as previously depicted in Figure 7.3.4-1).

185

Grule
7.2-b :
[—atm_non_empty)

Figure 7.3.4-2: Statechart for rules2.s

rulez,.» and the corresponding statechart for rules ., (presented in Figure 7.3.4-

2) include rulez;... The definition of rule; ;.. is:

rule;z.c & (card_disabled A otake_disabled_card)
V (—card_disabled A oget_pin ; rule;2.q)

The staiechart depicting the state sequences satisfying ruleys.. is presented in Figure
7.3.4-3. The statechart for rule;:.. is based on the generic visual formalism for the
'if-then-else’ structure as previously presented in Section 7.3.3.1. In rule;;.., branching
between two alternative state sequences is based on the rule condition card_disabled. 1f
card_disabled is not satisfied (that is, if —card_disabled is true), a state sequence
described by get_pin and then rule;; 4 follows. Thus, the formula —card_disabled A
. oget_pin ; rulez 2.4 is satisfied. If card_disabled is satisfied, a state sequence described
by take_disabled_card follows and the formula card_disabled A otake_disabled_card is

satisfied,

186

(Gmle7.2-c

[card_disabled]

(Otake_disabled_card J

[—card_disabled)

[Gget . pin

)

v

[C"“’ezu)

J

Figure 7.3.4-3: Statechart for ruley ;.

ruley ;.. and the corresponding statechart for rule;.. (presented in Figure 7.3.4-

3) include rulez,.;. The definition of ruley .4 is:

rule;;.4 = (max_pin A odisable_card ; take_disabled_card)
v (—max_pin A orule;.,)

The statechart depicting the state sequences satisfying rule;s 4 is presented in Figure
7.3.4-4. The statechart for rule;,.. is based on the generic visual formalism for the
'if-then-else’ structure as previously presented in Section 7.3.3.1. In rule; ;.4 branching
between two alternative state sequences is based on the rule condition max_pin. If
max_pin is not satisfied, a state sequence described by rule;;,. follows. Thus, the
formula —max_pin A orule;;.. is satisfied. If max_pin is satisfied, a state sequence

described by disable_card follows and the formula card_disabled A cdisable_card is

satisfied.

Grulezz-d

[max_pin) [—max_pin]

(o.disable_card J (o.r'ulez 2 J

:)

Figure 7.3.4-4: Statechart for rule; .4

187

rule; .4 and the corresponding statechart for rule; 2.4 (presented in Figure 7.3.4-

4) include rule; ;.. The definition of rule; ;. is:

ruleyy.. = (pin_exit A otake_card_pin_exit)
V (—pin_exit A orequest_money ; rule;z.s)

The statechart deApictingrthe state sequences satisfying rule;.. is presented in Figure
7.3.4-5. The statech’art for rule;;.. is based on the generic visual formalism for the
'if-then-else’ structure as previously presented in Section 7.3.3.1. In rule;;.., branching
between two alternative state sequences is based on the rule condition pin_exit. If
pin_exit is not satisfied, a state sequence described by request_money and then rules.f
follows. Thus, the formula —pin_exit A orequest_money ; rulesas is satisfied. If
pin_exit is satisfied, a state sequence described by take_card_pin_exit follows and the

formula pin_exit A otake_card_pin_exit is satisfied.

Grulez 2e

[pin_exif] [—pin_exif}

(Gmkn_wdjm_uitJ (O'equest_money J
T I
(Crie, ,, J

Figure 7.3.4-5: Statechart for rule; ..

rule;y ;.. and the corresponding statechart for rulers.. (presented in Figure 7.3.4-

5) include rule; 2. The definition of ruley . is:

rulez2s = (money_exit A otake_card_money_exit)
v (—money_exit A odebit_account ; take_card_money)

The statechart depicting the state sequences satisfying rules,s is presented in Figure

7.3.4-6. The statechart for rule;2; is based on the generic visual formalism for the

188

'if-then-else’ structure as previously presented in Section 7.3.3.1. In rulesz. branbhing
between two alternative state sequences is based on the rule condition money_exit. If
money_exit is not satisfied, a state sequence described by debit_account and then
take_card_money follows. Thus, the formula —money_exit A odebit_account ;
take_card_money is satisfied. If money_exir is satisfied, a state sequence described by

take_card_money_exit follows and the formula money_exit A otake_card_money_exit

is satisfied.
()
cSrulezz-f
[money_exif] [money_exit}
(Gtake_card_moncy_cxiJ (odebit_acoount J
1 v
[Gtakc_ca.rd__moncy J
\. J

Figure 7.3.4-6: Statechart for rule; ¢

Whereas each of these individual statecharts describes the state sequences
satisfying each individual rule, the power and value of statecharts can be understood
best by looking at these statecharts and the associated rules as a unified whole. As this
rule system is composed of six rules, the resulting statechart is six layers deep.
Therefore, the composite chart is presented in Figures 7.3.4-7a and 7.3.4-7b. The state
sequences satisfying rulesz.q, ruleszs, and ruless. are presented in Figure 7.3.4-7a,
which includes a minimal depiction of rule;2 4 and a corresponding reference to Figure

7.3.4-7b. The state sequences satisfying rule; .4, rulesz.., and rule; s are presented in

Figure 7.3.4-7b.

189

[—true]

[true]

[atm_non_empty]

[atm_non_empty]

[cswait_customer j

v
‘ (0-x'ead_card j
v

7

O

leg2e

[card_disabled) [—card_disabled)

O'ake_disabled_card Oget_pin

3 *
o rule; 2.4
See Figure 7.3.4-7b

J

¥

Orefill_atm)

Figure 7.3.4-7a: Statechart fdr "ruley,z.a, rulezz.p, and rulez ;..

190

()

Orule; ;.4
[max_pin] [-max_pin]
(-)
0)
[Gdisable_card) rulez 5 ¢
* [pin_exif] [—win_exit]
[O-take_card _pin_cxia [Grequest_moncy)
* v
ro-mleu_f)
[money_exir} [—money,_exif)

(O cet oot} (O st)

_ ~ J,

N J

Figure 7.3.4-7b: Statechart for rule; ;.4 rule;.., and rule; ¢

Quite literally, rule;;, is described in Figures 7.3.4-7a and 7.3.4-7b as a
statechart inside of a statechart inside of a statechart, etc., just as the six rules rule; .,
through rule; s are, quite literally, a rule within a rule within a rule, etc. In statechart
form, the logical connections, sequencing, and nested relationships of the six rules
ruley 2., through rule; s are clearly depicted graphically. Just as the general rule form f;
A of; allows the encapsulation of the logical relationships between state sequences by
using rules within rules, statecharts allow the same encapsulation by imbedding
statecharts within statecharts. In both cases, with this encapsulation comes the ability to
represent depth, and limit or focus interest to a specific depth as necessary or

appropriate.

191

For exainple, ignore the reference to Figure 7.3.4-7b and consider Figure 7.3.4-
7a as an autonomous statechart. With the suspension of Figure 7.3.4-7b, the three rules

depicted in the statechart presented in Figure 7.3.4-7a are:

rule;z2., = ((true A oruley;.p ; refill_atm) ; rulesz.) Vv (—true A empty)

rulez2p = ((atm_non_empty A owait_customer ; read_card; ruley.) ; rules.s)
Vv (—atm_non_empty A empty)

rulers.. & (card_disabled A otake_disabled_card)
V (—card_disabled A oget_pin ; rule;2.4)

Without additional details regarding rules.q, rules;.q is just another minimally-defined
state sequence. Like wait_customer or read_card, no details are available regarding the
state sequence that rules, 4 represents. If the label rules 2.4 were replaced with the label
rule_to_take_money, the similarities would be even more dramatic. However, with the
~ - addition of Figure 7.3.4-7b to Figure 7.3.4-7a, rule; .4 is expanded, and additional depth

“and details are added regarding the state sequence that rule;.; represents. Similarly,
with the additional description of rules;4 in terms of the general form rule f; A of;
including definitions and references to rule;,.q and rules .., additional depth and details

are added to the rule-based _déscriptioh of the system.

This comparison is made to highlight a critical issue — that general form rules
(ie., fi A of) and statecharts as presented here are different representations of the same
- information, specifically the conditioned relationships between state sequences. If the
visual formalisms of the various legacy code structures presented in Section 7.3.3 aré
accepted as accurate representations of the underlying logical concepts, and the implied
correspondences between the statechart elements and the rule elements are accepted,
then the statecharts of Figures 7.3.4-7a and 7.3.4-7b and the extracted six rules ar®
equivalent. And with that, these presentations differ not in content, but only in how
they can be used in future analysis and understanding. Whereas the statechart approach
allows a visual presentation that is readily understandable by a wider audience, the
formulaic approach of representing the extracted rules as ITL formulas is readily

adaptable to computer analysis techniques.

192

7.3.5 The Value of Statecharts in Legacy Code Analysis

Several important issues regarding rule extraction, legacy code analysis, and
statecharts merit special note. Common legacy code concepts, previously expressed in
Chapter 6 in terms of the general form rule f; A of, have been expressed in terms of
statechart visual formalisms. These visual formalisms provide a graphical
representation of the system state changes that occur with each legacy structure. These
visual formalisms depict the location of program rules and the resulting state changes.
These various visual formalisms demonstrate the similarities and differences between
various code structures, again facilitating both understanding and analysis. This
statechart approach is consistent with the rule model presented in Chapter 4 and the
associated rule algebra presented in Chapters 5 and 6. Using these four legacy code
formalisms developed here, more complex logical and programming structures can be
built using the rule algebra presented in Chapters 5 and 6, either by linking these
concepts together or by nesting structures within structures. With such an expanded
approach, sophisticated and complex legacy codes can be graphically represented for
both understanding and analysis. Similarly, with the corresponding ability to
encapsulate or hide states within states, the 'state explosion' problem associated with the
application of the formal framework presented in Chapter 3 can be managed.
Considering these factors, statecharts, in concert with the rule model and rule algebra

presented in this research, provide a robust tool for legacy code analysis.

193

Chapter 8

Analysis of Rules in Legacy Code

In this chapter, the formal rule extraction framework of Chapter 3, the formal
temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied
~ to the extraction and analysis of rules from legacy code. In Section 8.1, the formal rule
model and the corresponding rule algebra are applied fo the extraction and analysis of
the rules contained in a small but relatively complicated block of legacy code; using the
rule model and rule algebra, a corresponding database is developed to describe the rule
and non-rule elements of this legacy code. A statechart is déveloped to assist in code
analysis and understanding, and the extracted rules are assessed based on specific
variables of interest. In Section 8.2, the FermaT tool is used to slice an example WSL

program, and rules are extracted from the associated program slice(s).

8.1 Using Rules to Build a Database for Legacy Code Analysis

In this section, the concepts developed in this research are applied to a small but
relatively complicated block of legacy code. Using the rule extraction framework
presented in Chapter 3, the rule model presented in Chapter 4, and the rule algebra
- presented in Chapters 5 and 6, rules are extracted and a simple rule-anaIySis database is
developed to describe the rules and non-rule elemenis in the legacy code. To
supplement this rule extraction and the associated database, a statechart of the target

~ legacy code is developed using the statechart concepts presented in Section 7.3.

As demonstrated in the section, the rule algebra is applied and the legacy code is
transformed into a series of rules and formulas. Then, the properties of these rules and
formulas are recorded in the associated database. Within this analysis paradigm, the
application of this rule algebra provides a formal context for the identification of a wide
range of rule and formula properties that may be of specific interest to the user relative
to the user's analysis objectives. Therefore, the design of this database can and will vary
substantially depending on how the database will be used, including specific project
needs, database analysis techniques, and other anticipated applications of the database
information. Also, the design of the database depends on whether the database is an

adjunct to the transformed code or a replacement for the original code. Therefore, the

194

database that is developed using this analysis paradigm can be as simple or as
complicated as desired. For this demonstration, a relatively small set of properties have

been selected. The following fields are included in the rule database:

o Rule or formula label
. ITL formula
. W (frame variable set)

. V (used variable set)
. Primary membership of the rule or formula

Based on the extraction and analysis presented below, this completed database is

presented at the end of this section in Table 8.1-1.

The legacy code used in this example has been the subject of previous formal
abstraction analysis (Cau and Zedan, 2006). The legacy code example analyzed here is
a procedure from a published lexical scanner package written in Pascal. The total
package, the overall package structure, and related procedures are discussed in detail in
Cau and Zedan (2006). The target of this rule analysis, the procedure printerrorline, is

presented as follows:

procedure printerrorline(var Lbuf: linebufrec);

var
Column,I,J,Num: integer;
begin
Column:= 0;
with Lbuf do
begin

printline(Lbuf);
write("F¥*F*¥' 6, '),
for I:=1 to length +1 do
if eline[I} < > errnone then
begin
errorset:= errorset+{eline[I]];
Num:= ord(eline[I]);
if I > Column then
begin
for J:= Column + 2 to I do write(' ");
write('?);Column:= I
end
else begin write(',");Column:= Column + 1 end

195

write(Num:1);

Column:= Column + |;

if Num > 9 then Column:= Column + 1;
~eline[I]:= errnone
end; {of if and for}

writeln;
lineerror:= false;
fileerror:= true

 end {of with}

end; {of procedure printerrorline}

Within this legacy code, rules are identified based on the if-then-else, while, and

indexed for-loop code structures. These rule structures reflect locations in the legacy

code where alternative state sequences may be created based on the satisfaction or

non-satisfaction of the associated rule conditions. To facilitate the incremental analysis

of this legacy code, mixed formulas are allowed.- Consistent with the Spec

representation used in Cau and Zedan (2006), mixed formulas used to represent the

associated legacy code may contain concrete code structures, ITL formulas, and other

abstract specifications, as needed and as appropriate.

Rules and non-rule formulas are extracted from the target code using the

procedure described below:

1.

Consistent with the general framework outlined in Chapter 3, the legacy
code is analyzed and broken into individual units based on the syntax of

the target language, in this case, Pascal.

Working from the top down, these individual units are analyzed
iteratively to identify structures that represent rules and structures that
specify states such as assignment statements. Based on the legacy code
forms analyzed in Section 6.6 and considering the language being
analyzed, rule structures are if-then-else, while, and indexed for-loop
code structures. Assignment statements are identified. Other structures
(i.e., structures that are not rules and not assignments) are identified but
left unclassified. Within the context of the Spec concept, these
unclassified structures are left unmodified for later assessment ‘if

necessary and as appropriate.

196

3. The start and end of each rule, assignment, and unclassified structure are
determined. Each rule is labeled and the code associated with that rule
marked for further assessment on a subsequent iteration. Assignment
statements are converted into temporal formulas and labeled. As

appropriate, unclassified structures are labeled.

4, For each formula, the frame W and the variable set V (i.e., variables used
to calculate those variables in the frame, as described in Chapter 6) are
identified. W and V for each rule are calculated later, after the analyses

of all contributing formulas are completed.

5. A single sequence of labels is created, identifying and ordering the
formulas, rules, and other unclassified structures visible at the current
level.

6. Adjacent formulas are assessed to determine if any other reductions are
possible or appropriate. Unclassified structures are assessed, and
aggregated, deleted, processed, and/or left unchanged, as appropriate.

7. With the next iterative pass, the code associated with the first rule of the

above sequence is assessed. This code is analyzed to identify the

elements used to specify the rule condition and the elements used to
specify the rule state, including new rules.

8. The code representing the rule state is processed, as described above
starting at (3) above, and a sequence of formulas and rules is generated
reflecting the code structures visible at that level.

9. Each element of this sequence is processed iteratively until all rules have
been reduced to their component formulas.

10. The next rule in the original sequence at (2) above is processed using this
procedure.

11. This process is repeated until all code has been processed and

transformed to a sequence of formulas, rules, and unclassified structures.

Using this process and with the first iterative analysis of the target code, the

following sequence of formulas, rules, and unclassified structures are identified.

197

procedure printerrorline(var Lbuf: linebufrec);
var
Column,I,J,Num: integer;
begin
Joas
with Lbuf do
begin
Jois
Jo s
rule; ;
Joc 3 foa s foe s
end {of with}
end; {of procedure printerrorline}

where:
| Joa = oColumn =0
fn = printline(Lbuf)
Sob & owrite("*Hxkk 1)
foc = owriteln
Joa = olineerror = false

foe % ofileerror = true

described as follows:

Jo = foa; fors fov s rules s foc s foa ;s foe

subsequent iteration.

For fa, fobs foe foa, and fo, the frame set W for each formula is:

Wos = {Column}
Wob = {I/Ourire}
Woe = {1/Owrie}
Woa = {lineerror}

With these definitions, the operative portions of the procedure printerrorline can be

(8.1-1)

In this expression of the legacy code, f,, representing the procedure printline(Lbuf), is
unclassified with regard to rules and formulas, The specific code associated with ruler

is described later and is transformed into the component formulas and/or rules in 2

198

Woe = {fileerror}

For this analysis, a variable /Oyt is imposed to describe the system service that is
updated by the PASCAL write,” “writeln,” and similar commands. For fo,, fos, focs four

and fp,, the variable set V for each formula is:

Voa =
Voo =
Voo =3
Voa =
Voe =

In the preceding analysis, rule; represents the following code:

for I'=1 to length +1 do
if eline[I] < > errmone then
begin
errorset:= errorset+[eline[I]];
Num:= ord(eline[I]);
if I > Column then
begin
for J:= Column + 2 to I do write(" ');
write('T");Column:= |
end
else begin write(',");Column:= Column + 1 end

write(Num:1);
Column:= Column + I;
if Num > 9 then Column:= Column + 1;

eline[I]:= errnone
end; {of if and for}

Based on the next iterative analysis of this code, rule; is an indexed for-loop. Using the

indexed for-loop rule-form presented in Section 6.6.3, rule; is described as:
rule; = for I'=1 to length +1 do rule; (8.1-2)

The specific code associated with rule; is described later and is transformed into the

component formulas and/or rules in a subsequent iteration.

199

As an indexed for-loop and consistent with Section 6.6.3, rule; is transformed to

a while structure as:

rule; = fi4; ruley) . , (8.1-3)
where:

fia = (al=1)

rulep =

while (I < length +1) do (rulez; ol =1+ 1)

Using the definitions presented in Section 6.6.2, the while structure rule; is transformed

to:

rule; = (((I < length +1) A orule; ; ol =1+ 1) ; rule;)
V (—(< length +1) A empty) (8.1-4)

With these transformations, rule; can be described as:

rule; = fi, 5 ruley (8.1-5)
where:

fa Eol=1

ruler % ((wer A orule; i f1v) s ruler) v (—wer A empty))

wer =1 < length +1 |

fin & ol=I+1

For each of the above non-rule formulas, the sets V and W are determined based on their
respective definitions, and the database is updated accordingly. The determination of V

and W for rule;: is deferred until all contributory formulas are identified.

- In rule;, the rule condition wey is a state formula. Therefore, to transform rule,

to a simpler form, StateAndNextChop is applied to rule; to yield:
rule;: = (wer A orulez ; fip 5 ruler) v (mwerr A empty) (8.1-6)

- In the specification of rule;, rule; represents the following code:

200

if eline[I] < > errnone then
begin
errorset:= errorset+[eline[I]];
Num:= ord(eline[I]);
if I > Column then
begin
for J:= Column + 2 to I do write(' ");
write('T);Column:= I
end
else begin write(',");Column:= Column + 1 end
write(Num:1);
Column:= Column + |;
if Num > 9 then Column:= Column + I;
eline{I]:= errnone
end; {of if and for}

Based on the next iterative analysis of this code, rule; is an if-then-else rule structure.

Consistent with the definition presented in Section 6.6.1, rule; is described as follows:
rule; = (we2 A Of3) V (—wez A empty) 8.1-7)

where:

wcz = eline(I) # errnone

For each of the above non-rule formulas, the sets V and W are determined based on their
respective definitions, and the database is updated accordingly. The determination of V

and W for rule; is deferred until all contributory formulas are identified.

In the specification of rule,, f; represents the following code:

errorset:= errorset+{eline[1]];
Num:= ord(eline[I]);
if I > Column then
begin
for J:= Column + 2 to I do write(' ");
write("");Column:=I
end
else begin write(',");Column:= Column + 1 end
write(Num:1);
Column:= Column + |;
if Num > 9 then Column:= Column + 1;
eline[l]:= errnone

201

Based on the next iterative analysis of this code, f3 is described by the following

sequence:
J3=f3a S s rules s fic s fra s rules s fze ' (8.1-8)

where:
f3a = cerrorset = errorset+(eline(l))
[% oNum = ord(eline(I)) |
J3c = owrite(Num)
f34= oColumn = Column + 1

f3e £ celine(I) = errnone

For each of the above non-rule formulas, the sets V and W are determined based on their
respective definitions, and the database is updated accordingly. The determination of V

and W for rules and rule, is deferred until all contributory formulas are identified.
With the above expansion of f3, rule; is restated as:

rule; = (wez A Sfsa s fab s rules ; fic 5 f3a s ruleq s f3e)
V (mwez A empty) (8.1-9)

In the specification of rule,, rule; represents the following code:

if I > Column then
. begin -
for J:= Column + 2 to I do write(' ');
write("?");Column:= I
end
else begin write(',");Column:= Column + 1 end

Based on the next iterative analysis of this code, rule; is an if-then-else rule structure.

Consistent with the definition presented in Section 6.6.1, rules is described as follows:
rules = (wes A Orules ; fua s fan) V (=wes A Ofse s fa) (8.1-10)

- where:

wcs3 £ I> Column

202

fa = owrite(')

fo = oColumn =1

fac = owrite(,)

Jad £ oColumn = Column + I

For each of the above non-rule formulas, the sets V and W are determined based on their
respective definitions, and the database is updated accordingly. The determination of V

and W for rules is deferred until all contributory formulas are identified.

In the specification of rules, rules represents the following code:
for J:= Column + 2 to I do write(' ");

Based on the next iterative analysis of this code, rules is an indexed for-loop. Using the

indexed for-loop rule-form presented in Section 6.6.3, rules is described as:

rules = fs, ; rules: (8.1-11)
where:

fea £ oJ=Column +2

ruless = while wes do fap

wes: = <1

foo = owrite("")

Using the definitions presented in Section 6.6.2, the while structure rules is transformed

to:
rules: = ((wes' A Ofep 3 foe) 3 rules) v (=wes: A empty) (8.1-12)

where:
f6c Zol=J+1

For each of the above non-rule formulas, the sets V and W are determined based on their
respective definitions, and the database is updated accordingly. The determination of V

and W for rules: is deferred until all contributory formulas are identified.

203

In rules-, the rule condition wcs: is a state formula. Therefore, to transform rules’

to a simpler form, StateAndNextChop is applied to rules to yield:
rules: = (wes' A Of 3 foc 3 rules) v (—wes' A empty) (8.1-13)

Returning to and completmg the spemﬁcatlon of rule,, rule4 represents the

' followmg code:
if Num > 9 then Column:= Column + I;

- Based on the next iterative analysis of this code, rules is an if-then-else rule structure.

Consistent with the definition presented in Section 6.6.1, rule, is described as follows:

rules = (wes A Ofsa) V (wes A empty) . ®.1-14)
where: |
wee = Num>9
fs« % oColumn = Column + 1

For each of the above non-rule formulas,bthe sets V and W are determined based on their

respective definitions, and the database is updated accordingly.

With the identification of all rules and all formulas that compose these rules, the
frames associated w1th each rule can be determined. For a given rule, the frame of that
rule is the set of variables that are modified by that rule, and i is the union of all frames

for the formulas and other rules that are part of that rule.

For example, rules has been previously defined as:
rules: = ((wes' A Ofep 3 foc) 5 rules) v (chs' A empty) (8.1-15)
Therefore. the framé for rules: is: |
Wity = Wesr U Wep U Wa, e

Substituting the values for the various frames yields:

204

Wiite, =@ U {I/Owriee} U {1} (8.1-172)
= {I/Ouwrite, T} (8.1-17b)

The frames for all rules are determined using this approach and the database is updated

accordingly. The V set is determined for each rule in a similar manner.

Summarizing these analyses, the following rules have been extracted from the

legacy code:

Jo = foas for s fon s ruley ; foc 5 foa s foe

rule; = f1,; ruley

rule; = (wer A Cruley s fip 5 ruler) v (—wer A empty)

rule; = (Wez A Ofsa s fan 5 rules s foo s f3a s rules s f3e) vV (—wea A empty)
rule; = (wcs A orules ; foq 5 fap) V (=Wes A Sfae s faa)

ruleqs = (wWcq A Of'sg) V (—wee A empty)

rules = fsq ; rules

((wes A fep 5 foc) 5 rules') v (—wes: A empty)

il

rule5v

The database associated with these extracted rules is presented in Table 8.1-1. Using
the concepts described in Section 7.3, a statechart, based on and representing these
extracted rules, is presented in Figure 8.1-1. Because this statechart is based on these

extracted rules, the database presented in Table 8.1-1 is applicable to the statechart in

Figure 8.1-1.

As a demonstration of the coordinated use of these extracted rules, the associated
database, and the rule algebra presented in this thesis, the rules extracted from this
legacy code are analyzed for those formulas that result in the writing to an output
device. As previously discussed, the variable /Oy is used as a frame variable to
describe the system service that is updated by the PASCAL ‘write,” ‘writeln,” and similar
commands. Therefore, the database is searched for formulas that have only /Oy as

the frame.

205

(printerrorline A
ns/f, ; printline(Lbuff) ; S

X8l f i Sogify, I
(rule, . _)
nslf,
xs/) I
\
C‘UIB]I A
ns/
[=w,,]
xs/ —{ C cr
‘/ [wep] 3
rrule; A
ns/ .
xs/f, e

X :)

- Figure 8.1-1: Statechart for Procedure printerrorline Legacy Code

Based on this search of the database, six formulas meet this criterion — fos, foo
J3es fas f4o, and S5z Using the database, these formulas have primary membership in fo,
rulez, rules, and rules. Therefore, fo, rule;, rules, and rules must be analyzed.
However, these four rules and formulas are not directly connected. Referencing the

database, rules is not a primary member of rules. Instead, rules is a member of rules

206

and rules is a member of rules. Similarly, rule; is not a primary member of rules.
Instead, rule; is a member of rule;, rule;- is a member of rule;, and rule; is a member of
Jfo. Therefore, rules, ruley, and rule; must be included in the analysis. Summarizing,
seven rules — fy, rule;, ruley, rule;, rules, rules, and rules: — are analyzed regarding
formulas that result in the writing to an output device. Because rules does not include
any I/O activities, as demonstrated in the database by the absence of I/Orie in the frame
of any formula with a primary membership to rules, rules is not considered in this
analysis.

In this analysis, these seven rules are transformed to create a single rule
structure, and this rule structure is used to assess the specific rule conditions that are
associated with specific I/O activities. To implement these rule transformations, an
additional lemma is introduced — TwoChopRulesImp3. TwoChopRulesImp3 is a

continuation of the series TwoChopRulesImp and TwoChopRulesImp2 introduced in

Section 7.2.

LEMMA: TwoChopRulesImp3

F fos (i ASD) s (s A9 5 fs implies = fo 5 (15f3) A (23 0e 5 f5)

Proof:
U fos(finfD)s(safa) s fs premise
2 1A (finfa) s fs CP assumption
3 (150 Af23fasf5) 2, TwoChopRulesImp2
4 (finf)s(BAL) DU fsnfasfesfs) 2-3, D introduction
5 fos(finf)s(fsnfa)ifs 4, ITL (RightChopImpChop)
Do (s fDAaifsif5)
6 fos((fisf) A2 ifasfs) 1,5, MP

The general transformation strategy for the analysis of this set of extracted
legacy code rules is similar to that implemented in the transformation of the
specification in Section 7.2. Each contributory rule is separated into the component rule
condition and rule state, and then the components are added in order into the aggregate
description of the possible system behaviors. Because this transformation considers

multiple rules and therefore multiple behaviors, the resulting alternative behaviors are

207

expressed disjunctively. The target rules are processed in reverse order, that is, from the
deepest rule upwards. In this way, behaviors are transformed systematically, and each
subsequent behavior associated with a specific rule rests on the behavior(s) defined by

that rule's component rules.

This transforniation resté on seven premises that reflect the rules extracted from
legacy code that directly or indirectly include the variable I/Owrire — fo, rule;, rule;, rulez,
rules, rules, and rules. Because the deepest rule, rules (including the subrule rules)
includes no other rules and therefore, by definition, totally describes all behaviors
associated with rules, rules needs no transformation. Therefore, rules is transformed
first and incorporates the behaviors associated with rules. Then, rule; is transformed
and incorporates the behaviors derived from rule; and rules. Then, rule; (including the
subrule ruley’) is transformed and incorporates the behaviors derived from rule;, rules,
and rules. Finally, f is transformed and incorporates the behaviors derived from rule;,

rulez, rules, and rules. This formal transformation is presented in Appendix C.

With this transformation and based on the premises fy, rule;, ruley, rules, rules,
rules, and rules as extracted from the legacy code, the following disjunctive rule

structure is concluded:

Joa s Sor s Sow 3 f1a 3 ((8.1-182)
(wer s wez s wes 5 west
A 0Of3a3f3b s Oftas Ofen s foc s rules s faas i s
Sic s Joas rules ;s fre s fro s ruler; foc 5 foa s foe) (8.1-18b)
v (werrs Wez s Wes 5 —west
A OOf343f3b s Ofas faa s v 3 fc 3 f3a s ruleq
Sie s S s ruler s foc ;s foa s foe) (8.1-18c)
v (werr s wez s =wes v '
A OOf3a: f3b 3 Oftc s Jaa s fac s Ja s ruleq ;

Sse s fv s ruler; foc s Joa s foe) (8.1-18d)
v (Werr s mwez A Ofy 5 ruley; foc 5 foa s foe) (8.1-18¢)
V (=wer A foc 3 foa 5 foe)) (81180

Although (8.1-18) is a single structure, each component is numbered individually to

facilitate discussion.

208

With the transformation presented in (8.1-18), the behavior associated with the
legacy code is described as a sequence of chopped formulas at (8.1-18a) and then one of
the five disjunctively connected general-form rules presented at (8.1-18b) through
(8.1-18f). Specifically which of these five disjunctively-connected general-form rules
describes the specific behavior in a given circumstance depends on the verity of the rule
conditions wcr, Wc2, We3, and wes- under that given circumstance. The transformation
(8.1-18) provides an orderly basis for assessing and understanding the specific behavior
associated with the verities for each condition. For example, —wc¢; results in the
behavior specified by (8.1-18f), whereas wcy' is associated with the behaviors specified
by (8.1-18b) through (8.1-18¢). Similarly, —wc; results in the behavior specified in
(8.1-18f), whereas wc; is associated with the behaviors specified in (8.1-18b) through
(8.1-18e), etc.

This analysis and understanding of this transformation can be facilitated by
restoring specific formulas of interest. Referencing the various substitutions performed
earlier in this section, the rule conditions in (8.1-18) are represented by one or more of

the following state formulas:

wer=s (I € length +1)
wez = (eline(l) # errnone)
wez = (I > Column)
wes= (I < 1)

Based on an analysis of the database developed for this legacy code using the rule

algebra, the following formulas result in the writing to an I/O device:

fop = Owrite(HHRRxR! 1y
Joc = owriteln

f3c = owrite(Num)

Jea = owrite('T")

J4c = owrite(,)

Jfop = owrite(' ")

Substituting the above rule conditions and I/O-related formulas into (8.1-18) yields:

Joa 3 for 3 owrite(Fx**E 1Y < fr 0 { (8.1-192)

(0 < length +1) ; (eline(I) # errmone) ; (I > Column) ; J <)

209

A OOf3a3 fb s Ofsa s COWrite('") ; foo ; rules s owrite(') ; i 3
owrite(Num) ; f34 ; ruley ; f3e ; v
Siv 5 ruley 5 owriteln ; foq 5 foe) (8.1-19b)

v ((I < length +1) ; (eline(T) # errnone) ; (1> Column) ; —(J < I)
A OOf34; f3p 3 Ofsa 3 OWrite('1") ; fup 3 owrite(Num) ; f34 ; ruleq ;
J3e 3 fip 3 ruley ; owriteln ; foa 5 foe) (8.1-19¢)

v ((I < length +1) ; (eline(T) # errnone) ; —(I > Column)
A OOfsa; fp 3 oowrite(,) ; faa ; Owrite(Num) ; fa ; ruley ;

S3e s fip s ruley ; owriteln ; fou ; foe) . , (8.1-194)

v ((I < length +1) ; —(eline(I) # errnone)
A Of1p s ruleyr; owriteln ; fou 3 foe) : (8.1-19¢)
v (—(I < length +1) A owriteln ; fou 5 foe)} (8.1-19f)

With these substitutions, the value of this transformation is demonstrated. I/O
operétions are identified in the order they occur reiative to the satisfaction of the various
rule ‘conditick)nsy. For examble, as deScribed in (8.1-19b); the I/O operation write(" ')
‘occur‘s only when the rule condition (I < lehgth +1) ; (eline(T) # errnone) ; (I >
Column); (J < D) is satisfied. As another example, the I/O operations write('?") and
write(Num) only occur together and in that order in (8.1-19b) and (8.1-19c), and require
the satisfaction of the rule condition (I < length +1) ; (eline(I) # ermone) ; (I >
- Column). Inspection of the rule conditions associated with (8.1-19b) and (8.1-19¢c)
reveals that the verity of the rule condition (J < I) does not affect the occurrence of I/O
operations write('?") and write(Num). As a final example, the I/O operation writeln is
associated with all disjuncts and therefore is not dependent on the satisfaction of a

specific set of rule conditions.

Whereas numerous other transformations and analyses are possible using these
extracted rules, the rule extraction and analysis présented in this section demonstrates
the use and applicability of this rule model and rule alg:bra in the assessment of legacy

code.

210

Table 8.1-1 Legacy code analysis database

o Primary
F
ormula Description w |4 Membership
Jo Soa s Joi s foo s ruley s foo s foa s fo Column, eline(I), Column, errnone, -
errorset, fileerror, I, eline(l), errorset, 1,
Ounise, J, lineerror, J, length, Num
Num
Joa oColumn = 0 Column @ fo
Jol printline(Lbuf) - unclassified — —unclassified - Jfo
Sob owrite(HH¥E¥!, 1) /Ourie @ fo
foc owriteln 1/Ourie @ Jo
foa olineerror = false lineerror] Jo
JSoe ofileerror = true fileerror %] Jo
rule; Jf1a; ruley Column, eline(I), Column, errnone, fo
errorset, I, //Oyme, 1, eline(l), errorset, 1,
Num J, length, Num
f1a ol=1 I o rule;
ruley rules e v rule; g, Column, eline(I), Column, errnone, rule;
errorset, I, //Ouriter J, eline(1), errorset, 1,
Num J, length, Num
rulepyme wep A Orules s fip ; ruley Column, eline(), Column, errnone, ruley
errorset, I, /Oyie, J, eline(l), errorset, I,
Num J, length, Num
mlel'-false —wcr A empty 1) L length ruley
werr 1 < length +1 %] 1, length rule e
ri ule]’-false
f]b ol=I+1 I 1 rule; e
rule; rules e Vv rules o150 Column, eline(I), Column, errone, rule; me
errorset, V/Ouries 3, eline(l), errorset, I,
, Num J, Num
rulesie Wy A Ofsa s fs s rules; fic s foas Column, eline(I), Column, errnone, rule;
ruleq; fse errorset, /Oures J, eline(l), errorset, 1,
Num J, Num
rulesguse —wey A €MPLY @ errnone, eline(l), I rule,
Wez eline(I) # errone %] ermone, eline(), I rules e
rules juse
Jsa oerrorset = errorset+(eline(l)) errorset eline(l), errorset, 1 rules.me
Lo oNum = ord(eline(1)) Num eline(T), I rules.re
Jre owrite(Num) I/Ozrie Num rules e
Jza oColumn = Column +1 Column Column rules .
Jse oeline(]l) = errnone eline(l) errnone rules.oye

211

~ Table 8.1-1 (continued) Legacy code analysis database

Formula Description w | 4 Mmgip
rule; rulez.ye v rules s, Column, /Oy, I Column, L, J rules yu.
rulesime wes A Orules; fu i fa Column, Oy, J Column, I, J rule;s
rules e Wz A Ofye s fad Column, I/Oyrite Column, I rules
we3 I> Column 1%} ~ Column, 1 rules e
rules puse
Jaa owrite("T") VOyie) PUles e
Ja oColumn = I Column I rules.me
Sac owrite(',") VOyrie 1] rules puse
Ju oColumn = Column + I Column Column, I rules s,
rules ruleqne v rulesgse Colurmm Column, Num rules e
rulegme Wea A OS5, , Column Column, Num ruley
rulesuse —wes A empty) Num ruley
Wee Num>9 %] Num rule e
‘ ruleqpaise
Ssa oColumn = Column + 1 Column Column ruley .
rules Joa s rules VOuriter Column, 1, J rules
Crules rulesupe ™ rulesu VO 1 L] rules
rulesr.’,m Wes' A Ofsp s foo 3 Tules IOxrices J LJ rules
rulesyue —wcs A empty @ LJ rules
wes I g1 %] L rules
mleS'-falu
fsa o)=Column +2 I Column rules
fs owrite(') Ourss @ rules e
Joc ol=J+1 J J rules i,

212

8.2 Representing WSL Program Slices as Rules

In this section, a Wide Spectrum Language (WSL) program is sliced, and rules
are extracted from each slice and analyzed using the rule model and rule algebra
developed in this research. Two different rules are extracted from this program in two
separate slicing exercises. In the first slicing exercise, rules are extracted from the
program slice and the rule algebra is applied to simply and clarify the extracted rule. In
the second slicing exercise, rules are extracted from the program slice, and the rules are
then conditioned and transformed using the rule algebra. The results of these rule

transformations are compared with previous analyses of the same program.

The program analyzed herein is used to compute income tax and various tax-
related amounts, including a non-taxable personal allowance, for a United Kingdom
citizen for the tax year April 1998 to April 1999. The non-taxable personal allowance is
dependent on specific attributes of a given citizen. Within this program, these attributes
are represented by the variables 'age,' 'married,’ 'widowed,' and 'blind.' This program, or
an alternative language version, has been analyzed previously in Ward et al. (2005) and

Fox et al. (2000). The WSL version of this program, as used in the research, is as

follows:

IF age >=175
THEN personal := 5980
ELSE IF age >= 65
THEN personal := 5720
ELSE personal := 4335 FI FI,;
IF age >= 65 AND income > 16800
THEN VAR <t := personal - (income - 16800)/2 >:
IFt > 4335
THEN personal :=t
ELSE personal := 4335 FI ENDVAR FI;
IFblind =1
THEN personal := personal + 1380 FI;
IF married = 1 AND age >=75
THEN pcl0 := 6692 v
ELSE IF married = 1 AND age >= 65
THEN pcl0 := 6625
ELSE IF married = 1 OR widow =1
THEN pcl0 := 3470
ELSE pc10 := 1500 FI F1 FI;
IF married = 1 AND age >= 65 AND income > 16800
THEN VAR <t :=pcl0 - ((income - 16800)/2) >:

213

IFt > 3740
THEN pcl0 :=t
ELSE pcl10 := 3740 F1 ENDVAR FI;
IF income <= personal
THEN tax :=0 ,
ELSE income := income - personal;
IF income <= pcl0
THEN tax := income * ratel0
ELSE tax := pcl0 * ratel0;
income := income - pc10;
IF income <= 28000
THEN tax := tax + income * rate23
ELSE tax := tax + 28000 * rate23;
income := income - 28000;
tax ;= tax + income * rate40 FIFI FI - -

Sliciﬂg of this WSL program code was conducted using the FermaT

. transformation system. FermaT is an industrial-strength formal transformation system

. applicable to program comprehension and language migration. The FermaT
transformation system is based on a comprehensive catalog of formal, proven program

‘ trdnsformations that preserve or refine the semantics of a program while changing its
form. By applying the appropriate program transformations to a program, the resulting
transformed program is guaranteed to be equivalent to the original program logic. The
FermaT transformation system, including theory and applications, is described in Ward
(1999, 2000, 2004), and is available under the GNU General Public License (GPL) at
http://www.cse. dmu.ac.uk/~mward/fermat. html.

Using the FermaT Syntactlc Shce transformatlon the following slice was

generated as a backward slice on the variable pel0t

IF married = 1 AND age >=75
THEN pcl0 := 6692
ELSE IF married = 1 AND age >= 65
THEN pcl0 := 6625 :
ELSE IF married = 1 OR w1dow = 1
THEN pcl0 := 3470 - ‘
ELSE pcl0 := 1500 FI FI FI;
IF married = 1 AND age >= 65 AND income > 16800
THEN VAR <t :=pcl0 - (income - 16800) / 2 >:
IF t > 3740 THEN pcl0:=t ELSE pclO 3740 FI
ENDVAR FI

214

Based on an inspection and analysis of the programming structures that comprise this

slice, this slice on the variable 'pc10' can be represented as a sequence of chopped rules:
mlepclO = mlepcM-I ’ rulepc]O‘Z (8.2-1)

where:

rulepcior® IF married = 1 AND age >=75
THEN pcl10 := 6692
ELSE IF married = 1 AND age >= 65
THEN pcl0 := 6625
ELSE IF married = 1 OR widow =1
THEN pc10 := 3470
ELSE pcl0 := 1500 FI FI FI;

rulepc1p2 % IF married = 1 AND age >= 65 AND income > 16800
THEN VAR <t :=pcl0 - (income - 16800) /2 >:
IF t > 3740 THEN pc10 :=t ELSE pcl0 := 3740 FI
ENDVAR FI

Applying the rule-form description of the if-then-else programming structure as

presented in Section 6.6.1, rule,cjo.; is described as:

7 ulepcIO-I =
(married = 1 A age > 75 opcl0 = 6692)
V (—(married = 1 A age > 75) A orulepcio.1a) (8.2-2)

In rulepcio.1, rulepcio-1q is described as:

rulepcio-1a =
(married = 1 A age > 65 A opcl0 = 6625)
Vv (—(married = 1 A age > 65) A oruleycio.1s) (8.2-3)

In ruleycio-1a, rulepcio.1p is described as:

rulepcio-1p =
((married = 1 v widow = 1) A opc10 = 3470)
v (—(married = 1 v widow = 1) A opcl0 = 1500) (8.2-4)

215

Applying propositional logic and algebraic equivalence regarding negation and equality

to rulepcio.1p yields:

rulepcio-1p = :

(married = 1 A opcl0 = 3470)

v (widow =1 A opcl0 = 3470)

Vv (married # 1 A widow # 1 A opcl0 = 1500) (8.2-5)

Regarding rulepcio.14 at (8.2-3), applying propositional logic and algebraic equivalences

regarding the great-than-or-equal and negation operations yields:

rulepeio.1a =

(married = 1 A age > 65 A opcl0 = 6625)

\% (married #1A orule,,do.Ib)

v (age < 65 A orulepc10.15) (8.2-6)

Substituting rulepcro-1p at (8.2-5) into ruleycio.1a at (8.2-6) yields:

mlepclo-]a =
(married = 1 A age > 65 A opclO = 6625)
v (married # 1 A o((married = 1 A opcl0 = 3470)
v (widow =1 A opcl0 = 3470)
v (married # 1 A widow # 1 A opcl0 = 1500)))
Vv (age < 65 A o((married = 1 A opcl0 = 3470)
v (widow =1 A opcl0 =3470)
v (married # 1 A widow # 1 A opcl0 = 1500))) 8.2-7)

Applying NextOrDistEqv, then NextAndDistEqv, and then propositional logic to
rulepcio.1q at (8.2-7) yields:

rulepcio-10 =

(married = 1 A age > 65 A opcl0 = 6625)

v (married # 1 A omarried = 1 A oopcl0 = 3470)

v (married # 1 A owidow =1 A copcl0 = 3470)

v (married # 1 A omarried # 1 A owidow # 1 A copcl0 = 1500)

Vv (age < 65 A omarried = 1 A oopcl0 = 3470)

v (age < 65 A owidow = 1 A oopcl0 =3470)

Vv (age < 65 A omarried # 1 A owidow # 1 A oopcl0 = 1500) (8.2-8)

216

Considering rulepc1o.1 as described at (8.2-2), applying propositional logic and

algebraic equivalences regarding the great-than-or-equal and negation operators yields:

rulepcio.1 =

(married = 1 A age > 75 opcl0 = 6692)

v (married # 1 A orulepcm_ja)

v (age <75 A orulepcio-1a) (8.2-9)

Substituting rulepcio-1q at (8.2-8) into rulepcio.; at (8.2-9) yields:

rulepclo-l =
(married = 1 A age > 75 opcl0 = 6692)
v (married # 1 A o((married = 1 A age > 65 A opcl0 = 6625)
v (married # 1 A omarried = 1 A ocopcl0 = 3470)
v (married # 1 A owidow =1 A oopcl0 = 3470)
v (married # 1 A omarried # 1 A owidow # 1
A oopcl0 = 1500)
v (age < 65 A omarried = 1 A 0opcl0 = 3470)
v (age < 65 A owidow = 1 A oopcl0 = 3470)
v (age < 65 A omarried # 1 A owidow # 1
A oopcl0 = 1500)))
v (age < 75 A o((married = 1 A age > 65 A opcl0 = 6625)
v (married # 1 A omarried = 1 A oopcl0 = 3470)
v (married # 1 A owidow = 1 A oopcl0 = 3470)
v (married # 1 A omarried # 1 A owidow # 1
A oopcl0 = 1500)
v (age < 65 A omarried = 1 A oopcl0 = 3470)
v (age < 65 A owidow = 1 A oopcl0 = 3470)
v (age < 65 A omarried # 1 A owidow # 1
A oopel0 = 1500))) (8.2-10)

Applying NextOrDistEqv and then NextAndDistEqv yields:

217

rulepclO—I =
(married = 1 A age > 75 A opcl0 = 6692)
V (married # 1 A ((omarried = 1 A cage > 65 A 0opcl0 = 6625)
V (omarried # 1 A comarried = 1 A coopcl0 = 3470)
Vv (omarried # 1 A cowidow =1 A ooopcl0 = 3470)
v (omarried # 1 A oomarried # 1 A cowidow # 1
A ooopcl0 = 1500)
v (cage < 65 A comarried = 1 A 0coopcl0 = 3470)
v (oage < 65 A oowidow =1 A coopcl0 = 3470)
v (oage < 65 A comarried # 1 A cowidow # 1
A ooopcl0 = 1500)))
v (age < 75 A ((omarried = 1 A ocage > 65 A oopcl0 = 6625)
v (omarried # 1 A oomarried = 1 A coopcl0 = 3470)
Vv (omarried # 1 A ocowidow = 1 A coopcl0 =3470)
v (omarried # 1 A comarried # 1 A cowidow # 1
A coopel0 = 1500)
Vv (oage < 65 A oomarried =1 A ooopcl0 = 3470)
v (oage < 65 A oowidow = 1 A coopcl0 = 3470)
v (cage < 65 A oomarried # 1 A oowidow # 1
A ooopcel0 = 1500))) (8.2-11)

Applying propositional logic to (8.2-11) yields:

mlepclo-l =
(married = 1 A age > 75 A opcl0 = 6692)
v (married # 1 A omarried = 1 A cage > 65 A copcl0 = 6625)
v (married # 1 A omarried # 1 A comarried = 1 A ooopcl0 =3470)
v (married # 1 A omarried # 1 A cowidow =1 A coopcl0 = 3470)
v (married # 1 A omarried # 1 A ocomarried # 1 A cowidow # 1
A ooopel0 = 1500)
v (married # 1 A cage < 65 A oomarried = 1 A coopcl0 = 3470)
v (married # 1 A cage < 65 A oowidow =1 A coopcl0 = 3470)
v (married # 1 A cage < 65 A oomarried # 1 A cowidow # 1
A ooopcl0 = 1500)
v (age <75 A omarried = 1 A cage > 65 A oopcl0 = 6625)
v (age <75 A omarried # 1 A comarried = 1 A coopcl0 = 3470)
v (age < 75 A omarried # 1 A cowidow = 1 A ooopcl0 = 3470)
v (age <75 A omarried # 1 A oomarried # 1 A cowidow # 1
A ooopcl0 = 1500)
Vv (age <75 A oage < 65 A oomarried = 1 A coopcl0 = 3470)
v (age <75 A oage < 65 A cowidow = 1 A coopcl0 = 3470)
v (age < 75 A ocage < 65 A comarried # 1 A cowidow # 1
A ooopel0 = 1500) (8.2-12)

218

Within the context of the strict linear nature of the system and the corresponding
absence of any concurrent actions, and because the frame of rule,co.; is limited to the
variable 'pc10' and therefore does not interfere with any rule conditions in rulepcio.1, the

following implications are asserted:

(omarried = 1) D (married = 1) (8.2-13a)
(oomarried = 1) O (married = 1) (8.2-13b)
(omarried # 1) D (married # 1) (8.2-13c)
(oomarried # 1) D (married # 1) (8.2-13d)
(cowidow = 1) D (widow = 1) (8.2-13¢)
(cowidow # 1) D (widow # 1) (8.2-13f)
(cage > 65) D (age > 65) (8.2-13g)
(cage < 65) D (age < 65) (8.2-13h)

All of these implications have the form owp D wy or cowy D wy. They are applied to
detemporalize a rule condition that what would otherwise be a simple state formula.
Applying (8.2-13a) through (8.2-13h) to rulepcio.; as described at (8.2-12) using

propositional logic (i.e., disjunction elimination) yields:

rulepeio-1 D
(married = 1 A age > 75 A opcl0 = 6692)
v (married # 1 A married = 1 A age > 65 A oopcl0 = 6625)
v (married # 1 A married # 1 A married = 1 A coopcl0 = 3470)
v (married # 1 A married # 1 A widow =1 A coopcl0 = 3470)
v (married # 1 A married # 1 A married # 1 A widow # 1
A ooopcl0 = 1500) '
v (married # 1 A age < 65 A married = 1 A coopcl0 = 3470)
v (married # 1 A age < 65 A widow = 1 A coopcl0 = 3470)
v (married # 1 A age < 65 A married # 1 A widow # 1
A ooopcl0 = 1500)
v (age < 75 A married = 1 A age > 65 A oopcl0 = 6625)
v (age < 75 A married # 1 A married = 1 A coopcl0 = 3470)
v (age <75 A married # 1 A widow =1 A 0oopcl0 = 3470)
v (age < 75 A married # 1 A married # 1 A widow # 1
A ooopcl0 = 1500)
v (age <75 A age < 65 A married = 1 A coopcl0 = 3470)
v (age <75 A age < 65 A widow =1 A coopcl0 = 3470)
v (age <75 A age < 65 A married # 1 A widow # 1
A coopcl0 = 1500) (8.2-14)

219

Applying propositional logic to (8.2-14) to eliminate contradictions and idempotent

terms, and then reordering yields:

mlepclo-l))
(married = 1 A age > 75 A opcl0 = 6692)
v (married = 1 A age > 65 A age <75 A oopcl0 = 6625)
v (married = 1 A age < 65 A age <75 A coopcl0 = 3470)
v (married # 1 A widow =1 A coopcl0 = 3470)
v (married # 1 A widow =1 A age < 65 A 0oopcl0 = 3470)
v (married # 1 A widow = 1 A age <75 A 0oopcl0 = 3470)
v (widow =1 A age < 65 A age <75 A coopcl0 = 3470)
v (married # 1 A widow # 1 A coopcl0 = 1500)
v (married # 1 A widow # 1 A age < 65 A 0oopcl0 = 1500)
v (married # 1 A widow # 1 A age <75 A coopcl0 = 1500)
v (married # 1 A widow # 1 A age <65 Aage <75

A ooopcl0 = 1500)

(8.2-15)

| Considering the overlapping rule conditions in (8.2-15) with regard to the

variable 'age,’ the following equivalence is noted:

age < 65 = (age <75 A age < 65)

(8.2-16)

Applying (8.2-16) to rulepcio.; as described at (8.2-15) and eliminating idempotent terms

yields:

rulepeio.r D

(married = 1 A age > 75 A opcl0 = 6692)

v (married = 1 A age > 65 A age <75 A oopcl0 = 6625)

v (married = 1 A age < 65 A coopcl0 = 3470)

v (married # 1 A widow =1 A coopcl0 = 3470)

v (married # 1 A widow = 1 A age < 65 A coopcl0 = 3470)
v (married # 1 A widow =1 A age <75 A coopcl0 = 3470)
v (widow =1 A age < 65 A ocoopcl0 = 3470)

v (married # 1 A widow # 1 A 0oopcl0 = 1500)

v (married # 1 A widow # 1 A age < 65 A coopcl0 = 1500)
v (married # 1 A widow # 1 A age <75 A coopcl0 = 1500)

(8.2-17)

220

Although substantial transformation and simplification has been achieved,

various redundancies exist. Consider the following three disjunctively connected rules

included in rulep.1o.; as described at (8.2-17):

(married # 1 A widow # 1 A coopel0 = 1500)
v (married # 1 A widow # 1 A age < 65 A coopcl0 = 1500)
v (married # 1 A widow # 1 A age <75 A ocoopcl0 = 1500) (8.2-18)

Given that the rule condition variable 'age' is not included in the first rule, given that the
rule conditions are otherwise identical, and given that each rule has the identical rule
state, the inclusion of the rule condition variable ‘age’ in the second and third rule is
irrelevant. Referencing the concept of transformational equivalence as previously
presented Section 6.5, these three rules can be transformed into identical rules with the

application of the appropriate logic. To support such transformations, the following

implications are derived under propositional logic:

married # 1 A widow # 1 A age < 65 A 0ooopcl0 = 1500 D
married # 1 A widow # 1 A coopcl0 = 1500 (8.2-192)

married # 1 A widow # 1 A age <75 A coopcl0=1500>
married # 1 A widow # 1 A coopcl0 = 1500 (8.2-19b)

married # 1 A widow =1 A age <65 A coopcl0 =3470 >
married # 1 A widow =1 A coopcl0 = 3470 (8.2-19¢)

married # 1 A widow =1 A age <75 A coopcl0 =3470 D
married 2 1 A widow =1 A coopclQ = 3470 (8.2-19d)

Applying (8.2-19a) through (8.2-19d) to ruleycio; as described at (8.2-17) using

propositional logic (i.e., disjunction elimination) and then eliminating the idempotent

terms yields:

rulepeio-1 D

(married = 1 A age > 75 A opcl0 = 6692)

v (married = 1 A age > 65 A age <75 A oopcl0 = 6625)

v (married = 1 A age < 65 A ooopcl0 = 3470)

v (married # 1 A widow = 1 A coopclO = 3470)

v (widow = 1 A age <65 A coopcl0 = 3470)

v (married # 1 A widow # 1 A coopcl0 = 1500) (8.2-20)

221

One final simplifying transformation is possible. Considering the domain of and
relation between the rule condition variables 'married’ and 'widow,' the following

observation is made:
(married # 1 A widow = 1) D (widow = 1) (8.2:21)

Informally, (8.2-21) describes the fact that a widow cannot be married. To complete
this transformation, the following implication, similar to those previously presented at

(8.2-19), is derived under propositional logic

~widow =1 A age <65 A coopcl0 =3470D
widow =1 A ooopcl0 = 3470 (8.2-22)

Applying (8.2-21) and (8.2-22) to rulep.io-; as described at (8.2-20) usihg propositional

logic (i.e., disjunction elimination) and then eliminating the idempotent term yields:

rulepero.1 D

(married = 1 A age > 75 A opcl0 = 6692)

v (married = 1 A age > 65 A age <75 A oopcl0 = 6625)

v (married = 1 A age < 65 A coopcl0 = 3470)

v (widow =1 A ooopcl0 = 3470) :

v (married # 1 A widow # 1 A coopcl0 = 1500) (8.2-23)

To facilitate further analysis and rule representation, the consequent of (8.2-23) is

defined as:

mlepclo-l' =

(married = 1 A age > 75 A opcl0 = 6692)

v (married = 1 A age > 65 A age < 75 A oopcl0 = 6625)

v (married = 1 A age < 65 A coopcl0 = 3470)

v (widow =1 A 0coopcl0 = 3470)

v (married # 1 A widow # 1 A coopcl0 = 1500) (8.2-24)

With the introduction of this definition, (8.2-23) can be restated as:

mlepclo-] > rulepc]().]' ‘ (8.2‘25)

222

With (8.2-24) and (8.2-25), the transformation of ruleycio.; is complete. The
original program code for ruley;o.;, consisting of three nested if-then-else statements,
has been transformed into five disjunctively connected rules as described by ruleycio.
As a disjunctive structure, the component rules (i.e., disjuncts) can be reordered as
necessary. As an ITL formula, rule,c;o.;- can be used, as necessary, for additional

reasoning about the overall system.

Based on an analysis of the programming structures associated with rule,cio.2,
and applying the rule-form description of the if-then and the if-then-else programming
structures presented in Section 6.6.1 and the rule-form sequential composition presented

in Section 5.6.1, rulepcio-2 is described as:

rulepcio-2 = (rulepeio-2aiirue) A Orulepcio2p) V rulepcio-2agaise) (8.2-26)

where:
rulepcio.2arue) = (married = 1 A age > 65 A income > 16800) A ot)
rulepcio-2aaise) = (—(married = 1 A age 2 65 A income > 16800) A empty)

rule,,cm-zb = (t>3740A 0pcl0 = t)
v (—(t > 3740) A opcl0 = 3740)
t £ pclO - (income - 16800) / 2

Applying the rule algebra and imposing some limited assumptions of the form

owp O wy regarding specific rule conditions variables, rule,c;o2 is transformed, as

described in Appendix D, such that:

rulepcro.2 D
(married = 1 A age > 65 A income > 16800 A t > 3740
A oopel0 =t)

v (married = 1 A age > 65 A income > 16800 A t <3740
A oopcl0 = 3740)

v (married # 1A empty)

v (age < 65 A empty)

v (income < 16800 A empty) (8.2-27)

where:
t £ pcl0 - (income - 16800) / 2

223

To facilitate further analysis and rule representation, the consequent of (8.2-27) is
defined as:

rulepcior = 4
(married = 1 A age > 65 A income > 16800 A t > 3740
A oopcll =t)
v (married = 1 A age > 65 A income > 16800 A t <3740
- Aoopcl0 =3740)
v (married # 1A empty)
Vv (age < 65 A empty) -
v (income < 16800 A empty) 8.2:27)

where:
t=pcl0 - (income - 16800) / 2

With the introduction of this definition, (8.2-26) can be restated as:
rulepcio.2 2 ruleycio.z | (8.2-28)

With (8.2-27) and (8.2-28), the transformation of rulepco.2 is complete. The
original program code for ruleyc10.2, consisting of an if-then-else statement nested in an
if-then statement, has been transformed into a set of disjunctively connected rules as
described by ruleycio.2+ In this set of rules, all conditions associated with each rule state
are explicitly stated. As a disjunctive structure, the component rules (i.e., disjuncts) can
be reordered as necéssary. As an ITL formula, ruleyc;o.2' can be used as necessary for

~additional reasoning. For example, a simple manipulation allows the demonstration that
the rule conditions of ruleycso.2- are of the form wy A w1, wo A =W, Or —wy, supporting

the observation that all possible conditions are considered under rulepco.2-

Returning to rulep;o, the rule-based representation of the slice on variable 'pc10,’

ruleycio has been defined at (8.2-1) as:
rulepcro. ; rulepcio2 ‘ , (8.2-29)

Applying (8.2-25) and (8.2-28) to (8.2-29) with ChopSwapImp2 and ChopSwapIlmp,
respectively, yields: ‘

224

rulepeio.r s rulepcio.z {8.2-30)

With (8.2-30), the slice on variable 'pcl0' is described as two chopped state
sequences, where each component sequence is described by a set of disjunctively
connected general-form rules. Unlike the original program code that includes nested if-
then-else statements, these formulas reflect a substantial logical simplification. In each
set of rules, the rule conditions associated with each rule state are explicitly stated. For
specific values of the rule conditions, the applicable rule state can be easily identified by
applying those values and assessing the verity of the conditions within each disjunct.
This is particularly significant with regard to identifying the rules that apply to a limited
set of conditions. For example, for an unmarried individual (i.e., married # 1), it is
immediately apparent that only one disjunct in rule,cio.;r and only one disjunct in
rulepc10.2- applies. This is in contrast to the code slice, in which the code must be
walked, that is, each line of code evaluated and the if-then-else statements followed, to
determine what portion of the code applies to the specific condition. Although the
relative order of the two component rules, rulepco.;r and rulepeioz, is fixed, the
component disjuncts within each rule can be reordered as needed for presentation
purposes. Continuing the previous example of the unmarried individual, the disjuncts
of (8.2-24) and (8.2-27) can be reordered to list the disjuncts with the rule condition
'married # 1' first. Finally, and as previously stated regarding the component rules,
(8.2-30) is an ITL formula and can be used as needed for additional reasoning, either

about the slice itself or as part of an analysis of the entire block of code.

As a second slicing exercise, the WSL tax program was backward sliced on the

variable 'personal' using the FermaT Syntactic_Slice tranformation, and the following

slice was generated:

IFage >=175
THEN personal := 5980
ELSE IF age >= 65
THEN personal := 5720
ELSE personal := 4335 FI FI,
IF age >= 65 AND income > 16800
THEN VAR <t :=personal - (income - 16800) / 2 >:
IFt > 4335
THEN personal :=t

225

ELSE personal := 4335 FI ENDVAR FI;

IF blind = 1

THEN personal := personal + 1380 FI

Based on an inspection and analysis of the programming structures that comprise this

slice, this slice on the variable 'personal' can be represented as a sequence of three

chopped rules:

mlepersonal = mlepers-l ’ mlepers-Z s mlepers-3 (8.2-31)

where:

A
mlepers-l =

: mlepers~2 =

A
mlepers-.? =

IF age >=175 ’
THEN personal := 5980
ELSE IF age >= 65
THEN personal := 5720
ELSE personal := 4335 FI FI;

IF age >= 65 AND income > 16800 - -
THEN VAR <t := personal - (income - 16800) / 2 >:
IFt>4335
THEN personal :=t
ELSE personal := 4335 FI ENDVAR HI;

IF blind =1 R
THEN personal := personal + 1380 FI

Applying the rule-form description of the if-then-else programming structure as

presented in Section 6.6.1, rulep,,s.; is described as:

mlepers-l =

(age > 75 A opersonal = 5980)
v (—(age > 75) A o((age = 65 A opersonal = 5720)

v (—(age 2 65) A opersonal = 4335))) (8.2-32)

Applying algebraic equivalences regarding the great-than-or-equal and negation

operators yields:

226

mlepers—l =
(age > 75 A opersonal = 5980)
v (age <75 A o((age > 65 A opersonal = 5720)
Vv (age < 65 A opersonal = 4335))) (8.2-33)

Applying NextOrDistEqv and then NextAndDistEqy to (8.2-33) yields:

mlepers-l =
(age =75 A opersonal = 5980)
v (age <75 A ((cage > 65 A copersonal = 5720)
Vv (cage < 65 A oopersonal = 4335))) (8.2-34)

With the application of propositional logic to (8.2-34), rulep.,.; is described as a

disjunction of three general form rules:

mlepers-] =

(age > 75 A opersonal = 5980)

v (age <75 A oage > 65 A oopersonal = 5720)

v (age <75 A oage < 65 A oopersonal = 4335) (8.2-35)

Within the context of the strict linear nature of the system and the corresponding
absence of any concurrent actions, and because the frame of ruley.,s.; is limited to the

variable ‘personal' and therefore does not interfere with any rule conditions, the

following implications of the form owy D wy are asserted:

(8.2-362)

oage > 65 D age =65
(8.2-36b)

oage < 65 D age <65

Applying these implications to (8.2-35) using propositional logic (ie., disjunction

elimination) yields:

mlepers-l >
(age > 75 A opersonal = 5980)
v (age <75 A age = 65 A oopersonal = 5720)

v (age < 75 A age < 65 A oopersonal = 4335) (8.2-37)

227

The following equivalence regarding the variable 'age' has been asserted previously at

(8.2-16):
age <65 = (age <75 A age < 65) (8.2-16)
Applying this equivalence to (8.2-37) yields:

mlepers-l)

(age > 75 A opersonal = 5980)

Vv (age <75 A age > 65 A oopersonal = 5720)

Vv (age < 65 A oopersonal = 4335) (8.2-38)

Based on an analysis of the programming structures associated with rulepers-2,
and applying the rule-form description of the if-then and the if-then-else programming
structures presented in Section 6.6.1 and the rule-form sequential composition presented

in Section 5.6.1, rulep.s 2 is described as:
mlepers-Z = (mlepers-Za(rme) A Omlepers-Zb) V Tulepers.2afalse) (8.2-39)

where:

rulepers.2a1mue) = ((age 2 65 A income > 16800) A ot)
rulepers.2aifaisey = (—(age > 65 A income > 16800) A empty)
rulepersop= (t>4335 A opersonal =t)

V (—(t > 4335) A opersonal = 4335)
t = personal - (income - 16800) / 2

Using these representations of rulepers.2; and rulepers.os, rulepers.2 is transformed,

as described in Appendix D, such that:

mlepers-Z >

(age > 65 A income > 16800 A ot > 4335 A oopersonal =t)

v (age = 65 A income > 16800 A ot £4335 A oopersonal = 4335)

v (age < 65 A empty)

v (income < 16800 A empty) (8.2-40)

where:

t = personal - (income - 16800) / 2

228

Applying the rule-form description of the if-then programming structure as

presented in Section 6.6.1, rulep.rs.3 is described as:

rulepers.3 = (blind = 1 A opersonal = personal + 1380)
v (—(blind = 1) A empty) (8.2-41)

Applying algebraic equivalences regarding the equality and negation operators to

(8.2-41) yields:

rulepers.3 = (blind = 1 A opersonal = personal + 1380)
v (blind # 1 A empty) (8.2-42)

With (8.2-42), the transformation of the three rules that compose rulepersona is

complete. Summarizing, the slice on the variable 'personal’ of WSL tax program code is

described as a rule system with three sequential rules:

rulepersonal = 1 ulepers-l s Tulepers2 s rulepers-3 (8.2-43)

These three rules are described as rule systems of disjunctively connected general-form

rules where:

mlepers-l -

(age > 75 A opersonal = 5980)

v (age <75 A age > 65 A oopersonal = 5720)
v (age < 65 A oopersonal = 4335) (8.2-442)

mlepers—Z -
(age = 65 A income > 16800 A ot > 4335 A oopersonal =t)
v (age > 65 A income > 16800 A ot <4335 A oopersonal =4335)

v (age < 65 A empty)
v (income < 16800 A empty) (8.2-44b)

where:
t = personal - (income - 16800) / 2

rulepers.3 = (blind = 1 A opersonal = personal + 1380)
v (blind # 1 A empty) (8.2-44¢)

These extracted rules can be used to analyze the original WSL code. In previous

evaluations of this code, Ward et al. (2005) and Fox et al. (2000) applied various forms

229

of conditioned slicing to answer the question "What is the personal allowance
calculation for a blind widow aged over 687" These conditions are expressed in terms

of the WSL program variables as:

blind = 1 | (8.2-452)

married=0 o (8.2-45b)
widow =1 : . : , : (8.2-45¢)
age > 68 (8.2-45d)

In the following analysis, these same conditions are applied to the extracted rules to
generate conditioned rules that reflect those specific conditions. These conditioned

rules are then compared to the slices generated by others for the same conditions.

Referencing ruleyers.; at (8.2-44a) and applying the specific conditions at
(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions

Yields mleper_y_].cond:

mlepers—l-cand D

(age > 75 A opersonal = 5980)

v (age < 75 A true A oopersonal = 5720)

Vv (false A copersonal = 4335) (8.2-46)

Applying propositional logic to (8.2-46) yields:

mlepers-l—cond 2
(age > 75 A opersonal = 5980)
v (age < 75 A oopersonal = 5720) ' (8.2-47)

Referencing rule,.rs2 at (8.2-44b) and applying the specific conditions at
’(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions

yields mlepgr_v-z-cond:

mlepzrsJ-cond 2

(true A income > 16800 A ot > 4335 A oopersonal = t)

v (true A income > 16800 A ot <4335 A oopersonal = 4335)

v (false A empty)

v (income < 16800 A empty) ‘ (8.2-48)

230

Applying propositional logic to (8.2-48) yields:

mlepers-Z-cond D

(income > 16800 A ot > 4335 A oopersonal =t)

v (income > 16800 A ot <4335 A oopersonal = 4335)

v (income < 16800 A empty) (8.2-49)

Referencing rulepe;s.3 at (8.2-44c) and applying the specific conditions at

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions
yields rulepers.3.cond:

1ulepers.3.cond = (true A opersonal = personal + 1380)
v (false A empty) (8.2-50)

Applying propositional logic to (8.2-50) yields:

rulepers-3-cond = (Opersonal = personal + 1380) (8.2-51)

Given the previous definition of rulepersonat at (8.2-43), the conditioned rule

rulepersonat.cona, conditioned based on the specific conditions presented at (8.2-45), is

defined as the chopped sequence:

mlepersonal~cond =r ulepers—l—cond y 1 UIepers'Z-cond 5 mlepers-.?-cond (8.2-52)

Using (8.2-52), applying 7ulepers.1.cona 2s described at (8.2-47) with ChopSwaplmpl and
then applying OrChopEqy yields:

mlepersonal-cond)
(age > 75 A opersonal = 5980) ; rulepers-2-cond 5 Tulepers.3-cond

\% (age <T5A oopersonal =5720); mlepers»Z-cond y I ulepers-.?-cand (8.2-53)

Using (8.2-53), applying propositional logic (i.e., disjunction elimination) and then
applying rulepers.2.cona as described at (8.2-49) with ChopSwapImp3 yields:

231

mlepersonal-cond 2

(age =75 A opersonal = 5980) ;

((income > 16800 A ot > 4335 A oopersonal = t)
v (income > 16800 A ot <4335 A oopersonal = 4335)
v (income < 16800 A empty)) ; rulepers.3-cona

v (age < 75 A oopersonal = 5720) ;
((income > 16800 A ot > 4335 A oopersonal = t)
Vv (income > 16800 A ot <4335 A oopersonal = 4335)
v (income < 16800 A empty)) ; rulepers.3-cona (8.2-54)

Applying OrChopEqv to (8.2-54) yields:

mlepersonal-cand >

(age > 75 A opersonal = 5980) ;

((income > 16800 A ot > 4335 A oopersonal =t) ; rulepers.3.cond
v (income > 16800 A ot <4335 A oopersonal = 4335) ; rulepers-3.cond
v (income < 16800 A empty) ; rulepers.3.cond)

v (age <75 A copersonal = 5720) ;
((income > 16800 A ot > 4335 A oopersonal =t) ; rulepers.3-cond
v (income > 16800 A ot <4335 A ocopersonal = 4335) ; rulepers.3.cond
v (income < 16800 A empty) ; rulepers-3.cond) (8.2-55)

Applying ChopOrEqv and substituting for rulepers-3.cona yields:

mlepersanal-cond 2

(age 275 A opersonal = 5980) ;
(income > 16800 A ot > 4335 A copersonal =t) ;
(opersonal = personal + 1380)

v (age = 75 A opersonal = 5980) ;
(income > 16800 A ot <4335 A oopersonal =4335) ;
(opersonal = personal + 1380)

v (age =75 A opersonal = 5980) ;
(income < 16800 A empty) ;
(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;
(income > 16800 A ot > 4335 A oopersonal =t) ;
(opersonal = personal + 1380)

232

v (age <75 A oopersonal = 5720) ;
(income > 16800 A ot <4335 A oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age <75 A oopersonal = 5720) ;

(income < 16800 A empty) ;
(opersonal = personal + 1380) (8.2-56)

With (8.2-56), rulepersonai-cona is described as a disjunction of six alternative
sequences, where each sequence is composed of two rules and a final assignment of a
value to the variable 'personal.’ Given the similar structure of these six sequences, the
final value of the variable 'personal' in each sequence is dependant on the satisfaction of
the specified (and complementary) rule conditions. This observation is supported by the

final transformation of rulepersonal-conas presented in Appendix D, where:

mlepersanal-cond o

(age > 75 ; (income > 16800 A income < 20090)
A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))

v (age > 75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age < 75 ; (income > 16800 A income = 19570)
A fin(personal = 5715))

v (age <75 ; income < 16800

A fin(personal = 7100)) (8.2-57)

In (8.2-57), the ITL construct fin is used to denote that the specified formula is true on
the final subinterval (in this case the final state) of the corresponding interval. Whereas
the form of the disjuncts of (8.2-57) is a deviation from the general rule-form f; A of; as
developed and used in this research, some conceptual similarities are noted. Consistent
with the temporal-relationship concepts developed in Chapter 4, the formula f; A fin f;

describes a conjunctive relationship between a set of conditions describable by f; and

233

some set of properties describable by f; that hold in the final subinterval considered by
the formula f; A fin f. ‘

With (8.2-57), the relationships between the variables 'age' and 'income' and the
variable ‘personal' as specified in rulepersonal-cona are described in the six disjuncts. In
each disjunct, the rule conditions are noted and the resulting final value of the variable
~ 'personal' is specified. With regard to the use of the ITL operator chop in the expression
of the conditions, given that the conditions based on the variables 'age' and 'income' are
. expressed in terms of state formulas, and given the semantics of chop, both condition

formulas can hold for the same state.

For comparison, consider the following "conditioned slice," sliced by Fox et al.
(2000) from the tax program code using the previously defined conditions and
converted to WSL by Ward et al. (2005):

IF age >=75

THEN personal := 5980
EISEIFage>=65
THEN personal := 5720 FI H,;
IF age >= 65 AND income > 16800

THEN VAR <t := personal (mcome-16800)/2 >
IFt>4335 ‘

- THEN personal :=t

ELSE personal := 4335 FI ENDVAR FI;
IFblind =1 :

THEN personal := personal + 1380 FI

Also for comparison, consider the following "semantic slice,” sliced by Ward et al.

(2005) from the tax program code using the previously defined conditions:

- IF age <75 AND income >= 19570
THEN personal := 5715 .. .
ELSIF age < 75 AND income > 16800
THEN personal := (16800 - mcome)/2 +7100
ELSIF age <75
THEN personal := 7100
- ELSIF income >= 20090
THEN personal := 5715
ELSIF income > 16800 :
THEN personal := (16800 - income)/2 + 7360
- ELSE personal := 7360 FI

234

Ward et al. (2005) describe semantic slices as business rules for a particular situation, in

this case, the business rule for the personal allowance for a blind widow aged over 68.

The expression of this conditioned rule rulepersonar.cona as (8.2-56) and/or (8.2-57)
has at least three distinct advantages over the above conditioned slice or semantic slice.
Firstly, the conditioned rule rulepersonat.cona is potentially easier to understand. Whereas
Ward et al. (2005) argues that the semantic slice is "clearly easier to understand” as
compared to the conditioned slice, the conditioned rule is arguably easier to understand
than the conditioned slice or semantic slice. This is because all conditions in
rulepersonal-cond are explicitly listed and associated with each specific outcome. For
example, in (8.2-57), the conditions age < 75 and income < 16800 are explicitly
associated with the final outcome of personal = 7100. In the conditioned slice and
semantic slice, the sliced code must be walked to determine the final outcome
associated with the specific conditions. Secondly, because (8.2-56) and (8.2-57) are
disjunctions, the six component structures can be presented in any order that is
necessary for optimum rule presentation. Conversely, because the conditioned slice and
semantic slice are expressed in a program language, the order of the program code and
corresponding elements cannot be changed. Finally, as logical formulas, (8.2-56)
and/or (8.2-57) can be used directly in further logical reasoning about the target system.
Conversely, because the conditioned slice and semantic slice are expressed in a program
language, neither support any further reasoning without substantial code-based
transformations. Because of these three reasons, the advantages of this general-form

rule approach to manipulating program slices are demonstrated, as compared with
program code representation of slices.

In this section, a block of WSL program code is sliced and the rules extracted
from the program slices. The rule algebra presented in this research is then used to
analyze these extracted rules. In the first code slicing and rule extraction exercise, the
rule algebra is applied to simply and clarify the extracted rule. Unlike the original
program code that includes multiple if-then-else statements that must be traced to
determine the specific conditions associated with a given outcome, with the transformed

rules, the rule conditions associated with each rule state are explicitly identified and

bound to that rule state. Therefore, these transformed rules reflect a substantial

simplification. In the second code slicing and rule extraction exercise, the rules

235

extracted from the program slices are conditioned, and these conditioned rules are
- compared to conditioned slices and semantic slices on the same variable. For program
understanding and analysis, these conditioned rules are superior to the conditioned
slices or semantic slices because they are more easily understood, can be more easily
- manipulated for presentation, and can be used directly in further reasoning about the
slice or about the source program. - As demonstrated in this section, the rule algebra
presented in this research is a pdwerful and complementary addition to slicing for use in

- program understanding and analysis.

236

Chapter 9
Applying the Rule Algebra to Specify New Rules

In this chapter, the formal rule extraction framework of Chapter 3, the formal
temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied
to the forward engineering of a rule-based system. This forward-engineering
application of the rule model and rule algebra is presented to demonstrate the wide-

ranging applicability of the concepts developed in this research.

9.1 Refining an Existing Rule with New Rules

Consider ruley;.. (repeated below), extracted in Section 7.2 from the automated

teller machine specification:

rulesz.. £ (card_disabled A otake_disabled_card)
Vv (—card_disabled A oget_pin ; ruley;.q4) (7.2-3)

This rule includes the state sequence get_pin. In this section, get_pin is refined using

the general-form rule model presented in Chapter 4 and the rule algebra presented in

Chapters 5 and 6.

For this analysis, the refinement relation & is defined as:

Jocfi = fidfo 9.1-1)

The refinement calculus was first described by Back (1988). Refinement rules
expressed as ITL formulas are presented in Cau and Zedan (2000). For this analysis,
refinement is achieved by instantiating f; in (9.1-1) as a sequence of component state
sequences (e.g., fia ; fi5), including state sequences described in terms of general-form
rules (e.g., fia 5 (fza A Of2s)). As previously presented in Section 5.7, two forms of
sequential composition are available under this rule algebra — using the general rule
form and using the ITL operator chop. With regard to the target sequence get_pin,
additional details are added by defining equivalent state sequences that split get_pin into

component sequences, thereby adding new details and refining get_pin.

237

Based on an inspection of (7.2-3), the state sequence get_pin is chopped to the
state sequence described by rules;... Based on an inspection of rule;;.4 and subsequent
rules rulesz. and ruleszs previously presented at (7.2-4), (7.2-5), and (7.2-6),
respectively, get_pin represehts the behavior in which a valid PIN either is or is not
obtained within an maximum number of attempts. Within this context, the following

" informal specification for get_pin is used as the basis for the refinement of get_pin:
-“Each ATM customer must enter a valid PIN within a limited number of tries”

Implicit in informal specification is the requirement that the PIN entry process
must be initialized with each new customer. Therefore, state sequence get_pin can be

~defined as two sequentially-composed state sequences:
- get_pin évinit_pin_entry s rulepin_enry 9.1-2)
From the definition presented in (9.1-2):
init_pin_entry ; rulepin_enry > get_pin " o 9.1-3)
Considering (9.1-3) and referencing the refmement relation ¢ as defined in (9.1-1):

get_pin ¢ init_pin_entry ; rulepin_enmy (9.1-4)

Subsequent refinements of the state sequences composing get_pin are implemented in 2

similar manner.

In (9.1-2), init_pin_entry is the state sequence that results from resetting and
initializing the various state variables necessary to accommodate a new customer:
Although unspecified at this time, these various state variables include the various flags
and counters used in subsequent rules that define the state sequence get_pin. Whereas
init_pin_entry must eventually be refined prior to system implementation, this analysis

- will focus only on rulepin_entry.

238

In (9.1-2), the state sequence described by rulepiy enry includes the behaviors
specifically associated with the PIN entry and validation processes. Within the context
of the informal specification for get_pin, as presented above, several distinct elements
are required. Firstly, a valid PIN must be entered. Secondly, the customer has only a
limited number of attempts to correctly enter a valid pin. Finally, given that there can
be multiple (although limited) attempts to enter a valid PIN, a repetitive or looping
construct is needed to express the underlying requirement of this specification. The first
two elements are incorporated into the rule condition and the third element is used to
define the rule form. Letting the rule condition attempt_limit be a state formula that is
true in a state where the allowable number of entry tries has been exceeded and letting
the rule condition valid_pin be a state formula that is true in a state where the entered

PIN has been validated, rulepin_entry is described as a recursive general-form rule as:

rulepin_enry = (((—attempt_limit A —valid_pin)
A oprocess_pin) ; rulepin_eny))
v (=(—attempt_limit A —valid_pin) A empty) (9.1-5)

Applying propositional logic, (9.1-5) is expressed in an equivalent form as:

rulegin_enry = (((—attempt_limit A —valid_pin)
A oprocess_pin) ; rulepin_enry))
v (valid_pin A empty)
v (attempt_limit A empty)

(9.1-6)
As a recursive rule, the state sequence defined by rulepin enry will end when either of the
rule conditions valid_pin or attempt_limit is satisfied, thereby ending the recursion.
Based on the above analysis and interpretation of the informal specification for get_pin,

the refinement of get_pin to init_pin_entry ; rulepin_enry is consistent with the informal

specification for get_pin.
The definition of rulepin_enry is a recursive rule that includes the state sequence

process_pin. Within the context of the informal specification of get_pin, for this

analysis, process_pin is defined as a sequence of state sequences such that:

process, pm Z display_pin_screen ’ mlercad_kcy_pad o I uleva}idate_pin 9.1-7)

239

With this partitidning of process_pin into three separate state sequences, each state
sequence can be refined independently. As display_pin_screen is relatively straight-
forward, only two of the three separate state sequences in process_pin will be refined —

rulemd_key_pad and rulevandm_pin.

The state sequence ruleread xey_pad is @ user-directed event. As a event-driven
sequence, PIN eniry is terminated with a specific key'from the keypad — typically the
enter key. Therefore, the rule defining the state sequence ruleread xey psd Must
incorporate this event-driven element. Letting the rule condition enfer_key be a state
formula that is true in a state where the enter key has been pressed, ruleead xey_pad iS

described as a recursive general-form rule as:

ruleread xey_pad = (menter_key A okey_buffer) ; ruleread xey_pad
Vv (enter_key A oincrement_attempt) (9.1-8)

In this form, 7ulesesq xey_paa differs from previous recursive rules (i.e., the rule form of
the while structure as previously discussed in Section 6.6.2) in that defined state
sequences are associated with both the satisfaction and non-satisfaction of the rule
conditions. In ruleread xey_pad, the state sequences key_buffer and increment_attempt
must be refined (at some future time) to describe, respectively, how the keypad key
entries are processed and how a counter is incremented with each PIN that is entered
(where this counter can be used to assess the satisfaction of the rule condition

attempt_limit in rulegin_entry).

As specified in (9.1-7), the state sequence described by ruleread xey_pa is followed
by ruleyaiicae_pin- The state sequence described by rulevaigae_pin must consider at least
two business rules. Firstly, the PIN must be the proper length — typically four digits,
although this may vary based on the specific institution. Secondly, and only after a PIN
of proper length is entered, the user-entered PIN must match the PIN on file with the
institution for that card/account. Therefore, the general-form rule(s) defining the state
sequence ruleyaidae_pin Must incorporate these two business rules. That the PIN length
can be assessed locally and the PIN must be matched at centralized location supports the

decision that these activities are best described by two rules.

240

Letting the rule condition pin_length be a state formula that is true in a state

where the PIN of proper length has been entered, ruleyaiigate_pin is described as:

rulevaigate_pin = (pin_length A orulecompace._pin)
V (—pin_length A empty) (9.1-9)

In (9.1-9), the state sequence rulecompare_pin describes the behaviors resulting from the
comparing of the user-entered PIN with the PIN on file with the institution for that
card/account. Letting the rule condition pin_match be a state formula that is true in a

state where the user-entered PIN matches the PIN on file, rulecompare_pin is described as:

mlecomparc_pin £ (pin_match A OpiIl__V&lid)
v (—pin_length A empty) (9.1-10)

Whereas not refined in this analysis, the state sequence pin_valid must satisfy the rule
condition valid_pin in the rule rulepiq enry at (9.1-6). With regard to the general
refinement strategy, rulévaiicae_pin and 7ulecompare_pin reflect sequential association of two
state sequences based on the general rule form, as previously presented in Section 5.6.1.
This is in contrast to process_pin at (9.1-7), where rules are sequentially composed

using the chop operator, as previously presented in Section 5.6.2.
In summary, the following rules and rule structures have been developed to

refine the state sequence get_pin:

get_pin = init_pin_entry ; rulepin_enry 9.1-2)

rulepin_eniry = (((—attempt_limit A =valid_pin)
A oprocess_pin) ; rulesin_entry))
v (valid_pin A empty)
v (attempt_limit A empty) (9.1-6)

process_pin = display_pin_screen ; rulercaq key_pad 5 réleyatidate_pin 9.1-7)

ruleread_xey_pad = (—enter_key A okey_buffer) ; ruleread xey_pad
v (enter_key A empty) (9.1-8)

rulevatidate_pin = (Pin_length A orulecompare_pin)
v (—pin_length A empty) 9.1-9)

241

A

mlecompare_pin = (pin_match A Opin__Vbl]id)
V (—pin_match A empty)

(9.1-10)

Using the statechart concepts described in Section 7.3, a statechart representing these is

presented in Figure 9.1-1.

(" get_pin Ty ™
(init t_pin_entry)
(7 .)
rule_. ,
pim_eniy [attempt_limit v valid_pin)
[— attempt_limit A — valid_pin]
(‘process_pin ')
@isplay _pin_screen)
(: R
mleread_kcy _pad
[enter_key}
' (increment_attcmpt)
. J
: \
(rule, it pin
[pin_length] [pin_length]
J
J/
o J
\ J

Figure 9.1-1: Statechart for Refined State Sequence get_pin

242

9.2 Analyzing the New Rules Using the Rule Algebra

To assess these rules, including the rule conditions and the associated rule states,
the rule algebra presented in this research is applied to the analysis of rulepin enyy

(including process_pin), ruleread xey_pads T"levatidate_pin, and rulecompare pin- Because the
state sequence init_pin_entry is focused only on the initialization of various program
flags and counters, and at this refinement level contains no rules, init_pin_entry is not
considered in this analysis.

To implement these rule transformations, an additional lemma is introduced —
TwoChopRulesimp4. TwoChopRulesImp4 is a continuation TwoChopRulesImp series

previously presented in Sections 7.2 and 8.1, and is used to separate and collect the rule

conditions and rule states of the two chopped rules and transform them into a single

general form rule.

LEMMA: TwoChopRulesImp4

F fos (i Af2) s (s Afe) implies & fo 3 ((f1305) A (f23£4))

Proof:
LV fos(infa)s (Afd) premise
2 (i1 nf2)s (s A S CP assumption
3 (13 A (2319 2, TwoChopRulesImp
4 (finf)ssafd (1Al f) 2-3, 2 introduction
5 fos (infa)s s nfd Dfos (f1313) A (f25 /) 4, ITL (RightChopImpChop)
6 foi((13/) A (23 fe) 1,5 MP

In this analysis, these four rules (rulepin enry, 7ul€read xey_pads Tulevatidate_pin, and
rulecompare_pin) are used as premises. The general transformation strategy for this
complete analysis of all state sequences or behaviors associated with rulepin emry (and
Fuleread xey_pads Tleyaiicate_pin» AN 7Ulecompare pin by inclusion) is identical to that used in
the rule transformation of Section 7.2 - cleave each contributory rule into the
component rule condition and rule state, and then add those components, in order, into
the aggregate descriptions of rule conditions and corresponding system behaviors. This
disassembly and subsequent reassembly is performed using ITL and the rule algebra

presented in this research. Because this is an assessment of all possible behaviors

243

associated with an entire set of rules, these alternative behaviors are expressed
disjunctively. The target rules are processed in reverse order, that is, from the deepest
rule upwards. In this way, behaviors are transformed systematically, and each
subsequent behavior associated with a specific rule rests on the behavior defined by that

rule's component rules. This transformation is presented in Appendix E.

The final result of this transformation, representing the various behaviors of

rulegin_exry, is presented below:

(((—attempt_limit A —valid_pin) ; —enter_key)
A (odisplay_pin_screen ;okey_buffer ;
ruleread_key_pad H mlepm_em_ry)) (9.2'13)

V (((—attempt_limit A —valid_pin) ; enter_key ;
(pin_length A opin_match))
A (odisplay_pin_screen ; oincrement_attempt ;
oopin_valid ; rulepin_entry)) ;(9.2-1b)

v (((—attempt_limit A —wvalid_pin) ; enter_key ;
(pin_length A o—pin_match)) ‘

A odisplay_pin_screen ; oincrement_attempt ;
oodisplay_invalid_screen ; rulepin_entry)) (9.2-1¢)

v (((—attempt_limit A —valid _pirl) s enter_key ; %pin__length)
A (odisplay_pin_screen ; oincrement_attempt ;

odisplay_invalid_screen ; rulegin_eniry)) - (9.2-10)
v (valid_pin A empty) | 9.2-1e)
Vv (attempt_limit A empty)) . S 9.2-1)

Although (9.2-1) is a single disjunctive statement, each component disjunct is numbered

individually to facilitate discussion.

Using (9.2-1) and knowing the verity of the five rule conditions attempt_limit,
valid_pin, enter_key, pin_length, and pin_match for a specific instance, the system
behavior under rulepiy_enry for that instance can be determined. For example and as
depicted in (9.2-1f), if attempt_limit is satisfied, then empty holds and the state
sequenée described by rulepia_enry €nds. Referencing (9.1-2), when rulepin_enry €nds,
get_pin ends. Referencing rule;;. in Section 7.2 at (7.2-3), after gef_pin, the system

behavior is described by rules2.4. A similar behavior is depicted in (9.2-1e) associated

244

with the satisfaction of the rule condition valid_pin. Because disjuncts (9.2-1e) and
(9.2-1f) are the only disjuncts that do not include a recursive reference to rulepin_enry, the
satisfaction of either attempt_limit or valid_pin is the only way that ruleyin_enry and
get_pin ends. As depicted in (9.2-1c) and (9.2-1d), if —attempt_limit and —wvalid_pin
are satisfied, if enter_key is satisfied, and either —pin_length is satisfied or pin_length
and —pin_match are satisfied, the resulting state sequence is de'scribed by
display_invalid_screen, informing the user that an invalid PIN was entered. With the
satisfaction of the rule conditions specified in (9.2-1b), the state sequence pin_valid
results so that with the next recursive execution of rulepn enry, the rule condition
valid_pin will be satisfied. Finally, in (9.2-1a), if the rule condition —enter_key is
satisfied, signaling that the enter key has not been pressed at the key pad, system
behavior continues to be defined by the recursive reference to ruleread ey _pad, thereby

accepting additional key pad input.

As demonstrated above, this transformation allows an alternative form for
checking the formation of the original rules. In addition to the assessment of the rule
verities and the associated final behaviors, this transformation allows the order of the
rule conditions to be assessed. With each set of rule conditions, the associated order(s)
of the intermediate behaviors leading to a specific final behavior can be assessed.
Finally, because this transformation is a disjunctively connected sets of general-form

rules, this transformation can be used for additional reasoning about the overall system
of which ruleesd xey_pad 1S a part.

In this section, the rule model and rule algebra of this research are applied to the
forward engineering of rules to refine a'speciﬁcation. Additional details regarding
system behavior are achieved by dividing a previously specified state sequence into a
composition of two or more state sequences. These new and more detailed state
sequences can be expressed as a single state sequence (e.g., init_pin_entry) or they can
be described as a system of two or more disjunctively connected rules, thereby
describing two or more possible state sequences. For example, the state_sequence
get_pin is initially refined into two state sequences, init_pin_entry and rulepin enirys
where init_pin_entry defines only one state sequence (subject to future refinement) and

rulepin_enry defines alternative multiple state sequences depending on the satisfaction of

245

the associated rule conditions. This refinement process is repeated for selected state
sequences until sufficient detail is introduced. Then, the resulting rules can be
transformed using the rule algebra presented in the research. With these
transformations, the rules can be assessed with ‘regard to the rule conditions and the
associated rule states. With this example, the rule model and rule algebra presented in
this research are demonstrated to be a viable and useful basis for the orderly and
stepwise development and refinement of rules and rule-based descriptions of specific

system behaviors.

246

Chapter 10

Observations regarding the Rule Algebra and its Application

In this chapter, observations are presented regarding the basis and development
of the rule algebra and regarding the application of the rule algebra to both the analysis
and the development of rule-based models, specifications, and code. A brief discussion
of this rule algebra and its application relative to rule analysis, relative to literature

previously reviewed in Chapter 2, is presented.

10.1 On the Rule Algebra

In Chapters 5 and 6, a rule algebra is developed using the temporal rule model
presented in Chapter 4. Given the underlying principle behind that rule model, that a
rule is a conjunctive relationship between a state sequence and a future state sequence
describable by the general-form rule f; A of;, this rule algebra is incrementally developed
in Chapter 5 by considering fundamental systems and the corresponding relationships
between the state sequences that compose those systems. Using the concept of a rule
system — a collection of two or more related rules — more complicated state sequences
are described. One extremely important rule system used extensively in this rule
algebra is the total rule — a pair of disjunctively associated rules incorporating
complementary rule conditions. With this inclusion of complementary rule conditions,
it is assured that all the state sequences will satisfy one or the other of the rule

conditions included in the total rule.

In Chapter 6, significant attention is given in this rule algebra to composing rules
and rule systems in order to describe larger and more complex state sequences.
Compositional paradigms that are demonstrated include: sequential composition using
both the general rule form itself and the ITL operator chop; nesting; recursion;
deterministic and non-deterministic guarded composition; and disjoint parallel
composition. Using these compositional paradigms, rule-based representations of
typical legacy code structures ~ the if-then-else structure, the while structure, and the

indexed for-loop — are developed.

Although not easily quantified, a critical element of this rule algebra is the

fundamental simplicity with which a diverse spectrum of rules are defined and

247

manipulated. Forty-three lemmas are developed in this research as part of this rule
algebra to describe allowable and desirable transformations of various rules and rule
systems. With the expressiveness of ITL, the proofs necessary to support these lemmas
are quite direct. In the development of this rule algebra, no problems or issues were
encountered in the description of increasingly complicated state sequences or with the
systematic development of the related lemmas. ‘Whereas the rule algebra developed
herein provides sufficient means to achieve the immediate goals of this research, the
lemmas presented in this research form a core for the development of additional
transformations as needed. Because this rule algebra is built on ITL, the richness of ITL
is available, if and as needed, for additional development and future refinement of this

" rule algebra.

10.2 On the Application of the Rule Algebra

In Chapters 7, 8, and 9, the rule model of Chapter 4 and the rule algebra of
Chapters 5 and 6 are applied to the extraction of rules from existing systems, to the
analysis of those rules, and to the development of new rules. Rules are extracted from a
variety of existing systems: a finite state machine, a detailed formal specification, a
block of legacy Pascal code, and slices from a WSL program. The flexibility and
adaptability of this rule algebra are demonstrated both with the diversity of systems
from which rules are extracted and with the transformations and analyses that are
achieved using the extracted rules. With these demonstrations, as least eight significant

benefits are demonstrated regarding the value and applicability of this rule model and

rule algebra.

Firstly, the rule algebra developed in this research is sufficiently expressive to
allow the analysis of a range of existing models, specifications, and programs. No
model, specification, and program structures are encountered that cannot be adequately
represented with the rule model, rule algebra, and ITL. The general—form rule defined
in Chapter 4, the fundamental structures explored in Chapter 5, and the compositional
models presented in Chapter 6 are sufficient, either directly or indirectly, to describe all
elements of the various systems considered in this research. By linking the rule algebra

concepts presented in Chapters 5 and 6, either by composing rules sequentially or by

248

nesting rules within rules, complex logical and programming structures can be

addressed, as demonstrated with the diversity of systems analyzed.

Secondly, and closely related to the previously discussed expressiveness, the
rule algebra is adaptable. Given the underlying formations of the rule algebra and the
depth of ITL, additional lemmas can be developed to support and expand the rule
algebra as needed, as demonstrated with the additional lemmas introduced in Sections
7.2 and 8.1 to achieve rule transformations. Similarly, the rule algebra is not overly
restrictive with regard to new or allied concepts. In Section 7.2, the ITL sometimes
operator ¢ is used to allow an alternative expression of the temporal ordering of the rule
conditions while still maintaining the underlying general-rule form. In Section 8.2, the
ITL fin construct is used to describe the properties of the final state in the state sequence
described by the rule. Although the fin form is a deviation from the general rule-form

used throughout this research, the conceptual similarities are noted.

Thirdly, the rule algebra supports different levels of analysis. As demonstrated
with each of the rule analysis cases presented in Chapters 7 and 8, the application of the
rule algebra can be tailored as needed to meet overall expectations and objectives of a
specific rule extraction process. As demonstrated with each case considered herein, the
rule algebra can be applied incrementally, and the resulting rule transformations can be
used for additional reasoning about other rules and the overall system. This incremental
approach is extremely important in the early phases of a legacy-system analysis when
system-specific knowledge may be limited, and specific expectations and objectives

may be vague and uncertain.

Fourthly, statecharts are used to represent legacy-code programming structures,
and their use is consistent and compatible with the rule model and rule algebra
presented in this research. Together, statecharts and this rule algebra provide a robust
tool for legacy code analysis. Correspondences between the statechart elements and the
rule elements are presented in Section 7.3 such that statecharts can be developed that are
equivalent to extracted general-form rules. Therefore, these equivalent presentations of
the same program structures differ not in content, but only in how they can be used in
future analysis and understanding. The statechart approach allows a visual presentation

that is readily understandable by a wider audience, and the formulaic approach of

249

representing the extracted rules as ITL formulas is readily adaptable to computer
analysis techniques. Coupled with the rule algebra, statecharts represent a robust
approach to managing the 'state explosion' problem that may result in the analysis and

extraction of rules in real-world legacy systems, as identified in Chapter 3.

Fifthly, this rule algebra is applicable within the context of other program
analysis techniques such as those described in Chapter 2. In Section 7.2, with the
transformation of the extracted rules, the specific sequence of rule conditions and
associated rule states leading to a defined goal is identified. Borrowing from the
. nomenclature of other program understanding techniques, the résulting sequence is
described as a state-sequence slice. In Section 8.1, the rule algebra is used as the basis
for developing and populating a database usable for legacy code analysis. In Section

8.2, the rule algebra is applied in concert with traditional program slicing.

Sixthly, simplification is achieved with the transformation and representation of
these systems using the rule algebra. At (7.1-11), a three-state, five-transition finite
state machine is described with two general-form rules. At (7.2-27), a recursive while-
form specification that includes four nested if-then-else specifications is transformed
into a disjunction of six general-form rules. In each of these general-form rules, the rule
conditions that must be met are identiﬁéd and the corresponding system behavior is
clearly presented as an ordered sequence of state sequences, including the recursive
behavior of the original specification. At (8.2-25), three nested if-then-else statements
are transformed into a disjunction of five easily understood rules, where all rule

conditions associated with each rule state are explicitly identified.

Seventhly, the application of the rule algebra for the analysis of the rules from a
given model, specification, or program allows the direct assessment of the behavior of
thét system with regard to specific conditions. In Section 7.1, the rules extracted from a
finite state machine were used to model the state sequence response of that machine to a
specific input. In Section 8.1, the extracted rules and the associated database were used
to assess the specific rule conditions necessary for specific /O writing operations in the
original legacy code. In Section 8.2, conditioned rules — transformed and reduced rules
reflecting the imposition of specific rule condition values — are demonstrated to be

superior to conditioned slices or semantic slices with respect to program behavior, as

250

well as rule presentation and further reasoning activities. With these assessments of

specific system behaviors, substantial knowledge of the original system is obtained.

Finally, this rule algebra is not limited to rule extraction, but also can be applied
to the forward engineering of new rules to describe new specifications/programs and
their behaviors. Such forward engineering of rules is demonstrated in Chapter 9. The
forward engineering of rules to describe a simple hardware system is presented in
Appendix F. A significant advantage of using this rule algebra as the basis for forward
engineering new rules is that these newly created rules can be then analyzed, reasoned
about, and/or tested with the rule algebra, similar to the processes used to assess legacy
code, to assure that these new rules meet all expectations associated with the new
system. Whereas note explicitly explored in this research, the rule model presented in
Chapter 4 is consistent with the inclusion and use of pre-condition and post-condition
assertions in specification and program code development, including other language and

programming paradigms that directly support such assertions.

Based on these eight observations, and as supported by the specific analyses
presented in this research, the rule model and rule algebra developed in the research
form the robust and adaptable basis for the extraction of rules from a spectrum of
existing or legacy systems, the forward engineering of new systems, the formal

transformation and analysis of rules, and specification/program comprehension.

10.3 Comparison with Existing Models and Approaches

This rule model and rule algebra differ substantially from rule models and rule
analysis techniques presented in the literature as reviewed in Chapter 2. Unlike the
informal, descriptive models or definitions of rules presented by Ulrich (1999), Perkins
(2000), Odell (1995), Ross (1997), Sneed and Erdos (1996), and others, this rule model
is formally defined under ITL and therefore incorporates ITL’s well-defined semantics.
Unlike the formal rule models presented by Alagar and Periyasamy (2001) and
Ungureanu and Minsky (2000) that require identification or specification of an agent,
this rule model and the application of the associated rule algebra require no such agent

identification or specification.

251

Other research models or approaches have some specified limitations with
regard to application. For example, in Fu et al. (2001), four types of constraints are
supported by the Business Rule Language. With the expressiveness of ITL, no arbitrary
limits are place on the number or type of constraints that can be expressed with the

general form rule model developed as part of this research.

Numerous researchers attempt to partition rules into different and distinct
categories and suggest these categories may influence how these various rules are
modeled, analyzed, or represented. Theodoulidis et al. (1992) identified three
categories of rules: constraint, derivation, and event-action. Shao and Pound (1999)
classified business rules into three groups — structural rules, behavioral rules, and
constraint rules. Leite and Leonardi (1998) propose classifying business rules as either
functional or non-functional. Odell (1995) identified three types of constraint rules and
two types of derivation rules. Unlike these approacheé, the application of this rule
model and associated rule algebra require no arbitrary partitioning or classification of
the rules in the subject domain. Under the state-based model incorporated in this rule,
any rule that is or can be implemented in a state-based architecture can be captured
using this rule model. For example, structural changes can be modeled with the general
form rule model of this research by adding or removing variables from the state space.
Constraint rules can be modeled with the general form rule model of this research by
adding additional conditions to the rule condition. Behavioral rules can be modeled
with the general form rule model of this research by associating specific behaviors (i.e-,

sequences of states) with specific rule conditions.

Finally, few researchers identified or acknowledged the explicitly temporal
nature of rules in their rule models, with Theodoulidis et al. (1992) being the rare
exception. Considering that this rule model and the associated rule algebra are built on
temporal logic, the temporal nature of rules are explicitly acknowledged and directly
incorporated.

~With respect to the application of the rule model and rule algebra for rule
analysis, the rule algebra is applicable within the context of other rule analysis
techniques such as program slicing. The rule model and rule algebra can be used in

close association with program slicing to further reduce sliced code. As demonstrated

252

in Chapter 7, the rule model and rule algebra can be applied to create state sequencé

slices, a type of logical slice heretofore not investigated nor applied in the other
program slicing research reviewed.

With respect to the graphical analysis and representation of rules, the association
of the rule model and rule algebra developed as part of this research with statecharts has
been demonstrated. The ability to both nest and hide rules using statecharts is
consistent with the objectives of techniques presented by Storey and Muller (1995). As
statecharts have achieved a relatively widespread acceptance and understanding, the use
of statecharts for graphical rule representation is preferable to the use of specialized

graphical objects such as those used in Feijs and de Jong (1998).

In Section 2.9, six critical shortcomings are identified regarding existing rule
analysis and extraction procedures. The rule model and rule algebra developed as part
of this research and the associated rule analyses in both the reverse and forward
engineering domains address the critical shortcomings. Firstly, the rule model
presented in the research is explicit with regard to what is meant by the concept of a
rule. Using ITL, the formal semantics of the general rule form presented in this
research are well defined. Secondly, the rule model presented in this research is
language independent. Therefore, this rule model and the associated rule algebra are
ideal for application in heterogeneous environments. Thirdly, use of ITL as a formal
notation eliminates the impact of alternative syntax in the analysis process and
maintains focus on the semantic elements of the rule. Fourthly, use of ITL as a formal
notation for the representation of rules minimizes the potential for variation in rule
representation and interpretation by different practitioners in the analysis process.
Fifthly, expressing the rule model and the rule algebra in ITL allows for formal and
provable analyses. Finally, the rule model and rule algebra presented in the research

support both the reverse and forward engineering analysis of rules.

253

Chapter 11
" Conclusions and Recommendations for Future Research

In this chapter, the underlying vision that prompted this research is reviewed, the
significant achievements associated with this research are enumerated, and some

promising directions for future research are suggested.

11.1 Vision

As asserted in the introduction, rules give structure to knowledge. Within this
context, knowledge-based business practices are structured by rules. Rules specify what
is expected, what is preferred, what is a priority, what is allowable, and what is
unaccéptable. Within an organization, these rules are incorporated into computerized
business/knowledge systems based on the organizational experiences and expectations
so that all users of these systems are either guided or constrained (depending on the
rule) with regard to their choice of behaviors. Over time, these rules are changed,
refined, and/or updated to reflect acquired additional knowledge regarding successful
and unsuccessful practices. Using this rule-based model of business practices, two
different information systems, or more specifically two different program code
elements, can be compared based on similarities and/or differences in their component
rules.y Should it be neéessary to integrate these two systems or re-engineér a single

replacement system, these rules can form the functional basis for the new system.

Therefore, this rule-based model forms a rational basis for the analysis of
heterogeneous business systems. Within these systems, the component rules are used to
express the knowledge-based business practices of the organization. If one identifies
and extracts these rules, the refined knowledge expressed in the business system can be

preserved, analyzed, and reused as desired.

Within the context of this rule-based model of knowledge-based business

information systems, three fundamental questions emerged:
1. What is a rule?

2. Can rules be extracted from a diversity of different types of information

systems?

254

Once extracted, can these extracted rules be manipulated and analyzed to
yield information about the original system and/or to allow comparisons

with other rules?

This rule-based model of knowledge-based business information systems and these

three associated questions have driven the research presented herein.

11.2 Achievements

Within the context of the vision described above, the following eight

achievements have been realized with the research:

1.

A set-based formal framework is presented that allows the description
and analysis of a program or information system as a set of structures that
are describable as rules and non-rules. With this formal framework, the
feasibility of representing information system as rules and extracting
those rules is demonstrated, subject to the formalization of a sufficiently

general definition of a rule.

A general formal model of a rule is developed, general in that it can be
adapted to the variety of languages and programming paradigms that
might be encountered in different legacy code applications. Using
Interval Temporal Logic (ITL), a rule is defined formally as a
conjunctive and temporal relationship between a state sequence and a
future state sequence. Using the ITL next operator o, a general-form rule
is defined as f; A of,, where f; describes the state sequence that satisfies
the rule condition and f; describes the future (i.e., next) state sequence
that satisfies the rule state. Informally, this ITL formula describes a rule
as a conjunctive and temporal relationship between a state sequence
satisfying the rule condition f;, and a future state sequence satisfying the
rule state f. Given the underlying simplicity of this definition — that a
rule is a temporal relationship between two state sequences — no arbitrary
limitations are introduced with this definition. Therefore, the general-
form rule f; A of; can be used for both reverse engineering of existing

systems and forward engineering of new systems.

255

Using this general formal model, a rule algebra is developed that
describes the set of operations that can be applied to compose,
decompose, or transform rules. This rule algebra is developed
incrementally by considering fundamental systems and presenting rules
that describe the relationships between the state sequences that compose
these fundamental systems. Given the underlying formations of the rule
algebra and the depth of ITL, this rule algebra is adaptable. In addition
to the 43 lemmas presented to describe this rule algebra, additional
lemmas can be developed to support and expand the rule algebra as
needed.

In developing this rule algebra, significant attention is given tO
composing rules and rule systems to describe larger and more complex
state sequences. Compositional paradigms demonstrated with this rule
algebra include sequential composition, nesting, recursion, deterministic
and non-deterministic guarded composition, and disjoint parallel
composition. Using these compositional paradigms, rule-based
representations of typical legacy code structures — the if-then-else

structure, the while structure, and the indexed for-loop — are developed.

- Within the context of the formal rule model and the corresponding rule
algebra, the use and the value of statecharts for legacy code analysis aré
demonstrated. ~ Generic statecharts of different rule-based coding
‘paradigms are developed. These generic statecharté are applied and
various rule-based legacy code structures are presented as both ITL
formulas and statecharts. The statechart approach allows a visual
presentation that is readily understandable by a wider audience, and the
formulaic approach of representing the extracted rules as ITL formulas is
readily adaptable to computer analysis techniques. Coupled with the rule
model and rule algebra, statecharts are demonstrated to be a robust
kapproach to managing the 'state explosion' problem that may result in the

_ analysis and extraction of rules in real-world legacy systems.

256

Using this rule algebra, rules are extracted from a range of rule-based
systems, specifications, and legacy code: an existing finite state machine,
a detailed formal specification, a small but relatively complicated block
of Pascal legacy code, and a block of code from a tax calculation
program. The flexibility and adaptability of this rule algebra are
demonstrated both with the types of systems from which rules are
extracted and with the transformations and analyses that are achieved
using the extracted rules. In these rule extraction exercises, the
application of this rule algebra is demonstrated to be compatible with
other traditional approaches to legacy code analysis including traditional
slicing, conditioned and semantic slicing, program simplification,

program transformation, and database approaches.

To demonstrate the applicability of this rule algebra with respect to
forward engineering, rules are developed using this rule model and rule
algebra to describe two systems — specification of a new business process

and a simple hardware system.

With the reverse and forward engineering applications described herein,
the rule model and rule algebra, as developed in the research, are
demonstrated to be a robust, flexible, and expressive approach for the
extraction of rules from a spectrum of existing or legacy systems, the
forward engineering of new rule-based systems, the formal

transformation and analysis of rules, and system comprehension.

11.3 Future Research Directions

In the course of this research, as with any journey, numerous interesting

avenues were observed but left unexplored. In this section, some possible research

directions are discussed.

11.3.1 Equivalence and Isomorphism

Two of the most important concepts that merit future research are equivalence

and isomorphism. Informally, the two concepts relate to the fundamental questions

"Are these rules the same?" and "If they are not the same, then are they similar?" Three

257

forms of equivalence ~ strong equivalence (or strong bisimulation), transformational
equivalence, and non-temporal equivalence — are discussed in Section 6.5. Given the
knowledge-basis for this rule approach to assessing legacy systems (as articulated in the
vision described in Section 11.1), demonstrating the extent of equivalence between two
rules is critical. Therefore, formalization of the three equivalence models presented in
Section 6.5 and the development of alternative equivalence models is an important
research direction. Within the context that there are multiple models of equivalence and
that the assessment of equivalence is not strictly binary, the formalization of
equivalence models for rules is critical for rendering domain-specific judgments that

two rules are sufficiently equivalent for a given domain-specific application.

The root of the word isomorphism is derived from two Greek words — iso
meaning the 'same' and morphe meaning 'form.' Unlike rule equivalence, which is
concerned with whether two rules are the same with respect to rule states, rule
conditions, input/output, and observable changes, isomorphism considers whether two
rules have the same structural form. With respect to legacy code analysis, isomorphic

rules may suggest multiple implementations of similar rules.

At a minimum, for two rules to be isomorphic there must exist a bijective
function such that each state sequence in the domain of the first rule maps to a state
sequence in the domain in the second rule, and a second bijective function such that
each state sequence in the codomain of the first rule maps to a sequence in the codomain
in the second rule. As these two functions are bijective, two inverse bijective functions
must exist mapping the state sequences of the domain and codomain of the second rule
to state sequences in the domain and codomain, respectively, of the first rule. Whereas
these bijective functions are minimum requirements and additional properties may be
necessary to prove an isomorphism between the two rules, these minimum requirements

contribute to the following demonstration.

Consider these two rules:

fonofi (11.3.1-1)
. ofp A 0Of; , (11.3.1-2)

258

Are these two rules the same? If not the same, are they similar? And if so, how
similar? Given that fp = fy and f; = f}, the existence of the two bijective functions and
their inverses is assured. Therefore, an isomorphism between (11.3.1-1) and (11.3.1-2)
may exist (subject to any additional requirements that are added in a formal and
complete definition of rule isomorphism). By inspection, (11.3.1-1) and (11.3.1-2)
differ only by the presence of an additional ITL next operator o in (11.3.1-2). Therefore
and informally, (11.3.1-1) and (11.3.1-2) can be described as non-temporally equivalent.
However, in the absence of a domain-specific assertion of the form fD of, neither non-
temporal equivalence nor transformational equivalence can be proven formally at this
time and without additional research. This simple example illustrates the need for

additional research regarding equivalence and isomorphism within the context of rules.
11.3.2 Alternative Rule Forms

This research has centered on the general rule form f; A of. As developed in
Chapter 4, this rule form describes a temporal relationship between the state sequence ;
where o; F f; and the future state sequence ©; where ©; F fi. However, various
alternatives can be created using ITL to describe similar temporal relationships. In this

section, several of these alternatives are discussed to highlight additional research

directions.

As demonstrated in Section 8.2, the ITL construct fin f is a powerful technique
for describing or specifying a set of properties, describable by f, that must hold in the
final subinterval of a given state sequence. Therefore, the general rule form used in this

research can be extended such that a rule is defined as:

fi A ofj Afin(wy) (11.3.2-1)

In (11.3.2-1), f; specifies the rule conditions that must be met, f; describes the rule state,
and fin(wy) describes the state properties of the final state sequence of the state sequence
specified by the rule. Within the context of the stated objectives associated with this

alternative form, the following form is tempting:

fin ofi A (of; D fin(wy)) (11.3.2-2)

259

However, representing the implication in (11.3.2-1) as —ofj v fin(wy) and with the
application of propositional logic, (11.3.2-1) and (11.3.2-2) can be demonstrated to be
equivalent. Therefore, either (11.3.2-1) or (11.3.2-2) capture the fundamental notion of
this alternative approach. Finally, applying propositional logic to (11.3.2-1), the

- following can be concluded:
Ji afin(wi) (11.3.2-3)

Note that the reduced form of (11.3.2-3) mimics the form of the consequents in (8.2-57)-
Therefore, the alternative form f; A of; A fin(wy) may hold distinct advantages in the

analysis of legacy systems.

Extending the concepts embodied in (11.3.2-1) and loosely borrowing from the
‘always-followed-by’ construct proposed by Siewe et al. (2003) as discussed in Chapter

4, consider the following alternative representation of a rule:
finof s we ' (11.32-4)

In (11.3.2-4), f; and f; are as previously described and w; describes the state properties of

a state sequence that 'follows' f;, subject to the semantics of the ITL chop operator.

The general rule form f; A of; used in this research incorporates the ITL next
operator. However, the use of the ITL next operator may cause problems in certain
logical and programming constructs, including certain forms of parallelism. Therefore,
temporal relationships described in Chapter 4 can be formalized using the ITL

sometimes ¢ operator. Under this paradigm, an alternative rule definition is:
finOf (11.32-5)

This form has the advantage that the rule state satisfying f; need not hold in the next
state sequence, but can hold instead in some state sequence including an eventual state
sequence some time in the future. Using the concepts described in (11.3.2-1) and

(11.3.2-4), other alternative rule forms based on the ITL sometimes ¢ operator include:

260

fi A Of; A tin(wi) (11.3.2-6)
Lin Ofi s we : (11.3.2-7)

Whereas no representation is made at this time regarding the superiority of any
of these forms relative to each other or to form f; A of; as used in this research, these
alternative forms may have some distinct advantages in certain circumstances.
Therefore, these alternative forms, and any other related forms that support the temporal

relationship concepts as developed in Chapter 4, merit additional investigation.
11.3.3 Interdependence, Independence, and Interference

Fundamental to the rule model presented in Chapter 4 is the concept of the state
— a function mapping a set of variables to a set of values. Given the general form rule
fi A of;, each rule considers at least two state sequences, one described by f; and another
described by of;. Therefore, in the specification of the rule elements f; and of}, various
sets of variables are used to describe the satisfying state sequences. These variable sets
can be used as a basis for comparison and analysis. This concept can be applied in at
least two ways — the comparison of the various elements within a single rule and the
comparison of two or more rules with each other. This concept has been previously
applied in Section 6.4 with regard to the assessment of the independence of any two ITL

formulas.

However, a more sophisticated model is desirable as it may afford a significantly
more detailed assessment of how rule elements and rules are similar or dissimilar. With
regard to the variable sets used to formulate rules, at least three concepts merit
additional research and formalization - interdependence, independence, and
interference. Rule interdependence describes how the various elements of a single rule
are or are not interrelated. Rule independence describes how two rules are or are not
interrelated. Rule inference describes how two rules may conflict with regard to the
assessment of the verity of the formulas describing the rule condition and the rule state.

To highlight how such additional research and formalization might be
prosecuted, consider the following model. Let rule be a general-form rule defined as

[i A of, and let the sets C, V, and W be sets of variables defined as follows:

261

W & The set of state variables that can possibly change values under
rule such that f; and of; holds. This is typically referred to as the
frame.

V = The set of state variables used to specify, calculate, or otherwise

define the new values of variables in the set W.

C = The set of state variables used to specify the rule condition f;.

Using this model, a variety of potentially useful concepts can be defined formally, as
described below.

For a non-interdependent rule:
CNVNnW=0g (11.33-D

Informally, for a non-interdependent rule, the formula specifying the rule condition does
not include any frame variables or any variables used in calculating the new values for

the frame variables.

For a maximally interdependent rule:
C=V=Ww ' 11.332)

- Informally, for a maximally interdependent rule, all variables used in specifying the rule
conditions are also in the frame and are also used to calculating the new values for the

frame variables.

Regarding rule independence, consider two rules, rule; with Cy, V1, and W, and

rule; with C, V3, and W,. These two rules are totally independent if:
CTuoVTuWdDnNn(CGuUVLuW)=0 . (11.3.3-3)

Informally, the two rules rule; and rule; are totally independent if they have no

variables in common. Continuing with this concept of rule independence, these two

- rules are rule condition independent if:

CiNnC =g (11.3.3-4)

262

Rule interference is a potential problem with regard to parallel composition.
Informally, two rules in parallel may interfere with each other if a variable in the frame
of one rule is used to specify the rule condition of the other rule or is used to calculate
the value of a variable in the frame of the other rule. Formally, potential interference

may exist between rule; and rule; if:

CiNn Wz v (N W+ Q)
viVinWoz8)v (V.n W Q) . (11.3.3-5)

The above representations of rule interdependence, rule independence, and rule
interference are very basic; other more appropriate and/or more detailed formalizations
likely exist. However, these general formalizations do provide a solid basis for
understanding the importance of these concepts, and the importance of additional
research in these areas. Given the nature and scope of rule interdependence, rule
independence, and rule interference, the adequate formalization of these concepts can be

an important segue to other rule analysis and research issues.
11.3.4 Detemporalization

In Section 8.2, selected implications of the form ow; D w; or cow; O w; were
asserted to detemporalize specific rule conditions to facilitate rule simplification and
analysis. Given the absence of parallelism in the target code, these assertions were
supported by a code-specific analysis and assessment of the non-interdependence of the
rule condition variables and the rule state variables. A formal definition of non-
interdependence between the elements of a given rule is presented at (11.3.3-1). As
demonstrated in Section 8.2, such detemporalization is a powerful pathway to rule
simplification. Therefore, additional research into detemporalization, including a
formal approach and basis for detemporalization, is very important. In the absence of
such formalization, detemporalization can only be achieved by code-specific analysis

and reasoning.

11.3.5 Formal Proof of Equivalence of Specific Statechart Constructs and
Specific Rule Formulas

In Section 7.3, strong correspondences between specific statechart constructs

and specific rule formulations were demonstrated. With these correspondences, the

263

value of statecharts, when used in concert with the rule algebra presented herein, was
demonstrated with regard to legacy code analysis. However, no formal proofs of
equivalence between specific statechart constructs and specific rule formulas were
presented. Given the demonstrated value of statecharts in legacy code analysis, and
noting the general scarcity of other research regarding statecharts and legacy code, this

could be a rich area for significant research.
11.3.6 Metadata About Rules

This research has focused on the analysis of legacy systems within the context of
a formal rule definition and rule algebra. However, significant benefit can be realized
through the analysis of the rules themselves. The database approach to legacy code
analysis as presented in Section 8.1 incorporated with this concept in that the some of
the database fields (ie., W, V, and Primary Membership) were derived from the
properties of the rules. Other rule properties that could be used to describe the rules
themselves include the extent of nesting, the use of recufsion, non-determinism, the C
variable set as defined in Section 11.3.3, and the rule properties of interdependence,
independence, and interference. As this area has not been investigated in this research,
the depth and potential of such research cannot be quantified. However, given the
formal basis of this rule algebra, its use to classify rules seems to be a reasonable and

rational extension.
11.3.7 Automated Tool Using the Rule Algebra

As presented in this research, this rule algebra is demonstrated to be a robust,
‘flexible, and expressive approach for the extraction of rules from a spectrum of existing
or legacy systems. The development and implementation of an automated tool using
this rule algebra approach would allow easier and faster ahalysis of a range of legacy
systems, and could significantly speed the testing and expansion of the underlying rule

- algebra.

264

References

Aiken, P., Muntz, A., & Richards, R. (1993). A framework for reverse engineering
DoD legacy information systems. Proceedings of the Working Conference on

Reverse Engineering, 180-191.

Alagar, V. S., & Periyasamy, K. (2001). BTOZ: A formal specification language for
formalizing business transactions. 39th International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems (TOOLS 39), 240-252.

Apt, K. R., & Olderog, E.-R. (1997). Verification of sequential and concurrent
programs. New York: Springer-Verlag.

Arnold, A. (1994). Finite transition systems. Englewood Cliffs, NJ: Prentice-Hall

Back, R.-J. (1988). A calculus of refinements for program derivations. Acta
Informatica, 25, 593-624.

Baeten, J. C. M. & Weijland, W. P. (1990). Process algebra. Cambridge, UK:
Cambridge University Press.

Bennett, K. H., Bull, T., & Yang, H. (1992). A transformation system for maintenance
~ Turning theory into practice. Proceedings of the International Conference on

Software Maintenance (ICSM), 146-155.

Binkley, D., & Gallagher, K. (1996). A survey of program slicing. In M. Zelkowitz
(Ed.), Advances in Computers, 43, 1-50. New York; Academic Press.

Binkley, D., Harman, M., Raszewski, L.R., & Smith, C. (2000). An empirical study of
amorphous slicing as a program comprehension support tool. Proceedings of the 8th
International Workshop on Program Comprehension (IWPC 2000), 161-170.

Birkhoff, G. & MacLane, S. (1977). A survey of modern algebra (4th ed.). New York:

Macmillan.

265

Blazy, S., & Facon, P. (1997). Application of formal methods to the development of a
software maintenance tool. Proceedings of the 12th IEEE International Conference

Automated Software Engineering, 162-171.

Bowen, J., Breuer, P., & Lano, K. (1993). A conipendium of formal techniques for
software maintenance. IEE/BCS Software Engineering Journal, 8(5), 253-262.

~ Bratko, I. (2001). Prolog programming for artificial intelligence (3rd ed.). New York:
Addison Wesley.

Britt, J.J. (1994). Case study: Applying formal methods to the Traffic Alert and
Collision Avoidance System (TCAS) II. Proceedings of the Ninth Annual
Conference on Computer Assurance (COMPASS '94), 39-51.

Biichi, J. R. (1989). Finite automata, their algebras and grammars: Towards a theory
of formal expressions (D. Siefkes, Ed.). New York: Springer-Verlag.

Bull, T. (1990). An introduction to the WSL program pransformer. Proceedings of the
International Conference on Software, 242-250. '

Burris, S. & Sankappanavar, H. P. (1981). A course in universal algebra. New York:
Springer-Verlag.

Cau, A. & Moszkowski, B. (1996). Using PVS for Interval Temporal Logic proofs.
Part 1: The syntactic and semantic encoding. (Technical Monograph 14). Leicester,
UK: SERCentre, De Mo_ntfort University.

Cau, A. & Zedan, H. (1997). Refining Interval Temporal Logic specifications. In M.
Bertran and T. Rus, (Eds.), Transformation-Based Reactive Systems Development,

Lecturé Notes in Computer Science 1231, 79-94. Springer Verlag.

Cau, A.‘ & Zedan, H. (2000). Chapter 21: The systematic construction of information
systems. In P. Henderson (Ed.), Systems engineering for business process change
(pp. 264-278). Springer Verlag.

266

Cau, A. & Zedan, H. (2006). A practitioner’s approach to reverse engineering through

abstraction. Preprint submitted to Elsevier Science.

Corbett, J. C.,, Dwyer, M. B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, &
Zheng, H. (2000). Bandera: Extracting finite-state models from Java source code.
Proceedings of the 2000 International Conference on Software Engineering,

439-448.

Danicic, S., Daoudi, M., Fox, C., Harman, M., Hierons, R. M., Howroyd, J., Ourabya,
L., & Ward, M. (2005). ConSUS: a light-weight program conditioner, Journal of
Systems and Software, 77(3) 241-262.

De Giacomo, G., Lesperance, Y., & Levesque, H. J. (2000). ConGolog, a concurrent
programming language based on the situation calculus. Articifial Intelligence

121(1-2) 109-169.

De Nicola, R. D. & Hennessy, M. C. B. (1984). Testing equivalences for processes.
Theoretical Computer Science, 34(1-2) 83-133.

Denecke, K. & Wismath, S. L. (2002). Universal algebra and applications in

theoretical computer science. Boca Raton: Chapman & Hall

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy, and the formal

derivation of programs. Communications of the ACM 18, 453-457.

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, N.J.:
Prentice-Hall.

Feijs, L., & de Jong, R. (1998). 3D visualization of software architectures.
Communications of the ACM, 41(12) 73-78.

Feynman, R. P. (1996). Feynman lectures on computation (A. Hey & R. Allen. Eds.).
Reading, Mass.: Addison-Wesley.

Fokkink, W. (2000). Introduction to process algebra. New York: Springer.

267

Fox, C., Harman, M., Hierons, R., & Danicic, S. (2000). ConSIT: A conditioned
program slicer. IEEE International Conference on Software Maintenance
(ICSM'2000), 216-226

Francel, M.A., & Rugaber, S. (1999). The relatidnship of slicing and debugging to
program understanding. Proceedings of the Seventh International Workshop on

Program Comprehension, 106-113.

Fu, G., Shao, J., Embury, S. M,, Gray, W. A., & Liu, X. (2001). A framework for
business rule presentation. Proceedings of the 12th International Workshop on

Database and Expert Systems Applications, 922-926.

Gannod, G. C., & Cheng, B. H. C. (1996). Using informal and formal techniques for
the reverse engineering of C programs. Proceedings of the Third Working

Conference on Reverse Engineering, 249-258.

Gannod, G. C., & Cheng, B. H. C. (1999). A formal approach for reverse engineering:
A case study. Proceedings of the Sixth Working Conference on Reverse

Engineering, 100-111.

Gannod, G. C., & Cheng, B. H. C. (2001). A suite of tools for facilitating reverse
engineering using formal methods. Proceedings of the 9th International Workshop
on Program Comprehension (IWPC 2001), 221-232.

Gill, A (1976). Applied algebra for the computer sciences. Englewood Cliffs, N.J.:
Prentice-Hall.

Giomi, J.C. (1995). Finite state machine extraction from hardware description
languages. Proceedings of the Eighth Annual IEEE International ASIC Conference
and Exhibit, 353-357.

Grosof, B. N., Labrou, Y., & Chan., H. Y. (1999). A declarative approach to business
rules in contracts: Courteous logic programs in XML. ACM Special Interest Group
on E-Commerce (EC99), 68-77. ' '

268

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of

Computer Programming 8, 231-274.

Harel, D. & Naamad, A. (1996). The STATEMATE Semantics of Statecharts. ACM
Trans. on Software Engineering and Methodology, 5(4) 293-333.

Harel, D., Lachover, H.,, Naamad, A., Pnueli, A., Politi M., Sherman, R., Shtul-
Trauring, A. & Trakhtenbrot, M. STATEMATE: A working environment for the
development of complex reactive systems. [EEE Trans. on Software Engineering
16(4) 403-414.

Hartmanis, J., & Stearns, R. E. (1966). Algebraic structure theory of sequential
machines. Englewood Cliffs, N.J.: Prentice-Hall

He, J., Seidel, K., & Mclver, A. (1997). Probabilistic Models for the Guarded
Command Language. Science of Computer Programming, 28, 171-192.

Herbst, H. (1995). A meta-model for business rules in systems analysis. In J. Iivari, K.
Lyytinen, & M. Rossi (Eds.), Proceedings of the Seventh Conference on Advanced
Information Systems Engineering (CAiSE '95), 186-199. Berlin: Springer.

Herbst, H., Knolmayer, G., Myrach, T., & Schlesinger, M. (1994). The specification of
business rules: A comparison af selected methodologies. In A.A. Verijn-Stuart &
T.W. Olle (Eds.), Methods and Associated Tools for the Information System Life
Cycle, 29-46. Amsterdam: Elsevier.

Hoare, C. A. R. (1975). Parallel programming: An axiomatic approach. In F. L. Bauer
& K. Samelson (Eds.), Language Hierarchies and Interfaces, Language Hierarchies
and Interfaces, Lecture Notes in Computer Science 46, 11-42.

Hoare, C. A. R. (1985). A couple of novelties in the propositional calculus. Zeitschrift
Sfur Mathematische Logik und Grundlagen der Mathematik, 31(2), 173-178.

Huang, H., Tsai, W.T., Bhattacharya, S., Chen, X.P., Wang, Y., & Sun, J. (1996).
Business rule extraction from legacy code. Proceedings of the 20th International
Computer Software and Applications Conference (COMPSAC '96), 162-167.

269

Huang, H., Tsai, W.T., Bhattacharya, S., Chen, X., Wang, Y., & Sun, J. (1998).
Business rule extraction techniques for COBOL programs. Journal of Software

Maintenance: Research and Practice, 10(1), 3-35.
Hungerford, T. W. (1974). Algebra. New York: Springer.

Koubarakis, M., & Plexousakis, D. (1999). Business process modelling and design - A
* formal model and methodology, BT Technology Journal, 17(4) 23-35.

Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering SE-3(2), 125-143.

Lamport, L. (1980). "Sometime" is sometimes "not never". Proceedings of the
Seventh ACM Symposium on Principles of Programming Languages, ACM SIGACT-
SIGPLAN, 174-185.

Lambort, L. (1994). The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3), 872-923.

Lanubile, F., & Visaggio, G. (1997). Extracting reusable functions by flow graph-
based program slicing. IEEE Transactions on Software Engineering, 23, 246-159.

Leite, J.C.S.d.P., & Leonardi, M.C. (1998). Business rules as organizational policies.
Proceedings of the Ninth International Workshop on Software Specification and
Design, 68-76.

Levy, L. S. (1980). Discrete structures of computer science. New York: Wiley.

L, X, Yang, H., & Zedan, H. (1997). Formal methods for the re-engineering of
computing systems: A comparison. = Proceedings of the Twenty-First Annual
International Computer Software and Applications Conference (COMPSAC '97),
409-414.

Mancoridis, S., Mitchell, B.S., Chen, Y., & Gansner, E.R. (1999). Bunch: A clustering
tool for the recovery and maintenance of software system structures. Proceedings of
the IEEE International Conference on Software Maintenance (ICSM '99), 50-59.

270

Manna, Z. & Pnueli, A. (1990). A hierarchy of temporal properties. 9th Symposium on
Principles of Distributed Computing, 377-408.

Manna, Z. & Pnueli, A. (1992). The temporal logic of reactive and concurrent

systems: Specification. New York: Springer-Verlag.

Manna, Z. & Pnueli, A. (1995). The temporal logic of reactive and concurrent
systems: Saftey. New York: Springer-Verlag.

Merriam-Webster Dictionary. (1998). Springfield, MA: Merriam-Webster.

Milner, R. (1980). A calculus for communicating systems. Lecture Notes in Computer

Science 92.
Milner, R. (1989). Communication and concurrency. New York: Prentice Hall.

Morgan, C., & Mclver, A. (1999). pGCL: Formal reasoning for random algorithms.
South African Computer Journal, 22, 14-27,

Moszkowski, B. (1986). Executing temporal logic programs. Cambridge, UK:

Cambridge University Press.

Moszkowski, B. (1994). Some very compositional temporal properties. In E.-R.
Olderog, (Ed.), Programming Concepts, Methods and Calculi, Vol. A-56 of IFIP
Transactions, 307-326. North-Holland: Elsevier Science B.V.

Moszkowski, B. (1996). Using temporal fixpoints to compositionally reason about
liveness. In H. Jifeng, J. Cooke, & P. Wallis (Eds.) BCS-FACS 7th Refinement
Workshop, Electronic Workshops in Computing, (1-28). Springer-Verlag and British

Computer Society.

Moszkowski, B. (2000). A complete axiomatization of interval temporal logic with

infinite time. 15th Annual IEEE Symposium on Logic in Computer Science, 241-252.

Moszkowski, B. (2003). A hierarchical completeness proof for interval temporal logic
with finite time. In V. Goranko and A. Montanari (Eds.), Proceedings of the ESSLLI

271

Workshop on Interval Temporal Logics and Duration Calculi, 41-65. Vienna:
Technical University of Vienna.

Murphy, G.C., Notkin, D., & Lan, E.S.-C. (1996). An Empirical Study of Static Call
Graph Extractors. Proceedings of the 18th International Conference on Software
Engineering, 90-99.

Ning, J.Q., Engberts, A., & Kozaczynski, W. (1993). Recovering reusable components
from legacy systems by program segmentation. Proceedings of Working Conference

on Reverse Engineering, 64-72.

Odell, J.J. (1995). Business rules. Journal of Object Oriented Program. Reprinted in
Odell, J.J. (1998). Advanced Object-Oriented Analysis & Design Using UML.
(pp. 99-107). Cambridge, UK: Cambridge University Press.

Owicki, S. & Lamport, L. (1982). Proving Liveness Properties of Concurrent
Programs. ACM Transactions on Programming Languages and Systems, 4(3), 455-
495.

Oxford English Dictionary. (1971). Oxford, UK: Oxford University Press
Park, D. (1981). Concurrency and automata on infinite sequences. In P. Deussen,

(Ed.) Proceedings of the International Conference on Theorical Computer Science,

Lecture Notes in Computer Science 104, 167-183. Springer-Verlag.

Penteado, R., Masiero, P.C., & Cagnin, M. 1. (1999). An experiment of legacy code
segmentation to improve maintainability. Proceedings of the Third European

Conference on Software Maintenance and Reengineering, 111-119.

Perkins, A. (2000). Business rules = Meta-data. Proceedings of the 34th International
Conference on Technology of Object-Oriented Languages and Systems, 285-294.

Petry, B. L. (1996). Getting the most out of legacy code: The uses of hypercode within
a typical IS organization. Proceedings of the IEEE 1996 National Aerospace and
Electroriiés Conference, 2, 852-857. \

272

Pitts, A. M. (1997). Operationally-based theories of program equivalence. In P.
Dybjer & A. M. Pitts (Eds), Semantics and Logics of Computation, 241-298.
Cambridge, UK: Cambridge University Press.

Plexousakis, D. (1995). Simulation and analysis of business processes using GOLOG.
Proceedings of the Conference on Organizational Computing Systems (COOCS’95),
311-323.

Popovic, M., Kovacevic, V., & Velikic, I. (2002). A formal software verification
concept based on automated theorem proving and reverse engineering. Proceedings
of the Ninth Annual IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS'02), 59-66.

Presley, A., & Rogers, K. J. (1996). Process Modeling to Support Integration of
Business Practices and Processes in Virtual Enterprises. Proceedings of the
International Conference on Engineering and Technology Management (IEMC 96),
475-479.

Ritsch, H. & Sneed, H. M. (1993). Reverse engineering programs via dynamic
analysis. Proceedings of the Working Conference on Reverse Engineering (WCRE
1993), 192-201.

Roscoe, A. W., & Hoare, C. A. R. (1986). Laws of occam programming - Technical
monograph PRG-53, Oxford, UK: Oxford University Computing Laboratory -

Programming Research Group.

Ross, R.G.. (1997). The business rule book - Classifying, defining and modeling rules.

Houston: Business Rule Solutions LLC

Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D., & McKee, B. (2000).
Extending business objects with business rules. International Conference on
Technology of Object-Oriented Languages (TOOLS 33), 238-249.

Scott, M. L. (2000). Programming language pragmatics. San Francisco: Morgan

Kaufmann.

273

Sebesta, R. W. (2002). Concepts of programming languages (5th ed.). Boston:
Addison Wesley.

Sellink, A., Sneed, H., & Verhoef, C. (1999). Restructuring of COBOL/CICS legacy
systems. Proceedings of the Third European Conference on Software Maintenance

and Reengineering, 72-82.

Shao, J. & Pound, C. J. (1999). Extracting business rules from information systems, BT
Technology Journal, 17(4), 179-186.

Siewe, F., Cau, A., & Zedan, H. (2003). A compositional framework for access control
policies enforcement. In M. Backes, D. Basin, & M. Waidner (Eds.), Proceedings of
the ACM workshop on Formal Methods in Security Engineering: From
Specifications to Code (FMSE'03), 32-42.

Sneed, H. M. (1998). Architecture and functions of a commercial software
reengineering workbench. Proceedings of the Second Euromicro Conference on

Software Maintenance and Reengineering, 2-10.

Sneed, H. M. & Erdos, K. (1996). Extracting business rules from source code.
Proceedings of the Fourth Workshop on Program Comprehension, 240-247.

Sneed, H. M. & Jandrasics, G. (1988). Inverse transformation of software from code to
specification. Proceedings of the IEEE Conference on Software Maintenance,
102-109.

Song, Y. T., & Huynh, D. T. (1999). Forward dynamic object-oriented program
slicing. Proceedings of the IEEE Symposium on Application-Specific Systems and
Software Engineering and Technology (ASSET'99), 230-237

Stanat, D. F., & McAllister, D. F. (1977). Discrete mathematics in computer science.
Englewood Cliffs, N.J.: Prentice-Hall.

‘Storey, M.-A. D., & Muller, H. A. (1995). Manipulating and documenting software
structures using SHriMP views. Proceedings of the International Conference on

Software Maintenance, 275-284.

274

STRL-Software Technology Research Laboratory. (2003). Formal methods
engineering or system modeling using finite-state machines. Leicester, UK:

Software Technology Research Laboratory, De Montfort University

STRL~Software Technology Research Laboratory. (2006). Interval temporal logic
(ITL) homepage. http://www.cse.dmu.ac.uk/STRL/ITL//index.html.

Tan, H. B. K, & Kow, J. T. (2001) Extracting Code Fragment That Implements
Functionality. Journal of Software Maintenance and Evolution: Research and

Practice, 13, 53-75.

Theodoulidis, B., Alexakis, P., & Loucopoulos, P. (1992). Verification and validation
of temporal business rules. Proceeding of the 3rd International Workshop on the

Deductive Approach to Information Systems and Databases, 179-193.

Tip, F. (1995). A survey of program slicing techniques, Journal of Programming
Languages, 3, 121-189.

Ulrich, WM. (1999). Knowledge mining: Business rule extraction and reuse. Cutter
IT Journal, 12(11), 21-26.

Ungureanu, V. & Minsky, N.H. (2000). Establishing business rules for inter-enterprise
electronic commerce. Proceedings of the 14th International Symposium on

Distributed Computing (DISC2000), Lecture Notes in Computer Science 1914.

van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-founded semantics for
general logic programs. Journal of the Association for Computing Machinery, 38(3),
620-650.

Villavicencio, G.& Oliveira, J. N. (2001). Reverse Program Calculation Supported by
Code Slicing. Proceedings of the Eighth Working Conference on Reverse
Engineering, 35-4S.

von der Beeck, M. (2001). Formalization of UML-statecharts. In M. Gogolla & C.
Kobryn (Eds.), Proceedings of UML 2001, Lecture Notes in Computer Science
2185, 406-442. Berlin: Springer.

275

Wang, T.H., & Edsall, T. (1998). Practical FSM analysis for Verilog. Proceedings of
the 1998 International Verilog HDL Conference and VHDL International Users
Forum, (IVC/VIUF 1998), 52-58.

Ward, M. (1989). Proving program refinements and transformations. (D. Phil. Thesis,
Oxford University, 1989).

Ward, M. (1999). Assembler to C migration using the FermaT transformation system.
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM'99), 67-76.

- Ward, M. (2000). Reverse engineering from assembler to formal specifications via
program transformations. Proceedings of the Seventh Working Conference on
Reverse Engineering (WCRE'00), 11-20. '

Ward, M. (2001). The formal transformation approach to source code analysis and
manipulation. - Proceedings of the First IEEE International Workshop on Source
Code Analysis and Manipulation, 185-193.

Ward, M. (2004). Pigs from sausages? Reengineering from assembler to C via FermaT

transformations. Science of Computer Programming, 52, 213-255.

Ward, M., Zedan, H., & Hardcastle, T. (2005). Conditioned semantic slicing via
abstraction and refinement in FermaT. Proceedings of the 9th European Conference
on Software Maintenance and Reengineering (CSMR 2005), 178-187.

Weiser, M. (1982) Programmers use slices when debugging. Communications of the
ACM, 25(7), 446-452.

Yang, H. and Bennett, K. H. (1994). Extension of a transformation system for
maintenance: Dealing with data-intensive programs. Proceedings of the International
Conference on Software Maintenance (ICSM 1994), 344-353

Yang, H., Liu, X., & Zedan, H. (2000). Abstraction: A key notion for reverse
engineerinvg in a system reengineering approach. Journal of Software Maintenance:

Research and Practice, 12, 197-228.

276

Zedan, H. & Yang, H. (1998). A sound and practical approach to the re-engineering of
time-critical systems. 2nd Euromicro Conference on Software Maintenance and

Reengineering (CSMR 1998), 220-223.

Zhao, J. (2000). A slicing-based approach to extracting reusable software architectures.

Proceedings of the Fourth European Software Maintenance and Reengineering,

215-223.

Zhou, S., Zedan, H., & Cau, A. (1999). A framework for analysing the effect of
'change' in legacy code. Proceedings of the IEEE International Conference on

Software Maintenance (ICSM '99), 411-420.

2717

Appendix A
Supporting Lemmas for the Rule Algebra

The following is a presentation of several general proofs that have been used is
support of other proofs that are presented elsewhere in this thesis. Proofs are presented
for NextAndDistEqv, NextAndOrDistEqv, NextOrAndDistEqv, NextOrDistEqv, and

TemporalContra.

LEMMA: NextAndDistEqv

F o(fonfi) = ofonofi

Proof:
1 fonfi = fonfi tautology
2 fonfi = (fonf) 1, associativity of A
3 Ofunofi = O(fonfD) 2, ITL (NextAndNextEqvNextRule)
4 o(fo Afi) = ofo A Of; 3, commutivity of =

LEMMA: NextAndOrDistEqv

Fol(fovid Az vSz) = (ofov of) Aofzv of3)

Proof:
1 ofovidafavi=olfovi)a(zvf)) tautology
2 =o(favfiyaofavfi) 1, NextAndDistEqv
3 =(ofpv oﬁ) Ao(faVvSf3) 2, NextOrDistEqv
4 =(ofpv of)) A(ofzv of3) 3, NextOrDistEqv

LEMMA: NextOrAndDistEqv

F o((fonf) v (fzaf3) = (ofo Aofi) v(of2Aof3)

Proof:
1 ol(foafdvifzaf=ol(foafdv({fzafs)) tautology
2 so(fyAfyvofanfs) 1, NextOrDistEqv
3 =(ofpaof)vo(aaf) 2, NextAndDistEqv
4 =(ofg A of)) v (ofz A Of3) 3, NextAndDistEqv

278

LEMMA: NextOrDistEqv

F ofivf) = ofi v of;

Proof:

L fos(fivh) = (fosfov (fosf)
2 skip;(fivf) = (skip;fi) v (skip; f2)
3 o(fivf) = ofivof

ChopOrEqv (ITL)
1, substitution of skip for f,
2, definition of o (ITL)

LEMMA: TemporalContra

F ofo A o—fp=false

Proof:
1 Ofo A O—-lfb = Oﬁ) A 0—1fo
2 OfoA O—foE O(fb/\ﬁﬁ))
3 ofp A o—fp = o(false)
4 ofy A o—fy=skip; false
5 ofo A o—fp = false

tautology

1, NextAndDistEqv

2, law of contradiction

3, ITL (definition of next)
4, ITL (semantics of chop)

279

Appendix B
Formal Transformation of Rules
Extracted from a Specification

In Section 7.2, rules are extracted from a concrete specification describing the
operation of an automated teller machine. Five of the extracted total rules are

considered in this formal transformation:

ruleza.p = ((atm_non_empty A owait_customer ; read_card ; rule;.c) ; rulesz.p)
V (matm_non_empty A empty)

(card_disabled A otake_disabled_card)
V (—card_disabled A oget_pin ; rule;2.4)

li>

rulezs.c

rulez2.q = (max_pin A odisable_card ; take_disabled_card)
V (—max_pin A oruley;.,)

- rulezz.e = (pin_exit A otake_card_pin_exit)
Vv (—pin_exit A orequest_money ; rulez..f)
rulezzs = (money_exit A otake_card_money_exit)

V (—money_exit A odebit_account ; take_card_money)

To facilitate analysis, the following variable name substitutions are made:

da% debit_account
dc= disable_card
gp= get_pin
rc® read_card
rm= request_money
tem= take_card_money
tcme = take_card_money_exit
tcpe = take_card_pin_exit
tdc = take_disabled_card
wc £ wait_customer
Xane = atm_non_empty
xcd® card_disabled
xme = money_exit
xmp = max_pin

. Xpe = pin_exit

280

Regarding these variable names, rule conditions variables begin with the letter x and are

depicted in italics. Using these rule conditions and rule state variable names, these five

rules of interest are rewritten as:

ruleszs = ((xane A owce ; rc; ruless.) ; rulesss) V (—xane A empty)
rulezz.c = (xcd A otde) v (—xed A ogp ; rulerz.q)

rules2.a = (xmp A odc ; tdc) v (—xmp A orulezz.e)

rulezz.e = (xpe A otcpe) v (—xpe A orm ; rule;)

ruleszs = (xme A otcme) v (—xme A oda ; tem)

Each of these rules is assumed as a premise. The formal transformation of these rules is

as follows:

1

rulez 2.
where:
rulezz.p = ((xane A owc ; rc ; ruler;.) ; rulezz.p)
V (=xane A empty)

premise

rules ..
where:

rulezz.. = (xcd A otdc) v (—xed A ogp ; ruley2.q)

premise

rulezz.q
where:
(xmp A odc ; tdc) v (—xmp A orules2..)

rulezz.q

premise

rulez ..
where:
(xpe A otcpe) v (—uxpe A orm ; rules)

rulez ..

premise

rule; ¢
where:
(xme A otcme) v (—xme A oda ; tcm)

ruley s

premise

rulezz.e

4, reiteration

(xpe A otcpe) v (—uxpe A orm ; rulez.z.)

4, 6, eqv. subst.

281

8 (xpe A otcpe) V (—upe A orm ; ((xmé A otcme) 5, 8, eqv. subst.
V (—xme A oda ; tcm)))
9 (xpe A otcpe) v ((—xpe A orm) ; ((xme A otcme) 8, ITL
v (—xme A oda ; tcm))) - (StateAndChop)
10 (—xpe A orm) ; ((xme A otcme) v (—xme A oda ;tcm)) CP assumption
11 (—xpe ; xme A orm ; otcme) 10, RuleChop-
Vv (—xpe ; —xme A orm ; oda ; tcm) TwoRuleImp
12 (—xpe ; xme A orm ; otcme) 11, v introduction
V (=xpe ; mxme A Orm ; oda ; tcm)
Vv (xpe A otcpe) '
13 (xpe A otcpe) Cp assumption
14 (—xpe; xme A Orm; otcme) 13, v introduction
V (—xpe ; mxme A orm ; oda ; tcm) and comm. of v
Vv (xpe A otcpe)
15 (—xpe ; xme A orm ; otcme) 9, 10-12, 13-14,
V (—xpe ; —xme A orm ; oda ; tcm) v elimination
V (xpe A otcpe)
16 —rulesz.. v (—xpe ; xme A orm ; otcme) 15, v introduction
V (—xpe ; —xme A orm ; oda ; tcm) v (xpe A otcpe)) and comm. of v
17 ruleyz.. D ((—xpe ; xme A orm ; otcme) 16, definition of D
V (=xxpe ; mxme A orm ; oda ; tcm) v (xpe A otcpe))
18 ruleszq 3, reiteration
19 (xmp A odc ; tdc) v (—xmp A orule;,..) 3, 18, eqv. subst.
20 (xmp A odc ;tdc) v (—xmp A skip ; rulezz.e) 19, ITL (def. of 0)
21 (xmp A odc ;tdc) v ((—xmp A skip) ; rule2..) 20, ITL
(StateAndChop)
22 (—xmp A sKip) ; rulesz.. CP assumption
' 23 (—xmp A skip) ; ((—xpe ; xme A orm ; otcme) 17, 22,
v (—upe ; —xme A orm ; oda ; tcm) Vv (xpe A Otcpe)) ChopSwapImpl

282

24 (—xmp A skip) ; (—xpe ; xme A orm ; otcme) 23, ITL (ChopOr)
v (—xmp A skip) ; (—xpe ; —xme A orm ; oda ; tcm)
v (—xmp A sKip) ; (xpe A otcpe)
25 (—xmp A skip) ; (—xpe ; xme A orm ; otcme) CP assumption
26 —xmp ; —xpe ; xme A sKip ; orm ; otcme 25, TwoChop-
RulesImp
27 (—xmp ; —xpe ; xme A sKip ; orm ; otcme) 26, v introduction
V (—xmp ; —xpe ; —xme A SKip ; orm ; oda ; tcm)
vV (—xmp ; xpe A SKip ; otcpe)
28 (—xmp A skip) ; (—xpe ; —xme A orm ; oda ; tcm) CP assumption
29 —xmp ; —xpe ; —xme A Skip ; orm ; oda ; tcm 28, TwoChop-
RulesImp
30 (—xmp ; —xpe ; xme A sKip ; orm ; otcme) 29, v introduction
V (—xmp ; —xpe , —xme A skip ; orm ; oda ; tcm) and comm. of v
Vv (—xmp ; xpe A sKip ; otcpe)
31 (—xmp A skip) ; (xpe A otcpe) CP assumption
32 —xmp ; xpe A Skip ; otcpe 31, TwoChop-
RulesImp
33 (—xmp ; —xpe ; xme A SKip ; orm ; otcme) 32, v introduction
V (—xmp ; —xpe ; —xme A skip ; orm ; oda ; tcm) and comm. of v
v (—xmp ; xpe A skip ; otcpe)
34 (—xmp; —xpe ; xme A Skip ; orm ; otcme) 24, 25-27, 28-30,
Vv (—xmp ; —xpe ; —~xme A skip ; orm ; oda ; tcm) 31-33, v elimination
v (—xmp ; xpe A sKip ; otcpe)
35 (—xmp ; —xpe ; xme A oorm ; otcme) 34, ITL (def. of 0)

V (—xmp ; —xpe ; mxme A oorm ; oda ; tcm)
V (—xmp ; xpe A ootcpe)

283

36 (—xmp ; —xpe ; xme A oorm ; otcme) 35, v introduction
V (—xmp ; —xpe ; mxme A corm ; oda ; tcm)
v (—xmp ; xpe A ootcpe)
v (xmp A odc ; tdc)
37 (xmp A odc ;tdc) CP assumption
38 (—xmp ; —xpe ; xme A OOrm ; otcme) 37, v introduction
vV (—xmp ; —xpe ; —xme A oorm ; oda ; tcm) and comm. of v
V (—xmp ; xpe A ootcpe)
v (xmp A odc ; tdc)
39 (—wmp ; —xpe ; xme A OOrm ; otcme) . 21, 22-36, 37-38,

V (—xmp ; —xpe ; —xme A 00rm ; oda ; tcm)
V (—xmp ; xpe A ootcpe)
V (xmp A odc ; tdc)

v elimination

40

—rulerz.a
"V ((—xmp ; —xpe ; xme A oorm ; otcme)

V (—xmp ; —xpe ; —xme A oorm ; oda ; tcm)
V (—=xmp ; xpe A ootcpe)
v (xmp A odc ;tdc))

39, v introduction
and comm. of v

41

ruley.q4 D ((—xmp ; —xpe ; xme A OOrm ; otcme)
V (=xmp ; —xpe ; —xme A 0Orm ; oda ; tcm)

V (—xmp ; xpe A O0tcpe) v

V (xmp A odc ; tdc))

40, definition of D

42 ruleys. 2, reiteration
43 (xcd A otdc) v (—xed A ogp ;5 rulerz.q) 2, 42, eqv. subst.
44 (xcd A otdc) v ((—xcd A ogp) ; rulez2.q) 43, ITL
(StateAndChop)
45 (~wxcd A ogp) s rules o4 CP assumption
46 (—xcd A ogp) 5 ((—xmp ; —xpe ; xme A Oorm ; otcme) 41, 45,
V (—xmp ; —xpe ; ~xme A oorm ; oda ; tcm) ChopSwapImpl

V (—xmp ; xpe A ootcpe)
V (xmp A odc ; tdc))

284

47 (—xcd A ogp) ; (—xmp ; —xpe ; xme A corm ; otcme) 46, TTL (ChopOr)
v (—xcd A ogp) ; (—xmp ; —xpe ; —xme
A oorm; cda ; tcm)
V (—xed A ogp) ; (—xmp ; xpe A ootcpe)
v (=xed A ogp) 5 (xmp A odc ; tdc)
48 (—xed A ogp) 5 (—xmp ; —xpe ; xme A oorm ; otcme) CP assumption
49 (—xed ; —xmp ; —xpe ; xme) A (ogp ; oorm ; otcme) 48, TwoChop-
RulesImp
50 (—xed 3 —xmp ; —xpe ; xme A Ogp ; oorm ; otcme) 49, v introduction
v (—xcd ; —xmp ; —xpe ; —xme and comm. of v
A Ogp ; oorm ; oda ; tcm)
v (=wxed 5 —xmp ; xpe A ogp ; ootcpe)
v (—xcd ; xmp A ogp ; odc ; tdc)
51 (—xcd A ogp) 3 (—xmp ; —xpe ; —xme A oorm ; oda; CP assumption
tcm)
52 (—xcd 3 —xmp ; —xpe ; —~xme) 51, TwoChop-
A (ogp ; corm ; oda ; tcm) RulesImp
53 (=wxcd 3 —xmp ; —xpe ; xme A Ogp ; 0orm ; otcme) 52, v introduction
V (—xed 3 —xmp ; —xpe ; —xme and comm. of v
A Ogp ; corm ; oda ; tcm)
v (—xcd ; —xmp ; xpe A ogp ; ootcpe)
Vv (=xcd ; xmp A ogp ; odc ; tdc)
54 (—xcd A ogp) 5 (—xmp ; xpe A Ootcpe) CP assumption
35 (—xcd ; —xmp ; xpe) A (ogp ; cotepe) 54, TwoChop-
RulesImp
56 (=xcd 3 —xmp ; —xpe ; xme A ogp ; oorm ; otcme) 55, v introduction
V (—xcd 3 —xmp ; —xpe ; —xme and comm. of v
A Ogp; oorm; oda ; tcm)
Vv (=xcd ; =xmp ; xpe A ogp ; ootcpe)
v (=xed ; xmp A ogp ; odc ; tdc)
57 (—xcd A ogp) ; (xmp A odc ; tdc) CP assumption

285

58 (—xcd ; xmp) A (ogp ; ode ; tdc) 57, TwoChop-
RulesImp
59 (—xed ; —xmp ; —xpe ; xme A Ogp ; oorm ; otcme) 58, v introduction
v (=xcd ; —xmp ; —xpe ; ~xme ' and comm. of v
A ogp; oorm; oda ; tcm)
v (=xcd ; —xmp ; xpe A Ogp ; ootcpe)
-V (—xcd ; xmp A ogp ; odc ; tdc)
60 (—wxed ; —xmp ; —xpe ; xme A Ogp ; oorm ; otcme) 47, 48-50, 51-53,
V (—xcd 3 —xmp ; —xpe ; ~xme 54-56, 57-59,
A Ogp ; oorm ; oda ; tcm) v elimination
V (=xcd ; —xmp ; xpe A Ogp ; ootcpe)
v (—xcd ; xmp A ogp ; odc ; tdc)
61 (=xed ; ~xmp ; —xpe ; xme A Ogp ; 0orm ; otcme) ' 60, v introduction
V (—wxcd ; —xmp ; —xpe ; —xme
A Ogp; oorm; oda ; tcm)
V (=xcd y —xmp ; xpe A Ogp ; 0otepe)
v (—xed ; xmp A ogp ; odc ; tdc)
v (xcd A otdc)
62 (xcd A otdc) CP assumption
63 (—xed ; —xmp ; —xpe ; xme A Ogp ; oorm ; otcme) 62, v introduction
V (—wxed 3 —xmp ; —xpe ; —xme and comm. of v
A Ogp; oorm; ©da ; tcm)
V (~wxcd ; —xmp ; xpe A Ogp ; 0otcpe)
v (=xcd 3y xmp A ogp ; odc ; tdc)
Vv (xcd A otdc)
64 (—wcd ; —ump ; —xpe ; xme A Ogp ; oorm ; otcme) 44, 45-61, 62-63,

v (—xed ; —xmp 3 —xpe ; —~xme A ogp ; oorm ; oda ; tcm) v elimination

V (=xcd y —xmp ; xpe A Ogp ; ootcpe)
v (—=xcd ; xmp A ogp ; odc ; tdc)
v (xcd A otdc)

286

65

-lrule7,2.c

((—xcd ; —xmp ; —xpe ; xme A Ogp ; oorm ; otcme)

V (—xcd ; —xmp ; —xpe ; —xme A ogp ; oorm ; oda ; tcm)
V (—wxced ; ~xmp ; xpe A Ogp ; Ootcpe)

Vv (—xcd ; xmp A Ogp ; odc ; tdc)

v (xcd A otdc))

64, v introduction
and comm. of v

66

rule;z.. D

((—xcd ; —xmp ; —xpe ; xme A Ogp ; oorm ; otcme)

V (=xcd ; —xmp ; —xpe ; ~xme A ogp ; oorm ; oda ; tcm)
V (=xcd ; —xmp ; xpe A Ogp ; OOtcpe)

V (—xcd ; xmp A ogp ; odc ; tdc)

Vv (xcd A otdc))

63, definition of >

67

ruley,z.b

1, reiteration

68

((xane A owc ;1C ; ruley.c) ; rules ;) v (—xane A empty)

1, 67, eqv. subst.

69 ((xane A owc s 1C ; ruleyz.c) s ruleszs) CP assumption
70 (((xane A owc ;1¢) ; rulesz.) ; ruleszs) 69, ITL
(StateAndChop)
71 (xane A owc ;1¢) ; rulesac s rules s 70, ChopAssoc
72 (xane A owc ; r¢) 3 ((—xed 3 —xmp ; —xpe ; xme 66,71,
A Ogp ; oorm ; otcme) ChopSwapImp3

v (—xed 5 —xmp , —xpe ; —xme
A Ogp ; oorm ; oda ; tcm)
V (=xcd ; —xmp ; xpe A Ogp ; ootcpe)
v (—wxed ; xmp A ogp ; odc ; tdc)
Vv (xcd A otdc)) 5 rulesas

287

73

((xane A owc ; 1c) ; (—xcd ; —~xmp ; —xpe ; xme 72, ITL (ChopOr)
. A Ogp; oorm ; otcme)
V (xane A owc ; rc) ; (—xed ; —xmp ; —xpe ; ~xme
A ogp; oorm; oda ; tcm) '
V (xane A owc ; 1c) ; (—xcd ; —xmp ; xpe
A ogp ; ootcpe)
v (xane A owc ; rc) ; (—xced ; xmp A ogp ; odc ; tdc)
v (xane A owc ;rc) ; (xcd A otdc)) ; rulesas

74

(xane A owc ; rc) ; (mxed ; —xmp ; —~xpe ; xme 73, ITL (OrChop)
A ogp ; oorm ; otcme) ; rulezz.p
V (xane A owc ; rc) 5 (—xed ; —xmp ; —xpe ; ~xme
A ogp;oorm; oda ; tcm) , rulesz.p
v (xane A owc ; rc) 3 (—xed ; —xmp ; xpe
A ogp ; ootcpe) ; rulezp
V (xane A owc ; rc) 3 (—wxed ; xmp
A ogp; ode s tde) ; rulesap
v (xane A owc ; 1¢) ; (xcd A otdc) ; ruley sy

75

(xane A owc ; 1€) ; (—xcd ; —xmp ; —xpe ; xme CP assumption
A Ogp ; oorm ; otcme) ; rulez .,

76

(xane ; =xcd ; —xmp ; —xpe ; xme) A (owe ;rc ; ogp; 75, TwoChop-
oorm ; otcme ; ruleza.p) RulesImp2

77

((xane ; —~xcd 3 ~xmp ; —xpe ; xme) , 76, v introduction
A (owc s rc; ogp ; oorm ; otcme ; rulesz.p))
Vv ((xane ; —xcd ; —~xmp ; —xpe ; —xme)
A(owc ;rc; ogp; oorm; oda ; tem ; rulerz.p))
v ((xane ; —~xcd ; —~xmp ; xpe)
A (owc ;rc; ogp ; ootepe ; rulesz.p))
V ((xane ; =xcd ; xmp)
A (owce ;e ; ogp ; odc ; tde; rulezz.p))
V ((xane ; xcd) A (owc ; rc; otdc ; rules2.p))

78

(xane A owc ; 1¢) 5 (—xed 3 —xmp ; —xpe ; —~xme CP assumption
A ogp;corm; oda s tcm) ; ruleszp

288

79

(xane ; —xcd ; —xmp ; —xpe ; ~xme)
A(owc ;rc; ogp; oorm; oda;tem ; rulerap)

78, TwoChop-
RulesImp2

80

((xane ; —xcd ; —xmp ; —xpe ; xme)
A (owce s 1c; ogp; oorm ; otcme ; rulesa.p))
V ((xane ; —xcd ; —xmp ; —xpe ; —xme)
A (owe s 1c; ogp s oorm ; oda ; tem ; rulesz.p))
V ((xane ; —xcd ; —xmp ; xpe)
A (owc jrc; ogp ; ootepe ; rulezz.p))
Vv ((xane ; —xcd ; xmp)
A (owce ;rc; ogp ; ode ; tde; rules b))

v ((xane ; xcd) A (owc ;1c ; otde ; ruleszp))

79, v introduction
and comm. of v

81

(xane A owc ; 1c) 5 (mxed ; —xmp ; xpe
A Ogp ; ootcpe) ; rules s

CP assumption

82

(xane ; —xcd ; —xmp ; xpe)

A (owce ;1c ; ogp ; ootepe ; rulesap)

81, TwoChop-
RulesImp2

83

((xane ; —xcd ; —~xmp ; —xpe ; xme)
A (owc ;rc; ogp ; oorm ; otcme ; rulezs.p))
V ((xane ; —xcd 3 —xmp ; —xpe ; —xme)
A (owc ;1 ; ogp; corm ; oda ; tem ; rulesz.p))
Vv ((xane ; —xcd ; ~xmp ; xpe)
A (owc ; rc ; ogp ; ootepe ; rules b))
V ((xane ; —=xcd ; xmp)
A (owce s re; ogp s ode ; tde; rulesz.p))
V ((xane ; xcd) A (owc ;e ; otde ; rulesz.))

82, v introduction
and comm. of v

84

(xane A owc ; rc) ; (—xcd 5 xmp
A ogp ; odc ; tdc) ; rulesz.p

CP assumption

85

(xane ; —xcd ; xmp)
A (owce ;re; ogp; ode ; tde; rulezz.p)

84, TwoChop-
RulesImp2

289

86

((xane ; —xcd ; —xmp ; —xpe ; xme)
A (owce ; 1c ; ogp ; oorm ; oteme ; rulesz.s))
V ((xane ; —xcd ; —xmp ; —xpe ; —xme)
A (owce src; ogp; oorm ; oda ; tcm ; rules.p))
v ((xane ; —xcd ; —xmp ; xpe) '
A (owc ;rc; ogp ; ootepe ; ruley,z-b))
V ((xane ; —xcd ; xmp) '
A (owc ;e ; ogp ; odc ; tde; rulez)
V ((xane ; xcd) A (owce ; rc ; otdc ; rules.p))

85, v introduction
and comm. of v

87

(xane A owc ;1c) ; (xed A otde) ; rulez oy

CP assumption

88

(xane ; xcd) A (owc ;1C ; otde ; rulezzp)

87, TwoChop-
RulesImp2

89

((xane ; —xcd , —xmp ; —xpe ; xme)
A (owce ;s rc ; ogp ; oorm ; otcme ; rulezz.p))
V ((xane ; —~xcd ; ~xmp ; —xpe ; —xme)
A (owc ;rc; ogp; oorm ; oda ; tem ; rulezz.p))
V ((xane ; —xcd ; —xmp ; xpe)
A (owce ;e ; ogp ; ootepe ; rulezz.p))
V ((xane ; =xcd ; xmp)
A (owc s rc; ogp; ode ; tdc; rules.p))
V ((xane ; xcd) A (owc ; 1¢ ; otdc ; rules2.p))

88, v introduction
and comm. of v

90

((xane ; —~xcd y —~xmp ; —xpe ; xme)
A (owce s 1Cc ; ogp ; oorm ; otcme ; rules.p))
V ((xane ; —xcd ; —xmp ; —xpe ; —xme)
A (owc ;e ; ogp s oorm; oda ; tcm ; rulesz.p))
\% ((xdne y —ed ; —xmp ; xpe)
A (owc ; 1c ; ogp ; ootepe ; rulesz.s))
V ((xane ; —xcd ; xmp)
A (owe ;s 1c ; ogp s ode ; tdc; rulesz.p))
V ((xane ; xcd) A (owc ;rc ; otdc ; rulerzs))

74, 75-71, 78-80,
81-83, 84-86, 87-89,
v elimination

290

91 ((xane ; —xcd 5 —xmp ; —xpe ; xme) v introduction

A (owc ; rc ; ogp ; oorm ; otcme ; rulesz.p))

Vv ((xane ; —xcd ; —xmp § —xpe ; —xme)
A (owce ;e ogp ; oorm ; oda ; tem ; rulessp))

V ((xane ; —xcd ; —xmp ; xpe)
A (owc ;rc; ogp ; ootepe ; rulesz.p))

V ((xane ; —xcd ; xmp)
A (owce ;re ; ogp ; odce ; tde; rules2.s))

V ((xane ; xcd) A (owc ; 1c ; otde ; ruleszp))

v (—xane A empty)

92 (—xane A empty) CP assumption
93 ((xane ; —xcd ; —xmp ; —xpe ; xme) 92, v introduction
A (owce ; rc 3 ogp ; oorm ; otcme ; rulesz.p)) and comm. of v

V ((xane ; —xcd y —~xmp ; —xpe ; —xme)
A (owc ;s rc; ogp; oorm ; oda ; tem ; ruleza.s))
Vv ((xane ; —xcd 3 —xmp ; xpe)
A (owc ;e 5 ogp ; ootepe ; ruleras))
v ((xane ; —xcd ;, xmp)
A (owc ;rc ; ogp ; ode ; tdc; rulezz.s))
v ((xane ; xcd) A (owc rc ; otde ; rulers.p))
v (—xane A empty)

94 ((xane ; —xcd ; —xmp ; —xpe ; xme) 68, 69-91, 92-93,

A (owc ;T ; ogp ; oorm ; oteme ; ruless)) v elimination

v ((xane ; —xcd ; —xmp ; —xpe ; —~xme)
A (owce src; ogp; oorm ; oda ; tem ; rule;a.p))

Vv ((xane ; —xcd ; —xmp ; xpe)
A (owe s e 5 ogp ; ootepe ; rules.2.s))

V ((xane ; —~xcd 3 xmp)
A (owe ;e ; ogp; ode ; tde; rulerzp))

v ((xane ; xced) A (owc ;e ; otde ; rulesz.p))

V (—xane A empty)

201

Based on these transformations, the following observations are made. By
definition, rule;2.r describes the behaviors associated with rule;2.sand no transformation

is required. The two possible behaviors associated with rule; ,.r are:

(money_exit A otake_card_money_exit)

v (—money_exit A odebit_account ; take_card_money)

The transformation of rulez ;.. is complete at sequent 15 and incorporates the behaviors
associated with rules,.r. The three possible behaviors associated with ruley ;.. are:
(—pin_exit ; money_exit A orequest_money ; otake_card_money_exit)

Vv (—pin_exit ; ~money_exit A
orequest_money ; odebit_account ; take_card_money)

v (pin_exit A otake_card_pin_exit)

The transformation of rule; .4 is complete at sequent 39 and incorporates the behaviors
associated with rulesz., and rules;; The four possible behaviors associated with

rulez ;.. are:

(=max_pin ; —pin_exit ; money_exit ’
A oorequest_money ; otake_card_money_exit)

V (—max_pin ; —pin_exit ; ~money_exit v
A oorequest_money ; odebit_account ; take_card_money)

v (=max_pin ; pin_exit A ootake_card_pin_exit)

v (max_pin A odisable_card ; take_disabled_card)

The transformation of ruley.. is complete at sequent 64 and incorporates the behaviors
associated with rules .4, rules;.., and rule;»5 The five possible behaviors associated

with rules;.. are:

(—card_disabled ; —max_pin ; —pin_exit ; money_exit
A oget_pin ; oorequest_money ; otake_card_money_exit)

Vv (—card_disabled ; ~max_pin ; —pin_exit ; ~money_exit
A Oget_pin ; oorequest_money ;

292

odebit_account ; take_card_money)

v (—card_disabled ; ~max_pin ; pin_exit
A oget_pin ; ootake_card_pin_exit)

v (—card_disabled ;, max_pin
A oget_pin ; odisable_card ; take_disabled_card)

v (card_disabled A otake_disabled_card)

The transformation of rule; 2.5 is complete at sequent 94 and incorporates the behaviors
associated with rulesz.c, rules;.q, rulesz., and rule;;; The six possible behaviors

associated with rule; ;. are:

(atm_non_empty ; —card_disabled ; —max_pin ; —pin_exit ; money_exit
A owait_customer ; read_card ; oget_pin ; corequest_money ;
otake_card_money_exit ; rulesz.p)

v (atm_non_empty ; —~card_disabled ; ~max_pin ; —pin_exit ; mmoney_exit
A owait_customer ; read_card ; oget_pin ; corequest_money ;
odebit_account ; take_card_money ; rules.z.»)

v (atm_non_empty ; —card_disabled ; —max_pin ; pin_exit

A owait_customer ; read_card ; oget_pin ;
ootake_card_pin_exit ; rules2.)

v (atm_non_empty ; —card_disabled ; max_pin
A owait_customer ; read_card ; oget_pin ;
cdisable_card ; take_disabled_card ; ruless.5)

v (atm_non_empty ; card_disabled
A owait_customer ; read_card ; take_disabled_card ; rule;2.5)

v (—atm_non_empty A empty)

293

Appendix C
Formal Transformation of I/O Rules in Legacy Code

In this formal transformation, the specific rules derived from the legacy code
presented in Section 8.1 are transformed to create a single rule structure. The focus of
this transformation are the rules associated with specific I/O activities. Because ruleq

does not include any I/O activities, rule, is not considered in this transformation.

This transformation rests on seven premises that reflect the rules extracted from
legacy code that directly or indirectly include the variable /Oy — fo, rule, ruley, rules,
rules, rules, and rules. Because the deepest rule, rules (including the subrule rules)
includes no other rules and therefore, by definition, totally describes all behaviors
associated with rules, rules needs no transformation. Therefore, rules is transformed
first and incorporates the behaviors associated with rules. Then, rule; is transformed
and incokrporatés the behaviors derived from rule; and rules. Then, rule; (including the
subrule ruley) is transformed and incorporates the behaviors derivcd from rule;, rules,
and rules. Finally, fy is transformed and incorporates the behaviors derived from rule;,

rule, rules, and rules.

1 fo premise
where: fo = foa 3 for 3 fou 5 Tuler ; foc ; foa s foe
2 rule o o premise

where: rule; = f, ; ruley

3 ruley ; ' IR ’ premise
where: rule; = (wer A orulez ; fip 3 ruley)
v (=werr A empty)

4 - rule; premise
where: rulez = (w2 A Ofsa s S 5 rules ; fic 3 foa s ruled ; fie)
Y (—-l_wc; A empty)

5 rule;s premise
where: rule; = (wes A orules | fuq 3 fan)
V (=wes A Ofee s faa)

294

6 rules premise
where: rules = fs, 5 rules:
T rules premise
where: rules: = (wWes' A Ofep 3 foo & rules)
v (—1Wc5' A empty)
8 rule; 5, reiteration
9 (wcs A orules; faa s fab) V (=We3 A Ofae s f1d) 5, 8, def. subst.
10 rules =foq 3 rules 6, reiteration
11 (wes A (Ofsa s rules) s faa s fan) Vv (—wes A Of e s f1a) 9, 10, eqv. subst.
12 ((wes A fea) 5 rules; faa s fan) v (=wes A Ofac s faa) StateAndChop
13 rules = (wes' A Ofep 5 foc § rules)) v (—wes A empty) 7, reiteration
14 ((wcs A Ofea) s ((Wes' A Ofes 3 foc 5 rules) 12, 13, def. subst.
v (—wes' A empty)) ; fea s fan) V (=Wes A e s faa)
15 ((wes A Ofsa) s ((Wes' A Of b 5 foc s Tules?) ; faa s fav 14, OrChop
V (=wes' A empty) ; faa s fan)) V (=wes A Of e s fad)
16 ((wes A Ofsa) s ((Wes A Ofep s foc s rules s fua 5 fa) 15, StateAndChop
V (=wes A empty ; fua s f))) V (=wes A Ofac s faa)
17 ((wes A Ofsa) s ((Wes A Sfen s foc 5 Tulest; faa s fav) 16, EmptyChop
V (mwes' A faa 3 fap))) V (—Wes A Ofac s fad) ‘
18 (wcs A Ofsa) s ((Wes' A Ofp 5 foc s rules: s fua s fab) CP assumption
V (=Wes A faa s fan)
19 ((wes s wes) A (Sfsas Ofse s foc s rulest; fa s fo)) 18, RuleChop-
V ((wez s =wes) A (Ofea s faa s far)) TwoRuleImp
20 ((wcz s wes) A (fsas Ofen s foo s rules: s faa s fa)) 19, v introduction
V ((wes s =wes) A (Ofea s faa s fan))
V (—=Wc3 A Sfyc s faa)
21 (=wes A fue s fad) CP assumption

295

22 ((wces s wes) A (Ofeas Ofen s foo s rules: s faa 3 fob) 21, v introduction
v ((wesz s =wes) A (Ofa s faa s f11) and comm. of v
v (=wcs A Oftc ;s fad)
23 ((wcs s wes) A (Ofsas Ofen s foo s rules:; fua s fv)) - 18-20, 21-22,
v ((Wes s =wes) A (fsa s faa s fo5)) v elimination
V (=we3 A Ofuc s fad)
24 ((wez s wes) A (Ofsa s Ofen s foc s rules s fua s fan)) 23, v introduction
v ((wez s =wes) A (fea s faa s fob)
V (=Wc3 A Of¢c ; f4d)
v -.ruleg
25 rules D (((Wes 3 wes) A (fsa s O s 3 foc s rules ; faa 3 fo)) 24, comm. of v and
v ((wez 5 =wes) A (Ofsa s faa s fan)) definition of O
V (=wcs A e s fad)
26 rule; 4, reiteration
27 (wcz A Ofsas fa s rules s fac s fra s ruleq s f3e) 4, 26, def. subst.
V (—wcz A empty)
28 ((wez A Ofsa i fin) s rules s frc s foa s rules s foo) 27, StateAndChop

V (—wez A empty)

29

(Wez A Of a3 fan) s rules s fc s f3a 3 ruley ; fre

CP assumption

30

(wez A Ofsa 5 f38) s (((Wes s wes) A (Ofsas Ofsn s focs
rules; fea 3 fa5)) v ((Wes 5 —wes) A (Ofsa's faa 5 o)
V (=We3 A Sfie s fad)) 3 frc s fra s rules s fe

29, ChopSwaplmp3

31

(wWez A Of3a 3 f3n) 3 (((wes 3 wes) A (Sfea s s 3 foc s
rules ; faa s fav)) s f3c 3 f3a s ruleq s fre V (Wes 3 ~wes) A
(Ofta s faa s J8) s Jac s foa s rules s fre

V (=wes A Ofsc s fud) i foe s foa's ruleqs fre)

30, OrChop

32

(w2 A Of3a 5 f38) s (((wes 5 wes?) A (Ofsa s Sfes s foc s rules

s Jaa s fa0)) 3 foc s fsa s ruleq s fre
V ((wes 5 =wes) A (Qfea s faa 3f46)) 3 fae 3 faa's rules s fre
V (=wes A e s f4d) 3 fac s Sfra s rules s fie)

V (—wc2 A empty)

31, v introduction

296

33 (—we2 A empty) CP assumption
34 (wcz A fsasfaw) s (((wes 3 wes) A (Qfsas O s foc s 33, v introduction
rules; faa s f4v)) 3 f3c 3 f3a s ruleq s f3e v (Wes 3 —wes?) and comm. of v
A (Ofsa s faa s Jab)) 3 f3c 3 f3as ruless fae
V (=Wes A Ofuc s fad) 5 fac s fra s ruleq s f3e)
V (=we2 A empty)
35 (we2 A fsas f30) s (((Wes s wes) A (Ofsa s Ofen s foo s rulest; 34, v elimination

Saa s fa0)) s fc 3 fra s ruleq s fre v ((wes 5 —wes)
A (FSea 3 Jaa s fab)) 3 f3c 3 S3a s ruleq ; fae

V (=Wcs A Sfacs fad) s fac s faa s ruleq s fre)

Vv (—we2 A empty)

36

(Wez A a5 f36) 3 ((Wes 5 wes) A (Ofsa s O 3 foe 3 rulest;
Jaa s f)) s fac s Sra s ruleg s fre v (Wez A Of3a s fon) 3 ((Wes
—wes) A (Ofea s faa 5 f6)) 3 foc s foa s ruled s fre

vV (We2 A Of3a 5 f) 3 (mWes A Ofe s faa) 3 fac 3 fra s ruleq ; fre
V (=wc2 A empty)

35, ChopOr

37

(We2 A Of3a s f38) s (Wes s wes) A (Ofsa s Of ep 5 foc 3 rules s

Jaa 3 fa)) 3 fac s Sras rules s fe

CP assumption

38

(Wez2 3 Wes s wes) A (Ofsa s f3n 5 Ofea s Ofsn 3 foe s Tules:; faa

s Jab 3 fac s f3a 5 ruleq s fe)

37, TwoChop-
RulesImp2

39

((wez s wes s wes) A (Sfsas fab s Ofea s Ofen s foc s rules;
Jaa s Jav 3 fac s fra s ruleq; fie)) v ((Wez 3 wes 3 —wes) A
(%f3a 5S35 3 a3 faa s fan s foc 3 fra s ruleq s f30)) v (wez 5
=wc3) A (a3 f3b 3 Ofsc s faas foc s faa s ruleq s fie))

V (mwc2 A empty)

38, v introduction

40

(wez A fsa s f30) s ((Wes s —wes) A (Ofss s faa s fon) 5
Jsc s foa s rules ; fe

CP assumption

41

(w2 s wes s =wes) A (Of3a s f3b 3 Ofsa s faa s fv 5 f3c 3 S35
ruley ;f?e)

40, TwoChop-
RulesImp2

297

42 ((wc2 s wes s wes) A(f3a /385 Ofea s Ofen s foc s Tules s
Jaa s S 3 S3e 3 3a s rules s f30)) v ((Wez 3 wes 5 —wes) A
(Sf3a 3 f30 3 Aea s Jaas fav s [oc 3 S3a 3 ruleq s f32)) v (wez
—wes) A(Sfsas fov s e s faa s foc 3 Sf3as ruleq ; f3e))
Vv (=wcz A empty)

41, v introduction
and comm. of v

43 (We2 A a3 f) 3 (mWes A Ofc s fad) s foc s foa s rules fre

CP assumption

44 (wez 3 —wes) A (Of3a 3 f3 s Ofte s faa s foc s faa s ruleq ; fie)

43, TwoChop-
RulesImp2

45 ((wez s wes s wes) A (Of3a s fan s Ofsa s Ofen 3 foc s rules ;
Jaa s a3 Soc s fra s ruleqs f30)) v ((Wez s wes 5 —wes) A
(f3a s f3b 3 Ofea s faas fab s Sfc 3 foa s ruleq; f2)) v (wez 5
—Wes) A (Ofsas fin 3 Oftc s fua s frc s fras ruleq s foe))
V (—wez2 A empty)

44, v introduction
and comm. of v

46 . (—we2 A empty)

CP assumption

47 ((wez s wes s wes) A(f3as fon s Ofeas Ofen s foo s rules;
S 3 Jaw 3 f3c3 fra s ruleq s f3e)) v ((wez s wes 5 —wes) A
(%fsa 30 5 Ofea s Jaas v s foc 3 foa s ruleq s f2)) v (wez
=wes) A (fsa s S50 5 Ofae s faa s foc 3 fra s ruleq s f3e))
V (=wcz2 A empty) : ‘

46, v introduction
and comm. of v

48 ((wcz 3 wes s wes) A(Sf3a 3 /305 fea s Ofen 3 foc s rules:; fua s
Jav 3 fsc s fras ruleq s f3e))
v ((wez s wes s =wes) A (Of3a 3 f3b 3 fea s Jaa s Sfav 3 fc s Joas
ruleq ; fe))
V (W2 s —wes) A (Ofsa s oo 3 Ofte s faa s foc s fra s rules s f3e))
VvV (=wcz2 A empty)

47, v elimination

49 ((wez s wezs wes) A(fsas fon s Ofeas Sfev s foc s rules; faas
Jav 3 fic s fra s ruleq; f3e))
vV ((wez 3 wes s —wes) A (9f3a 530 5 ea s Joa s Sob 3 f3e 3 S3as
ruleq; fi))
V(a2 s =wes) A (S s fov s Of e s fua's fic 3 fra's rules s o)
Vv (=wez A empty)
\"4 --niléz

48, v introduction

298

50

rule; D (((wez2 s wes s wes) A (f3a s f3n 3 Ffsas Ofn s Soc s
rules:; faa s fav 3 foc s f3a 5 rules ; fe))

V ((Wez s wes 3 =Wes) A (Qfsa s fab 5 Ofea s faa s fan 3 foe 3 f3a5
ruley ; f3.))

v ((Wez s =wes) A (fsas fao s Ofte s faa 3 frc 3 f3a s rileq s fre))

V (mwe2 A empty))

49, comm. of v and

definition of ©

51

Jo

1, reiteration

52

Joa s Jo1 5 foo 5 ruley s foc s foa 5 foe

1, 51, def. subst.

53

rule; = fi, 3 ruley

2, reiteration

54

Soa s Jous Job 3 f1a s ruler; foo s foa s foe

2, 52, def. subst.

55

ruley = (wer A oruley s f1 5 ruler) v (—wer A empty)

3, reiteration

56

Joa s Jor 3 Job 3 fia s ((Werr A orules s fiy 5 ruler)
v (—wci A empty)) ; foc ; foa 5 foe

54, 55, eqv. subst.

57 foa s o153 fo 3 f1a s ((wer A oruley) ; f1p 5 ruler) 56, StateAndChop
v (=wer A empty)) ; foc s foa s foe

58 foa s Soi3 fon s f1a s ((Wer A orules) s frp s ruler) s foc 5 foa s Joe 57, OrChop
Vv (=wer A empty) ; foc s foa 5 foe)

59 foa s Sors fob 3 f1a s ((Wer A orulez) s fiy 5 ruler) ; foc 5 foa s foe 58, StateAndEmpty-
v (=wer A foc 3 foa 5 foe)) Chop

60 foa s So1 3 Job 3 f1a s ((Wer A Orules) ; fiy 5 rules; foc s foa 5 foo) 59, ChopAssoc
V (mwer A foc 3 fod 3 foe))

61 fou s fors fob s f1a s (((wer A skip s ruled) s fis 3 ruler s foe 5 foa 60, ITL definition
s Joe) Y (mwer A foe s fod s Joe)) ofo

62 foa s o5 fob 3 f1a s (((wer A sKip) ; ruley s f1s 3 rules s foc s foa 61, StateAndChop
s Joo) v (=wer A foc s foa s foe))

63 foa s for 3 fob s f1a s ((Wer A sKip) 5 ruley s fip 5 ruler s foc 5 foas 62, ChopOr
Joe) N Joa s Jou 3 Jow 3 f1a s (mwer A fo s foa s foe)

64 foa s fors fob s S1a s (werr A skip) 5 rules s fip 5 ruley s foe 3 foa; 63, ChopAssoc

Joe N Joa s Jor 3 fob 3 f1a s (—wWert A foc s foa 5 Sfoe)

299

65 foafor s Son s fias (Wer A SKiD) s rulez s fip 5 ruler s foc CP assumption

de ;fOe

66 foasfpusJob 3 f1a s (Wer A sKip) 65, ChopSwaplmp3
(((wez s wes s wes) A (Of3a 5 f3p 5 Ofsa s Ofen s foc s rules ;
Jta s S 3 J30 3 f3a s ruleg s f30))

v ((Wez s wes s —wes)) A (Ofza s oo s Ofsa s faa 3 Jab 3 foc s

S3as ruleq; f3e)
v ((Wez s =wes) A (f3a s fov s e s Jaas fre s f3as
ruleq ; fa)) |
v (=wcz A empty) ; fis 3 rules; foc ; foa s foe
67 (foas Sor s Job 3 f1a s (Wer A SKiD) 5 ((Wez s wes 5 wes) 66, ChopOr
A(Sfsa3f305 Ofas Ofen s foc s rules: s fua s fan 3 fsc s f3a s
ruley ;f:?e))

V foa 3 Jou 3 fob 3.f1a s (Wer A 8KiP) 5 (Wez 5 wes 3 —wes)

A (Of3a3f35 3 Of6as Jaa s Jav 3 Joc s f3a s Tuleq ; f30))

V foa 3 Jou 3 Jov 3 f1a s (Were A skip) 5 ((wez 3 —wes)

A (Ofsas fob 3 ftc s Jad s foc s f3a s ruleq s fie))

V foa s for 3 Joo 3 f1a s (Wer A SKip) ; (—=wea A empty)) ; fis 5
ruley; foc s Joa 3 foe '

68 foasSpsSob s S1as (Wer A SKIP) ; ((Wez 5 wes 3 wes?) 67, OrChop
A (Sfsasf3ps FSsas e s foo s rules:; faas fan s oc 3 foas
ruleq; fie)) s f1o 5 ruley; foc s foa s foe
V foa 3 Jou 3 Jou 3 f1a s (Wer A SKiP) 5 ((wez 5 wes 5 —wes?)
A (Ofsa fov s Ofta s Jaa s fav 3 foc s J3a s rulea s f30)) 5 fiv s
ruley; foc 3 foa s foe
V foa s Joi s Job 3 f1a s (Wer A skip) 5 ((wez 5 =wes)
A (Sf3a 3 f3b 3 Ofac s fad s fic s fra s rules s f32)) s f1s 5 ruler
Joc 5 Jod 3 foe
V foa s fou 3 fob 3 f1a s (Werr A SKip) 5 (mwez A empty) ; fis 5
ruley ; foc 3 foa 3 foe

69 Joa 3 Jpt3 Joo s f1a 5 (Werr A sKip) 5 ((wez 5 wes 5 wes) CP assumption
A (Sf3a 3365 Ofsas Ofen s foc s rules:; faa s fab 3 J3c 3 f34 5
ruleq; f3¢)) 5 f1v 3 ruler ; foc 3 foa 5 foe

300

70

Joa 3 Jo1 3 Jfow 3 f1a s (Werr s wea s wes 5 wes 69, TwoChop-
A SKIip ; Of3a 3 f3b 5 Of6a s few 3 foc s rules:; fua s fap 3 f3c 5 RulesImp3
Srasruleq s f3e s fu s ruless; foc s foa s foe)

71

Joa s Jou3 fob 3.J1a s (Werr s wez s wes s wes 70, ITL definition
A OOfsa s f3b 3 Ofas Ofen s foc s rulest; fua s fan s foc s Soa s Of ©
ruleq s f3e 5 J1v 5 ruler s foc s foa s foe)

72

Joa 3 Jp1 3 Job 3 f1a 3 (wer s wez 5 wes s wes: 71, v introduction
A OOf34 3 f3b 5 Of6as Ofen s foo ; rules: sSaa s Sav 3 fac 3 f3d s
ruleg; fe s f1o 3 ruler s foc s foa s foe)
V foa s Joi 3 Job 3 f1a s (Wer s wez 5 wes 3 —wes:
A Of3a 3 f30 3 Ofsa’s faa s Ja 3 foc s faa s ruless f3e 3 f1v s
ruley; foc s fod ; foe)
V Joa s Jor 3 Job 3 f1a s (Werr s wea s —=wes
A OOf3a s fo 3 Ofac s faas frc s foa s ruless fre s 15
rule;; foc 3 foa 5 foe)
V Joa s Jpr 3 Job 3 f1as (Wer s —we2 A Of 1y 5 ruley

Joc 3 foa s foe)

73

Joa s for's Jfov 3 f1a s (Wer A skip) 3 ((wez 3 wes s =wes) CP assumption
A (Sf3a 3 fab s Ofea s faa s fan 3 foc 3 a5 rules s f30)) 3 f1v 5
ruley; foc ; foa 5 foe

74

Joa 3 fors Jov s J1a s (wer s wea 5 wes 5 —wes: 73, TwoChop-
A SKIp 3 Ofsa 3 f3p 3 Ofas faa s fab 3 fac 3 f3a s ruleq s f35 Ruleslmp3
Jiv s ruler; foc s foa s foe)

75

Joa 3 Joi 3 fob 3 fia 3 (Wer s wez 5 wes 3 =wes: 74, ITL definition
A OOfs ;s fab 3 Ofsa s faas fuv s foc s S3a s rules s fre s f1n; of ©
ruley; foc 3 foa s foe)

301

76

Joa s Jor 3 Job 3 f1a s (Werr s wez 5 wes s wes

A O34 5S35 Ofeas e s foc s Tules s faa s fav 5 f3c 3 f3a s
ruleq ; f3e s f1v s ruler; foc s foa 3 foe)

V foa s for 3 Jov 3 f1a s Werr s wez s wes 5 —wes

A OOf3a 3 f3b 3 Ofea sSaas Jav 3 fac s f3a s ruless fre s Sb s
ruler ; foc s foa 5 foe)

V foa s Jou 3 fov 3 f1a s Ower s wez 5 —wes

A OOf3a 3 f3b s Ofac s faa s foc 3 fa s rules s fre s f1n 5
ruley:; foc ; foa 3 foe)

V foa s for 3.fob s f1a s (Wer s =wez A Of iy 5 rule; s

Joc 3 fod 3 foe)

75, v introduction
" and comm. of v

77

Foas ot s fob 3.f1a s Wer A SKID) 3 (Wez 3 —wes)
A(Ofsa s Sfom s Oftc s faa s [oc 3 f3a s rules s f30)) 3 fib s
ruley ; foc ; foa 3 foe

CP assumption

78

Joa s Jou 3 Job 3 f1a s (Wer s wez 5 —wes
A SKID 3 Of3a 3 fan s Ofte s faa s foc s f3a s rules ;s fre s
Siv s ruler; foc 5 foa s foe)

77, TwoChop-
RulesImp3

79

Joa 3 for3 fov 3 f1a s (Wer s wez 5 —wes
A OOf3a3 f36 3 Ofac s faa s frc s foa s ruleq ;s f3e s f1n 3
ruley; foc ; foa 3 foe) '

78, ITL definition
of o

80

Joa s Jor3 Jfov 3 f1a s (Wer s wea s wes 3 wes

A OOfsq 3 f3b 3 Ofea s v 3 foo s Tules: s fua s fan s fic s faas
rules ; fae s f1v s ruler s foc s foa 5 foe)

V foa's St 3 fov 3 fia's (Werr s wea s wes s —wese

A OOf3a 3 f36 5 Ofsa sJua s foo 3 foc s Joa s rulea s foe 3 f1b s
ruley:; foc ;s foa s foe)

V foa s for 3.Job 3 f1a s (Wi s wez 3 —wes

A OOf3a s S s Oftc s Jaa 3 Joc s foa s rules s fre s f1n s
rule; ; foc s foa 3 Joe)

v foa's St s Job s fia s (Werrs —wez A Ofin s ruler

Joc 3 Joa 3 foe)

79, v introduction
and comm. of v

81

Joa s for 3 Job 3 f1a 5 (Werr A SKIP) 5 (=wez A empty) ; fis 5
ruler; foc 3 fod s foe ‘

CP assumption

302

82 Joa s for 3 Job 3 f1a s (Werr s =wea A skip 5 empty ; fis 81, TwoChop-
ruley; foc s foa s Jfoe) RulesImp3
83 Joa 3 Jou 3 fou 3 Sf1a s (Wer s —wea A SKIP 5 fip 3 ruler; foo 3 82, EmptyChop
Joa s Jfoe)
84 Joa 3 Jou s fow 3J1a s (Werr s —wea A Of e s ruler s foc s foa s 83, ITL definition
ﬁ)e) of o
85 Joa s Jor 3 Joo 3.f1a s (Werr s wez 5 wes s west 84, v introduction
A Of3a s f3v 3 feas Ofer s foc s rules s faa s fab 3 f3c s foa 3 and comm. of v
ruleq ; f3e 5 f1s 5 ruley s foc 3 foa 5 foe)
V foa 3 fo 3 Job 5 f1a s (Wer s wez s wes s —wes!
A Of3a s f3 Ofeas faas favo 3 oo s foa s Tuless f3e 3 /105
ruley; foc 5 Joa 5 foe)
V foa s Jor 3 Jov s fras (Werr s wez s —wes
A Ofsa s f3b 5 Ofac s faas foc s foa s rules s fe s fin s
ruley ' foc 3 foa 5 foe)
V foa s for s Jov 3 f1a s (Wer s —wez A Ofp 5 ruley
Joc s foa 3 foe)
86 foasSorsSon i f1as (Wer s wez s wes 5 wes' 85, v elimination

A OOf345f3p 3 Of6as v s Joc s rulest; faas fav 3 fc 3 faa s
ruleq; fse 3 fib 5 ruler; foc s foa 5 foe)
V foa s for 3 fos 3 J1a s (Werr s wez 3 wes 5 —wes
A OOf3a3 fan s Ffea s Saas v s S s fra s ruleq s fre 5 frv s
rule; s foc ; foa s foe)
V foa s for 3 Job 3 J1a s (Wer s wez 3 —wes
A OOf3a 5 fav s Sfac s Jaa s foc s Soa s Tuleq s fre s f1 5 ruley
Joc 3 Jod 3 Joe)
V foa s for 3 Jo 3 J1a s (Wer s —wez
A Of1p s ruley s foc 3 foa 5 foe)

303

87

Joa s Sfor s fov s f1a s (Wer s wez s wes 5 wes

A OOf34 3 f3b s Ofas Ofen s foc s rules:; faa s fan s f3c 3 fod s
ruleq ; f3e 5 f16 3 ruler; foc 3 foa s foe)

V foa s Jou 3 Jfob 3 S1a 3 (Wer s wez s wes 3 —wes
A OOf3a s fan s ea’s faa s fov's frc s foa s Tules s foe 3 fins
ruley s foc ; fod 5 foe)

V foa 3 Jou s fou 3 Sf1a s (Wer s wez 3 —wes
A OOf3a 3 fan 3 Ofac s faas foc s foa s ruleq s fre s fro s ruler
Joc 3 foa 3 foe)

V foa 3 Jor 3 fov 3 S1a s (wer s —wez
A Of1p s ruley ; foc 3 fod s Joe)

V foa 3 for 3 Jov 3 f1a s (=Wer A foc s foa 3 foe)

- 86, v introduction

88

Joa 5 Jot 3 fob 3 fra s (mwer A foe 3 Sfoa s foe)

CP assumption

89

Joa s Jor 3 Jov 3 f1a s (Werr s wez s wes 5 wes: 4
A OCf3a3f30 5 Of6as Ofen s Joc s rules s faa s fan 3 fc 3 f3a s
ruleq; fae s f1o s ruler s foc 5 foa 5 foe)

V foa s fou 3 fob 3 Sf1a s (Wer s wea s wes s —wes:
A OOf3a 3 f3 3 fsas faa s Jab 3 foc s foa s uleq s fre s fin s
ruley ; foc s fod 3 foe) o

V foa 3 Jo 3 Jow 3 f1a s (Werr s wea 5 =wes
A OOf3a s f3b 3 Ofac s faas foc s J3a s rules s fie s f1v 3 ruler
Joc 3 foa s foe)

V Joa s Jfor 3 Jos 3 f1a s (wer s —wez

A Ofp s ruley s foc s foa s foe)

88, v introduction
and comm. of v

V foa s Jor 3 fob s f1a s (mwer A foe s fod 3 foe)

304

90 fousfo13fon s J1as Wer s wez s wes 5 wes 89, v elimination

A OOf3q 3 fb 3 Ofea’s Ofen s foc s rules:; fua s fav 3 f3c 3 foas
ruleq ; fze 5 f1v 5 rules s foc 5 foa s foe)

V foa s for 3 Jov s J1a s (Werr s wez 3 wes 5 —wes
A OOf3a 3 33 Ofeas faas fav 3 foc s fra s ruleq s fre s 11 3
rule;; foc ; fod s Joe)

V foas for s Job 3 Sf1a s (Wer s wez 5 —wes
O%f3a 3303 fte s Jad s foc s fra s ruley s fre s fio s ruler s foo s

Joa s foe)

V foa 3 for 5. Job 3 f1a s (Werr s =wez A Of 1y 5 ruley s foc s foa s foe)

V foa 3 Jor 3 Job 5 f1a s (=Werr A foc s foa s foe)

91 foasSors Sov 3 S1a s ((Wer s wez s wes 3 wes ITL (OrChopEqv)

A OOf34 3 fab 3 feas Ofew s foc s rules s faa s fav 3 fac 3 f3as
ruleq ; f3e 5 f1b 5 ruler ; foc s fou 5 foe)

v (Wer s wez s wes 3 —wes:
A O%f3a3 f3b 5 feas faas fan s foc s fa s ruleq; fre s fin s
ruler; foc 3 foa s foe)

v (Werr s wez 3 —Wes
OOf3a 5 f30 3 Oftc sJaa s fac s f3a s rules s foo 5 f1 3 ruley s foo 5

Joa s foe)

V (wcr' s =wez2 A Of b 5 ruler s foc 5 foa 5 foe)

V (—Werr A foc s fod 5 foe))

With this transformation and based on the premises fy, rule;, rule; , rules, rules,
rules, and rules as extracted from the legacy code, the following disjunctive rule

structure is concluded:

Joa s for3 Jow 3 f1a 3 (
(wer's wea s wes s wes:
A OOf343f3b 3 Ofsa s Ofen s foc s rules s faa s fon s
Sie J3a s rules s fe 5 f1v s ruler s foc 5 foa 3 foe)
v (Wer s wez s Wes 5 —wes
A OOf}a ;f.?b > Of6a ;ﬁa ;f4b ;f:?c ;f:?d; ruleq

Sie s S s ruler s foc s foa s foe)

305

v (wer s wez 5 —wes
A OOf3a 33 3 Ofte s faa s foc 3 J3a 3 ruleq s

Jse s fiv s ruler s foci foasfo)
v (wer s =wez A Sf ; ruler; foc s foa s foe)

A\ (—1WCJ' /\fOc ;fDd ;fOe))

306

Appendix D
Formal Transformation of Rules
Extracted from WSL Slices

In Section 8.2, various rules are extracted from a WSL program using the
FermaT Syntactic_Slice tranformation. In this appendix, these extracted rules are
transformed using the rule algebra presented in this research. In Section D.1, rule,cjo.2
is transformed. In Section D.2, rule,ers. is transformed. In Section D.3, rulepersonat.cond

is transformed.

D.1 Transformation of rulep1s.2

In Section 8.2, ruleycjo-2is described as :
mlechO-Z = (rulepclo-Za(true) A ofulepcIO-Zb) v rulepcIO-Za(false)

where:

rulepc1o-2a(ruey = ((married = 1 A age > 65 A income > 16800) A ot)
rulepe10.2a¢a1se) = (—(married = 1 A age > 65 A income > 16800) A empty)
rulepciozs® (t>3740 A opcl0 =t)

V (=(t > 3740) A opcl0 = 3740)
t = pcl0 - (income - 16800) / 2

In the following transformation, ruleyc;o.; is transformed and simplified such that:

rulepcio.2 O
(married = 1 A age > 65 A income > 16800 A t > 3740
A ocopcl0 =t)

v (married = 1 A age > 65 A income > 16800 A t <3740
A oopcl0 = 3740)
v ((married # 1 v age < 65 v income < 16800) A empty)

where:
t = pcl0 - (income - 16800) / 2

Alternatively, ruleyc;0.2 can be described as:

307

mlepcIO-Z)

(married = 1 A age > 65 A income > 16800 A t > 3740
A oopcl0=t) ‘

v (married = 1 A age > 65 A income > 16800 A t <3740
A oopcl0 = 3740)

v (married # 1A empty)

v (age < 65 A empty)

v (income < 16800 A empty)

 where: 7 ,
t = pcl0 - (income - 16800) / 2

1 mlepc]O-Z = (mlepclo-Za(rme) A OmlepclO-Zb) \4 mlepc]O-Za(false) premise
where: | ' ‘ -
rulepcio-2afrue) = ,
((married = 1 A age > 65 A income > 16800) A ot)
mlepclO-Za(false) = ;
(—(married = 1 A age > 65 A income > 16800) A empty)
rulepcio-n =
(t > 3740 A opcl0 =t) v (—(t > 3740) A opcl0 =3740)
t = pclO - (income - 16800) / 2

2 o(t>3740) D (t > 3740) premise

3 o(t<3740) o (t <3740) premise

4 (rulepcio-2a(ruey A Orulepcio-zn) = (rulepcio zagme) A Orulepciop) tautology

5 (rulepcio-za(ruey A OTUlepcio-28) = 1, 4, equiv. subst.

((married = 1 A age > 65 A income > 16800) A ot)
A o((t>3740 A opclO =t)
v (=(t > 3740) A opcl0 = 3740))

6 (rulepcio.2a(rue) A Orulepciozs) = 5, algebraic equiv.
((married = 1 A age > 65 A income > 16800) A ot)
A o(((t > 3740) A opclO =t)
v ((t <3740) A opcl0 = 3740))

7 (rulepcio-zagruey A Orutlepciozs) = 6, NextOrDistEqv
((married = 1 A age > 65 A income > 16800) A ot)
A (o((t > 3740) A opcl0 =t) -
v o((t < 3740) A opcl0 = 3740))

308

8 (rulepcio-2airuey A Orulepciozs) = 7, NextAnd-
((married = 1 A age > 65 A income > 16800) A ot) DistEqv
A ((o(t > 3740) A oopcl0 =t)
v (ot £3740) A oopcl0 = 3740))
9 (rulepcio-2a(erue) A OTUlepcio.zs) = 8, dist. of A over v
(married = 1 A age > 65 A income > 16800 A ot
- A O(t>3740) A copclO =t)
v (married = 1 A age > 65 A income > 16800 A ot
A o(t £3740) A oopcl0 = 3740)
10 rulepcio-2atfatsey = 1, reiteration
—(married = 1 A age > 65 A income > 16800) A empty
11 rulepdo.za(fazse) = 10, prop- logic
(—(married = 1) v —(age > 65) v —(income > 16800)) A '
empty
12 rulepcio-2atfatse) = 11, algebraic
(married # 1 v age < 65 v income < 16800) A empty equiv.
13 rulepero.2 = (rulepeio-2agirue) A Orulepcio.on) V rulepcro2aaise) 1, reiteration
14 rulepcrpz = 9, 12, 13, equiv.
(married = 1 A age > 65 A income > 16800 A ot subst.
A o(t > 3740) A oopcl0 =t)
v (married = 1 A age > 65 A income > 16800 A ot
A ot £3740) A oopcl0 =3740)
v ((married # 1 v age < 65 v income < 16800) A empty)
15 rulepc1o-2 CP assumption
16 (married =1 A age > 65 A income > 16800 A ot 14, 15, equiv.
A o(t>3740) A copclO =t) subst.
v (married = 1 A age > 65 A income > 16800 A ot
A o(t £3740) A oopcl0 = 3740)
v ((married # 1 v age < 65 v income < 16800) A empty)
17 married = 1 A age > 65 A income > 16800 A ot CP assumption
A ot >3740) A copclO =t
18 o(t > 3740) 17, A elimination
19 (t > 3740) 2, 18, MP
20 married = 1 A age > 65 A income > 16800 17, A elimination

Aoopcl0=t

309

21

married = 1 A age > 65 A income > 16800
At>3740 A copclO =t

19, 20, A
mtroduction

22

(married = 1 A age > 65 A income > 16800
At>3740 A oopcl0 =t)

v (married = 1 A age > 65 A income > 16800
A1 <3740 A oopcl0 = 3740)

v ((married # 1 v age < 65 v income < 16800)

A empty)

21, v introduction

23

married = 1 A age > 65 A income > 16800 A ot

A o(t £3740) A copcl0 =3740

CP assumption

24

o(t < 3740)

23, A elimination

25

t <3740

3, 24, MP

26

married = 1 A age > 65 A income > 16800
A oopcl0 = 3740

23, A elimination

27

married = 1 A age > 65 A income > 16800
A t1<3740 A oopcl0 = 3740 '

25, 26, A
introduction

28

(married = 1 A age > 65 A income > 16800
At>3740 A oopcl0 =t)

v (married = 1 A age > 65 A income > 16800
At <3740 A oopcl0 = 3740)

v ((married # 1 v age < 65 v income < 16800)

A empty)

27, v introduction

29

((married # 1 v age < 65 v income < 16800) A empty)

CP assumption

30

(married = 1 A age > 65 A income > 16800
At>3740 A oopcl0 =t)

v (married = 1 A age > 65 A income > 16800
At<3740 A oopcl0 = 3740)

v ((married # 1 v age < 65 v income < 16800)

A empty)

29, v introduction

31

. (married = 1 A age > 65 A income > 16800

At>3740 A copclO =t)

- v (married = 1 A age > 65 A income > 16800

A <3740 A 0opcl0 = 3740)
v ((married # 1 v age < 65 v income < 16800)
A empty) '

17-22, 23-28, 29-

- 30, v elimination

310

32 rulepcio2 D 15-31,>
(married = 1 A age > 65 A income > 16800 introduction
At>3740 A copclO =t)
v (married = 1 A age > 65 A income > 16800
At <3740 A oopcl0 = 3740)
v ((married # 1 v age < 65 v income < 16800)

A empty)
33 rulepdo.z] 32, dist. of A
(married = 1 A age > 65 A income > 16800 over v

At>3740 A copcl0 =t)

v (married = 1 A age > 65 A income > 16800
At <3740 A oopcl0 = 3740)

v (married # 1A empty)

v (age < 65 A empty)

v (income < 16800 A empty)

D.2 Transformation of rulepes 2

In Section 8.2, ruley.rs.2is described as :

where:

v ulepers-Z = (mlepers—Za(true) A Or ulepers—Zb) v mlepers-Za([alse) (8.2-39)

rulepers 2a0rue) = ((age > 65 A income > 16800) A of)
rulepers-2agatsey = (—(age > 65 A income > 16800) A empty)
rulepers2y = (t> 4335 A opersonal = t)

V (=(t > 4335) A opersonal = 4335)
t = personal - (income - 16800) / 2

In the following transformation, rulepers.2 is transformed and simplified such that:

where:

rulepers-Z -

(age = 65 A income > 16800 A ot > 4335 A oopersonal = t)

v (age > 65 A income > 16800 A ot <4335 A oopersonal = 4335)
Vv (age < 65 A empty)

v (income < 16800 A empty)

311

t = personal - (income - 16800) / 2

1 rulepers2 premise
where:
rulepers.2 = (rulepers-2a(true) A Orulepers.op)
v mlepers—Za(false)
rulepers 2aure) = ((age > 65 A income > 16800) A ot)
rulepers.2aguisey = (—{age > 65 A income > 16800)
A empty)
rulepers.2p = (t > 4335 A opersonal =t)
V (—(t > 4335) A opersonal = 4335)
t = personal - (income - 16800) / 2
2 w; £ (age>65 A income > 16800) premise (definitions)
of; %ot
ws = (t>4335)
—wy & (t <4335)
of2 = (opersonal = t)
of; = (opersonal = 4335)
3 rulepers-2airue) = W1 A Of; 1, 2, def. subst.
4 rulepers-2aguise) = W1 A @Mpty 1, 2, def. subst.
5 rulepers.3p = (W2 A Of2) V (=wz A Of3) 1, 2, def. subst.
6 rulepers: 1, reiteration
7 (rulepers-2atruey A OTUlepers.2) V Tulepers.2aaise) 1, 6, def. subst.
8 rulepers.2aitrue) A OTUle,ers2p CP assumption
9 (w1 A Of) A O((W2 A Of2) V (=w; A Of3)) 3, 5, 8, def. subst.
10 (w1 A Of)) A(O(w2 A Of2) vV o(—w; A Of3)) 9, NextOrDistEqv
11 ((wr A of1) A o(w2 A ©f2)) 10, comm. of A over v
V (w1 A Of1) A O(=ws A Of3))
12 (w1 A Of1) A O(Wz A Of3) CP assumption
13 w1 A Of1 A Oy A COf> 12, NextAndDistEqv
14 Wi A OWy A 00f3 13, A elimination
15 (w1 A oWz A 00f3) 14, v introduction
V (W A 0O—=w3 A 00f3)
16 (w1 A Of1) A O(=w; A Of3) CP assumption
17 Wi A Of1 A O—=w2 A 0Of 16, NextAndDistEqv
18 W1 A O—wp A OOf3 17, A elimination

312

19 (W1 A Ows A COf) 18, v introduction
v (W A O—ws A 00f3)
20 (w1 A OW2 A COf2) 12-15, 16-19,
V (W1 A OmWa A 00f3) v elimination
21 (w; A OWz A 00f2) 20, v introduction
Vv (w1 A 0wz A 00f3)
V (=w; A empty)
22 rulepers-2a(false) CP assumption
23 —w; A empty 4,22, def. subst.
24 (w1 A OWz A ©Of2) 23, v introduction
Vv (W; A 0=w2 A ©0f3)
v (—w; A empty)
25 (w; A Owz A OOf7) 8-21, 22-24,
v (Wi A 0=y A 00f3) v elimination
v (—wr A empty)
26 (w1 A Owz A 0Of2) 2, 25, def. subst.
V (W) A 0wz A 00f3)
v (—(age > 65 A income > 16800) A empty)
27 (w; A Ow2 A 00f3) 26, prop. logic
V (W) A O—=W; A 00f3)
v ((—(age > 65) v —(income > 16800)) A empty)
28 (w; A Owp A ©0f2) 27, prop. logic
V (W A 0—=wz A 0Cf3)
v ((—(age = 65) A empty))
v (=(income > 16800) A empty))
29 (w; A Owz A OOf2) 28, algebraic equiv.
v (W) A 0—=wz A 0Of3)
v (age < 65 A empty)
v (income < 16800 A empty)
30 rulepers2 CP assumption
31 (w1 A oWz A 00f2) 29, reiteration

V (W1 A O—wy A 0Of3)
v (age < 65 A empty)
v (income < 16800 A empty)

313

32 rulepers.2 D ' 30-31, o introduction
(w; A oWz A 00fy)
V (W] A 0wz A 00f3)
Vv (age < 65 A empty)
v (income < 16800 A empty)
33 rulepers2D ' 2, 28, def. subst.
((age > 65 A income > 16800) A o(t > 4335)
A o(opersonal =t))
v ((age > 65 A income > 16800) A o—(t >4335)
A o(opersonal = 4335))
v (age < 65 A empty)
v (income < 16800 A empty)
34 rulepers2 D 33, algebraic equiv.
((age > 65 A income > 16800) A o(t > 4335)
A o(opersonal = t))
v ((age = 65 A income > 16800) A o(t <4335)
A o(opersonal = 4335))
\% k(age < 65 A empty)
v (income < 16800 A empty)

D.3 Transformation of rulepesonar-cond

In Section 8.2, rulepersonat.cond is described as :

mlepersonal—cond 3

(age > 75 A opersonal = 5980) ;
(income > 16800 A ot > 4335 A oopersonal =t) ;
(opersonal = personal + 1380)

v (age = 75 A opersonal = 5980) ;
(income > 16800 A ot <4335 A oopersonal =4335); -
(opersonal = personal + 1380)

v (age > 75 A opersonal = 5980) ;
(income < 16800 A empty) ;
(opersonal = personal + 1380)

v (age <75 A oopersonal = 5720) ;
(income > 16800 A ot > 4335 A oopersonal =t) ;
(opersonal = personal + 1380)

314

v (age <75 A oopersonal = 5720) ;

(income > 16800 A ot <4335 A oopersonal =4335) ;

(opersonal = personal + 1380)

v (age <75 A oopersonal = 5720) ;
(income < 16800 A empty) ;
(opersonal = personal + 1380)

In the following transformation, rulepersonat-cond is transformed and simplified such that:

1

rulepersonal-cond 2
(age > 75 A opersonal = 5980) ;
(income > 16800 A ot > 4335 A oopersonal =t) ;
(opersonal = personal + 1380)
v (age > 75 A opersonal = 5980) ;
(income > 16800 A ot <4335 A oopersonal = 4335) ;
(opersonal = personal + 1380)
v (age > 75 A opersonal = 5980) ;
(income < 16800 A empty) ;
(opersonal = personal + 1380)
v (age < 75 A oopersonal = §720) ;
(income > 16800 A ot > 4335 A copersonal =t) ;
(opersonal = personal + 1380)
v (age <75 A oopersonal = 5720) ;
(income > 16800 A ot <4335 A oopersonal =4335) ;
(opersonal = personal + 1380)
v (age <75 A oopersonal = 5720) ;
(income < 16800 A empty) ;
(opersonal = personal + 1380)
where:
t = personal - (income - 16800) / 2

premise

o(income < 20090) D (income < 20090)

premise

o(income > 20090) O (income > 20090)

premise

o(income < 19570) D (income < 19570)

premise

Wk Wl

o(income > 19570) O (income > 19570)

premise

315

(age > 75 A opersonal = 5980) ;

(income > 16800 A ot > 4335 A oopersonal =t) ;
(opersonal = personal + 1380)

v (age > 75 A opersonal = 5980) ;

(income > 16800 A ot <4335 A oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age > 75 A opersonal = 5980) ;

(income < 16800 A empty) ;

(opersonal = personal + 1380)

v (age <75 A oopersonal = 5720) ;

(income > 16800 A ot > 4335 A oopersonal = 1) ;

- (opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income > 16800 A ot <4335 A 00per§onal =4335);
(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ‘;

~ (income < 16800 A empty) ;

(opersonal = personal + 1380)

CP assumption

(age > 75 A opersonal = 5980) ;
(income > 16800 A o(t > 4335) A oopersonal =t) ;
(opersonal = personal + 1380) '

CP assumption
(disjunct #1)

t > 4335 = income < 20090

1, 7, semantics of
ITL

o(t > 4335) = o(income < 20090)

8, ITL
(NextEqvNext)

10

(age > 75 A opersonal = 5980) ;

(income > 16800 A o(income < 20090)
A oopersonal =t) ;

(opersonal = personal + 1380)

7, 9, equiv. subst.

-1

income > 16800 A o(income < 20090)
A oopersonal = t

CP assumption

12

* o(income < 20090)

11, A elimination

13

income < 20090

2,12, MP

14

income > 16800 A oopersonal =t

11, A elimination

15

income > 16800 A income < 20090
A oopersonal =t

A introduction

316

16 (income > 16800 A o(income < 20090) 11-15,
A oopersonal =t) D D introduction
(income > 16800 A income < 20090
A oopersonal =t)
17 (age > 75 A opersonal = 5980) ; 10, 16,
(income > 16800 A income < 20090 ChopSwapImp3
A oopersonal =t) ;
(opersonal = personal + 1380)
18 (age =75 A opersonal = 5980) ; CP assumption
(income > 16800 A income < 20090
A oopersonal = t)
19 age =75 ; (income > 16800 A income < 20090) 18,
A opersonal = 5980 ; oopersonal =t TwoChopRulesImp
20 (age > 75 A opersonal = 5980) ; 18-19,
(income > 16800 A income < 20090 D introduction
A oopersonal =t) ;
(opersonal = personal + 1380)
D age>75; (income > 16800 A income < 20090)
A opersonal = 5980 ; oopersonal =t
21 (age > 75 ; (income > 16800 A income < 20090) 17, 20,
A opersonal = 5980 ; oopersonal =t) ; ChopSwapImp2
(opersonal = personal + 1380)
22 age > 75 ; (income > 16800 A income < 20090) ; 21, AndChopImp
(opersonal = personal + 1380)
A opersonal = 5980 ; oopersonal =t ;
(opersonal = personal + 1380)
23 age > 75 ; (income > 16800 A income < 20090) ; 22, A elimination
(opersonal = personal + 1380)
24 age > 75 ; (income > 16800 A income < 20090) 23, ITL (semantics
of chop)
25 opersonal = 5980 ; ocopersonal =t ; 22, A elimination
(opersonal = personal + 1380)
26 fin(personal = 15760 - income/2) 25, ITL (semantics
of fin)
27 age > 75 ; (income > 16800 A income < 20090) 24, 26,

A fin(personal = 15760 - income/2)

A introduction

317

28 (age > 75 ; (income > 16800 A income < 20090) 217, v introduction
A fin(personal = 15760 - income/2))
v (age =75 ; (income > 16800 A income > 20090)
A fin(personal = 5715)) ‘
v (age =75 ; income < 16800
A fin(personal = 7360))
v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))
v (age <75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))
v (age <75 ; income < 16800
A fin(personal = 7100))
29 (age > 75 A opersonal = 5980) ; CP assumption
(income > 16800 A o(t £4335) (disjunct #2)
A oopersonal =4335) ;
(opersonal = personal + 1380)
30 (t <4335) = (income > 20090) 1, 29, semantics of
ITL
31 o(t £4335) = o(income > 20090) 30, ITL
(NextEqvNext)
32 (age = 75 A opersonal = 5980) ; 29, 32, equiv. subst
; (income > 16800 A o(income > 20090)
A oopersonal = 4335) ;
(opersonal = personal + 1380)
33 income > 16800 A o(income > 20090) CP assumption
' A oopersonal = 4335
34 o(income = 20090) 33, A elimination
35 income > 20090 3, 34, MP
36 income > 16800 A oopersonal = 4335 A elimination
37 income > 16800 A income > 20090 A introduction
A oopersonal = 4335
38 ~ (income > 16800 A o(income = 20090) 33-37,

A oopersonal = 4335) D
(income > 16800 A income > 20090
A oopersonal = 4335)

o introduction

318

39 (age = 75 A opersonal = 5980) ; 32, 38,
(income > 16800 A income > 20090 ChopSwapImp3
A oopersonal = 4335) ;
(opersonal = personal + 1380)
40 (age > 75 A opersonal = 5980) ; CP assumption
(income > 16800 A income > 20090
A opersonal = 4335)
41 age > 75 ; (income > 16800 A income > 20090) 40,
A opersonal = 5980 ; opersonal = 4335 TwoChopRulesImp
42 (age > 75 A opersonal = 5980) ; 41, o introduction
(income > 16800 A income > 20090
A opersonal = 4335) D
(age > 75 ; (income > 16800 A income > 20090)
A opersonal = 5980 ; opersonal = 4335)
43 (age > 75 ; (income > 16800 A income > 20090) 42, ChopSwapIlmp2
A opersonal = 5980 ; opersonal = 4335) ;
(opersonal = personal + 1380)
44 age > 75 ; (income > 16800 A income > 20090) ; 43, AndChopImp
(opersonal = personal + 1380)
A opersonal = 5980 ; opersonal = 4335 ;
(opersonal = personal + 1380)
45 age > 75 ; (income > 16800 A income > 20090) ; 44, A elimination
(opersonal = personal + 1380)
46 age > 75 ; (income > 16800 A income > 20090) 45, ITL (semantics
of chop)
47 opersonal = 5980 ; cpersonal = 4335 ; 46, A elimination
(opersonal = personal + 1380)
48 fin(personal = 5715) 47, ITL (semantics
of fin)
49 age > 75 ; (income > 16800 A income > 20090) 46, 48,

A fin(personal = 5715)

A introduction

319

50 (age > 75 ; (income > 16800 A income < 20090) 49, v introduction

A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))

v (age > 75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age < 75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))

v (age <75 ; income < 16800
A fin(personal = 7100))

51 (age =75 A opersonal = 5980) ; CP assumption
(income < 16800 A empty) ; (disjunct #3)
(opersonal = personal + 1380)

52 (age > 75 A opersonal = 5980) ; CP assumption

(income < 16800 A empty)

53 age>75; income < 16800 52,

A opersonal = 5980 ; empty TwoChopRulesImp

54 age > 75 ; income < 16800 A opersonal = 5980 53, ITL

(ChopEmpty)

55 . (age > 75 A opersonal = 5980) ; 51-54,

(income < 16800 A empty) O introduction
Dage >75; income < 16800 A opersonal = 5980

56 (age>75; income < 16800 A opersonal = 5980) ; 51, 55,
(opersonal = personal + 1380) ChopSwapImp2

57 age>75; income < 16800 ; 56, AndChopImp

_ (opersonal = personal + 1380)
A opersonal = 5980 ;
(opersonal = personal + 1380)

58 age>75; income < 16800 ; 57, A elimination
(opersonal = personal + 1380)

59 age >75; income < 16800 58, ITL (semantics

' of chop)
60 opersonal = 5980 ; 57, A elimination

(opersonal = personal + 1380)

320

61 fin(personal = 7360) 60, ITL (semantics

of fin)

62 age > 75 ; income < 16800 61, A introduction
A fin(personal = 7360)

63 (age =75 ; (income > 16800 A income < 20090) 62, v introduction

A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))

v (age > 75 ; income < 16800
A fin(personal = 7360))

v (age < 75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age <75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))

v (age <75 ; income < 16800
A fin(personal = 7100))

64 (age <75 A oopersonal = 5720) ; CP assumption
(income > 16800 A o(t > 4335) A copersonal =t) ; (disjunct #4)
(opersonal = personal + 1380)

65 (t > 4335) = (income < 19570) 1, 64, semantics of

ITL
66 o(t > 4335) = o(income < 19570) 65, ITL
(NextEqvNext)
67 (age <75 A oopersonal = 5720) ; 64, 67, equiv. subst
(income > 16800 A o(income < 19570) '
A oopersonal =t) ;
(opersonal = personal + 1380)
68 income > 16800 A o(income < 19570) CP assumption
A oopersonal = t

69 o(income < 19570) 68, A elimination

70 income < 19570 4, 69, MP

71 income > 16800 A oopersonal =t 68, A elimination

72 income > 16800 A income < 19570 70, 72,

A oopersonal = t

A mtroduction

321

73 (income > 16800 A o(income < 19570) 68-72,
A oopersonal =t) D D introduction
(income > 16800 A income < 19570
A oopersonal = t)
74 (age <75 A oopersonal = 5720) ; 67, 73,
(income > 16800 A income < 19570 ChopSwapImp3
A oopersonal =t) ;
(opersonal = personal + 1380)
75 (age <75 A oopersonal = 5720) ; CP assumption
(income > 16800 A income < 19570
A oopersonal = t)
76 age <75 ; (income > 16800 A income < 19570) 75,
A oopersonal = 5720 ; oopersonal =t TwoChopRulesImp
77 (age <75 A ocopersonal = 5720) ; 75-71,
(income > 16800 A income < 19570 > introduction
A oopersonal =t) D ‘
age <75 ; (income > 16800 A income < 19570)
A oopersonal = 5720 ; oopersonal = t a
78 (age <75 ; (income > 16800 A income < 19570) 74,71,
A oopersonal = 5720 ; copersonal = t) ; ChopSwapImp2
(opersonal = personal + 1380)
79 age <75 ; (income > 16800 A income < 19570) ; 78, AndChopImp
(opersonal = personal + 1380)
A oopersonal = 5720 ; oopersonal =t ;
(opersonal = personal + 1380)
80 age <75 ; (income > 16800 A income < 19570) ; 79, A elimination
(opersonal = personal + 1380)
81 age <75 ; (income > 16800 A income < 19570) 80, ITL (semantics
' - of chop)
82 oopersonal = 5720 ; ocopersonal =t ; 79, A elimination
(opersonal = personal + 1380)
83 fin(personal = 15500 - income/2) 82, ITL (semantics
- ‘ of fin)
84 age <75 ; (income > 16800 A income < 19570) 81, 83,

A fin(personal = 15500 - income/2)

A introduction

322

85 (age > 75 ; (income > 16800 A income < 20090) 84, v introduction
A fin(personal = 15760 - income/2))
v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))
v (age > 75 ; income < 16800
A fin(personal = 7360))
v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))
v (age < 75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))
v (age <75 ; income < 16800
A fin(personal = 7100))
86 (age <75 A oopersonal = 5720) ; CP assumption
(income > 16800 A o(t <4335) (disjunct #5)
A oopersonal = 4335) ;
(opersonal = personal + 1380)
87 (t £4335) = (income > 19570) 1, 86, semantics of
ITL
88 o(t £4335) = o(income > 19570) 87, ITL
(NextEqvNext)
89 (age <75 A copersonal = 5720) ; 86, 88, equiv. subst
(income > 16800 A o(income > 19570)
A oopersonal = 4335) ;
(opersonal = personal + 1380)
920 income > 16800 A o(income > 19570) CP assumption
A oopersonal = 4335
91 o(income > 19570) 90, A elimination
92 income > 19570 5,91, MP
93 income > 16800 A oopersonal = 4335 90, A elimination
94 income > 16800 A income > 19570 91, 93,
A oopersonal = 4335 A introduction
95 (income > 16800 A o(income = 19570) 90-94,

A oopersonal = 4335) D
(income > 16800 A income > 19570
A oopersonal = 4335)

S introduction

323

- age <75 ; (income > 16800 A income > 19570)

A fin(personal = 5715)

96 (age <75 A oopersonal = 5720) ; 89, 95,
(income > 16800 A income > 19570 ChopSwaplmp3
A oopersonal = 4335) ;
(opersonal = personal + 1380)
97 (age < 75 A oopersonal = 5720) ; CP assumption
(income > 16800 A income > 19570
A oopersonal = 4335)
98 age <75 ; (income > 16800 A income > 19570) 97,
A oopersonal = 5720 ; oopersonal = 4335 TwoChopRulesImp
99 (age <75 A oopersonal = 5720) ; 97-98,
(income > 16800 A income > 19570 O introduction
A oopersonal =4335) D
age <75 ; (income > 16800 A income > 19570)
A oopersonal = 5720 ; copersonal = 4335
100 (age <75 ; (income > 16800 A income > 19570) 96, 99,
A oopersonal = 5720 ; opersonal = 4335) ; ChopSwapImp2
(opersonal = personal + 1380)
101 age <75 ; (income > 16800 A income > 19570) ; 100, AndChopImp
(opersonal = personal + 1380) ‘ |
A oopersonal = 5720 ; opersonal = 4335 ;
(opersonal = personal + 1380)
102 age <75 ; (income > 16800 A income > 19570) ; 101, A elimination
(opersonal = personal + 1380) '
103 age <75 ; (income > 16800 A income > 19570) 102, ITL (semantics
B ‘ of chop)
104 oopersonal = 5720 ; opersonal = 4335 ; 101, A elimination
(opersonal = personal + 1380) :
105 fin(personal = 5715) 104, ITL (semantics
of fin)
106 103, 105,

A introduction

324

107 (age > 75 ; (income > 16800 A income < 20090) 106, v introduction

A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 57185))

v (age =75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age <75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))

v (age <75 ; income < 16800
A fin(personal = 7100))

108 (age < 75 A oopersonal = 5720) ; CP assumption
(income < 16800 A empty) ; (disjunct #6)
(opersonal = personal + 1380)

109 (age < 75 A oopersonal = 5720) ; CP assumption

(income < 16800 A empty)

110 age <75 ; income < 16800 109,

A oopersonal = 5720 ; empty TwoChopRulesImp

111 age <75 ; income < 16800 A oopersonal = 5720 110, ITL

(ChopEmpty)

112 ((age <75 A oopersonal = 5720) ; 109-111,

(income < 16800 A empty)) D D introduction
(age <75 ; income < 16800 A oopersonal = 5720)

113 (age <75 ; income < 16800 A oopersonal = 5720) ; 108, 112,
(opersonal = personal + 1380) ChopSwapImp2

114 age <75 ; income < 16800 ; 113, AndChopImp
(opersonal = personal + 1380)

A oopersonal = 5720 ;
(opersonal = personal + 1380)

115 age <75 ; income < 16800 ; 114, A elimination
(opersonal = personal + 1380)

116 age <75 ; income < 16800 115, ITL. (semantics

of chop)

117 oopersonal = 5720 ; (opersonal = personal + 1380) 114, A elimination

325

118

fin(personal = 7100)

117, ITL (semantics
of fin)

119

age <75 ; income < 16800
A fin(personal = 7100)

116, 118,
A introduction

120

(age > 75 ; (income > 16800 A income < 20090)
A fin(personal = 15760 - income/2))

v(age=>175; (income»> 16800 A income > 20090)

A fin(personal = 5715))
v (age =75 ; income < 16800
A fin(personal = 7360))

v (age < 75 ; (income > 16800 A income < 19570)

A fin(personal = 15500 - income/2))

v (age <75 ; (income > 16800 A income > 19570)

A fin(personal = 5715))
v (age <75 ; income < 16800
A fin(personal = 7100))

119, v introduction

121

~ (age =75 ; (income > 16800 A income < 20090)

A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))

v (age > 75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)

~ Afin(personal = 15500 - income/2))

v (age <75 ; (income > 16800 A income > 19570)
~ Afin(personal = 5715)) ’
v (age <75 ; income < 16800

A fin(personal = 7100))

7-28, 29-50, 51-63,
64-85, 86-107,
108-120,

v elimination

326

122 (age =75 A opersonal = 5980) ; 6-121,
(income > 16800 A ot > 4335 A copersonal =t) ; D introduction
(opersonal = personal + 1380)

v (age > 75 A opersonal = 5980) ;

(income > 16800 A ot <4335 A oopersonal = 4335) ;

(opersonal = personal + 1380)

v (age > 75 A opersonal = 5980) ;

(income < 16800 A empty) ;

(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income > 16800 A ot > 4335 A oopersonal =t) ;

(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income > 16800 A ot <4335 A oopersonal =4335) ;

(opersonal = personal + 1380)

v (age <75 A copersonal = 5720) ;

(income < 16800 A empty) ;

(opersonal = personal + 1380)

D (age =75 ; (income > 16800 A income < 20090)
A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = 5715))

v (age =75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age <75 ; (income > 16800 A income > 19570)
A fin(personal = 5715))

v (age <75 ; income < 16800
A fin(personal = 7100))

327

123 rulepersonat-cond @ 1, 122, prop. logic

(age > 75 ; (income > 16800 A income < 20090)
A fin(personal = 15760 - income/2))

v (age > 75 ; (income > 16800 A income > 20090)
A fin(personal = §715))

v (age =75 ; income < 16800
A fin(personal = 7360))

v (age <75 ; (income > 16800 A income < 19570)
A fin(personal = 15500 - income/2))

v (age < 75 ; (income > 16800 A income > 19570)
A fin(personal = §715))

v (age < 75 ; income < 16800
A fin(personal = 7100))

328

Appendix E
Formal Transformation of Rules Created
to Refine a Specification

In Section 9.1, the following rules are developed to refine the description of the
state sequence get_pin. (The state sequence get_pin was extracted from a concrete
specification describing the operation of an automated teller machine in Section 7.2.)
the following rules and rule structures have been developed as part of the refinement of

get_pin:

get_pin = init_pin_entry ; ruleyin_enuy

rulepin_entry = ((—attempt_limit A —valid_pin)
A oprocess_pin) ; rulepin_enury))
Vv (valid_pin A empty)
V (attempt_limit A empty)

process_pin = display_pin_screen ; ruleread_xey_pad 3 r'tlevatidate_pin

Tulercad key_pad = (—enter_key A okey_buffer) ; ruleread xey_pad
v (enter_key A oincrement_attempt)

mlevalidate_pin = (pin_length A or. ulecompare_pin)
Vv (—pin_length A odisplay_invalid_screen)

rulecompare_pin = (pin_match A opin_valid)
v (—pin_match A odisplay_invalid_screen)

To facilitate analysis, the following variable name substitutions are made:

dps = display_pin_screen
dis= display_invalid_screen
gp= get_pin

ia= increment_attempt

ipe = init_pin_entry

kb= key_buffer

pe= pin_entry

pp* process_pin

pv: pin_valid

xal = attempt_limit

329

xek = enter_key
xpl& pin_length
xpm = pin_match
xvp = valid_pin

Regarding these variable names, rule conditions variables begin with the letter x and are
depicted in italics. Using these rule conditions and rule state variable names, the rules

of interest are rewritten as:

gp = ipe ; rulepin_eatry
rulepin_eary = (((—xal A —xvp) A Opp) ; rulepin_entry))

v (xvp A empty)
Vv (xal A empty)

pPp = dPS ’ mleread_key_pad s mlevalidate_pin
mlemd_key_pad = (_Ixek A okb) M mlermd_kcy_pad \%4 (xek A Oi‘a)
mlevalidate_pin = (xpl A omlecompafe_lﬁn) v (.'xp LA OdiS)

mlecompare_pin = (xpm A opv) v (-f-axpm A odis)

Five of these rules and rule structures are assumed as premises for this tranformation —
rulepin_enry, process_pin (pp), rulereas xey_pads Tlevatidate_pin, aNd rulécompare_pin. The formal

transformation of these rules is as follows:

1 rulepin_enry : premise
where: ’
rulepin_enry = (((—xal A —xvp) A Opp) ; rulegin_eary))
v (xvp A empty) v (xal A empty)

2 pp premise
where: '
PP = dps ; ruleread xey_pad 3 T¥levalidate_pin

3 ruleread xey_pad ‘ premise
where:
ruleread key_pad = (—xek A OKb) ; rulecead xey_pad
v (xek A oia)

330

4 ruleyaiidate_pin premise
where:
rulevalidate_pin = (xpl A orulecompare_pin) V (—xpl A odis)
5 mlecompare_pin premise
where:
mlecompare_pin = (xpm A opv) v (—prm A odis)
6 ruleyaicate_pin = (Xpl A Orulecompare_pin) V (—xpl A odis) 4, reiteration
7 ruleyaidate_pin = 5, 6, eqv. subst.

(xpl A o((xpm A opV) V (—xpm A cdis)))

v (=xpl A odis)

mlevalidate_pin =
(xpl A (o(xpm A opV) v o(—xpm A odis))
v (—xpl A odis)

7, NextOrDistEqv

7 UIevalidatc_pin =
(xpl A ((oxpm A o0pV) v (0—xpm A oodis)))
v (—upl A odis)

8, NextAndDistEqv

10

ruleyaidate_pin =

(xpl A (oxpm A o0pPV))

v (xpl A (0—xpm A ocdis))
v (—xpl A odis)

9, dist. of A over v

11

ruleyaidate_pin =

((xpl A Oxpm) A 0OpY)

V ((xpl A o—xpm) A ocdis)
v (—uxpl A odis)

10, prop. logic

12

dpS s mleread_kcy_pad s mlevalidatc~pin

2, reiteration

13

dps ; ruleread key_pad 5

(((xpl A oxpm) A copv)

v ((xpl A 0=xpm) A o0dis)
v (—xpl A odis))

11, 12, eqv. subst.

14

rul €read_key_pad

CP assumption

15

(—xek A Okb) ; rulercad xey_paa V (xek A oia)

3, 14, eqv. subst.

331

16 (=wxek A Okb) ; rulecead xey_pad CP assumption
17 —wxek A Okb ; ruleread xey_pad 16, StateAndChop
18 (—xek A OKb ; rulereag xey_pad) V (xek A oia) 17, v introduction
19 (xek A oia) CP assumption
20 (—xek A okb ; ruleread key_pad) V (Xek A Oia) 19, v introduction
21 (—wxek A kb ; rulémd _key_pad) V (xek A 0ia) 16-18, 19-20,
v elimination
22 ruleread xey_pad D 14-21, o introduction
(—xek A Okb ; ruleread xey_pad) V (xek A oia)
23 dpS ; (("ﬂek A okb ; mleread_j(ey_pad) v (xek A Oia)) ; 13, 22,
(((xpl A oxpm) A oOpV) ChopSwapImp3
V ((xpl A o—xpm) A oodis)
v (—xpl A odis))
24 (dps ; (—xek A OKb ; ruleread xey_pad) V dps ; (xek A oia)) ; 23, ChopOrEqv
(((xpl A oxpm) A OCDV)
v ((xpl A 0o—xpm) A oodis)
V (—xpl A odis))
25 dps; (—xek A Okb ; ruleread xey_pad) ; 24, OrChopEqv
(((xpl A oxpm) A o0pV)
- v ((xpl A 0—xpm) A oodis)
v (=xpl A odis))
v dps ; (xek A oia) ;
(((epl A 0xpm) A 00pY)
V ((xpl A 0o—=xpm) A ocdis)
v (=xpl A cdis))
26 dps ; (—xek A Okb ; rulecead ey pad) 3 CP éssumption
(((xpl A oxpm) A copv)
v ((xpl A 0—=xpm) A ocdis)
v (=uxpl A cdis))
27 . dps; (—xek A ©kb ; ruleread xey_pad) 26, semantics of chop

332

28 dps ; (—xek A Okb ; ruleread key_pad) 27, v introduction
v dps ; ((xek ; (xpl A oxpm)) A (0ia ; copv))
v dps ; ((xek ; (xpl A o—xpm)) A (0ia ; oodis))
v dps ; ((xek ; —xpl) A (oia ; odis))
29 dps ; (xek A oia) ; (((xpl A oxpm) A copV) 28, CP assumption
v ((xpl A 0—xpm) A ocodis)
v (=xpl A odis))
30 dps; (xek A cia) ; ((xpl A oxpm) A cOpV) 29, ChopOrEqv
v dps ; (xek A oia) ; ((xpl A o—=xpm) A oodis)
v dps ; (xek A oia) ; (—xpl A odis)
31 dps ; (xek A oia) ; ((xpl A oxpm) A oopv) CP assumption
32 dps ; ((xek ; (xpl A oxpm)) A (oia ; oopv)) 31,
TwoChopRulesImp4
33 dps ; ((xek ; (xpl A oxpm)) A (oia ; oopv)) 32, v introduction
v dps ; ((xek ; (xpl A o—xpm)) A (cia ; oodis))
v dps ; ((xek ; —xpl) A (oia ; odis))
34 dps ; (xek A oia) ; ((xpl A o—xpm) A codis) CP assumption
35 dps ; ((xek ; (xpl A o—xpm)) A (oia ; ocdis)) 34,
TwoChopRulesImp4
36 dps ; ((xek ; (xpl A oxpm)) A (cia ; oopv)) 35, v introduction
v dps ; ((xek ; (xpl A o—~xpm)) A (oia ; oodis))
v dps ; ((xek ; —xpl) A (oia ; odis))
37 dps ; (xek A oia) ; (—xpl A odis) CP assumption
38 dps ; ((xek ; —xpl) A (cia ; odis)) 36,
TwoChopRulesImp4
39 dps ; ((xek ; (xpl A oxpm)) A (cia ; copv)) 38, v introduction

v dps ; ((xek ; (xpl A o—xpm)) A (cia ; oodis))
v dps ; ((xek ; —xpl) A (oia ; odis))

333

40 dps ; ((xek ; (xpl A oxpm)) A (oia ; oopv)) 31-33, 34-36, 29-39,
v dps ; ((xek ; (xpl A o—xpm)) A (oia ; ocdis)) v elimination
v dps ; ((xek ; —xpl) A (0ia ; odis))

41 dps ; (—xek A Okb ; ruleread xey_pad) 40, v introduction

v dps; ((xek ; (xpl A oxpm)) A (cia ; oopv))
v dps ; ((xek ; (xpl A 0—xpm)) A (cia ; ocdis))
v dps; ((xek ; —xpl) A (oia ; odis))

42

dps ; (—xek A Okb ; rulecead xey_pad)

v dps ; ((xek ; (xpl A oxpm)) A (oia ; copv))
v dps ; ((xek ; (xpl A o—~xpm)) A (cia ; oodis))
v dps ; ((xek ; —xpl) A (oia ; odis))

26-28,29-41,
v elimination

43

PP

CP assumption

44

~dps ; (—xek A kb ; ruleread key_pad)
v dps ; ((xek ; (xpl A oxpm)) A (¢ia ; copv))
v dps ; ((xek ; (xpl A 0—=xpm)) A (oia ; oodis))
v dps; ((xek ; —xpl) A (oia ; odis))

42, reiteration

45

pp O (dps ; (—xek A Okb ; ruleread xey_pad)

v dps ; ((xek ; (xpl A oxpm)) A (cia ; oopv))
v dps ; ((xek ; (xpl A c—xpm)) A (cia ; codis))
v dps ; ((xek ; —xpl) A (oia; odis)))

44, S introduction

46

opp D o(dps ; (—xek A Okb ; rulesead xey_pad)

v dps ; ((xek ; (xpl A cxpm)) A (cia ; oopv))
v dps ; ((xek ; (xpl A 0—=xpm)) A (0ia ; oodis))
v dps ; ((xek ; —xpl) A (cia ; odis)))

45, NextImpNext

47

opp D (odps ; (—xek A Okb ; ruleread xey_pad)

v odps ; ((xek ; (xpl A oxpm)) A (cia ; oopv))
v odps ; ((xek ; (xpl A o—xpm)) A (0ia ; 00odis))
v odps ; ((xek ; —wpl) A (oia ; odis)))

46, NextOrDistEqv

48

opp ; rulepin_enry D (0dps ; (—xek A Okb ; ruleread xey_pad)
v odps ; ((xek ; (xpl A oxpm)) A (oia ; copv))

v odps ; ((xek ; (xpl A 0—xpm)) A (0ia ; oodis))

v odps ; ((xek ; —xpl) A (¢ia ; odis))) ; rulepin_enry

47, LeftChopImpChop

334

IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ,
www.bl.uk

o

Pages 335 and 336 copied
as original. Text also very
close to spine.

—

1, reiteration

N A =xVp) A Opp) ; rulepin_entry))
Mmpty) v (xal A empty)

op
1, 49, eqv. subst.

@i\ =wVp) A Opp) ; rulépin enry

CP assumption

L(;‘ml\/\"txvl’) A (opp ; rulepin_entry)

, StateAndChop

0

B e o

A elimination

,(Odps ; (—xek A okb ; ruleread_key_pad)

Vodps ; ((xek ; (xpl A oxpm)) A (oia ; 0OpV))

V odps ; ((xek ; (xpl A o-upm)) A (ia ; 00dis))

Y odps ; ((xek ; —xpl) A (cia ; 0dis))) ; rulepin ey

MP
on

lesImp2

0dps ; (—xek A Okb ; ruleread key.pad) 3 T#lepin_enury
v odps ; ((xek ; (xpl A oxpm)) A (Cia ; oOpV)) ;
;rulepirLentfy

;V odps ; ((xek ; (xpl A 0o—xpm)) A (0ia ; oodis));
"ltlepin_em,y

v odps ; ((xek ; —xpl) A (cia ; 0dis)) ; rulepin_eniry

OrChopEqv

A elimination

(Sxal A —Xvp)

(~xal A —vp) A

g(odps ; (—xek A Okb ; ruleread key_pad) 3 Tlepin_entry
¥ odps ; ((xek ; (xpl A oxpm)) A (0ia ; 00pV)) ;
.'lllepin_mu,y

v odps ; ((xek ; (xpl A 0—xpm)) A (oia ; oodis));

,ulepiILenny
\ OdpS : ((xek ;—prl) A (Oia ; OdiS)) H rulepin_emry)

A introduction

(~xal A —xvp) A (odps ; (—xek

A Okb ; ruleread key_pad) 3 TUlepin_eniry))

V ((—xal A —xvp) A (odps ; ((xek ; (xpl A oxpm))
A (cia ; oopv)) ; rulepin_enry))

v ((=xal A —xvp) A (odps ; ((xek ; (xpl A o—xpm))
" (oia ; oodis)); rulepin_eaury))

Y ((—xal A —xvp) A (odps ; ((xek ; —xpl)

\ (cia ; odis)) ; rulepin_enwry))

dist. of A over v

335

336

66

((—xal A —xvp) A odps) ; ((xek ; (xpl A 0—xpm))
A (oia ; oodis)) ; rulegin_entry

CP assumption

67

((—xal A —xvp) ; xek 5 (xpl A 0O=xpm)) A
(odps ; oia ; oodis ; rulepin_entry)

TwoChopRulesImp2

68

(((—xal A —xvp) ; —xek) A

(odps ;0Kkb ; ruleread xey_pad 3 THlepin_cnty))

V (((=xal A —xvp) ; xek ; (xpl A oxpm)) A
(odps ; oia ; 0OpV ; rulepin_enty))

V (((—wxal A —xvp) ; xek 5 (xpl A 0O—xpm)) A
(odps ; oia ; oodis ; rulepin_entry))

V (((—xal A —xvp) ; xek 3 —xpl) A

(odps ; oia ; odis ; rulegin_enry))

v introduction

69

((=xal A =xvp) A odps) ; ((xek ; —xpl)
A (oia ; odis)) ; rulepin_entry

CP assumption

70

((=xal A —xvp) ; xek 5 —xpl) A
(odps ; oia ; odis ; rulepin_entry)

TwoChopRulesImpZ

71

(((—xal A —xvp) ; —xek) A

- (odps ;0kb ; rulecead xey_pad rulépin_my))
V (((—xal A —xvp) ; xek ; (xpl A oxpm)) A
(odps ; oia 5 0OpV ; rulegin_enry))
V (((—xal A —xvp) ; xek ; (xpl A O—xpm)) A~
(odps ; oia ; oodis ; rulepis_eniry))

g Vv (((—xal A —xvp) ; xek 5 —upl) A

(odps ; oia ; odis ; rulepin_enry))

v introduction

72

(((—xal A =xvp) ; —xek) A

(odps ;0kb ; ruleread xey_pad 3 TUlepin_entry))

V (((—xal A —xvp) ; xek ; (xpl A oxpm)) A
(edps ; oia ; copv; rulepm_mgy))

v (((—xal A —xvp) ; xek ; (xpl A 0—xpm)) A
(odps ; oia ; codis ; rulegin_entry))

V (((—xal A —xvp) ; xek ; —xpl) A

(odps ; oia ; odis ; rulepin_enxy))

v elimination

337

73

(((—xal A —xvp) ; —xek) A v introduction
(odps ;0kb ; ruleread xey_pad 3 Tulepin_enry))

V (((—xal A —xvp) ; xek ; (xpl A cxpm)) A

(odps ; oia ; 0OpV ; rulepin entry))

V (((—xal A —xvp) ; xek ; (xpl A o—xpm)) A

(odps ; oia ; oodis ; rulegin_entry))

v (((—xal A —ovp) ; xek 3 —xpl) A

(odps ; oia ; odis ; rulegin_enty))

v (xvp A empty)

v (xal A empty)

74

(xvp A empty) CP assumption

75

(((—xal A —xvp) ; —xek) A v introduction
(odps ;0kb ; rulereaq xey_pad 5 Tlepin_entry))

V (((—xal A —xvp) ; xek ; (xpl A oxpm)) A

(odps ; cia ; 00pV ; rulepis_enry))

V (((—xal A —xvp) ; xek ; (xpl A 0o—xpm)) A

(odps ; oia ; oodis ; rulegis_entry))

v (((—xal A —xvp) 3 xek 3 —xpl) A

(odps ; oia ; odis ; rulepin_enry))

Vv (xvp A empty)

v (xal A empty)

76

(xal A empty) CP assumption

77

(((—xal A =xvp) ; —xek) A v introduction
(odps ;0kb ; ruleread xey_pad 3 Tilepin_entry))

v (((—xal A —xvp) ; xek ; (xpl A Oxpm)) A

(odps ; oia ; 0OpV ; rulepin_entry))

v (((—xal A —xvp) ; xek ; (xpl A 0—xpm)) A

(odps ; oia ; oodis ; rulepin_entry))

v (((—xal A —xvp) ; xek 3 —xpl) A

(odps ; oia ; odis ; rulegiy_entry))

v (xvp A empty)

v (xal A empty)

338

78 (((—xal A —xvp) ; —xek) A : v elimination
(odps ;0kb ; ruleread xey_pad 3 Tulepin_entry))
Vv (((=xal A —xvp) ; xek ; (xpl A Oxpm)) A
(odps ; oia ; 0opv ; rulegin_enrry))
v (((—xal A —xvp) ; xek 3 (xpl A O—xpm)) A
(odps ; oia ; oodis ; rulepin_eniry))
Vv (((—xal A —xvp) ; xek ; —xpl) A
(odps ; oia ; odis ; rulepis_eniry))
v (xvp A empty)
Vv (xal A empty)

Based on these transformations, the possible behaviors associated with rulepis_eary are:

(((—attempt_limit A —valid_pin) ; —enter_key)
A (odisplay_pin_screen ;okey_buffer ;
Titleread key_pad 5 TUlepin_enry))

V (((—attempt_limit A —valid_pin) ; enter_key ;
(pin_length A opin_match))
A (odisplay_pin_screen ; oincrement_attempt ;
_oopin_valid ; rulepin_eany))

v (((—attempt_limit A —valid_pin) ; enter_key ;
(pin_length A o—pin_match)) ‘
A odisplay_pin_screen ; oincrement_attempt ;
- oodisplay_invalid_screen ; rulepin_entry))

\% (((—-kzttempt_limit A —wvalid_pin) ; enter_key ; —pin_length)
A (odisplay_pin_screen ; oincrement_attempt ;
odisplay_invalid_screen ; rulegin_entry))

v (valid_pin A empty)

v (attempt_limit A empty)

339

Appendix F
Creating Rules to Describe a Simple Hardware System

In this appendix, rules are used to describe the behavior of a simple hardware
system. Consider the simple NOR-based flip-flop system (Feynman, 1996) presented in
Figure F-1.

Al

Figure F-1: A Simple Flip-Flop

Depending on the current state of Q and the values of the Set (S) and Reset (R) lines,
the next state of Q is specified. The behavior of this simple flip-flop is described in
Table F-1.

Table F-1 Behavior of a simple flip-flop

Current Q Set (S) Reset (R) Next Q

0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 1

For the purposes of this exercise, the two possible cases where both Set (S) and Reset
(R) are equal to one are undefined. Alternatively, the behavior of this simple flip-flop is

described using the ITL next operator in Table F-2.

340

Table F-2 Behavior of a simple flip-flop expressed in ITL

e OO OO
OO~ O0O|Wn
O OO —O|R®
—_ O = OO0

Under the system behavior as defined in Table F-2, each of the four conditions

must hold for each of the six cases. Therefore, six general-form rules can be composed

to describe the behavior of the simple flip-flip presented in Figure F-1:

(Q=oAs=oAR=ojA(oQ=0)
(Q=0AS=0AR=1)A(cQ=0)
(Q=0AS=1AR=0)A(cQ=1)
(Q=1AS=0AR=0)A(cQ=1)
(Q=1AS=0AR=1)A(cQ=0)

(Q=1AS=1AR=0)A(cQ=1)
Given that the domain of R and S are {0,1}, the following definitions are made:

(Q=1) and —x £ (Q=0)
(R=1) and —y £ (R=0)
£ (S=1) and —z £ (S=0)

> >

x
y
Z
Substituting the definitions at (F-2) into (F-1) yields:

(—x Az A —y) A (0—x)
(=X A=ZAY) A(O—X)
(—wazAﬂy)A(ox)

(XA=ZA=Y) A (6x)

(F-1a)
(F-1b)
(F-1c)
(F-1d)
(F-1e)

(F-1)

(F-2a)
(F-2b)
(F-2¢)

(F-3a)
(F-3b)
(F-3¢)

(F-3d)

341

(xA-ZAY) A(0—x)

(xAzA=Y) A(OX)

(F-3¢)

(F-3f)

These six individual rules can be combined disjunctively to form a single rule-base

structure that describes the behavior of the flip-flop system:

(=X A=Z A=y A O—x)
V(=XA=ZAYA O—x)
V(=XAZA-YACX)
V(X A=ZA =y A OXx)
VEXA—-ZIAYAO—)
VEAZAYAOX)

Consider the following pair of disjunctively connected rules:
(XA=ZAYAO=X)V(XA—ZAYA OX)
Applying propositional logic to (F-5) yields the equivalent expression:
(X AX)V(mZAYy A O—X)
Applying propositional logic to (F-6) yields the equivalent expression:
(mz2Ay A O—x)
Combining (F-5), (F-6), and (F-7) yields:
(XA-ZAYAO-X)V(XA=ZAYA O—X)=(mZAYA O—X)
Applying the equivalence (F-8) to (F-4) yields:

(—x A=Z A=y A O—x)
V(=X AZA=yAOx)
V(X A=ZA =y A Ox)
V(XAZA=YAOX)
V(mZAYA 0—x)

(F-4)

(F-5)

(F-6)

(F-7)

(F-8)

(F-9)

342

Consider the following pair of disjunctively connected rules:

(—;xAzA—lonx)v(xAzA—wyA;)x)' (F-10)
Appiying propositional logic to (F-10) yieids the equivalent expression:

(xAX)V(@IZA=yAOX) F-11)
Applying propositional logic to (F—l 1) yields the equivalent expression:

(zA =y A OX) | | S : - (F12)
Combining (f-lO), (F-11), and (F-12) yields:

(X AZA=YAOX)V(XAZA=YAOX)=(ZA=YyA OX) F-13) |
Applying the eéui&alcnce (F-13) to (F-9) yields:

(X A=ZA=YyAO)

V(X A=ZA—yAOX)

V(ZA=YAOX) ;

V(mZAyAO—x) o (F-14)

- Applying the definitions presented at (F-2) to (F-14) yields:

Q=0AS=0AR=0A0Q=0)

vIQ=1AS=0AR=0A0Q=1)

v §=1AR=0A0Q=1) v ,
v(S§=0AR=1A0Q=0) (F-15)

Remembering that thé domain of Q is {0, 1}, consider the following definitions:

OQunchanged £ (Q=1A0Q=1 (F-162)
OQunchanged = (Q=0A0Q=0) o (F-16b)

. Applying these deﬁnitions to (F-16) yields:

343

(S =0AR=0A OQunchanged)

v(§=0AR=0A OQunchanged)

v(S=1AR=0A0Q=1)

V(S=0AR=1A0Q=0) 1)

Applying propositional logic to (F-17) yields:

(S=0AR=0A OQunchanged)
v({S=1AR=0A0Q=1)
v(S=0AR=1A0Q=0) (F-18)

With these transformations, the original six rules of (F-1) and the corresponding
six-rule disjunctive structure of (F-4) have been reduced to three rules expressed as a
disjunctive structure at (F-18). (F-18) describes the behavior of the hardware system
presented in Figure F-1 and described in Table F-1. Although purposefully limited in
scope, this example is a demonstration of how rules can be formed using this rule model

and rule algebra to describe a given system.

These rules can be used to reason about, analyze, and/or understand the target
system. For example, in comparison with the information conveyed in Figure F-1 and
Table F-1, these rules provide a clear and succinct description of the system behavior:
if Set (S) is high and Reset (R) is low, the next Q is set high; if Set (S) is low and Reset
(R) is high, the next Q is set low; and if both Set (S) and Reset (R) are low, the next Q is
unchanged from its current status. Whereas this information can be gleaned from
Figure F-1 and Table F-1, the rules in (F-18) provide a simple and immediately
comprehensible depiction of system behavior. As these rules have been developed
using the rule model and rule algebra presented in this research, these rules can be

integrated into a larger rule system, as appropriate, using the rule algebra.

344

