
A General Algebra of Business Rules

for Heterogeneous Systems

Frederick V. Ramsey

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

March 2007

Table of Contents

Abstract ... i

Table of Contents ... ii

List of Figures .. vi

List of Tables .. vii

List of Listings '" .. ,. viii

Acknowledgements .. ix

Publications ... x

Chapter 1 Introduction........ 1

1.1 Motivation for this Research...... 2
1.2 Original Contributions of this Research...... 3
1.3 Organization of this Thesis ... 4

Chapter 2 Business Rules - A Review .. 6

2.1 Business Rules and Forward Engineering ... 6
2.2 Business Rules and Reverse Engineering .. 8
2.3 Formal Models of Business Rules .. 9
2.4 General Properties of Extractable Business Rules .. 12
2.5 Program Slicing ... 14
2.6 Formal Methods, Reverse Engineering, and Code Extraction 15
2.7 Business Rule Extraction ... 19
2.8 A General Classification of Rule Extraction Techniques 29
2.9 Problems with Existing Rule Extraction Approaches 32

Chapter 3 General Formal Framework for Rule Extraction 34

3.1 Set-Based Formal Framework ... 34
3.2 Evaluation of the Framework - C Language .. 38
3.3 Evaluation of the Framework - Wide Spectrum Language 41
3.4 Observations ... 46

Chapter 4 Temporal Logic and Rules ... 48

4.1 A State-Based Model of a Rule ... 48
4.2 A Very Basic Temporal View of Rules .. 52
4.3 Temporal Logic and Interval Temporal Logic ... 53

ii

4.4 Previous Temporal Representations of State Properties 59
4.5 A Temporal, State-Based Model of a Rule ... 61
4.6 Rules versus Rule Execution ... 65
4.7 Observations ... 68

Chapter 5 Rule Algebra - Fundamentals ... 70

5.1 Rules, Total Rules, and Rule Systems .. 70
5.2 Rule Domain, Rule Codomain, and Rule Universe .. 78

5.2.1 Rule Domain .. 79
5.2.2 Rule Codomain .. 80
5.2.3 Rule Universe .. 81

5.3 Rule Satisfiability .. 81
5.4 Injective, Surjective, and Bijective Rules ... 82

5.4.1 Injective Rules ... 82
5.4.2 Surjective Rules .. 83
5.4.3 Bijective Rules ... 83

5.5 Inverse Rules and Invertible Rules .. 83
5.6 Sequentially Relating Two Rules ... 84

5.6.1 Sequentially Associating Rules using the General Rule Form 84
5.6.2 Sequential Composition with Chop .. 87

5.7 Reflexive and Irreflexive Rules ... 93
5.7.1 Reflexive Rules .. 93
5.7.2 Irreflexive Rules .. 95

5.8 Symmetric, Antisymmetric, and Asymmetric Rules ... 96
5.8.1 Symmetric Rules .. 96
5.8.2 Antisymmetric Rules .. 105
5.8.3 Asymmetric Rules .. 107

5.9 Transitive Rules .. 108

Chapter 6 Rule Algebra - Advanced Concepts ... 110

6.1 Nesting .. 110
6.2 Recursion .. 120
6.3 Guarded Composition .. 123
6.4 Parallel Composition ... 125
6.5 Equivalent Rules ... 127
6.6 Rules in Programming Structures .. 130

6.6.1 If-Then-Else Structures .. 131
6.6.2 While Structures .. 134
6.6.3 Indexed For-Loop Structures .. 135

6.7 Some Other Interesting Rules .. 136
6.7.1 Excluding a Rule State with Negation .. 136
6.7.2 Enforcement of Specific Criteria .. 137
6.7.3 System Inverter .. 137
6.7.4 Identity Rule ... 137
6.7.5 Any Possible Rule State ... 138

III

Chapter 7 Analysis of Rules in Models and Specifications 139

7.1 Analysis of Rules from a Finite State Machine .. 139
7.2 Analysis of Rules from a Specification ; .. 150
7.3 Rule Analysis and the Statechart Approach ... 173

7.3.1 Overview of Statecharts ... 174
7.3.2 Previous Application of Statecharts to Legacy Code Analysis............ 175
7.3.3 Visual Formalisms of Rule-Based Legacy Code Structures 177

7.3.3.1 Statechart of the If-Then-Else Structure 179
7.3.3.2 Statechart of the While Structure .. 181
7.3.3.3 Statechart of the Indexed For-Loop Structure 181
7.3.3.4 Statechart of the Switch Structure ... 182

7.3.4 Representing Extracted Rules with Statecharts 183
7.3.5 The Value of Statecharts in Legacy Code Analysis 193

Chapter 8 Analysis of Rules in Legacy Code ... 194

8.1 Using Rules to Build a Database for Legacy Code Analysis 194
8.2 Representing WSL Program Slices as Rules .. 213

Chapter 9 Applying the Rule Algebra to Specify New Rules 237

9.1 Refining an Existing Rule with New Rules .. 237
9.2 Analyzing the New Rules Using the Rule Algebra ... 243

Chapter 10 Observations regarding the Rule Algebra and its Application 246

10.1 On the Rule Algebra .. 247
10.2 On the Application of the Rule Algebra ... 248
10.2 Comparison with Existing Models and Approaches 251

Chapter 11 Conclusions and Recommendations for Future Research 254

11.1 Vision , ... 254
11.2 Achievements .. 255
11.3 Future Research Directions ... 257

11.3.1 Equivalence and Isomorphism ... 257
11.3.2 Alternative Rule Forms .. 259
11.3.3 Interdependence, Independence, and Interference 261
11.3.4 Detemporalization .. 263
11.3.5 Formal Proof of Equivalence of Specific Statechart

Constructs and Specific Rule Formulas .. 263
11.3.6 Metadata About Rules .. 264
11.3.7 Automated Tool Using the Rule Algebra .. 264

References .. 265

Appendix A - Supporting Lemmas for the Rule Algebra ... 278

iv

Appendix B - Formal Transformation of Rules Extracted from a Specification 280

Appendix C - Formal Transformation of I/O Rules in Legacy Code 294

Appendix D - Formal Transformation of Rules Extracted from WSL Slices 307

Appendix E - Formal Transformation of Rules Created to Refme a Specification 329

Appendix F - Creating Rules to Describe a Simple Hardware System 340

v

5.1-1

5.1-2

5.6.1-1
5.6.2-1
5.7.1-1
5.7.1-2
5.7.2-1
5.8.1-1
5.8.1-2

5.8.2-1
5.8.2-2
5.9-1
7.1-1
7.3.3-1
7.3.3-2
7.3.3.1-1
7.3.3.1-2
7.3.3.2-1
7.3.3.3-1
7.3.3.4-1
7.3.4-1
7.3.4-2
7.3.4-3
7.3.4-4
7.3.4-5
7.3.4-6
7.3.4-7a
7.3.4-7b
8.1-1
9.1-1

List of Figures

Three-State Rule System with Rules
Sharing a Common Rule Condition .. 74

Three-State Rule System with Rules
Sharing a Common Rule State .. 76

Three-Sequence State Transition Diagram .. 85
Three-State State Transition Diagram .. 87
One-State Reflexive System ... 93
Two-State Reflexive System ... 94
Two-State Irreflexive System ... 96
Two-State Symmetric System ... 97
State Sequences Resulting from Sequentially Composing with chop

both Rules Describing a Two-State Symmetric System 102
Two-State Asymmetric System ... 105
Two-State System that Is Neither Symmetric nor Asymmetric 106
Three-State Transitive System .. 108
Three-State Finite State Machine .. 139
A Simple Two-State System ... 178
A Simple Two-State Statechart ... 179
Generic Visual Formalism of the 'if-then-else' Structure 180
Generic Visual Formalism ofthe 'if-then' Structure 181
Generic Visual Formalism of the 'while' Structure 181
Generic Visual Formalism of the Indexed 'for-loop' Structure 182
Generic Visual Formalism of the 'switch' Structure 183
Statechart for rule7.Z-a......................... 185
Statechart for rule7.z-b .. 186
Statechart for rule7.z-c .. 187
Statechart for rule7.z-d .. 187
Statechart for rule7.2-e .. 188
Statechart for rule7.2/ .. 189
Statechart for rule7.2-a, rule7.2-b, and rule7.2_c .. 190
-Statechart for rule7.z-d. ruZe7.2-e. and rule7.Zj ... 191
Statechart for Procedure printerrorline Legacy Code 206
Statechart for Refined State Sequence gecpin .. 242

vi

List of Tables

4.3-1 Syntax ofITL ... 54
4.3-2 Semantics ofITL .. 55
4.3-3 Frequently used non-temporal derived constructs 56
4.3-4 Frequently used temporal derived constructs .. 56
4.3-5 Frequently used concrete derived constructs ... 57
4.3-6 Frequently used derived constructs related to expressions 57
4.3-7 Propositional axioms and rules for ITL ... 58
4.3-8 Summary of selected ITL lemmas used in this research 59
8.1-1 Legacy code analysis database .. 211

vii

List of Listings

3.2-1 A Simple Rule-Based Program in the C Language 38
3.2-2 Rule Extraction from the C Language Program

Using the Inclusion Approach of (3.1-2) : 40
3.2-3 Rule Extraction from the C Language Program

Using the Exclusion Approach of (3.1-3) .. 41
3.3-1 A Second Simple Rule-Based Program in the C Language 43
3.3-2 The Equivalent Program in WSL .. 44
3.3-3 Rule Extraction from the WSL Program

Using the Inclusion Approach of (3.1-2) ... 45
3.3-4 Rule Extraction from the WSL Program

Using the Exclusion Approach of (3.1-3) .. 46

viii

Acknowledgements

When I was young, my parents often reminded me that I would be measured by

the company that I keep. In the conduct of this research, I have had the good fortune to

keep some very good company. It is with great pleasure that I now offer my sincerest

thanks to the some of those that helped me along this journey:

• To my supervisor Professor Hussein Zedan for the guidance, direction,

patience, encouragement, wisdom, and knowledge he offered. My wish to

those who decide to pursue their dream of an advanced degree - may you be

fortunate enough to find an advisor like Professor Zedan.

• To Dr. James Alpigini for his belief and encouragement in my work, and for

his commitment of his time and energy in the support of my efforts.

• To Dr. Antonio Cau for his patience and insights in answering my many

questions about ITL.

• To Professor Hongji Yang for his confidence and spirit, especially in the

early days when I was just fmding my way.

• To Dr. Francois Siewe for his unselfish commitment of several long days in

front of a whiteboard with me, at a time when it made all the difference.

• To all my colleagues, past and present, at the lab. You have made my days

in the lab some of the most enjoyable times of my professional life.

• And to my loving wife, Ellen, for her love, friendship, patience, and humor

as we travel through this life together.

I dedicate this opus to the memory of my loving parents, Mr. and Mrs. E. M. Ramsey,

Jr., gone from this world but never forgotten. Together, they taught me the most

important thing that I will ever know - the power of education.

ix

Publications

Ramsey, F. V. & Alpigin~ J. 1. (2002). A simple mathematically based framework for

rule extraction using Wide Spectrum Language. Proceedings of the 2nd IEEE

International Workshop on Source Code Analysis and Manipulation (SCAM 2002),

44-52.

Ramsey, F. V. & Alpigini, J. J. (2002). Rough sets, guarded command language, and

decision rules. Proceedings of the Third International Conference Rough Sets and

Current Trends in Computing (RSCTC 2002), Lecture Notes in Computer Science

2475, 183-188.

Ramsey, F. V. & Alpigini, J. J. (2002). A simple mathematically based framework for

rule extraction from an arbitrary programming language. Proceedings of the 26th

International Computer Software and Applications Conference (COMPSAC 2002),

763-772.

Alpigini, J. J., Nei1~ C. J. & Ramsey, F. V. (2001). Classification of rule extraction

techniques from knowledge-based systems. Proceedings of the lASTED International

Conference on Modeling and Simulation, 60-64.

x

Chapter 1

Introduction

Rules give structure to knowledge. Programs use rules to dictate or constrain

specific decisions or actions. Rules are incorporated into these systems based on either

the experiences or expectations of the organization or a subset of knowledgeable

individuals, so that all users of these systems are guided by the same knowledge and

constrained to identical behaviors. Rules provide the semantic functionality of a

system and represent the know ledge core around which that system is developed and

maintained. Regardless of their specific form and implementation, these rule-based

programs can be viewed as knowledge systems because the rules express specific

domain knowledge in a usable form.

Within these programs or knowledge systems, rule revisions are typically made

based on one of two factors: the organization's ever increasing understanding of its own

successful practices, and the organization's response to a changing operational climate.

These revisions reflect the real-time response of the organization to both internal and

external changes, and also reflect the growing organizational knowledge and memory,

and the associated 'state-of-the-organization.' As these rules have typically been tested,

revised, and updated continuously, they represent a substantial and valuable intellectual

asset.

Unfortunately, these rule revisions and updates are all too often made only

within the code of these rule-based knowledge systems. As a result, no other accurate

written records or documentation of these rules exists. When it becomes necessary to

re-engineer these existing systems and/or create replacement systems, these valuable

rules are frequently not reused because the legacy program code is the only valid source

of these rules, and their extraction from the legacy code is thought to be too difficult.

The problem is further exacerbated when a legacy re-engineering projcct potentially

involves rule recovery from complex systems employing mUltiple programs in multiple

languages. Failure to capture and reuse these rules means that the refined knowledge

embodied in these rules could be, either temporarily or permanently, lost in the new

system.

1

1.1 Motivation for this Research

This work was motivated by an interest in rules, their forms, and their

importance, and by the recognition of the potential value of rule extraction from

heterogeneous legacy systems. Based on the literature review at the initiation of this

research, most rule extraction techniques reported in the literature have one or more

major shortcomings that compromise their usefulness or applicability to rule extraction

from heterogeneous systems. As discussed in detail in Chapter 2, these critical

problems include substantial variations regarding exactly what constitutes a rule, the

language specificity of many existing approaches and related tools, the functional

requirement that the individual responsible for rule extraction be expert both in the

knowledge domain and the program domain, inconsistencies associated with different

individuals using different approaches for different languages, and the lack of

mathematical formalism in most rule extraction approaches. Taken together, these five

critical problems initially seemed rather daunting.

With further reflection, three core questions emerged.

1. What exactly is a rule? Specifically, can a genera~ succinct, formal, and

robust rule defmition be formulated that can be used to create, analyze,

decompose, and/or understand rules?

2. Can a rule algebra be developed that allows the formal and consistent

application of a formal general rule model to' the extraction of rules and,

as appropriate, to the creation of new rules?

3. Can a general framework be created that allows application of this rule

model and rule algebra to the identification, analysis, and extraction of

rules from legacy systems regardless of system, domain, platform, size,

or language?

If these three questions can be answered, the reverse or re-engineering of legacy

systems, and the forward engineering of new systems, can potentially be significantly

improved. If these three questions can be answered, existing rule-based systems can be

analyzed and new rule-based replacement systems can be developed using a consistent

2

and complementary level of mathematical formality that is not typically applied to such

tasks. The research presented in this thesis addresses these three core questions.

1.2 Original Contributions of this Research

This research makes an original and significant contribution in at least seven

areas. Each area of original contribution is described briefly below.

1. A general formal framework for rule extraction, applicable to a wide

range of legacy languages, is presented.

2. A formal general model of a rule is developed, general in that it can be

adapted to the variety of languages and programming paradigms that

might be encountered in different legacy code applications. Using

Interval Temporal Logic (ITL), a rule is defmed formally as a temporal

conjunctive relationship between a state sequence describing the rule

conditions and a future state sequence describing the rule outcome.

3. Using ITL and this temporal rule model, a rule algebra is developed to

describe the set of operations that can be applied to compose, decompose,

or transform rules. Using ITL, forty-three new lemmas are developed as

part of this rule algebra and are presented in this thesis.

4. Within the context of this rule model and the associated rule algebra,

various compositional paradigms are described including sequential

composition; nesting; recursion; deterministic and non-deterministic

guarded composition; and disjoint paranel composition. Using these

compositional paradigms, rule-based representations of typical legacy

code structures - the if-then-else structure, the while structure, and the

indexed for-loop - are developed.

5. The strong correspondence between rules as defined in this research and

statecharts is demonstrated. Using rule and statechart concepts, generic

visual formalisms are developed for four common legacy-code

programming structures. These statecharts are subsequently applied to

represent rules extracted from different legacy programs. Whereas

statecharts are typically used in the creation of new event-driven systems,

3

this work demonstrates that statecharts are an effective approach for

analyzing and displaying hierarchical, non-event driven legacy systems.

6. The applicability of this rule model and rule algebra is demonstrated by

applying them to the extraction, transformation, and analysis of rules

from a diverse set of existing and legacy systems.

7. In addition to these reverse engineering applications, the forward

engineering application of the rule model and rule algebra is

demonstrated by developing rule-based descriptions of new software and

hardware systems.

1.3 Organization of this Thesis

This thesis is organized as follows:

In Chapter 2, a review of the relevant literature related to rules and rule

extraction is presented. Reviewed topics include rule defmitions and rule models in

both the forward and reverse engineering domains, code extraction, program slicing,

and other reverse engineering methodologies relevant to rule extraction. Based on this

literature survey, a nine-way general classification of rule extraction techniques is

presented. The shortcomings of current rule extraction techniques are discussed ..

In Chapter 3, a critical element necessary for a formal approach to rule

extraction from legacy code is present~d - a general formal framework applicable to a

wide range of legacy languages. Under this rule extraction framework, general

mathematical formality is introduced by describing a program as a set of language

elements and structures, such that the program can be then partitioned into program

structures that are or are not rules. and then analyzed accordingly.

In Chapter 4, a formal general model of a rule is developed. Starting with a

state-based model of a rute, the temporal ordering of rule conditions and rule outcomes

is considered. Other formalizations using temporal logic to represent and reason about

the temporal relationships between states and/or state properties are reviewed. Using

Interval Temporal Logic (ITL), a rule is defmed formally as a temporal conjunctive

relationship between a state sequence describing the rule conditions and a future state

sequence describing the rule outcome.

4

In Chapters 5 and 6, a rule algebra is presented to describe the set of operations

that can be applied to compose, decompose, or transform rules that describe specific

state sequences. This rule algebra is developed incrementally by considering

fundamental systems and the corresponding relationships between the state sequences

that compose these systems. In developing this rule algebra, significant attention is

given to composing rules and rule systems to describe larger and more complex state

sequences. Various compositional paradigms are demonstrated with this rule algebra.

Using these compositional paradigms, rule-based representations of typical legacy code

structures are developed.

In Chapters 7, 8, and 9, the formal rule extraction framework of Chapter 3, the

formal temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are

applied to the extraction of rules from a variety of existing systems, specifications, and

legacy code, and to the forward engineering of new rule-based systems. Rules are

extracted from a fmite state machine. a detailed formal specification, a block of legacy

Pascal code, and slices of a Wide Spectrum Language (WSL) program. In concert with

this rule algebra, the use and value of statecharts for legacy code analysis is

demonstrated. In addition to these rule extraction (i.e., reverse engineering)

applications, the temporal rule model and the rule algebra are applied to the forward

engineering of rule-based systems. These various reverse and forward applications are

presented to demonstrate the wide-ranging applicability of the rule concepts developed

in this research.

In Chapter 10, observations are presented regarding the development and

application of the rule algebra, based on the work presented in Chapters 5 through 9.

In Chapter 11, some concluding remarks are presented and recommendations are

made for possible future work relating to ideas introduced in this thesis.

5

Chapter 2

Business Rules - A Review

In this chapter, a review of current defmitions and models of business rules in

both the forward and reverse engineering domains is presented. Formal models of

business rules are reviewed. Rule attributes common among these various defmitions

and models are identified, and a general defmition of a business rule is proposed.

Program slicing is briefly reviewed, including the application of program slicing to

reverse engineering and other domains. The use of formal methods for code extraction

and reverse engineering is reviewed. Rule extraction experiences are reviewed. Based

on this literature survey, a nine-way, general classification of rule extraction techniques

is developed. The critical shortcomings of current rule extraction techniques relative to

their usefulness or applicability to the reverse engineering of heterogeneous systems and

the forward engineering of new code or specifications are discussed.

2.1 Business Rules and Forward Engineering

Ulrich (1999) presented a two-part general defmition of business rules adopted

from the Object Management Group. Part 1 asserts that rules are declarations of

policies or conditions that must be satisfied, and Part 2 declares that rules govern the

manners in which businesses operate. The GUIDE Business Rules Project, as presented

in Rouvellou et al. (2000), offered the following: "A business rule is a statement that

defmes or constrains some aspect of the business. It is intended to assert business

structure or to control the behavior of the business." This defmition was extended to

distinguish between constraint, invariant, derivation, and classification rules.

Perkins (2000) defmes business rules as capturing or implementing precise

business logic in processes, procedures, and systems. Business rules may include term

defmitions, data integrity constraints, mathematical and functional derivations, logical

inferences, processing sequences, and relationships among data. A good business rule

has three basic characteristics: (1) a rule is an explicit expression; (2) a rule is

declarative, not procedural; and (3) a rule should be expressed in a single coherent

model, used to express all kinds of business rules. Business rules can be implemented

as metadata, process-driven approaches, and procedure-driven approaches.

6

Leite and Leonardi (1998) propose a business-rule taxonomy, where business

rules are either functional or non-functional. Functional rules specify an organization's

action, whereas non-functional rules are standards or relationships that the organization

must observe. Non-functional rules are further divided into macro-system and quality

rules. Macro-system rules describe policies and impose a constraint, whereas quality

rules specify characteristics of an organization'S standards or expectations regarding its

processes or products.

For business process modeling, Presley and Rogers (1996) present a business

rule model as an ontology. For the purposes of the model, this ontology is defmed as a

set of objects that make up a given domain, the associated properties, and the

relationships among these objects that are represented in the domain terminology. This

approach facilitates knowledge capture of both physical and conceptual objects and

their associated relationships.

Odell (1995) investigated the nature of business rules in the context of object­

oriented analysis and design using VML. Three types of constraint rules were

identified: stimulus/response, operation constraint, and structure constraint. In addition,

two types of derivation rules were identified: inference and computation.

Stimulus/response rules specify WHEN and IF conditions that must be true for an

operation to be triggered. Operation constraint rules specify conditions that must be

true before and/or after an operation. Structure constraint rules specify policies or

conditions about objects and their associations that cannot be violated. Inference rules

specify that if certain facts are true, a specific conclusion can be inferred. Computation

rules achieve their results with processing algorithms. With respect to their use, rules

allow experts to specify policies or conditions in small autonomous units using explicit

statements.

Ross (1997) defined a business rule as "a constraint or test exercised for the

purpose of maintaining the integrity (Le., correctness) of data." Using this definition,

seven general rule classifications or families are identified: instance verifiers, type

verifiers, position verifiers, functional verifiers, comparative evaluators, mathematical

evaluators, and project controllers. Within each family, rules are classified into atomic

7

types based on the specific type of computation the rule performs. In this data-centric

approach. "rules compute."

Theodoulidis et a1. (1992) investigated the temporal aspects of business rules.

Three categories of rules were identified: constraint, derivation, and event-action.

Constraint rules deal with both the static and transition integrity of structural

components of the system. Derivation rules defme how new static and transition

components can be derived from existing system components (including other derived

components), with exactly one derivation rule for each derived component. Event­

action rules deal with the invocation of procedures. expressing conditions under which

these procedures would be triggered.

2.2 Business Rules and Reverse Engineering

For the purposes of reverse engineering and legacy system analysis, Ulrich

(1999) narrowed the general defmition offered by the Object Management Group and

concluded that a business rule is a "combination of conditional and imperative logic that

changes the state of an object or data element."

For the reverse engineering domain, Sneed and Erdos (1996) defined business

rules as a set of conditional operations attached to a given data result or output.

Business rules are composed of four elements: results, arguments, assignments, and

conditions. Arguments for business rules may come from many different sources

including databases, user inputs from a terminal or window, or from other programs.

Assignment and condition statements may be located throughout the program.

Therefore, the authors conclude that the only easily locatable element of the business

rule within an existing program is the result. Therefore, to identify or extract business

rules, one must identify or know what data or output the rules produce. This definition

based on output data was critical to their approach to business rule extraction.

In extracting business rules from existing systems, Shao and Pound (1999)

concluded that business rules are declarative and not procedura~ and they mayor may

not be stated explicitly within an organization except in existing program code.

Business rules are classified into three groups - structural rules, behavioral rules, and

constraint rules. Structural rules are statements about data objects within an

8

organization's business. Behavioral rules are statements about the dynamic aspect or

events in an organization's business. Constraint rules are about the conditions under

which an organization operates.

2.3 Formal Models of Business Rules

Relatively few formal models of business rules exist, either in the forward or

reverse engineering domains. This section presents a detailed review of those formal

business rule models, with particular focus on formal representations of rule

conditionals and rule-directed state transitions.

Alagar and Periyasamy (2001) present a formal specification language for

formalizing business rules and business actions. This language, Business Transaction

Object Z or BTOZ, is an extension of the Object-Z specification language. In general, a

business rule is defmed as a constraint on a business transaction, as specified or defined

by the organization. A business system is formally defmed as the tuple (B, R, A), where

B is a set of business objects, R is a set of business rules, and A is a set of agents. Every

agent A is responsible for enforcing rules in a single category and is aware of the

business objects B to which these rules apply. Every rule, R. is a basic predicate,

abstracting a single business rule. Within this system, business actions are subject to

business rules. A business action is formally defmed as a generated signal (A, 0, r),

identifying that agent A receives rule r regarding an operation o. In general, each rule r

is written as a logical expression.

Huang et a!. (1998) defined a business rule as a function, constraint, or

transformation of inputs to outputs. Consistent with their research approach to use

program slicing to extract rules from legacy COBOL systems, a business rule was

formally defined as a program segment F that transforms a set of input variables I into a

set of output variables 0, such that 0 = F(l). The subsequent forward representation of

an extracted rule as a formula requires three elements: the domain variable of interest

(Le., the left-hand side of the formula); the expression for determining that domain

variable (i.e., the right-hand side of the formula); and the conditions under which the

formula holds.

9

Fu et al. (2001) studied the extraction and representation constraint rules -

statements that defIne or constrain some aspect of a business. Operationally, constraints

describe the specwc conditions under which an organization operates and can appear in

many forms. Focusing on this constraint reasoning, a predicate logic based language,

Business Rule Language or BRL, was proposed. Within BRL, real world business

objects or concepts are represented as structures. A structure is recursively deflned as

S(S1"",Sn), where S is the structure name and each element SI is a structure that is a

component of S. If a given structure S contains no components, it is a primitive

structure; otherwise, it is a composite structure. A constraint specifIes the allowable or

valid states for a given structure S. BRL has relatively limited expressive power and

includes only a small number of built-in predicates for representing the semantics of

constraints captured from the reverse engineering of legacy systems. Four types of

constraints are supported by BRL: Type I - constructs the domains for structures; Type

II - restricts the number of instances of a given structure; Type III - specifIes the

relationships between two or more structures; Type IV • specwes the number of other

structures that can be associated with a specifIc structure.

Ungureanu and Minsky (2000) defmed a business rule for business-to-business

e-commerce as a Law-Governed Interaction or LGI. The core concept of LGI is a

policy, P, defIned as the four-tuple <M, G, CS, L>, where M is the set of messages

regulated by this policy, G is a group of agents that exchange messages from the set M,

CS is the set of control states describing the attributes' of G and the state of the

individual agents within G such that there is only one CS per G, and L is the enforced

set of laws that regulate the exchange of messages between members of G. Events

involving members of G that are subject to a law L of a policy P are considered

regulated events. For every active agent x in G, there is a controller C that assures the

enforcement of L for every event at x. The control state CS" of a given agent x can be

changed by primitive operations, subject to the requirement of L. Primitive operations

used for the testing and update of control-state include true/false evaluation, addition,

subtraction. removal, replacement, deliver, and forward.

To deal with the problem of the same antecedent conditions causing outcome

conflicts due to multiple rules, Grosef et aL (1999) proposed a generalized version of

Courteous Logic Programs (CLP). In this approach, rules are initially represented as

10

declarative Ordinary Logic Programs (OLP) with well-founded semantics, as described

by van Gelder et al. (1991). In an OLP, the head or outcome of a rule is the

consequence of a series of logically connected atoms. These atoms form the body,

premise, or antecedent conditions of the rule. Given that many contract terms involve

conditional relationships, a rule in the e-commerce contract domain may involve an

antecedent that contains multiple conjoined conditions. Rule conflict occurs when the

antecedent conditions of mUltiple rules are satisfied, but the resulting consequences

conflict. CLP extends the well-founded semantics ofOLP to include prioritized conflict

handling. Rule prioritization information is derived from available information such as

relative specificity, recency, and authority. As a result, some rules are subject to

override by other higher priority conflicting rules. Rules in CLPs are then transformed

back into a semantically equivalent OLPs.

Plexousakis (1995) analyzed and simulated business processes using the high­

level logic programming language GOLOG. GOLOG is based on extending the

situation calculus, a first-order language for representing dynamic and evolving

domains where all changes within a domain are the result of named actions, to include

complex and perceptual actions. Under this approach, business processes are

represented as actions that affect the domain state. In the situation calculus and in

GOLOG, A is a set of actions and S is a set of situations. For an action a E A and S E S,

the execution of action aon situation s is described by do(a, s). Whereas all actions in

the situation calculus are assumed to be primitive and deterministic, GOLOG allows

complex actions through sequencing, iteration, and non-deterministic choice. GOLOG

allows the specification of necessary pre- andlor post-conditions associated with a

specific action. Using GOLOG, complex actions are decomposed into primitive

actions, and the GOLOG language interpreter essentially acts as a theorem prover.

Koubarakis and Plexousakis (1999) presented a formal framework for business

process modeling using concepts of concurrent logic programming and situational

calculus. In the process submodel, actors performing actions change the situation, i.e.,

the current state of a system. Actions can be primitive or complex. Actions are

considered primitive if decomposition reveals no additional information of interest.

Primitive actions are formally defined as the tuple <precondition, effect>, where

precondition and effect are represented by formulas written in a formal first-order model

11

language. With these primitive actions, complex actions are formed using the syntax

and semantics of ConGo log (De Giacomo et al., 2000), a concurrent version of

GOLOG. Complex actions can be defmed recursively and may include sequencing,

waiting for a condition, non-deterministic choice of action, non-deterministic choice of

action parameters, if-then-else conditionals, while-do iteration, non-deterministic

iteration, concurrency, prioritized concurrency, non-deterministic concurrent iteration,

interrupts, procedures, and do nothing. System state restrictions are imposed in the

constraints submodel, where static and dynamic constraints are expressed using

situation calculus and the symbols defmed in the other relevant submodels. Although

not explicitly defmed as such, these actions and constraints function as the business

rules that change the system state.

Herbst (1995) presents a meta-model of business rules for use in business

systems analysis. This model extends the event-condition-action (ECA) rule model

from the active database domain to an event-condition-action-action (ECAA) structure

applicable to general business processes. Under this extension, every rule has exactly

one event, no more than one condition, and only one or two actions - those resulting

from the then portion of an if-then construct when the conditions are true, or those

resulting from the else portion if-then-else when the conditions are not true. Events and

conditions can be elementary or complex and can include recursive relationships.

ECAA rules can be transformed into one or two ECA rules by negating the condition.

Although this construct is not strictly formal, variations of this general construct are

widely used in the logical formulation, modeling, and representation of business rules

(Herbst et al., 1994).

2.4 General Properties of Extractable Business Rules

Although the research presented in the previous sections focused on specific

issues relative to distinct needs, numerous commonalities exist with respect to what

constitutes a business rule, in either the forward or reverse engineering domains. Based

on the spectrum of defmitions, models, criteria, and attributes presented in the available

literature, the following general and informal specification of the properties of business

rules is proposed:

12

1. Business rules are explicit. They are known, articulated, and subsequently

included in the program code that constitutes the knowledge-based system.

That these rules are known and stated explicitly presupposes the knowledge

that they are important and therefore worth stating.

2. Business rules are precise. They are unambiguous relative to their

knowledge and use domains.

3. Business rules are logically or mathematically operative on input data to

create output data. This can be any combination of predicate logic and math

operations taking the form of a constraint or transformation, and may

consider the static, dynamic, and temporal state of the input data.

4. Business rules are imperative. Ifthe predicate requirements are satisfied, the

rule must be executed and it must be executed now. However, the specific

temporal attributes of 'now' must be defined relative to the knowledge and

use domains encompassed by the rule. For example, 'now' in an airline

cockpit is significantly different that 'now' on a university campus.

Therefore, a rule specification may presume instantaneous execution or may

include specific values and conditions for this imperative element.

Regardless of the imperative specifications, logically, a rule must always be

executed. A complete rule that can be ignored or postponed indefmitely is

not a rule.

5. Business rules are declarative and not procedural. A business rule identifies

a possible output data state as either required or prohibited, but it does not

specify the steps that must be taken to achieve or prohibit such a state

transition.

This rule property description - explicit, precise, operative, imperative, and declarative

(EPOID) - provides a consistent basis to compare and assess different rules and

implementations in both the forward and reverse engineering domains. This new

description provides a rational basis for exploring the role of knowledge and semantics

in rule formation. Furthermore, this rule property description helps avoid confusion

with other rule-driven knowledge applications and domains, where the objectives may

13

include the discovery, application, or recovery of implicit, imprecise, or associative

'rules' from data.

2.5 Program Slicing

Several comprehensive reviews of program slicing techniques have been

conducted (Tip. 1995; Binkley and Gallagher, 1996). Conceptually, program slicing is

a decomposition technique where only those program statements contributing to a

particular action or computation are identified and extracted. Tip (1995) defmed a

program slice as the subset of statements and control predicates of a given program that

potentially influence the values computed at a specific point in that program. Weiser

(1982) offered a formal defmition of a slice S as a executable program extracted from

program P by eliminating statements zero or more statements, such that S and P halt on

the same state trajectory T associated with input I. Francel and Rugaber (1999) offered

a formal defmition of a program slice relative to statement S and variable X as only

those code statements that might affect the value of X at statement S.

Program slicing can be differentiated in numerous different ways. Dynamic

slicing versus static slicing is one common distinction. Dynamic slicing assumes fixed

or specific data input for the program of interest; such that only the code reached, based

on that specific data, is identified as the dynamic slice. In dynamic slicing, only the

code statements traversed in the specific execution associated with that specific data are

preserved as part of the slice. All other code, on the paths not taken based on the data

provided, is eliminated from the slice. For example, depending on the specific data

input, one branch of an IF statement would be executed and included in the slice,

whereas the other would not be reachable and thus would be excluded. Static slicing

makes no assumptions and imposes no limitations regarding the input data; therefore, all

code that could be reached, given any data input, is identified as the static slice. In this

case, both branches of an IF statement would be included in the slice. Statements can

be gathered or eliminated by backward or forward traversal of the program code.

Indeed, backward versus forward is another means of partitioning for different slicing

techniques.

All slicing techniques require the a priori specification of a slicing criterion. For

static slicing, this slicing criterion is the pair, that being the program statement location

14

and variables. For dynamic slicing, specific input values are added and the slicing

criterion becomes the triple, namely, input data, program statement location, and

variables.

Numerous variants and hybrid approaches exist. Alternative algorithms abound

for slicing under various circumstances of slicing objective, language, and programming

logic. Specific implementations of program slicing in the reverse engineering domain

include: condition-based slicing, forward slicing, and backward slicing (Ning et al.,

1993); conditioned slicing (Fox et aI., 2000; Danicic et aI., 2005); generalized program

slicing, recursive slicing, and hierarchical slicing (Huang et aI., 1998); assignment

reference slicing (Sneed and Erdos, 1996); transform slicing (Lanubile and Visaggio,

1997); forward dynamic object-oriented slicing (Song and Huynh, 1999); amorphous

slicing (Binkley et al., 2000); semantic slicing (Ward 2001; Ward et al., 2005); and

high-level architecture slicing (Zhao, 2000). In addition to its use in reverse

engineering, program slicing has been successfully applied to other domains including

software debugging, program understanding, parallelization, program differencing,

program integration, software maintenance, and compiler tuning.

2.6 Formal Methods, Reverse Engineering, and Code

Extraction

The term formal methods refers to methods that have a sound basis in

mathematics. To date, there has been little research specifically performed in applying

formal methods to the specific problem of business rule extraction. However, the use of

formal methods in related areas is well-studied. Therefore, this section reviews the

application of formal methods to reverse engineering and re-engineering projects in

general, and to the problem of code extraction in particular.

Liu et al. (1997) reviewed the use of formal methods in the re-engineering of

computing systems. A five-away classification of formal methods was developed based

on model-based, logic-based, algebraic, process algebra, and net-based approaches.

Within the context of this five-way classification, existing formal methods were

reviewed with respect to their previous application in any reverse engineering domain.

Consistent with their observation that formal methods are "both over-sold and under­

used," only 4 of the 24 specific formal methods reviewed had been applied to reverse

15

engineering. None of the reviewed formalisms was applicable to all three re­

engineering stages: restructuring, reverse engineering, and forward engineering.

In research conducted as part of the REDO project, Bowen et al. (1993)

described the use of formal methods in recovering specifications from COBOL

applications. The overall focus of this research was to improve the maintainability,

validation, transportability. and documentation of large software systems. The general

process was to transform COBOL code using a succession of higher-level languages to

produce a structured specification in Z++. an object-oriented extension of Z. Input

COBOL code was cleaned and transformed into equivalent UNIFORM code. The

intermediate language UNIFORM was developed to facilitate precise verification and

code transformation. The UNIFORM code was subsequently transformed into a fIrst

order functional language. This fIrst order functional language was then used to create

the Z++ representation. With each intermediate step, implementation details were lost

in favor of greater abstraction. Using the recovered specifications, a specification-based

approach to maintenance was proposed based on exact the semantic associations

between code and specifications.

Blazy and Facon (1997) applied formal methods to the partial evaluation, also

known as program specialization, of Fortran 90 code. The objective of the overall

approach was program understanding via the creation of specialized program segments

based on specific input values. First, an inter-procedural pointer analysis of the code

was performed. A formal specification of that analysis was developed with different

formalisms, including inference rules with global defmitions, as well as set and

relational operators. These formal specifications were subsequently used to implement

the reduced or specialized program.

Villavicencio and Oliveria (2001) combined both formal and semi-formal

methods to reconstruct a formal specifIcation from C language legacy code. The semi­

formal method was code slicing, implemented flIst to reduce the code complexity and

associated requirements of implementing formal semantics for all program variables at

the same time. The functional semantics of the resulting code slices were then

expressed in the HASKELL programming language. The formal basis for specification

16

identification and extraction was the 'algebra of programming' applied in reverse order,

starting with the identified output variables of interest.

Gannod and Cheng (1999) applied both informal and formal methods to the

reverse engineering of large systems written in the C language into formal

specifications. The overall reverse engineering process involved the construction of an

informal high-level model of the software, an informal low-level model of the software

including a call graph, and then, using these informal models, the selection of a specific

module to which formal methods were applied. One of the major advantages of using

both formal and semi-formal methods in a combined approach is that by using a semi­

formal technique to guide the formal technique, the resulting formal specification will

be organized based on the structure of the original program. The strongest post­

condition predicate transformer (sp) and order-preserving transformations were applied

to the selected module to develop an as-built formal specification. The strongest post­

condition is the strongest condition R that is true after program S executes, when the

starting specified condition Q is true. This was accomplished by the defmition of C

language syntax in terms of the formal semantics of the strongest post-condition

predicate transformer. Eight different C programming language constructs were

analyzed, including various assignment operators (e.g., = and +=), alteration constructs

such as if and if-else, iteration operators such as the do-while, while, and for constructs,

and function calls (Gannod and Cheng, 1996). Semantic formal equivalents using terms

of the Dijkstra guarded command language were developed. The resulting as-built

formal specification was then generalized using a formally defmed abstraction match to

remove undesired algorithmic and implementation details. These techniques have been

incorporated into a suite of four tools specifically designed to assist with the

understanding and reverse engineering of C language programs (Gannod and Cheng,

2001).

Zhou et a1. (1999) present a language independent technique for formally

assessing the critical behavior of a legacy system. By inserting assertion points at

appropriate locations within the legacy code, the state of specific system attributes or

variables can be monitored and understood. This approach facilitates system

understanding by monitoring system states, as opposed to explicitly identifying or

assessing code functionality. Within the context of rule extraction, this approach

17

requires sufficient a priori knowledge regarding specific rule locations within the code

to assign assertion points at appropriate locations to sufficiently monitor system

behavior.

Lanubile and Visaggio (1997) presented a formal method for extracting reusable

function code from poorly structured programs using the concept of the transform slice.

Transform slicing potentially avoids the capture of extraneous code, as occurs with

other slicing approaches. Transform slicing requires knowledge that a function is

performed in the code and that the function is partially specified in terms of input and

output data. Thus, a three-part slicing criterion is required for transform slicing: the

function location, the input variables, and the output variables. Domain knowledge is

used to identify the input and output variables. To assist with this problem of

specifying the function location, a scavenging approach, using more generalized

transform slicing, is used to generate a set of candidate functions from the program

code. This candidate set reduces the magnitude of human intervention required to

establish a starting point in the program code for extraction of a particular function. Tan

and Kow (2001) implemented this transform slicing approach to identify the code

elements that implement program functionality in SQL programs.

Fu et al. (2001) present a formal language for representation and presentation of

business rules that have been extracted from legacy code. The problem of presenting

extracted business rules as code fragments to a general ~udience is identified. Given

that constraints can take many forms, the presentation of these constraint rules must be

adapted to a specific user. The need for a new formal language is based on the

observation that an extracted constraint can be obscure and difficult to comprehend

when expressed using some low-level formalisms. The proposed language, Business

Rule Language or BRL, is a predicate logic based language with a relative small

number of built-in predicates focusing on constraint reasoning. Four types of

constraints are supported and can generally be described as domain construction,

instance restriction, relationship constraint, and instance association.

Yang et al. (2000) proposed the application of abstraction to reverse engineering

problems and system specification recovery. For the purposes of this research,

abstraction was dermed as the act of hiding irrelevant details. A five-way taxonomy for

18

abstraction was developed: weakening abstraction, hiding abstraction, temporal

abstraction, structural abstraction, and data abstraction. Re-engineering wide spectrum

language (RWSL) was developed to implement this abstraction approach. RWSL is a

multi-layered wide spectrum language with a sound formal semantics. Case studies

were presented describing the recovery of system specifications from programs written

in C and ADA. Whereas this research focused on the extraction of system

specifications, as opposed to extraction of individual code elements or rules, this

approach is potentially an effective way of addressing the need for both a syntactic and

semantic understanding of a program prior to rule identification and extraction.

Ward (2001) describes a formal transformation-based approach to source code

analysis and manipulation, including code extraction. This approach uses Wide

Spectrum Language (WSL), a general programming language with a theoretical

foundation and with semantics that are defmedJormally (Ward, 1989). The general

approach is the representation of a program, or a specific program element, as a function

between the initial state of a given system prior to program execution and the fmal state

of that system after program termination. By using a provable, mathematically sound

transformation from a given programming language to WSL, a provably equivalent

WSL program can be created. Then, by using provable program transformations within

WSL, code can be moved, deleted, or merged, as appropriate, and equivalent higher

level abstractions of the original program can be developed as needed. This general

procedure of stepwise refmement using provable semantic-preserving changes for WSL

transformations is described in Bull (1990). Using these equivalent WSL programs, the

original program logic can be analyzed, specifications derived, or new code generated

using a mathematically sound transformation from WSL to the new programming

language. This approach has been successfully used to analyze and/or re-engineer

programs where the original program code was in ADA, IBM Assembler, BASIC,

CICS, COBOL, and Pascal (Bennett et ai., 1992; Ward, 1999; Yang and Bennett, 1994;

Zedan and Yang, 1998).

2.7 Business Rule Extraction

Sneed and Jandrasics (1988) reviewed the requirements of transforming software

code back into specifications. Three distinct semantic levels of software, each with

19

different abstraction levels, were described: the physical level, consisting of discrete

units of code; the logical level, existing in some form of meta language describing the

logical processing units; and the conceptual level. a set of abstract entities and the

relationships among these entities. This conceptual level is what is typically referred to

as the specification. In retransforming code back to a specification, the rule analyst

must bridge the gap between the physical level where the program exists, and the

conceptual level where the business model exists. Although software can be best

altered or enhanced at the conceptual level, this view is frequently blocked by

implementation details at the physical leveL A general re-engineering plan is proposed

where program elements at the physical level are mapped to design elements at the

logical level. The resulting data and program design elements are then mapped to

system specifications at the concept level. Within this conceptual or specification level,

two alternative abstraction models are possible: macro, modeling the target system as

processes and objects; and micro, modeling the target system as elementary function

and data elements.

Aiken et at (1993) reported on attempts to recover business rules, domain

information, and data architectures from the Department of Defense's heterogeneous

computer applications. These programs and databases included homegrown database

management systems, COBOL databases, assembly language code, and MUMPS

databases. The most difficult aspect of this re-engineering project was the discovery of

business rules and data entities from the different types of legacy systems. To

accomplish this, a "divide and conquer" approach was implemented. During the top­

down phase, user screens, reports, and policy statements were reviewed to establish a

high-level "as-is" business rule and data model framework. Using this high-level

framework, the individual business and data model components were broken into

individual components and analyzed. The bottom-up phase included the use of CASE

tools, and the review of a traceability matrix, the data dictionary and data model, and

supporting physical documents. Final rule identification and extraction appears to have

been largely a manual process.

Ritsch and Sneed (1993) contrasted two alternatives for extracting system

knowledge and business rules contained in an existing system: static analysis and

dynamic analysis. Static analysis considers program data structures and program source

20

code, including user interfaces. Dynamic analysis attempts to identify how a system,

subsystem, or object responds to various inputs, including system function and

performance as viewed by the user. Static analysis of the program source code and

database schemes can yield information regarding database structure, database contents,

entity relationships, program structure, control flow structure, decision logic, flle access,

and other program communications. However, static analysis cannot identify which

program components are actually used, provide performance information, or relate

program elements to a specific business function. Given these weaknesses of static

analysis, and the typical inadequacy of system documents and the unavailability of the

original system developers, a dynamic analysis methodology was proposed. This

dynamic analysis approach identifies business rules as pairs of pre- and post-assertions,

matching input with a specific program slice. The tool developed for this dynamic

analysis consists of four elements: an instrumentor, a test monitor, an assertion

generator, and a database auditor. The instrumentor inserts reporting probes at mUltiple

locations with the program. The test monitor captures and stores the contents of the

input-output panel or file for each transaction. The assertion generator matches the

input and the program path with the output of each system transaction. With this, two

assertion specifications are generated, one based on the input data, and one based on the

output data. The database auditor logs the before-transaction state and the after­

transaction state of each database file. These can then be compared and the fields

altered by the transaction identified. Output from the assertion generator and the

database auditor can then be combined into either formal or informal speCifications.

Ning et a1. (1993) described the concept of reusable component recovery, where

functional components of legacy systems are identified, extracted, adapted, and reused

in new system development. Whereas this approach has many advantages such as

reuse, platform flexibility, and size reduction, the approach requires a thorough analysis

and understanding of the legacy code, which is described as a "difficult, human

dependent, and time-consuming task." To assist with this task, a tool-assisted program

segmentation approach to component recovery and rule recovery was described. This

two-step approach consists of a focusing step that facilitates the identification and

combination of functional elements, and a factoring step that facilitates extraction ofthe

focused functional elements into reusable packages. The focusing operation helps the

21

analyst identify program code that is semantically related but may not be physically

adjacent. Five focusing operations are used: selecting specific statements, call hierarchy

analysis, condition-based slicing, forward slicing or ripple effect analysis, and backward

slicing. Focusing creates localized functional code segments. In the factoring

operation, these code segments are extracted and packaged into independent modules.

For identifying and extracting reusable components from legacy COBOL systems, this

program segmentation approach has been implemented in an Andersen Consulting

proprietary tool, COBOUSRE. This tool supports a variety of code analysis and

understanding approaches, including system-level analysis, concept or functional

pattern recognition, data model recovery, and program-level analysis. In addition to the

program segmentation approach described above, other program-level analysis features

include: parsing and syntax-directed text browsing; flow analysis, including call graphs

and control flow graphs; complexity analysis; and anomaly detection.

Petry (1996) proposed a general methodology for rule extraction from programs

using the concept of HyperCode, the transformation of a program source code into a

hypertext-linked format to enable navigation through the program. The objective is to

speed the learning and understanding of the program logic. By allowing easy

navigation from one part of the code to another, rule extraction proceeds should proceed

faster as compared with manual extraction. A general methodology for the use of

HyperCode in rule extraction was presented. First, data entities of interest are

identified. Second, the database-enforced relationships between these entities are

identified. Third, the program code is parsed and the CRUD (create, retrieve, update or

delete) actions taken by the program on these data items are identified. At this point,

comments that create hypertext links are inserted into the program code, creating the

basis for the HyperCode document. Finally, the various procedures. processes, and

algorithms contained within the program are analyzed. This fmal step is the basis for

the rule extraction process. Each program block is reviewed by the analyst and

classified as either part of an overhead process, a decision process, an elementary

process, or an algorithm. By eliminating the overhead processes, and understanding the

relationships between the remaining decision processes, elementary processes, and

algorithms, the business rules are identified and extracted. A prototype implementation

using COBOL source code was presented.

22

Sneed and Erdos (1996) observed that, at that time, little work had been done on

business rule extraction from real programs because the concept of business rule

extraction had not been adequately expressed in an operational framework. It was

observed that business rules can be extracted from source code only when four

preconditions are met. First, variable names must be meaningful and informative.

Second, the critical output data must be identifiable. Third, tools must be available to

strip the program code to the essential elements. Fourth, data flow within the program

must be identifiable. Reflecting their defmition of business rules (presented in a

preceding section) and the associated conclusion that the only easily locatable element

of a business rule is the result, a reengineering tool was developed that uses the data

result as a point of entry for rule extraction from COBOL programs. Using this tool, the

first step of the rule extraction process is the identification of all assignment statements,

including the location within the code where the target result is assigned. Next, the

conditions that trigger these assignments are identified. These conditions are then

linked with the associated assignments. The program is reduced to only those

statements, the business rule, that create the target result. With this tool, the user

identifies the result, and the other business rule elements are identified automatically.

Huang et a!. (1998) identified five business rule extraction criteria:

1. The extracted business rules must be a faithful representation of the

software.

2. Different groups will require different representations of the extracted

business rules. Therefore, business rules must be represented in a

hierarchical manner.

3. Business rules must be expressed in the domain vocabulary of the

specific business application.

4. Because of the size and/or complexity of most activities, automatic rule

extraction will be difficult, if not impossible. Therefore, the ideal rule

extraction tool should be interactive and allow human assistance.

5. The extracted business rules should be in a form that is usable in other

software maintenance activities, mapping between rule and code, and

vice versa.

23

Consistent with their data transformation defmition of business rules, a data-centered

approach to rule extraction from COBOL programs was used. This rule extraction

approach involved four steps: variable identification; slicing criterion identification;

code extraction using generalized program slicing; and rule representation. The first

step was to identify the important variables that are or can be used to express business

rules. Only a small subset of the many code variables in typical business application is

suitable for expressing business rules. Code variables were classified into various types,

such as domain data, program data, local data, global data, input data, output data,

constant data, or control data. This classification can be conducted by either parsing the

code directly or by analyzing dependence graphs. Once this classification has been

conducted, two heuristic rules were presented to identify input and output variables as

domain variables of interest. Having identified these critical domain variables, the

slicing criterion was established and the relevant code was then extracted using

generalized program slicing. The objective of generalized program slicing is to extract

only the code that either affects or is affected by the identified critical domain variables.

Six additional heuristic rules for slicing criterion and slicing algorithm identification

were presented. Given the complex nature of most rules, recursive slicing, or high-level

abstraction and hierarchical slicing was recommended for most circumstances. The

fmal step was rule presentation. Three alternatives were identified, depending on the

targeted user of the extracted rule: code view, where rules are represented as code

fragments; formula view, where rules are represented as variables and functions; or

input-output dependency view, depicting the dataflow relationships among the

variables. Selection of the specific representation of the extracted business rules is

dependent on the target audience that will be using the business rules.

Sneed (1998) described a well-defined four-phase re-engineering process. First,

the legacy software is measured. Next, the legacy code is reverse engineered to capture

the design and evaluate to potential for reuse and re-engineering. Then, the legacy code

is reorganized, restructured. or otherwise converted into separate reusable modules.

Finally, these re-engineered modules are tested against the original legacy code to

ensure functional equivalence. A software workbench, SOFf-REORG, developed to

support this four-phase re-engineering process was described. SOF AUDIT evaluates

legacy systems using seven complexity metries and seven quality checks. SOFREDOC

24

extracts design information from the code and associated data structures. SOFRECON

allows program restructuring and program conversion. SOFRETEST allows testing of

the reengineered programs against the origina1. With respect to program understanding

and rule extraction, SOFREDOC provides ten basic views of the target program: data

tree; procedure tree; decision tree; data flow diagram; macro table; constant table;

business rules; call hierarchy; object reference diagram; and data reference diagram. To

identify specific business rules, the data results of interest are identified by the user, and

the SOFREDOC tool uses data flow and control flow slicing to identify the expression

path for each selected data result. Versions of the tools have been developed for

Assembler, PUl, and COBOL.

Shao and Pound (1999) observed that business rules may be implemented in

different ways in different parts of the system and different techniques may be required

to recover them. Rule extraction techniques were classified into two broad groups, data

understanding techniques and program understanding techniques. The objectives of

data understanding techniques are to recover conceptual data models. Inputs for data

understanding techniques are schema, data, program code, and transactions. Data

understanding techniques are useful in recovering structural rules buried in the data and

associated metadata, but they do not identify rules contained in the application

programs. The objectives of program understanding techniques are to recover business

rules, especially constraint and behavior rules, from these application programs. Input

for program understanding techniques is straightforward - the program source code.

The great majority of current program understanding techniques attempt to extract and

describe the components of a given program syntactically. However, syntactic analysis

does not reveal or consider the meaning of the program, and thus there is a growing

interest in trying to extract and understand programs semantically. With regard to this

semantically based approach, most techniques rely on a knowledge-based approach, and

few tools currently exist. Most program understanding techniques do not analyze the

recovered code or rules in relation to the database systems. Program-understanding

techniques are most useful where business rules are embedded in programs only. To

address this problem, a conceptual plan was presented for a data-centered, program

understanding approach that attempts to integrate both data understanding and program

understanding techniques. Using this approach, both databases and programs are

25

analyzed together to extract constraints that may be located in application programs,

data dictionaries, triggers, or stored procedures. The proposed approach consisted of

three stages: preparation, extraction, and presentation. The preparation stage includes

schema tools and parsing tools. The parsing tools are used to convert a program into a

generic representation so that different source programs in different languages can be

analyzed together. Schema tools are used to extract the conceptual data modeL The

extraction tools are used to analyze the generic programs and databases created with the

parsing tools and schema tools, respectively. The presentation tools allow the extracted

business rules to be presented differently to different users in a form that is most

meaningful to them.

Sellink et aL (1999) investigated restructuring of programs written in mixed

languages, in this case COBOL interspersed with CICS. The inclusion of CICS in

programs results in a unique challenge in that an event-driven system structure is

created independent of the host language, in this case, COBOL. Whereas this research

was conducted to demonstrate the substantial improvement that could be achieved in

maintainability, the experiences are equally as important and applicable to rule

extraction through the improved understandability of program code. This program

restructuring approach invo]ved four steps. First, exception handling by the problematic

CICS statements, including the HANDLE statement, was eliminated. Next, GOTO

logic, which result in unstructured code, was removed, and control flow was structured

into a series of subroutines, in this case PERFORM structures in COBOL. Next, the

processing logic was restructured by removing explicit jump instructions and

eliminating redundant code. Finally, the code was repartitioned so that the transaction

processing logic was isolated from the business logic or rules. With this approach, all

CICS commands are replaced with COBOL CALLs to a wrapper, allowing elements of

the old program functionality and the associated the event-driven structure to be

implemented in a modern Janguage such as C++ or Java.

Ulrich (1999) described a process of code segmentation and code reduction to

facilitate rule identification and extraction. In genera~ business rule extraction requires

a high-level assessment of the target application so that the system can be segmented

prior to actual rule extraction. This segmentation process may include resolving

identified program weaknesses, restructuring convoluted logic, splitting large modules,

26

and variable name rationalization or enrichment. Although these code improvement

techniques may ultimately simplify the rule extraction process, the time and effort

required to accomplish these high-level assessment tasks should be carefully considered

before beginning. Only about 20 to 30 percent of source code within a given

application relates to actual business rules; the remaining 70 to 80 percent of the code

typically deals with non-business logic, such as physical operation, execution, and

environment requirements. A general procedure for identifying and subsequently

discarding this non-business logic and code was presented. This procedure requires the

identification of specific code or program elements that will not contain business rules,

including syntactically dead logic, semantically dead code, initialization logic,

input/output logic, output area and report build logic, VO status checking, error handling

logic, data structure manipulation, special environment logic, and extraneous and

superfluous logic. Once identified, these non-rule program and logic structures can be

ignored, and the remaining portions of the code searched for program and logic

structures that may contain business rules. These rule-containing structures may include

those leading to the creation of a specific output variable, those linked to a specific

conditional, or those specifically associated with an input transaction. Rules that are

identified can then be logged for evaluation and possible reuse.

Numerous researchers have investigated the use of visualization techniques to

elicit program structure from a variety of different program languages. Whereas an

understanding of program structure does not explicitly identify business rules, enhanced

program structure understanding can assist the rule analyst in the identification of

critical program segments that may contain important business rules.

Call graphs represent the most basic and possibly the most widely used visual

representation of program structure. Call graphs identify and present calls between

entities in a program, thereby representing binary relationships between entities in a

program. Murphy et a1. (1996) conducted an empirical quantitative evaluation of five

different call graph extractors for the C language. Substantial variation in output was

observed between the five extractors, with most returning different call information

from the same test program. This was largely due to different treatment of program

elements such as macros, function pointers, and inconsistent interpretations of syntactic

constructs.

27

Other researchers have extended the call graph paradigm to further enhance user

functionality and facilitate program structure understanding. Feijs and de Jong (1998)

described a proprietary 3-D visualization system in which various program module

types are displayed as different LEGO-like bricks, and the interrelationships of these

modules are depicted as different colored arrows. The resulting interconnected web of

program modules and relationships are displayed such that different views, scales, and

levels of information can be selected by the analyst. Mancoridis et al. (1999) developed

a graphical clustering tool that created a system decomposition diagram by treating

clustering as an optimization problem. Within a test system, modules and dependencies

are mapped to Module Dependency Graph (MDG). Formally, a MGD is the set (M, R)

where M is the set of named modules within a system and R is the set of dependencies

between modules. The graphical clustering tool, Bunch, generates a visually simplified

graph through the automatic and user-directed specification of subsystems or clusters of

program modules. In contrast to completely automatic systems, this approach is

especially useful in programs with a large number of modules, as the number of

potential subsystem partitions grows exponentially with the number of program

modules.

Storey and Muller (1995) investigated the use of a specialized nested graph

technique, the fisheye technique, in the visualization of program structures in very large

legacy systems. Nested graphs are composed of nodes, representing software artifacts,

and of arcs, representing dependencies between these artifacts including call

dependencies. Nodes and arcs can be either atomic or composite. Composite nodes

represent software subsystems, and composite arcs represent a collection of

dependencies. Through the nesting of nodes, the hierarchical structure of the system

can be represented. Nested graphs allow multiple levels of abstraction to be visualized.

Fisheye techniques allow the user to investigate a specific subsystem graph by

selectively highlighting nodes within a specified area of interest, while simultaneously

reducing the remaining portion of the graph. This traditional fisheye approach was

expanded with the Simplified Hierarchical Multi-Perspective (SHriMP) technique,

which creates views that can show multiple graphical perspectives of the program

concurrently.

28

2.8 A General Classification of Rule Extraction Techniques

As different legacy knowledge systems present different challenges, most rule

extraction experiences presented in the literature include the use of mUltiple extraction

techniques. Based on this literature survey, the following nine-way, general

classification of rule extraction techniques is presented. In practice, actual rule

extraction typically involves several of these nine techniques used in a sequential

manner.

Semantic Enrichment - This class of techniques assists the human analyst in the

semantic understanding of the program and the associated business rules. Semantic

enrichment can be applied to any program entity name - variables, constants, functions,

procedures, etc. Numerous researchers (Shao and Pound, 1999; Sneed and Erdos, 1996;

Ning et at, 1993; Aiken et a1., 1993) have identified the importance of meaningful and

understandable entity names as a critical element of rule extraction. This technique

attempts to address, at the most basic level, the recurrent need to link the semantic

elements of the system at the conceptual level with the syntactic elements of the code at

the operational level. The value of this technique is directly related to the unavoidable

fact that most rule extraction techniques still involve a high level of human intervention

and interpretation in the rule extraction process.

Code Reduction - This class of techniques deletes those portions of program

code that do not contain business rules. By eliminating this extraneous code, the

manual or automatic process of rule extraction is made that much easier. The

eliminated code typically involves program overhead activities, including input/output

activities, error handling, and any special environment requirements. Code reduction

has been directly used by a number of researchers to simplify the rule extraction overall

task (Ulrich, 1999; Sneed and Erdos, 1996; Petry, 1996). Given tbat 70 to 80 percent of

a typical program is not related to business rules (Ulrich, 1999), code reduction can be

used to significantly reduce the magnitude of the rule extraction task. Within the

context of the EPOID extractable business rule defmition, any program element that is

not logical or mathematically operative could be eliminated via code reduction.

Pro&ram Segmentation and Restructuring - This class of techniques focuses on

the process of breaking large blocks of program code into smaller, autonomous

29

segments or objects that can be more easily managed, reassembled, and understood.

The general classification of program segmentation and restructuring may include code

reorganization, reformatting, and remodularization. Numerous researchers have

incorporated code segmentation into their overall rule extraction strategy (Ulrich, 1999;

Sneed, 1998; Ning et aI., 1993; Aiken et aI., 1993) to bring semantically related portions

of the code together physically. The substantial value of code segmentation and

restructuring in program understanding had been demonstrated experimentally

(Penteado et a1., 1999; Sellink et aI., 1999).

Data StructurelModel Analysis - This class of techniques focuses on the

identification and/or recovery of database conceptual data models so that these models

can then be used to support other specific rule recovery techniques. These techniques

typically focus on the recovery of relationship, structure, and constraint information that

may be available from the schema and associated metadata (Shao and Pound, 1999).

These techniques may also include deriving or imposing data models on legacy systems

that may have been developed without a formal data model (Aiken et aI., 1993), or

extracting data structures from program code (Petry, 1996). Although these data models

mayor may not contain any explicit business rules, information obtained through data

structure/model analysis is typically a critical input to other rule extraction techniques.

Entities recovered using these techniques directly address the EPIOD rule requirement

that data elements of a rule be precise; that is, unambiguous relative to their knowledge

and use domains.

Pro~ram Structure Analysis - This class includes a broad spectrum of techniques

designed to identify the program hierarchy of functions, procedures, subroutines,

paragraphs, objects, etc. Specific implementations by various researchers relative to

rule extraction include call hierarchy analysis (Ning et aI., 1993); procedure tree and

decision tree analyses (Sneed, 1998); a three-step process of local analysis, use analysis

(a recursive step), and global analysis (Gannod and Cheng, 1996); and a hypertext­

assisted approach (Petry, 1996).

Data Flow Analysis - This class of techniques identifies the steps by which data

inputs become program outputs, and may include the analysis of program decision logic

and control flow. Researchers that have directly considered data flow relative to

30

business rule extraction include Sneed (1998), Huang et al. (1998), and Gannod and

Cheng (1999). The output of these data flow techniques can be used to directly address

the operative component of the EPOID business rule defmition; that is, rules operate on

input data to create output. In doing so, these techniques are ultimately critical to the

identification of those portions of the program code where specific, individual rules may

be located within a given program.

Program Slicing - Closely allied to data flow analysis, this class of techniques

focuses on identifying the specific path of data flow through a program relative to a

specific single statement and variable. Widely used in other aspects of reverse

engineering, researchers who have used slicing for rule extraction include Huang et al.

(1998), Sneed and Erdos (1996), and Ning et al. (1993). Because program slicing can

be used to identify input data and the logical/mathematical operations that are

performed on that data, program slicing directly addresses the explicit, precise, and

operative elements of the EPOID extractable rule defmition.

Visualization - Whereas visualization itself is not a rule extraction technique, it

is a critical element for program understanding. Visualization can be applied to data

structure, program structure, and data flow, with each returning a critical and unique

contribution to the total understanding. Researchers who have included visualization as

part of a business rule or specification extraction process include Sneed (1998) and

Gannod and Chen (1996).

Transformation/Conversion - This class of techniques is typically associated

with formal methods and involves the transformation of program code into a higher­

level abstracted language. This transformation is accomplished by converting a target

code element to an equivalent abstraction in the selected formal language. As program

implementation details are purposefully dropped during the transformatiOn/conversion

from the target functional language, the resulting abstraction is less cluttered

syntactically, making it easier to identify the important semantic elements. Whereas

transformation/conversion has not been used solely for the purpose of rule extraction, it

has been used in specification/design recovery and code extraction. Researchers who

have used transformation/conversion for specification/design recovery and code

31

extraction include Bowen et al. (1993), Gannod and Cheng (1999), Yang et al. (2000),

and Villavicencio and Oliveria (2001).

2.9 Problems with Existing Rule Extraction Approaches

Based on this literature survey, rule extraction techniques reported in the

literature have one or more critical shortcomings that compromise their usefulness or

applicability to rule extraction from heterogeneous systems. A discussion of these

specific problems follows.

Firstly, there is substantial variation among researchers and practitioners

regarding exactly what constitutes an rule. Although this is not a research failure per se,

it does highlight the fundamental issue that various researchers and practitioners have

different end-points, or expectations, regarding the rule analysis and/or extraction

process. As a result, it may be difficult, or impossible, for one to use another's specific

methodology or associated tool if that methodology or tool embodies different

expectations regarding what constitutes an rule. This lack of a clear standard regarding

what constitutes an rule makes the development, implementation, and assessment of a

general rule analysis and/or extraction process, consistent across languages and

platforms, very difficult. The target of the extraction process must be clearly defmed,

and agreed and accepted prior to initiating a rule extraction project on a heterogeneous,

multiple language system.

Secondly, many existing approaches and the related tools are language specific.

Frequently, they are focused on unique and language-specific syntax, or on language­

specific structures, such as pointers in the C language. Although these approaches were

developed to address the specific problems or circumstances presented by a given

language, such language specificity may compromise the use of many approaches

across different languages in a heterogeneous language environment.

Rule extraction from any existing program requires both the syntactic and

semantic understanding of the code. Whereas syntactic analysis of a given language

program can be eventually automated (subject to the problems raised above), semantic

analysis of that program code requires a knowledgeable expert. Many of the reviewed

rule extraction techniques attempt to classify, organize, and present language syntax in

32

such a way as to aid in the human-based semantic extraction. Ultimately, the

knowledgeable human must intervene, interpret the organized information, and then

perform the actual rule identification and extraction. This yields the third major

problem: the individual responsible for rule extraction must be expert both in the

domain of the target rules, and in the domains of the various program languages in

which these rules have been coded. Such multiple domain experts will be, by their very

nature, extremely rare.

Traditionally, this problem has been addressed by the organization of an

extraction team of multiple expert individuals that, as a unit, satisfies the multiple

domain expertise requirement identified above. However, this management approach

results in the fourth problem: the unavoidable inconsistencies of different individuals

using different approaches for different languages or environments.

Fifthly, many rule extraction techniques are not mathematically formal or

complete. The absence of mathematically formal, or semi-formal, elements in most

current extraction techniques ultimately results in an underlying uncertainty regarding

the completeness of the technique. An unintended omission of a critical rule or critical

case would be certainly embarrassing, probably costly, and in the case of certain critical

systems, possibly catastrophic. Most current techniques provide little basis for

estimating the completeness of the extraction process and for assessing the possibility

that a rule has been overlooked. Therefore, any final statement regarding the success of

a given rule extraction exercise can be only a reasoned opinion, instead of a

demonstrable and supportable fact.

Finally, few of the rule models from the reverse engineering domain have been

applied in the forward engineering domain, and vice versa. In the absence of a

sufficiently general rule model, rules that are extracted from legacy code may have to he

transformed into a new rule model before those rules can be used the forward

engineering of new specifications and code.

33

Chapter 3

A General Formal Framework for Rule Extraction

In this chapter, a critical element necessary for a formal approach to rule

extraction from legacy code is presented - a general formal framework applicable to a

wide range of legacy languages. Under this rule extraction framework, general

mathematical formality is introduced by describing a program in an arbitrary program

language as a set of language elements and structures. Using this framework, if rule

structures can be adequately specified in terms of that program language, a program can

be defmitively partitioned into program structures that either are or are not rules. In

circumstances where a rule cannot be adequately defmed, an alternative, less defmitive

exclusionary approach is presented. This framework is assessed in relation to two

programming languages.

3.1 Set-Based Formal Framework

Every programming language consists of a fmite set of language elements. For

the purpose of this analysis, elements are the atomic units of a language that have a

single meaning, function, purpose, or otherwise represent a single value, entity, group,

or class. In general, these language elements may include numerical values; variables;

mathematical operators; logical operators; assignment operators; language-specific

reserved or key words; language-specific punctuation, separators, delimiters, and

terminators; and other language-specific commands or tokens necessary for the

execution of the program code.

For this analysis, a state-based model of programming is adopted. A state is a

function mapping a set of variables to a set of values. Programs are created to

instantiate specific states and sequences of states. These states are defined, expanded,

modified, selected, and/or sequenced by the programmer to reflect specific knowledge

of a given domain. These state manipulations are achieved by the choice of specific

program language elements. In a given programming language, two expUcit examples

of this state model are the type statement and the assignment statement. With the type

statement, a specific state variable of a defmed type is created. With an assignment

statement, a value is bound to a specific variable. Whereas these two examples are

34

direct implementations of the state model of programming, within the context of this

state model, all program elements support, either directly or indirectly, the underlying

objective of defming, expanding, modifying, selecting, andlor sequencing states.

For any given programming language, the syntactic composition required to

create specific instances of the various language elements is explicitly stated or defmed.

For example, mathematical operators may be represented as a single symbol (+, -, *, or

I), and a variable may be defmed as a series of not more than 255 letters and numbers

starting with a letter. Such instantiation syntax constitutes what most programmers

know and practice as ''the language." In all languages, these syntactic requirements

limit the total number of possible unique instances of these language elements.

For a program written in a given language, a subset of the available language

elements is used to create the specific language structures that form that unique

program. These structures are constructed from language elements arranged by the

programmer in a specific and unique sequence to accomplish an intended task. In the

state model of programming, these tasks and the corresponding program structures

always relate to the definition, expansion, modification, selection, andlor sequencing of

specific states. A basic example of such a structure is the single line of code 'x := 1 ;'.

Composed of the language elements of variable, assignment operator, number, and

terminator, this structure dictates that, when executed, the then current state will be

modified such that the value 1 is bound to the variable x. Within a program, multiple

language structures can be connected and ordered, and a multi-state state sequence is

defined by these ordered language structures. If logical branching is incorporated as a

program structure, varying state sequences may result from the same program structure.

Thus, a complex structure, composed of mUltiple program structures, can describe a

wide, and possibly infinite, set of state sequences. However, regardless of the fmal

complexity of the structures used and regardless of the potential for an infinite set of

state sequences, in all finite programs, the total number of language structures contained

in that program is limited and therefore knowable.

If extractable rule forms can be defmed in terms of the set of language elements

and structures, and all structures in a given program identified, then each identified

structure can be assessed as to whether it is, or is not, a rule by whether it matches a

35

previously specified rule structure. If all program structures are identified and can be

compared in a two-value manner (yes/no) against the specified rule structures, then the

rule analyst can assert, with mathematical certainty, that all rules of specific form(s)

have been extracted from the program. If the identified program structures can be

assessed only in a three-value manner (yes/no/maybe) against possible rule structures,

then the location and magnitude of any uncertainty regarding what mayor may not be a

rule can be quantified.

These concepts can be expressed symbolically using set builder notation. For

any programming language, let E be the set of all elements of that language, and S be

the set of all language structures that can be formed from these elements, subject to the

syntactic constraints of the language. The set of all rules, R, that can be formed in that

language can be defmed as:

R = {x I XES A f(x, E, S) } (3.1-1)

where the function f is an extractable rule defmition function that specifies the

properties that a rule must have in terms ofthe language elements and structures.

In the given language of interest, any program, P, can be defmed as a fmite

subset of all structures S, or P s:: S. Finally, the set of all extractable rules, RE,

contained in program P can be defmed as:

RE = {z I Z EPA Z E R } (3.1-2)

With these equations, the functional requirements of this approach are clear.

First, a general rule defmition must be developed and expressed as a function in terms

of specific language elements and structures, as required by (3.1-1). Second, all

structures contained in a given program must be efficiently identified and elicited. If

both requirements can be achieved, then the rule extraction process reduces to the

intersection of these two sets, as described in (3.1-2), and all rules within a given

program can be identified with certainty. This inclusion approach provides a two-value

solution to the rule extraction problem in that all structures within a given program

either are, or are not, a ru Ie.

36

If an acceptable extractable rule defmition function cannot be achieved, then an

alternative or exclusion approach can be formulated, using this same general

framework. Using the previously defmed sets P, a given program, and RE, all

extractable rules within that program, the structures in that program that are not rules

can be described as the relative complement of these two sets, or:

P - RE = {z I Z E P /\ Z ~ R } (3.1-3)

Using this alternative approach, two requirements must be satisfied. First, and as

before, all structures within the program must be efficiently identified and elicited.

Second, those structures that are not rules, i.e., Z ~ R in (3.1-3), must be identified. In

practice, programmers and rule analysts will probably know that certain language

structures cannot be rules. A comment is one obvious example common to all

languages. Other specific cases of non-rules will depend on the language, and the

presumed attributes of rules. Thus, in the absence of a rigorous definition of what is a

rule, this alternative, or exclusion, approach provides a three-value solution to the rule

extraction problem: no, maybe, and yes. With this approach, some structures will be

tagged with certainty and excluded from consideration as non-rules; the classification of

the remaining structures remains uncertain, as some will, and some will not, contain

rules.

Both approaches, given in (3.1-2) and (3.1-3), have their place in practice, each

with their associated advantages and disadvantages. If an explicit, precise, and

acceptable definition of an extractable rule can be developed, such as the extractable

rule definition function f in (3.1-1), then the inclusive approach of (3.1-2) can be

implemented and all rules can be identified with two-value certainty. If such an

explicit. precise, and acceptable rule defmition is unavailable, then the alternative

exclusionary approach (3.1-3) can be implemented. Although incomplete, this approach

limits and identifies portions of code where rules may exist subject to the certainty and

specificity of the criteria used to exclude non-rule structures.

37

3.2 Evaluation of the Framework - C Language

To assess the application of this framework, the inclusion and exclusion rule­

extraction approaches presented in (3.1-2) and (3.1-3), respectively, were evaluated.

For each of these analyses, a simple rule-based program written in the C language was

developed and is presented in Listing 3.2-1. In this program, a simple user input, 1 or 0,

is accepted from the keyboard, and then a reply value of yes or no is assigned and

displayed based on a simple rule using the user input. By design, the code is very

simple to provide the basis for clear and unambiguous examination.

1 #include <stdio.h>
2 #include <string.h>

3 int main(void)
4 {
5 charrepJy_yes[IO] = "Yes";
6 char repJy_no[IO] = "No";
7 char repJy[IO);
8 char user.Jnput ;

9 /I This is a demo program
10 printf("Enter 1 or 0 : ");
11 user_input = getc(stdin);
12 if(user_input == '} ')
13 {
14 strcpy(reply, reply_yes);
15 }
16 else
17 {
18 strcpy(reply, repJy_no);
19 };

20 printf(ltAnswer: %s \nit, reply);

21
22 }

return(O);

Listing 3.2-1: A Simple Rule-Based Program in the C Language

This example code contains twelve structures. These structures are: two library

reference structures (lines 1 and 2); a single program block structure (lines 3,4,21, and

22); four type definition structures (lines 5 through 8); one comment Structure (line 9);

one input capture structure (line 11); two output display structures (lines 10 and 20); and

38

one logical if structure (lines 12 through 19). Note that the one logical if structure is

composed of multiple, smaller structures.

For the implementation of (3.1-2), an extractable rule defmition function is

required. One element of the defmition of an extractable business rule presented in

Section 2.4 is that an extractable business rule must be logically or mathematically

operative. Using this rule attribute and considering the requirement that a rule be a

structure, the extractable rule defmition function for this analysis will be whether a

given structure is logically or mathematically operative. Any structure that contains a

logical or mathematical operator will be declared a rule; any structure that does not

contains a logical or mathematical operator will be declared a non-rule.

On applying this extractable rule defmition function to the previously

enumerated list of structures in the demonstration code, only one structure is found to fit

the criteria of being mathematically or logically operative - the one logical if structure

located at lines 12 through 19. This rule structure is highlighted in Listing 3.2-2. No

other mathematical or logical operators exist. The other structures either contain no

operators, or contain only assignment operators, e.g., the four type definition structures

at lines 5 through 8. Subject to the continued acceptance of the extractable rule

definition function used in this example, one can be mathematically certain, using the

set requirements specified in (3.1-2), that all rules contained in the target program have

been identified.

For the implementation of the alternative exclusionary approach of (3.1-3), no

extractable rule definition function is required. Instead, only a basic understanding of

both extractable rules and the C language is needed. For this analysis, it is assumed

with certainty that comments, library references, output/display structures, and

block/control statements cannot contain rules. This allows the elimination of lines I, 2,

3, 4, 9, 10, 20, 21, and 22 as non-rules. It is further assumed with certainty that a rule

must be operative (i.e., it must do something); this allows the elimination of lines 7 and

8 as they contain no operators of any kind. These eliminated structures are struck

through in Listing 3.2-3. Thus, four structures are left that have not been eliminated, as

presented in Listing 3.2-3: lines 5, 6, 11, and 12 through 19. Subject to a continued

acceptance of the criteria used to eliminate the non-rule structures, one can be certain

39

1 #include <stclio.h>
2 #include <string.h>

3 int main (void)
4 {
5 char reply_yes [1 0] = "Yes";
6 charreplYJlo[lO] = "No";
7 char reply[1 0];
8 char usecinput ;

9 1/ This is a demo program
10 printf("Enter 1 or 0 : ");
11 user_input = getc(stdin);

12 if(user_ioput == 'I')
13 {
14 strcpy(reply, reply.ses);
15 }
16 else
17 {
18 strcpy(reply, replY_Do);
19 };

20 printf("Answer: %s \nil, reply);

21 returneD);
22

Note: The extracted rules are shown in bold.

Listing 3.2-2: Rule Extraction from the C Language Program
Using the Inclusion Approach of (3.1-2)

that the eliminated structures contain no rules. However, uncertainty remains with

respect to whether the remaining code does, or does not, contain any rules, and if so,

what those rules are.

The value of the exclusionary approach comes with iterative application. With

one application using a relatively general defmition of what is not a rule, fifty percent of

the code was eliminated. From a practical perspective, this dramatically reduced the

effort necessary by a rule analyst in the further analysis of the target code. For example,

if on further inspection and reflection. it is determined that all type defmition statements

cannot be rules, then lines 5 and 6 can be eliminated. With this elimination, only two

structures remain that can be rules - the user input structure of line 11 and the logical if

structure of lines 12 through 19. Thus, with two iterations applying the eXclusionary

40

1 #iHell:lse (stsio.~
2 #iHell:lSe (striHg.~

3 iHt H1£IiH(\'ois)
4 (
5 charrepJy_yes[lO] = "Yes";
6 charreply_no[lO] = "No";
7 eharreply[lO];
g ehar l:lser iHpHt ;

9 N This is 8 semo program
10 priHtf("EHter 1 or 0 : ");
11 usecinput = getc(stdin);

12 if(user_input == '1 ')
13 {
14 strcpy(reply. reply_yes);
15 }
16 else
17 {
18 strcpy(reply. reply_no);
19 };

20 priHlf(" AH!YWer: %5 \fl". reply);

21 rettIfH(O);
22

Note: The eliminated structures are shown in slriltelhretlgh.

Listing 3.2-3: Rule Extraction from the C Language Program
Using the Exclusion Approach of (3.1-3)

approach of (3.1-3), the original program containing twelve structures has been reduced

to two structures that may, or may not, contain rules. Therefore, in the absence of a

formal definition of an extractable rule, as required for the application of the inclusion

approach of (3.1-2), the exclusion approach of (3.1-3) allows an orderly approach to

significantly reducing the size of the code that must be assessed for rules using other

means.

3.3 Evaluation of the Framework - Wide Spectrum Language

To assess the issue of language specificity under this general framework, a

second program analysis and rule extraction was conducted. This second assessment

was implemented based on the translation and transformation of an original source

41

program into an equivalent Wide Spectrum ~guage (WSL) program. Rule analysis

and extraction was then performed on the equivalent WSL program.

With regard to rule extraction from heterogeneous systems, a WSL-based

approach has numerous potential advantages. Firstly, using provable, mathematically

sound transformations, programs in a variety of languages can be converted into WSL,

thereby allowing its use with potentially any source language. Secondly, extraction

methodologies for the WSL code could be developed and applied to the transformed

programs with the certain knowledge that the underlying logical or mathematical

objectives of those methodologies would be uniformly applied regardless of the original

system language or paradigm. Thirdly, performing analyses in a single language, WSL,

will allow the consistent execution of code analysis or rule extraction strategy regardless

of the initial program language. Fourthly, different programs, written in different

languages, different styles, and with different levels of extraneous code, e.g., error

handling code, could be consistently abstracted using WSL. Finally, rules derived from

different original source programs can be expressed easily in a common, consistent

form.

As before, both the inclusion and exclusion rule-extraction approaches presented

in (3.1-2) and (3.1-3), respectively, were evaluated. For these evaluations, a second

rule-based program, written in the C language, was developed and is presented in

Listing 3.3-1. This program accepts the user input of two numerical values from the

keyboard, mathematically manipUlates these two input values to determine a test value,

then assigns and displays a reply value based on the comparison of this test value

against a specified criterion. Although more sophisticated than the previous case

presented in Listing 3.2-1. this code is very simple to provide the basis for clear and

unambiguous examination.

This C code contains 22 structures. These structures are: three library reference

structures (lines 1. 2. and 3); a global constant defmition (line 4); a single program

block structure (lines 5, 6, 31, and 32); five type defmition structures (lines 7 through

11); one comment structure (line 12); two input capture structures (lines 14 and 16);

three output display structures (lines 13, 15, and 30); five sequential mathematical

assignments (lines 17 through 21); and one logical if structure (lines 22 through 29),

42

1 #incJude <stdio.h>
2 #include <stdlib.h>
3 #incJude <string.h>
4 #define CRITERION 20

5 int main (void)
6 {
7 char reply_yes[10] = "Yes";
8 charreply_no[lO] = "No";
9 char reply[lO];
10 char buffer[80];
11 double inputl, input2, test;

12 1/ This is a demo program

13 printf("Enter first input: to);
14 input! = atof(gets(buffer»;

15 printf("Enter second input: to);
16 input2 = atof(gets(buffer»;

17 test = input 1 + input2 ;
18 test = test + 2 ;
19 test = test • 2 ;
20 test = test + input2 ;
21 test = test + 2 ;

22 if(test >= CRITERION)
23 {
24 strcpy(reply, reply_yes) ;
25 }
26 else
27 {
28 strcpy(reply, replYJ1o) ;
29 };

30 printf("111C answer: %s \n", reply);

31 return(O);
32

Listing 3.3-1: A Second Simple Rule-Based Program
in the C Language

This rule-based program was translated into WSL. The resulting WSL program

is presented in Listing 3.3-2. This equivalent WSL program contains only seven

structures, as compared to the 22 structures in the original C program. These structures

are: one variable declaration structure (line I, terminating on line 10); two output

43

display structures (lines 2 and 4); two input capture structures (lines 3 and 5); one

mathematical operation reflecting the transformation of the multi-line local procedure in

the C code into a semantically equivalent single statement (line 6); and one logical if

structure (lines 7 through 9) that incorporates related output display. This dramatic

reduction in the total number of structures highlights one of the major potential

advantages of this transformation approach to rule extraction and identification, namely,

that using WSL allows the substantial simplification or abstraction of a target program

code. Whereas not all circumstances will result in the magnitude of code reduction

observed here, the elimination of code that is superfluous to the logical functioning of

the program, either through translation into the streamlined syntax of WSL or through

the transformation of source code into semantically equivalent WSL code, greatly aids

in the comprehension of the program and the corresponding identification of program

components of interest.

1 V AR < input! := 0.0, input2 := 0.0, test := 0.0 >:
2 PRINFLUSH("Enter first input: H);
3 inputl := @Strin~To.-Num(@ReadJjne(Standard_Input..J>ort»;
4 PRINFLUSH("Enter second input: ");
5 input2 := @Strin~To.-Num(@ReadJjne(Standard_Input..J>ort»;
6 test := input! '" 2 + input2 '" 3 + 6 ;
7 IF test >= 20
8 TIIEN PRINT("Answer: Yes")
9 ELSE PRINT("Answer: No") PI;
10 ENDVAR

Listing 3.3-2: The Equivalent Program in WSL

That an extractable business rule must be logically or mathematically operative,

as presented in the definition of an extractable business rule in Section 2.4, was used

again as the basis for the extractable rule defmition function required for the

implementation of (3.1-2). Upon applying this extractable rule defmition function to

the previously enumerated list of structures in the demonstration code, only two

structures are found to fit the criterion of being mathematically or logically operative -

the mathematical assignment of the test value (line 6) and the one logical if structure

(lines 7 through 9). These rule structures are highlighted in Listing 3.3-3. No other

mathematical or logical operators exist. The other structures either contain no

44

operators, or contain only assignment operators. For example, since the function calls

in lines 3 and 5 are for string input and manipulation only, and are not related to the

mathematical or logical manipulation of these strings, these structures are determined

not to contain any rules. Therefore, subject to the continued acceptance of the

extractable rule defmition function used in this example, one can be mathematically

certain, using the set requirements specified in (3.1-2), that all rules contained in the

example program have been identified.

1 VAR < inputl := 0.0, input2 := 0.0, test := 0.0 >:
2 PRINFLUSH("Enter first input: ");
3 inputl := @Strin~To_Num(@Read_line(Standard_hlput..Port»;
4 PRINFLUSH("Enter second input: ");
5 input2 := @Strin~To_Num(@Read_Line(Standard_h1putYort»;
6 test := inputl • 2 + input2 • 3 + 6 ;
7 IF test >= 20
8 THEN PRINT("Answer: Yes")
9 ELSE PRINT("Answer: No") FI;
10 ENDVAR

Note: The extracted rules are shown in bold.

Listing 3.3-3: Rule Extraction from the WSL Program
Using the Inclusion Approach of (3.1-2)

For the implementation of the alternative exclusion approach of (3.1-3), no

extractable rule definition function was required, only a basic understanding of both

extractable rules and the WSL language is needed. For this analysis, it is assumed with

certainty that variable declarations, outpuUdisplay structures, and simple input capture

structures cannot contain rules. This allows the elimination of lines 1,2,3,4,5, and 10

as non-rules. These eliminated structures are struck through in Listing 3.3-4. Thus,

only two structures remain that have not been eliminated - line 6 and lines 7 through 9.

Subject to a continued acceptance of the criteria used to eliminate the non-rule

structures, one can be certain that the eliminated structures contain no rules. However,

given the approach and the associated lack of an adequate rule defmition, uncertainty

must remain with respect to whether the remaining code does or does not contain any

rules.

45

1 VAR (iHfllitl :- G.G, infllit2 :- G.G, test :- G.G >:
2 PRINFLUSH("BBteF first infllit: ");
~ iBfllitl :- @StriBgJe NtifB(@ReaaJjBe(St8fldaFa mflliCPert));
4 PRINFLUSH("BBteF seeeBd iHfll:lt: ");
5 iBfllit2 :- @StringJe_NtifB(@Reaa UBe(St8fldaFd mIM Pert));
6 test := input! * 2 + input2 * 3 + 6 ;
7 IF test >= 20
8 THEN PRINT("Answer: Yes")
9 ELSE PRINT("Answer: No") FI;
1(:) BNDVAR

Note: The eliminated structures are shown in stFike!hr8ligft.

Listing 3.3-4: Rule Extraction from the WSL Program
Using the Exclusion Approach of (3.1-3)

3.4 Observations

Although purposefully limited in scope, these studies highlight the requirements,

similarities. advantages, and limitations of the application ofthis general framework and

the two related approaches to rule extraction. Both the inclusion and exclusion

approaches require the identification of all structures contained in the target code.

Complex structures that may be composed of multiple structures or structures within

structures must be resolved and decomposed into relatively simple structures that can be

analyzed against a rule defmition or rule model, in this case, the extractable rule

defmition function of (3.1-3). Given the very limited size of these demonstration

programs, identification of all structures at the appropriate level of detail was a simple,

straightforward matter. However, if the original target program is lengthy, or if the

original program language is either poorly documented or little known to the rule

analyst, or both, then the identification of all program structures in the original program

can be a formidable mechanical and logical task. Given lengthy source code, the

possible number of structures will increase exponentially with the number of lines of

code, making it difficult to efficiently identify all structures within a program. As

demonstrated in the WSL examples, program conversion potentially allows the

substantial simplification or abstraction of the target program code, thereby reducing the

potential magnitude of the problem. Nonetheless, the 'state explosion' associated with

lengthy code represents a potentially significant scalability issue regarding the

46

application of this formal framework to real world rule extraction problems, regardless

of the language on which the extraction activities are based.

The two approaches to rule extraction differ dramatically with regard to the

necessity for and application of a suitable rule defInition. The inclusion approach,

based on (3.1-2), requires an explicit, precise rule defmition. If such a rule model or

rule defmition can be developed and applied to the target program language, then all

rules can be extracted from the target program code with absolute, mathematical

certainty. Conversely, the exclusion approach, based on (3.1-3), requires no a priori

defmition of what constitutes a rule, only an ordered understanding of what is not a rule.

Consistent with that compromise, the exclusion approach affords no mathematical

certainty whether the extracted structures contain only rules or other non-rule structures.

Therefore, all subsequent research presented in this thesis will use the inclusion

approach.

Therefore, to achieve the stated goal of developing a suitable formal

methodology for rule extraction to legacy code, two obstacles must be overcome.

Firstly, a flexible but formal model of a businesslknowledge rule must be developed that

can be applied to a diversity of legacy code. Secondly, a formal approach regarding the

potential scalability issues in real-world code must be devised. A fonnal model of a

business/knowlcdge rule is presented in Chapter 4 and an algebra describing the

application of that rule model is presented in Chapters 5 and 6. Potential scalability

issues are addressed in Chapter 7 using the visual formalisms of statecharts.

47

Chapter 4

Temporal Logic and Rules

One of the critical impediments identified in Chapter 2 is the lack of a general

rule defmition that can be applied uniformly and consistently in the analysis of legacy

code and in the execution of the corresponding rule extraction. In this chapter, a forma~

general model of a rule is developed, general in that it can be adapted to the variety of

languages and programming paradigms that might be encountered in different legacy

code applications.

4.1 A State-Based Model of a Rule

A state is a function mapping a set of variables to a set of values. As most

legacy code languages can be analyzed readily in terms of state variables and the

operations that change the values bound to those variables, it is convenient to

conceptualize most legacy code programs, and the rules contained therein, in terms of

states and state transitions. Therefore, a simple rule can be described informally as a

state transition from an initial state to a fmal state occurring only when a specified well­

formed conditional is satisfied. Using this descriptive model of a rule, consider the

following three-tuple:

where:

<I,o, C> (4.1-1)

1: = set of valid states, such that Sin/lial. Sjinal E 1:,

0= transition relationship, relating Sjnilja/ to Slmal. and

C = properly formed condition that must be satisfied for the state
transition relationship described by 0 to occur.

Several general points merit note regarding this general descriptive model.

Firstly, the state variables used in 1: can represent any component, object. or property of

interest. Secondly, no limitations are placed on the nature of the transition relationship

O. This transition is expressed as a relation and not a function to allow for non­

deterministic rules. Therefore. for a given rule, mUltiple alternative fmal states may

48

result for a single initial state. Thirdly, the use of the state descriptors initial andfinal

are relative to a single rule, where each transition described by a rule will have an initial

and fmal state. Within this context, more sophisticated rules and rule-based programs

can be formed by defming mUltiple rules and linking those rules together, such that the

Sfinal resulting from one rule may then be used as the Sinitial for a subsequent rule.

A critical issue in the refmement of the basic rule model presented in (4.1-1) is

the nature of the condition, C, that mu st be satisfied for the transition from Sinitial to sjina/,

as described by the transition relationship 0, to proceed. As described below, the form

of this conditional is a critical factor in determining whether a given structure

constitutes a rule. Consider the following simple assignment:

x:= 1 (4.1-2)

Using the rule model presented in (4.1-1), this assignment is not a rule, as it does not

include a condition. To include a condition, this simple assignment can be rewritten as

the following if-then conditional:

if true then x := 1 (4.1-3)

In both cases, x will always evaluate to 1. Although the second form (4.1-3) includes a

condition (Le., 'if true'), the form of the conditional dictates that x always evaluates to

1. To that end, no state knowledge is required to evaluate x. In either form, the variable

x always will be assigned a value of 1. Thus, both statements are unconditionally true.

Borrowing from the concepts associated with the programming language PROLOG,

statements that are always unconditionally true are facts (Bratko, 2001), and not rules.

Formally, this argument can be made using propositional logic. Let the atomic

proposition Q represent (4.1-2) and let the conditional presented in (4.1-3) be described

using implication as true::) Q. From propositional logic, true::) Q == Q. Therefore,

(4.1-2) and (4.1-3) are logically equivalent. Based on this proven logical equivalence,

because (4.1-2) is not a rule by definition, (4.1-3) is not a rule by extension.

49

Now consider the following modified if-then conditional:

if y = true then x := 1 (4.1-4)

In this case, the evaluation of x to 1 depends on the state of y. The state of x is no longer

certain. This conditional is formed such that the future value of x is dependent on the

value of y, and not on the invariant form of the condition as in the previous example.

Extending the previous analysis using propositional logic and letting the atomic

proposition P represent y = true, (4.1-4) can be represented using implication as p::J Q.

Without additional knowledge regarding the current state of P and the application of an

inference rule, no further simplification of (4.1-4) can be made, supporting the

conclusion that (4.1-4) if fundamentally different than (4.1-2) or (4.1-3).

Therefore, for the purposes of defming a rule, the properly formed condition

criterion relates to the mathematical form of the conditional relative to expressing the

conditions in terms of a state and the associated state variables. Consider the following

rule-based, two-line program describing a simple two-variable state space and

incorporating the conditional presented in (4.1-4):

y:= true
if y = true then x := 1

(4.1-5a)

(4.1-5b)

. Consisting of an assignment and an if-then rule, this rule-based program will always

evaluate x to 1. However, this certain evaluation is based on the limited expression of

knowledge within the program, i.e., that y is specified in the program to be true, and not

based on the mathematical or logical form of the rule conditional. Whereas one may

consider this a trivial rule, it is potentially a properly formed rule in that the fmal

assignment of x is not constrained by the mathematical or logical form of the

conditional controlling the assignment of x. If the knowledge about the state space

being modeled were expanded such that y might vary, then x could vary also. In this

case, this rule-based program is limited only by the knowledge of the state space

relative to the interaction of the state variables, and not by the fundamental form used in

the expression of the rule.

50

Therefore, the general concept presented in (4.1-1) is modified such that a

business or knowledge rule is formally defmed by the three tuple:

where:

<~,o, C> (4.1-6)

~ = set of valid states, such that Sinitial, Sfinal E ~,

o = transition relationship, relating Sinitial to Sjinal, and

C = condition that must be satisfied for the state transition relationship
described by 0 to occur, and must be properly formed relative to
the state such that C(s) = true for S E ~.

Whereas this research typically discusses the condition C as a logical conditional of an

imperative/procedural language, no limitation is imposed with regard to how this

condition may be implemented. For example, C could be dependent on a event,

including the receipt of a message, such that the initiation, ongoing execution, or

completion of such an event would evaluate C to true. Similarly, C could be expressed

in terms of a group of concurrent actions, or the truth of the conditional is based on

some set of temporal actions set of past, current, or future behaviors. The general rule

defmition presented in (4.1-6) has been constructed to permit the analysis of rules in a

wide range of specifications and program codes and to support various forms of ru Ie

implementation within those specifications and program codes.

To further focus on the state outcome of this state-based model of a rule, the

concept of a rule state is introduced. A rule state is the state (or state sequence, as will

be discussed later in this chapter) that results from the implementation of a rule, that is,

the state that results from the transition relationship 0 of a properly formed rule, as

described in (4.1-6). The rule state of the general rule described in (4.1-6) is sfma].

Refining the requirements associated with the rule condition, explicitly

incorporating the rule state concept, and generalizing to eliminate the use of initial and

final, the three-tuple formal definition presented in (4.1-6) can be expressed in an

alternative form:

51

C(s) = true A S' = o(s) for s, s' E ~ (4.1-7)

where:

s' = rule state, resulting from the transition specified by 0,

o = transition relationship, relating s to s', and

C(s) = rule condition to be satisfied, expressed in terms of the state s.

4.2 A Very Basic Temporal View of Rules

Implicit in the description presented in (4.1-7) is a temporal ordering of states.

As previously defined, the outcome of the rule is the rule state. As the transition to rule

state s' is conditioned on the environment being in state s, thereby satisfying the

condition specified by C, and as no environment can be in two states at the same time,

the rule state s' must occur after state s. These general temporal properties of (4.1-7)

can be described in the following simplified form:

where:

C(s) A S/uturt for s, S' E ~ (4.2-1)

S' = rule state described by the transition relationship 0 (relating S to
s) and occurring in the future relative to s, and

C(s) = rule condition to be satisfied, expressed in terms of the state s.

As a conjunctive structure, (4.2-1) is true only if both elements of the conjunction hold

- if the condition expressed in terms of a state s is satisfied and if the state is moved in

the future into some state s' as defmed by the transition relationship 0. Using the model

presented in (4.2-1), rules can be described as a conjunctive structure that specifies both

a state that satisfies the rule condition and a future rule state. Extending this

description, a rule defmes a temporal relationship between states. As these temporal

aspects are critical to a formal model of a rule, the following section describes temporal

logic and Interval Temporal Logic, as tools for expressing rules and reasoning with

rules.

52

4.3 Temporal Logic and Interval Temporal Logic

Temporal logic is a powerful tool for the formal reasoning about time and the

behavior of dynamic systems without requiring the introduction or use of explicit time

variables. Using temporal logic, time concepts relative to a sequence of states can be

expressed using different temporal operators, including always (D), sometimes (0), and

next (0). A comprehensive review of the development and implementation of temporal

logic is presented in Manna and Pnueli (1992, 1995).

This research uses Interval Temporal Logic (ITL) , a flexible notation for

propositional and fIrst-order reasoning about periods of time (i.e., intervals) in hardware

and software. ITL can be used to reason about both sequential and parallel composition,

and includes powerful and extensible specifIcation and proof techniques for reasoning

about critical properties such as safety and live ness (Moszkowski, 1996). As Cau and

Zedan (1997) have demonstrated that most imperative programming constructs can be

represented as formulas in ITL, it is well suited for the analysis of legacy code as well

as the analysis and specification of other non-legacy constructs. Detailed descriptions

of ITL can be found in Moszkowski (1986, 1994, 2000, 2003) and the ITL homepage

(STRL, 2006).

Fundamental to ITL is the concept of the interval - a (in)finite sequence of states

that describes the behavior of a program or specification over time. Using the states s in

l:, intervals of time, i.e., sequences of states, can be constructed from l:+, the set of all

non-empty sequences of states. Such an interval of states is represented by cr and the

length of that interval is one less than the number of states in that interval. Under this

definition, a single state is a valid interval, and the length of a single state interval is

zero. As intervals can themselves be composed of intervals, ITL is highly adaptable to

both abstraction and refinement, as intervals can be either aggregated or partitioned,

depending on the specific circumstances.

Intervals in ITL are described by expressions and formulas. The syntax of ITL

is presented in Table 4.3-1, where z is an integer value, a is a static variable (i.e., a

variable that does not change within an interval), A is a state variable (i.e., a variable

that can change within an interval), v is a static or state variable, g is a function symbol,

and p is a predicate symbol. Formulas mayor may not include temporal operators. A

53

state formula, in this research denoted by w, is a formula that contains no temporal

operators. The verity of a state formula for a given interval, that is, a sequence of states,

is assessed based by the first state in that interval

Table 4.3-1 Syntax ofITL

Expressions
exp ::= z I a I A I g(eXPlI ... , eXPn) I w: /

Formulae
/ ::= p(exPl, ... ,exPn) 1-,/111'/\ h I "Iv· / I skip 111 j hi r

The formal semantics of ITL is listed in Table 4.3-2. The informal semantics of

some of the ITL constructs key to the analysis of rules and the research presented herein

include:

• skip - unit interval

• II ; h holds over an interval if that interval can be decomposed (or

"chopped") into a two intervals, a prefix and suffix interval, such that II
holds over the preflx interval and 12 holds over the sufflx. If the interval

is infinite, then 11 must hold for that interval. The; operator is read as

"chop."

• I holds if the interval is decomposable (i.e., chopable) into a fmite

number of intervals such that I holds for each of them. If the interval is

in fmite, it must be decomposable into an infinite number of finite

intervals for which/holds. The· operator is read as "chop-star."

The following are some simple ITL formulas and their informal meanings.

• I = 1 holds for a interval if the value of I in the initial state of that

interval is 1, regardless of the value of I in any subsequent states that may

compose that interval. This formula can hold on a single state interval.

• 1= 2 A skip holds for a two-state interval if the value of I in the initial

state of that interval is 2.

54

Table 4.3-2 Semantics ofITL

l'u[v] = cro(v)
l'u[g(eXPb ... , eXPn)] = g(l'u[eXPl] , ... , l'u[exPn])

l'u[za: f] = { X(u) if u # {}
X (VaIa) otherwise

where u = {cr'(a) I cr ""a cr' "Mul(J] = tt}
Mu[p(exPl' ... , eXPn)] = tt iff p(l'u[eXPl] , ... , l'u[exPn])
Mu[-,f] = tt iff Ma[J] = ff
Mu [h 1\ 12] = tt iff Ma [h] = tt and Ma [12] = tt
Mu [Vv • f] = tt iff for all cr' s. t. cr ""v cr', Mu l (J] = tt
Mu [skip] = tt iff Icrl = 1
Mu[h ; 12] = tt iff
(exists a k, s. t. M ao ... uk UI] = tt and

((cr is infinite and Mak . ..I12] = ttl or
(cr is finite and k ~ Icrl and MUk."O"'"i [12] = tt)))

or (cr is infinite and Ma[Jd)
Mu [r] = tt iff
if cr is infinite then

(exist 10, ••• , In S.t. 10 = 0 and
MU,n . ..[f] = tt and
for all 0 ~ i < n, Ii < lHI and MO"lj ... UI

H1
[1] = tt)

or
(exist an infinite number of Ii s.t. 10 = 0 and

for all 0 ~ i, Ii < li+l and MO"li .•. O"li+l [f] = ttl
else

(exist 1o, ... , In s.t. 10 = 0 and In = Icrl and
for all 0 ~ i < n, Ii < li+] and MUli ... UI

H1
[J) = tt)

Souru: m hornol'8l!' at ht1p Ilwwwe .. dmu Ie ukh:.ulitlhomepagol

• 0/ = 3 holds for interval if the value of / in the second state of that

interval is 3. Given that the ITL next operator 0 is defmed as "skip ;",

this formula is equivalent to the formula skip; / = 3 .

• / = 4 ; 1= 5 holds for interval if the value of I in the initial state is 4 and

in some later state, but not necessarily the second or next interval, the

value of I is 5.

Some frequently used non-temporal derived constructs, temporal derived

constructs, concrete derived constructs, and derived constructs related to expressions are

presented in Tables 4.3-3 through 4.3-6, respectively.

55

Table 4.3-3 Frequently used non-temporal derived constructs

true - 0=0 true value
false - -,true false value
Itvh ~ -,(-,It 11.-,12) or
It:::>h ~ ...,It v 12 implies

It=h
~ (It :::> h) A (12 :::> It) equivalent

3v· I ~

...,'r/v· -'1 exists

Note: Prom the m home POi,at bttpJIwww dmu .. uk/-uu/idhomepap'

Table 4.3-4 Frequently used temporal derived constructs

01 ~

skip ;1 next
~

Otrue non-empty interval more
empty

~

empty interval ...,more
inf :;: true j false infinite interval
isinf (f)

inf 1\ I is infinite
finite

~ ...,inf finite interval
isfin (f) ~

finite A I is finite
fmore ~

more A finite non-empty finite interval
01 ~

finite j I sometimes
01 ~ ...,0""1 always
®I,0...,1 weak next
<PI ~ I j true some initial subinterval
CDI,(<P -./) all initial subintervals

*1
....

finite j 1 ; true some subinterval
ril

-,(~ -'/) all subintervals

~: m home poae II hnpllwww dmu ... uk/"""""Uhomcpaael

56

Table 4.3-5 Frequently used concrete derived constructs

if /0 then 11 else 12 - (fo II 11) v (-'/0 II h) if then else
if /0 then 11 ~

if /0 then 11 else empty if then
fin / - D(empty :J I) final state
sfin / - -.(fin (-.1)) strong final state
halt / - D(empty == I) terminate interval when
shalt / - -.(halt (-.1)) strong terminate interval when
keep / - [liI (skip :J I) all unit subintervals
keepnow /

~

<v(skip II f) initial unit subinterval
/w ~

isinf (isfin (f)*) infinite chopstar
fstar (f) - isfin (isfin (f)*) v

isfin (isfin (f)*) j isinf (f) finite chopstar
while /0 do 11 ~ (fo II 11)* II fin -'/0 while loop
repeat /0 until 11 - /0 ; (while -'11 do /0) repeat loop

Scurte. m bomo P&fICIl hllp 11www<R dmuocukl-uulillhomep&flel

Table 4.3-6 Frequently used derived constructs related to expressions

Oexp ~

2a: O(exp = a) next value
fin exp

~

2a: fin (exp = a) end value
A:= exp

~

OA = exp assignment
eXPl ::::i exp2

~

D(exPl = exP2) equal in interval
eXPl +- exp2

~

finite II (fin expd = exp2 temporal assignment
eXPl gets exp2

~

keep (exPl f-- eXP2) gets
stable exp ~

exp gets exp stability
padded exp ~

(stable (exp) j skip) v empty padded expression
eXPl <1:v exp2 - (exPl +- eXP2) II padded eXPl padded temporal assignment
goodindex exp - keep (exp +- exp v exp +- exp + 1) goodindex
intlen (exp)

~ 31· (I = 0) /\ (J gets J + 1) II (I +- exp) interval length

Sou"" m home pallO II httpllwwwo .. elmu K.ukl-c:ouIidhomopagei

Propositional axioms and rules for ITL are presented in Table 4.3-7. Cau and

Moszkowski (1996) describe the development and implementation of a theorem prover

and proof checker tool for ITL using the SRI's Prototype Verification System (PVS).

This proof tool has been used to develop and verify an extensive library of ITL lemmas

(STRL, 2006). A summary of selected ITL lemmas from this library that are used in

this research is presented in Table 4.3-8.

57

Table 4.3-7 Propositional axioms and rules for ITL

ChopAssoc I- (fo; h); 12 == fo; (h; h)
OrChoplmp I- (fo v It)ih :J (foih) v (ltih)
ChopOrImp I- fOi (It v h) :J (fo; h) v (fo; h)
EmptyChop I- empty; It == It
ChopEmpty I- Iti empty ==. II
BiBoxChoplmpChop I- m(fo:J II) A D(h :J /3) :J (fo; h) :J (It; /3)
StatelmpBi I- p:J m p
NextImpNotNextNot I- 0 fo :J ..., O""fo
KeepnowlmpNotKeepnowNot I- keepnow (fa) :J ..., keepnow (...,fo)
BoxInduct I- fo A D(fo :J e fa) :J Dfo
InfChop I- (fa A inf); It - (fo A inf)
ChopStarEqv I- fo - (empty v «(fa A more) j fo))
Chopstarlnduct I- (inf A fa A D(fo :J (It" fmore); fa)) :J fi
MP I- fo:J It, I- fa => I- It
BoxGen
BiGen

I- fo => I- Dfo
I- fa => I- rn fa

This overview of ITL is provided as a basis and background for the development

of the formal rule model presented later in this chapter and the rule algebra developed

throughout the remainder of this thesis. As necessary, the various elements of ITL

summarized in this section are used in the development of the rule model and rule

algebra presented in this thesis. Lemmas introduced later in this chapter and in

subsequent chapters to defme this rule model and rule algebra have been developed as

part of this research using ITL

58

Table 4.3-8 Summary of selected ITL lemmas used in this research

AndChoplmp :
t (ifo A!I) ;12) :::> (ifo ;!2) A if I ;12»

ChopAndImp :

t ifo ; if I A!2» :::> (ifo ;/1) A ifo ;!2»

ChopOrEqv:

t ifa ; if I V!2» == (ifo ;/1) v ifo ;12»

NextAndNextEqvNextRule:

t (ifo A!}) == h) implies t ({% A Of}) == 0!2)

NextChop:
Ho!o;!}) == 0ifO;/I)

OrChopEqv:

t (ifo v /}) ;/2) == (ifo ;12) v ifJ ;/2»

StateAndChop:
t «w A/a) ;/1) == (W A ifo ;/}»

StateAndNextChop:

t «W A 0/0) ;/J) == (W A oifo ;/}»

StateChop:
t (W ;/0):::> W

4.4 Previous Temporal Representations of State Properties

Various formations using temporal logic have been used to represent and reason

about the relationship between current and future states and/or state properties.

Although these formations are not always described as rules, they do demonstrate how

different states can be linked temporally to fonn coherent logical structures.

Lamport (1977) introduced the 'leads to' operator to express a liveness property,

where a liveness property requires that something must eventually happen. The 'leads

to' operator was defined using temporal operators in Lamport (1980) as:

59

(4.4-1)

where P and Q are assertions. Under this form, if P is true, then Q will be true

eventually, either at the same time or at some later time. This concept was modified in

Owicki and Lamport (1982) where the 'leads to' operator was defmed as:

O(p:J OQ) (4.4-2)

Under this formation of the 'leads to' operator, it is always true that if P ever becomes

true, then Q will be true at the same time or at some later time, where P and Q are either

immediate or temporal assertions.

Manna and Pnueli (1990) proposed a hierarchy of related formulations involving

implication and temporal operators, where P and Q are state formulas or assertions:

Entailment: o(p:J Q) (4.4-3a)

Conditional guarantee: P:JOQ (4.4-3b)

Simple obligation: OP:J OQ (4.4-3c)

Obligation of exceptional occurrences: OP:::> O(Q 1\ OP) (4.4-3d)

Response o(p:J OQ) (4.4-3e)

Conditional persistence: o(p:J OoQ) (4.4-30

Pers Lc;tence-equ iva lent: P::> OoQ (4.4-3g)

Reactivity: oOP:::> oOQ (4.4-3h)

The interrelationship of some of these formulations is evident. Simple obligation is an

extension of conditional guarantee; conditional persistence is an extension of response;

and response incorporates entailment and conditional guarantee. Obligation of

exceptional occurrences is a specific instantiation of simple obligation, as the authors

observe that it guarantees that Q happens only after some occurrence of P.

Siewe et aL (2003) used ITL to express an 'always-followed-by' operator for

reasoning about security policies. This 'always-followed-by' operator is defined as:

60

O(/-::J 0(/; w» (4.4-4)

where / is a temporal formula and w is a state formula.

4.5 A Temporal, State-Based Model of a Rule

As demonstrated in Section 4.4, temporal logic can be used to represent and

reason about the relationship between current and future states and/or state properties.

In these previous uses of temporal logic to express rule-like structures, implication has

been consistently used to express the logical relationship between the formulas

describing the current and future states. However, and as explained below, implication

has an undesirable property with regard to the formation of rules - the vacuously true

case. For implication, the vacuously true case exists when the antecedent is false and

the consequent is true. The basis for the vacuously true case is evident when an

implication, /0 -::J 0/1. is expressed in its equivalent disjunctive form, -10 v 0/1. In this

example, if 0/1 is true, the implication (and its equivalent disjunctive form) will hold

regardless of the verity of the antecedent /0. Whereas the logical necessity of the

vacuously true case for implication is not questioned here, it does seriously weaken the

use of implication as the basis for the formation of rules. This is less a logical problem

and more an interpretive question of whether the definition of a rule using implication is

the best alternative for expressing the formal, state-relationship basis for a rule, as

developed above, and the informal expectations of what constitutes a rule, as previously

discussed in Chapter 2.

As descrihed in the previous sections, a rule is a relationship between a state and

a future state. If the program is in a state or otherwise moved to a state such that the

consequent of an implication-form rule is satisfied, then that implication-form rule is

true by definit ion, even if the antecedent is false and the program is not in a state

satisfying the rule condition expressed by the antecedent. Stated another way, using

implicat ion to form rules allows one to unequivocally declare that an implication-form

rule describing the relation between two states is true even though the rule condition

(i.e., the implication antecedent) is not met; only the consequent need be true for an

implication-form rule to be true. The vacuously true case conflicts with the intuitive

expectations of a rule and informal requirements previously presented in Chapter 2 that

61

a rule be both explicit and precise with regard to what conditions must be met for the

rule to hold. Therefore, an alternative logical formation - other than implication - is

preferable for the formation and representation of rules ..

Returning to the very basic temporal view of rules as presented in (4.2-1), a rule

is conceptually represented as a conjunction of a rule condition, expressed in terms of a

state, and a future state - the rule state - that results from the enforcement of the rule.

Generalizing this to consider sequences from ~+, the set of all nonempty sequences of

states, (4.2-1) can be recast in a form amenable to the use ofI1L:

C(0') A O'/ulure for 0', 0" E ~+ (4.5-1)

where:

0" = rule state (or sequence of states) occurring in the future relative to
0' and described by the transition relationship 5, relating 0' to 0"

where 0" = 0(0').

C(O') = rule condition to be satisfied, expressed in terms of the state (or
sequence of states) 0'.

The genera] state sequence and temporal concepts presented in (4.5-1) can be

formalized using IlL and a rule can be described as:

where:

(4.5-2)

fi = temporal (or state) formula in IlL describing a sequence of states
(Le., the rule condition) that must be met for the rule to hold.

Ii = temporal (or state) formula in I1L describing a sequence of states
(i.e., the rule state) that must occur for the rule to hold.

Regarding the correspondence between (4.5-1) and (4.5-2), fi describes the rule

condition 0' that must be met;jjdescribes the rule state 0" that must occur for the rule to

hold; and the use of the I1L next operator 0 specifies that the sequence of states

satisfying fi must occur in the future relative to the sequence of states satisfying jj

(subject to the specific semantics of the ITL next 0 operator as presented in Table

4.3-2). As this rule form uses conjunction, no vacuously true case exists. In this form.

62

the rule is true only if both the rule state, described by ji, is achieved and all rule

conditions, as expressed inh, are satisfied.

One fmal element must be added to complete the formalization of the concepts

presented in (4.5-2). Remembering that a state is a function that maps a set of variables

to a set of values and that 3 is a transition relationship relating some state sequence 0' to

some future state sequence a', a' differs from 0' based on changes to specific variables

as specified by the transition relationship 3. The variables that change values can be

formalized under ITL using the frame extension described by Cau and Zedan (1997).

Letting W be a set of state variables, then frame(W) denotes that only the variables in W

can possibly change in the transformation from 0' to a' as defined by 3. The formal

semantics of frame, expressed in ITL, are presented in Cau and Zedan (1997). This

frame extension can be applied to (4.5-2), and the general form of a rule can be defined

as:

where:

W:ji" oji (4.5-3)

Ji = temporal (or state) formula in ITL describing a sequence of states
that must be met for the rule to hold.

h = temporal (or state) formula in ITL describing a sequence of states
that must occur for the rule to hold.

W = set of state variables such that frame(W) denotes that only the
variables in W can possibly change in the state transformation that
occurs such thatJi and oh hold.

Using the general form presented in (4.5-3), Ji specifics the rule condition and Ji
describes the ru Ie state resulting from the rule. When it is self-evident or otherwise not

necessary that it be explicitly stated, W can be inferred and need not be shown.

As ITL temporal formulas include state formulas (special temporal formulas

whose verity is assessed based on only the first state of a sequence of states), (4.5-3) can

be restricted to only state formulas and expressed as:

W: Wj" Oli)
(4.5-4)

63

where:

WI = state formula in ITL describing the frrst state in a sequence of
states that must be met for the rule to hold.

Wj = state formula in ITL describing the frrst state in a sequence of
states that must occur for the rule to hold.

W = set of state variables such that frame(W) denotes that only the
variables in W can possibly change values in the state
transformation that occurs such that WI and ow) hold.

Using the general form presented in (4.5-4), WI specifies the rule condition and Wj

describes the rule state resulting from the rule. Whereas the general form of (4.5-3) will

be typically used for the general representation and analysis of rules, the state-restricted

form of (4.5-4) will be occasionally used to express certain provable transformations

that, although of limited scope, are especially applicable to certain procedural legacy

code.

In Cau and Zedan (1997), a specification statement in ITL is described as having

the syntax of W : f As f in this general specification statement is an ITL formula, f can

be instantiated with the ITL formulaJi" oli and W: Ji " oli is achieved. Therefore, the

general rule form of (4.5-3) can be viewed as an extension of the specification statement

that includes a conjunction of a sequence of states and a future sequence of states, in

this case described using the ITL next operator o.

Cau and Zedan (1997) describe the semantics of the specification statement W: f
as frame(W) "f. Extending these semantics, the semantics of (4.5-3) is given by

frame(W) " Ji" oli· Applying propositional logic, specifically the elimination of

conjunction, J; " ojj can be concluded from frame(W) "J;" ojj. This conclusion is

consistent with the previous assertion that W need not be explicitly stated when it is

self-evident or can be inferred from the specific rule instance.

This section closes with a fmal emphasis on the underlying concept that a rule is

a temporal relationship between states, originally introduced in (4.1-1) and temporalized

in (4.2-1). Let at and aj be two int.ervals 0 f states such that ai, aj E ~+ and let J; and fJ be

valid temporal formulas expressed in ITL such that a/ 1= J; and aj 1= fJ. By definition, if

J; "ojj is true then there is a relationship pruk between Cli and Clj. Whereas this

64

relationship could be represented, with sufficient formal development, as aj Prule aj or

Prule(ai, aj), this relationship will henceforth be described in terms of the general-form

rule Ji A ot with the understanding that this general form rule describes the temporal

relationship between cri and aj.

4.6 Rules versus Rule Execution

As developed in this chapter, a rule is a relationship between a sequence of states

and a future sequence of states, and is formally described conjunctively using ITL as

Ji A ot. Rules can be developed, that is, the relationship described, either

observationally or prescriptively. If a program or specification is observed to exhibit a

sequence of states that satisfies Ji and in tpe next state that program or specification

exhibits a sequence of states that satisfies t, then this behavior can be described by the

rule Ji A ot. (This observational construction is supported in propositional logic in that

p, q I- P A q). Similarly, if a program or specification is observed to exhibit a sequence

of states that satisfies t, and in the previous state exhibits a sequence of states that

satisfies Ji. then this behavior can also be described by the rule Ji A ot. (Although ITL

contains no past time operators, this reverse strategy relies on the observation that there

is a sequence of states that satisfies t, that prior to that sequence there is a sequence that

satisfies Ji, and that ot is true relative to Ji.) Alternatively, a rule developer may

prescribe or spccify that, at some time, the program or specification will exhibit a

sequence of states that satisfies Ii and in the next state will exhibit a sequence of states

that satisfiesjj. The rule developer may describe this relationship by the ruleJi A ot. In

all cases, and whether of observational or prescriptive origin, the relationship between

sequences of states satisfyingJi and ot is described by the general-form ruleJi A ot.
Whereas a rule may represent a relationship between states, it is only when a

rule is executed that the future sequence of states embodied in that rule can be achieved.

Therefore, a rule is executed at a specific time or under specific circumstances with the

expectation of a specific outcome. The implication form defining the execution of a

rule can be described by the following lemma:

65

LEMMA: ImpFormExecute

I- fa /\ o/J implies I- fa:::> ifa /\ 0fl)

Proof:

1 fa /\ o/J

2 fa

3 fa/\ o/J

4 fa:::> ifa /\ 0fl)

premise

conditional proof assumption

1, reiteration
2-3, :::> introduction

Using ImpFormExecute, the execution form of the rule fa /\ ofl can be described using

implication as:

fa -::J ifa /\ o/J) (4.6-1)

The formation may be clearer if this implication is read as ''fa is sufficient for fa /\ ofl."

Extending this interpretation, if the state, when the rule is executed, satisfies the rule

condition described by fa. this satisfaction is sufficient for the imposition and

enforcement of the relationship described by the rule fa /\ o/J. And with the imposition

of the rule fo /\ 0fl, the next state satisfies iI. Alternatively, using the traditional

description of implication as if. .. then, rule execution can be described as follows: if the

rule condition specified by fa is met then impose and enforce the rulefa /\ ofl specifying

that the next state will satisfy fl.

With regard to the state sequences that may result from the rule execution form

presented in (4.6-1), two alternative state sequences can be described with the

equivalent disjunctive form of (4.6-1):

:fa v ifo /\ of 1) (4.6-2)

As presented in (4.6-2), the state sequence resulting from the execution of the rule can

be described either by :fa or fa /\ ofl. Stated another way, the execution of the rule

fa /\ 0/1 will result in either one of two state sequences - one satisfyingfo /\ ofl or one

satisfying :fa - depending on the state at the time of rule execution.

66

The requirements for and outcome of the execution of the rule fa A ofl using

implication can be described by the following lemma:

LEMMA: RuleExecute

f- fa and f- fa:::> (fa A alI) implies f- oII

Proof:

1 fa

2 fa :::> (fa A 01I)

3 (fa:::> fa) A (fa:::> of 1)

4 true A (fa:::> of 1)

5 fa:::> ofl

6 ofl

premise

premise

2, distribution of:::> over A

3, propositional reasoning

4, unit of A

1,5, :MP

Under this lemma, if the program or specification is in a state satisfying fa, and the rule

fo A ofl is executed, where the logic of that execution is described by the implication

fa:::> (fa A 01I), then the next state will satisfy fl.

RuleExecute highlights the critical differentiation between and the logical

separation of a rule and the execution of that rule. Rules define or describe the

relationship between the rule condition and the rule state, expressed formally as the

conjunctive relationship between a sequence of states satisfyingfo and a future sequence

of states satisfying Of], or fo A 0fI. Rule execution describes the programmatic

implementation of how this rule is called, executed, and/or enforced. Whereas the rule

fo A ofl may describe a relation between states and future states, this rule will only

describe a specific state change to a sequence of states satisfying ofl only when the rule

is executed. This distinction is critical for the logical and analytical separation between

the knowledge that rules incorporate and the programmatic implementation of those

rules.

Although a slightly shorter proof for RulcExecute is possible, careful analysis of

the approach used yie Ids another lemma regarding the representation of the

programmatic implementation of rules with implication.

67

LEMMA: RuleExecuteEqvlmp

I- fo::> (fo 1\ oli) == fo ::> ofl

Proof:

1 fo::> (fo 1\ 0li) == fo::> (fo 1\ ofJ)

2 fo::> (fo 1\ 0li) == (fo ::>fo) 1\ (fo:J oli)

3 fo::> (fo 1\ oli) == true 1\ (fo:J of 1)

4 fo ::> (fo 1\ oli) == to::> ofJ

tautology

1, distribution of::> over 1\

2, propositional reasoning

3, unit of 1\

RuleExecuteEqvlmp demonstrates that the rule execution form fo ::> (fo 1\ of 1) is

logically equivalent to the simple implication form fo ::> of 1· Using the conjunctive

model of a rule as presented in this thesis, RuleExecuteEqvlmp supports a conclusion

that the common view of a single rule-like structure as implication is actually a logical

description of the execution of a rule and not a logical description of the rule itself,

. where a rule is a temporal relationship between two state sequences.

4.7 Observations

In this chapter, a rule has been defmed formally as a conjunctive relationship

between a state sequence and a future state sequence. This relationship is described in

ITL as the general-form rule fi 1\ ojj. This rule form can be used to either describe or

specify, either observationally or prescriptively, a temporal relation between a state

sequence satisfying the rule conditionfi, and a state sequence satisfying the rule stateJj.

Unlike the traditional use of implication to represent rules, this conjunctive form

avoids the troubling vacuously true case associated with implication. Using implication

to form rules allows one to unequivocally declare that an implication-form rule

describing the relation between two states is true even though the rule condition (i.e.,

the implication antecedent) is not met. This is troubling because the vacuously true case

conflicts with the intuitive expectations of a rule and informal requirements previously

presented in Chapter 2 that a rule be both explicit and precise with regard to what

conditions must be met for the rule to hold. The conjunctive general-form rulefi 1\ ojj

avoids the problem. However. with courteous regard to the traditional (and arguably

incorrect) view of rules as implication, proof was given that the execution of the

68

general-form rule, described using implication as/a:::> (fa A a/I), is logically equivalent

to the simple implication form/a:::> a/I.

A critical objective in the development of this rule model was the general

adaptability of the rule model to a variety of programming paradigms, so that it can be

applied in concert with the general rule extraction framework developed in Chapter 3.

However, as the goal of many rule extraction exercises is the development of a new

specification or program that will implement the extracted rules, this rule model should

be equally adaptable to forward engineering. In the next chapters, a rule algebra is

developed that describes how the general-form rule Ji A ali can be used to describe

complicated state sequence in either the reverse or forward engineering domains.

69

Chapter 5

Rule Algebra - Fundamentals

The modern word algebra originates from the Arabic word al-jebr meaning

"reunion of broken parts" (Oxford, 1971) or "reduction of parts to a whole" (Merriam­

Webster, 1998); al-jebr is derived from the Arabic word jabara meaning "reunite, ...

consolidate, restore" (Oxford, 1971) or "to bind together" (Merriam-Webster, 1998).

Because the next two chapters are focused on how rules can be created systematically

from component parts including other rules and then linked to form larger structures,

these origins of the word algebra are particularly enlightening and appropriate.

Numerous defmitions for algebras or algebraic systems exist in the modern

mathematics and computer science canon (Birkhoff and MacLane, 1977; Buchi, 1989;

Burris and Sankappanavar, 1981; Gill, 1976; Hungerford, 1974; Levy, 1980; Stanat and

McAllister, 1977). For this thesis, a very general defmition is used - that an algebra is a

structure composed of sets of objects and operations on those objects (Denecke and

Wismath, 2002). For this rule algebra, these objects are states and state sequences

specified by a rule or collection of rules. Using the general formal model presented in

Chapter 4, a rule algebra is presented that describes the set of operations that can be

applied to compose, decompose, or transform those rules to describe other sequences of

states. In this chapter. the fundamentals of this rule algebra are presented. Whereas

some relatively simple rules are analyzed in the development of the fundamentals of this

rule algebra. these simple rules are included to demonstrate how this rule algebra can be

used to describe other simple relations typically presented in the mathematical canon.

While simple. these fundamental rules and the associated proofs are far from trivial as

they provide the reader a sound basis for understanding both the rule model and the

more advanced elements of the rule algebra that follow. In the next chapter (Chapter 6).

advanced concepts associated with this rule algebra are developed using the

fundamentals presented in this chapter.

5.1 Rules, Total Rules, and Rule Systems

Consider the following general-form rule:

70

fa 1\ oJi (5.1-1)

This rule is satisfied if the rule conditionfa is satisfied (i.e., true) and the next sequence

of states satisfiesf}. Assuming the system currently exhibits a state sequence satisfying

fa, execution of this rule can be performed as described by ImpFormExecute and

RuleExecute (previously presented in Chapter 4), and ofl can be concluded. However,

no information is provided regarding the future state sequence associated with or related

to the non-satisfaction offa. Three cases exist iffa is false, as described below.

In the first case, as described above, no explicit representation is made with

regard to the next state sequence in the event of the non-satisfaction of the rule

condition fa. Stated another way, no complementary rule including -fa as the rule

condition is specified. Therefore, in the event of -fa, the next state sequence and any

associated changes in system state are governed by other aspects of the system, and are

not described by this rule. These controlling elements may include but not limited to

the presence or absence of an overall frame axiom specifying that state variables do not

change unless explicitly changed. In the absence of any information about such aspects

such as an overall frame axiom, or unless redefined by a subsequent formula, the next

state after -.fa is undefined.

In the remaining two cases, a rule addressing the non-satisfaction of the rule

condition is explicitly stated and a resulting rule state sequence specified. In these

cases, both the satisfaction and non-satisfaction of the rule condition are considered, and

these complementary rule pairs are referred to as total rules.

In the second case, if the rule conditionfo is false, a complementary rule can be

defined that specifies the relationship between the state sequences satisfying -fa and a

next sequence of states satisfying/2:

-fa 1\ oJz (5.1-2)

Applying ImpFormExccute and RuleExecute, when the rule specified in (5.1-2) is

executed from a state sequence satisfying -fa. the next state sequence will satisfy f2.

71

The coordinated execution of the total rule defmed by complementary rule pair

/0" ofi and :fa " 012 is described by the following lemma:

LEMMA: TotalFormExecute

I- /0" a/I and I-:fa" 0/2 implies I- (fa" a/I) v (:fa" 012)

Proof:

1 /0" a/I premise

2 :fa" 0/2 premise

3 /0'::) (fa" 0fi) 1, ImpFormExecute

4 :fa :::> (:fa" 0/2) 2, ImpFormExecute

5 /0'::) ofi 3, RuleExecuteEqvImp

6 :fa:::> 0/2 4, RuleExecuteEqvlmp

7 (/0:::> 0/1) " <:fa:::> 0/2) 5, 6, " introduction

8 (fa" 0/1) v <:fo" 012) 7, propositional reasoning

Using TotalFormExecute and given the complementary rule pair /0 " 0/1 and :fa " 0/2,

the total rule execution form (/0" 0fi) v <:fa" 0/2) may be concluded. In this form, the

total rule execution form is a disjunction of the two complementary general-form rules.

This total rule execution form corresponds with the logical form of the ITL expression

of the concrete derived construct if-then-else, as presented in Table 4.3-5, with the

notable exception that this total rule form (/0 " 0fi) v <:fa" 0/2) includes the ITL next

operator in the specification of the rule state. (The if-then-else construct is discussed in

detail in Chapter 6.)

The third case is a specialized form of the total rule presented in the previous

case. For this case, consider the rule W: (/0" 0/1)' For those state sequences that do

not satisfy /0, a complementary rule can be defmed that specifies that the system state

remains unchanged:

W: (:fa" 0/ unchanged) (5.1-3)

72

In this complementary rule, the temporal formula/ullchanged specifies that the system state

remains unchanged. The formal semantics Of/unchanged are defmed as follows using an

interpretation Ma that gives meaning to expressions and formulas over an interval 0':

Ma[funchanged] = true iff for all v E W, Ma[stable(v)ll (5.1-4)

Because the semantics of /ullchanged specifies that all frame variable values remain stable

(using the ITL stable construct), the explicit statement of the frame W in rules of this

form will be omitted unless otherwise needed.

With this, the total rule defmed by the complementary rule pair /0 1\ of} and

:fo 1\ O/unchanged is used to specify that a system exhibiting a state sequence satisfying /0

be moved in the next state to a state sequence satisfying /1. Otherwise, if the system

does not satisfy /0, all state variables remain unchanged in the next state. Applying

TotalFormExecute to the total rule described by /0 1\ 0/1 and :fo 1\ o/ulIChanged, the total

rule execution form (fo 1\ 0/,) v (-fo 1\ O/unchanged) is concluded.

The specific use of form O/ullchanged to formalize the perpetuation of the system in

the unchanged state is important. The temporal formula O/uru:hanged is defined in ITL as

skip ;/uII<'hanged, with skip adding one unit interval to the state sequence by definition.

The semantics of /unchanged specify that no variables in the frame may change value.

Therefore, the imposition of the temporal formula O/unchanged creates a sequence of two

identical states .. . SnSn+/ ••• where SII = Sn+/. Lamport (1994) describes such a transition

as a stuttering step, and Milner (1980) symbolizes such silent and unobservable

transitions between states as t. Whereas the possible removal of such silent steps in

some algebras is noted (e.g., Baeten and Weijland, 1990), the purposeful and uniform

usc of o/UII('htlllflfd allows all rules, including those that intentionally do not result in a

state change, to be represented using the general rule form.li A ojj. The convenience

and advantages of this logical consistency will become evident as the rule algebra

presented herein is developed.

Frequently. rules are discussed andlor analyzed within the context of a rule

system. For the purposes of this research, a rule system is defined as a collection of two

or more related rules. Rules included in these rule systems may be presented

73

individually, expressed disjunctively (as described in the following paragraphs), or

composed in other ways (as described later in this chapter). As will be demonstrated,

some multiple rule systems may be transformable into a single general-form rule, but

there is no requirement that this always hold. No formal restriction is placed on what

can be described as related with respect to defming a rule system.

The disjunctive association of rules from a given rule system is often a

convenient and powerful way to logically associate related rules into a single structure.

This disjunctive association may be allowed based on reasoning about the specifics of

given rule system, or may be allowed based on the application of propositional logic. In

certain rule systems, two rules may be related disjunctively because a third way is not

given. With respect to rules, this reasoning is generally analogous to, but not directly

derivative of, the law of the excluded middle. Alternatively, using propositionallogic,

any rule, regardless of its verity, may be added disjunctively to a true rule (i.e., the law

of addition or v introduction). This section examines how rules can be disjunctively

associated, and under what circumstances such associations are accretive with regard to

a rule algebra in that useful transformations may be enabled by such associations. Four

disjunctive associations are examined: between rules that share a common rule

condition; between rules that share a common rule state; between two rules with

complementary rule conditions; and between two disjoint rules.

Consider the system depicted in Figure 5.1·1 containing three states (so, SI, and

92) and two transitions linking the three states.

Figure 5.1-1: Three-State Rule System with Rules
Sharing a Common Rule Condition

74

Three state formulas. Woo W1. and Wz. are used to describe this system. where So F woo

S1 F W1. and Sz F W2. Multiple-state state sequences starting with one of the specified

states will also satisfy the respective state formula. The two state transitions included in

this system are described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So

So

S1

Sz

Wo" OW1

Wo" OW2

(5.1-5a)

(5.1-5b)

As identified in (S.l-Sa) and (S.l-Sb), the rule conditions for both rules in this

system are satisfied by state sequences that begin with So. Given that these two rules

describe the two and only two relations associated with So. these rules with a common

rule condition can be combined disjunctively as:

(5.1-6)

An equivalence transformation to transform these two disjunctively associated rules

sharing a common rule condition to a single general-form rule is presented in the

following lemma:

LEMMA: CommonRulcCondEqv

Proof:

I <fa" 0/1) v ifo" 0/2) == <fa" a/I) v (fa" o/z)

2 <fo " 0/1) v (fa " 0/2) ==/0 " (0/1 v 0/2)

3 <fa" 0/1) v lfa" o.f2) == /0" olf[v /2)

Applying CommonRu1eCondEqv to (S.I-6) yields:

Tautology

1. distribution of " over v

2, ITL (ChopOrEqv)

(5.1-7)

7S

This demonstrates how disjunctively associating two rules sharing a common rule

condition and then applying CommonRuleCondEqv to that disjunctive structure allows

the two related rules to be expressed as one equivalent general-form rule.

Consider the system depicted in Figure 5.1-2 containing three states (so, s], and

sz) and two transitions linking the three states.

Figure 5.1-2: Three-State Rule System with Rules
Sharing a Common Rule State

Three state formulas, wo, WJ, and W2, are used to describe this system, where So 1= wo,

SII= WI, and Sz 1= W2. Multiple-state state sequences starting with one of the specified

states will also satisfy the respective state formula. The two state transitions included in

this system are described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So

s}

S2

Wo" Owz
WI" Owz

(5. I-Sa)
(S.I-8b)

As identified in (S.I-8a) and (S.I-8b), the rule states for both rules in this system

are satisfied by state sequences that begin with sz. Given that these two rules describe

the two and only two relations associated with S2, these rules with a common rule state

can be combined disjunctively as:

(Wo 1\ 0W2) V (WI 1\ owz) (5.1-9)

76

An equivalence transformation to transform these two disjunctively associated rules

sharing a common rule state to a single general-form rule is presented in the following

lemma.

LEMMA: CommonRuleStateEqv

Proof:

1 (fa /\ 0f2) v (f] /\ oiz) == (fa /\ oiz) V (f1 /\ oiz)

2 (fa /\ of 1) V (fa /\ 0f2) == (fa v f1) /\ Of2

Applying CommonRuleStateEqv to (5.1-9) yields:

tautology

1, distribution of /\ over v

(S.l-IO)

This demonstrates how disjunctively associating two rules sharing a common rule state

and then applying CommonRuleStateEqv to that disjunctive structure allows the two

related rules to be expressed as one equivalent general-form rule.

Consider the following system of two rules that contain complementary ru Ie

conditions:

fa /\ oJi
-fa /\ of2

These two rules can be combined disjunctively to form:

(S.l-11a)

(S.l-lIb)

(S.I-12)

(5.1-12) is the previously discussed total rule form. Applying propositional logic (i.e.,

the distribution of v over /\ and /\ elimination) yields:

fa v-fa (S.1-13)

77

As demonstrated with (5.1-13), all state sequences will satisfy the rule conditions

included in the total rule form of (5.1-12). Whereas the verity of (5.1-12) can be

assured only by either ofl or o/z, (5.1-13) highlights, but does not prove, the basis for

the disjunctive association of two rules containing complementary rule conditions.

Consider the following system of two rules that exhibit no obvious relationship:

fo" 0/1
h" 0/3

(5.1-14a)
(5.1-14b)

Assuming one of these rules is known to hold for the given system. the other can be

added disjunctively to form:

(5.1-15)

Expanding (5.1-15) with propositional logic yields:

(5.1-16)

Given the assumption that one of the two rules at (S.l-14a) and (S.1-14b) holds, the

verity of (S.1-15) and (5.1-16) is assured. However. in the absence of any additional

information regarding any other relationships between the contributing formulas and/or

the corresponding state sequences, no other revealing transformations can be made.

Although allowable within the propositional calculus (given an assumption that one of

the two rules is known to hold). disjunctively associating two rules that share no state

sequences or do not include complementary state sequences as rule conditions offers no

transformational advantage.

5.2 Rule Domain, Rule Codomain, and Rule Universe

Whereas rules as defmed in this thesis are not functions. certain concepts that are

used to describe functions are useful in understanding rules. In this section, the

concepts of domain and codomain are adapted to rules, and the derivative concept of the

rule universe is introduced.

78

5.2.1 Rule Domain

The domain of a given rule is defmed as the set of state sequences that satisfy the

rule condition associated with that given rule. Consider the following rule expressed in

terms of state formulas:

Wo 1\ ow} (5.2.1-1)

Under this rule, the rule domain is the set of all states (or initial states in state

sequences) that will satisfy the specified rule condition woo Consider the following rule

expressed in terms of temporal formulas:

(5.2.1-2)

Under this rule, the rule domain is the set of all state sequences that will satisfy the

specified rule condition/o.

Formally, the rule domain domainrult for a general rule rule, defined as /01\ of},

is defmed in terms of a state sequence cr as:

dOlnainrult ~ {cr E ~+ I cr 1= /0 } (5.2.1-3)

Because the temporal formula / is inclusive of the state formula w, (5.2.1-3) describes

the rule domain for both (5.2.1-1) and (5.2.1-2). Future defmitions and analyses are

expressed in terms of temporal formulas only, unless there is an explicit need for the

distinct presentation of the state formula case.

With respect to state formulas, it is tempting to think in terms of only a single

state satisfying a state formula, for example, So 1= woo However, in ITL, any multiple

state sequence that starts with the specified single state also satisfies the associated state

formula. Continuing the previous example regarding the state formula WOo soSl1= woo

SO" .. }S21= Wo, SOSn ... 1= wo, etc. Taken to the limit, an infinite number of state sequences

could satisfy the relevant state formula. Therefore, for the purposes of this thesis, any

time a state is specified as satisfying a given state formula, it is understood that all

79

multiple-state state sequences starting with that specified state will also satisfy that state

formula. Consistent with this convention. the term ''minimum rule domain" is used to

describe the individual states that satisfy a given state formula, reflecting the

understanding that any multiple-state state sequences starting with anyone of the

individual states specified in the domain will also satisfy the respective state formula.

This concept will also be used in describing the rule codomain and rule universe of rules

composed with state formula.

Because the rule domain is a set of states or state sequences, the rule domain for

a rule system is described as the union of the rule domains of the rules that comprise the

rule system. Formally. for a rule system rs consisting of n rules rulel through rulen• the

domain of the rule system rs is described as:

n
domainn = U domainrJlk

1 •
(5.2.1-4)

5.2.2 Rule Codomain

The codomain or range of a given rule is the set of all rule states that are related

to the states in the rule domain. For a general rule rule, defmed as fa A ofl where a 1= fa,

a' = oruria). and a' 1= fl. the rule codomain is the set of all rule states that satisfy ofl

when the rule condition fa is satisfied. The rule codomain codomainrule for a general

rule rule is dermed as:

codomainrure ~ {a E domain rule I oru/e(a) } (5.2.2-1)

For a rule system rs consisting of n rules rulel through rulen• the codomain of

the rule system rs is described as:

n
codomain'J = U codomain,...I,

1 •
(5.2.2-2)

80

5.2.3 Rule Universe

The rule universe represents all state sequences associated with a rule as part of

the rule condition or the rule state. Formally, the rule universe is defmed as:

universerule ~ domainrule u codomainrule (5.2.3-1)

As defmed above, the rule universe includes all state sequences in the rule domain and

the rule codomain. The union described in (5.2.3-1) is feasible because both domainrule

and codomainrule are defmed as sets of state sequences. That domainrule and

codomain rule are both sets of state sequences suggests that the codomain of one rule can

be the domain of another rule. thereby allowing rules to be related sequentially.

For a rule system rs, the rule universe for that rule system is defmed similarly:

universers ~ domainrs u codomainrs (5.2.3-2)

5.3 Rule Satisfiability

To be useful, rules must be satisfiable. A rule that is not satisfiable is both

trivial and useless; it cannot describe relationships between states and represents no

knowledge. Extending the definition of satisfiability from propositional logic. the rule

fo" ofl is satisfiable if there exists some set of state sequences such that both the rule

condition and the rule state are satisfiable, i.e.,jo = true and ofl = true, and satisfiable in

such a way that conjunction defining the relation between fa and ofl holds. Rule

satisfiability is closely allied to the concepts of rule domain and rule codomain, as

discussed below.

Formally, given a general rule rule defined as fo " of}, the rule condition fo is

satisfiable if:

30' E }:+ I 0' 'F fo (5.3-1)

The similarities of this formal defmition of rule condition satisfiability with the

definition of the rule domain should be noted. Given the necessity of rule condition

81

satisfiability, a rule may not have the empty set for the rule domain. Similarly, the rule

state/I is satisfiable if:

3cr' E ~+ I cr' 'r= /1 (5.3-2)

As a conjunctive relationship, rule is satisfiable if a rule state exists for every

state sequence that satisfies the rule condition. Formally, given the previously defmed

rule where/a A 0/1, (J 'r= /0, cr' 1= /I, and cr' = 5rule(cr), rule is satisfiable if:

'V cr E domain rule I r:f (5.3-3a)

or

(5.3-3b)

Stated another way, if a rule state is not associated with every state sequence that

satisfies the rule condition, the rule does not describe a valid relation. The similarities

of this formal defmition of rule satisfiability with the formal defmition of the rule

codomain should be noted.

These concepts are readily expandable to total rules and rule systems. For

example, given a total rule (jo A o/I) V (-fa A 012), the complementary rule conditions/a

and -fa assure that all states will satisfy a rule condition. If /1 and 12 are properly

formed, as described in (5.3-3), then the satisfiability of the total rule is assured.

5.4 Injective, Surjective, and Bijective Rules

As defmed in this thesis, rules are not functions, and certain concepts used to

describe functions may not be applicable to rules. The applicability of the terms

injective, surjective, and bijective to the description and analysis of rules is discussed in

this section.

5.4.1 Injective Rules

A rule is injective, or one-te-one, if all unique state sequences in the rule domain

result in unique state sequences in the rule codomain. Formally, given a general rule

rule defined as/o A o/I. rule is injective if:

82

'V ao, ao' E domainrule A 'V aJ, a/ E codomainrule
I ao:f. aO' ~ aJ::f. aJ' (5.4.1-1)

Because ao and ao' are elements of domainruIe, then by defmition, ao t= fa and ao' t= fa.

Similarly, because aJ, aJ' E codomainruk' aJ t= fJ and aJ' t= fl.

5.4.2 Surjective Rules

A rule is surjective, or onto, if all state sequences in the rule codomain can be

reached from the rule domain. However, rule codomain has been previously defmed in

terms of the rule domain, and by defmition all state sequences in the rule codomain

must be associated with at least one state sequence in the rule domain. Therefore, all

rules are surjective rules. Therefore, a classification of rules as surjective is redundant,

and the term surjective is not used to describe rules.

5.4.3 Bijective Rules

A rule is bijective if that rule is both injective and surjective. Because all rules

are surjective rules, any rule that is injective is also bijective. Therefore, classification

of such rules as bijective is redundant, and the term bijective is not used to describe

rules.

5.5 Inverse Rules and Invertible Rules

Consider two rules, rule and rule'. By definition, rule' may be described as the

inverse of rule if:

a. rule and rule' are injective rules
b. domainrule = codomainrule'
c. domainrule' = codomai12rule
d. Oruk = (OruIe)")

If these criteria are met, then the sequential execution of rule and rule' will leave the

system in the state that existed prior to the execution of rule.

An invertible rule is a rule that can have an inverse rule, although the inverse

rule need not be specified. Stated another way, for a rule to be invertible, all of the

83

above criteria must be met regarding the rule and the associated inverse rule. Failure to

meet these criteria can be used to demonstrate that a rule is not invertible.

5.6 Sequentially Relating Two Rules

5.6.1 Sequentially Associating Rules Using the General Rule Form

Consider the following general rule:

(5.6.1-1)

This rule is a temporal formula that is itself composed of two temporal formulas - Ii
describing the rule condition andjj describing the rule state. Because no limitation has

been placed on the temporal formulas used to express Ii or Ii. and because general-form

rules are themselves temporal formulas. rules can be used within rules to specify the

rule state and rule conditions in another rule. Instantiating Ii with fo A 0/1 and

instantiating jj with /1 " 012. the general rule presented in (5.6.1-1) can be instantiated

as:

(5.6.1-2)

In (5.6.1-2), the rule condition is described by the rule /0 " 0/1 and the rule state is

described by the rule /1 A 0/2' Because /1 is used both in the specification of the rule

condition and the rule state. (5.6.1-2) describes a relationship between two related rules.

Composed in this form. this rule specifies the sequential relationship between the

common state sequences considered in two different rules.

This sequential composition using the general rule form is demonstrated using

the following example. Consider the system depicted in Figure 5.6.1-1 containing three

state sequences (0'0. O'J. and 0'2) and two transitions linking the three state sequences.

84

Figure 5.6.1-1: Three-Sequence State Transition Diagram

Three temporal formulas, /0,./1, and /2, are used to describe this system, where 00 1= /0,

01 1= /1, and 021=/2. The two transitions included in this system are described in rule

form and organized based on the state sequence satisfying the corresponding rule

condition:

/0 A 0./1

/1 A 0li
(5.6.1-3a)

(5.6.1-3b)

Because these transitions share a state sequence (i.e., the fmal state sequence of one

transition is the initial state sequence ofthe another transition), the general rule form/; A

ojj can be applied to relate the state sequences described by each rule. With is rule-form

sequential composition of these two rules, a new rule is formed that describes a state

sequence that may result from this system:

(fa A 0/1) A o(ji A 0li) (5.6.1-4)

The following lemmas describe some possible manipUlations and reductions of two

rules sequentially composed using the general rule form as the basis for composition.

NextAndDistEqv, used in the fol1owing proofs, is presented in Appendix A.

LEMMA: TwoSeqRulcsEqvl

Proof:

1 (fa A 0/,) A 0if, " 0/2) = ifa A 0/,) A 0ifl " 0/2)

2 (fa A 0/1)" 0ifl A 0/2) =/0" 0/1" 0/1 A ooli

3 (fa " eft) " 0if, " 0fl) = fo" of, " 00/2

tautology

1, NextAndDistEqv

2, idcmpotence of A

85

LEMMA: TwoSeqRulesEqv2

f- ifo A 0/1) A 0(/1 A 012) = /0 A 0(/1 A 012)

Proof:

1 (/0 A 0/1) A 0(/1 A 012) =/0 A 0/] A 00/2

2 (/0 A O/J) A 0(/] A 0/2) =/0 A 0(/] A 0/2)

LEMMA: TwoSeqRulesImp

f- (/0 A ofi) A 0(/1 A 012) implies f-!o A 00/2

Proof:

1 (/0 A O/J) A 0(/] A 0/2)

2 lOA 0/1 A 00/2

3 lOA 00/2

TwoSeqRulesEqvl

I, NextAndDistEqv

Premise

1. TwoSeqRulesEqvl

2, Aelimination

The outcomes of both TwoSeqRulesEqv2 and TwoSeqRulesImp are expressed in the

general rule formfi A ofj. In both cases, the rule condition is /0, In TwoSeqRulesEqv2.

the rule state is if, A 0/2)' In TwoSeqRulesImp, the rule state is 0/2'

Applying TwoSeqRulesEqvl to (5.6.1-4), the equivalent form/o A 0/1 A 00/2 is

obtained and the sequential nature of the original structure is clear. Assuming that at the

time of rule execution the system satisfies /0, TwoSeqRulesEqv2 is applied in the

following execution of the rule presented in (5.6.1-4):

1
2

3
4
5
6

7

/0
(/0 A 0/1) A 0(/1 A 0/2)

/0 A 0(/1 A 0/2)

/0 ~ ifo A oif] A 0/2»

0(/1 A 0/2)

0/1 A 00/2

ooh

premise
premise

2, TwoSeqRulcsEqv2

3, ImpFormExecute
1. 4, RulcExecute
5, NextAndDistEqv
Aelimination

As demonstrated above. sequentially composing the rule system presented in (5.6.1-3a)

and (5.6.l-3b) using the general rule form into rule (5.6.1-4), and executing that rule

86

from a state sequence satisfying fa results in a state sequence that satisfies oofz. A

similar result can be achieved by using TwoSeqRuleslmp. This general rule execution

strategy is applicable to many of the rule transformations that will be presented in the

chapter and will not be demonstrated again.

5.6.2 Sequential Composition with Chop

The ITL operator chop can be used to express the sequential composition of two

temporal formulas (Moszkowski, 1986). Consider the system depicted in Figure 5.6.2-1

containing three states (so, s], and sz) and two transitions linking the three states.

Figure 5.6.2-1: Three-State State Transition Diagram

Three state formulas, wo, WI. and wz, are used to describe this system, where So 1= wo,

S} 1= WI, and Sz 1= wz. The two state transitions included in this system can be described

in rule form and organized based on the initial state in the state sequence satisfying the

corresponding rule condition:

So
s}

Sz

Wo /\ ow}
W} /\ Owz

(5.6.2-la)

(5.6.2-lb)

Because these two rules share a state sequence satisfying WI, the ITL operator chop can

be used to sequentially compose the two rules. Therefore, the entire system is described

as:

(5.6.2-2)

The following lemma describes how two rules, constructed of state formulas and

sequentially composed using the ITL operator chop, can be expressed as single general-

form rule.

87

LEMMA: StateTwoChopRulesImp

Proof:

1 (wo A OWl) ; (WI A OW2) premise

2 Wo A (oWl; (WI A OW2)) 1, ITL (StateAndChop)

3 OWl; (WI A 0W2) 2, Aelimination

4 OWl; WI A OWl; OW2 3, ITL (ChopAndImp)

5 OW] ; OW2 4, Aelimination

6 o(W] ; OW2) 5, ITL (NextChop)

7 Wo 2, Aelimination

8 Wo A o(w/ ; OW2) 5, 7, Aintroduction

Applying StateTwoChopRulesImp to (5.6.2-2) yields:

(5.6.2-3)

Using StateTwoChopRulesImp, two rules that have been sequentially composed using

chop can be expressed as a single general-form rule, where Wo specifies the rule

condition and WI ; OW2 specifies the rule state.

Applying NextChop to (5.6.2-3) and substituting the defmition of the ITL next

operator 0 yields:

Wo A skip; W/ ; skip; W2 (5.6.2-4)

In this form, the sequential nature of the composition of (S.6.2-1a) and (5.6.2-1 b) using

chop is clear.

As previously discussed, a state formula is satisfied by a single state or the first

state in a multi-state sequence. Therefore, a second state formula can be chopped to the

second (or later) state of a given state sequence described by another state formula,

thereby satL"fying the semantic requirements of the ITL chop operator that the two

chopped intervals share a common state. Therefore, the sequential composition model

88

can be expanded so that two total rules that do not share a common state formula, and

therefore common initial states, can be sequentially composed using chop.

Consider the following sequential composition using the ITL chop operator of

two general-form rules that do not share a temporal formula:

(5.6.2-5)

Applying StateAndNextChop to (5.6.2-5) yields the following equivalent form:

(5.6.2-6)

With this equivalence transformation, the two chopped rules of (5.6.2-5) have been

transformed into a general-form rule that includes a chopped and nested rule in the rule

state. An alternative transformation of two chopped rules is described in the following

lemma.

LEMMA: StateTwoChopRuleslmp2

Proof:

1 (wo A Of 1) ; (W2 1\ oh) premise

2 Wo 1\ (ofl ; (W2 A oh» 1, ITL (StateAndChop)

3 ofl ; (W2 A 0f3) 2, Aelirnlnation

4 (ofl ; W2) 1\ (ofl ; 0f3) 3, ITL (ChopAndImp)

5 Wo 2, I\elimination

6 Wo 1\ (ofl ; W2) A (of 1; oh) 4, 5, I\introduction

Applying StateTwoChopRuleslmp2 to (5.6.2-5) yields:

Wo A (OWl; wz) 1\ (OWl ;.OW3) (5.6.2-7)

In this form, the sequential aspects of (5.6.2-6) are evident, because (5.6.2-7) is a

conjunction of three state sequences. And as a conjunctive structure, (5.6.2-7) can

manipulated with propositional logic to eliminate conjuncts as necessary to achieve the

89

desired fmal form. Stated another way, either Wo A (0/1 ; W2) or Wo A (Ojl ; oh) can be

concluded from StateTwoChopRuleslmp2.

Another alternative transformation of two chopped rules is described in the

following lemma.

LEMMA: StateTwoChopRuleslmp3

I- (wo A ojl) ; (W2 A oh) implies I- wo; W2 A Ojl ; Oj3

Proof:

1 (wo A Ojl) ; (W2 A Oj3) premise

2 «wo A 0/1) ; W2) A «Wo A 0/1) ; Oj3) I, ChopAndImp

3 (wo A ojl) ; W2 2, A elimination

4 Wo ; W2 A Ojl ; W2 3, AndChoplmp

5 (wo A Ojl) ; oj3 2, A elimination

6 Wo ; oj] A Ojl ; oj] 5, AndChoplmp

7 Wo ; W2 A Ojl ; W2 A Wo ; Oj3 A 0/1 ; oj] 4, 6, A introduction

8 Wo ; W2 A Ojl ; oj] 7, A elimination

Applying StateTwoChopRuleslmp3 to (5.6.2-5) yields:

Wo ; W2 A OWl; OW] (5.6.2-8)

The sequential composition of two total rules is described in the following three

lemmas.

LEMMA: TwoTotalRulcsChopEqvl

I- «WaD A ola) V (-'Wao A 01a2» ; «Wbo A Ojb) V (-,Wbo A Ojb)

== (WaD A Of a) ; (Wbo A Ojb) V (WaD A Ola) ; (-,Wbo A 0/b
2

)

V (-,Wao A 0fa2) ; (Wbo A a/b) V (--.waD A 01a2); (-,Wbo A 0/b
2

)

or

I- (rulea,_ V ruleafo/N) ; (ruleb,tW V ruleb/aJu)

E (rulea,,,,, ; ruleb,,.,) V (rulealrW ; ru1ebtab,) V (rU[eafaiu ; rU[eb,,.,) V (ruleajalu ; ru1ebfab,)

where: rulea,,,,, ~ (Wao A ala)

90

Proof:

rulea/ab, ~ ('Wao /\ 0/a2)
ruleb,,,,, ~ (Wbo /\ a/b)

ruleb/alJ. ~ (,Wbo /\ 0/b2)

1 «wao /\ a/a) V (,wao /\ 0/a2» ; «Wbo /\ alb) V (,Wbo /\ 0/b2» tautology

== «wao /\ ala) V (--,Wao /\ 0/a2» ; «Wbo /\ alb) v (,Wbo /\ a/b)

2 == (wao /\ a/a) ; «Wbo /\ a/b) v (,Wbo /\ 0/b2» I, ITL

V ('Wao /\ a/a) ; «Wbo /\ a/b) V (,Wbo /\ a/b) (OrChopEqv)

3 == (Wao /\ a/a) ; (Wbo /\ alb) V (Wao /\ ala); (,Wbo /\ 0/b2) 2, ITL

V (,wao /\ a/a,} ; (Wbo /\ alb) v (,Wao /\ O/a,} ; (,Wbo /\ O/b,) (ChopOrEqv)

LEMMA: TwoTotaIRulesChopEqv2

I- «Wao /\ ala) V (,wao /\ 0/a2» ; «Wbo /\ a/b) V (,Who /\ alb)~

= Wao /\ O(/al ; «Wbo /\ a/b) v (,Wbo /\ 0/b2)))
v ,Wao /\ 0(/a2 ; «Wbo /\ a/b) v (,Who /\ O/bz)))

or

I- (rulea'TII' v rulea/alJ.) ; (ruleb,,,,, V ruleb/ab,)

- (Wao /\ o(/al ; (ruleb'TIII V rU!eayaIJl») V ('Wao /\ 0(/a2 ; (ruleb"IU V ruleb/abe»)

where:

Proof:

ru!ea,rw, ~ (Wao /\ O/al)
rulea/au• ~ ('Wao /\ a/a)
ruleb,rw, ~ (Wbo /\ alb)

ruleb/alJ. ~ (-,wbo /\ a/b)

1 «wao /\ ala) V (,wao /\ 0/a2» ; «Wbo /\ a/b) V (,Wbo /\ 0/b2» tautology

== «wao /\ a/a) V (,wao /\ a/a) ; «Wbo /\ a/b) v (,Who /\ a/b)

2 == (Wao /\ ola) ; «Wbo /\ alb) v (--,Wbo /\ 0lb2» I, frL

V ('Wao /\ a/a) ; «Wbo /\ alb) V (,Who /\ 0/b2» (OrChopEqv)

3 == Wao /\ O(/al ; «Wbo /\ a/b) V (,Who /\ a/b)) 2, ITL (State-
AndNextChop)

LEMMA: TwoTotaiRulcsChopEqv3

91

or

(Woo" 0(fa/ ; (WbO " O/b))
v (Woo" o(fa/ ; (-,wbo" 0/b2»)
v (""Wao " Oifa2 ; (Wbo " ofi,))
v (...,Wao " Oifa2 ; (""Wbo" 0/b2»)

I- (ruZea,,... v ruZeapJIJ,) ; (ruZeblTW v ruZeaJlal ..)

- (Wao " Oifa/ ; ruZebt",.»

Proof:

v (Wao " o(fa/ ; ruZeb/all,»

v (""Wao " Oifa2 ; ruZeb" .. »

v (""Wao " Oifa2 ; ruZeb/all.»

where: ruZeat_ ~ (Wao " O/a)

ruZeafaa• ~ (""Wao " 0/a2)
rulebt_ ~ (Wbo " O/b)

ruleb/aU• ~ (-,wbo " O/b)

1 «Wao " O/a) V (""Wao " O/a) ; «Wbo" O/b) v (""Wbo" 0/b2»

:: «Wao " 0/0 /) v (""Wao " 0/a2» ; «Wbo" O/b) v (""Wbo" 0/b2»
2 == (woo" o/a) ; (Wbo" O/b) v (Wao " O/a) ; (""Wbo" 0/b2)

v (""Wao " 01a2) ; (Wbo" ofi,) v (""Wao " ola) ; (""Wbo" O/b)

3 :: (wao " oifa/ ; (Wbo" O/b)) V (WIIO " Oifa/ ; (""Wbo" O/b2)))

v (-,wao" oifaz; (Wbo " ofi,)) v (""wao " o(fa,; (""Wbq " O/b,)))

tautology

1, TwoTotal­

Ru lesChopEqv 1
2, ITL (State­

AndNextChop)

These lemmas are also expressed in terms of specific rule defmitions to simplify

presentation and highlight the underlying rule structure(s). With TwoTotalRules­

ChopEqvl. two chopped total rules are decomposed to an equivalent disjunction offour

chopped individual rules describing the possible state sequence associated with the

original sequential composition. The individual rules that compose these four disjuncts

follow the typical two-by-two truth matrix pattern - true-true. true-false. false-true, or

false-false - reflecting the satisfaction or non-satisfaction of the rule conditions

associated with the two total rules used in the original sequential composition. With

TwoTotalRulesChopEqv2, the original chopped sequential composition of two total

rules is transformed into a disjunction of two general-form rules. With

TwoTotalRulesChopEqv3, the original chopped sequential composition of two total

rules is transformed into a disjunction of four general-form rules. Together, substantial

92

flexibility is provided with these three lemmas in transforming the chopped composition

of two total rules.

5.7 Reflexive and Irreflexive Rules

The concepts of reflexivity and irreflexivity as used in relations are extended to

describe the attributes of reflexive and irreflexive rules.

5.7.1 Reflexive Rules

A rule is reflexive if every state sequence in the rule domain is related to itself.

Formally, a rule rule is reflexive if:

v cr E domain rule 3 cr E codomain rule I cr = Orule(cr) (5.7.1-1)

Implicit in this defmition is that, for a given rule rule, all elements of the rule domain

are contained in the rule codomain, or domainrule ~ codomainrule.

The simplest possible reflexive rule system can be built around a one-state

system. Consider the one-state reflexive system presented in Figure 5.7.1-1, containing

one state transilion.

Figure 5.7.1-1: One-State Reflexive System

In this system, So 1= woo The one transition included in this system can be described in

rule form and organized based on the initial state in the state sequence satisfying the

corresponding rule condition:

So Wo 1\ OWo (5.7.1-2)

93

Graphically, a reflexive rule is represented by a loop from a state to itself, given that the

rule state must include the rule condition state.

As a demonstrative exercise, the rule at (5.7.1-1) can be sequentially composed

with itself using the general rule form fi 1\ ojj as a basis for sequential composition.

Instantiating bothfi andjj with Wo 1\ OWo yields:

(Wo 1\ cwo) 1\ o(wo 1\ cwo) (5.7.1-3)

Applying TwoSeqRulesEqv to (5.7.1-3) yields the following equivalent rule expressed

in general rule form:

Wo 1\ o(Wo 1\ cwo) (5.7.1-4)

Applying NextAndDistEqv to (5.7.1-4) yields the following equivalent conjunctive

description of the state sequence associated with sequentially composing (5.7.1-2) with

itself:

Wo 1\ OWo 1\ OOWo (5.7.1-5)

Consider the two-state reflexive system presented in Figure 5.7.1-2, containing

two state transitions:

Figure 5.7.1-2: Two-State Reflexive System

In this system. So 1= Wo and S} 1= WI. It is noted that this is a special case of that described

in (5.1-6). The two transitions included in this system can be described in rule form and

organized based on the initial state in the state sequence satisfying the corresponding

rule condition:

94

So
So
Sl

WOA OWO
Wo A OWl

(5.7.1-6a)

(5.7.1-6b)

Because all states in the rule domain exist in the rule codomain and a relation exists

between all members of the rule domain, described as Wo A owo. and at least one

member of the rule codomain, the formal requirements for a reflexive system are met.

As identified in (5.7.1-6a) and (5.7.1-6b), both transitions in this system are

satisfied by state sequences that begin with So. These transitions for which So satisfies

the rule condition can be combined disjunctively as:

(Wo A owo) v (wo A OWl) (5.7.1-7)

Applying CommonRuleCondEqv to (5.7.1-5) yields:

Wo A o(wo v WI) (5.7.1-8)

The application of CommonRuleCondEqv allows the two-rule rule system of (5.7 .1-6a)

and (5.7.1-6b), disjunctively associated in (5.7.1-7), to be expressed as a single general­

form rule. As highlighted with this transformation, this two-state reflexive system is a

simple example of a non-deterministic system expressible as a single rule. The

satisfaction of the rule condition Wo is associated with two alternative future state

sequences - either a state sequence satisfying Wo or a state sequence satisfying WI.

5.7.2 Irreflexive Rules

In an irreflexive rule, no state in the rule domain can be directly related to itself.

Formally, a rule rule is irreflexive if:

Vcr E domainrul, A V cr' E codomablrule I cr' = Srule(cr) :::> cr:f: cr' (5.7.2-1)

This definition supports the informal view that a state sequence satisfying the rule

condition cannot also satisfy the rule state. Graphically, an irreflcxive rule cannot

include a loop from a state to itself.

95

Consider the two-state irreflexive system presented in Figure 5.7.2-1, containing

one state transition:

Figure 5.7.2-1: Two-State Irreflexive System

In this system, So F wo, and S1 F Wi. The one transition included in this system can be

described in rule form and organized based on the initial state in the state sequence

satisfying the corresponding rule condition:

So

S1

Wo A OW1 (5.7.2-2)

Because this two-state irreflexive system contains only one state transition, the entire

system is described as:

WOA OWl (5.7.2-3)

This two-state irreflexive system is the simplest possible two-state system, because it

contains only one state transition and therefore is described by a single general-form

rule without manipulation.

5.8 Symmetric, Antisymmetric, and Asymmetric Rules

The concepts of symmetry, anti symmetry, and asymmetry as used in relations

are extended to describe the attributes of symmetric, anti symmetric, and asymmetric

rules.

5.8.1 Symmetric Rules

A rule is symmetric if it is its own inverse. For a rule to be symmetric,

whenever that rule includes a transition from a to cr, that rule must also include a

transition from a' to a. Formally. a rule rule is symmetric if:

96

Vcr, cr'E uniVerSerule I cr' = cSru1e(cr) ::) cr = cSruleC cr') (5.8.1-1)

Because there is no requirement in (5.8.1-1) that cr and cr' be unique, the simplest

possible symmetric rule involves a one-state system. In a one-state symmetric system

consisting of So, So 1= Woo The single state transition in this system, relating So to itself, is

described by the rule:

Wo A OWo (5.8.1-2)

This one-state symmetric system is also a one-state reflexive system, previously

described in Section 5.7.1.

Consider the two-state symmetric system presented in Figure 5.8.1-1, containing

two state transitions:

Figure 5.8.1-1: Two-State Symmetric System

In this system, So * SI, So 1= Wo, and SI 1= WI. The two transitions included in this system

can be described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So

SI

Wo A OW}

WI A OWo

(5.8.1-3a)

(5.8.1-3b)

Using these two individual state transitions, the entire system is described disjunctively

as:

(5.8.1-4)

97

Both the individual rules of (S.8.1-3a) and (S.8.1-3a), and the disjunctive system

description of (5.8.1-4) are used in the following paragraphs to describe the behavior of

this two-state symmetric system.

Because the two rules, (5.8.1-3a) and (5.8.1-3b), describing the state transitions

for this system share a state (i.e., because the rule state specified by one rule is the rule

condition of the other rule), the general rule form/; A ofj can be applied to sequentially

compose these two rules to form a new rule that describes a state sequence associated

with this system. If the system is assumed to be in So and using (5.8.1-3a) to express the

rule condition and (5.8.1-3b) to express the rule state, the following rule describes this

sequential association of the two rules:

(WO A OWl) A o(WJ A owo) (5.8.1-5)

TwoSeqRulesEqv2 is applied to (5.8.1-5) to obtain the following equivalent rule:

Wo A o(WJ A owo) (5.8.1-6)

Either TwoSeqRulesEqvl can be applied to (5.8.l-S) or NextAndDistEqv can be

applied to (5.8.1-6) to obtain the following equivalent conjunctive description of the

state sequence associated with this rule:

Wo A OWl A OOWo (5.8.1-7)

Alternatively. if the system is assumed to be in s} and using (5.8.1-3b) to express the

rule condition and (S.8.1-3a) to express the rule state, the following rule describes an

alternative sequential association of the two rules:

(5.8.1-8)

TwoSeqRulesEqv2 is applied to (5.8.1-8) to obtain the following equivalent rule:

(5.8.1 -9)

98

Either TwoSeqRulesEqvl can be applied to (5.8.1-8) or NextAndDistEqv can be

applied to (5.8.1-9) to obtain the following equivalent conjunctive description of the

state sequence associated with this rule:

WI 1\ OWo 1\ OOWI (5.8.1-10)

Both Wo 1\ OWl 1\ OOWo and WI 1\ OWo 1\ OOWI describe state sequences associated with

this symmetric system. depending on the initial system state such that either Wo or WI

holds.

The chop operator can be used to compose the two individual rules describing

this two-state symmetric systenL Assuming that the system is in so, (5.8.1-3a) and

(5.8.1-3b) can be sequentially composed, in that order, using chop and the resulting

state sequence is described as:

(Wo 1\ OWl) ; (WI 1\ owo) (5.8.1-11)

StateTwoChopRulesImp and NextChop are applied to (5.8.1-11) to yield:

Wo 1\ OWl; OWo (5.8.1-12)

With these transformations, the two chopped rules of (5.8.1-11) have been transformed

into one general-form rule incorporating chop only in the specification of the rule state.

Alternatively, if the system is assumed to be in s}, (5.8.1-3b) and (5.8.1-3a) can

be sequentially composed, in that order, using chop and the resulting the state sequence

is described as:

(5.8.1-13)

As before. StateTwoChopRulcslmp and NextChop are applied to (5.8.1-13) to yield:

WI 1\ OWo ; OWl (5.8.1-14)

99

As before, the two chopped rules of (5.8.1-13) have been transformed into one general­

form rule incorporating chop only in the specification of the rule state.

Although both Wo /I. OWl; oWo and WI /I. oWo ; OWl describe state sequences that

may result from this symmetric system, depending on the system state at rule execution,

the above analyses have assumed an initial state condition to limit the number of

possible cases and facilitate analysis. Now, consider the following case, where the total

description of this system, previously presented in (5.8.1-4), is used to describe both

possible cases. By using the total description of the symmetric system, no knowledge,

specification, or assumption of the initial system state is required. In this analysis, this

total description is composed with itself using chop and the resulting state sequence is

described as:

(5.8. totS)

This sequential composition can be expanded, as described in the lemma

TwoSymRulesChop presented below, to represent the possible state sequences.

LEMMA: TwoSymRulesChop

I- «wo /I. OWl) V (WI /I. cwo»~ ; «wo /I. OWl) V (WI /I. owo»

== (wo /I. OWl) ; (wo /I. OWl) v (wo /I. OWl) ; (wJ /I. cwo)
V (WI /I. cwo) ; (WI /I. cwo) V (WI /I. cwo) ; (wo /I. OWl)

or

I- (ruleo v rulel) ; (ruleo v rule])

= ruleo; ruleo v ruleo; rulel v rulel; rulel v rulel ; ruleo

Proof:

where: ruleo == (wo /I. OWl)
rulel == (WI /I. cwo)

1 «wo /I. OWl) V (WI /I. owo» ; «wo /I. OWl) V (WI /I. cwo»~

== «wo /I. OWl) V (WI /I. owo» ; «wo /I. OWl) v (wJ /I. owo»

2 i5 (Cwo /I. OWl) V (WI /I. owo» ; (wo /I. OW,)

v «wo /I. OWl) V (WI /I. cwo»~ ; (WI /I. owo»

tautology

I, ITL (ChopOrEqv)

100

3 == (WO A OWl) ; (WO A OWl) V (WI A OWO) ; (WO A OWl)

V (WO A OWl) ; (Wl A OWO) V (Wl A OWO) ; (WJ A owo)

4 == (WO A OWl) ; (WO A OWl)

V (WO A OWl) ; (WI A OWO)

V (Wl A OWO) ; (WI A OWO)

V (WI A OWO) ; (WO A OWl)

2, ITL (OrChopEqv)

3, commutivity of V

This lemma is also expressed in terms of specific rule defmitions to simplify

presentation and highlight the underlying rule structure(s).

Applying TwoSymRulesChop to (5.8.1-15) yields:

(Wo A OWl) ; (wo A OWl)

V (wo A OWl) ; (WI A owo)

V (WI A owo) ; (WI A owo)

V (WI A owo) ; (wo A OWl) (5.8.1-16)

With the application of TwoSymRulesChop, (5.8.1-15) is expanded and the four

possible state sequences resulting from the sequential composition of the rule (5.8.1-4)

with itself using chop are enumerated in the equivalent form of (5.8.1-16). The four

state sequences satisfying (5.8.1-16) are presented in Figure 5.8.1-1. These four

possible state sequences are organized based on the state that satisfies the rule condition

of the initial rule of the sequential composition.

By inspection of the four state sequences presented in Figure 5.8.1-2, the state

sequence SOSISO depicted in Figure 5.8.1-2b is subsumed by the state sequence SOSISOSj

depicted in Figure 5.8.1-2a. Similarly. the state sequence S)SOSj depicted in Figure

5.8.1-2d is subsumed by the state sequence SjSOS)SO depicted in Figure 5.8.1-2c. These

sequences are also consistent with the rules (5.8.1-12) and (5.8.1-14) derived based on

chopping the individual rules. These sequences of alternative states are consistent with

both the formal definition of a symmetric system, as presented at (5.8.1-1), and an

intuitive expectation of the behavior of a two-state symmetric (and irreflexive) system.

Using the complete rule-based description of this system presented in (5.8.1-4), the ITL

operator chop can be used to sequentially compose the rule-based structure (5.8.1-15)

that describes the possible state sequences associated with such a symmetric state

101

So So
...

Wo skip
Wo skip

b. (wo /\ OW]) ; (W]/\ cwo)

So So
..

Wo skip
skip Wo

c. (WI/\ CWO) ; (W)/\ CWO)

So So
•...........................•...........................•..........................•

skip Wo

So
...................................... 10 •••••••••••••••• , ••

skip Wo
Wo skip Wj

skip Wo

Figure 5.8.1-2: State Sequences Resulting from Sequentially Composing
with chop both Rules Describing a Two-State Symmetric System

system. If the system state at the time of rule execution is known, the specific state

sequence can be detennined.

Alternatively, the general rule form!; /\ oiJ can be applied using the complete

description of this system, previously presented in (5.8.1-4), to describe the state

sequence(s) that will result from the sequential composition of rule (5.8.1-4) with itself.

Again, by using the complete description of the system, no knowledge, specification, or

assumption of the initial system state is required. Using the general rule formJi /\ oiJ,
this rule-form sequential composition is as fonows:

(5.8.1-17)

This rule-form composition can be expanded, as described in the lemma

TwoSymRulesAsRule presented below. to identify the possible state sequences that

102

may result from such a sequential composition. The restriction that fa = -II has been

added to this lemma to facilitate analysis and preclude the application of this lemma to a

one-state system.

LEMMA: TwoSymRulesAsRule

I-- (if a " of I) V if I " of 0» " o(ifo " of 1) V if I "of 0» and I-- fa = -II implies

I-- ifo" of I " oofo) V if I " of a " oofl)

Proof:

1 (if a " of 1) V ifl " of 0» " o (if a " of 1) v ifl " of 0» premise

2 fo= -/J premise

3 (if a " of 1) V ifl " of 0» 1, ITL (ChopOrEqv)

" (oifo" of I) V oifI " of 0»

4 (if a " of I) V if I " ofo» 3, NextAndDistEqv

,,«ofo" oofl) v (of I "oofo»

5 ifo" of1" of a " oofI) v ifo " 0.fJ " of I " oOfo) 4, distribution of " over v

v if1 " of a " of a " oofl) V if1 " of a " of 1 " oofo) (three times)

6 ifo" oII " of a " 00/1) v ifo" of I " oofo) 5, idempotence of "

v if I " of a " oofI) V if I " of a " of I " oofo)

7 ifo" of I " O--{l " oofI) v ifo" ofl " oofo) 2, 6, equivalence

v ifl " of a " 00/1) v (ji " 0-11 " of I " oOfo) substitution

8 ifo "false" oofl) v ifo " of I " oofo} 7, TemporalContra

v if) " ofo" oofJ) V if, "false" oofo}

9 false v ifo " of I " 00/0) V if I " of a " 00/1) v false 8, zero of"

10 ifo" 0/,,, 00/0) v (ji " 0/0" 00/1) 9, unit ofv

Applying TwoSymRulcsAsRule to (5.8.1-17) yields:

(wo" ow) " oowo) V (WI" OWo" OOWl) (5.8.1-18)

This transformation describes the two sequences of alternating states that resu It from the

rule-form sequential composition presented in (5.8.1-17). The minimum state

sequences satisfying (5.8.1-18) are SoSISO or SISOSI· As with the chop-form sequential

composition, these sequences of alternative states are consistent with both the formal

103

defmition of a symmetric system and an intuitive expectation of the behavior of such a

system.

Using the general rule-form sequential composition presented in (5.8.1-17), an

alternative outcome is possible, as demonstrated in TwoSymRulesAsRule2:

LEMMA: TwoSymRuiesAsRule2

I- (if a A a/I) v if I A a/a» A O(ifo A 0/1) V if I A a/a» and I- /0 = -II implies

I- ifo A Oifi A a/a» v if] A oifo A a/I»

or

I- (ruleo v ruleI) A o(ruleo v ruleI) and I- /0 = -II implies

I- ifo A oruZe]) v ifl A oruleo)

where:

Proof:

ruleo = ifo A a/I)
ruZel = (/J A a/a)

1 (if a A a/I) v if] A a/a» A o(ifo A a/I) v if] A a/a})

2 /0=-11
premise

premise

3 ifo A a/I A 00/0) v if/A a/a A 00/1)

4 ifo A Oif/A a/a}} v iflA Oifo A O/J»

1,2, TwoSymRulesAsRule

3, NextAndDistEqv

This lemma is also expressed in terms of specific rule definitions to simplify

presentation and highlight the underlying rule structure(s).

Applying TwoSymRuiesAsRule2 to (5.8.1-17) yields:

(5.8.1-19)

With this transformation, (5.8.1-17) is transformed into a disjunction of two general­

form rules. Alternatively, (5.8.1-19) is equivalent to (5.8.1-18) because it can be

obtained directly from (5.8.1-18) by applying NextAndDistEqv.

Using the complete rule-based description of the two-state symmetric system

presented in (5.8.1-4), the general rule fonnfi A ejj can be used to sequentially compose

the rule-based structure (5.8.1-17) that describes the possible state sequences associated

with such a symmetric state system. These possible sequences can be described either

104

conjunctively or in general rule form. If the system state at the time of rule execution is

known, the specific state sequence can be determined.

5.8.2 Asymmetric Rules

Informally, a rule is asymmetric if it is not its own inverse. For a rule to be

asymmetric, whenever that rule includes a transition from cr to d, that rule cannot also

include the transition from cr' to cr. Formally, a rule rule is asymmetric if:

\;j cr, cr'e universerule I cr' = brule(cr) ':J) cr = brule(cr') (5.8.2-1)

Based on this formal defmition, the simplest possible asymmetric system is a

two-state system containing one state transition:

Figure 5.8.2-1: Two-State Asymmetric System

In this system, So ':/:. S}, So F Woo and S} F W1. The one transition included in this system

can be described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So

S}

Wo 1\ OW1 (5.8.2-2)

Because this two-state asymmetric system contains only one state transition, the entire

system is described as:

Wo 1\ OWl (5.8.2-3)

This system is also irreflexive. as previously discussed in Section 5.7.2. The

composition of two-state asymmetric rules into larger structures using either the general

105

rule form fi " ali or the ITL operator chop has been previously described in Sections

5.6.1 and 5.6.2, respectively.

Comparing the formal definition of rule symmetry presented in (5.8.1-1) with

the formal definition of rule asymmetry presented in (5.8.2-1), a rule cannot be both

symmetric and asymmetric, as symmetry requires that ct = 5rule(cr) :::> cr = 5ru1e(cr') and

asymmetry requires that cr' = Srule(cr) ":t> cr = Srule(cr'). However, a rule need not be

either symmetric or asymmetric. Consider the following two-state system:

Figure 5.8.2-2: Two-State System that Is Neither Symmetric nor Asymmetric

In this system, so"# Sj, So ~ wo, and Sj ~ Wj. The two transitions included in this system

can be described in rule form and organized based on the initial state in the state

sequence satisfying the corresponding rule condition:

So
So
SJ

Wo" OWo

Wo" OWl

(S.8.2-4a)
(S.8.2-4b)

Using these two individual state transitions, the complete system is described

disjunctively as:

(5.8.2-5)

Propositional logic and NextAndDistEqv are applied to (5.8.2-5), and the system

presented in Figure 5.8.2-2 is expressed as a single, equivalent general-form rule:

(5.8.2-6)

106

Using the equivalent rule form (5.8.2-6) and considering the satisfaction relations bound

to this system, the minimum rule domain is {so} and the minimum rule codomain is

{so, S1}. Therefore, the rule universe for this system is {so, S1}. Referencing the formal

defmition of rule symmetry presented at (5.8.1-1), there exists a transition from So to S1

(described by the rule Wo /\ OW1) but no transition from S1 to So (and no corresponding

rule WI /\ owo). Therefore, the requirement for symmetry is not met. Referencing the

formal defmition of rule asymmetry presented at (5.8.2-1), because there exists a

transition from So to So (described by the rule Wo /\ oWo), the requirement for asymmetry

that cr' = (,ru/e(cr) ':/) cr = (,rule(cr') is not met. Therefore, this system is neither symmetric

nor asymmetric. However, this system is reflexive. as discussed in Section 5.7.1.

5.8.3 Antisymmetric Rules

For a rule to be antisymmetric, whenever that rule includes a transition from cr to

cr' and a transition from cr' to cr, cr' and cr must be equal. Formally, a rule rule is

antisymmetric if:

"if cr, cr'E universeru/e I cr' = (,ruleC cr) /\ cr = (,rule(cr') :::> cr = cr' (5.8.3-1)

Using this formal definition, the simplest possible antisymmetric system

involves only one state, So, and one state transition described by the rule Wo 1\ OWo where

So 1= Woo This one-state rule system is also reflective and symmetric, as previously

discussed in Section 5.7.1 and Section 5.8.1, respectively. As demonstrated with this

case, a rule can be both symmetric and antisymmetric.

The simplest possible two-state antisymmetric system is the two-state

asymmetric system presented in Figure 5.8.2-1. The minimum rule universe of that

system is {so. sIlo There is only one transition from So to S1 described by the rule Wo 1\

OWl and So ¢ S/. Therefore, both the antecedent cr' = Orule(cr) 1\ cr = orulicr') and the

consequent cr = cr' of the definition at (5.8.3-1) are false. Therefore, the implication

holds and requirements for antisymmetry is met. As demonstrated with this case, a rule

system can be both asymmetric and antisymmetric.

107

However, an antisymmetric system need not be either symmetric or asymmetric.

Consider the two-state system previously presented in Figure 5.8.2-2 that is neither

symmetric nor asymmetric. The minimum rule universe of that system is {so, S1}.

There exists a transition from So to So described by the rule Wo A owo and because So = So,

the requirement that a' = STUle< a) A a = 8ru1e(a') :::> a = d holds. There exists a transition

from So to S1 described by the rule Wo A OW1, but there is no transition from S1 to so.

Because So '* s], both sides of the required implication are false, and therefore the

implication holds. Finally, there is no rule describing a transition from S1 to SJ, but

$1 = $1. Therefore, the implication is vacuously true and the requirement is met.

Therefore, this system that is neither symmetric nor asymmetric is antisymmetric.

5.9 Transitive Rule Systems

Formally, a rule system rs is state transitive if:

Va, a', a" E universers I d = 8rs(a) A a" = 8rs(a') :::> d' = 8rla) (5.9-1)

where 8rs represents any of the transition relations associated with rules comprising the

rule system rs. Although one-state and two-state systems can be transitive, these are not

addressed here. Consider the simple three-state symmetric system presented in

Figure 5.9-1, containing three state transitions:

Figure 5.9-1: Three-State Transitive System

108

In this system. So ':j. S], S] ':j. S2, So *- S2, So F Wo, S]F WI and S2 F W2. The three transitions

included in this system can be described in rule form and organized based on the initial

state in the state sequence satisfying the corresponding rule condition:

Wo /\ OW]

Wo /\ OW2

WI/\ OW2

(5.9-2a)

(5.9-2b)

(5.9-2c)

The minimum rule universe for this set of rules is {S.D, s], S2}. Based on this minimum

rule universe and given the rule set identified in (5.9-1a), (5.9-lb), and (5.9-lc), both

a' = ~rs(a) /\ a" = ~rs(a') and a" = ~rs(a) holds. Therefore, this system is state transitive.

An important distinction is made here that this system must described as state

transitive and not just transitive. Consider the two rules that share a state, (5.9-2a) and

(5.9-2c). These two rules can be sequentially composed using the general rule formJi /\

ofJ to describe the resulting state sequence:

(5.9-3)

TwoSeqRulesImp is applied to (5.9-3) to obtain the following state sequence:

Wo /\ OOW2 (5.9-4)

Comparing this inferred rule, Wo /\ OOW2, with the native rule Wo /\ OW2 at (5.9-2b), the

sequential composition implemented in (5.9-3) requires one additional time step (Le.,

one additional next) to reach the state satisfying W2. Therefore, if rules (5.9-2b) and

(5.9-4) are executed from a state satisfying Wo, the outcomes of those rule executions are

OW2 and OOW2, respectively. Therefore, this system is described as state transitive but

not temporally transitive. This simple example highlights the temporal aspects of rules

and therefore one of the critical differences of the temporal logic approach to rules as

presented in this thesis, as compared to simple representations of rules in non-temporal

forms.

109

Chapter 6

Rule Algebra - Advanced Concepts

In this chapter, advanced concepts associated with the rule algebra are developed

using the rule algebra fundamentals presented in Chapter 5. Additional compositional

paradigms, including nesting, recursion, deterministic and non-deterministic guarded

composition, and disjoint parallel composition, are presented. Alternative models of

rule equivalence are discussed. Rule-based representations of typical legacy code

structures - the if-then-else structure, the while structure, and the indexed for-loop - are

developed.

6.1 Nesting

The general rule forrn/l/\ oh is a temporal formula composed of two temporal

formulas /I and h. Because either /I or h can be instantiated with a rule, other rules can

be nested within a general rule formJi /\ oh, which in tum can be nested within another

rule. Such nesting can be the basis for rule encapsulation and program abstraction in the

reverse engineering domain, or the basis for rule expansion and program refmement in

the forward engineering domain. With nesting, numerous types of composite rules can

be created. In this section, several configurations are examined, and previous rule

formation models are reviewed within the context of nesting.

Consider the following nested rule, expressed in general rule form, where the

rule condition is a rule:

(Wo /\ OWl) /\ Owz (6.1-1)

Expressed in this form, this rule conditions a property of the next state, described by wz.

on the concurrent satisfaction of another property in that same next state, described by

Wl. and a property in the current state, described by WOo The following lemma describes

an equivalent alternative expression of this nested rule.

LEMMA: NestRulcCondEqv

110

Proof:

1 lfo /\ Of 1) /\ Of2 == (fa /\ Of 1) /\ of2

2 (fa /\ Of 1) /\ of2 == fa /\ (ofl /\ 0f2)

3 lfo /\ Of 1) /\ of2 == fa /\ 0(/1 /\f2)

Applying NestRuleCondEqv to (6.1-1) yields:

tautology

1, associativity of /\

2, NextAndDistEqv

(6.1-2)

In this equivalent form of (6.1-2), the logic of the original rule (6.1-1) is much more

explicit - that both WJ and W2 must hold in the next state and therefore WI /\ W2 cannot

be a contradiction. Although an acceptable form, nesting of rules within the rule

condition must be done with great care, because the underlying rule logic may not be as

transparent as other equivalent forms of rule construction.

Consider the following nested rule, expressed in general rule form, where the

rule state is expressed as a rule:

(6.1-3)

Applying NextAndDistEqv, (6.1-3) is transformed to:

Wo /\ OWl /\ OOwz (6.1-4)

This equivalent form conjunctively describes the state sequence associated with the

corresponding nested general-form rule (6.1-3). Because NextAndDistEqv is a logical

equivalence, the reverse transformation strategy holds, as the conjunctive state sequence

described in (6.1-4) can be transformed into the nested general-form rule (6.1-3).

Consider the following general-form rule which includes a rule nested in the rule

condition and a rule nested in the rule state:

(6.1-5)

The rule nesting in (6.1-5) is highlighted by the following defmitional substitution:

111

where:

rule6.l-6 ~ rule6.l-6a A orule6.l_6b

rule6.J-fiG ~ Wo A OWl

rule6.J-6b ~ W2 A OW3

The following lemma describes an equivalent expression of a double nested rule.

LEMMA: NestBothEqv

f- ifo A Of) A Oif2 A O/J) 5fo A oif) Af2) A OO/J

Proof:

1 (fa A oli) A o(ji A O/J) 5 ifa A oli) A Oif2 A 0f3)

2 (fa A Of 1) A o(ji A oh) 5 ifo A 0li) A (of2 A 00f3)

3 ifa A Of 1) A o(ji A oh) 5 fo A (ofl A 012) A oof3

4 ifo A 0li) A o(ji A o/J) 5 fa A o(ji Af2) A oof3

Applying NestBothEqv to (6.1-6) yields:

Applying NextAndDistEqv to (6.1-7) yields:

tautology

I, NextAndDistEqv

2, associativity of A

3, NextAndDistEqv

Again applying defInitional substitution to highlight rule nesting:

rule6.J-9 ~ Wo A orule6.1-9a

where:

(6.1-6)

(6.1-6a)

(6.1-6b)

(6.1-7)

(6.1-8)

(6.1-9)

(6.1-9a)

With the application of NestBothEqv and NextAndDistEqv, the double nested rule of

(6.1-6) has been transformed into an equivalent general-form rule with only a nested

rule state. One important benefit of this analysis is the clear identifIcation that WI A W2

112

cannot be a contradiction if this rule is to hold. This is unambiguously depicted in both

(6.1-7) and (6.1-9a).

The nesting of rules in both the rule condition and rule state is the basis for the

rule-based form of sequential composition previously presented in Section 5.6.1.

Unlike rule-based sequential composition of Section 5.6.1, the double-nested rules as

presented in (6.1-5) and transformed by NestBothEqv need not share a common

temporal formula. Stated another way, sequential composition using the general rule

form, as previously discussed in Section 5.6.1 and addressed with TwoSeqRulesEqvl.

TwoSeqRulesEqv2, and TwoSeqRuleslmp, is a special case of the double nesting

addressed in NestBothEqv. Consider the following example incorporating nested rules

in the rule condition and rule state that share a common temporal formula:

(6.1-10)

Applying NestBothEqv (6.1-10) yields:

(6.1-11)

Applying the idempotence of A to (6.1-11) yields:

Wo A OWl A OOWz (6.1-12)

Because the double nesting of (6.1-10) includes a common temporal formula, this

example conforms to the simple sequential composition model previously presented in

Section 5.6.1. Therefore, (6.1-12) could have been achieved by applying

TwoSeqRulesEqvl to (6.1-10). One distinct difference associated with the simple

sequential composition model based on shared temporal formula (supported by

TwoSeqRulcsEqvl) and the double-nested compositional model (supported by

NestBothEqv) is that the simple sequential composition model does not include the

necessity that two different formulas in the same rule hold at the same time

(e.g., Wj A Wz in ru!e6J-9a)'

113

The nesting of total rules in both the rule condition and the rule state of a

general-form rule is described in the following lemmas.

LEMMA: TwoNestTotalRuleEqv 1

I- (lfao 1\ O/a}) V (-!ao 1\ 0/a2» 1\ o(f/bo 1\ O/b) v (-!bo 1\ 0/b2»
= «(j1Jo 1\ ola) 1\ O(jbo 1\ O/b) v (lfao 1\ O/a) 1\ O(-!bo 1\ 0/b2»

v «-!1Jo 1\ 0/a2) 1\ O(jbo 1\ O/b) V «-!ao 1\ O/a) 1\ O(-!bo 1\ 0Ji,»

or

I- (rulea,_ v ruleafo/H) 1\ o(ruleb,,,.. v ruleb/
alu

)

- (rulea,_ 1\ oruleb
trlU

) v (rulea,,,.. 1\ oruleb/auJ

Proof:

v (rulea/Dlu 1\ oruleb,) v (rulea/41u 1\ oruleb/aaJ

where: rulea,,.. ~ (j1Jo 1\ o/a)
rulea/aa• ~ (-!ao 1\ O/a)
ruleb, ~ (jbo 1\ O/b)
ruleb/aa• ~ (-!bo 1\ O/b)

1 «(j1Jo 1\ ola}) v (-!ao 1\ 0/a1» 1\ O«(jbo 1\ O/b) V (--,jj,o 1\ O/b» tautology

== «(jao 1\ ola}) v (-!ao 1\ ola) 1\ O«(jbo 1\ O/b) v (--,jj,o 1\ 0/b2»
2 == «(jao 1\ ola}) v (-!ao 1\ 01a2» 2, NextAnd-

1\ (O(jbo 1\ O/b) V O(-!bo 1\ O/b2» DistEqv

3 == «(j1Jo 1\ ola) 1\ O(jbo 1\ 0Ji,) 3, Distribution

v «-!ao 1\ O/a) 1\ O(jba 1\ O/b) of 1\ over v

v (lfao 1\ O/a) 1\ o(--,jj,o 1\ O/b2»
v «-!ao 1\ 01a2) 1\ O(-{bo 1\0/b2»

4 == «(jao 1\ ola) 1\ Oifbo 1\ O/b) 3, Commutivity of

v (lfao 1\ ola/) 1\ o(--,jj,o 1\ 0/b2»
v ((-!ao 1\ ola) 1\ of/bo 1\ O/b)

v « -!aa 1\ ola') 1\ o(-Ibq 1\ Ob,»

LEMMA: TwoNestTotalRuleEqv2

I- (lfao 1\ O/a) V (-{1Jo 1\ 0/a2» 1\ O«(jbo 1\ O/b) v (-tbo 1\ O/b»

== (jaa 1\ oifa) I\/bo) 1\ OO/b) V (-!ao 1\ Olfazl\/h) 1\ OO/bJ)

v iflJo 1\ Oifa} 1\ -!bo) 1\ OO/b) v (-!ao 1\ olfa2 1\ -Iho) 1\ OOJi,2)

v

114

Proof:

1 (ifao A Ola) v (-/ao A Oja2» A O(ifbo A ojb) V (--1bo A Ojb2»

== (ifao A oja) V (-/ao A oja) A O(ifbo A ojb) V (-/bo A ojb2»
2 == (ifaa A ola) A Oifbo A ojb)

V (lfaa A oja) A O(-/ba A Ojb)

V « --!ao A oja2) A Oifba A ojb)

V « -!ao A oja2) A o(-/ba A Ojb)

3 == (ifaa A olfal Ajb;J A oojb)

V (lfaa A Oifal A -/bo) A OOjb2)

v «--!ao A Oifa2 Ajba) A oojb)

V «-!ao A Oifaz A -/b) Aoojb)

tautology

1, TwoNestTotaI­

RuleEqvl

2, NestBothEqv

These lemmas are also expressed in terms of specific rule defmitions to simplify

presentation and highlight the underlying rule structure(s). With TwoNestTotal­

RuleEqvl, a general-form rule composition of two nested total rules is decomposed to

an equivalent disjunction of four general-form rules, with each disjunct composed of an

individual rule from each of the two total rules. With TwoNestTotalRuleEqv2, the

original composition is decomposed to an equivalent disjunction of four conjunctive

series of state sequences.

With the nesting of two individual rules as a general-form rule as considered by

NestBothEqv, care must be exercised so that such a composition does not result in a

contradiction, thereby invalidating the original composition. This is demonstrated with

(6.1-7), where the term o(WJ A W2) cannot be a contradiction. Because NestBothEqv is

an equivalence, if such a contradiction is created, then the original composition of (6.1-

6) is not valid. This problem can be avoided with the general-form rule nesting of two

total rules. By inspection of the corresponding terms in outcome of

TwoNestTotalRuleEqv2 - oifal Ajba), oifa} A -/bo)' Oifa2 A jb;J, and 0(j'a2 A -/b;J - a

contradiction is created only if either ja} or ja2 is a contradiction. Otherwise, because

both are conjunctively associated withjbo and -/bo' no contradiction can result. Stated

another way, if two total rules, where each total rule has the form if; A ofj) v (:Ii A ofi)

for any i, j, and k, are valid, then the nested composition of those two total rules as a

general-form rule is valid.

115

The 11L operator chop can be used in creating nested rules. Consider the

following rule which includes both the chop operator and a nested rule in the

specification of the rule state:

(6.1-13)

Applying StateAndNextChop yields the following equivalent form:

(6.1-14)

In this equivalent form, (6.1-14) is an example of sequential composition using chop as

previously described in Section 5.6.2. Applying StateTwoChopRuleslmp allows (6.1-

14) to be transformed to:

(6.1-15)

Therefore. with the application of StateAndNextChop and StateTwoChopRuleslmp. the

rule nesting of (6.1-13) has been eliminated and (6.1-13) has been simplified to the

general rule form of (6.1-15).

Consider the following nested rule that includes two general-form rules that are

chopped and nested in the rule state.

(6.1-16)

The overall structure of this rule can be clarified with some defmitional substitutions:

where:

Wo A o(rule6.J-J7a ; rule6.I-J7b)

rule6.1.17a ~ WI A OW2

rule6.J-J7b ~ Wj A OW4

(6.1-17)

(6.1-17a)

(6.1-17b)

116

This rule is a general-form rule that includes two general-form rules nested in the rule

state. The following lemma allows the transformation of a nested rule that includes two

chopped rules in the rule state:

LEMMA: StateNestRuleStateChopEqv

or

Proof:

where: rulel ~ Wl A of2
rule2 ~ W3 A of4

1 Wo A O«Wl A 0f2) ; (W3 A of4))

== Wo A O«WJ A ofi) ; (W3 A 014))

2 == (wo A O(WJ A ofi)) ; (W3 A 014)

3 == (Wo A OWl A 00f2) ; (W3 A of4)

tautology

1, I1L (StateAndNextChop)

3, NextAndDistEqv

This lemma is also expressed in terms of specific rule defmitions to simplify

presentation and highlight the underlying rule structure(s).

Applying StateNestRuleStateChopEqv to (6.1-16) yields:

(6.1-18)

In this form, the sequence specified by the original rule is clear. However. applying

NextAndDistEqv and TwoSeqRulesEqvl to (6.1-18) yields an equivalent rule

consisting of three component general-form rules:

(6.1-19)

Substituting defmed rule names for the component rules yields:

(rule6.J.20a A orule6.I.17a) ; rule6.J-17b (6.1-20)

where:

117

rule6.1-20a ~ Wo 1\ OWl (6.1-20a)

And because rule6.J-20a 1\ orule6.1_17a is a general-form rule, an additional defmitional

substitution can be performed:

rule6.l-2la ; rule6.1-17b (6.1-21)

where:

rule6.1-21a ~ rule6.1-20a 1\ orule6.1_J7a (6.1-21a)

The net result of this analysis is that (6.1-16), (6.1-18), and (6.1-19) are

equivalent. Because StateNestRuleStateChopEqv, TwoSeqRulesEqv1, and NextAnd­

DistEqvare equivalence lemmas, all offer substantial flexibility when used together in

the forward transformation of rules into equivalent forms, or the reverse transformation

of observed sequences into equivalent rules.

Although a wide variety of rule nestings using chop are possible, some nestings

may have unanticipated consequences. Consider the following rule which includes both

the chop operator and a nested rule in the rule condition:

(wo; (wo 1\ OWl» 1\ OW2

The following lemmas describes the reduction of this form of nested rule.

LEMMA: NestRulcCondChoplmpl

I- (wo; (wo 1\ of 1» 1\ of2 implies I- (wo; Of I) 1\ olz

Proof:

1 (Wo; (Wo 1\ of)) 1\ olz

2 Wo; (wo 1\ 0/1)

3 Wo; Wo 1\ Wo ; ofl

4 Wo; ofl

5 of2

6 (wo; 0/1) 1\ ofz

premise

1,1\ elimination

2, ITL (ChopAndlmp)

3, 1\ elimination

1,1\ elimination

4, 5, 1\ introduction

(6.1-22)

118

LEMMA: NestRuieCondChoplmp2

I- (wo; (wo A 0/)) A OW2 implies I- Wo A 0/2

Proof:

1 (Wo; (wo A 0/)) A 0/2

2 WO;(WOAO/)

3 Wo

4 0/2

5 Wo A 0/2

premise

1, A elimination

2, ITL (StateChop)

3, A elimination

3, 4, A introduction

Applying NestRuleCondChoplmpl to (6.1-22) yields:

Wo; ow) A OW2 (6.1-23)

However, because ow} is chopped to the state formula Wo, and because the satisfaction

of a state formula depends only on the first state of a multi-state sequence, the chopping

of ow) to Wo holds if w) follows any state in the multi-state sequence satisfying woo

Therefore, W} does not have to hold in the next state after the single state satisfying Wo

but after some next state after the single state satisfying WOo Further, for OW2 to hold, W2

must be satisfied by the next state after the state sequence satisfying WOo This is

demonstrated by the application of NestRuleCondChoplmp2 to (6.1-22) which yields:

Wo A OW2 (6.1-24)

Therefore, with this form of nested construction, the original rule (6.1-22) and the

derivative rule (6.1-23) will hold even if w) is satisfied by a state that occurred after the

state satisfying W2. Although not immediately evident from an initial inspection of(6.1-

22), the transformations presented at (6.1-23) and (6.1-24) demonstrate the potential

confusion and corresponding problems that may result from the nesting of a chopped

rule in the rule condition.

119

6.2 Recursion

As applied to rules, recursion describes the circumstance where a rule is defmed

in terms of that rule. Expressed in terms of nesting, recursion is the nesting of a rule

within itself. An example of a simple recursive rule is:

(6.2-1)

Substituting the defmition of rule6.2.J into an instantiation of rule6.2.J yields:

/0 A o(fi A/O A o(fi A rule6.2.J» (6.2-2)

Applying NextAndDistEqv twice yields the equivalent form:

/0 A 0li A % A oofi A 00rule6.2.1 (6.2-3)

In this equivalent form, and with the continued substitution of the defmition of rule6.2.lt

the sequence resulting from this recursive rule is clear:

/0 A ofi A % A ooli A 00/0 A ooo/} A ooorule6.2.1 (6.2-4)

Although rule6.2.1 is a ideal initial example of rule recursion because of its

simplicity, that simplicity compromises its applicability to more realistic situations.

Referencing the previous discussion in Section 5.1 regarding total rules, rule6.u

includes no specification regarding the state sequence that will result if the rule

condition/o is not satisfied. Therefore, consider the following recursive rule composed

as a total rule:

(6.2-5)

The expansion resulting from the substitution of the definition of rule6.2.j into an

instantiation of rule6.2.s is described by the following lemma.

120

LEMMA: RecursTotalRuleExpan

~ if}/\ 0(/2/\ rule» v (-/)/\ oj unchanged) ==
if} /\ 0/2/\ O/}/\ 00/2 /\ oorule) v if}/\ 012 A O-/} A oojunchanged)

V (-/)/\ ojunchanged)ja A Oif}/\j2) /\ 00j3

where: rule == if} A oif2 A rule» v (-/J A O/unchanged)

Proof:

1 rule == if} A oif2 A rule» v rulejalse

2 == if}/\ 0(/2/\ «(/)/\ 0(/2/\ rule» v rulejaJse»)

v (-/) A a/unchanged)

3 == if} A 0/2 A O«/} A 0(/2/\ rule)) v rUlejalst»

v (-!I A a/unchanged)
4 == if] /\ 0/2/\ (OfJi A 0(/2 A rule» v OruZejalse))

V (:fJ /\ a/unchanged)

premise

I, substitution of

equivalance

2, NextAndDistEqv

3, NextOrDistEqv

5 == ifl A 0/2 A Oifl /\ Oif2 /\ rule))) 4, Distribution of /\ over v
v if} A 0/2 A O(-{I A O!unchanged»

v (:fJ A a/unchanged)
6 == if 1 A 0/2 A a/I A 00(ji A rule»

v ifl A 0/2/\ OC-{I A O/unchnnged»

V (-11 A O/unchanged)
7 == if 1 A 0/2 /\ 0/1 A 00j2/\ oorule)

v if)/\ Of2/\ 0(:fJ A O!unchanged»

V (-{I A a/unchanged)
8 ==if} A 0/2/\ Of} A 00/2 A oorule)

v if] /\ 0/2/\ 0-{1 A OO/unchanged)

V (-,j, A O/unchanged)

5, NextAndDistEqv

6, NextAndDistEqv

7, NextAndDistEqv

App1ying RecursTotalRulcExpan to (6.2-5) yields the fo11owing equivalent

disjunctive structure:

ifa A oj1 A a/a A 00/1 /\ oorule6.2.5)
v ifa A ofl A o-la A OO/unchanged)
v (-fa /\ a/unchanged) (6.2-6)

With this expansion, the significance of the total rule form is clear. The state sequence

specified by ru[c6.2.j can be expanded, consistent with the recursive definition of rule6.2.

5, until the rule conditionfa is not met, that is, until -{a is true. lfthe first state sequence

does not satisfy /0. the third disjunct of (6.2-6), -{a A O/urU'hanged, specifies the next state

121

as unchanged. If the fIrst state sequence satisfIes fa but the second state sequence does

not, the second disjunct of (6.2-6),fo " of] " 0-/0" OOf unchanged, specilles the third state

as unchanged. This unchanged status of the third state is unchanged relative to the

second state which satisfIesf] (as specified by Of 1) but notfo. The sequence specified

in (6.2-6) can be expanded further, as needed, by the substitution of the defmition of

rule6.2-5 into (6.2-6) and the application of RecursTotalRuleExpan.

An important issue associated with recursive rules is termination of the rule.

Consider the following simple rule:

rule6.2-7 ~ fa " oifo " rule6.2-7) (6.2-7)

Substituting the defmition of rule6.2-7 into an instantiation of rule6.2-7 and applying the

applying the appropriate ITL and propositional logic yields the equivalent form:

fa" ofo A oofo" 00rule6.2-7 (6.2-8)

If the initial rule condition fa is satisfIed, then the rule state, that is, the next state

specified by the rule, will also satisfy fa. Because all rule states reached by the rule

satisfy the rule condition, this recursive rule will never terminate. Therefore, for a

recursive rule to terminate, the rule codomain must contain at one least state that is not

in the rule domain. Formally, for the rule rulerecurslve to terminate:

30'E codomain(rulerecursive) I (O'~ domain(rulerecursive» (6.2-9)

A common application of rule recursion is to implement loops. Through the use

of counter variables or logical tests, for-loops, while-loops, or similar looping

programming structures can be created. As many legacy and non-legacy applications

include such looping structures, rule recursion offers a powerful rule-based technique

for reasoning about such code structures.

122

6.3 Guarded Composition

Dijkstra (1975, 1976) introduced the logical concept of a 'guarded command' to

allow operational non-determinacy with respect to the final system state based on, and

subject to, the current state of a given system. This guarded command approach was

originally conceived as a reliable method of evaluating and executing simultaneous I/O

interrupts, thereby avoiding machine deadlock resulting from the consistent and

deterministic choice and service of one interrupt over another. Guarded command

concepts have been explicitly incorporated into various programming languages

including Occam (Roscoe and Hoare, 1986) and WSL (Ward, 2001). Whereas the bar n
is frequently used as the guarded command operator to link unordered alternatives, in

this thesis, disjunction is used to compose rules into guarded command systems.

Although originally conceived to represent non-determinacy, guarded

composition can be used to implement both non-deterministic and deterministic choice

depending on the implementation of the guards. Under guarded composition, only those

logical structures bound to a guard that is satisfied by the current system state sequence

are candidates for selection and execution. If the guards do not overlap and each

guarded logical structure in the guarded composition is satisfied by a different system

state, deterministic choice results. Such a deterministic guarded structure functions like

the switch or case constructs found in many programming paradigms.

Within the context of the rule model presented in this thesis, the total rule form

(ja" 0fl) v (-/0" 0f2) is an example of a simple, deterministic guarded composition. In

this rule-based implementation of guarded composition, the rule condition of each rule

serves as the guard, guarding the next state sequence defIned by the ru Ie state formula.

For total rule (ja" 0fl) v (-/0" 0f2), the state sequence satisfying 0fl is guarded by fo in

thatfl can occur in the next state only if the guard fa is satisfied. Conversely, the state

sequence satisfying 0f2 is guarded by -fa in thatJi can occur in the next state only if the

guardia is not satisfied (i.e., -fa is true). Because no state sequence can satisfy bothia

and -/0 (i.e., fa " -/0 == false), the guards cannot overlap and deterministic choice is

implemented. Subject to the requirement that the rule conditions not overlap, this

approach to deterministic composition can be expanded as necessary by disjunctively

incorporating additional rules.

123

However, if two or more guards overlap such that they are satisfied by the same

state sequence, nondeterministic choice is implemented. With such an overlapping

guarded command approach, mUltiple alternative state sequences can be associated with

a single guard state. Therefore, when a guarded command system with overlapping

guards is executed repetitively, different fmal states may result from the same initial

state. With regard to implementation, the selection of the one alternative state sequence

from the set of multiple alternative state sequences bound to a satisfied guard must be

random to meet the expectation of fairness with respect to the nondeterminacy.

Abandoning this random approach and adding a probabilistic technique to the selection

of a single rule state from the set of multiple alternative state sequences bound to a

satisfied guard forms the basis for a probabilistic guarded composition, analogous to a

probabilistic guarded command language (He et a1., 1997; Morgan and McIver. 1999).

A simple nondeterministic guarded command system is described in terms of

general-form rules as:

lfo " of I) v lfa " 0f2) v (-fa" O!unclwnged) (6.3-1)

The state sequences satisfying ofl and of2 are both guarded by fa in that fl or h can

occur in the next state only if the guard fa is satisfied. Because these rules share a

common formula expressing the rule condition. (6.3-1) is transformed by applying

propositional logic to yield the equivalent form;

(ja " (ofl V of2) V (-fa A Of unclwnged) (6.3-2)

Applying NextOrDistEqv to (6.3-2) yields the equivalent form:

lfa " olfl v f2» v (-fa" of unclwnged) (6.3-3)

With these transformations. the three-rule nondeterministic guarded command structure

of (6.3-1) has been transformed into a nondeterministic total rule - total in that all state

sequences will either satisfy fa or -{a. and nondeterministic in that a state sequence

satisfying either f1 or h will follow one satisfying fa. Whereas (6.3-3) has been limited

124

to two rule conditions and three rule states, there are no limitations with regard to the

number or nature of the rules used to described a rule-based guarded command system.

Critical to the composition of any guarded command system is the unambiguous

representation of the logical expectations of the system. Consider the following

guarded command system disjunctively composed of two total rules:

«(fa A 0/1) v (-fa A O/unchanged»

v «(/2 A O/J) v (-f2 A O/unchanged» (6.3-4)

As previously discussed, a total rule is a simple implementation of a deterministic

guarded command system. Therefore, (6.3-4) can be described as a guarded command

system composed of two deterministic guarded command systems. However, careful

analysis of (6.3-4) demonstrates that such a composition yields a nondeterministic

guarded command system. Applying propositional logic to (6.3-4) yields:

(6.3-5)

In this equivalent form consisting of three rules, it is evident that the guards may

overlap. If/a?F /2, then the guards can overlap. Therefore, (6.3-5) is nondeterministic.

In contrast, the following rule system, not derivative of (6.3-4), is a deterministic

guarded command system as only one rule state can be satisfied:

(6.3-6)

In presenting these contrasting examples, no assertion is made that either (6.3-5) or (6.3-

6) is correct or incorrect, better or worse, preferred or not. Instead, they are presented to

demonstrate the necessity of analyzing guarded command system formations to assure

that the implementations are consistent with the underlying logical expectations for that

system.

6.4 Parallel Composition

In contrast to the explicitly linear execution order that results from sequential

composition, paralle] composition allows for two or more programming structures to be

125

executed concurrently. Practically, parallel composition allows for two or more

programming structures to be executed under some defmed model of concurrency.

Parallel composition is expressed using the parallel operator II to connect the structures

that are to be executed in parallel Applied to rules, (fa A of) II (h A 0f3) specifies that

the rulesfo A of] andfi 1\ 013 are to be executed concurrently.

Apt and Olderog (1997) identify three common types of parallel composition in

programs - disjoint parallelism, parallelism with share variables, and parallelism with

synchronization. Parallel rules with shared variables may potentially interfere with each

other, whereas parallel rules with synchronization require rule execution to be

suspended and then restarted. Disjoint parallelism is the most restricted form of parallel

composition and is probably the most applicable to legacy code analysis. This section is

limited to the analysis of rules and rule formation within the context of disjoint

parallelism.

The concept of disjoint parallel programs was introduced by Hoare (1975) in an

attempt to deflne the conditions under which certain parallel programs can be reduced to

equivalent sequential programs. Two programs are considered disjoint if neither change

the variables accessed and used by the other. Extending this concept to rules, two rules

are disjoint if neither rule updates variables used by the other rule in assessing

satisfaction of the rule condition or establishing the rule state associated with that rule

condition. Stated another way, for two rules to be disjoint, the variables in the frame of

one rule cannot be used in the other rule in the formulas that specify the rule condition

or the next rule state.

The variables in the frame of a formula have been previously described as W.

For the same formula, let V be the set of all variables used to define, specify, or

calculate the new values of the variables in W. Because some variables in W may be

used to calculate other variables in W, including the recursive definition of a neW

variable value, V may include variables from W.

Thus, for any formula, there exists some set of variables V and Wand that

formula may be described by the set of variable V u W. Consider two formulas,fo and

fl. such that each is described by Va u Wo and VJ U WI. fa is independent of fi if the

variables of Vo do not include any variables in WI. or Vo () WI = 0. Similarly. fi is

126

independent of fa if the variables of V] do not include any variables in Wo, or VI n Wo

= 0. Therefore, the two formulas,fo and/J, are independent or disjoint of each other if:

(6.4-1)

Expanding this concept to rules, let rule rule be a general-form rule defined asfo

1\ of]. The variables in the frame of rule have been previously described in Section 4.5

as Wrule• For rule, let Vrule be the set of all variables used to specify fa and used inf] to

calculate the next values of the variables in Wrule• Because some variables in Wrule may

be used to calculate other variables in W rule, Vrule may include variables from W rule'

Consider parallel two rules, rulea and ru!eb, defmed as fa 1\ ofa and I!b 1\ or.b o 1 J10 ,)1 i'

respectively. Parallel rules rulea and ruleb are disjoint if:

(6.4-2)

Because disjoint parallel rules are independent of each other with respect to the

variables used to express the rule conditions and updated in the rule states, they can be

expressed as sequential rules using either of the two previously presented techniques for

the sequential composition. Similarly, because they are disjoint, they may also be

expressed as parallel rules should the need arise.

6.5 Equivalent Rules

Numerous models of equivalence exist for comparing objects and structures in

computer science. This section offers a brief review of some of the more relevant

concepts as a basis for deriving equivalence models that are applicable to general-form

rules. The rule algebra presented in this research is used to demonstrate three forms of

rule equivalence - strong equivalence (or strong bisimulation), transformational

equivalence, and non-temporal equivalence.

Apt and Olderog (1997) declare two computations input/output equivalent if

they start in the same state and then result in the same fmal state. For parane] programs,

they extend this model to the notion of permutation equivalence, that two computations

are permutation equivalent if they are input/output equivalent and the sequences of

127

transitions in each computation are permutations of each other. Fokkink (2000)

describes two processes as trace equivalent if they can execute exactly the same strings

of actions and observes that trace equivalence ignores the effect of branching and may

be inadequate in describing concurrency. Pitts (1997) describes two program

expressions as contextually equivalent if they can be interchanged in a program without

changing the program outcome. De Nicola and Hennessey (1984) offer a testing

approach to demonstrate natural equivalence; two processes are equivalent if they pass

exactly the same set of relevant tests.

Many formal models of equivalence are related to the concept of bisimulation.

Park (1981) introduced the formal model ofbisimulation as an approach to assessing the

equivalence of two fmite automata. One automaton bisimulates another automaton if

there exists a single relationship that relates all states of the frrst automaton to the states

of the second automaton and relates all states of the second automaton to the states of

the fIrst automaton. This concept has been extended to numerous computational

paradigms, including process graphs (Baeten and Weijland, 1990), fmite transition

systems (Arnold, 1994), and calculus of communicating systems (Milner, 1989). Under

these paradigms, the system nodes, states, or agents and the transitions that connect

them must be considered in the relationship that defmes a bisimulation between two

systems. Fokkink (2000) offers a general and informal description of bisimulation

applicable to these computational paradigms - two processes are bisimilar if they can

execute the same string of actions and have the same branching structure. Many

bisimulation models and the corresponding equivalence models are differentiated as

weak or strong models, depending on whether the silent actions of two systems (i.e.,

those transitions that are invisible or unobservable to the external observer) must be

matched one-for-one. Using the concept of weak bisimulation, Milner (1989) offers a

model of observational equivalence where the external, observable behavior of two

systems follows the same pattern, but the internal behaviors of the two systems may

differ substantially.

This thesis will use a general framework for equivalence based on the assertion

that two temporal formulas are equivalent if they are satisfied by the same state

sequences. Because rules are themselves temporal formula, two rules are equivalent if

they are satisfied by the same state sequences.

128

Consider the following two rules:

rule6.5-l ~ fo 1\ on
rule6.5-2 ~ fo' 1\ ofl'

(6.5-1)

(6.5-2)

Demonstrating the equivalence of these two rules requires either the assertion or proof

that fo == fo' and ofl == on'· With such substitutions, both rules describe and/or are

satisfied by the same state sequences. Such substitutions of individual temporal formula

yield the strongest claim of equivalence for the associated rules as no other

transformations or reductions on the original rules are required. Because the

equivalences between individual formulas forming rUle6.5_l and rule6.5-2 are

instantiations of a single relationship that is reflexive, symmetric, and transitive, rule6.5.l

and rule6.5.2 are described as strongly equivalent.

Consider the following two rules, each composed of two rules:

rule6.5-3 ~ lfo 1\ 0fl) 1\ Olfl 1\ 0f2)

rule6.5-4 ~ lfo 1\ of 1') 1\ Olfl' 1\ 0fl)

Applying TwoSeqRulesEqvl to each yields the equivalent forms:

fo 1\ ofl 1\ 0012

fo 1\ of/' 1\ oof2

(6.5-3)

(6.5-4)

(6.5-5)

(6.5-6)

In the absence of any knowledge that 0fl == ofl" the strong equivalence discussed above

cannot be claimed. However, applying TwoSeqRulcslmp to (6.5-3) and (6.5-4) yields

(6.5-7) and (6.5-8), respectively:

(6.5-7)

(6.5-8)

Whereas (6.5-7) and (6.5-8) are identical (and therefore equivalent), TwoSeqRuIcslmp

is not an equivalence preserving transformation. Therefore, rule6.5-3 and rule6.5-4 are

129

considered transformationally equivalent. Alternatively, with these transformations,

rule6.5.] and rule6.5-4 are described as input/output equivalent, because both have been

transformed into a general-form rule that is satisfied by the same input, specified by the

rule condition /0, and is associated with the same output, as described by the rule state

00/2'

Consider the following two rules:

rule6.5.9 ~ (fa A of}) A o(f} A 0/2)

rule6.5.]0 ~ (fa A 0/].) A o«(fj' A o/}") A o(f}" A 0/2))

Applying TwoSeqRuleslmp to (6.5-9) yields:

/oA 00/2

(6.5-9)

(6.5-10)

(6.5-11)

Using NextAndDistEqv, TwoSeqRuleslmp, and propositional logic, (6.5-10) is

transformed to:

/OA oooh (6.5-12)

Comparing (6.5-11) and (6.5-12), and given that 0012 ~ 000/2. rule6.5.9 and rule6.5.}o are

not transformationally equivalent. However, both rules are described as non-temporally

equivalent as they differ only by the number of skip constructs (i.e., the ITL next

operator 0) chopped ahead of the common rule stateh.

Three forms of equivalence - strong equivalence (or strong bisimulation),

transformational equivalence, and non-temporal equivalence - have been presented in

this section. No doubt, other forms or other models of rule equivalence are possible.

The formalization of the models presented above and the development of ahernative

equivalence models applicable to general-form rules remain open questions.

6.6 Rules in Programming Structures

In legacy programs, three programming structures are frequently used to

represent rules - the if-then-else programming structure, the while structure, and the

130

indexed for-loop structure. In this section, these three structures are examined in

relation to the general form-ruleJi A 0h'

6.6.1 If-Then-Else Structures

If-then-else programming structures are a common and widely used method in

many imperative-programming languages for implementing deterministic choice

between two complementary alternatives. An if-then-else structure such as 'ifP then Q

else R' is commonly represented in non-temporal propositional logic as (P A Q) v

(,P A R) or the equivalent form (,P v Q) A (P v R) (Hoare, 1985). As the latter form

includes the defmition of implication, that form is equivalent to (p:J Q) A (-'p:J R).

Moszkowski (1986) defmes an if-then-else structure in ITL as:

if b then WI else W2 ~ (b:J WI) A (,b:J W2) (6.6.1-1)

where b is a Boolean expression. As presented in Table 4.3-5, the 'if /0 then /1 else //

structure in ITL is now defined as:

(6.6.1-2)

As previously mentioned, the conjunctive form (fo A/I) v (-fo A/2) and the implication

form (fo :J/l) v (-fo =>/2) are provably equivalent.

In this thesis, a variation of the current ITL definition is used, and the if-then­

else structure is implemented as a pair of general-form rules as:

if/o then 0/1 else 0/2 ~ (fa A 0/1) v (-fo A 0/2) (6.6.1-3)

As previously described in Section 5.1, this rule form is also described as a total rule

because all possible cases of the rule condition are considered, either /0 or :fo. As

previously described in Section 6.3, this rule form is an example of a simple,

deterministic guarded composition that includes two non-overlapping guards,fo and -fo.

A more limited if-then programming construct is implemented by substituting

/unchanged for /2, leaving the system in an unchanged state if the condition /0 is not met.

131

The semantics of june hanged have been previously described in Section 5.1. Alternatively

and with a minor deviation from the general rule form fi " oli, the silent transition

associated with ojunehanged can be avoided with the use of the ITL construct empty:

ifjo then Ojl ~ (fo" oJi) v (-fo" empty) (6.6.1-4)

An important use of the if-then-else programming construct is in creating nested

if-then-else constructs. With such nested constructs, multiple guards can be applied

systematically and bound to specific outcomes. Within the context of rules, using

nested if-then-else constructs allows the hierarchical association of multiple rule states

to a given rule state. Using the rule-based defmition of the if-then-else construct

presented in (6.6.1-3), a nested if-then-else is created by instantiating an if-then-else

construct as each of the respective rule states/J andj2. Consider the following example

of a nested if-then-else construct.

where:

(wo" orule6.6.l.5a) v (-.wo" orule6.6.J.5b)

rule6.6.J.5a ~ rule6.6.J.5a" .. v rule6.6.J.Jafo/ll

rule6.6.1·5b ~ rule6.6.J.5b/rUI v rule6.6.J.5b/aiu

rule6.6.J.5a,,., ~ (W6.6.1.5ao" OW6.6.1.5a)

rule6.6.J.5a/aiu ~ (-,W6.6.1.5ao" OW6.6.J.5a)

rule6.6.1.5b" .. ~ (W6.6./.5bo 1\ OW6.6.J.5b)

rule6.6.1.5b/obl ~ (-1W6.6.J.5bo 1\ OW6.6.1.5b1)

(6.6.1-5)

The following lemmas describe equivalence transformations of rule-based, nested if­

then-else constructs.

LEMMA: NestlffhenEIseEqvl (proved at 4, below)

r (fo" orulea) v (-{o 1\ oruleb)

:; (fo 1\ orulea,,,,,) v (fo 1\ orulea/.lu) v (-fo 1\ oruleb",) v (:fo 1\ oruleb/
aIu

)

132

LEMMA: NestIfI'henElseEqv2 (proved at 6, below)

I- (fa" orulea) v (-fa" oruleb)

== (fa" oJao" ooJa) V (fa" o-fao" ooJa)
V (-fa" OJbo" OOJb) v (-fa" O-fbo" OOJb)

where: rulea ~ rulea v rulea, lrv6 JalJe

ruleb ~ ruleb v ruleb
lnu 'faJs.

rulea,,,,. ~ (fao" oJa)
rulea/aue ~ (-fao" oJa)
ruleb,,,,. ~ (fbo" 0Jb)
ruleb/au• ~ (-fbo" OJb)

Proof:

1 (fa" orulea) v (-fa" oruleb)

== (fo " orulea) v (-fo " oruleb)

2 == (fo " o(rulea,,,,. v rulea/aJs))

v (-fo" o(ru!eb,r .. v ru!eb/au)

3 == (fo " (orulea,fW v orulea/au,))

v (-fa" (orulebtrw v oruleb/a,)

4 == (fo " orulea" ..) v ifo " oruleajau,)

v (-fo " orulebt_) v (-fa" oruleh/al,)

5 == (fa" o(fao" oJa)) V (fo" o(:fao" o!az))

v (-fa " O(fbo" 0Jb)) v (-!o 1\ o(-fbo 1\ OJbz))

6 == «(fo 1\ 0lao) 1\ ooJa) V «(fo 1\ o-faO> 1\ ooJa)

v «-fo 1\ OJh) 1\ OO!h) v «-fo 1\ O-,j'ha) 1\ OO!b,)

premise

I, defmitionaI substitution

2, NextOrDistEqv

3, Distribution of" over v

4, definitional substitution

5, NextAndDistEqv and

Eropositionallogic

With NestIffhenEIseEqvl, a nested if-then-else construct is transformed into an

equivalent disjunction of four general-form rules. With NesllffhenElseEqv2, a nested

if-then-else construct is transformed to explicitly identify each pair of rule conditions

associated the each of the four rule states.

Applying NestIffhcnElser::qv2 to (6.6.1-5) yields:

«wa 1\ OWM.J-5ao) " OOW6.6.J.5a)
V «wo 1\ O-,W6.6.1-5ao) 1\ OOW6.6.l-5az)
V «-,wo 1\ OW6.6.J.5b) 1\ OOW6.6.J-5b)
v «-,wo 1\ O-,W6.6.1-5ho) 1\ OOW6.6.J.5bz) (6.6.1-6)

133

With this transformation, the state associations of the nested if-the-else structure of

(6.6.1-5) are clear. With this nested if-the-else structure, each of four state sequences is

associated with the satisfaction or non-satisfaction of three conditions defmed by the

state formulas wo, W6.6.1.5ao' and W6.6.I.5bo' Using this model, deeper if-then-else

structures can be created as necessary by using additional nesting to incorporate

additional conditions and rule states. Because NestIIThenElseEqv1 and

NestIIThenEiseEqv2 are equivalences, both can be applied to either expand or

encapsulate such nested structures as required.

6.6.2 While Structures

While structures are a common method in many imperative-programming

languages for implementing a conditional loop. Using ITL, Moszkowski (1986) defines

a while structure recursively as:

while Wo do WI ~ if Wo then (WI; while Wo do Wj) else empty (6.6.2-1)

Applying the Moszkowski (1986) model of the if-then-else structure from (6.6.1-1),

(6.6.2-1) is restated as:

while Wo do W] ~ (wo:::> (WI; while Wo do WI)) A (-lWo:::> empty) (6.6.2-2)

Applying the ITL defmition of the if-then-else structure from Table 4.3-5, (6.6.1-1) is

restated as:

while Wo do WI ~ (wo ~ (Wj; while Wo do WI» v (-'1Wo A empty) (6.6.2-3)

Cau and Zedan (1997) define the while structure in terms of temporal formulas:

while 10 do II ~ ({fa A II) ; while 10 do II) V (:fo A empty) (6.6.2·4)

As presented in Table 4.3-5, the while structure in ITL is now defined using chopstar as:

(6.6.2·5)

134

In this form, ITL operator fin denotes that the final subinterval of the interval defmed by

the while construct does not satisfy the guard fa.

Using the general rule form of this research, the recursion implicit in the while

structure is expressed using the if-then structure of (6.6.1-4) as:

while!a do!] ~ (if a " Oil) ; while!a doll) v (-{a" empty) (6.6.2-6)

Alternatively, a rule-based while structure is described using chop-star as:

while!a doll ~ ifa" O!l)- v (-fa" empty) (6.6.2-7)

6.6.3 Indexed For-Loop Structures

Consider the following general indexed for loop:

for A = b to c do fi (6.6.3-1)

where A is a state variable that can change value over the interval, and a and b are static

variables that cannot change in value over the interval. This indexed for loop can be

described in terms of ITL using the while structure as:

forA=btocdofi ~(oA=b);rule' (6.6.3-2)

where:

rule' ~ while (A 5. c) do ifl ; oA =A + 1)

In the form, the index variable A is initialized with the assignment oA = band

incremented by 1 after each interval described bY!I. This incrementing is achieved with

the chopped assignment formula oA = A + 1. The defmition of assignment in ITL is

presented in Table 4.3-6. Applying the if-then defmition of the while construct

presented at (6.6.2-6) and NextChop, the indexed for-loop is described as:

for A = b to c do fi ~ (oA = b) ; rule' (6.6.3-3)

where:

135

rule' ~ «(A ~ c) A of I ; oA =A + 1); rule') v (..,(A ~ c) A empty)

6.7 Some Other Interesting Rules

In this section, several interesting instantiations of the general-form rule are

examined - interesting in that these simple rules unambiguously capture and express a

single fundamental concept.

6.7.1 Excluding a Rule State with Negation

Specific rule states can be excluded with negation, as demonstrated in the

following rule:

fo A o-{I (6.7.1-1)

(6.7.1-1) is a maximally nondeterministic rule, because the satisfaction of this rule will

allow the system to exhibit in the next state any valid state sequences except those

satisfying fl.

Such a maximally nondeterministic rule is extremely expressive and therefore

very valuable in specific circumstances. Consider a set of state sequences described by

fo that are extremely undesirable or troublesome. A simple 'get out of trouble' rule can

be formed as:

faA 0-/0 (6.7.1-2)

Under this rule, if the system exhibits a trouble state sequence described as/o, this rule

specifics that the system be moved in the next state to any valid state sequence other

than one satisfyingfo, thereby moving the system out of the troublesome state sequence

associated withfo. Whereas the details of how a new state sequence satisfying -/0 is to

be chosen are important in the refinement of this rule and ultimately the final

implementation of the system, this rule expresses clearly what is of critical importance

regarding reasoning about the system - in this case moving the system out of a

troublesome state immediately. Although such a simple representation may seem trivial

at fll'st glance, it does succinctly and unambiguously express the intended notion - if the

136

system is in the undesirable state described by fa, get out of that undesirable state

immediately. To that end, such a rule-base representation in this minimal form achieves

what Dijkstra (1976) calls the "clear separation" between the mathematical concerns

about desired states and the specific engineering and implementation concerns regarding

how these states are achieved.

6.7.2 Enforcement of Specific Criteria

Consider the following simple rule:

-{a" ofo (6.7.2-1)

Under this rule, if the system state does not meet the criteria specified by fa, then the

next state sequence is required to meet these criteria. As with the example in the

preceding section, this simple rule succinctly and unambiguously expresses the intended

notion - if a system does not meet the criteria expressed by fa, then require that the next

state meet those criteria.

6.7.3 System Inverter

An interesting rule variant can be formed by combining the concepts of Sections

6.7.1 and 6.7.1. as demonstrated in (6.7.1-2) and (6.7.2-1), into the following total rule

system:

(fa " o-{o) v (-fa" ofo) (6.7.3-1)

In this form. (6.7.3-1) describes a system inverter relative to the state sequence specified

by /0. If the system state sequence satisfies/of then the next state sequence must not, and

if the system state sequence does not satisfy /0, then the next state sequence must.

6.7.4 Identity Rule

An identity rule leaves the system state unchanged. A simple example of an

identity rule is:

/0 " O/u,,('hang~d
(6.7.4- J)

137

If the rule condition /0 is satisfied, then the system state remains in next state sequence.

With regard to typical programming constructs, the most common implementation or

use of an identity rule is as the non-satisfaction half of a total rule where the rule

condition/o of (6.7.4-1) is instantiated with :!condition to form -!condilion " O/unchanged.

That such an identity rule as expressed in (6.7.4-1) functions as the

programming construct skip relative to the satisfaction of /0 is consistent with the

defmition of the ITL next operator o. Referencing the defmition of of the ITL next

operator ° as presented in Table 4.3-4, O/unchanged may be described as skip; /unchanged'

Substituting, (6.7.3-1) can be read as/o" skip ;/unchanged'

6.7.5 Any Possible Rule State

Consider the following rule:

/0" otrue (6.7.5-1)

This rule can be satisfied by the satisfaction of the rule condition /0 and by any valid

next state sequence, as the formula true describes all states and is therefore satisfied by

any state sequence. With respect to fmite state machines, Hartmanis and Stearns (1966)

described this as a "don't care" condition. Such a rule may be relevant if the system

designer does not care what the resulting system state is. Possible reasons for the use of

such a general rule are that a logical placeholder is needed, that the current system state

may be ignored, or that the system state may be reset by some subsequent action.

138

Chapter 7

Analysis of Rules in Models and Specifications

In this chapter, the formal rule extraction framework of Chapter 3, the formal

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied

to the extraction of rules from a variety of existing systems and the analysis of those

rules. In Section 7.1, rules are extracted from an existing fmite state machine; these

extracted rules are then used to identify the state sequence that results from the

application of an example input sequence to that machine. In Section 7.2, rules are

extracted from a detailed formal specification; with these extracted rules, alternative

formal transformations are presented, thereby allowing a formal, rule-based analysis of

the original specification. In Section 7.3, statecharts are investigated within the context

of the formal rule model and the corresponding rule algebra as developed in the

research; generic visual formalisms of various rule-based coding paradigms are

developed and the rules extracted in Section 7.2 are represented as statecharts.

7.1 Analysis of Rules from a Finite State Machine

In this section, rules are extracted from an existing finite state machine and

analyzed. Consider the finite state machine depicted in Figure 7.1-1 from STRL (2003).

Figure 7.1-1: Three-State Finite State Machine

139

The system consists of three states (so, Si, and sz), and three state formulas, wo, Wi, and

W2, are used to describe this system, where So 1= Wo, S1 1= Wj, and Sz 1= wz. For the

purposes of describing this system, x is the next symbol read from the input and the

acceptable input alphabet is the set {O, 1,2,3,4,5,6,7,8, 9}. For the purposes of this

analysis and consistent with the transitions depicted in Figure 7.1-1, this input alphabet

is divided into two sets, a1 = {O, I} and az = {2, 3, 4, 5, 6, 7, 8, 9}. The state transitions

included in this system can be described based on the starting state, the recognized

input. and the ending state. Within the context of the general form rule, the starting

state and the recognized input are the rule conditions and the ending state is the rule

state. These five state transitions, described as rules and organized based on the state

satisfying the corresponding rule condition, are as follows:

So (WOAXE al)A OW1 (7.1-la)

So (WOAXE az) A Owz (7.1-tb)

S1 (WI AX E aJ) A OWl (7.I-Ie)

s] (WJ A x E az) A OWz (7.t-Id)

S2 (W2A(XE ajVXE az»A OWz (7.t-Ie)

This set of five individual rules describes all five transitions in the fInite state machine,

and can be combined disjunctively to describe the entire system as:

(WOAXE aJ)A OWl

v (wo A X E az) A Owz

V (WI AXE aJ)A OWl

v (WI A X E a2) A Owz

V {Wz A (x E aI v x E a2» A OWz (7.1-2)

This rule system can be assessed by considering the individual rules that share a

common rule state. Consider the following rule-pair from (7.1-2) that shares the

common formula WI for the rule state:

(7.1-3)

140

Applying CommonRuleStateEqv and propositional logic to (7.1-3) yields the following

equivalent form:

(7.1-4)

Consider the following rule-pair from (7.1-2) that shares the common formula

W2 for the rule state:

(7.1-5)

Applying CommonRuleStateEqv and propositional logic to (7.1-5) yields the following

equivalent form:

(7.1-6)

With these equivalent transformations, (7.1-2) is transformed by substituting

(7.1-4) and (7.1-6) for the rule pairs considered in (7.1-3) and (7.1-5), respectively, to

yield:

«(wo v WI) 1\ x E al) 1\ OWl)

v «wo v WI) 1\ x E a2) 1\ OW2)

v «W2 1\ (x E al v x E a2» 1\ OW2) (7.1-7)

With (7.1-7), the finite state machine depicted in Figure 7.1-1. including the

corresponding five transitions presented in (7.1-1a) through (7.1-1e), is described by

three general-form rules.

Given that two component rules included in (7.1-7) share a common rule state

described by W2. a further simplification is possible. Consider the following rule-pair

from (7.1-7) that shares the common formu la W2 for the rule state:

Applying CommonRulcStateEqv to (7.1-8) yields the following equivalent fonn:

141

«(Wo v WI) "X E aZ) V (WZ" (X E al V X E aZ») " OWZ (7.1-9)

Applying propositional logic to (7.1-9) yields the following equivalent form:

«(Wo V Wj v wz) "X E az) v (wz "X E al» " OWz (7.1-10)

With these equivalent transformations, (7.1-7) is transformed by substituting (7.1-10)

for the rule pairs considered in (7.1-8) to yield:

«(wo v Wj) "X E al) " OWl)
v ««wo v WI v W2)" x E az) v (W2" X E aj» " OWz) (7.1-11)

With (7.1-11), the fmite state machine depicted in Figure 7.1-1, including the

corresponding five transitions presented in (7.I-la) through (7.1-le), is described by

two general-form rules.

As depicted in Figure 7.1-1, the fmite state machine is initially in So. Therefore,

the initial behavior of this finite state machine prior to any input can be described as:

Wo (7.1-12)

Letting rule7.J.ll represent the rule system presented in (7.1-11), the behavior of this

finite state machine in response to a single input from the input alphabet can be

described using the ITL operator chop as:

wo; rule,.l.ll (7.1-13)

The behavior of this finite state machine in response to two inputs from the input

alphabet can be described as:

Wo ; ru[e7.J./J ; rule7.J.11 (7.1-14)

For an infinite series of inputs from the input alphabet, the behavior of this finite state

machine can be described using frL chop-star operator as:

142

Wo ; ruZe7.].1I * (7.1-15)

Alternatively, rule composition based on the general rule form can be used to

describe the behavior of this system to multiple inputs. For this description, consider

the three-rule disjunctive description previously presented in (7.1-7):

(((Wo v WI) A x E aI) A OW])

V «wo v WI) A x E a2) A OW2)

v «W2 A (x E a] v x E a2» A OW2) (7.1-7)

Letting (7.1-7) be represented by ruIe7.l.7, a longer state sequence is described by

composing ruIe7.1.7 with itself using the general rule form:

ruZe7.1.7 A orule7.1.7 (7.1-16)

Using the general ru Ie form, (7.1-16) is composed with itself to describe even longer

state sequences:

(rule7.1.7 A omle7.].7) A o(mle7.J.7 A orule7.1.7) (7.1-17)

(7.1-17) is transformed using TwoSeqRulcEqvl (from Section 5.6.1) and yields the

equivalent form:

ru/e7.J.7 A orule7.J.7 A oorule7.1.7 (7.1·18)

Alternatively. (7.1-17) is transformed using TwoScqRulcEqv2 (from Section 5.6.1) and

yields the equivalent form:

ru[e7.l.7 A o(ru[e7.1.7 A orule7.J.7) (7.1-19)

As previously demonstrated in Section 5.6.1, the forms of (7.1-17), (7.1-18), and

(7.1-19) are equ iva lent.

143

Considering the repetitive forms presented in (7.1-18) and (7.1-19), recursion

can be used to describe fmite state machine behaviors. For multiple inputs, the behavior

ofthe finite state machine presented in Figure 7.1-1 is defmed recursively as:

ruleFsM ~ rule7./.7 1\ oruleFSM (7.1-20)

As a demonstration of the use of this recursive rule, ruleFSM is instantiated using the

defmition of ruZeFSM as:

ruleFsM == rule7.1.7 1\ o(rule7.l.7 1\ oruleFsM) (7.1-21)

Applying NextAndDistEqv to (7.1-21) yields:

rule7.l.71\ oruZe7.l.71\ ooruleFSM (7.1-22)

Applying the defmition of ruZeFSM at (7.1-20) to (7.1-22) yields:

rule7./.71\ orule7./.71\ oo(rule7./.7 1\ oruleFsM) (7.]·23)

Applying NextAndDistEqv to (7.1-23) yields:

rule7.J.71\ o ruZe7./. 7 1\ oorule7.}.7 1\ oooruleFSM (7.1·24)

Given the recursive form of ruieFsM, ruleFSM can be used to describe an infinite behavior

associated with the finite state machine presented in Figure 7.1-1. Alternatively, the

fmite behavior associated the finite state machine (i.e., the behavior associated with a

finite input sequence) can be described by applying propositional logic to the infinite,

recursive description. For example, the application of propositional logic (conjunction

elimination) to (7.1-24) yields:

rule7./.71\ orule7.}.71\ ooru!e7.J.7 (7.1·25)

144

With the transformation presented at (7.1-25), the recursive defmition of the system

presented at (7.1-20) can be easily manipUlated to yield the same description of the

system behavior previously presented at (7.1-18).

In the demonstration that follows, ruleFSM is used to identify the specific

sequence of states that results from a specific input. For this analysis, a minor algebraic

simplification is made to the various rule representations to transform terms containing

the set membership operator E. As originally defmed, input to the system can be any

of the ten digits defined by the set {O, I, 2, 3, 4, 5, 6, 7, 8, 9}. In the original system

description of (7.1-la) through (7J-Ie) and in the corresponding rule7.J-7 and ruleFsM,

input associated with each specific transition is described in terms of x such that x E Q}

or x E Q2, where Q} = {O, I} and Q2 = {2, 3, 4, 5, 6, 7, 8, 9}. Alternative terms are

defmed such that:

Applying these definitions to rulc7.1-7 yields:

«(Wo v WI)" y) " OWl)
v «wo v Wi)" -,y)" OW2)

V «W2 " (y v -,y» " OW2)

(7.1-26a)

(7.1-26b)

(7.1-27)

Applying propositional logic to (7.1-27) to eliminate the tautology (y v -,y) yields:

«(Wo v WI) "Y) " OWl)

v «wo v WI) " -,y) " OW2)

v (W2 " OW2) (7.1-28)

Henceforth, (7.1-28) is descrihed as rulc7.1-28. The definition of ruleFsM is updated such

that:

ruleFsM ;; rule7.128 " oruleFsM (7.1-29)

145

Instantiating the defmition (7.1-29) with itself yields:

ruleFsM == rule7.1-28 /I. o(rule7.J-28 /I. oruleFSM) (7.1-30)

In the following demonstration, the input sequence 012 is tested against ruleFsM

to determine the system response. In terms of the original input variable x, the sequence

is described as formula x /I. ox /I. oox, where x = 0, ox = 1, and oox = 2. Using the

algebraic transformations described at (7.1-26a) and (7.1-26b), the input sequence 012

is represented as the formula y /I. oy /I. oo,y. Decomposing this formula, y represents

x E aJ which holds for x = O. With the next term, oy represents ox E QJ which holds for

ox = 1. And the fmal term, oo,y represents oox E a2, which holds for oox = 2.

In this demonstration, four premises are asserted. In the fIrst premise, a fmite

state machine exists and is described by ruleFsM and the associated defmitions. In the

second premise, the input stream to be processed by the fmite state machine is described

by the temporal formula y /I. oy /I. oo,y. In the third premise, the fmite state machine is

started in a state satisfying Woo In the fourth premise, the relative uniqueness of the

three formulas describing the three states of fmite state machine is asserted.

The processing of the input stream 012 with the fmite state machine described

by ruleFsM is as follows:

1 ruleFSM premise

where:

ruleFsM ~ rule7.J-28 /I. oruleFSM

rule7.J-28 ~ «Cwo v WI) /I. y) /I. OWl)

v «(wo v WI) /I. ,y) /I. OW2)

v (W2 /I. OW2)

2 y /I. oy /I. oo-,y premise

3 Wo premise

4 (wo::> (,w] /I. ,W2» premise

/I. (WI ~ (,Wo /I. ,W2»

/I. (W2 ~ (,wo /I. ,WI»

5 rule7.1_28/1. oruleFSM 1, defmition substitution

6 rule7.1-28 5, /I. elimination

7 y 2, /I. elimination

146

8 Wo :::J (..... 1WI 1\ ""W2) 4, 1\ elimination

9 ""WII\ ""W2 3,8,MP

10 ""WI 9, 1\ elimination

11 ""W2 9, 1\ elimination

12 «(wo v WI) 1\ y) 1\ OWl) 6, defmition substitution

v «(wo v WI) 1\ ...,y) 1\ OW2)

v (W21\ OW2)

13 «true v false) 1\ true 1\ OWl) 3, 7, 10, 11, 12, prop. logic

v ((true v false) "false 1\ OW2)

v ifalse 1\ OW2)

14 (true 1\ true 1\ OWl) 13, unit of v, zero of 1\

v (true I\false 1\ OW2)

v ifalse)

15 OWl 14, unit of 1\, zero of 1\, unit of v

16 oy 2, 1\ elimination

17 WI :::J (...,wo 1\ ""W2) 4,1\ elimination

18 OWl :::J o(""Wo " ""W2) 17, TTL (NextlmpNext)

19 OWl :::J O""Wo 1\ O""W2 18, NextAndDistEqv

20 O""Wo 1\ O""W2 11,19, MP

21 O...,Wo 20, 1\ elimination

22 O""W2 20,1\ elimination

23 oruleFSM 5, 1\ elimination

24 o(rule7.J.28 " oruleFsM) 23, definition substitution

25 orule7.J.281\ ooruleFsM 24, NextAndDistEqv

26 orule7.1·28 25, 1\ elimination

27 o««wo v WI) 1\ y) 1\ OWl) 26, defmition substitution

v «Cwo v WI) 1\ ...,y) 1\ OW2)

v (W2 1\ OW2»

28 o«(wo v WI) 1\ y) 1\ OWl) 27, NextOrDistEqv

v o«(wo v WI) 1\ ...,y) 1\ OW2)

V O(W2 1\ OW2)

29 (o«wo v WI) 1\ y) 1\ OOWI) 28, NextAndDistEqv

v (o«wo v WI) 1\ ...,y) 1\ OOW2)

v (OW2 1\ OOW2)

30 «o(wo v WI) 1\ oy) 1\ OOWI) 29, NextAndDistEqv

v «o(wo v WI) 1\ o...,y) 1\ OOW2)

v (OW2 1\ OOW2)

147

31 «owo v OWl) A oy A OOWI) 30, NextOrDistEqv

v «owo v OWl) A o-,y A OOW2)

V (OW2 A OOW2)

32 «(false v true) A true A OOWI) 15, 16,21,23,31, prop. logic

v «(false v true) Afalse A OOW2)

v (false A OOW2)

33 (true A true A OOWI) 32, unit of v, zero of A

v (true Afalse A OOW2)

v (false)

34 OOWI 33, unit of A, zero of A, unit of v

35 oo-,y 2, A elimination

36 WI ::> (-,wo A -,W2) 4, A elimination

37 OWl::> o(-'wo A -,W2) 36, In (NextImpNext)

38 OWl::> (O-,wo A O-'W2) 37, NextAndDistEqv

39 OOWl ::> o(O-,wo A O-,W2) 38, I1L (NextImpNext)

40 OOWI ::> (OO-,wo A OO-,W2) 39, NextAndDistEqv

41 oo-,wo A OO""W2 34,40,MP

42 OO""Wo 41, A elimination·

43 OO-,W2 41, A elimination

44 ooruleFsM 25, A elimination

45 oo(rule7.l_28 A oruleFsM) 44, defmition substitution

46 o(orule7.J_28 A ooruleFSM) 45, NextAndDistEqv

47 oorule7.J_28 A oooruleFsM 46, NextAndDistEqv

48 o o rule 47, A elimination

49 oo««wo v WI) A y) A OWl) 48, defmition substitution

v «(wo v WI) A -,y) A OW2)

V (W2 A OW2»

50 o(o«(wo v WI) A Y) A OWl) 49, NextOrDistEqv

v o«(wo v Wl) A -,y) A OW2)

V O(W2 A OW2»

51 o«o«wo v Wl) A Y) A OOWI) 50, NextAndDistEqv

v (o«wo v WI) A -,y) A OOW2)

V (OW2 A OOW2»

52 o«o(wo v WI) A oy A OOWl) 51, NextAndDistEqv

v (o(wo v WI) A o-,y A OOWz)

v (OW2 A OOW2»

148

53

54

55

56

57

58

59

60

o«(owo v OWl) /\ oy /\ OOWI)

V «OWO V OWl) /\ o-,y A 00W2)

V (OW2 /\ 00W2»

o«owo V OWl) A oy /\ OOWI)

V 0« OWO V OWl) /\ o-,y /\ 00W2)

V O(OW2 A oowz)

(o(oWo V OWl) /\ ooy /\ OOOWI)

V (O(OWO V OWl) /\ oo-,y A 000W2)

V (00W2 A 000W2)

«oowo V OOWI) /\ ooy A OOOWj)

V «OOWO V OOWj) A oo-,y /\ OOOWZ)

V (00W2 /\ 000W2)

«(false V true) Afalse /\ OOOWj)

V «(false V true) A true /\ 000W2)

V (false /\ 000W2)

(true Afalse A OOOWj)

V (true A true /\ 000W2)

V (false)

000W2

Wo /\ OWl A OOWj /\ 000W2

52, NextOrDistEqv

53, NextOrDistEqv

54, NextAndDistEqv

55, NextOrDistEqv

34, 35, 42, 43, 56, prop. logic

57, unit of v, zero ofv

58, zero of A, unit of A, unit of v

3, 15, 34, 59, A introduction

With this processing of the input sequence 012, subject to the four premises, the

resulting state sequence is described at sequent 60 by the temporal forrnu la:

Wo /\ OWl /\ OOWj /\ 000W2 (7.1-31)

Associating the states that are satisfied by these state formulas, the corresponding state

sequence is:

(7.1-32)

Although relatively lengthy, this analysis is quite straightforward. With each

recursive iteration, the verity of each rule element is assessed based on the available

information. These verities are then applied to the rule model, and propositional logic is

applied to determine which of the future states described by the rule model is true. For

149

example, in the fIrst iteration, Wo is true by premise; and y, isolated using propositional

logic at sequent 7, is true also by premise. Given that Wo is true, the relevant portion of

the uniqueness assertion premise is isolated using propositional logic, and ",Wl and ",W2

are concluded using modus ponens and propositional logic (at sequent 8 through 11).

The verity of each or their complement are substituted into the rule model and the only

formula that can hold is identifIed (at sequent 12 through 15). With this, OWl is shown

to hold, and the next iteration is performed. The process is repeated with minor

variations to account for the iterative application of rule model to describe the next

terms in the state sequence. The ITL lemma NextlmpNext (previously defmed in Table

4.3-8) is applied (at sequent 18) to the relevant portion of the uniqueness assertion

premise to temporalize it. The defmition of ruleFSM is applied recursively to defme the

next possible states in the state sequence (at sequent 24). In all cases, NextOrDistEqv

and NextAndDistEqv are applied to distribute the ITL next operator 0 across the

formula. With the ITL next operator 0 fully distributed, the verities of all known terms

are assigned, the formula reduced using propositional logic, and the only formula that

can hold is identifIed. With this, OOWl is shown to hold (at sequent 34). The next

iteration is performed using the same logic, and OOOW2 is shown to hold (at sequent 59).

For a longer input sequence, this process of iteration and resolution is repeated as

needed.

Whereas the fmite state machine of Figure 7.1-1 is purposefully limited in scope

to facilitate examination, this example does demonstrate that general-form rules can be

extracted from the graphical depiction of a fmite state machine, and that those general­

form rules can be used to effectively describe the behavior of that fmite state machine.

As demonstrated above, once extracted, these rules can be methodically applied to

identify the specific behavior of the machine for a specific input sequence.

7.2 Analysis of Rules from a Specification

In this section, rules are extracted from an existing concrete specifIcation and

analyzed. The following specification for cash withdrawal from an automatic teller

machine, developed by Cau and Zedan (2000), is considered.

var c, M, Cu, {Cardj:j E ac}, {Pint, AI: i E c}
atm_int

150

while true do (
while atm_non_empty do (

waiCcustomer;
read_card;
if card_disabled then take_disabled_card
else (

)

gecpin;
if max-pin then (

disable_card;
take_disabled3ard
)

)

else (

)

if pin_exit then take_card_pin_exit
else (

)

requesCmoney ;
if money_exit then take3ard_money_exit
else (

debiCaccount;
take_card_money

);
refilCatm

)

Based on a review of the specification and within the context of the rule extraction

framework presented in Chapter 3, this specification contains two types of rule

structures - the if-then-else structure and the while structure. The specification is

processed from the top down (i.e., outside in), analyzing each structure as it occurs, and

replacing that structure with the appropriate rule-based formation.

Starting with the outermost or top while structure, the entire specification is

represented as:

var c, M, Cu, {Card}:j E ac}, {Pin;, A;: i E c}
atm_int
ruZe7.2-a

Within the context of the general rule extraction framework and the stated context for

this analysis, the var declaration and the initialization atm_int are not rules in that they

are not if-then-else or while structures. However, they are included here for

151

completeness. In the above representation, rule7.2.a represents the following portion of

the original specification:

while true do (
while atm_non_empty do (

waiccustomer;
read3ard;

);

if card_disabled then take_disabled_card
else (

)

gecpin;
if max-pin then (

disable3ard;
take_disabled3ard
)

)

else (

)

if pin_exit then take_card_pin3xit
else (

)

requesCmoney ;
if money_exit then take_card_money_exit
else (

debicaccount;
take_card_money

Applying the rule-form defmition of the while structure, previously presented at

(6.6.2-6), in this portion of the specification, rule7.2.a is defmed as:

rule7.2oa ~ (true 1\ orule7.2ob ; refill_atm); rule7.2oa)
v (-,true 1\ empty) (7.2-1)

Consistent with the disjunctive structure of the rule-form while structure, rule7.2-a is

presented as a disjunction of two rules, even though the falsity of the disjunct -,true 1\

empty is certain. In this form. and consistent with the specification, rule7.2oa describes

an infmite sequence.

In (7.2-1), rule7.2ob represents the following portion of the original specification:

152

while atm_non_empty do (
waiCcustomer;
read3ard;

)

if card_disabled then take_disabled3ard
else (

)

gecpin;
if max-pin then (

disable_card;
take_disabled_card
)

)

else (

)

if pin_exit then take_card_pin_exit
else (

)

requescmoney ;
if money_exit then take_card_money_exit
else (

debiCaccount;
take3ard_money

Applying the rule-form defmition to the top while structure in this remaining portion of

the specification, rule7.2-b is defmed as:

rule7.2-b ~ « atm_non_empty
1\ owaiCcustomer ; read_card; rule7.2-e) ; rule7.2-b)
v (-,atm_non_empty 1\ empty) (7.2-2)

In (7.2-2), rule7.2-e represents the following portion of the original specification:

if card_disabled then take_disabled3ard
else (

geCpin;
if max-pin then (

disable3ard ;
take_disabled_card
)
else (

if pinjxit then take_card_pin_exit
else (

requesCmoney ;
if money_exit then take_card_money_exit

153

)
)

)

else (

)

debiCaccount;
take_card_money

Applying the rule-form defmition to the top if-then-else structure in this remaining

portion of the specification, rule7.2-c is defmed as:

rule7.2-c £: (card_disabled /\ otake_disabled3ard)
v (-,card_disabled /\ ogecpin ; rule7.2-d) (7.2-3)

In (7.2-3), rule7.2-d represents the following portion of the original specification:

if max....[Jin then (
disable3ard ;
take_disabled3ard
)

)

else (

)

if pin_exit then take3ard_pin_exit
else (

)

requestJDoney ;
if money_exit then take_card_money_exit
else (

debiCaccount;
take_card_money

Applying the rule-form defmition to the top if-tben-else structure in this remaining

portion of the specification, rule7.2-d is defmed as:

rule7.2-d £: (max....[Jin /\ odisable3ard ; take_disabled_card)
v (-,max....[Jin /\ orule7.2_e) (7.2-4)

In (7.2-4), rule7.2-e represents the following portion of the original specification:

if pin_exit then take_card_pin_exit
else (

154

)
)

requesCmoney ;
if money_exit then take_card_money_exit
else (

debiCaccount;
take_card_money

Applying the rule-form defmition to the top if-then-else structure in this remaining

portion of the specification, rule7.2-e is defmed as:

rule7.2-e ~ (pin_exit /\ otake_card_pin_exit)
v (-,pin_exit /\ orequescmoney ; rule7.21) (7.2-5)

In (7.2-5), rule7.21 represents the following portion of the original specification:

)

if money _exit then take_card_money _exit
else (

debiCaccount;
take_card_money

Applying the rule-form definition to the if-then-else structure in this remaining portion

of the specification, rule7.2_! is defined as:

rule7.2_! ~ (money_exit /\ otake_card_money_exit)
v (,money_exit
/\ odebicaccount ; take_card_money) (7.2-6)

The total rule rule7.21 contains two disjunctively connected rules reflecting the

satisfaction and non-satisfaction of the rule conditions money_exit and ,money_exit.

Because there are no additional rules nested in this rule, the entire specification has been

assessed and the rule extraction is complete.

Based on this analysis, six rules have been extracted from the original

specification:

rule7.2-a ~ ((true /\ oruZe7.2-b ; refIlI_atm) ; ruZe7.2-a) v (,true /\ empty)

ruZe7.2-b ~ «atm_non_empty /\ owaiccustomer ; read_card; rule7.2-c) ; ruZe7.2-b)
v (,atm_nonjmpty /\ empty)

155

rule7.2-c ~ (card_disabled A otake_disabled3ard)
v (-,card_disabled A ogeCpin ; rule7.2-d)

rule7.2-d ~ (max-pin A odisable_card ; take_disabled_card)
v (-,max-pin A orule7.2_e)

rule7.2-e ~ (pin_exit A otake_card_pin_exit)
v (-,pin_exit A orequesCmoney ; rule7.2-j)

rule7.2-j ~ (money_exit A otake_card_moneY3xit)
v (-,money_exit A odebiCaccount; take_card_money)

In this form, the specification can be analyzed as desired using ITL and other

techniques. Because these rules are temporal formulas that describe sequences of states,

the behavior of the specified system (that is, the sequence of states that results from the

execution of the specification) can be tested and assessed by manipulating these

formulas.

In the following analysis, the specific system behavior required to take money

from the automatic teller machine is assessed. Using the desired fmal state sequence

take3ardJl1oney as the goal (i.e., take_card_money is asserted to be true for this

specific analysis), the required state sequence necessary to reach this goal is assembled

from the extracted rules by starting with the desired fmal state sequence and working

backwards through the rules. Within this goal-oriented re-assembly, those portions of

the rules associated with state sequences that do not lead to the desired fmal state

sequence are discarded, and the remaining rules are re-assembled, leaving only those

rules that lead to the state sequence take3ard_money.

Consider the extracted rule rule7.2j that includes the goal take3ard_money:

rule7.2j ~ (money_exit A otake3ard_money_exit)
v (-,money_exit A odebicaccount; take3ard_money)

The total rulerule7.2-j contains two disjunctively connected rules. However, only one

rule includes the goal take3ard_money. Given the imposition of this goal, the rule

(money_exit A otake3ard_money_exit) must evaluate false. Applying propositional

logic, this disjunct is eliminated and the remaining sequence is described as:

156

Stated another way, ruZe7.21,w_card_money is the only half of the total rule ruZe7.2j that leads

to and includes the sequence take_card_money.

Continuing to move backwards through the extracted rules, consider ruZe7.2-e:

ruZe7.2-e ~ (pin_exit /I. otake_card_pin_exit)
v (-,pinjxit /I. orequesCmoney ; rule7.2j)

With the imposition of the goal take_card_money, the disjunct (pin_exit /I.

otake_card_pin_exit) must evaluate faZse because it does not include rule7.2-f and

therefore cannot lead to the goal take_card_money. Applying propositional logic, this

disjunct is eliminated and the remaining sequence is described as:

Substituting the defmition of ru[e7.21,w_card..moDey into ruZe7.2-e,w_card..money yields:

rule7.2-e,w_card..money == (-,pin_exit /I. orequesCmoney ; (,money_exit
/I. odebicaccount ; take3ard_money»

Continuing to work backwards through the extracted rules by eliminating disjuncts that

do not lead to the goal and expanding the remaining pruned rules by substituting

equivalences yields:

rule7.2-d!4b_card..money == (,max-pin /I. o(,pin_exit /I. orequescmoney ;
(-,money_exit /I. odebicaccount ; take_card_money»)

ruZe7.2-c,w_card_money == (,card_disabled /I. ogecpin ; (,max-pin
/I. o(-,pin_exit /I. orequescmoney ; (,moneYjxit
/I. odebiCaccount ; take3ard_money»»

157

rule7.2-b tUe_cardJDODey ~ (atm_non_empty A owaiccustomer ;
read_card; rule7.2-ctUe_caIdJDODOY)

rule7.2-btUe_cardJDODey == (atm_non_empty A owaiccustomer; read_card;
(,card_disabled A ogecpin ; (,max...,pin
A o(opin_exit A orequesCmoney; (,money_exit
A odebicaccount ; take3ardJIlOney))))) ;
rule7.2-b take_caIdJDODeY

With rule7.2-b take_caIdJDooey' the state sequence that leads to take3ard_money is identified

and described. Because rule7.2-a is a system rule and not a business/knowledge rule (that

is, the rule condition of rule7.2-a is true and therefore reflects no domain-specific

knowledge), rule7.2-a is not included in this analysis.

With this methodical elimination of those elements of the various rules that do

not contribute to the defmed goal, it is tempting to view the above analysis as a form of

backwards slicing. However, unlike most other slicing techniques that target program

code, this analysis considers state sequences explicitly described by ITL formulas.

Unlike traditional slicing that returns a fragment of code that leads to or from a specific

data state, this analysis yields the entire behavior of a system, representing a sequence

of states. Unlike traditional slicing where the result is the sliced code, this analysis

yields a formal description of a state sequence. Thus, if the above analysis is to be

viewed as slicing, it is best described as state sequence slicing.

With this series of reduced rules, reduced in that only the rules associated with

take3ard_money are included, a variety of analyses are possible. For example, because

each of these take3ard_money rules are general-form rules consisting of a rule

condition and a rule state in the form!; A oli, the rule conditions necessary to achieve

the goal take3ard_ffioney are easily identified by assessing the individual rules:

rule7.2-b tUe_caIdJDODOY

rule7.2-c tUe_caId..moAey

rule7.2-d tUe_<an\JDODOY

rule7.2-e tUe_clldJDOAoy

rule7.2j tUe_card_IPoney

Rule Condition

atm_non_empty
,card_disabled
,max...,pin
,pin_exit
,money_exit

158

Whereas ruZe7.2-b lAke.card.monoy is a complete description of the state sequence that

includes take_card_money, partial state sequences that contribute to the complete

sequence described by ruZe7.2-b 'aka.card_monoy can be derived with the application of ITL and

the rule algebra of Chapters 5 and 6. These partial state sequences can be used to

describe and reason about the behavior of the rule in alternative ways. Consider

rule7.2-b lAke.canUnonoy == (atm_non_empty 1\ owaiccustomer ; read_card;
(,card_disabled 1\ ogeCpin ; (,max-pin
1\ o(-.pin_exit 1\ orequesCmoney ; (,money_exit
1\ odebicaccount ; take3ard_money))))) ;
rule7.2-b lAke.cardJllOnoy

As presented, ruZe7.2-b lAke.card...monoy considers multiple instances of take_card_money,

because it includes a recursive reference to ruZe7.2-b lAke.card...moncy as the last element of the

sequence. However, for the following analysis, only one instance of take_card_money

is considered. By limiting this to one instance of take_card_money, the requirements

and actions for one customer can be assessed. Therefore, for this analysis, all state

sequences after the first instance of take_card_money will be dropped. Assuming the

that formula describing the state sequence up to and including take_card_money is

known to hold for a given customer, this elimination of the trailing chopped sequence

(i.e., the recursive ru!e7.2-b lAke.card.monOy) is allowed in ITL based on the semantics of chop.

Therefore, using this approach, the state sequence that precedes and includes a single

instance of take3ard_money is:

atm_non_empty 1\ owaiCcustomer ; read3ard ;
(,card_disabled 1\ ogecpin ; (,max..,pin
1\ o(,pinjxit 1\ orequesCmoney ;
(,money_exit 1\ odebiCaccount ; take_card_money))))

Applying NextAndDistEqv to (7.2-7) yields:

atm_non_empty 1\ owaiccustomer ; read_card;
(,card_disabled 1\ ogecpin ; (,max,.pin
1\ o-.pinjxit 1\ oorequesCmoney ;
(,money_exit 1\ odebicaccount ; take3ard_money)))

(7.2·7)

(7.2-8)

159

Applying propositional logic (conjunction elimination) to (7.2-8) yields:

owaiccustomer ; read3ard;
(,card_disabled" ogecpin ; (,max...[Jin
" o,pin_exit" oorequescmoney ;
(,money_exit A odebicaccount ; take3ard_money)))

Applying ITL (AndChopImp) to (7.2-9) yields:

owaiccustomer ; read_card ; ,card_disabled
/I. owaiccustomer ; read3ard ; ogecpin ;
(,max...[Jin A o-,pin_exit" oorequescmoney;
(,money_exit" odebicaccount; take3ard_money))

Applying propositional logic (conjunction elimination) to (7.2-10) yields:

owaiccustomer ; read3ard ; ogecpin ;
(,max...[Jin" o-pin_exit /I. oorequesCmoney ;
(,money_exit" odebicaccount ; take_card_money)))

Applying ITL (ChopAndlmp) to (7.2-11) yields:

owaiCcustomer ; read_card ; ogecpin ; -,max...[Jin
" owaiccustomer ; read_card; ogeCpin ; o-pin_exit
" owait3ustomer; read_card; ogeCpin; oorequescmoney;
(,money_exit" odebicaccount ; take_card_money)

Applying propositional logic (conjunction elimination) to (7.2-12) yields:

owaiCcustomer; read_card; ogecpin ; oorequesCmoney;
(-,money_exit /I. odebiCaccount ; take3ard_money)

Applying ITL (ChopAndImp) to (7.2-13) yields:

owaiCcustomer ; read3ard ; ogecpin ;
o orequesCmoney ; ,money_exit
/I. owaiCcustomer ; read3ard ; ogeCpin ;
oorequesCmoney ; odebicaccount ; take_card_money

(7.2-9)

(7.2-10)

(7.2-11)

(7.2-12)

(7.2-13)

(7.2-14)

160

With these transformations, the state sequence leading to take_card_money, as

presented in (7.2-7), has been transformed into a series of conjunctively connected

chopped state sequences. To demonstrate this, the following conjuncts are extracted

from (7.2-8), (7.2-10), (7.2-12), and (7.2-14) using propositional logic:

owaiccustomer ; read3ard ; -,card_disabled

owaiccustomer ; read3ard ; ogecpin ; -,max-pin

owaiccustomer ; read3ard ; ogecpin ; o-,pin_exit

owaiccustomer ; read_card; ogeCpin ;
oorequesCmoney ; -,money_exit

owaiCcustomer ; read3ard ; ogecpin ;
oorequesCmoney; odebiCaccount; take3ard_money

(7.2-1Sa)

(7.2-1Sb)

(7.2-1Sc)

(7.2-1Sd)

(7.2-1Se)

(7.2-1Sf)

(7.2-15a) through (7.2-15f) are combined using propositional logic to form a single

statement:

atm_non_empty
1\ owaiCcustomer ; read3ard ; -,card_disabled
1\ owaiccustomer ; read_card; ogeCpin ; -max-pin
1\ owaiCcustomer ; read_card; ogeCpin ; o-,pin_exit
1\ owaiCcustomer ; read_card; ogecpin ;

oorequescmoney; -,money_exit
1\ owaiCcustomer ; read_card; ogecpin ;

oorequesCmoney; odebicaccount ; take3ard_money (7.2-16)

With the above analysis, (7.2-7) has been transformed into (7.2-16). Both

describe the rule conditions that must be met prior to and the state sequences that lead to

a single instance of take3ard_money. Whereas (7.2-7) describes the entire rule form

necessary to reach a instance of take3ard_money, the state sequences and rule

conditions associated with (7.2-7) can be assessed easily using (7.2-16).

For example, because (7.2-16) is a conjunction, all conjuncts must hold.

Therefore, the rule condition atm_non_empty must hold to achieve take_card_money.

In addition to atm_non_empty, the state sequence satisfying owaiCcustomer ; read_card

161

must hold and then the rule condition -,eard_disabled must hold. In addition, a state

sequence satisfying owaiccustomer ; read3ard ; ogeCpin must hold and then the rule

condition -,max...]Jin must hold. This continues for all conjuncts, including the fmal

conjunct that specifies that a state sequence satisfying owaiccustomer ; read_card ;

ogecpin ; oorequesCmoney ; odebiCaccount must hold before the state sequence

take_card_money.

With this individual and collective assessment of the conjuncts that compose

(7.2-16), the state sequence and rule condition ordering associated with (7.2-7) are

clearly, succinctly, and unambiguously presented. Let there be no misunderstanding -

(7.2-16) is not a replacement for (7.2-7). However, (7.2-16) allows a simple and clear

presentation of the conditions and behaviors associated with (7.2-7). Given that

(7.2-16) is fonnally derived from (7.2-7), conclusions can be drawn from (7.2-16) with

the certain knowledge that those conclusions are applicable to (7.2-7).

In (7.2-16), each of the conjuncts terminate with a rule condition or, in the case

of the last conjunct, the target sequence take3ard_money. This pattern is explored as

another basis for rule transformation, analysis, and understanding, as follows.

The sequences described in (7.2-15a) through (7.2-15f) are derived from (7.2-7),

which is asserted to be a fmite sequence. Therefore, each of the sequences (7.2-15a)

through (7.2-15f) must be fmite sequences. Using the ITL sometimes operator 0 (also

readable as eventually), if two temporal formulas fo and f1 are fmite, then fo ; /1 :::> 0/1

(Cau, 2006, personal communication). Therefore, from (7.2-15b), (7.2-15c), (7.2-15d),

and (7.2-15e), the following statements are concluded:

(7.2-17a)

O-,max...]Jin (7.2-17b)

(7.2-17c)

(7.2-17d)

Applying DiamondNextlmpDiamond to (7.2-17c) yields:

(7.2-18)

162

Applying propositional logic to (7.2-15a), (7.2-15f), (7.2-17a), (7.2-17b), (7.2-17d), and

(7.2-18) yields:

atm_non_empty /\ O,card_disabled /\
O,max-pin /\ O-,pin_exit /\ O,money_exit
/\ owaiCcustomer; read3ard; ogeCpin;
oorequesCmoney; odebiCaccount; take_card_money (7.2-19)

With the application of parentheses to this conjunctive structure, the fundamental

general rule form structure of (7.2-19) is highlighted:

(atm_non3mpty /\ O,card_disabled /\
O,max-pin /\ O-,pin_exit /\ O,money_exit)

/\ owaiCcustomer ; read_card; ogecpin ;
oorequesCmoney; odebiCaccount ; take_card_money (7.2-20)

With this series of transformations, the state sequence necessary to achieve the

state sequence take_card_money, presented in (7.2-7), has been transformed to the

general-form rule presented in (7.2-20). With the form/; /\ ojj, the rule condition.fi is

described as the conjunction atm_non_empty /\ O,card_disabled /\ O,max-pin /\

O,pin_exit /\ O,money_exit and the rule state Ii is described by the chopped sequence

wait3ustomer ; read_card ; ogecpin ; oorequescmoney ; odebiCaccount ;

take3ard_money. Stated another way, to achieve the sequence take_card_money,

atm_non_empty must hold, ,card_disabled, ,max-pin, -,pin_exit, and ,moneY3xit

must eventually hold, and the sequence wait3ustomer ; read_card ; ogecpin ;

oorequescmoney; odebiCaccount ; take_card_money must hold. As before, (7.2-20)

is not a replacement for (7.2-7), nor is it intended to be. However, it does afford a

different analysis path with regard to understanding the conditions and the state

sequences that must hold to achieve the take_card_money.

In this analysis, the fmal transformation incorporating the ITL sometimes

operator 0, presented at (7.2-20), is based on an extended series of individual

transformations starting with (7.2-7). These transformations are generalized with the

following lemma:

163

LEMMA: ChopRuleDiaRulelmp

f- fo /\ ofl ; (ji /\ 0f3) and f- fo /\ ofl ; if2 /\ 013) ::> finite implies

f- fo /\ 012 /\ ofl ; of3

Proof:

1 fo /\ ofl ; if2/\ 0f3) premise

2 fo /\ 0.fJ ; if2 /\ 0f3) ::> finite premise

3 finite 1,2,MP

4 ofl ; if2 /\ 0f3) 1, /\ elimination

5 ofl ;12 /\ ofl ; 013 4, ITL (ChopAndlmp)

6 0.fJ ;12 5, /\ elimination

7 012 3, 6, ITL (ifmite /\fa ;fb) ::> Of b)

8 fo I, /\ elimination

9 fo /\ Of2 7, 8, /\ introduction

10 ofl ; 013 5, /\ elimination

11 fo /\ Of2 /\ ofl ; 0/3 9, 10, /\ introduction

The use of this lemma to simplify the transformation of a state sequence is

demonstrated with the following reanalysis of the reduced version of rule7.2.b tW_card...mouy,

previously presented at (7.2-7). For convenience, (7.2-7) is reiterated:

atm_non_empty /\ owaiCcustomer ; read3ard;
(-,card_disabled /\ ogeCpin ; (-,max...jJin
/\ o(-,pin_exit /\ orequesCmoney ; (-,money_exit
/\ odebicaccount ; take_card_money»»

Applying NextAndDistEqv to (7.2-7) yields:

atm_non_empty /\ owaiccustomer ; read3ard;
(-,card_disabled /\ ogecpin; (-,max...jJin
A (o-,pin_exit /\ 0 orequest~oney ; (-,money _exit
/\ odebicaccount ; take_card~oney»)))

Applying ChopRuleDiaRulelmp to (7.2-21) yields:

(7.2-7)

(7.2-21)

164

atm_non_empty 1\ O,card_disabled 1\

owaiCcustomer ; read_card; ogeCpin ; (,max-pin
1\ (o,pin_exit 1\ oorequesCmoney ; (,money_exit
1\ odebicaccount ; take_card_money)))

Applying ChopRuleDiaRulelmp to (7.2-22) yields:

atm_non_empty 1\ O,card_disabled 1\ O,max-pin
1\ owaiccustomer ; read3ard ; ogecpin ;
(o-,pin_exit 1\ oorequesCmoney ; (,money_exit
1\ odebicaccount; take3ard_money))

Applying ChopRuleDiaRulelmp to (7.2-23) yields:

atm_non_empty 1\ O,card_disabled 1\ O,max...,pin
1\ Oo-,pin_exit 1\ owaiccustomer ; read_card; ogeCpin ;
oorequesCmoney; (,money_exit
1\ odebicaccount ; take3ard_money)

Applying ChopRuleDiaRulelmp to (7.2-24) yields:

atm_non_empty 1\ O,card_disabled 1\ O,max...,pin
1\ Oo-,pin_exit 1\ O,moneYjxit 1\

owaiCcustomer ; read3ard ; ogecpin ;
oorequesCmoney ; odebiCaccount ; take_card_money

(7.2-22)

(7.2-23)

(7.2-24)

(7.2-25)

To transform Oo-,pin_exit to O-,pin_exit, propositional logic, and ITL (Diamond­

NextImpDiamond) are applied to (7.2-25) to yield:

atm_nonjmpty 1\ O,card_disabled 1\ O,max...,pin
1\ O,pin_exit 1\ O,moneyjxit 1\

owaiCcustomer ; read3ard ; ogecpin ;
oorequesCmoney ; odebiCaccount; take_card_money (7.2-26)

With (7.2-26), the transformation is complete because the chopped sequence

owaiCcustomer ; read3ard ; ogecpin ; oorequescmoney ; odebicaccount ;

take3ard_money contains no general form rules of the formJi 1\ ojj. Although the strict

and total temporal ordering of (7.2-7) is not preserved with respect to when the various

165

conditions must be met, (7.2-26) does provide an alternative view of the conditions and

sequences that comprise the total state sequence leading to take3ard_money.

The preceding analyses have focused on only one portion of a set of rule, or

more specifically, the one path through the set of rules that leads to a single outcome.

In these preceding analyses, this involved selecting only those rules (i.e., the halves of a

total rule) that lead to the goal take3ard_money. Alternatively, sets of total rules can

be analyzed. Analyzing the total rule precludes the necessity of state sequence slicing

on a specific outcome. By analyzing the total rules, all possible outcomes can be

assessed.

To demonstrate the analysis of an entire set of rules, five of the previously

extracted total rules are considered:

rule7.2-b ~ «atm_non_empty A owaiCcustomer; read_card; rule7.2-c) ; rule7.2-b)
v (,atm_non_empty A empty)

rule7.2-c ~ (card_disabled A otake_disabled3ard)
v (.card_disabled A ogecpin ; rule7.2-d)

rule7.2-d ~ (max-pin A odisable_card ; take_disabled_card)
v (,max-pin A orule7.2-e)

rule7.2-e ~ (pin_exit 1\ otake_card_pin_exit)
v (opinjxit 1\ orequesCmoney ; rule7.2-j)

rule7.2j ~ (money_exit A otake_card_money_exit)
v (,money_exit 1\ odebicaccount ; take_card_money)

As previously discussed, rule7.2_a is always true and is implemented to assure the

repetitive and non-terminating application of rule7.2-b. Therefore, rule7.2-a is not

considered in this analysis.

In the following analysis, these five rules - rule7.2-b, rule7.2-c, rule7.2-d, rule7.2-e,

and rule7.2j - are used as premises, and a transformation is derived that describes the

rule conditions and rule states associated with these five rules. One assumption is made

for this analysis. The rule conditions of these five rules - atm_nonjmpty,

card_disabled, money_exit, max-pin, and pin_exit - are asserted to be state formulas.

Given the expected operatio~ of a typical ATM machine - that the satisfaction of these

166

individual conditions is based on the current state of the system and not some future

state or sequence of states - this is a reasonable assertion.

To implement these rule transformations, six lemmas are introduced -

AndChopDrop, ChopSwaplmpl, ChopSwaplmp2, ChopS wapImp3 , RuleChopTwo­

RuleImp, TwoChopRulesImp, and TwoChopRulesImp2. ChopSwaplmpl, ChopSwap­

Imp2, and ChopSwaplmp3 are used to replace an ITL formula (typically a general form

rule) in a chopped sequence with a transformed formula, thereby maintaining the order

and associations of the original chopped sequence. AndChopDrop, RuleChop­

TwoRulelmp, TwoChopRulesImp, and TwoChopRuleslmp2 are used to separate and

collect the rule conditions and rule states of the two chopped rules and transform them

into a single, general form rule. TwoChopRulesImp is a generalization of

StateTwoChopRuleslmp3, previously presented in Section 5.6.2. In a deviation from

previously consistent use of the general rule forml; A oli in the development of other

lemmas that comprise this rule algebra, these lemmas are developed using I; A Ii to

accommodate both the general rule form I; A ojj and special cases such as I; A empty.

Given that fn can be instantiated with ofn as needed in these lemmas, this alternative

form is fully expressive with regard to the general rule form used throughout this thesis.

LEMMA: AndChopDrop

f- ifo Ali) ;fz implies f- fa Afi ;fz

Proof:

1 ifo Af1) ;12
2 fa ;f2 Af1 ;f2

3 fa ;f2

4 fa

5 f1 ;fz

6 fa Afi ;f2

LEMMA: ChopSwaplmpl

f- fo;/1 and f- fi =:Jf2 implies f- /0 ;/2

premise

1, ITL (AndChoplmp)

2, A elimination

3, semantics of chop

2, A elimination

4, 5, A introduction

167

Proof:

1 10 ;11
2 11-:::J12
3 10 ;II-:::J/o;h
4 /0 ;12

LEMMA: ChopSwapImp2

f- /0 ;12 and f- 10 -:::JII implies f- II ;12

Proof:

1 10 ;12
2 la-:::JII
3 10;12 -:::J./J ;12
4 /I ;12

LEMMA: ChopSwapImp3

f- la:!I;13 and f- II :::>12 implies f- 10 ;12 ;13

Proof:

1 10 :11 :/3
2 IJ -:::J12
3 II :13:::> h :13
4 10 ;11 ;/3 -:::Jla ;12 ;13

5 to ;12 ;13

LEMMA: TwoChopRulesImp

I- (fa I\!I) : (ji 1\13) implies I- (fa ;12) 1\ (fl :13)

Proof:

1 (fo All) ; (f2 A13)
2 «(fa 1\11) ;12) 1\ «(fa All) ;13)
3 (fa 1\11) ;12
4 (fo :12) 1\ (o/J :12)

premise

premise

2, ITL (RightChopImpChop)

1,3,MP

premise

premise

2, ITL (LeftChopImpChop)

1,3,MP

premise

premise

2, ITL (LeftChopImpChop)

3, ITL (RightChopImpChop)

1,4,MP

premise

1, ITL (ChopAndlmp)

2, 1\ elimination

3, ITL (AndChopImp)

168

5 (fo A/1) ;/3

6 (fo ;/3) A (fl ;/3)

7 (fo ;/2)

8 {/J ;/3)

9 (fo ;/2) A (f1 ;/3)

LEMMA: TwoChopRuleslmp2

Proof:

1 (fo A/I) ; (f2 A/3) ;/4

2 (f2 A/3) ;/4

3 /2 A/3;14

4 (h A/3);14 ~ 12 A/3 ;/4

5 (fo A/I) ; (f2 A/3) ;/4 ~ (fo A/I) ; (h A/3 ;/4)

6 (fo A/I) ; (f2 A/3 ;/4)

7 ifo ;/2) A (f] ;/3 ;/4)

LEMMA: RuleChopTwoRulelmp

Proof:

1 (fo A/I) ; «h A/3) v (f4 A/5))

2 «(fo A/I) ; (f2 A/3)) V «(fo A/I) ; (f4 A!s))

3 (fo A/I) ; (f2 A/3)

4 (fo ;/2) A (f1 ;/3)

5 «(fo ;12) A {/J ;/3)) v «(fo ;14) A {/J ;/5))

6 (fo A/I) ; (f4 A/5)

7 (fo ;/4) A (fl ;/5)

8 «(fo ;14) A {/J ;/5)) v «(fo ;Ji) A {/J ;/3))

9 «(fo ;/2) A {/J ;/3)) v «(fo ;14) A {/J ;/5))

10 «(fo ;/2) A {/J ;/3)) v «(fo ;14) A (f1 ;/5))

2, A elimination

5, ITL (AndChoplmp)

4, A elimination

6, A elimination

7, 8, A introduction

premise

CP assumption

2, AndChopDrop

2-3, ~ introduction

4, ITL (RightChoplmpChop)

1,5, MP

6, TwoChopRuleslmp

premise

1, ITL (ChopOrEqv)

CP assumption

3, TwoChopRuleslmp

4, v introduction

CP assumption

6, TwoChopRuleslmp

7, v introduction

8, commutativity of v
2, 3-5, 6-9, v elimination

169

The general transformation strategy for this complete analysis of all state

sequences or behaviors associated with rule7.2-b (and rule7.2-e, rule7.2-d, rule7.2-e, and

rule7.2j by inclusion) is to cleave each contributory rule into the component rule

condition and rule state, and then add those .components, in order, into the aggregate

descriptions of rule conditions and corresponding system behaviors. This disassembly

and subsequent reassembly is performed using In and the rule algebra presented in this

research. Because this is an assessment of all possible behaviors associated with an

entire set of rules, these alternative behaviors are expressed disjunctively. The target

rules are processed in reverse order, that is, from the deepest rule upwards. In this way,

behaviors are transformed systematically, and each subsequent behavior associated with

a specific rule rests on the behavior defmed by that rule's component rules.

This transformation of the five rules ruZe7.2-b, ruZe7.2-e, rule7.2-d, rule7.2-e, and

rule7.2j is presented in Appendix B. As the deepest rule, rule7.2-t includes no other rules

and therefore, by defmition, totally describes all behaviors associated with ruZe7.2-t·

Therefore, rule7.2j needs no transformation. Therefore, ruZe7.2-e is transformed first and

incorporates the behaviors associated with rule7.2j. Then, rule7.2-d is transformed and

incorporates the behaviors derived from rule7.2-e and rule7.2j. Then, rule7.2-e is

transformed and incorporates the behaviors derived from rule7.2-d, rule7.2-e, and rule7.21·

Finally, ruZe7.2-b is transformed and incorporates the behaviors derived from rule7.2-e,

rule7.2-d, rule7.2-t, and ruZe7.2-f

The transformations for rule7.2-e, rule7.2-d, rule7.2-e, and rule7.2j are presented in

Appendix B. The transformation for rule7.2-b is presented below:

(atm_non_empty ; ..,card_disabled ;
..,max...[Jin ; -,pin_exit; ..,money_exit
" owaiccustomer; read3ard; ogecpin ; oorequescmoney ;

odebiCaccount ; take3ard_ffioney; rule7.2-b) (7.2-27a)

v (atm_non_empty ; ""'leard_disabled;
..,max...[Jin ;..,pin_exit; money_exit
A owaiccustomer; read_card; ogecpin ;

oorequesCmoney ; otake_card_money_exit ; rule7.2-b)

v (atmJWn_empty ; ..,card_disabled ; -,max-pin ; pin3xit
A owaiccustomer; read_card; oget-pin ;

ootake_card_p~exit ; rule7.2-b)

(7.2-27b)

(7.2-27c)

170

v (atm_nonjmpty; ,card_disabled; max-pin
A owaiCcustomer; read_card; ogecpin ;

odisable_card ; take_disabled_card; rule7.2-b)

v (atm_non_empty; card_disabled
A owaiCcustomer; read_card;

take_disabled_card; rule7.2-b)

(7.2-27d)

(7.2-27e)

(7.2-270

Although (7.2-27) is a single disjunctive statement, each component disjunct is

numbered individually to facilitate discussion.

With the above transformation and given the premises rule7.2-b, rule7.2-c, rule7.2-d,

rule7.2-e, and ru[e7.2-!, (7.2-27) is proven to hold. Stated another way, for a system where

rule7.2_b, rule7.2_c, rule7.2-d, rule7.2-e, and rule7.2jare known to hold, (7.2-27) describes the

behaviors that are associated with that system. Using (7.2-27) and knowing the verity

of the five rule conditions atm_non_empty, card_disabled, max-pin, pin_exit and

money_exit for a specific instance, the system behavior for that instance can be

determined. For example and as depicted in (7.2-27f), if ,atm_nonjmpty is satisfied,

then empty holds and the system behavior described by rule7.2-b ends. Similarly and as

depicted in (7.2-27e), if atm_non_empty and then card_disabled holds, then

take_disabled_card holds (after both waiccustomer and read_card hold). Alternatively,

using the transformation presented in (7.2-27), the rule conditions necessary for a

desired rule state can be identified. For example and as depicted in (7.2-27a), to achieve

the rule state take3ard_money, the rule conditions atm_non_empty, ,card_disabled,

,max-pin, -,pin_exit, and ,money_exit must hold and must hold in that order.

Another important issue with these transformations is that the recursive nature of

ru[e7.2-b is preserved. Specifically, each alternative behavior, except that behavior

associated with -,atm_non_empty, ends with an instance of rule7.2-b. For example and

as depicted in (7.2-27d), if the rule condition atm_non_empty ; ,card_disabled;

max-pin is satisfied, then the sequence owaiccustomer ; read_card ; oget_pin ;

odisable3ard ; take_disabled_card must hold and then that sequence is followed by

rule7.2-b.

171

A critical issue in this overall approach is that the transformation of rule7.2-b as

presented in (7.2-27) and the corresponding transformations of rule7.2-c, rule7.2-d, and

rule7.2-e as presented in Appendix B are disjunctively connected sets of general form

rules. Therefore, as a rule system of general form rules, these transformations can be

used for additional reasoning about the overall system. Just as the transformation of

rule7.2-c is used to reason about rule7.2-b and so on, this transformation of rule7.2-b

presented in (7.2-27) can be used to reason about other systems that include rule7.2-b,

this including this transformation itself.

The results produced with this transformation are consistent with the results

from previous analyses. For example, consider the results of the previous

transformation on the reduced rule rule7.2-b take_card.)llOlley presented at (7.2-26) and reiterated

below for convenience:

(atmjlOn_empty 1\ O-,card_disabled 1\

O-,max..[Jin 1\ O-,pin_exit 1\ O-,money_exit)
1\ owaiCcustomer ; read_card; ogecpin ;

oorequesCmoney ; odebicaccount ; take_card_money (7.2-26)

Recall that (7.2-26) is a transformation of rule7.2-b take.card..Jlloney and that rule7.2-b take.cardJDDney is

the result of a state slicing analysis of rule7.2-b, rule7.2-c, rule7.2-d, rule7.2-e, and rule7.21 to

identify only the portions of those rules that describe the sequence ending with

take3ardJlloney. Therefore, (7.2-26) is compared against (7.2-27a) which, with the

exception of the recursive inclusion of rule7.2-b, describes the state sequence that ends

with take_card_money. Both (7.2-26) and (7.2-27a) describe the same state sequence

starting with waiccustomer and ending with take3ard_money. Both (7.2-26) and

(7.2-27a) describe the same rule conditions that must be met: atm.J1,on_empty,

-,card_disabled, -,max..[Jin, -,pin_exit, and -,moneYjxit. However, (7.2-27a) specifies

the ordering with which these conditions must be met relative to each other. Therefore,

the transformation concluding with (7.2-27a) retains more information relative to the

original rules than the transformation concluding with (7.2-26). However, both are

consistent with each other.

In this section, a concrete specification is analyzed and the rules are extracted

using the rule algebra developed in this research. These extracted rules offer an

172

equivalent, more manipulatable, and more understandable depiction of the logic,

conditions, and nesting associated with each element of the original specification.

These six extracted rules, presented at (7.2-1) through (7.2-6), can be manipulated and

analyzed in numerous ways as demonstrated herein. However, the various rule analysis

examples are offered without prejudice. Which of these techniques are more, or less,

useful with respect to analyzing a given system depends on the overall expectations and

objectives of a specific rule extraction process. With the state slice of (7.2-7), only

those rule components leading to a specific outcome are identified. The transformations

(7.2-15a) through (7.2-15f) are derived from these state-slice rule components and are

examples of ordered individual sequences leading to the specific conditions that must be

met to achieve a specific outcome. These ordered individual sequences are

conjunctively connected into the single structure presented at (7.2-16). Using the

transformations (7.2-15a) through (7.2-15f), all rule conditions that must be met to

achieve a specific outcome and the associated state sequence that supports that outcome

are succinctly represented in a single structure in (7.2-26). All rule conditions and the

order in which they must be met to achieve all possible behaviors are succinctly

represented in a single structure in (7.2-27). Regardless of the specific scrutiny that is

subsequently applied, as demonstrated here, once a concrete specification is represented

as a set of equivalent general-form rules, a wide range of logical analyses are possible.

7.3 Rule Analysis and the Statechart Approach

Although conceptually sound, the general formal framework for rule extraction,

as previously presented in Chapter 3, may be compromised by the 'state explosion'

problem - the exponential growth of the number of states under analysis - if applied

directly to larger programs. Such a problem represents a potentially significant

scalability issue regarding the application of this formal framework to real-world rule

extraction problems. In this section, statecharts are used to address this problem.

Statecharts are an extension of the fmite state machines used to represent rule systems in

Section 7.1. Coupled with the rule model introduced in Chapter 4 and the rule algebra

developed in Chapters 5 and 6, statecharts represent a robust approach to managing the

'state explosion' problem that may result in the extraction and analysis of rules in real­

world legacy systems.

173

7.3.1 Overview of Statecharts

Statecharts are a visual formalism for representing the behavior of state systems,

especially event-driven, reactive systems (Harel, 1987). In an attempt to counter

objections associated with conventional state transition diagrams, statecharts extend

state transition diagrams through the inclusion of hierarchy, concurrency, and broadcast

communication. To deal with the state explosion problem traditionally associated with

a fmite state machine representation of larger systems, statecharts include depth so that

states and events can be well structured and hierarchical. Statecharts provide for the

clustering or abstraction of sub states into superstates, and the refmement of superstates

into supporting substates. Orthogonality between states, achieved by allowing

combinations of synchronization and independence, allows system concurrency.

Graphically, statecharts are an ideal aid to system understanding as they provide the

ability to move up or down, or zoom, between various levels of the user-defmed system

abstraction. The semantics of statecharts as implemented in STATEMATE are

described by Harel and Naamad (1996). The semantics of UML-statecharts are

described by von der Beeck (2001).

State transitions, changes from one system state to another system state, are the

core element of the event-driven, reactive system described by statecharts. Harel (1987)

describes a state transition as "when event a occurs in state A, if condition C is true at

that time, the system transfers to state B." These state transitions are depicted

graphically on statecharts as labeled arrows between two states. The general syntax of

these state transitions is a [C] / P w here a is the event that triggers the state transition,

C is the guarding condition that must be true for the state transition to occur, and Pis

the action that is executed when the transition occurs (Harel et aI., 1990). All of the

elements are optional. In general, a and C are inputs and p is an output; however, P
may also serve as an input, ie., a triggering event, to a state transition in an orthogonal

system component. Although actions are represented as part of the transitions between

states, as in a Mealy automaton, actions may also be associated with the entrance to or

the exit from a specific state, thereby conceptually representing the system as a Moore

automaton (Harel, 1987; Harel et al, 1990). Multiple events, conditions, and actions

174

are allowed using Boolean combinations. Wide latitude is afforded regarding what can

be defmed as an event, condition, or action.

The original motivation for statecharts was reactive systems. Such systems must

respond to multiple internal and external inputs, each occurring under different temporal

constraints. System changes must occur only when specific triggers occur and only

when the corresponding conditions are satisfied. State changes may occur

independently of or be synchronized with other subsystems, but will typically occur

subject to strict temporal requirements. An example of a complex reactive system is the

flight control system in a modern military jet.

Although not typically thought of as a temporally based reactive system, legacy

procedural code can be viewed under the same general model. Legacy system code is a

defmed sequence of code that effectively creates an internal, but enforced, linear

temporal system logic. Procedures and functions are called in a specified order,

executed, and the mandated state changes made. Control is then returned to the calling

object. When executed or 'triggered,' test conditionals are evaluated, and state changes

are made subject to explicit instructions specified by the code bound to that conditional.

Although such legacy code typically does not involve concurrency and the external

inputs may be relatively limited in number and/or monotonic, legacy procedural code

can be described as a simpJe reactive system - simple in that the system logic is

explicitly linear with no concurrency requirement and reactive in that the system

behavior is determined by internal and possibly external events.

7.3.2 Previous Application of Statecharts to Legacy Code Analysis

The use of statecharts and fmite state machines (FSMs) for legacy code and

reverse engineering analysis has been very Bmited. Although frequently used for new

model verification, there are very few reported cases of the use of statecharts or FSMs

for rule extraction or specification recovery from legacy systems. A review of these

applications of statecharts or FSMs to legacy code is presented in this section. Given

the limited experience in this area, some new system verification work involving

statecharts or FSMs that is potentially applicable to legacy system analysis is also

reviewed.

175

Britt (1994) describes the process of comparing a legacy pseudo-code

specification for a critical aircraft collision avoidance system with a replacement system

requirements specification developed using statecharts. This was largely a cross­

mapping exercise by two separate teams, with one team mapping the pseudo-code to the

statechart system, and a second team mapping the statecharts to the pseudo-code.

Although not explicitly stated, it appears that this mapping was primarily a manual,

human-driven process, as opposed to an automated comparison. The correlation

between the two systems was not straightforward, as one pseudo-code process might

map to several statechart transitions, or one statechart transition might map to several

pseudo-code processes.

Corbert et aI. (2000) reported on the development and use of an integrated

collection of program analysis tools, called Bandera, that can be used to extract fmite

state models from Java source code. Whereas fmite-state verification techniques offer

potential with regard to checking hardware design, the authors opine that a major

impediment to practical application of finite-state verification techniques is the "model

construction problem." Currently, most FSM model construction is manual, which is

expensive, prone to error, and difficult to optimize. Further, unlike most system

development, which is performed in common general-purpose languages, most model

checking programs accept specifications only in a highly specialized, tool-specific input

language. To address this semantic and syntactic gap, Bandera takes Java source code

as input and generates FSM model code for use in one of several existing verification

tools. Bandera was designed to achieve multiple functional criteria: use of existing

model checking technologies; automated support for abstractions; model customization;

extensibility; and integration of testing and debugging techniques. Bandera consists of

a slicer, an abstraction engine, a model generator(including model checker language

generation), and a graphical user interface to facilitate component analysis. In model

building, three major techniques are applied in the construction of tractable models:

irrelevant component elimination, data abstraction, and restriction of the components

that are included in the fmal model. The completed model can then be translated into

language for the model checkers Spin, SMV, or SAL.

Popovic et al. (2002) describe the extraction of FSMs from communication

software and their use in formal software verification and automated theorem proving.

176

FSMs are extracted as well-formulated formulas. As the original software was written

in C++ and all target FSMs were written as instances of the same class, automated

extraction was possible. The left-hand sides of the well-formulated formulas were

constructed by looking for two specific functions and extracting the associated state and

event names. The right-hand sides of the well-formulated formulas were constructed by

analyzing transition functions. These extracted, well-formulated formulas, representing

the FSMs in the original code, were then analyzed using the automatic theorem prover

THEO to compare the extracted FSMs against the original system specifications.

Giomi (1995) presents a series of techniques for extracting FSMs from hardware

description languages (HDLs) such as VHDL and Verilog. In these HDLs, system

behaviors can be described, after parsing, by a control flow graph and data flow

information. However, FSM description of the system requires the set of inputs, the set

of outputs, and a state transition graph consisting of states, state transitions, and

transition labels. Techniques are presented for implicitly and explicitly extracting FSMs

from HDL sequential behaviors. The implicit technique requires evaluating all

executable paths between wait states. The explicit technique requires the construction

and evaluation of an explicit state register defming the state machine at the clock edge.

Wang and Edsall (1998) investigated the extraction of FSMs from Verilog code

from an industriaVcommercial operation. Faced with the substantial challenge of

extracting FSMs from different Verilog coding styles, a standardized FSM coding style

was implemented. By standardizing the coding style, a custom parser was created to

extract the FSMs directly from the Verilog code. These extracted FSMs were then

analyzed using various proprietary and commercially available analysis tools.

Verification activities included reachability and terminal state analysis, dynamic

verification of function coverage, and visual verification of the FSM bubble diagram

7.3.3 Visual Formalisms of Rule-Based Legacy Code Structures

Recalling the underlying basis of the general rule model presented in Section

4.1, a rule is a formal description of a relationship between two states. As refmed in

Section 4.2, a rule describes a temporal relationship between two states - a state and a

future state. As presented in Section 4.5, the general rule formJi 1\ afJ describes a rule

as a relationship between two state sequences, where Ji describes the rule condition in

177

terms of the state sequence properties that must be met for the relationship to hold and

where Ii describes the next state sequence that must occur for the relationship to hold.

Both in its basis and as formally implemented, a rule is a conditioned relationship

between two state sequences. And as demonstrated in this research, rules can be refmed

so that rules - relationships between states - can be incorporated within other rules.

Therefore, because statecharts describe relationships between state sequences, because

statecharts allow for the explicit association of conditions with the transitions describing

these relationships, and because statecharts allow for the hierarchical representation of

state sequences within state sequences, there exists a strong correspondence between the

critical elements of rules as defmed in this research and statecharts. In this section,

statecharts are used to represent rules.

In general, these statecharts will be represented using the ST A TEMA TE syntax,

with any exceptions or assumptions noted. In the STATEMATE syntax, transitions are

labeled as a [C] I fl, where a is the event that triggers the state transition, C is the

guarding condition that must be true for the state transition to occur, and fl is the action

that is executed when the transition occurs (Harel et aI., 1990). All transition elements

are optionaL

As an introductory exercise to using statecharts to describe rules, consider the

simple two-state system presented in Figure 7.3.3-1.

Figure 7.3.3-1: A Simple Two-State System

As noted in Chapter 5, this simple two-state system is irreflexive, asymmetric, and

antisymmetric. This system is the simplest possible two-state system, because it

contains only one state transition and therefore is described, without manipulation, by a

single general-form rule.

178

In this system, So F= wo, and S] F= WI. The one transition included in this system

can be described in rule form as Wo 1\ OW]. In this rule, the rule condition is described

by Wo and the rule state is described by WI.

This simple two-state system is represented as a statechart in Figure 7.3.3-2.

)
Figure 7.3.3-2: A Simple Two-State Statechart

States (or state sequences) are represented using rounded rectangles and the state

transition between the two states So and s] is represented using the labeled arrow. The

rule condition Wo is associated with this transition using the ST ATEMATE syntax

described above. For this transition, there is no event a or action fJ associated with the

transition. Consistent with the rule Wo 1\ OW] describing the simple two-state system

presented in Figure 7.3.3-1, an interpretation of the simple statechart presented in Figure

7.3.3-1 is that the transition between state So and state S1 occurs only if the condition Wa

is met. With the previous specification that s] F= WI, the rule Wo 1\ OW1 holds under this

statechart.

This example is purposefully simple to facilitate demonstration. To facilitate the

analysis and extraction of rules in legacy code, several generic visual formalisms of

rule-based legacy code structures have been developed using statecharts. Four common

rule-based legacy code structures are analyzed: the 'if-then-else' structure, the 'while'

structure, the 'indexed for loop' structure, and the 'switch' structure. Using statechart

concepts, generic visual formalisms are developed for each of these legacy structures.

7.3.3.1 Statechart of the 'if-then-else' Structure

In Section 6.6.1, a rule-based 'if-then-else' structure is defmed as:

(fa 1\ of]) V (--fa 1\ 0f2) (7.3.3.1-1)

179

With this rule pair, two state sequence relationships are described. Iffo is satisfied, the

next state sequence must satisfy fl. Conversely, if -/0 is satisfied, the next state

sequence must satisfy f2. Letting a1 represent the state sequence that satisfies f1 (ie.,

a11= /1) and letting a2 represent the state sequence that satisfies f2 (i.e., a21= h), the

generic visual formalism for the 'if-then-else' structure of (7.3.3.1-1) is presented in

Figure 7.3.3.1-1.

Figure 7.3.3.1-1: Generic Visual Formalism of the 'if-then-else' Structure

Within the super-state a, the branching between the state sequences a1 and 0'2 is

depicted with the C-connector. If the condition fo is satisfied, then the next state

sequence is a1. That this condition is met is denoted by the labeling of the transition as

[fo], consistent with STATEMATE labeling conventions. Alternatively, if the condition

-/0 is satisfied, then the next state sequence is a2.

A variation of the rule-based 'if-then-else' structure is the 'if-then' structure. This

structure is defmed in Section 6.6.1 as:

(fo" 0f1) v (-/0" empty) (7.3.3.1-2)

Letting 0'1 represent the state sequence that satisfies /1 (ie., a1 1= f1), the generic visual

formalism for the 'if-then' structure of (7.3.3.1-2) is presented in Figure 7.3.3.1-2.

180

Figure 7.3.3.1-2: Generic Visual Formalism of the 'if-then' Structure

7.3.3.2 Statechart of the 'while' Structure

In Section 6.6.2, a rule-based 'while' structure has been defmed as a recursive

loop as:

whilefo do ofl ~ ((fo A of1) ; whilefo doiJ) v (-{o A empty) (7.3.3.2-1)

In this structure, if fo is satisfied, the next state sequence must satisfy f1' .and this

relationship betweenfo and ofl exists untilfo is no longer satisfied. Letting (11 represent

the state sequence that satisfies iJ (i.e., (11 1= /1), the generic visual formalism for the

'while' structure of (7.3.3.2-1) is presented in Figure 7.3.3.2-1.

Figure 7.3.3.2-1: Generic Visual Formalism of the 'while' Structure

7.3.3.3 Statechart of the 'indexed for-loop' Structure

In Section 6.6.3, a rule-based indexed for-loop structure is defmed in terms of a

'while' structure as :

181

for A = b to c do /I ~ (oA = b) ; rule' (7.3.3.3-1)

where:

rule' ~ «(A:::; c) /\ of1 ; oA =A+ 1) ; rule') v (...,(A :::; c) /\ empty)

Letting (51 represent the state sequence that satisfiesf1 (i.e., (511= f1), the generic visual

formalism for the indexed for-loop structure of (7.3.3.3-1) is presented in

Figure 7.3.3.3-1.

Figure 7.3.3.3-1: Generic Visual Formalism of the Indexed 'for-loop' Structure

This visual formalism incorporates two additional elements associated with the

STATEMATE statecharts. On entry to the super-state (5, the index counter A is

initialized and set to b. This is denoted by the nsf A := b statement. With each exit from

the state sequence (5], the index counter A is incremented by 1. This is denoted by the

xs/ A := A + 1 statement. With these two additions, the visual similarities between the

indexed for-loop and the 'while' statement are evident, reflecting the underlying logical

similarities.

7.3.3.4 Statechart of the 'switch' Structure

Consider the following guarded command statement:

(7.3.3.4-1)

This guarded command concept has various implementations in different languages,

including the switch statement in C and Java, the evaluate statement in COBOL, and the

case statement in Pascal and Ada. Although details vary with language, all

182

implementations of the switch-type construct follow the same general concept. As

discussed in Section 6.3, guarded command statements can be logically represented

with disjunction. Therefore, (7.3.3.4-1) can be represented as:

(7.3.3.4-2)

Given three state sequences 0'2, 0'3, and 0'4, such that 0'21= /2, 0'31= /3, and 0'41= /4, the

generic visual formalism for the 'switch' structure of (7.3.3.4-1) is presented in Figure

7.3.3.4-1.

Figure 7.3.3.4-1: Generic Visual Formalism of the 'switch' Structure

Similarities in both structure and function between 'switch' structures and 'if-then-else'

structures are noted frequently in comparisons of languages and language structures

(e.g., Sebesta, 2002; Scott, 2000). The similarities between the 'switch' structure in

Figure 7.3.3.4-1 and the 'if-then-else' structure in Figure 7.3.3.1-1 are evident.

7.3.4 Representing Extracted Rules with Statecharts

In this section, statecharts are used to depict the rules that were extracted from

the automatic teller machine specification in Section 7.2. In that section, the following

six rules were extracted from the original specification:

rule7.2.a ~ ((true A orule7.2.b ; refilLatm) ; rule7.2.a) v (,true A empty)

ru[e7.2.b ~ «atm_nonjmpty A owaiccustomer ; read_card; rule7.2-c) ; ru[e7.2-b)
v (,afm_nonjmpty A empty)

rule7.2_c ~ (card_disabled A otake_disabled_card)
v (,card_disabled A ogecpin ; ruZe7.2-d)

183

rule7.2-d t: (max-pin" odisable3ard ; take_disabled3ard)
v (-,max-pin " orule7.2_~)

rule7.2_~ t: (pin_exit" otake_card_pin3xit)
v (-,pin_exit" orequesCmoney ; rule7.2-j)

rule7.2j t: (money_exit" otake_card_money_exit)
v (-,money_exit" odebiCaccount ; take3ard_money)

To highlight how these hierarchical properties of statecharts allow for rules and the

corresponding state sequences to be embedded in each subsequent statechart, these six

rules will be processed from the top down. Statecharts are developed for each rule, and

each statechart depicts the state sequence that satisfies the corresponding temporal

formula in each rule. For example, (Jrule7.2_a satisfies rule7.2-a, (JrefilLatm satisfies

refill_atm, etc. With the exception of the last rule, which contains no explicit rules,

each statechart includes a state sequence described by another rule. Just as the above

six rules describe a logical connection and hierarchy between one rule and the next, the

corresponding statecharts depict those connections and hierarchy graphically.

Starting with the ftrst or top rule, rule7.2-a is defmed as:

rule7.2-a t: «true" orule7.2-b; refill_atm) ; rule7.2-a) v (-,true" empty)

The statechart depicting the state sequences satisfying ruZe7.2-a is presented in Figure

7.3.4-1. The statechart for rule7.2-a is based on the generic visual formalism for the

'while' structure as previously presented in Section 7.3.3.2. rule7.2-a is a system rule, and

the corresponding state sequence is described such that it does not terminate. (The

termination case of -,true is shown on this statechart for completeness.) This statechart

includes the state sequences described by rule7.2-b and refilCatm After (JrefilLatm, (Jrule7.2_a

is repeated. Thus, the formula (true" orule7.2-b ; refilCatm) ; rule7.2-a is satisfied by

(Jrule7.2 .. as depicted in this statechart.

184

Figure 7.3.4-1: Statechart for rule7.2.a

rule7.2.a and the corresponding statechart for rule7.2.a (presented in Figure 7.3.4-

1) include rule7.2.b. The defmition of rule7.2-b is:

rule7.2.b ~ «atm_non_empty 1\ owaiccustomer; read_card; rule7.2.c) ; rule7.2.b)
v (-,atm_nonjmpty 1\ empty)

The statechart depicting the state sequences satisfying rule7.2.b is presented in Figure

7.3.4-2. The statechart for rule7.2.b is based on the generic visual formalism for the

'while' structure as previously presented in Section 7.3.3.2. In rule7.2.b, branching

between two alternative state sequences is based on the rule condition atm_non_empty.

If atm_non_empty is satisfied, a state sequence described by waiccustomer, then

read3ard, and then rule7.2.c follows, and then rule7,2.b is repeated. With this series of

state sequences, the formula (atm_nonjmpty 1\ owaiccustomer ; read_card; rule7.2.c) ;

rule7,2.b is satisfied. If atm_non_empty is not satisfied, the state sequence satisfying

rule7.2.b ends, and the formula -,atm_non_empty 1\ empty is satisfied. In this statechart,

this termination is depicted with the stubbed arrow. Given that (jrule7.2.b is part of (jrule7.Z.a'

with the termination of rule7.2.b, the state sequence described by rule7.2.a continues with

refill_atm (as previously depicted in Figure 7.3.4-1).

185

(J rule7.2_b

Figure 7.3.4-2: Statechart for rule7.2-b

rule7.2-b and the corresponding statechart for rule7.2-b (presented in Figure 7.3.4-

2) include rule7.2-c. The defmition of rule7.2.c is:

rule7.2-c ~ (card_disabled" otake_disabled3ard)
v (-,eard_disabled " ogecpin ; rule7.2-d)

The statechart depicting the state sequences satisfying rule7.2-c is presented in Figure

7.3.4-3. The statechart for rule7.2-c is based on the generic visual formalism for the

'if-then-else' structure as previously presented in Section 7.3.3.1. In rule7.2-c, branching

between two alternative state sequences is based on the rule condition card_disabled. If

card_disabled is not satisfied (that is. if -,card_disabled is true). a state sequence

described by gecpin and then rule7.2-d follows. Thus, the formula -,card_disabled "

oget-pin ; rule7.2.d is satisfied. If card_disabled is satisfied, a state sequence described

by take_disabled_card follows and the formula card_disabled" otake_disabled3ard is

satisfied.

186

(j rulen_c

Figure 7.3.4-3: Statechart for ruZe7.2-c

ru[e7.2-c and the corresponding statechart for ru[e7.2-c (presented in Figure 7.3.4-

3) include ruZe7.2-d. The defmition of ruZe7.2-d is:

ruZe7.2-d ~ (max..,pin /\ odisable3ard ; take_disabled_card)
v (-,max..,pin /\ oruZe7.2_e)

The statechart depicting the state sequences satisfying ru[e7.2-d is presented in Figure

7.3.4-4. The statechart for ruZe7.2-c is based on the generic visual formalism for the

'if-then-else' structure as previously presented in Section 7.3.3.1. In rUZe7.2_d, branching

between two alternative state sequences is based on the rule condition max..,pin. If

max..,pin is not satisfied, a state sequence described by ruZe7.2-e follows. Thus, the

formula -,max..,pin /\ oruZe7.2-e is satisfied. If max..,pin is satisfied, a state sequence

described by disable3ard follows and the formula card_disabled /\ odisable_card is

satisfied.

[maxyin] [....,maxyin]

Figure 7.3.4-4: Statechart for rule7.2_d

187

ruZe7.2-d and the corresponding statechart for ruZe7.2-d (presented in Figure 7.3.4-

4) include ruZe7.2-e. The defmition of ruZe7.2-e is:

ruZe7.2-e ~ (pin_exit" otake3ard_pin3xit)
v (-pin_exit" orequescmoney ; ruZe7.2-/)

The statechart depicting the state sequences satisfying ruZe7.2-e is presented in Figure

7.3.4-5. The statechart for ruZe7.2-t is based on the generic visual formalism for the

'if-then-else' structure as previously presented in Section 7.3.3.1. In ruZe7.2-e, branching

between two alternative state sequences is based on the rule condition pin_exit. If

pin_exit is not satisfied, a state sequence described by requesCmoney and then ruZe7.2-t

follows. Thus, the formula -pin_exit " orequesCmoney ; ruZe7.2-/ is satisfied. If

pin_exit is satisfied, a state sequence described by take3ard_pin_exit follows and the

formula pin_exit" otake3ard_pin_exit is satisfied.

cr rule7.2_e

Figure 7.3.4-5: Statechart for ruZe7.2-t

ruZe7.2-t and the corresponding statechart for rule7.2-e (presented in Figure 7.3.4-

5) include ruZe7.2-/. The defmition of rule7.2-/ is:

ruZe7.2j ~ (money_exit" otake_card_money_exit)
v (-,money_exit" odebicaccount; take3ard.-money)

The· statechart depicting the state sequences satisfying rule7.2j is presented in Figure

7.3.4-6. The statechart for ruZe7.2j is based on the generic visual formalism for the

188

'if-then-else' structure as previously presented in Section 7.3.3.1. In rule7.21, br~ching

between two alternative state sequences is based on the rule condition money_exit. If

money_exit is not satisfied, a state sequence described by debicaccount and then

take_card_money follows. Thus, the formula ,money_exit /\ odebiCaccount ;

take3ard_money is satisfied. If money_exit is satisfied, a state sequence described by

take_card_moneY3xit follows and the formula money_exit /\ otake_card_money_exit

is satisfied.

O'rule7.2-f

Figure 7.3.4-6: Statechart for rule7.21

Whereas each of these individual statecharts describes the state sequences

satisfying each individual rule, the power and value of statecharts can be understood

best by looking at these statecharts and the associated rules as a unified whole. As this

rule system is composed of six rules, the resulting statechart is six layers deep.

Therefore, the composite chart is presented in Figures 7.3.4-7a and 7.3.4-7b. The state

sequences satisfying rule7.2_Q, rule7.2-b, and rule7.2-c are presented in Figure 7.3.4-7a,

which includes a minimal depiction of rule7.2-d and a corresponding reference to Figure

7.3.4-7b. The state sequences satisfying rule7.2-d, rulen-e, and rule7.2_! are presented in

Figure 7.3.4-7b.

189

(j ru!e7.2_a
[-.true]

See Figure 7.3.4-7b

Figure 7.3.4-7a: Statechart for rule7.2.a, rule7.2-b. and rule7.2-c

190

(J'rule7.2_d

[maxyin] [-,maxyin]

(j disable card (Jrule7.2_e

Figure 7.3.4-7b: Statechart for rule7.2-d, rule7.2_e, and ru[e7.21

Quite literally, rUZe7_2-a is described in Figures 7.3.4-7a and 7.3.4-7b as a

statechart inside of a statechart inside of a statechart, etc., just as the six rules rUle7.2-a

through ruZe7.2j are, quite literally, a rule within a rule within a rule, etc. In statechart

form. the logical connections, sequencing, and nested relationships of the six rules

ruZe7.2-a through ruTe7.2! are clearly depicted graphically. Just as the general rule form/i

A ofJ allows the encapSUlation of the logical relationships between state sequences by

using rules within rules, statecharts allow the same encapsulation by imbedding

statecharts within statecharts. In both cases, with this encapsulation comes the ability to

represent depth, and limit or focus interest to a specific depth as necessary or

appropriate.

191

For example, ignore the reference to Figure 7.3.4-7b and consider Figure 7.3.4-

7a as an autonomous statechart. With the suspension of Figure 7.3.4-7b, the three rules

depicted in the statechart presented in Figure 7.3.4-7a are:

rule7.2-a £: «true 1\ orule7.2-b ; refUCatm) ; rule7.2-a) v (-,true 1\ empty)

rule7.2-b £: «atm_non_empty 1\ owaiccustomer ; read3ard; rule7.2-c) ; rule7.2-b)
v (-,atm_non_empty 1\ empty)

rule7.2-c £: (card_disabled 1\ otake_disabled_card)
v (-,card_disabled 1\ ogeCpin ; rule7.2-d)

Without additional details regarding rule7.2-d, rule7.2-d is just another minimally-defmed

state sequence. Like waiccustomer or read_card, no details are available regarding the

state sequence that rule7.2-d represents. If the label rule7.2-d were replaced with the label

rule_to_take_money, the similarities would be even more dramatic. However, with the

. addition of Figure 7.3.4-7b to Figure 7.3.4-7a, rule7.2-d is expanded, and additional depth

and details are added regarding the state sequence that rule7.2-d represents. Similarly,

with the additional description of rule7.2-d in terms of the general form rule f; 1\ ofj,

including defmitions and references to rule7.2-d and rule7.2-e, additional depth and details

are added to the rule-based description of the system.

This comparison is made to highlight a critical issue - that general form rules

(i.e., f; 1\ ofj) and statecharts as presented here are different representations of the same

information, specifically the conditioned relationships between state sequences. If the

visual formalisms of the various legacy code structures presented in Section 7.3.3 are

accepted as accurate representations of the underlying logical concepts, and the implied

correspondences between the statechart elements and the rule elements are accepted,

then the statecharts of Figures 7.3.4-7a and 7.3.4-7b and the extracted six rules are

equivalent. And with that, these presentations differ not in content, but only in hoW

they can be used in future analysis and understanding. Whereas the statechart approach

allows a visual presentation that is readily understandable by a wider audience, the

formulaic approach of representing the extracted rules as ITL formulas is readily

adaptable to computer analysis techniques.

192

7.3.5 The Value of Statecharts in Legacy Code Analysis

Several important issues regarding rule extraction, legacy code analysis, and

statecharts merit special note. Common legacy code concepts, previously expressed in

Chapter 6 in terms of the general form rule Ii 1\ oiJ, have been expressed in terms of

statechart visual formalisms. These visual formalisms provide a graphical

representation of the system state changes that occur with each legacy structure. These

visual formalisms depict the location of program rules and the resulting state changes.

These various visual formalisms demonstrate the similarities and differences between

various code structures, again facilitating both understanding and analysis. This

statechart approach is consistent with the rule model presented in Chapter 4 and the

associated rule algebra presented in Chapters 5 and 6. Using these four legacy code

formalisms developed here, more complex logical and programming structures can be

built using the rule algebra presented in Chapters 5 and 6, either by linking these

concepts together or by nesting structures within structures. With such an expanded

approach, sophisticated and complex legacy codes can be graphically represented for

both understanding and analysis. Similarly, with the corresponding ability to

encapsulate or hide states within states, the 'state explosion' problem associated with the

application of the formal framework presented in Chapter 3 can be managed.

Considering these factors, statecharts, in concert with the rule model and rule algebra

presented in this research, provide a robust tool for legacy code analysis.

193

Chapter 8

Analysis of Rules in Legacy Code

In this chapter, the formal rule extraction framework of Chapter 3, the formal

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied

to the extraction and analysis of rules from legacy code. In Section 8.1, the formal rule

model and the corresponding rule algebra are applied to the extraction and analysis of

the rules contained in a small but relatively complicated block of legacy code; using the

rule model and rule algebra, a corresponding database is developed to describe the rule

and non-rule elements of this legacy code. A statechart is developed to assist in code

analysis and understanding, and the extracted rules are assessed based on specific

variables of interest. In Section 8.2, the FermaT tool is used to slice an example WSL

program, and rules are extracted from the associated program slice(s).

8.1 Using Rules to Build a Database for Legacy Code Analysis

In this section, the concepts developed in this research are applied to a small but

relatively complicated block of legacy code. Using the rule extraction framework

presented in Chapter 3, the rule model presented in Chapter 4, and the rule algebra

presented in Chapters 5 and 6, rules are extracted and a simple rule-analysis database is

developed to describe the rules and non-rule elements in the legacy code. To

supplement this rule extraction and the associated database, a statechart of the target

legacy code is developed using the statechart concepts presented in Section 7.3.

As demonstrated in the section, the rule algebra is applied and the legacy code is

transformed into a series of rules and formulas. Then, the properties of these rules and

formulas are recorded in the associated database. Within this analysis paradigm, the

application of this rule algebra provides a formal context for the identification of a wide

range of rule and formula properties that may be of specific interest to the user relative

to the user's analysis objectives. Therefore, the design of this database can and will vary

substantially depending on how the database will be used, including specific project

needs, database analysis techniques, and other anticipated applications of the database

information. Also, the design of the database depends on whether the database is an

adjunct to the transformed code or a replacement for the original code. Therefore, the

194

database that is developed using this analysis paradigm can be as simple or as

complicated as desired. For this demonstration, a relatively small set of properties have

been selected. The following fields are included in the rule database:

• Rule or formula label

• 1TL formula

• W (frame variable set)

• V (used variable set)

• Primary membership of the rule or formula

Based on the extraction and analysis presented below, this completed database is

presented at the end of this section in Table 8.1-1.

The legacy code used in this example has been the subject of previous formal

abstraction analysis (Cau and Zedan, 2006). The legacy code example analyzed here is

a procedure from a published lexical scanner package written in Pascal. The total

package, the overall package structure, and related procedures are discussed in detail in

Cau and Zedan (2006). The target of this rule analysis, the procedure printerrorline, is

presented as follows:

procedure printerrorline(var Lbuf: linebufrec);
var

Co\umn,I,J,Num: integer;
begin

Co\umn:=O;
with Lbufdo
begin

printLine(Lbuf);
writeC*****': 6, ' ');
for 1:=1 to length +1 do

if eline[I] < > errnone then
begin

errorset:= errorset+[eline[1]];
Num:= ord(eline[I]);
if I > Column then
begin

for J:= Column + 2 to 1 do writeC ');
writeCj');Column:= I

end
else begin writeC,');Column:= Column + 1 end

195

write(Num: 1);
Column:= Column + 1;
if Num > 9 then Column:= Column + 1;
eline[I]:= errnone

end; {of if and for}
writeln;
lineerror:= false;
fIleerror:= true

end {of with}
end; {of procedure printerrorline}

Within this legacy code, rules are identified based on the if-then-else, while, and

indexed for-loop code structures. These rule structures reflect locations in the legacy

code where alternative state sequences may be created based on the satisfaction or

non-satisfaction of the associated rule conditions. To facilitate the incremental analysis

of this legacy code, mixed formulas are allowed. Consistent with the Spec

representation used in Cau and Zedan (2006), mixed formulas used to represent the

associated legacy code may contain concrete code structures, ITL formulas, and other

abstract specifications, as needed and as appropriate.

Rules and non-rule formulas are extracted from the target code using the

procedure described below:

1. Consistent with the general framework outlined in Chapter 3, the legacy

code is analyzed and broken into individual units based on the syntax of

the target language, in this case, Pascal.

2. Working from the top down, these individual units are analyzed

iteratively to identify structures that represent rules and structures that

specify states such as assignment statements. Based on the legacy code

forms analyzed in Section 6.6 and considering the language being

analyzed, rule structures are if-then-else, while, and indexed for-loop

code structures. Assignment statements are identified. Other structures

(i.e., structures that are not rules and not assignments) are identified but

left unclassified. Within the context of the Spec concept, these

unclassified structures are left unmodified for later assessment if

necessary and as appropriate.

196

3. The start and end of each rule, assignment, and unclassified structu~e are

determined. Each rule is labeled and the code associated with that rule

marked for further assessment on a subsequent iteration. Assignment

statements are converted into temporal formulas and labeled. As

appropriate, unclassified structures are labeled.

4. For each formula, the frame Wand the variable set V (i.e., variables used

to calculate those variables in the frame, as described in Chapter 6) are

identified. Wand V for each rule are calculated later, after the analyses

of all contributing formulas are completed.

5. A single sequence of labels is created, identifying and ordering the

formulas, rules, and other unclassified structures visible at the current

level.

6. Adjacent formulas are assessed to determine if any other reductions are

possible or appropriate. Unclassified structures are assessed, and

aggregated, deleted, processed, andlor left unchanged, as appropriate.

7. With the next iterative pass, the code associated with the first rule of the

above sequence is assessed. This code is analyzed to identify the

elements used to specify the rule condition and the elements used to

specify the rule state, including new rules.

8. The code representing the rule state is processed, as described above

starting at (3) above, and a sequence of formulas and rules is generated

reflecting the code structures visible at that level.

9. Each element of this sequence is processed iteratively until all rules have

been reduced to their component formulas.

10. The next rule in the original sequence at (2) above is processed using this

procedure.

11. This process is repeated until all code has been processed and

transformed to a sequence of formulas, rules, and unclassified structures.

Using this process and with the first iterative analysis of the target code, the

following sequence of formulas, rules, and unclassified structures are identified.

197

procedure printerrorline(var Lbuf: linebufrec);
var

Column,I,J,Num: integer;
begin

fOa;
with Lbufdo
begin

hi;
fOb;
rule1 ;
fac ;fOd ;foe ;

end {of with}
end; {of procedure printerrorline}

where:

faa f: oColumn = 0

hi f: printline(Lbuf)

fOb f: owrite(,*****'. ' ')

fac f: owriteln

fOd f: olineerror = false

foe f: ofileerror = true

With these defmitions. the operative portions of the procedure printerrorline can be

described as follows:

fa == fOa ;fpl :fob ; ruZel :fac :fod :foe (8.1-1)

In this expression of the legacy code, hi. representing the procedure printline(Lbuf), is

unclassified with regard to rules and formulas. The specific code associated with rule}

is described later and is transformed into the component formulas and/or rules in a

subsequent iteration.

Forfoa,fob,foc,fod, andfoe. the frame set Wfor each formula is:

WOa = {Column}

WOb = {lIOwrite}

Wac = {I10write }

Wad = {lineerror}

198

WOe = {fileerror}

For this analysis, a variable 1I0write is imposed to describe the system service that is

updated by the PASCAL 'write,' 'writeln,' and similar commands. For I'. I'. I'. I'. JOa, Jab, JOe, JOd,

andjoe, the variable set V for each formula is:

VOa =0

VOb =0

VOe =0

VOd =0

VOe =0

In the preceding analysis, rulel represents the following code:

for 1:=1 to length + 1 do
if eline[I] < > ermone then
begin

errorset:= errorset+[eline[l]];
Num:= ord(eline[I]);
if I > Column then
begin

for J:= Column + 2 to I do write(' ');
write('i');Column:= I

end
else begin write(',');Column:= Column + 1 end
write(Num: 1);
Column:= Column + I;
if Num > 9 then Column:= Column + 1;
eline[I]:= errnone
end; {of if and for}

Based on the next iterative analysis of this code, rule} is an indexed for-loop. Using the

indexed for-loop rule-form presented in Section 6.6.3, rulel is described as:

rule} ~ for I:=1 to length +1 do ruZe2 (8.1-2)

The specific code associated with rule2 is described later and is transformed into the

component formulas and/or rules in a subsequent iteration.

199

As an indexed for-loop and consistent with Section 6.6.3, rulel is transformed to

a while structure as:

(8.1-3)

where:

flo ~ (01=1)

rulel' ~ while (I ~ length +1) do (rule2 ; 01 = 1+ 1)

Using the defmitions presented in Section 6.6.2, the while structure rulel' is transformed

to:

rule/' == «(I ~ length +1) A orule2 ; 01 = I + 1) ; rule/')
v (-,(1 ~ length + 1) A empty)

With these transformations, rule I can be described as:

where:

flo ~ 01 = 1

rulel' ~ «wCl' A orule2 ;flb) ; rulel) v (-,weI' A empty))

WCI' ~ I ~ length + 1

fIb ~ 01 = I + 1

(8.1-4)

(8.1-5)

For each of the above non-rule formulas, the sets Vand Ware determined based on their

respective defmitions, and the database is updated accordingly. The determination of V

and W for rulel' is deferred until all contributory formulas are identified.

In rulel', the rule condition WCI' is a state formula. Therefore, to transform rulel'

to a simpler form, StateAndNextChop is applied to rulel' to yield:

ruZe/, ~ (WCI' A orule2 ;jlb ; rulel') v (-,WCl' A empty) (8.1-6)

In the specification of rulel', rule2 represents the following code:

200

if eline[I] < > errnone then
begin

errorset:= errorset+[eline[IJ];
Num:= ord(eline[I]);
if! > Column then
begin

for J:= Column + 2 to I do writeC ');
writeCj');Column:= I

end
else begin writeC,');Column:= Column + 1 end
write(Num: 1);
Column:= Column + I;
if Num > 9 then Column:= Column + 1;
eline[I]:= errnone

end; {of if and for}

Based on the next iterative analysis of this code, rule2 is an if-then-else rule structure.

Consistent with the defmition presented in Section 6.6.1, rule2 is described as follows:

rule2 == (WC2" oh) V (-lWC2" empty) (8.1-7)

where:

WC2 ~ eline(I) *' errnone

For each of the above non-rule formulas, the sets Vand Ware determined based on their

respective definitions, and the database is updated accordingly. The determination of V

and W for rule2 is deferred until all contributory formulas are identified.

In the specification of ru[e2,J3 represents the following code:

errorset:= errorset+[eline[I]];
Num:= ord(eline[I]);
if I > Column then
begin

for J:= Column + 2 to I do writeC ');
writeCj');Column:= I

end
else begin write(',');Column:= Column + 1 end
write(Num: 1);
Column:= Column + 1;
if Num > 9 then Column:= Column + I;
eline[I]:= errnone

201

Based on the next iterative analysis of this code, /3 is described by the following

sequence:

where:

/3a ~ oerrorset = errorset +(eline(I»

/3b ~ oNum = ord(eline(I»

/3c ~ owrite(Num)

/3d ~ oColumn = Column + 1

be ~ oeline(I) = errnone

(8.1-8)

For each of the above non-rule formulas, the sets V and Ware determined based on their

respective defmitions, and the database is updated accordingly. The determination of V

and W for rule3 and rule4 is deferred until all contributory formulas are identified.

With the above expansion of/3, rule2 is restated as:

rule2 == (WC2 A O/3a ;/3b ; rule3 ;/3c ;/3d; rule4 ;/3e)
v (-,WC2 A empty)

In the specification of ruZe2, rule3 represents the following code:

if I > Column then
begin

for J:= Column + 2 to I do write(, ');
write('i');Co!umn:= I

end
else begin write(',');Column:= Column + 1 end

(8.1-9)

Based on the next iterative analysis of this code, rule3 is an if-then-else rule structure.

Consistent with the defmition presented in Section 6.6.1, rule3 is described as follows:

(8.1-to)

where:

We3 ~ I > Column

202

/4a 1:.. owrite('i')

/4b ~ oColumn = I

/4c 1:.. owrite(':)

J4d A

oColumn = Column + I

For each of the above non-rule formulas, the sets V and Ware determined based on their

respective defmitions, and the database is updated accordingly. The determination of V

and W for rules is deferred until all contributory formulas are identified.

In the specification of rule3, rules represents the following code:

for J:= Column + 2 to I do writeC ');

Based on the next iterative analysis of this code, rules is an indexed for-loop. Using the

indexed for-loop rule-form presented in Section 6.6.3, rules is described as:

where:

rules == /6a ; rules'

/6a ~ oJ = Column + 2

rules' ~ while WCS' do /6b

WCS' ~ J s; I

/6b ~ owriteC ')

(8.1-11)

Using the definitions presented in Section 6.6.2, the while structure rule5' is transformed

to:

rules' == «WC5'1\ O/6b ;/6c) ; rules) v (""wcs'l\ empty) (8.1-12)

where:

/6C ~ oJ = J + 1

For each of the above non-rule formulas, the sets Vand Ware determined based on their

respective defmitions, and the database is updated accordingly. The determination of V

and W for rules' is deferred until all contributory formulas are identified.

203

In rules'. the rule condition WCS' is a state formula. Therefore, to transform rules'

to a simpler form, StateAndNextChop is applied to rules' to yield:

rules' == (wcS' A Oj6b ;j6c ; rules') v (-,wcs' A empty) (8.1-13)

Returning to and completing the specification of rulez, rule4 represents the

following code:

ifNum> 9 then Column:= Column + 1;

Based on the next iterative analysis of this code, rule4 is an if-then-else rule structure.

Consistent with the defmition presented in Section 6.6.1, rule4 is described as follows:

rule4 == (WC4 A ojSa) v (-1WC4 A empty) (8.1-14)

where:

WC4 ~ Num>9

jSa ~ oColumn = Column + 1

For each of the above non-rule formulas, the sets V and Ware determined based on their

respective defmitions, and the database is updated accordingly.

With the identification of all rules and all formulas that compose these rules, the

frames associated with each rule can be determined. For a given rule, the frame of that

rule is the set of variables that are modified by that rule, and is the union of all frames

for the formulas and other rules that are part of that rule.

For example, rules' has been previously defined as:

rules, == «wcs' A Oj6b ;j6c) ; rules') V (...,WCS' A empty) (8.1-15)

Therefore, the frame for rules' is:

(8.1-16)

Substituting the values for the various frames yields:

204

Wrule5 , = 0 u {lIOwrite} u {J}
= {I10write, J}

(8.1-17a)

(8.1-17b)

The frames for all rules are determined using this approach and the database is updated

accordingly. The V set is determined for each rule in a similar manner.

Summarizing these analyses, the following rules have been extracted from the

legacy code:

/0 == /Oa ;/pl ;/Ob ; rulel ;/oc ;/Od ;/Oe

rulel == /la ; ruler

rulel' == (WCl' /\ orule2 ;/lb ; rulel') v (,WC]' /\ empty)

rule2 == (WC2/\ oha ;/3b ; rule3 ;/3c ;/3d; rule4 ;/3e) v (,WC2 /\ empty)

rule3 == (WC3/\ orules ;j4a ;/4b) v (--,WC3 /\ 0/4C ;/4d)

rule4 == (WC4/\ olsa) v (--,WC4 /\ empty)

rules == /6a ; rules'

rules' == «wcs' /\ 0/6b ;/6c) ; rules') v (,wcs' /\ empty)

The database associated with these extracted rules is presented in Table 8.1-1. Using

the concepts described in Section 7.3, a statechart, based on and representing these

extracted rules, is presented in Figure 8.1-1. Because this statechart is based on these

extracted rules, the database presented in Table 8.1-1 is applicable to the statechart in

Figure 8.1-1.

As a demonstration of the coordinated use of these extracted rules, the associated

database, and the rule algebra presented in this thesis, the rules extracted from this

legacy code are analyzed for those formulas that result in the writing to an output

device. As previously discussed, the variable /IOwrite is used as a frame variable to

describe the system service that is updated by the PASCAL 'write,' 'write In,' and similar

commands. Therefore, the database is searched for formulas that have only /IOwrite as

the frame.

205

printerrorline
nsf I ()Q ; printlineCLbufi) ;f Db

xSlfo. ; IOd ;10.

II

xsf

rule/.
nsf
xsf

rule]
nsf

xs/~b

t

[.... WCI·] c
·'f(WCl']

"l

[W
C2

]

ruleJ

[.aA~·ol nsf/Jo;~b

XS/~<;~d

ruleJ_ ruleJfo}M
ns/
Xs/~.;~b r ns/~<;I4d

xs/

~k'~. :Y6a c wcs.]

[wcs']

rule,.
nsll

6b

xs//&,

* * J.
rule4

[.o~.ol nsl
xsl

(rule4_
ns/ lJo
xs/

i

* i

C [.... wo)

Figure 8.1-1: Statechart for Procedure printerrorline Legacy Code

Based on this search of the database. six formulas meet this criterion - fOb. foe.

f3c. f4a. f4c. and f6a. V sing the database. these formulas have primary membership in fa.

ruZez. rule3. and rules·. Therefore. fa. rulez. rule3. and rules· must be analyzed.

However. these four rules and formulas are not directly connected. Referencing the

database. rules· is not a primary member of rule3. Instead. rules· is a member of rules

206

and ruZes is a member of ruZe3. Similarly, rule2 is not a primary member of rule3.

Instead, ruZe2 is a member of ruleI', ruZel' is a member of rule], and rule] is a member of

10. Therefore, rules, rule}" and ruZe] must be included in the analysis. Summarizing,

seven rules - 10, rule], ruZe]" ruZe2, rule3, rules, and rules' - are analyzed regarding

formulas that result in the writing to an output device. Because rule4 does not include

any I/O activities, as demonstrated in the database by the absence of I10write in the frame

of any formula with a primary membership to rule4, rule4 is not considered in this

analysis.

In this analysis, these seven rules are transformed to create a single rule

structure, and this rule structure is used to assess the specific rule conditions that are

associated with specific I/O activities. To implement these rule transformations, an

additional lemma is introduced - TwoChopRulesImp3. TwoChopRuiesImp3 is a

continuation of the series TwoChopRulesImp and TwoChopRuiesImp2 introduced in

Section 7.2.

LEMMA: TwoChopRuiesImp3

Proof:

I 10; (II "h) ; (13 "14) ;ls premise

2 if] "12) ; (13 "14) ;ls CP assumption

3 if} ;13) " if2 ;14 ;ls) 2, TwoChopRuiesImp2

4 (fI "12) ; (13 "14) ;ls::l if] ;13 "12 ;14 ;ls) 2-3, ::l introduction

5 10 ; if] "h) ; (13 ,,/4) ;ls 4, ITL (RightChoplmpChop)

:::;10; «fI ;13)" if2 ;/4 ;ls))

6 10; (if] ;13) " if2 ;14 ;ls)) I,5,MP

The general transformation strategy for the analysis of this set of extracted

legacy code rules is similar to that implemented in the transformation of the

specification in Section 7.2. Each contributory rule is separated into the component rule

condition and rule state, and then the components are added in order into the aggregate

description of the possible system behaviors. Because this transformation considers

multiple rules and therefore multiple behaviors, the resulting alternative behaviors are

207

expressed disjunctively. The target rules are processed in reverse order. that is. from the

deepest rule upwards. In this way. behaviors are transformed systematically. and each

subsequent behavior associated with a specific rule rests on the behavior(s) defmed by

that rule's component rules.

This transformation rests on seven premises that reflect the rules extracted from

legacy code that directly or indirectly include the variable I10write - jo. rule]. rule]'. rule2.

rule3. rules. and rules'. Because the deepest rule. rules (including the subrule rules)

includes no other rules and therefore. by defmition. totally describes all behaviors

associated with rules. rules needs no transformation. Therefore. rule3 is transformed

first and incorporates the behaviors associated with rules. Then. rule2 is transformed

and incorporates the behaviors derived from rule3 and rules. Then. rulel (including the

subrule ruleI') is transformed and incorporates the behaviors derived from rule2. rule3.

and rules. Finally.jo is transformed and incorporates the behaviors derived from rule],

ruZe2. rule3. and rules. This formal transformation is presented in Appendix C.

With this transformation and based on the premisesjo. rule]. rule]'. rule2. rule3.

rules. and rules, as extracted from the legacy code. the following disjunctive rule

structure is concluded:

joa :fpl : jOb :.fIa ; (

(WCI'; WC2 ; WC3 ; Wcs'
A OOj3a ;j3b ; oj6a ; Oj6b ;j6c ; rules' ;.f4a ;.f4b :

j3c ;j3d ; rule4 ;j3e ;jlb ; rule]· ;joc ;jOd ;joe)

v (WCI'; WC2 ; WC3 ; -,wcs'
A OOj3a ;j3b ; oj6a ;j4a ;/4b ;./Jc ;j3d ; rule4 ;

j3e ;jlb ; rulel' ;joc ;jOd ;jOe)

v (WCI' ; WC2 ; -,WC3
A ooj3a ;j3b ; O.f4c ;.f4d ;!Jc ;!Jd ; rule4 ;

j3e ;jlb ; rulel' ;jOe ;jOd ;jOe)

v (WC]' ; -,WC2 A Ojlb ; rule]' ;jOc ;jod ;joe)

v (-,wC]' Ajoe ;jOd ;joe»

(S.l-lSa)

(S.l-lSb)

(S.1-1Sc)

(S.1-18d)

(S.l-lSe)

(S.l-lSf)

Although (8.1-18) is a single structure. each component is numbered individually to

facilitate discussion.

208

With the transformation presented in (8.1-18), the behavior associated with the

legacy code is described as a sequence of chopped formulas at (8.1-18a) and then one of

the five disjunctively connected general-form rules presented at (8.1-18b) through

(8.1-18t). Specifically which of these five disjunctively-connected general-form rules

describes the specific behavior in a given circumstance depends on the verity of the rule

conditions Wc]" WC2, WC3, and WC5' under that given circumstance. The transformation

(8.1-18) provides an orderly basis for assessing and understanding the specific behavior

associated with the verities for each condition. For example, ",WCl' results in the

behavior specified by (8.1-18t), whereas WCI' is associated with the behaviors specified

by (8.1-18b) through (8.1-18e). Similarly, ",WC2 results in the behavior specified in

(8.1-18t), whereas WC2 is associated with the behaviors specified in (8.1-18b) through

(8.1-18e), etc.

This analysis and understanding of this transformation can be facilitated by

restoring specific formulas of interest. Referencing the various substitutions performed

earlier in this section, the rule conditions in (8.1-18) are represented by one or more of

the following state formulas:

WCI' == (1 ::;; length + 1)
WC2 == (eline(I) * errnone)
WC3 == (1 > Column)
WC5' == (J ::;; 1)

Based on an analysis of the database developed for this legacy code using the rule

algebra, the following formulas result in the writing to an VO device:

fOb == owriteC*****', ")
JOe == owriteln
j3e == owrite(Num)
j4a == owriteCj')
j4e == owrite(',')
j6b == owrite(, ')

Substituting the above rule conditions and VO-related formulas into (8.1-18) yields:

foa ;/Pl ; owrite('*****', , ') ;fIa ; { (S.1-19a)

«1 ::;; length +1) ; (eline(I) * errnone) ; (1) Column) ; (J ::;; I)

209

A OOha ;hb ; Oj6a; oowrite(' ') ;j6c ; rules' ; owrite('i') ;j4b ;
owrite(Num) ;!Jd ; rule4 ;j3e ;
jIb; rulel' ; owriteln ;jOd ;jOe) (S.I-19b)

v «I ~ length +1) ; (eline(I):;t: errnone) ; (I > Column) ; -,(J ~ I)
A OOj3a ;j3b ; Oj6a ; owrite('i') ;j4b ; owrite(Num) ;j3d ; rule4 ;

j3e ;jIb ; rule]'; owriteln ;jOd ;joe) (S.I-19c)

v «I ~ length +1) ; (eline(1):;t: errnone) ; ...,(1 > Column)
A oOha ;j3b ; oowrite('.1 ;j4d ; owrite(Num) ;j3d; rule4 ;

j3e ;jIb ; rulel' ; owriteln ;jOd ;joe)

v «I ~ length +1) ; ...,(eline(I):;t: errnone)
A Ojib ; rule1' ; owriteln ;jod ;joe)

v (...,(1 ~ length +1) A owriteln ;jOd ;joe)}

(S.1-19d)

(S.1-1ge)

(S.1-19t)

With these substitutions, the value of this transformation is demonstrated. I/O

operations are identified in the order they occur relative to the satisfaction of the various

rule conditions. For example, as described in (8.1-19b), the I/O operation write(, ')

occurs only when the rule condition (I ~ length +1) ; (eline(l) :;t: errnone) ; (I >

Column) ; (J ~ I) is satisfied. As another example, the I/O operations write('i') and

write(Num) only occur together and in that order in (S.1-19b) and (8.1-19c), and require

the satisfaction of the rule condition (1 ~ length +1) ; (eline(I) :;t: errnone) ; (I >

Column). Inspection of the rule conditions associated with (8.1-19b) and (S.1-19c)

reveals that the verity of the rule condition (J ~ I) does not affect the occurrence of I/O

operations write('i') and write(Num). As a fmal example, the I/O operation writeln is

associated with all disjuncts and therefore is not dependent on the satisfaction of a

specific set of rule conditions.

Whereas numerous other transformations and analyses are possible using these

extracted rules, the rule extraction and analysis presented in this section demonstrates

the use and applicability of this rule model and rule algebra in the assessment of legacy

code.

210

Table 8.1-1 Legacy code analysis database

Formula Description W V
Primary

Membership

fa faa ;/Pl ;fob ; rulel ;foe ;fOd ;fo Column, eline(I), Column, errnone,
errorset, fileerror, I, eline(I), errorset, I,
/JOwrite, J, lineerror, J, length, Nurn
Num

faa oColumn= 0 Column 0 fa

/PI printline(Lbuf) - unclassified - - unclassified - fa

fOb owrite('*****', ' ') /JOwrile 0 fa

fac owriteln IIOwrite 0 fa

fad olineerror = false lineerror 0 fa

foe ofileerror = true fileerror 0 fa

rulel ha; rulel' Column, eJine(I), Column, errnone, fa
error set, I, /J Owrile, J, eline(I), errorset, I,
Num J, length, Nurn

fla 01 = 1 0 rulel

rule/' rule /'-true V rule /,-/aJ .. Column, eJine(I), Column, errnone, rule1
errorset, I, /JOwrtte, J, eIine(I), errorset, I,
Nurn J, length, Num

rule/,_tr .. WCI' A orule2 ;hb ; rule/' Column, eIine(I), Column, errnone, rulel'
errorset, I, l/Owrtte, J, eline(I), errorset, I,
Num J, length, Num

rule 1'-/al,WC/, A empty 0 I, length rule/'

WCI' I ::; length +1 0 I, length rule l'-tru ..
rule l'-/al ..

fIb 01 = I + 1 rule I '-true

rule2 rulez_true V rUle2jals. Column, eIine(l), Column, errnone, rule l'-true
errorset, l/Owrite, J, eline(l), errorset, I,
Nurn J,Num

rule2_tru. WC2 A oha ;f3b ; rule3 ;A ;j3d ; Column, eIine(I), Column, errnone, rule2
rule4 ;he errorset, l/Owrile, J, eJine(I), errorset, I,

Num J,Num

rule2jalse "",WC2 A empty 0 errnone, eline(l), I rule2

WC2 eline(l) ":f- errnone 0 errnone, eline(l), I ruZe2-tru ..
rule2jalst

f3a Oerrorset = error set +(eIine(l) errorset eline(I), errorset, I rule2_true

f3b oNum = ord(eline(I» Num eline(I), I rule2-tru.

he owrite(Num) [IOwrile Num ruZe2_true

fJd oCoJumn = Column + I Column Column rule2-trut

he oeline(I) = errnone eline(I) errnone rule2_true

211

Table 8.1-1 (continued) Legacy code analysis database

Formula Description W V
Primary

Membership

rulej rulej-lrue v rulej1alse Column, IIOwrile, J Column, I. J rule2.,ru.

rule3-1rue WC3 " orules ;/4a ;/4b Column, IIOwrile, J Column, I, J rulej

rule31alse -,WCJ" of4c ;/4d Column, I10write Column, I rule3

WC3 I> Column 0 Column, I rule !I.lru.,
rule31alSl

f4a owriteCi') I10write 0 rule3.,ru.

/4b oColumn = I Column I rule3.,ru.

/4c owriteC,') I10write 0 rule31a1S1

/4d oColumn = Column + I Column Column, I rule31als.

rule4 rule4-1ru. v rule41als. Column Column,Num rule2.,rue

rule4-,rue WC4" o/Sa Column Column,Num rule4

rule41als. -,WC4 " empty 0 Num rule4

WC4 Num>9 0 Num rule4.,ru ..
rule41alse

/Sa oColumn = Column + 1 Column Column rule4.,ru.

rules /6a; rules' I10write, J Column, 1, J rule]

rules, rules'.,ru. v rules'1a1se I10write, J I, J rules

rule 5'.lrut WC5' " 0.kb ;/6C ; ruleS' I10write, J I, J ruleS'

rule 5'-!aI .. -,WC5' " empty 0 I, J rule5'

WCS' J S I 0 I, J rule 5'.lru_
rule 5'.false

/6a oj = Column + 2 J Column rule5

/6b owriteC ') IIOwrite 0 rule 5'.lru.

/6c oj = J + 1 J J rule 5'.lru.

212

8.2 Representing WSL Program Slices as Rules

In this section, a Wide Spectrum Language (WSL) program is sliced, and rules

are extracted from each slice and analyzed using the rule model and rule algebra

developed in this research. Two different rules are extracted from this program in two

separate slicing exercises. In the fIrst slicing exercise, rules are extracted from the

program slice and the rule algebra is applied to simply and clarify the extracted rule. In

the second slicing exercise, rules are extracted from the program slice, and the rules are

then conditioned and transformed using the rule algebra. The results of these rule

transformations are compared with previous analyses of the same program.

The program analyzed herein is used to compute income tax and various tax­

related amounts, including a non-taxable personal allowance, for a United Kingdom

citizen for the tax year April 1998 to April 1999. The non-taxable personal allowance is

dependent on specifIc attributes of a given citizen. Within this program, these attributes

are represented by the variables 'age,' 'married,' 'widowed,' and 'blind.' This program, or

an alternative language version, has been analyzed previously in Ward et al. (2005) and

Fox et al. (2000). The WSL version of this program. as used in the research, is as

follows:

IF age >= 75
THEN personal := 5980

ELSE IF age >= 65
THEN personal := 5720
ELSE personal := 4335 FI FI;

IF age >= 65 AND income> 16800
THEN V AR < t := personal- (income - 16800)/2 >:

1Ft> 4335
THEN personal := t
ELSE personal := 4335 FI ENDV AR FI;

IF blind = 1
THEN personal := personal + 1380 FI;

IF married = 1 AND age >= 75
THEN pclO:= 6692
ELSE IF married = 1 AND age >= 65

THEN pclO:= 6625
ELSE IF married = 1 OR widow = 1

THEN pelO := 3470
ELSE pelO:= 1500 PI PI PI;

IF married = 1 AND age >= 65 AND income> 16800
THEN V AR < t := pclO - «income - 16800)/2) >:

213

1Ft> 3740
THEN pclO := t
ELSE pclO := 3740 H ENDV AR H;

IF income <= personal
THEN tax :=0
ELSE income := income - personal;

IF income <= pelO
THEN tax := income * ratelO
ELSE tax := pelO * ratelO;

income:= income - pelO;
IF income <= 28000
THEN tax := tax + income * rate23
ELSE tax:= tax + 28000 * rate23;

income := income - 28000;
tax := tax + income * rate40 H H H .

Slicing of this WSL program code was conducted using the FermaT

transformation system. FermaT is an industrial-strength formal transformation system

applicable to program comprehension and language migration. The FermaT

transformation system is based on a comprehensive catalog of formal, proven program

transformations that preserve or refme the semantics of a program while changing its

form. By applying the appropriate program transformations to a program, the resulting

transformed program is guaranteed to be equivalent to the original program logic. The

FermaT transformation system, including theory and applications, is described in Ward

(1999, 2000, 2004), and is available under the GNU General Public License (GPL) at

http://www.cse.dmu.ac.uk!-mwardifermat.html.

Using the FermaT Syntactic_Slice transformation, the following slice was

generated as a backward slice on the variable 'pclO': .

IF married = I AND age >= 75
THEN pelO := 6692
ELSE IF married = 1 AND age >= 65

THEN pelO := 6625
ELSE IF married = 1 OR widow = 1

THEN pclO := 3470
ELSE pelO := 1500 H H PI;

IF married = 1 AND age >= 65 AND income> 16800
THEN V AR < t := pelO - (income - 16800) /2>:

IF t > 3740 THEN pclO := t ELSE pclO := 3740 PI
ENDVARFI

214

Based on an inspection and analysis of the programming structures that comprise this

slice, this slice on the variable 'pclO' can be represented as a sequence of chopped rules:

where:

rulepclo == ru[epclO-1 ; ru[epc10_2

ru[epc10-1 ~ IF married = 1 AND age >= 75
THEN pclO:= 6692
ELSE IF married = 1 AND age >= 65

THEN pc 10 := 6625
ELSE IF married = 1 OR widow = 1

THEN pclO := 3470
ELSE pclO := 1500 FI FI FI;

(8.2-1)

ru[epc10-2 ~ IF married = 1 AND age >= 65 AND income> 16800
THEN V AR < t := pclO - (income - 16800) /2>:

IF t > 3740 THEN pclO := t ELSE pclO := 3740 FI
ENDVARFI

Applying the rule-form description of the if-then-else programming structure as

presented in Section 6.6.1, ru[epclo-l is described as:

ru[epc10-1 ==
(married = 1 A age ~ 75 opclO = 6692)
v (,(married = 1 A age ~ 75) A oruZepc10-la) (8.2-2)

In ruZepc10_J. rulepc10-la is described as:

rulepclO-Ja ==
(married = 1 A age ~ 65 A opclO = 6625)
v (,(married = 1 A age ~ 65) A oruZepc10-lb) (8.2-3)

In ru[epc10-la, ru[epc1o-lb is described as:

rulepcJO-lb ==
((married = 1 v widow = 1) A opclO = 3470)
v (,(married = 1 v widow = 1) A opclO = 1500) (8.2-4)

215

Applying propositional logic and algebraic equivalence regarding negation and equality

to rulepcJo-lb yields:

rulepclO-lb ==
(married = 1 A opelO = 3470)
v (widow = 1 A opc10 = 3470)
v (married =f. 1 A widow =f. 1 A opc10 = 1500) (8.2-5)

Regarding rulepcJO-la at (8.2-3), applying propositional logic and algebraic equivalences

regarding the great-than-or-equal and negation operations yields:

rulepcJO-la ==
(married = 1 A age ~ 65 A opc10 = 6625)
v (married =f. 1 A orulepcJO-lb)

v (age < 65 A orulepcJO-lb)

Substituting rulepc1o-1b at (8.2-5) into rulepcJO-la at (8.2-6) yields:

rulepcJO-Ja ==
(married = 1 A age ~ 65 A opclO = 6625)
v (married =f. 1 A o«married = 1 A opclO = 3470)

v (widow = 1 A opc10 = 3470)
v (married =f. 1 A widow =f. 1 A opclO = 1500»)

v (age < 65 A o«married = 1 A opc10 = 3470)
v (widow = 1 A opclO = 3470)

(8.2-6)

v (married =f. 1 A widow =f. 1 A opc10 = 1500») (8.2-7)

Applying NextOrDistEqv, then NextAndDistEqv, and then propositional logic to

rulepclO-la at (8.2-7) yields:

rulepcJO-la ==
(married = 1 A age ~ 65 A opclO = 6625)
v (married =f. 1 A omarried = 1 A oopelO = 3470)
v (married =f. 1 A owidow = 1 A oopclO = 3470)
v (married * 1 A omarried =f. 1 A owidow =f. 1 A oopclO = 1500)
v (age < 65 A omarried = 1 A oopclO = 3470)
v (age < 65 A owidow = 1 A oopclO = 3470)
v (age < 65 A omarried =f. 1 A owidow =f. 1 A oopclO = 1500) (8.2-8)

216

Considering rulepcJo-l as described at (8.2-2), applying propositional logic and

algebraic equivalences regarding the great-than-or-equal and negation operators yields:

rulepcJO-l ==
(married = 1 /I. age 2:: 75 opclO = 6692)
v (married :t 1 /I. orulepcJo_Ja)

v (age < 75 /I. orulepcJO-la)

Substituting rulepcJo-Ja at (8.2-8) into rulepclO-I at (8.2-9) yields:

rulepcJO-I ==
(married = 1 /I. age 2:: 75 opc10 = 6692)
v (married:t 1 /I. o«married = 1 /I. age 2:: 65/1. opc10 = 6625)

v (married :t 1 /I. omarried = 1 /I. oopclO = 3470)
v (married:t 1 /I. owidow = 1 /I. oopclO = 3470)
v (married:t 1 /I. omarried :t 1 /I. owidow :t 1

/I. oopc10 = 1500)
v (age < 65 /I. omarried = 1 /I. oopcl0 = 3470)
v (age < 65/1. owidow = 1 /I. oopclO = 3470)
v (age < 65 /I. omarried :t 1 /I. owidow :t 1

/I. oopc10 = 1500»)
v (age < 75/1. o«married = 1 /I. age 2:: 65 /I. ope 10 = 6625)

v (married:t 1 /I. omarried = 1 /I. oopcl0 = 3470)
v (married:t 1 /I. owidow = 1/1. oopclO = 3470)
v (married :t 1 /I. omarried :t 1 /I. owidow :t 1

/I. oopclO = 1500)
v (age < 65 /I. omarried = 1 /I. oopclO = 3470)
v (age < 65 /I. owidow = 1 /I. o opc 10 = 3470)
v (age < 65 /I. omarried :t 1 /I. owidow :t 1

(8.2-9)

/I. oopclO = 1500») (8.2-10)

Applying NextOrDistEqv and then NextAndDistEqv yields:

217

rulepc1o-1 ==
(married = 1 A age ~ 75 A opc10 = 6692)
v (married,* 1 A « omarried = 1 A oage ~ 65 A oopc10 = 6625)

v (omarried '* 1 A oomarried = 1 A ooopc10 = 3470)
v (omarried '* 1 A oowidow = 1 A ooopcl0 = 3470)
v (omarried '# 1· A oomarried '* 1 A oowidow '* 1

A ooopc10 = 1500)
v (oage < 65 A oomarried = 1 A ooopc10 = 3470)
v (oage < 65 A oowidow = 1 A ooopcl0 = 3470)
v (oage < 65 A oomarried '# 1 A oowidow '* 1

A ooopclO = 1500)))
v (age < 75 A {(omarried = 1 A oage ~ 65 A oopc10 = 6625)

v (omarried '* 1 A oomarried = 1 A ooopclO = 3470)
v (omarried '* 1 A oowidow = 1 A ooopcl0 = 3470)
v (omarried '* 1 A oomarried '* 1 A oowidow '* 1

A ooopcl0 = 1500)
v (oage < 65 A oomarried = 1 A ooopc10 = 3470)
v (oage < 65 A oowidow = 1 A ooopc10 = 3470)
v (oage < 65 A oomarried '* 1 A oowidow '* 1

A ooopc10 = 1500))) (8.2-11)

Applying propositional logic to (8.2-11) yields:

ru[epcJo-J ==
(married = 1 A age ~ 75 A opc10 = 6692)
v (married '# 1 A omarried = 1 A oage ~ 65 A oopc10 = 6625)
v (married '* 1 A omarried '# 1 A oomarried = 1 A ooopclO = 3470)
v (married '* 1 A omarried '* 1 A oowidow = 1 A ooopclO = 3470)
v (married '* 1 A omarried '* 1 A oomarried '* 1 A oowidow '* 1

A ooopclO = 1500)
v (married '# 1 A oage < 65 A oomarried = 1 A ooopclO = 3470)
v (married '* 1 A oage < 65 A oowidow = 1 A ooopc10 = 3470)
v (married '# 1 A oage < 65 A oomarried '# 1 A oowidow '# 1

A ooopclO = 1500)
v (age < 75 A omarried = 1 A oage ~ 65 A oopc10 = 6625)
v (age < 75 A omarried "* 1 A oomarried = 1 A ooopclO = 3470)
v (age < 75 A omarried '# 1 A oowidow = 1 A ooopclO = 3470)
v (age < 75 A omarried '* 1 A oomarried '* 1 A oowidow '* 1

A ooopclO = 1500)
v (age < 75 A oage < 65 A oomarried = 1 A ooopclO = 3470)
v (age < 75 A oage < 65 A oowidow = 1 A ooopclO = 3470)
v (age < 75 A oage < 65 A oomarried '* 1 A oowidow '* 1

A ooopclO = 1500) (8.2-12)

218

Within the context of the strict linear nature of the system and the corresponding

absence of any concurrent actions, and because the frame of rulepcJO-l is limited to the

variable 'pclO' and therefore does not interfere with any rule conditions in rulepc1o_J, the

following implications are asserted:

(omarried = 1):::> (married = 1)
(oomarried = 1):::> (married = 1)
(omarried ¢ 1):::> (married ¢ 1)
(oomarried ¢ 1):::> (married ¢ 1)
(oowidow = 1):::> (widow = 1)
(oowidow ¢ 1):::> (widow ¢ 1)
(oage 2: 65) :::> (age 2: 65)
(oage < 65) :::> (age < 65)

(S.2-13a)

(8.2-13b)

(S.2-13c)

(S.2-13d)

(S.2-13e)

(8.2-130

(S.2-13g)

(S.2-13h)

All of these implications have the form CWO :::> Wo or OOWo :::> WOo They are applied to

detemporalize a rule condition that what would otherwise be a simple state formula.

Applying (8.2-13a) through (8.2-13h) to rulepc10-J as described at (8.2-12) using

propositional logic (i.e., disjunction elimination) yields:

rulepclo-l :::>
(married = 1/\ age 2: 75/\ opclO = 6692)
v (married ¢ 1/\ married = 1/\ age 2: 65 /\ oopclO = 6625)
v (married ¢ 1/\ married :f:. 1/\ married = 1/\ ooopclO = 3470)
v (married :f:. 1/\ married :f:. 1 A widow = 1 /\ ooopclO = 3470)
v (married :f:. 1 A married :f:. 1 /\ married ¢ 1 /\ widow :f:. 1

/\ ooopc10 = 1500)
v (married ¢ 1/\ age < 65 A married = 1/\ ooopc10 = 3470)
v (married ¢ 1/\ age < 65 A widow = 1 A ooopclO = 3470)
v (married ¢ 1/\ age < 65 /\ married ¢ 1/\ widow ¢ 1

A ooopc10 = 1500)
v (age < 75 A married = 1/\ age 2: 65 A oopclO = 6625)
v (age < 75 A married ¢ 1 A married = 1/\ ooopc 10 = 3470)
v (age < 75 A married:f:. 1 A widow = 1/\ ooopc10 = 3470)
v (age < 75 A married :f:. 1 A married :f:. 1/\ widow ¢ 1

/\ ooopc10 = 1500)
v (age < 75 /\ age < 65 /\ married = 1 A ooopclO = 3470)
v (age < 75 A age < 65 A widow = 1 A ooopc10 = 3470)
v (age < 75 A age < 65 A married :f:. 1 A widow :f:. 1

A ooopclO = 1500) (8.2-14)

219

Applying propositional logic to (8.2-14) to eliminate contradictions and idempotent

terms, and then reordering yields:

rulepelO-1 :::>
(married = 1/\ age ~ 75 /\ opclO = 6692)
v (married = 1/\ age ~ 65 /\ age < 75 /\ oopclO = 6625)
v (married = 1/\ age < 65/\ age < 75/\ ooopclO = 3470)
v (married '* 1/\ widow = 1/\ ooopclO = 3470)
v (married '* 1 /\ widow = 1/\ age < 65 /\ ooopclO = 3470)
v (married '* 1/\ widow = 1/\ age < 75/\ ooopclO = 3470)
v (widow = 1/\ age < 65 /\ age < 75/\ ooopcl0 = 3470)
v (married '* 1/\ widow '* 1/\ ooopclO = 1500)
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500)
v (married '* 1/\ widow '* 1/\ age < 75 /\ ooopclO = 1500)
v (married '* 1/\ widow '* 1/\ age < 65 /\ age < 75

/\ ooopclO = 1500) (8.2-15)

Considering the overlapping rule conditions in (8.2-15) with regard to the

variable 'age,' the following equivalence is noted:

age < 65 == (age < 75/\ age < 65) (8.2-16)

Applying (8.2-16) to rulepelO-1 as described at (8.2-15) and eliminating idempotent terms

yields:

rule pel 0-1 :::>
(married = 1/\ age ~ 75 /\ opclO = 6692)
v (married = 1/\ age ~ 65 /\ age < 75/\ oopc10 = 6625)
v (married = 1/\ age < 65 /\ ooopclO = 3470)
v (married '* 1/\ widow = 1/\ ooopclO = 3470)
v (married '* 1/\ widow = 1/\ age < 65/\ ooopclO = 3470)
v (married '* 1/\ widow = 1 A age < 75 A ooopclO = 3470)
v (widow = 1/\ age < 65/\ ooopcl0 = 3470)
v (married '* 1/\ widow '* 1/\ ooopclO = 1500)
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500)
v (married '* 1 /\ widow '* 1/\ age < 75 /\ ooopclO = 1500) (8.2-17)

220

Although substantial transformation and simplification has been achieved,

various redundancies exist. Consider the following three disjunctively connected rules

included in rulepc1o-1 as described at (8.2-17):

(married :t 1/\ widow :t 1/\ ooopclO = 1500)
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500)
v (married '* 1 /\ widow '* 1/\ age < 75 /\ ooopclO = 1500) (8.2-18)

Given that the rule condition variable 'age' is not included in the first rule, given that the

rule conditions are otherwise identica~ and given that each rule has the identical rule

state, the inclusion of the rule condition variable 'age' in the second and third rule is

irrelevant. Referencing the concept of transformational equivalence as previously

presented Section 6.5, these three rules can be transformed into identical rules with the

application of the appropriate logic. To support such transformations, the following

implications are derived under propositional logic:

married,* 1 /\ widow :t 1/\ age < 65/\ ooopc10 = 1500 :J

married :t 1 /\ widow :t 1 /\ ooopclO = 1500

married,* 1/\ widow '* 1/\ age < 75 /\ ooopcl0 = 1500 :)
married:t 1/\ widow '* 1/\ ooopclO = 1500

married:t 1/\ widow = 1/\ age < 65 /\ ooopclO = 3470:)
married,* 1/\ widow = 1/\ ooopclO = 3470

married :t 1 /\ widow = 1/\ age < 75 /\ ooopclO = 3470 :J

married,* 1/\ widow = 1/\ ooopclO = 3470

(8.2-19a)

(8.2-19b)

(8.2-19c)

(8.2-19d)

Applying (8.2-19a) through (8.2-19d) to rulepc10-J as described at (8.2-17) using

propositional logic (i.e., disjunction elimination) and then eliminating the idempotent

terms yields:

ru!epclO-1 :J

(married = 1/\ age?: 75 /\ opclO = 6692)
v (married = 1/\ age 2: 65 /\ age < 75 /\ oopclO = 6625)
v (married = 1 /\ age < 65 /\ ooopclO = 3470)
v (married '* 1/\ widow = 1/\ ooopclO = 3470)
v (widow = 1/\ age < 65 /\ ooopc10 = 3470)
v (married:t 1/\ widow '* 1/\ ooopclO = 1500) (8.2-20)

221

One fmal simplifying transformation is possible. Considering the domain of and

relation between the rule condition variables 'married' and 'widow,' the following

observation is made:

(married::f:. 1 A widow = 1) :::> (widow = 1) (8.2-21)

Informally, (8.2-21) describes the fact that a widow cannot be married. To complete

this transformation, the following implication, similar to those previously presented at

(8.2-19), is derived under propositional logic

widow = 1 A age < 65 A ooopclO = 3470:::>
widow = 1 A ooopclO = 3470 (8.2-22)

Applying (8.2-21) and (8.2-22) to rulepc1o-1 as described at (8.2-20) using propositional

logic (i.e., disjunction elimination) and then eliminating the idempotent term yields:

rulepclO-l :::>
(married = 1 A age ~ 75 A opclO = 6692)
v (married = 1 A age ~ 65 A age < 75/\ oopclO = 6625)
v (married = 1/\ age < 65 /\ ooopclO = 3470)
v (widow = 1 A ooopclO = 3470)
v (married ::f:. 1 A widow ::f:. 1 A ooopc10 = 1500) (8.2-23)

To facilitate further analysis and rule representation, the consequent of (8.2-23) is

defmed as:

rulepc1o-1' £
(married = 1/\ age ~ 75 A opcl0 = 6692)
v (married = 1/\ age ~ 65 A age < 75 /\ oopc10 = 6625)
v (married = 1 /\ age < 65 A ooopclO = 3470)
v (widow = 1 A ooopclO = 3470)
v (married ::f:. 1/\ widow ::f:. 1 A ooopclO = 1500)

With the introduction of this defmition, (8.2-23) can be restated as:

rulepc1o-J :::> rulepc1o_J'

(8.2-24)

(8.2-25)

222

With (8.2-24) and (8.2-25), the transformation of rulepcJo-l is complete', The

original program code for rulepcJo_l, consisting of three nested if-then-else statements,

has been transformed into five disjunctively connected rules as described by rulepclO-l'.

As a disjunctive structure, the component rules (i.e., disjuncts) can be reordered as

necessary, As an ITL formula, rulepclo-l' can be used, as necessary, for additional

reasoning about the overall system

Based on an analysis of the programming structures associated with rulepclO-2,

and applying the rule-form description of the if-then and the if-then-else programming

structures presented in Section 6.6.1 and the rule-form sequential composition presented

in Section 5.6.1, rulepclO-2 is described as:

rulepcJo-2 E (rulepcJo-2a(true) A orulepclo-2b) v rulepclO-2a(false) (8.2-26)

where:

rulepclO-2a(true)';' «married = 1 A age ~ 65 A income> 16800) A ot)
rulepclO-2a(false) ,;, (,(married = 1 A age ~ 65 A income> 16800) A empty)

rulepclo-2b';' (t > 3740 A opel 0 = t)
v (,(t > 3740) A opelO = 3740)

t ~ pelO - (income - 16800) /2

Applying the rule algebra and imposing some limited assumptions of the form

oWo :J wo regarding specific rule conditions variables, rulepclo,2 is transformed, as

described in Appendix D, such that:

where:

rulepclO-2 :J

(married = 1 A age ~ 65 A income> 16800 At> 3740
A oopclO = t)

v (married = 1 A age ~ 65 A income> 16800 A t s 3740
A o opel 0 = 3740)

v (married :t 1A empty)
v (age < 65 A empty)
v (income s 16800 A empty)

t';' pclO - (income - 16800) / 2

(8.2-27)

223

To facilitate further analysis and rule representation, the consequent of (8.2-27) is

defmed as:

where:

rulepclo-2' ~
(married = 1 A age ~ 65 A income> 16800 At> 3740

A oopcW = t)
v (married = 1 A age ~ 65 A income> 16800 A t ~ 3740

A oopclO = 3740)
v (married :t: lA empty)
v (age < 65 A empty)
v (income ~ 16800 A empty)

t ~ pelO - (income - 16800) /2

With the introduction of this defmition, (8.2-26) can be restated as:

rulepclO-2 :J rulepclO-2'

(8.2-27)

(8.2-28)

With (8.2-27) and (8.2-28), the transformation of rulepclo-2 is complete. The

original program code for rulepclo-2, consisting of an if-then-else statement nested in an

if-then statement, has been transformed into a set of disjunctively connected rules as

described by rulepclo-2'. In this set of rules, all conditions associated with each rule state

are explicitly stated. As a disjunctive structure, the component rules (i.e., disjuncts) can

be reordered as necessary. As an ITL formula, rulepclO-2' can be used as necessary for

additional reasoning. For example, a simple manipulation allows the demonstration that

the rule conditions of rulepclo-2' are of the form Wo A WJ, Wo A -'Wl. or -,Wo, supporting

the observation that all possible conditions are considered under rulepclo-2'.

Returning to rulepclo, the rule-based representation ofthe slice on variable 'peW,'

rulepc10 has been defmed at (8.2-1) as:

rulepcJO-l ; ruZepcJo-2 (8.2-29)

Applying (8.2-25) and (8.2-28) to (8.2-29) with ChopSwapImp2 and ChopSwapImp.

respectively, yields:

224

rulepc10-1' ; rulepc1o-2' (8.2-30)

With (8.2-30), the slice on variable 'pclO' is described as two chopped state

sequences, where each component sequence is described by a set of disjunctively

connected general-form rules. Unlike the original program code that includes nested if­

then-else statements, these formulas reflect a substantial logical simplification. In each

set of rules, the rule conditions associated with each rule state are explicitly stated. For

specific values of the rule conditions, the applicable rule state can be easily identified by

applying those values and assessing the verity of the conditions within each disjunct.

This is particularly significant with regard to identifying the rules that apply to a limited

set of conditions. For example, for an unmarried individual (i.e., married ~ 1), it is

immediately apparent that only one disjunct in rulepc1o-1' and only one disjunct in

rulepc10-2' applies. This is in contrast to the code slice, in which the code must be

walked, that is, each line of code evaluated and the if-then-else statements followed, to

determine what portion of the code applies to the specific condition. Although the

relative order of the two component rules, rulepc1o-1' and rulepcIO-2', is fixed, the

component disjuncts within each rule can be reordered as needed for presentation

purposes. Continuing the previous example of the unmarried individual, the disjuncts

of (8.2-24) and (8.2-27) can be reordered to list the disjuncts with the rule condition

'married ~ I' first. Finally, and as previously stated regarding the component rules,

(8.2-30) is an ITL formula and can be used as needed for additional reasoning, either

about the slice itself or as part of an analysis of the entire block of code.

As a second slicing exercise, the WSL tax program was backward sliced on the

variable 'personal' using the FermaT Syntactic_Slice tranformation, and the following

slice was generated:

IF age >= 75
THEN personal := 5980
ELSE IF age >= 65

THEN personal := 5720
ELSE personal := 4335 F1 F1;

IF age >= 65 AND income> 16800
THEN VAR < t := personal- (income - 16800) /2>:

IFt > 4335
THEN personal := t

225

ELSE personal := 4335 PI ENDV AR PI;
IF blind = 1

THEN personal:= personal + 1380 PI

Based on an inspection and analysis of the programming structures that comprise this

slice, this slice on the variable, 'personal' can be represented as a sequence of three

chopped rules:

where:

rulepersonal == rulepers-l ; rulepers-2 ; rulepers-3

rulepers-l ~ IF age >= 75
THEN personal := 5980 .
ELSE IF age >= 65

THEN personal := 5720
ELSE personal:= 4335 PI PI;

rulepers-2 ~ IF age >= 65 AND income> 16800

(8.2-31)

THEN V AR < t := personal- (income - 16800) 12 >:
IFt > 4335
THEN personal := t
ELSE personal := 4335 PI ENDV AR PI;

rulepers-3 ~ IF blind = 1
THEN personal := personal + 1380 PI

Applying the rule-form description of the if-then-else programming structure as

presented in Section 6.6.1, rulepers-l is described as:

rulepers-l ==
(age ~ 75" opersonal = 5980)
v (-,(age ~ 75) " 0« age ~ 65 " opersonal = 5720)

v (-,(age ~ 65) " opersonal = 4335))) (8.2-32)

Applying algebraic equivalences regarding the great-than-or-equal and negation

operators yields:

226

rulepers-l ==
(age ~ 75 A opersonal = 5980)
v (age < 75 A o«age ~ 65 A opersonal = 5720)

v (age < 65 A opersonal = 4335») (8.2-33)

Applying NextOrDistEqv and then NextAndDistEqv to (8.2-33) yields:

rulepers-l ==
(age ~ 75 A opersonal = 5980)
v (age < 75 A ((oage 2:: 65 A oopersonal = 5720)

v (oage < 65 A oopersonal = 4335») (8.2-34)

With the application of propositional logic to (8.2-34), rulepers-l is described as a

disjunction of three general form rules:

rulepers-l ==
(age 2:: 75 A opersonal = 5980)
v (age < 75 A oage ~ 65 A oopersonal = 5720)
v (age < 75 A oage < 65 A oopersonal = 4335) (8.2-35)

Within the context of the strict linear nature of the system and the corresponding

absence of any concurrent actions, and because the frame of rulepers-l is limited to the

variable 'personal' and therefore does not interfere with any rule conditions, the

following implications of the form CWo :::) Wo are asserted:

oage ~ 65 :::) age ~ 65
oage < 65 :::) age < 65

(8.2-36a)

(8.2-36b)

Applying these implications to (8.2-35) using propositional logic (i.e., disjunction

elimination) yields:

rulepers-l :::)

(age ~ 75 A opersonal = 5980)
v (age < 75 A age ~ 65 A oopersonal = 5720)
v (age < 75 A age < 65 A oopersonal = 4335) (8.2-37)

227

The following equivalence regarding the variable 'age' has been asserted previously at

(8.2-16):

age < 65 == (age <75 A age < 65)

Applying this equivalence to (8.2-37) yields:

rulepers-l ::::>
(age ~ 75 A opersonal = 5980)
v (age < 75 A age ~ 65 A oopersonal = 5720)
v (age < 65 A oopersonal = 4335)

(8.2-16)

(8.2-38)

Based on an analysis of the programming structures associated with rulepers-2,

and applying the rule-form description of the if-then and the if-then-else programming

structures presented in Section 6.6.1 and the rule-form sequential composition presented

in Section 5.6.1, rulepers-2 is described as:

where:

rulepers-2 == (rulepers-2a(true) A orulepers-2b) v rulepers-2a(false)

rulepers-2a(true) ~ «age ~ 65 A income> 16800) A ot)
rulepers-2a(false) ~ (-,(age 2:: 65 A income> 16800) A empty)
rulepers-2b ~ (t > 4335 A opersonal = t)

v (-,(t > 4335) A opersonal = 4335)
t ~ personal- (income - 16800) 12

(8.2-39)

Using these representations of rulepers-2a and rulepers-2b, rulepers-2 is transformed,

as described in Appendix D, such that:

where:

rulepers-2 ::::>
(age 2:: 65 A income> 16800 A ot > 4335 A oopersonal = t)
v (age 2:: 65 A income> 16800 A ot ~ 4335 A oopersonal = 4335)
v (age < 65 A empty)
v (income ~ 16800 A empty) (8.2-40)

t ~ personal- (income - 16800) 12

228

Applying the rule-form description of the if-then programming structure as

presented in Section 6.6.1, rulepers-3 is described as:

rulepers-3 == (blind = 1 A opersonal = personal + 1380)
v (,(blind = 1) A empty) (8.2-41)

Applying algebraic equivalences regarding the equality and negation operators to

(8.2-41) yields:

rulepers-3 == (blind = 1 A opersonal = personal + 1380)
v (blind :t 1 A empty) (8.2-42)

With (8.2-42), the transformation of the three rules that compose rulepersonal is

complete. Summarizing, the slice on the variable 'personal' of WSL tax program code is

described as a rule system with three sequential rules:

rulepersonal == rulepers-l ; rulepers-2 ; rulepers-3 (8.2-43)

These three rules are described as rule systems of disjunctively connected general-form

rules where:

where:

rulepers-l :J

(age ~ 75 A opersonal = 5980)
v (age < 75 A age ~ 65 A oopersonal = 5720)
v (age < 65 A oopersonal = 4335)

rulepers-2 ::>
(age ~ 65 A income> 16800 A ot > 4335 A oopersonal = t)

(8.2-44a)

v (age ~ 65 A income> 16800 A ot::5 4335 A oopcrsonal = 4335)
v (age < 65 A empty)
v (income ::5 16800 A empty) (8.2-44b)

t ~ personal- (income - 16800) / 2

rulepers-3 == (blind = 1 A opersonal = personal + 1380)
v (blind ;f:. 1 A empty) (8.2-44c)

These extracted rules can be used to analyze the original WSL code. In previous

evaluations of this code, Ward et al. (2005) and Fox et al. (2000) applied various forms

229

of conditioned slicing to answer the question "What is the personal allowance

calculation for a blind widow aged over 68?" These conditions are expressed in terms

of the WSL program variables as:

blind = 1
married = 0
widow = 1
age> 68

(S.2-45a)
(8.2-45b)
(S.2-45c)
(S.2-45d)

In the following analysis, these same conditions are applied to the extracted rules to

generate conditioned rules that reflect those specific conditions. These conditioned

rules are then compared to the slices generated by others for the same conditions.

Referencing rulepers.J at (8.2-44a) and applying the specific conditions at

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions

yields rulepers.l.cond:

rulepers.J.cond ~
(age ~ 75 " opersonal = 5980)
v (age < 75" true" oopersonal = 5720)
v ifalse " oopersonal = 4335)

Applying propositional logic to (8.2-46) yields:

rulepers.l.cond ~
(age ~ 75 A opersonal = 5980)
v (age < 75" oopersonal = 5720)

(S.2-46)

(8.2-47)

Referencing rulepers.2 at (8.2-44b) and applying the specific conditions at

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions

yields rulepers.2.cond:

rulepers-2.cond ::>
(true" income> 16800 " ot > 4335 " oopersonal = t)
v (true" income> 16800" ot ~ 4335 "oopersonal = 4335)
v ifalse " empty)
v (income ~ 16800 " empty) (8.2-48)

230

Applying propositional logic to (8.2-48) yields:

rulepers-2-cond :::)

(income> 16800 A ot > 4335 A oopersonal = t)
v (income> 16800 A ot:s 4335 A oopersonal = 4335)
v (income:s 16800 A empty) (8_2-49)

Referencing rulepers-3 at (8.2-44c) and applying the specific conditions at

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions

yields rulepers-3-cond:

rulepers-3-cond == (true A opersonal = personal + 1380)
v (false A empty)

Applying propositional logic to (8.2-50) yields:

rulepers-3-cond == (opersonal = personal + 1380)

(8-2-50)

(8-2-51)

Given the previous defmition of ruiepersonal at (8.2-43), the conditioned rule

rulepersonal-cond, conditioned based on the specific conditions presented at (8.2-45), is

defmed as the chopped sequence:

ruiepersonal-cond == ru[epers-J-cond ; ru[epers-2-cond ; rulepers-3-cond (8.2-52)

Using (8.2-52), applying rulepers-J-cond as described at (8.2-47) with ChopSwaplmpl and

then applying OrChopEqv yields:

rulepersonal-cond :::)

(age 2': 75 A opersonal = 5980) ; rulepers-2-cond ; ru[epers-3-cond

v (age < 75 A oopersonal = 5720) ; rulepers-2-cond ; rulepers-3-cond (8.2-53)

Using (8.2-53), applying propositional logic (i.e., disjunction elimination) and then

applying ru!epers-2-cond as described at (8.2-49) with ChopSwaplmp3 yields:

231

rulepersonal-cond :::>

(age 2: 75 1\ opersonal = 5980) ;
«income> 168001\ ot > 4335 1\ oopersonal = t)
v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335)
v (income ~ 16800 1\ empty» ; rulepers-3-cond

v (age < 751\ oopersonal = 5720) ;
«income> 16800 1\ ot> 43351\ oopersonal = t)
v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335)
v (income ~ 16800 1\ empty» ; rulepers-3-cond

Applying OrChopEqv to (8.2-54) yields:

rulepersonal-cond :::>

(age 2: 75 1\ opersonal = 5980) ;
«income> 16800 1\ ot> 4335 1\ oopersonal = t) ; rulepers-3-cond

(8.2-54)

v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) ; rulepers-3-cond

v (income ~ 168001\ empty) ; rulepers-3-cond)

v (age < 751\ oopersonal = 5720) ;
«income> 16800 1\ ot> 43351\ oopersonal = t) ; rulepers-3-cond

v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) ; rulepers-3-cond

v (income ~ 16800 1\ empty) ; rulepers-3-cond) (8.2-55)

Applying ChopOrEqv and substituting for rulepers-3-cond yields:

rulepersonal-cond :::>

(age 2: 751\ opersonal = 5980) ;
(income> 16800 1\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + 1380)

v (age ~ 75 1\ opersonal = 5980) ;
(income> 16800 1\ ot ~ 4335 1\ oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age 2: 751\ opersonal = 5980) ;
(income ~ 16800 1\ empty) ;
(opersonal = personal + 1380)

v (age < 75 1\ oopersonal = 5720) ;
(income> 16800 1\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + 1380)

232

v (age < 75 A oopersonal = 5720) ;
(income> 16800 A ot ~ 4335 /I. oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;
(income ~ 16800/1. empty) ;
(opersonal = personal + 1380) (8.2-56)

With (8.2-56), rulepersonal-cond is described as a disjunction of six alternative

sequences, where each sequence is composed of two rules and a fmal assignment of a

value to the variable 'personal.' Given the similar structure of these six sequences, the

fmal value of the variable 'personal' in each sequence is dependant on the satisfaction of

the specified (and complementary) rule conditions. This observation is supported by the

final transformation of rulepersonal-cond, presented in Appendix D, where:

rulepersonal-cond :::>

(age;::: 75; (income> 16800 A income < 20090)
/I. fin(personal = 15760 - incomel2))

v (age;::: 75 ; (income> 16800 A income;::: 20090)
A fin (personal = 5715))

v (age;::: 75; income ~ 16800
A fin(personal = 7360))

v (age < 75 ; (income> 16800 A income < 19570)
A fin (personal = 15500 - income/2))

v (age < 75 ; (income> 16800 A income;::: 19570)
A fin(personal = 5715))

v (age < 75; income ~ 16800
A fin (personal = 7100)) (8.2-57)

In (8.2-57), the ITL construct fin is used to denote that the specified formula is true on

the final subinterval (in this case the fmal state) of the corresponding interval. Whereas

the form of the disjuncts of (8.2-57) is a deviation from the general rule-formJi A ojj as

developed and used in this research, some conceptual similarities are noted. Consistent

with the temporal-relationship concepts developed in Chapter 4, the formula Ji A fin jj

describes a conjunctive relationship between a set of conditions describable by Ji and

233

some set of properties describable by jj that hold in the fmal subinterval considered by

the formula Ji " fin jj.

With (8.2-57), the relationships between the variables 'age' and 'income' and the

variable 'personal' as specified in rulepersonal-cond are described in the six disjuncts. In

each disjunct, the rule conditions are noted and the resulting final value of the variable

'personal' is specified. With regard to the use of the ITL operator chop in the expression

of the conditions, given that the conditions based on the variables 'age' and 'income' are

expressed in terms of state formulas, and given the semantics of chop, both condition

formulas can hold for the same state.

For comparison, consider the following "conditioned slice," sliced by Fox et al.

(2000) from the tax program code using the previously defined conditions and

converted to WSL by Ward et al. (2005):

IF age >=75
THEN personal := 5980

ELSE IF age >= 65
THEN personal := 5720 F1 F1;
IF age >= 65 AND income> 16800

THEN V AR < t := personal- (income-16800)12 >:
IFt> 4335

THEN personal := t
ELSE personal := 4335 FI ENDV AR FI;

IF blind = 1
THEN personal:= personal + 1380 FI

Also for comparison, consider the following "semantic slice," sliced by Ward et al.

(2005) from the tax program code using the previously defmed conditions:

IF age < 75 AND income >= 19570
THEN personal:= 5715

ELSIF age < 75 AND income> 16800
THEN personal:= (16800 - income)/2 + 7100

ELSIF age < 75
THEN personal:= 7100

. ELSIF income >= 20090
THEN personal:= 5715

ELSIF income> 16800
THEN personal:= (16800 - income)/2 + 7360
ELSE personal := 7360 FI

234

Ward et al. (2005) describe semantic slices as business rules for a particular situation, in

this case, the business rule for the personal allowance for a blind widow aged over 68.

The expression of this conditioned rule rulepersonal-cond as (8.2-56) and/or (8.2-57)

has at least three distinct advantages over the above conditioned slice or semantic slice.

Firstly, the conditioned rule rulepersonal-cond is potentially easier to understand. Whereas

Ward et al. (2005) argues that the semantic slice is "clearly easier to understand" as

compared to the conditioned slice, the conditioned rule is arguably easier to understand

than the conditioned slice or semantic slice. This is because all conditions in

rulepersonal-cond are explicitly listed and associated with each specific outcome. For

example, in (8.2-57), the conditions age < 75 and income:::; 16800 are explicitly

associated with the fmal outcome of personal = 7100. In the conditioned slice and

semantic slice, the sliced code must be walked to determine the fmal outcome

associated with the specific conditions. Secondly, because (8.2-56) and (8.2-57) are

disjunctions, the six component structures can be presented in any order that is

necessary for optimum rule presentation. Conversely, because the conditioned slice and

semantic slice are expressed in a program language, the order of the program code and

corresponding elements cannot be changed. Finally, as logical formulas, (8.2-56)

and/or (8.2-57) can be used directly in further logical reasoning about the target system.

Conversely, because the conditioned slice and semantic slice are expressed in a program

language, neither support any further reasoning without substantial code-based

transformations. Because of these three reasons, the advantages of this general-form

rule approach to manipulating program slices are demonstrated. as compared with

program code representation of slices.

In this section, a block of WSL program code is sliced and the ru les extracted

from the program slices. The rule algebra presented in this research is then used to

analyze these extracted rules. In the first code slicing and rule extraction exercise, the

rule algebra is applied to simply and clarify the extracted rule. Unlike the original

program code that includes mUltiple if-then-else statements that must be traced to

determine the specific conditions associated with a given outcome, with the transformed

rules, the rule conditions associated with each rule state are explicitly identified and

bound to that rule state. Therefore, these transformed rules reflect a substantial

simplification. In the second code slicing and rule extraction exercise, the rules

235

extracted from the program slices are conditioned, and these conditioned rules are

compared to conditioned slices and semantic slices on the same variable. For program

understanding and analysis, these conditioned rules are superior to the conditioned

slices or semantic slices because they are more easily understood, can be more easily

manipulated for presentation, and can be used directly in further reasoning about the

slice or about the source program. As demonstrated in this section, the rule algebra

presented in this research is a powerful and complementary addition to slicing for use in

program understanding and analysis.

236

Chapter 9

Applying the Rule Algebra to Specify New Rules

In this chapter, the formal rule extraction framework of Chapter 3, the formal

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied

to the forward engineering of a rule-based system. This forward-engineering

application of the rule model and rule algebra is presented to demonstrate the wide­

ranging applicability of the concepts developed in this research.

9.1 Refining an Existing Rule with New Rules

Consider rule7.2-c (repeated below), extracted in Section 7.2 from the automated

teller machine specification:

rule7.2-c ~ (card_disabled A otake_disabled_card)
v (-,card_disabled A ogeCpin ; rule7.2_d) (7.2-3)

This rule includes the state sequence gecpin. In this section, gecpin is refmed using

the general-form rule model presented in Chapter 4 and the rule algebra presented in

Chapters 5 and 6.

For this analysis, the refmement relation I: is defined as:

for;.Ji ~fl-::Jfo (9.1-1)

The refmement calculus was fIrst described by Back (1988). Refmement rules

expressed as ITL formulas are presented in Cau and Zed an (2000). For this analysis,

refmement is achieved by instantiating fl in (9.1-1) as a sequence of component state

sequences (e.g., Jia ; Jib), including state sequences described in terms of general-form

rules (e.g., fla ; (ha A Ojib». As previously presented in Section 5.7, two forms of

sequential composition are available under this rule algebra - using the general rule

form and using the ITL operator chop. With regard to the target sequence geCpin,

additional details are added by defming equivalent state sequences that split gecpin into

component sequences, thereby adding new details and refining gecpin.

237

Based on an inspection of (7.2-3), the state sequence gecpin is chopped to the

state sequence described by rule7.2-d. Based on an inspection of rule7.2-d and subsequent

rules ruZe7.2-e and rule7.2-j, previously presented at (7.2-4), (7.2-5), and (7.2-6),

respectively, gecpin represents the behavior in which a valid PIN either is or is not

obtained within an maximum number of attempts. Within this context, the following

informal specification for geCpin is used as the basis for the refmement of geCpin:

''Each ATM customer must enter a valid PIN within a limited number of tries"

Implicit in informal specification is the requirement that the PIN entry process

must be initialized with each new customer. Therefore, state sequence gecpin can be

defmed as two sequentially-composed state sequences:

(9.1-2)

From the defmition presented in (9.1-2):

init-pin3ntry; rulepin...entry:::> gecpin (9.1-3)

Considering (9.1-3) and referencing the refmement relation I: as defmed in (9.1·1):

(9.1-4)

Subsequent refmements of the state sequences composing gecpin are implemented in a

similar manner.

In (9.1·2), inicpin_entry is the state sequence that results from resetting and

initializing the various state variables necessary to accommodate a new customer.

Although unspecified at this time, these various state variables include the various flags

and counters used in subsequent rules that define the state sequence gecpin. Whereas

init-pin_entry must eventually be refined prior to system implementation. this analysis

will focus only on rulepin...eDtry.

In (9.1-2), the state sequence described by rulepiJuntry includes the behaviors

specifically associated with the PIN entry and validation processes. Within the context

of the informal specification for gecpin, as presented above, several distinct elements

are required. Firstly, a valid PIN must be entered. Secondly, the customer has only a

limited number of attempts to correctly enter a valid pin. Finally, given that there can

be multiple (although limited) attempts to enter a valid PIN, a repetitive or looping

construct is needed to express the underlying requirement of this specification. The first

two elements are incorporated into the rule condition and the third element is used to

defme the rule form. Letting the rule condition attempclimit be a state formula that is

true in a state where the allowable number of entry tries has been exceeded and letting

the rule condition valid-IJin be a state formula that is true in a state where the entered

PIN has been validated, rulepiruntry is described as a recursive general-form rule as:

rulepifLentry ~ «(-,attempclimit 1\ -,valid-IJin)
1\ oprocess_pin) ; rulepirLentry))
v (-,(-,aftempclimit 1\ -,valid-IJin) 1\ empty)

Applying propositional logic, (9.1-5) is expressed in an equivalent form as:

rulepifLentry ~ «((-,attempclimit 1\ -,valid-IJin)
1\ oprocess_pin) ; rulepin_entry»
v (validJJin 1\ empty)
v (attempclimit 1\ empty)

(9.1-5)

(9.1-6)

As a recursive rule, the state sequence defined by rulepifLentry will end when either of the

rule conditions validJJin or attempClimit is satisfied, thereby ending the recursion.

Based on the above analysis and interpretation of the informal specification for geCpin,

the refinement of gccpin to inicpin_entry ; rulepiuntry is consistent with the informal

specification for gecpin.

The definition of rulepifLentry is a recursive rule that includes the state sequence

process_pin. Within the context of the informal specification of geCpin, for this

analysis, process_pin is defined as a sequence of state sequences such that:

(9.1-7)

239

With this partitioning of process_pin into three separate state sequences, each state

sequence can be refined independently. As display_pin_screen is relatively straight­

forward, only two of the three separate state sequences in process_pin will be refmed -

rulereaOey_pad and rulevalidattLpin.

The state sequence rulereaocy_pad is a user-directed event. As a event-driven

sequence, PIN entry is terminated with a specific key from the keypad - typically the

enter key. Therefore, the rule defming the state sequence rulereaOey_pad must

incorporate this event-driven element. Letting the rule condition enter _key be a state

formula that is true in a state where the enter key has been pressed, rulereaoey_pad is

described as a recursive general-form rule as:

rulereaOey_pad ~ (-,enter_key A okey_buffer) ; ruleread.Jr.ey_pad
v (enter_key A oincremencattempt) (9.1-8)

In this form, rulereaOey_pad differs from previous recursive rules (i.e., the rule form of

the while structure as previously discussed in Section 6.6.2) in that defmed state

sequences are associated with both the satisfaction and non-satisfaction of the rule

conditions. In ruleread.Jr.ey_pad, the state sequences key_buffer and incremencattempt

must be refmed (at some future time) to describe, respectively, how the keypad key

entries are processed and how a counter is incremented with each PIN that is entered

(where this counter can be used to assess the satisfaction of the rule condition

attempclimit in rulepi,untry).

As specified in (9.1-7), the state sequence described by rulereaoey_pad is followed

by rulevalidate_pin. The state sequence described by rulevalidate_pin must consider at least

two business rules. Firstly, the PIN must be the proper length - typically four digits.

although this may vary based on the specific institution. Secondly. and only after a PIN

of proper length is entered. the user-entered PIN must match the PIN on file with the

institution for that card/account. Therefore. the general-form rule(s) defming the state

sequence rulevalidatc-pin must incorporate these two business rules. That the PIN length

can be assessed locally and the PIN must be matched at centralized location supports the

decision that these activities are best described by two rules.

240

Letting the rule condition pin_length be a state formula that is true in a state

where the PIN of proper length has been entered, rulevalidate_pin is described as:

rulevalidate_pin ~ (pin_length A orulecompare_pin)
V (,pin_length A empty) (9.1-9)

In (9.1-9), the state sequence rulecompare_pin describes the behaviors resulting from the

comparing of the user-entered PIN with the PIN on fIle with the institution for that

card/account. Letting the rule condition pin_match be a state formula that is true in a

state where the user-entered PIN matches the PIN on file, rulecompare_pin is described as:

rulecompare_pin ~ (pin_match A opin_ valid)
v (-.pin_length A empty) (9.1-10)

Whereas not refmed in this analysis, the state sequence pin_valid must satisfy the rule

condition valid_pin in the rule rulepiQ..entry at (9.1-6). With regard to the general

refmement strategy, rulevalidate_pin and rulecompare_pin reflect sequential association of two

state sequences based on the general rule form, as previously presented in Section 5.6.1.

This is in contrast to process_pin at (9.1-7), where rules are sequentially composed

using the chop operator, as previously presented in Section 5.6.2.

In summary, the following rules and rule structures have been developed to

refme the state sequence gecpin:

rulepin3ntry ~ «(,attempClimit A ,valid..,pin)
A oprocess_pin) ; rulepiQ..enuy»
v (valid..,pin A empty)
v (attempClimit A empty)

rulereaOey_pad ~ (,enter _key A okey_buffer) ; ruleread_key_pad
v (enter _key A empty)

rulevalidate_pin ~ (pin_length A orulecompare_pin)
v (-.pin_length A empty)

(9.1-2)

(9.1-6)

(9.1-7)

(9.1-8)

(9.1-9)

241

rulecompare_pin f: (pinJn,atch /\ opin_ valid)
v (-pin_match /\ empty) (9.1-10)

Using the statechart concepts described in Section 7.3, a statechart representing these is

presented in Figure 9.1-1.

[attempCiimit v validJlin]

[.., attempt_limit 1\..., validJlin)

Figure 9.1-1: Statechart for Refmed State Sequence gecpin

242

9.2 Analyzing the New Rules Using the Rule Algebra

To assess these rules. including the rule conditions and the associated rule states,

the rule algebra presented in this research is applied to the analysis of ru[epifLentry

(including process_pin), rulereadJ<ey_pad, rUlevalidate_pin, and rulecompare_pin. Because the

state sequence inicpin_entry is focused only on the initialization of various program

flags and counters, and at this refmement level contains no rules, iniCpin_entry is not

considered in this analysis.

To implement these rule transformations, an additional lemma is introduced -

TwoChopRuleslmp4. TwoChopRuleslmp4 is a continuation TwoChopRuleslmp series

previously presented in Sections 7.2 and 8.1, and is used to separate and collect the rule

conditions and rule states of the two chopped rules and transform them into a single

general form rule.

LEMMA: TwoChopRuleslmp4

Proof:

1 /0; if1 A/z) ; if3 Ah)

2 if1 A/2) ; if3 Ah)

3 (ji ;/3) A (fi ;/4)

4 (ji Ah) ; if3 Ah) => if1 ;/3) A (fi ;/4)

5 /0; if1 A/z) ; if3 A/4) =>/0; ((/1 ;/3) A if2 ;.14»
6 /0; (ifJ ;/3) A if2 ;/4»

premise

CP assumption

2, TwoChopRulesImp

2-3, ::::> introduction

4, ITL (RightChoplmpChop)

1,5, MP

In this analysis, these four rules (rulepiruntry. rulereao.ey_pad, ru[evalidate_pin, and

rulecompare_pin) are used as premises. The general transformation strategy for this

complete analysis of all state sequences or behaviors associated with ru!epifLentry (and

rulereadJ<ey_pad, ru!evalidate_pin, and rU[ecompare_pin by inclusion) is identical to that used in

the rule transformation of Section 7.2 - cleave each contributory rule into the

component rule condition and rule state, and then add those components, in order, into

the aggregate descriptions of rule conditions and corresponding system behaviors. This

disassembly and subsequent reassembly is performed using ITL and the rule algebra

presented in this research. Because this is an assessment of all possible behaviors

243

associated with an entire set of rules, these alternative behaviors are expressed

disjunctively. The target rules are processed in reverse order, that is, from the deepest

rule upwards. In this way, behaviors are transformed systematically, and each

subsequent behavior associated with a specific rule rests on the behavior defmed by that

rule's component rules. This transformation is presented in Appendix E.

The fmal result of this transformation, representing the various behaviors of

rulepin...entry, is presented below:

« (-,attempclimit A -,valid-pin) ; -,enter _key)
A (odisplay_pin_screen ;okey_buffer;

rulereaoeY_IY<Id ; rulepin...entry»

v «(-,attempclimit A -,valid-pin) ; enter_key;
(pin_length A opinJn,atch»

A (odisplay_pin_screen ; oincremencattempt ;
oopin_valid ; rulepin...entry»

v «(-,attempclimit A -,valid-pin) ; enter_key;
(pin_length A o-,pin_match»

A odisplay_pin.....screen; oincremencattempt ;
oOdisplay_invalid_screen ; rulepin...entry»

v «(-,attempClimit A -,valid-pin) ; enter_key; -,pin_length)
A (odisplay_pin_screen; oincremencattempt ;

odisplay_invalid_screen ; rulepin...entry»

v (valid-pin A empty)

v (attempclimit A empty»

(9.2-1a)

(9.2-1b)

(9.2-lc)

(9.2-ld)

(9.2-le)

(9.2-1f)

Although (9.2-1) is a single disjunctive statement, each component disjunct is numbered

individually to facilitate discussion.

Using (9.2-1) and knowing the verity of the five rule conditions attempClimit,

valid-pin, enter j,ey, pin_length, and pinJn,atch for a specific instance, the system

behavior under rulepiruntry for that instance can be determined. For example and as

depicted in (9.2-1£), if attempclimit is satisfied, then empty holds and the state

sequence described by rulepin...entry ends. Referencing (9.1-2), when rulepin...entry ends,

gecpin ends. Referencing rule7.2-c in Section 7.2 at (7.2-3), after gecpin, the system

behavior is described by rule7.2-d. A similar behavior is depicted in (9.2-1e) associated

244

with the satisfaction of the rule condition valid-pin. Because disjuncts (9.2-1e) 'and

(9.2-1f) are the only disjuncts that do not include a recursive reference to rulepiruntry, the

satisfaction of either attempclimit or valid-pin is the only way that rulepin-.entry and

gecpin ends. As depicted in (9.2-1c) and (9.2-1d), if -,attempclimit and -,valid-pin

are satisfied, if enter _key is satisfied, and either -,pin_length is satisfied or pin_length

and -,pin_match are satisfied, the resulting state sequence is described by

display_in valid_screen, informing the user that an invalid PIN was entered. With the

satisfaction of the rule conditions specified in (9.2-1b), the state sequence pin_valid

results so that with the next recursive execution of rulepifLentry, the rule condition

valid-pin will be satisfied. Finally, in (9.2-1a), if the rule condition ,enter _key is

satisfied, signaling that the enter key has not been pressed at the key pad, system

behavior continues to be defmed by the recursive reference to ruZereacUey_pad, thereby

accepting additional key pad input.

As demonstrated above, this transformation allows an alternative form for

checking the formation of the original rules. In addition to the assessment of the rule

verities and the associated fmal behaviors, this transformation allows the order of the

rule conditions to be assessed. With each set of rule conditions, the associated order(s)

of the intermediate behaviors leading to a specific fmal behavior can be assessed.

Finally, because this transformation is a disjunctively connected sets of general-form

rules, this transformation can be used for additional reasoning about the overall system

of which rulereacUey_pad is a part.

In this section, the rule model and rule algebra of this research are applied to the

forward engineering of rules to refine a specification. Additional details regarding

system behavior are achieved by dividing a previously specified state sequence into a

composition of two or more state sequences. These new and more detailed state

sequences can be expressed as a single state sequence (e.g., inicpin_entry) or they can

be described as a system of two or more disjunctively connected rules, thereby

describing two or more possible state sequences. For example, the state_sequence

gecpin is initially refined into two state sequences, inicpin_entry and rulepifLentry'

where inicpin3ntry defines only one state sequence (subject to future refmement) and

rulepifLentry defines alternative multiple state sequences depending on the satisfaction of

245

the associated rule conditions. This refmement process is repeated for selected state

sequences until sufficient detail is introduced. Then, the resulting rules can be

transformed using the rule algebra presented in the research. With these

transformations, the rules can be assessed with regard to the rule conditions and the

associated rule states. With this example, the rule model and rule algebra presented in

this research are demonstrated to be a viable and useful basis for the orderly and

stepwise development and refmement of rules and rule-based descriptions of specific

system behaviors.

246

Chapter 10

Observations regarding the Rule Algebra and its Application

In this chapter, observations are presented regarding the basis and development

of the rule algebra and regarding the application of the rule algebra to both the analysis

and the development of rule-based models, specifications, and code. A brief discussion

of this rule algebra and its application relative to rule analysis, relative to literature

previously reviewed in Chapter 2, is presented.

10.1 On the Rule Algebra

In Chapters 5 and 6, a rule algebra is developed using the temporal rule model

presented in Chapter 4. Given the underlying principle behind that rule model, that a

rule is a conjunctive relationship between a state sequence and a future state sequence

describable by the general-form rule!;. A ofj, this rule algebra is incrementally developed

in Chapter 5 by considering fundamental systems and the corresponding relationships

between the state sequences that compose those systems. Using the concept of a rule

system - a collection of two or more related rules - more complicated state sequences

are described. One extremely important rule system used extensively in this rule

algebra is the total rule - a pair of disjunctively associated rules incorporating

complementary rule conditions. With this inclusion of complementary rule conditions,

it is assured that all the state sequences will satisfy one or the other of the rule

conditions included in the total rule.

In Chapter 6, significant attention is given in this rule algebra to composing rules

and rule systems in order to describe larger and more complex state sequences.

Compositional paradigms that are demonstrated include: sequential composition using

both the general rule form itself and the ITL operator chop; nesting; recursion;

deterministic and non-deterministic guarded composition; and disjoint parallel

composition. Using these compositional paradigms, rule-based representations of

typical legacy code structures - the if-then-else structure, the while structure, and the

indexed for-loop - are developed.

Although not easily quantified, a critical element of this rule algebra is the

fundamental simplicity with which a diverse spectrum of rules are defmed and

247

manipulated. Forty-three lemmas are developed in this research as part of this rule

algebra to describe allowable and desirable transformations of various rules and rule

systems. With the expressiveness of ITL, the proofs necessary to support these lemmas

are quite direct. In the development of this rule algebra, no problems or issues were

encountered in the description of increasingly complicated state sequences or with the

systematic development of the related lemmas. Whereas the rule algebra developed

herein provides sufficient means to achieve the immediate goals of this research, the

lemmas presented in this research form a core for the development of additional

transformations as needed. Because this rule algebra is built on ITL, the richness of ITL

is available, if and as needed, for additional development and future refmement of this

rule algebra.

10.2 On the Application of the Rule Algebra

In Chapters 7, 8, and 9, the rule model of Chapter 4 and the rule algebra of

Chapters 5 and 6 are applied to the extraction of rules from existing systems, to the

analysis of those rules, and to the development of new rules. Rules are extracted from a

variety of existing systems: a fmite state machine, a detailed formal specification, a

block of legacy Pascal code, and slices from a WSL program The flexibility and

adaptability of this rule algebra are demonstrated both with the diversity of systems

from which rules are extracted and with the transformations and analyses that are

achieved using the extracted rules. With these demonstrations, as least eight significant

benefits are demonstrated regarding the value and applicability of this rule model and

rule algebra.

Firstly, the rule algebra developed in this research is sufficiently expressive to

allow the analysis of a range of existing models, specifications, and programs. No

model, specification, and program structures are encountered that cannot be adequately

represented with the rule model, rule algebra, and ITL. The general-form rule defmed

in Chapter 4, the fundamental structures explored in Chapter 5, and the compositional

models presented in Chapter 6 are sufficient, either directly or indirectly, to describe all

elements of the various systems considered in this research. By linking the rule algebra

concepts presented in Chapters 5 and 6, either by composing rules sequentially or by

248

nesting rules within rules, complex logical and programming structures can be

addressed, as demonstrated with the diversity of systems analyzed.

Secondly, and closely related to the previously discussed expressiveness, the

rule algebra is adaptable. Given the underlying formations of the rule algebra and the

depth of ITL, additional lemmas can be developed to support and expand the rule

algebra as needed, as demonstrated with the additional lemmas introduced in Sections

7.2 and 8.1 to achieve rule transformations. Similarly, the rule algebra is not overly

restrictive with regard to new or allied concepts. In Section 7.2, the ITL sometimes

operator 0 is used to allow an alternative expression of the temporal ordering of the rule

conditions while still maintaining the underlying general-rule form. In Section 8.2, the

ITL fin construct is used to describe the properties of the fmal state in the state sequence

described by the rule. Although the fin form is a deviation from the general rule-form

used throughout this research, the conceptual similarities are noted.

Thirdly, the rule algebra supports different levels of analysis. As demonstrated

with each of the rule analysis cases presented in Chapters 7 and 8, the application of the

rule algebra can be tailored as needed to meet overall expectations and objectives of a

specific rule extraction process. As demonstrated with each case considered herein, the

rule algebra can be applied incrementally, and the resulting rule transformations can be

used for additional reasoning about other rules and the overall system. This incremental

approach is extremely important in the early phases of a legacy-system analysis when

system-specific knowledge may be limited, and specific expectations and objectives

may be vague and uncertain.

Fourthly, statecharts are used to represent legacy-code programming structures,

and their use is consistent and compatible with the rule model and rule algebra

presented in this research. Together, statecharts and this rule algebra provide a robust

tool for legacy code analysis. Correspondences between the statechart elements and the

rule elements are presented in Section 7.3 such that statecharts can be developed that are

equivalent to extracted general-form rules. Therefore, these equivalent presentations of

the same program structures differ not in content, but only in how they can be used in

future analysis and understanding. The statechart approach allows a visual presentation

that is readily understandable by a wider audience, and the formulaic approach of

249

representing the extracted rules as TIL formulas is readily adaptable to computer

analysis techniques. Coupled with the rule algebra, statecharts represent a robust

approach to managing the 'state explosion' problem that may result in the analysis and

extraction of rules in real-world legacy systems, as identified in Chapter 3.

Fifthly, this rule algebra is applicable within the context of other program

analysis techniques such as those described in Chapter 2. In Section 7.2, with the

transformation of the extracted rules, the specific sequence of rule conditions and

associated rule states leading to a defmed goal is identified. Borrowing from the

nomenclature of other program understanding techniques, the resulting sequence is

described as a state-sequence slice. In Section 8.1, the rule algebra is used as the basis

for developing and populating a database usable for legacy code analysis. In Section

8.2, the rule algebra is applied in concert with traditional program slicing.

Sixthly, simplification is achieved with the transformation and representation of

these systems using the rule algebra. At (7.1-11), a three-state, five-transition fmite

state machine is described with two general-form rules. At (7.2-27), a recursive while­

form specification that includes four nested if-then-else specifications is transformed

into a disjunction of six general-form rules. In each of these general-form rules, the rule

conditions that must be met are identified and the corresponding system behavior is

clearly presented as an ordered sequence of state sequences, including the recursive

behavior of the original specification. At (8.2-25), three nested if-then-else statements

are transformed into a disjunction of five easily understood rules, where all rule

conditions associated with each rule state are explicitly identified.

Seventhly, the application of the rule algebra for the analysis of the rules from a

given model, specification, or program allows the direct assessment of the behavior of

that system with regard to specific conditions. In Section 7.1, the rules extracted from a

fmite state machine were used to model the state sequence response of that machine to a

specific input. In Section 8.1, the extracted rules and the associated database were used

to assess the specific rule conditions necessary for specific I/O writing operations in the

original legacy code. In Section 8.2, conditioned rules - transformed and reduced rules

reflecting the imposition of specific rule condition values - are demonstrated to be

superior to conditioned slices or semantic slices with respect to program behavior, as

250

well as rule presentation and further reasoning activities. With these assessments of

specific system behaviors, substantial knowledge of the original system is obtained.

Finally, this rule algebra is not limited to rule extraction, but also can be applied

to the forward engineering of new rules to describe new specifications/programs and

their behaviors. Such forward engineering of rules is demonstrated in Chapter 9. The

forward engineering of rules to describe a simple hardware system is presented in

Appendix F. A significant advantage of using this rule algebra as the basis for forward

engineering new rules is that these newly created rules can be then analyzed, reasoned

about, and/or tested with the rule algebra, similar to the processes used to assess legacy

code, to assure that these new rules meet all expectations associated with the new

system. Whereas note explicitly explored in this research, the rule model presented in

Chapter 4 is consistent with the inclusion and use of pre-condition and post-condition

assertions in specification and program code development, including other language and

programming paradigms that directly support such assertions.

Based on these eight observations, and as supported by the specific analyses

presented in this research, the rule model and rule algebra developed in the research

form the robust and adaptable basis for the extraction of rules from a spectrum of

existing or legacy systems, the forward engineering of new systems, the formal

transformation and analysis of rules, and specification/program comprehension.

10.3 Comparison with Existing Models and Approaches

This rule model and rule algebra differ substantially from rule models and rule

analysis techniques presented in the Hterature as reviewed in Chapter 2. Unlike the

informal, descriptive models or defmitions of rules presented by Ulrich (1999), Perkins

(2000), Odell (1995), Ross (1997), Sneed and Erdos (1996), and others, this rule model

is formalJy defined under ITL and therefore incorporates ITL's well-defmed semantics.

Unlike the formal rule models presented by Alagar and Periyasamy (2001) and

Ungureanu and Minsky (2000) that require identification or specification of an agent,

this rule model and the application of the associated rule algebra require no such agent

identification or specification.

251

Other research models or approaches have some specified limitations with

regard to application. For example, in Fu et a!. (2001), four types of constraints are

supported by the Business Rule Language. With the expressiveness oflTL, no arbitrary

limits are place on the number or type of constraints that can be expressed with the

general form rule model developed as part of this research.

Numerous researchers attempt to partition rules into different and distinct

categories and suggest these categories may influence how these various rules are

modeled, analyzed, or represented. Theodoulidis et a!. (1992) identified three

categories of rules: constraint, derivation, and event-action. Shao and Pound (1999)

classified business rules into three groups - structural rules, behavioral rules, and

constraint rules. Leite and Leonardi (1998) propose classifying business rules as either

functional or non-functional. Odell (1995) identified three types of constraint rules and

two types of derivation rules. Unlike these approaches, the application of this rule

model and associated rule algebra require no arbitrary partitioning or classification of

the rules in the subject domain. Under the state-based model incorporated in this rule,

any rule that is or can be implemented in a state-based architecture can be captured

using this rule model. For example, structural changes can be modeled with the general

form rule model of this research by adding or removing variables from the state space.

Constraint rules can be modeled with the general form rule model of this research by

adding additional conditions to the rule condition. Behavioral rules can be modeled

with the general form rule model of this research by associating specific behaviors (i.e.,

sequences of states) with specific rule conditions.

Finally, few researchers identified or acknowledged the explicitly temporal

nature of rules in their rule models, with Theodoulidis et aL (1992) being the rare

exception. Considering that this rule model and the associated rule algebra are built on

temporal logic, the temporal nature of rules are explicitly acknowledged and directly

incorporated.

With respect to the application of the rule model and rule algebra for rule

analysis, the rule algebra is applicable within the context of other rule analysis

techniques such as program slicing. The rule model and rule algebra can be used in

close association with program slicing to further reduce sliced code. As demonstrated

252

in Chapter 7, the rule model and rule algebra can be applied to create state sequence

slices, a type of logical slice heretofore not investigated nor applied in the other

program slicing research reviewed.

With respect to the graphical analysis and representation of rules, the association

of the rule model and rule algebra developed as part of this research with statecharts has

been demonstrated. The ability to both nest and hide rules using statecharts is

consistent with the objectives of techniques presented by Storey and Muller (1995). As

statecharts have achieved a relatively widespread acceptance and understanding, the use

of statecharts for graphical rule representation is preferable to the use of specialized

graphical objects such as those used in Feijs and de Jong (1998).

In Section 2.9, six critical shortcomings are identified regarding existing rule

analysis and extraction procedures. The rule model and rule algebra developed as part

of this research and the associated rule analyses in both the reverse and forward

engineering domains address the critical shortcomings. Firstly, the rule model

presented in the research is explicit with regard to what is meant by the concept of a

rule. Using ITL, the formal semantics of the general rule form presented in this

research are well defined. Secondly, the rule model presented in this research is

language independent. Therefore, this rule model and the associated rule algebra are

ideal for application in heterogeneous environments. Thirdly, use of ITL as a formal

notation eliminates the impact of alternative syntax in the analysis process and

maintains focus on the semantic elements of the rule. Fourthly, use of ITL as a formal

notation for the representation of rules minimizes the potential for variation in rule

representation and interpretation by different practitioners in the analysis process.

Fifthly, expressing the rule model and the rule algebra in ITL allows for formal and

provable analyses. Finally, the rule model and rule algebra presented in the research

support both the reverse and forward engineering analysis of ru les.

253

Chapter 11

Conclusions and Recommendations for Future Research

In this chapter, the underlying vision that prompted this research is reviewed, the

significant achievements associated with this research are enumerated, and some

promising directions for future research are suggested.

11.1 Vision

As asserted in the introduction, rules give structure to knowledge. Within this

context, knowledge-based business practices are structured by rules. Rules specify what

is expected, what is preferred, what is a priority, what is allowable, and what is

unacceptable. Within an organization, these rules are incorporated into computerized

businesslknowledge systems based on the organizational experiences and expectations

so that all users of these systems are either guided or constrained (depending on the

rule) with regard to their choice of behaviors. Over time, these rules are changed,

refmed, and/or updated to reflect acquired additional knowledge regarding successful

and unsuccessful practices. Using this rule-based model of business practices, two

different information systems, or more specifically two different program code

elements, can be compared based on similarities and/or differences in their component

rules. Should it be necessary to integrate these two systems or re-engineer a single

replacement system, these rules can form the functional basis for the new system.

Therefore, this rule-based model forms a rational basis for the analysis of

heterogeneous business systems. Within these systems, the component rules are used to

express the knowledge-based business practices of the organization. If one identifies

and extracts these rules, the refined knowledge expressed in the business system can be

preserved, analyzed, and reused as desired.

Within the context of this rule-based model of knowledge-based business

information systems, three fundamental questions emerged:

1. What is a rule?

2. Can rules be extracted from a diversity of different types of information

systems?

254

3. Once extracted, can these extracted rules be manipulated and analyzed to

yield information about the original system and/or to allow comparisons

with other rules?

This rule-based model of knowledge-based business information systems and these

three associated questions have driven the research presented herein.

11.2 Achievements

Within the context of the vision described above, the following eight

achievements have been realized with the research:

1. A set-based formal framework is presented that allows the description

and analysis of a program or information system as a set of structures that

are describable as rules and non-rules. With thls formal framework, the

feasibility of representing information system as rules and extracting

those rules is demonstrated, subject to the formalization of a sufficiently

general defmition of a rule.

2. A general formal model of a rule is developed, general in that it can be

adapted to the variety of languages and programming paradigms that

might be encountered in different legacy code applications. Using

Interval Temporal Logic (ITL), a rule is defmed formally as a

conjunctive and temporal relations hlp between a state sequence and a

future state sequence. Using the ITL next operator 0, a general-form rule

is defined as ii A 0li, where ii describes the state sequence that satisfies

the rule condition and jj describes the future (i.e., next) state sequence

that satisfies the rule state. Informally, this ITL formula describes a rule

as a conjunctive and temporal relationship between a state sequence

satisfying the rule condition ii, and a future state sequence satisfying the

rule state Ii. Given the underlying simplicity of this defmition - that a

rule is a temporal relationship between two state sequences - no arbitrary

limitations are introduced with this definition. Therefore, the general­

form rule ii A 0h can be used for both reverse engineering of existing

systems and forward engineering of new systems.

255

3. Using this general formal model, a rule algebra is developed that

describes the set of operations that can be applied to compose,

decompose, or transform rules. This rule algebra is developed

incrementally by considering fundamental systems and presenting rules

that describe the relationships between the state sequences that compose

these fundamental systems. Given the underlying formations of the rule

algebra and the depth of ITL, this rule algebra is adaptable. In addition

to the 43 lemmas presented to describe this rule algebra, additional

lemmas can be developed to support and expand the rule algebra as

needed.

4. In developing this rule algebra, significant attention is given to

composing rules and rule systems to describe larger and more complex

state sequences. Compositional paradigms demonstrated with this rule

algebra include sequential composition, nesting, recursion, deterministic

and non-deterministic guarded composition, and disjoint parallel

composition. Using these compositional paradigms, rule-based

representations of typical legacy code structures - the if-then-else

structure, the while structure, and the indexed for-loop - are developed.

5. Within the context of the formal rule model and the corresponding rule

algebra, the use and the value of statecharts for legacy code analysis are

demonstrated. Generic statecharts of different rule-based coding

paradigms are developed. These generic statecharts are applied and

various rule-based legacy code structures are presented as both ITL

formulas and statecharts. The statechart approach allows a visual

presentation that is readily understandable by a wider audience, and the

formulaic approach of representing the extracted rules as ITL formulas is

readily adaptable to computer analysis techniques. Coupled with the rule

model and rule algebra, statecharts are demonstrated to be a robust

approach to managing the 'state explosion' problem that may result in the

analysis and extraction of rules in real-world legacy systems.

256

6. Using this rule algebra, rules are extracted from a range of rule-based

systems, specifications, and legacy code: an existing fmite state machine,

a detailed formal specification, a small but relatively complicated block

of Pascal legacy code, and a block of code from a tax calculation

program. The flexibility and adaptability of this rule algebril are

demonstrated both with the types of systems from which rules are

extracted and with the transformations and analyses that are achieved

using the extracted rules. In these rule extraction exercises, the

application of this rule algebra is demonstrated to be compatible with

other traditional approaches to legacy code analysis including traditional

slicing, conditioned and semantic slicing, program simplification,

program transformation, and database approaches.

7. To demonstrate the applicability of this rule algebra with respect to

forward engineering, rules are developed using this rule model and rule

algebra to describe two systems - specification of a new business process

and a simple hardware system.

8. With the reverse and forward engineering applications described herein,

the rule model and rule algebra, as developed in the research, are

demonstrated to be a robust, flexible, and expressive approach for the

extraction of rules from a spectrum of existing or legacy systems, the

forward engineering of new rule-based systems, the formal

transformation and analysis of rules, and system comprehension.

11.3 Future Research Directions

In the course of this research, as with any journey, numerous interesting

avenues were observed but left unexplored. In this section, some possible research

directions are discussed.

11.3.1 Equivalence and Isomorphism

Two of the most important concepts that merit future research are equivalence

and isomorphism. Informally, the two concepts relate to the fundamental questions

"Are these rules the same?" and "If they are not the same, then are they similar?" Three

257

forms of equivalence - strong equivalence (or strong bisimulation), transformational

equivalence, and non-temporal equivalence - are discussed in Section 6.5. Given the

knowledge-basis for this rule approach to assessing legacy systems (as articulated in the

vision described in Section 11.1), demonstrating the extent of equivalence between tWO

rules is critical. Therefore, formalization of the three equivalence models presented in

Section 6.5 and the development of alternative equivalence models is an important

research direction. Within the context that there are multiple models of equivalence and

that the assessment of equivalence is not strictly binary, the formalization of

equivalence models for rules is critical for rendering domain-specific judgments that

two rules are sufficiently equivalent for a given domain-specific application.

The root of the word isomorphism is derived from two Greek words - iso

meaning the 'same' and morphe meaning 'form.' Unlike rule equivalence, which is

concerned with whether two rules are the same with respect to rule states, rule

conditions, input/output, and observable changes, isomorphism considers whether twO

rules have the same structural form. With respect to legacy code analysis, isomorphic

rules may suggest mUltiple implementations of similar rules.

At a minimum, for two rules to be isomorphic there must exist a bijective

function such that each state sequence in the domain of the first rule maps to a state

sequence in the domain in the second rule, and a second bijective function such that

each state sequence in the codomain of the first rule maps to a sequence in the codomain

in the second rule. As these two functions are bijective, two inverse bijective functions

must exist mapping the state sequences of the domain and codomain of the second rule

to state sequences in the domain and codomain, respectively, of the first rule. Whereas

these bijective functions are minimum requirements and additional properties may be

necessary to prove an isomorphism between the two rules, these minimum requirements

contribute to the following demonstration.

Consider these two rules:

fa /\ Ofl

ofo/\ OOfl

(11.3.1-1)

(11.3.1-2)

258

Are these two rules the same? If not the same, are they similar? And if so, how

similar? Given that fa == fa and fl == fI. the existence of the two bijective functions and

their inverses is assured. Therefore, an isomorphism between (11.3.1-1) and (11.3.1-2)

may exist (subject to any additional requirements that are added in a formal and

complete defmition of rule isomorphism). By inspection, (11.3.1-1) and (11.~.1-2)

differ only by the presence of an additional ITL next operator 0 in (11.3.1-2). Therefore

and informally, (11.3.1-1) and (11.3.1-2) can be described as non-temporally equivalent.

However, in the absence of a domain-specific assertion of the formf'::) oj, neither non­

temporal equivalence nor transformational equivalence can be proven formally at this

time and without additional research. This simple example illustrates the need for

additional research regarding equivalence and isomorphism within the context of rules.

11.3.2 Alternative Rule Forms

This research has centered on the general rule form fi A oIi. As developed in

Chapter 4, this rule form describes a temporal relationship between the state sequence OJ

where OJ F fi and the future state sequence OJ where OJ F Ii. However, various

alternatives can be created using ITL to describe similar temporal relationships. In this

section, several of these alternatives are discussed to highlight additional research

directions.

As demonstrated in Section 8.2, the ITL construct fin f is a powerful technique

for describing or specifying a set of properties, describable by J, that must hold in the

fmal subinterval of a given state sequence. Therefore, the general rule form used in this

research can be extended such that a rule is defined as:

01.3.2-1)

In (11.3.2-1),fi specifies the rule conditions that must be met, Ii describes the rule state,

and fin(Wk) describes the state properties of the fmal state sequence of the state sequence

specified by the rule. Within the context of the stated objectives associated with this

alternative form, the following form is tempting:

(11.3.2-2)

259

However, representing the implication in (11.3.2-1) as ,ali v fin(w,t) and with the

application of propositional logic, (11.3.2-1) and (11.3.2-2) can be demonstrated to be

equivalent. Therefore, either (11.3.2-1) or (11.3.2-2) capture the fundamental notion of

this alternative approach. Finally, applying propositional logic to (11.3.2-1), the

following can be concluded:

(11.3.2-3)

Note that the reduced form of (11.3.2-3) mimics the form of the consequents in (8.2-57).

Therefore, the alternative form it A ali A fin(w,t) may hold distinct advantages in the

analysis of legacy systems.

Extending the concepts embodied in (11.3.2-1) and loosely borrowing from the

'always-followed-by' construct proposed by Siewe et al (2003) as discussed in Chapter

4, consider the following alternative representation of a rule:

(11.3.2-4)

In (11.3.2-4),ji andli are as previously described and W,t describes the state properties of

a state sequence that 'follows'jj, subject to the semantics of the ITL chop operator.

The general rule form ji A ali used in this research incorporates the ITL next

operator. However, the use of the ITL next operator may cause problems in certain

logical and programming constructs, including certain forms of parallelism. Therefore,

temporal relationships described in Chapter 4 can be formalized using the ITL

sometimes 0 operator. Under this paradigm, an alternative rule defmition is:

(11.3.2-5)

This form has the advantage that the rule state satisfying Ii need not hold in the next

state sequence, but can hold instead in some state sequence including an eventual state

sequence some time in the future. Using the concepts described in (11.3.2-1) and

(11.3.2-4), other alternative rule forms based on the ITL sometimes 0 operator include:

260

/i" OfJ" fin(wk)

/i" OfJ; Wk

(11.3.2-6)

(11.3.2-7)

Whereas no representation is made at this time regarding the superiority of any

of these forms relative to each other or to form /i" ofJ as used in this research, these

alternative forms may have some distinct advantages in certain circumstances.

Therefore, these alternative forms, and any other related forms that support the temporal

relationship concepts as developed in Chapter 4, merit additional investigation.

11.3.3 Interdependence, Independence, and Interference

Fundamental to the rule model presented in Chapter 4 is the concept of the state

- a function mapping a set of variables to a set of values. Given the general form rule

/i " ofJ, each rule considers at least two state sequences, one described by /i and another

described by ofJ. Therefore, in the specification of the rule elements /i and ofJ, various

sets of variables are used to describe the satisfying state sequences. These variable sets

can be used as a basis for comparison and analysis. This concept can be applied in at

least two ways - the comparison of the various elements within a single rule and the

comparison of two or more rules with each other. This concept has been previously

applied in Section 6.4 with regard to the assessment of the independence of any two ITL

formulas.

However, a more sophisticated model is desirable as it may afford a significantly

more detailed assessment of how rule elements and rules are similar or dissimilar. With

regard to the variable sets used to formulate rules, at least three concepts merit

additional research and formalization - interdependence, independence, and

interference. Rule interdependence describes how the various elements of a single rule

are or are not interrelated. Rule independence describes how two rules are or are not

interrelated. Rule inference describes how two rules may conflict with regard to the

assessment of the verity of the formulas describing the rule condition and the rule state.

To highlight how such additional research and formalization might be

prosecuted, consider the following model. Let rule be a general-form rule defined as

/i " ofJ, and let the sets C, V, and W be sets of variables defmed as follows:

261

w ~ The set of state variables that can possibly change values under
rule such that Ii and oli holds. This is typically referred to as the
frame.

V ~ The set of state variables used to specify, calculate, or otherwise
defme the new values of variables in the set W.

C ~ The set of state variables used to specify the rule conditionli.

Using this model, a variety of potentially useful concepts can be defmed formally, as

described below.

For a non-interdependent rule:

CIlVrlW=0 (11.3.3-1)

Informally, for a non-interdependent rule, the formula specifying the rule condition does

not include any frame variables or any variables used in calculating the new values for

the frame variables.

For a maximally interdependent rule:

C=V=W (11.3.3-2)

Informally, for a maximally interdependent rule, all variables used in specifying the rule

conditions are also in the frame and are also used to calculating the new values for the

frame variables.

Regarding rule independence, consider two rules, rule] with C], Vb and W}, and

ruZe2 with C2, V2, and W2. These two rules are totally independent if:

(11.3.3-3)

Informally, the two rules rulel and rulez are totally independent if they have no

variables in common. Continuing with this concept of rule independence, these two

rules are rule condition independent if:

(11.3.3-4)

262

Rule interference is a potential problem with regard to parallel composition.

Informally, two rules in parallel may interfere with each other if a variable in the frame

of one rule is used to specify the rule condition of the other rule or is used to calculate

the value of a variable in the frame of the other rule. Formally, potential interference

may exist between rulel and rule2 if:

(Cl (1 W2 ':f:. 0) V (C2 (1 WI ':f:. 0)
V (VI (1 W2 ':f:. 0) V (V2 (1 WI ':f:. 0) (11.3.3-5)

The above representations of rule interdependence, rule independence, and rule

interference are very basic; other more appropriate and/or more detailed formalizations

likely exist. However, these general formalizations do provide a solid basis for

understanding the importance of these concepts, and the importance of additional

research in these areas. Given the nature and scope of rule interdependence, rule

independence, and rule interference, the adequate formalization of these concepts can be

an important segue to other rule analysis and research issues.

11.3.4 Detemporalization

In Section 8.2, selected implications of the form OWj :::) Wj or OOWj :::) Wj were

asserted to detemporalize specific rule conditions to facilitate rule simplification and

analysis. Given the absence of parallelism in the target code, these assertions were

supported by a code-specific analysis and assessment of the non-interdependence of the

rule condition variables and the rule state variables. A formal defmition of non­

interdependence between the elements of a given rule is presented at (11.3.3-1). As

demonstrated in Section 8.2, such detemporalization is a powerful pathway to rule

simplification. Therefore, additional research into detemporalization, including a

formal approach and basis for detemporalization, is very important. In the absence of

such formalization, deternporalization can only be achieved by code-specific analysis

and reasoning.

11.3.5 Formal Proof of Equivalence of Specific Statechart Constructs and

Specific Rule Formulas

In Section 7.3, strong correspondences between specific statechart constructs

and specific rule formulations were demonstrated. With these correspondences, the

263

value of statecharts, when used in concert with the rule algebra presented herein, was

demonstrated with regard to legacy code analysis. However, no formal proofs of

equivalence between specific statechart constructs and specific rule formulas were

presented. Given the demonstrated value of statecharts in legacy code analysis, and

noting the general scarcity of other research regarding statecharts and legacy code, this

could be a rich area for significant research.

11.3.6 Metadata About Rules

This research has focused on the analysis of legacy systems within the context of

a formal rule defmition and rule algebra. However, significant benefit can be realized

through the analysis of the rules themselves. The database approach to legacy code

analysis as presented in Section 8.1 incorporated with this concept in that the some of

the database fields (i.e., W, V, and Primary Membership) were derived from the

properties of the rules. Other rule properties that could be used to describe the rules

themselves include the extent of nesting, the use of recursion, non-determinism, the C

variable set as defmed in Section 11.3.3, and the rule properties of interdependence,

independence, and interference. As this area has not been investigated in this research,

the depth and potential of such research cannot be quantified. However, given the

formal basis of this rule algebra, its use to classify rules seems to be, a reasonable and

rational extension.

11.3.7 Automated Tool Using the Rule Algebra

As presented in this research, this rule algebra is demonstrated to be a robust,

flexible, and expressive approach for the extraction of rules from a spectrum of existing

or legacy systems. The development and implementation of an automated tool using

this rule algebra approach would allow easier and faster analysis of a range of legacy

systems, and could significantly speed the testing and expansion of the underlying rule

algebra.

264

References

Aiken, P., Muntz, A, & Richards, R (1993). A framework for reverse engineering

DoD legacy information systems. Proceedings of the Working Conference on

Reverse Engineering, 180-191.

Alagar, V. S., & Periyasamy, K. (2001). BTOZ: A formal specification language for

formalizing business transactions. 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems (TOOLS 39),240-252.

Apt, K. R, & Olderog, E.-R (1997). Verification of sequential and concurrent

programs. New York: Springer-Verlag.

Arnold, A (1994). Finite transition systems. Englewood Cliffs, NJ: Prentice-Hall

Back, R-J. (1988). A calculus of refmements for program derivations. Acta

Informatica, 25, 593-624.

Baeten, J. C. M. & Weijland, W. P. (1990). Process algebra. Cambridge, UK:

Cambridge University Press.

Bennett, K. H., Bull, T., & Yang, H. (1992). A transformation system for maintenance

- Turning theory into practice. Proceedings of the International Conference on

Software Maintenance (ICSM), 146-155.

Binkley, D., & Gallagher, K. (1996). A survey of program slicing. In M. Zelkowitz

(Ed.), Advances in Computers, 43, 1-50. New York: Academic Press.

Binkley, D., Harman, M., Raszewsk~ L.R, & Smith, C. (2000). An empirical study of

amorphous slicing as a program comprehension support tool. Proceedings of the 8th

International Workshop on Program Comprehension (IWPC 2000), 161-170.

Birkhoff, G. & MacLane, S. (1977). A survey of modern algebra (4th ed.). New York:

Macmillan.

265

Blazy, S., & Pacon, P. (1997). Application of formal methods to the development ofa

software maintenance tooL Proceedings of the 12th IEEE International Conference

Automated Software Engineering, 162-171.

Bowen, J., Breuer, P., & Lano, K. (1993). A compendium of formal techniques for

software maintenance. lEElBCS Software Engineering Journal, 8(5), 253-262.

Bratko, I. (2001). Prolog programming for artificial intelligence (3rd ed.). New York:

Addison Wesley.

Britt, J.J. (1994). Case study: Applying formal methods to the Traffic Alert and

Collision Avoidance System (TCAS) II. Proceedings of the Ninth Annual

Conference on Computer Assurance (COMPASS '94),39-51.

Bilchi, J. R. (1989). Finite automata, their algebras and grammars: Towards a theory

offormal expressions (D. Siefkes, Ed.). New York: Springer-Verlag.

Bull, T. (1990). An introduction to the WSL program pransformer. Proceedings of the

International Conference on Software, 242-250.

Burris, S. & Sankappanavar, H. P. (1981). A course in universal algebra. New York:

Springer-Verlag.

Cau, A. & Moszkowski, B. (1996). Using PVS for Interval Temporal Logic proofs.

Part 1: The syntactic and semantic encoding. (Technical Monograph 14). Leicester,

UK: SERCentre, De Montfort University.

Cau, A. & Zedan, H. (1997). RefIning Interval Temporal Logic specifications. In M.

Bertran and T. Rus, (Eds.), Transformation-Based Reactive Systems Development,

Lecture Notes in Computer Science 1231, 79-94. Springer Verlag.

Cau, A. & Zedan, H. (2000). Chapter 21: The systematic construction of information

systems. In P. Henderson (Ed.), Systems engineering for business process change

(pp.264-278). Springer Verlag.

266

Cau, A. & Zedan, H. (2006). A practitioner's approach to reverse engineering through

abstraction. Preprint submitted to Elsevier Science.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, &

Zheng, H. (2000). Bandera: Extracting fmite-state models from Java source code.

Proceedings of the 2000 International Conference on Software Engineering,

439-448.

Danicic, S., Daoudi, M., Fox, c., Harman, M., Hierons, R. M., Howroyd, J., Ourabya,

L., & Ward, M. (2005). ConSUS: a light-weight program conditioner, Journal of

Systems and Software, 77(3) 241-262.

De Giacomo, G., Lesperance, Y., & Levesque, H. J. (2000). ConGo log, a concurrent

programming language based on the situation calculus. Articifial Intelligence

121(1-2) 109-169.

De Nicola, R. D. & Hennessy, M. C. B. (1984). Testing equivalences for processes.

Theoretical Computer Science, 34(1-2) 83-133.

Denecke, K. & Wismath, S. L. (2002). Universal algebra and applications in

theoretical computer science. Boca Raton: Chapman & Hall

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy, and the formal

derivation of programs. Communications of the ACM 18, 453-457.

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, N.J.:

Prentice-Hall.

Feijs, L., & de Jong, R. (1998). 3D visualization of software architectures.

Communications of the ACM, 41(12) 73-78.

Feynman, R. P. (1996). Feynman lectures on computation (A. Hey & R. Allen. Eds.).

Reading, Mass.: Addison-Wesley.

Fokkink, W. (2000). Introduction to process algebra. New York: Springer.

267

Fox, C., Hannan, M., Hierons, R., & Danicic, S. (2000). ConSIT: A conditioned

program slicer. IEEE International Conference on Software Maintenance

(ICSM'2000),216-226

Francel, M.A., & Rugaber, S. (1999). The relationship of slicing and debugging to

program understanding. Proceedings of the Seventh International Workshop on

Program Comprehension, 106-113.

Fu, G., Shao, J., Embury, S. M., Gray, W. A., & Liu, X. (2001). A framework for

business rule presentation. Proceedings of the 12th International Workshop on

Database and Expert Systems Applications, 922-926.

Gannod, G. C., & Cheng, B. H. C. (1996). Using informal and formal techniques for

the reverse engineering of C programs. Proceedings of the Third Working

Conference on Reverse Engineering, 249-258.

Gannod, G. C., & Cheng, B. H. C. (1999). A formal approach for reverse engineering:

A case study. Proceedings of the Sixth Working Conference on Reverse

Engineering, 100-111.

Gannod, G. C., & Cheng, B. H. C. (2001). A suite of tools for facilitating reverse

engineering using formal methods. Proceedings of the 9th International Workshop

on Program Comprehension (IWPC 2001),221-232.

Gill. A. (1976). Applied algebra for the computer sciences. Englewood Cliffs, N.J.:

Prentice-Hall.

Giomi, Ie. (1995). Finite state machine extraction from hardware description

languages. Proceedings of the Eighth Annual IEEE International ASIC Conference

and Exhibit, 353-357.

Grosof, B. N., Labrou, Y., & Chan., H. Y. (1999). A declarative approach to business

rules in contracts: Courteous logic programs in XML. ACM Special Interest Group

on E-Commerce (EC99), 68-77.

268

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of

Computer Programming 8,231-274.

Harel, D. & Naamad, A (1996). The STATEMATE Semantics of Statecharts. ACM

Trans. on Software Engineering and Methodology, 5(4) 293-333.

Harel, D., Lachover, H., Naamad, A, Pnueli, A, Politi, M., Sherman, R., Shtul­

Trauring, A & Trakhtenbrot, M. STATEMATE: A working environment for the

development of complex reactive systems. IEEE Trans. on Software Engineering

16(4) 403-414.

Hartmanis, J., & Stearns, R. E. (1966). Algebraic structure theory of sequential

machines. Englewood Cliffs, N.J.: Prentice-Hall

He, J., Seidel, K., & McIver, A (1997). Probabilistic Models for the Guarded

Command Language. Science of Computer Programming, 28, 171-192.

Herbst, H. (1995). A meta-model for business rules in systems analysis. In J. Iivari, K.

Lyytinen, & M. Rossi (Eds.), Proceedings of the Seventh Conference on Advanced

Infonnation Systems Engineering (CAiSE '95), 186-199. Berlin: Springer.

Herbst, H., Knolmayer, G., Myrach, T., & Schlesinger, M. (1994). The specification of

business rules: A comparison af selected methodologies. In AA Verijn-Stuart &

T.W. OUe (Eds.), Methods and Associated Tools for the Information System Life

Cycle, 29-46. Amsterdam: Elsevier.

Hoare, C. A R. (1975). Parallel programming: An axiomatic approach. In F. L. Bauer

& K. Samelson (Eds.), Language Hierarchies and Interfaces, Language Hierarchies

and Interfaces, Lecture Notes in Computer Science 46, 11-42.

Hoare, C. A R. (1985). A couple of novelties in the propositional calculus. Zeitschrift

fur Mathematische Logik und Grundlagen der Mathematik, 31(2), 173-178.

Huang. H., Tsai, W.T., Bhattacharya, S., Chen, X.P., Wang, Y., & Sun, J. (1996).

Business rule extraction from legacy code. Proceedings of the 20th International

Computer Software and Applications Conference (COMPSAC '96),162-167.

269

Huang, H., Tsa~ W.T., Bhattacharya, S., Chen, X., Wang, Y., & Sun, J. (1998).

Business rule extraction techniques for COBOL programs. Journal of Software

Maintenance: Research and Practice, 10(1),3-35.

Hungerford, T. W. (1974). Algebra. New York: Springer.

Koubarakis, M., & Plexousakis, D. (1999). Business process modelling and design - A

formal model and methodology, BTTechnology Journal, 17(4) 23-35.

Lamport, L. (1977). Proving the correctness of mUltiprocess programs. IEEE

Transactions on Software Engineering SE-3(2), 125-143.

Lamport, L. (1980). "Sometime" is sometimes "not never". Proceedings of the

Seventh ACM Symposium on Principles of Programming Languages, ACM SIGACT­

SIGPlAN, 174-185.

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3),872-923.

LanubiIe, F., & Visaggio, G. (1997). Extracting reusable functions by flow graph­

based program slicing. IEEE Transactions on Software Engineering, 23, 246-159.

Leite, J.C.S.d.P., & Leonardi, M.C. (1998). Business rules as organizational policies.

Proceedings of the Ninth International Workshop on Software Specification and

Design, 68-76.

Levy, L. S. (1980). Discrete structures of computer science. New York: Wiley.

Liu, X., Yang, H., & Zedan, H. (1997). Formal methods for the re-engineering of

computing systems: A comparison. Proceedings of the Twenty-First Annual

International Computer Software and Applications Conference (COMPSAC '97),

409-414.

Mancoridis, S., Mitchell, B.S., Chen, Y., & Gansner, E.R. (1999). Bunch: A clustering

tool for the recovery and maintenance of software system structures. Proceedings of

the IEEE International Conference on Software Maintenance (ICSM '99), 50-59.

270

Manna, Z. & Pnueli, A. (1990). A hierarchy of temporal properties. 9th Symposium on

Principles of Distributed Computing, 377-408.

Manna, Z. & Pnueli, A. (1992). The temporal logic of reactive and concurrent

systems: Specification. New York: Springer-Verlag.

Manna, Z. & Pnuel~ A. (1995). The temporal logic of reactive and concurrent

systems: Saftey. New York: Springer-Verlag.

Merriam-Webster Dictionary. (1998). Springfield, MA: Merriam-Webster.

Milner, R. (1980). A calculus for communicating systems. Lecture Notes in Computer

Science 92.

Milner, R. (1989). Communication and concurrency. New York: Prentice Hall.

Morgan, C., & McIver, A. (1999). pGCL: Formal reasoning for random algorithms.

South African Computer Journal, 22, 14-27.

Moszkowski, B. (1986). Executing temporal logic programs. Cambridge, UK:

Cambridge University Press.

Moszkowski, B. (1994). Some very compositional temporal properties. In E.-R.

Olderog, (Ed.), Programming Concepts, Methods and Calculi, Vol. A-56 of IFfP

Transactions, 307-326. North-Holland: Elsevier Science B.V.

Moszkowski, B. (1996). Using temporal fIxpoints to compositionally reason about

liveness. In H. Jifeng, J. Cooke, & P. Wallis (Eds.) BCS-FACS 7th Refinement

Workshop, Electronic Workshops in Computing, (1-28). Springer-Verlag and British

Computer Society.

Moszkowski, B. (2000). A complete axiomatization of interval temporal logic with

infinite time. 15th Annual IEEE Symposium on Logic in Computer Science, 241-252.

Moszkowski, B. (2003). A hierarchical completeness proof for interval temporal logic

with fmite time. In V. Goranko and A. Montanari (Eds.), Proceedings of the ESSILI

271

Workshop on Interval Temporal Logics and Duration Calculi, 41-65. Vienna:

Technical University of Vienna.

Murphy, G.C., Notkin, D., & Lan, E.S.-C. (1996). An Empirical Study of Static Call

Graph Extractors. Proceedings of the 18th International Conference on Software

Engineering, 90-99.

Ning, J.Q., Engberts, A., & Kozaczynski, W. (1993). Recovering reusable components

from legacy systems by program segmentation. Proceedings of Working Conference

on Reverse Engineering, 64-72.

Odell, J.J. (1995). Business rules. Journal of Object Oriented Program. Reprinted in

Odell, 1.1. (1998). Advanced Object-Oriented Analysis & Design Using UML.

(pp.99-107). Cambridge, UK: Cambridge University Press.

Owicki, S. & Lamport, L. (1982). Proving Liveness Properties of Concurrent

Programs. ACM Transactions on Programming Languages and Systems, 4(3),455-

495.

Oxford English Dictionary. (1971). Oxford, UK: Oxford University Press

Park. D. (1981). Concurrency and automata on infmite sequences. In P. Deussen,

(Ed.) Proceedings of the International Conference on Theorical Computer Science,

Lecture Notes in Computer Science 104, 167-183. Springer-Verlag.

Penteado, R, Masiero, P.C., & Cagnin, M. I. (1999). An experiment of legacy code

segmentation to improve maintainability. Proceedings of the Third European

Conference on Software Maintenance and Reengineering, 111-119.

Perkins, A. (2000). Business rules = Meta-data. Proceedings of the 34th International

Conference on Technology of Object-Oriented Languages and Systems, 285-294.

Petry, B. L. (1996). Getting the most out of legacy code: The uses of hypercode within

a typical IS organization. Proceedings of the IEEE 1996 National Aerospace and

Electronics Conference, 2, 852-857.

272

Pitts, A. M. (1997). Operationally-based theories of program equivalence. In P.

Dybjer & A. M. Pitts (Eds), Semantics and Logics of Computation, 241-298.

Cambridge, UK: Cambridge University Press.

Plexousakis, D. (1995). Simulation and analysis of business processes using GOLOG.

Proceedings of the Conference on Organizational Computing Systems (COOCS'95),

311-323.

Popovic, M., Kovacevic, V., & Velikic, I. (2002). A formal software verification

concept based on automated theorem proving and reverse engineering. Proceedings

of the Ninth Annual IEEE International Conference and Workshop on the

Engineering of Computer-Based Systems (ECBS'02), 59-66.

Presley, A., & Rogers, K. J. (1996). Process Modeling to Support Integration of

Business Practices and Processes in Virtual Enterprises. Proceedings of the

International Conference on Engineering and Technology Management (IEMC 96),

475-479.

Ritsch, H. & Sneed, H. M. (1993). Reverse engineering programs via dynamic

analysis. Proceedings of the Working Conference on Reverse Engineering (WCRE

1993), 192-201.

Roscoe, A. W., & Hoare, C. A. R. (1986). Laws of occam programming - Technical

monograph PRG-53, Oxford, UK: Oxford University Computing Laboratory -

Programming Research Group.

Ross, R.G .. (1997). The business rule book - Classifying, defining and modeling rules.

Houston: Business Rule Solutions LLC

Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D., & McKee, B. (2000).

Extending business objects with business rules. International Conference on

Technology of Object-Oriented Languages (TOOLS 33),238-249.

Scott, M. L. (2000). Programming language pragmatics. San Francisco: Morgan

Kaufmann.

273

Sebesta, R. W. (2002). Concepts of programming languages (5th ed.). Boston:

Addison Wesley.

Sellink, A, Sneed, H., & Verhoef, C. (1999). Restructuring of COBOUCICS legacy

systems. Proceedings of the Third European Conference on Software Maintenance

and Reengineering, 72-82.

Shao,1. & Pound, C. 1. (1999). Extracting business rules from information systems, BT

Technology Journal, 17(4), 179-186.

Siewe, E, Cau, A, & Zedan, H. (2003). A compositional framework for access control

policies enforcement. In M. Backes, D. Basin, & M. Waidner (Eds.), Proceedings of

the ACM workshop on Formal Methods in Security Engineering: From

Specifications to Code (FMSE'03), 32-42.

Sneed, H. M. (1998). Architecture and functions of a commercial software

reengineering workbench. Proceedings of the Second Euromicro Conference on

Software Maintenance and Reengineering, 2-10.

Sneed, H. M. & Erdos, K. (1996). Extracting business rules from source code.

Proceedings of the Fourth Workshop on Program Comprehension, 240-247.

Sneed, H. M. & Jandrasics, G. (1988). Inverse transformation of software from code to

specification. Proceedings of the IEEE Conference on Software Maintenance,

102-109.

Song, Y. T., & Huynh, D. T. (1999). Forward dynamic object-oriented program

slicing. Proceedings of the IEEE Symposium on Application-Specific Systems and

Software Engineering and Technology (ASSET'99), 230-237

Stanat, D. E, & McAllister, D. E (1977). Discrete mathematics in computer science.

Englewood Cliffs, N.J.: Prentice-Hall.

Storey, M.-A D., & Muller, H. A (1995). Manipulating and documenting software

structures using SHriMP views. Proceedings of the International Conference on

Software Maintenance, 275-284.

274

STRL-Software Technology Research Laboratory. (2003). Formal methods

engineering or system modeling using finite-state machines. Leicester, UK:

Software Technology Research Laboratory, De Montfort University

STRl.r-Software Technology Research Laboratory. (2006). Interval temporal logic

(ITL) homepage. http://www.cse.dmu.ac. uk/STRLlITU /index.html.

Tan, H. B. K, & Kow, J. T. (2001) Extracting Code Fragment That Implements

Functionality. Journal of Software Maintenance and Evolution: Research and

Practice, 13,53-75.

Theodoulidis, B., Alexakis, P., & Loucopoulos, P. (1992). Verification and validation

of temporal business rules. Proceeding of the 3rd International Workshop on the

Deductive Approach to Information Systems and Databases, 179-193.

Tip, F. (1995). A survey of program slicing techniques, Journal of Programming

Languages, 3, 121-189.

Ulrich, W.M. (1999). Knowledge mining: Business rule extraction and reuse. Cutter

IT Journal, 12(11),21-26.

Ungureanu, V. & Minsky, N.H. (2000). Establishing business rules for inter-enterprise

electronic commerce. Proceedings of the 14th International Symposium on

Distributed Computing (D1SC2000), Lecture Notes in Computer Science 1914.

van Gelder, A., Ross, K A., & Schlipf, J. S. (1991). The well-founded semantics for

general logic programs. Journal of the Association for Computing Machinery, 38(3),

620-650.

Villavicencio, G.& Oliveira, J. N. (2001). Reverse Program Calculation Supported by

Code Slicing. Proceedings of the Eighth Working Conference on Reverse

Engineering, 35-45.

von der Beeck, M. (2001). Formalization of UML-statecharts. In M. GogoUa & c.
Kobryn (Eds.), Proceedings of UML 2001, Lecture Notes in Computer Science

2185, 406-442. Berlin: Springer.

275

Wang, T.H., & Edsall, T. (1998). Practical FSM analysis for Verilog. Proceedings of

the 1998 International Verilog HDL Conference and VHDL International Users

Forum, (IVCNIUF 1998),52-58.

Ward, M. (1989). Proving program refmements and transformations. (D. Phil. Thesis,

Oxford University, 1989).

Ward, M. (1999). Assembler to C migration using the FermaT transformation system.

Proceedings of the IEEE International Conference on Software Maintenance

(ICSM'99),67-76.

Ward, M. (2000). Reverse engineering from assembler to formal specifications via

program transformations. Proceedings of the Seventh Working Conference on

Reverse Engineering (WCRE'OO), 11-20.

Ward, M. (2001). The formal transformation approach to source code analysis and

manipulation. Proceedings of the First IEEE International Workshop on Source

Code Analysis and Manipulation, 185-193.

Ward, M. (2004). Pigs from sausages? Reengineering from assembler to C via FermaT

transformations. Science of Computer Programming, 52, 213-255.

Ward, M., Zedan, H., & Hardcastle, T. (2005). Conditioned semantic slicing via

abstraction and refmement in FermaT. Proceedings of the 9th European Conference

on Software Maintenance and Reengineering (CSMR 2005),178-187.

Weiser, M. (1982) Programmers use slices when debugging. Communications of the

ACM, 25(7),446-452.

Yang, H. and Bennett, K. H. (1994). Extension of a transformation system for

maintenance: Dealing with data-intensive programs. Proceedings of the International

Conference on Software Maintenance (ICSM 1994),344-353

Yang, H., Liu, X., & Zedan, H. (2000). Abstraction: A key notion for reverse

engineering in a system reengineering approach. Journal of Software Maintenance:

Research and Practice, 12, 197-228.

276

Zedan, H. & Yang, H. (1998). A sound and practical approach to the re-engineering of

time-critical systems. 2nd Euromicro Conference on Software Maintenance and

Reengineering (CSMR 1998), 220-223.

Zhao, J. (2000). A slicing-based approach to extracting reusable software architectures.

Proceedings of the Fourth European Software Maintenance and Reengineering,

215-223.

Zhou, S., Zedan, H., & Cau, A. (1999). A framework for analysing the effect of

'change' in legacy code. Proceedings of the IEEE International Conference on

Software Maintenance (ICSM '99),411-420.

277

Appendix A

Supporting Lemmas for the Rule Algebra

The following is a presentation of several general proofs that have been used is

support of other proofs that are presented elsewhere in this thesis. Proofs are presented

for NextAndDistEqv, NextAndOrDistEqv, NextOrAndDistEqv, NextOrDistEqv, and

TemporalContra.

LEMMA: NextAndDistEqv

Proof:

1 /0 ,,/1 == /0 "/1
2 /0 "/1 == ifo ,,/1)
3 0/0" 0/1 == oifo "/1)

4 oifo ,,/1) == 0/0" 0/1

LEMMA: NextAndOrDistEqv

Proof:

tautology

1, associativity of"

2, ITL (NextAndNextEqvNextRule)

3, commutivity of ==

1 o(ifo v /1) " if2 v h» == o(ifo v /1) " (j2 v /3»
2 == oifo v /1)" 0(j2 v h)

tautology

1, NextAndDistEqv

2, NextOrDistEqv

3, NextOrDistEqv

3 == (0/0 V 0/1) " 0(/2 v /3)

4 ;;: (of a v of 1) " (012 v oh)

LEMMA: NextOrAndDistEqv

Proof:

1 o(ifo "/1) v if2 "h» == o(ifo "/1) v if2 "h»
2 == oifo A/1) V 0(/2 "h)
3 == (0/0" 0/1) V Oif2 "h)
4 == (0/0" 0/1) v (oJi " 0/3)

tautology

1, NextOrDistEqv

2, NextAndDistEqv

3, NextAndDistEqv

278

LEMMA: NextOrDistEqv

f- o(f] V f2) == oJi V Of2

Proof:

1 fa ; (f] v h) == (fa ;f]) v (fa ;f2)

2 skip; if] v h) == (skip ;f]) v (skip ;f2)

3 oifI v f2) == oli v Of2

LEMMA: TemporalContra

f- ofa 1\ 0-10 == false

Proof:

1 ofo 1\ o-{o == ofo 1\ o-{o

2 ofo 1\ o-{o == oifo 1\ -10)

3 ofo 1\ o-{o == o(false)

4 ofo 1\ o-{o == skip ; false

5 ofo 1\ o-{o == false

ChopOrEqv (ITL)

1, substitution of skip for fa

2, defmition of 0 (ITL)

tautology

1, NextAndDistEqv

2, law of contradiction

3, ITL (defmition of next)

4, ITL (semantics of chop)

279

Appendix B

Formal Transformation of Rules

Extracted from a Specification

In Section 7.2, rules are extracted from a concrete specification describing the

operation of an automated teller machine. Five of the extracted total rules are

considered in this formal transformation:

rule7.2-b ~ ((atmJl,on_empty A owaiCcustomer ; read_card; rule7.2-c) ; rule7.2-b)
v (-,atm_non_empty A empty)

rule7.2-c ~ (card_disabled A otake_disabled_card)
v (-,card_disabled A ogecpin ; rule7.2-d)

rule7.2-d ~ (max..]Jin A odisable3ard ; take_disabled_card)
v (-.max..]Jin A orule7.2_e)

rule7.2-e ~ (pin_exit A otake3ard_pin_exit)
v (-pin_exit A orequesCmoney ; rule7.2-j)

rule7.2-j ~ (money_exit A otake_cardJlloneY3xit)
v (-,money_exit A odebicaccount; take_card_money)

To facilitate analysis, the following variable name substitutions are made:

da~ debiCaccount
dc~ disable3ard
gp~ geCpin
rc~ read3ard
rm ~ requesCmoney
tcm ~ take3ard_money
tcme ~ take3ard_money 3xit
tcpe ~ take_card_pin_exit
tdc ~ take_disabled3ard
wc ~ waiccustomer
xane ~ atm_non_empty
xed ~ card_disabled
xme ~ money_exit
xmp ~ max..]Jin

. xpe ~ pin_exit

280

Regarding these variable names, rule conditions variables begin with the letter x and are

depicted in italics. Using these rule conditions and rule state variable names, these five

rules of interest are rewritten as:

ruZe7.2-b ~ «xane /\ owe; rc; rule7.2-c) ; ruZe7.2-b) v (-,xane /\ empty)

rule7.2-c ~ (xed /\ otde) v (-,xed /\ ogp ; ruZe7.2-d)

rule7.2-d ~ (xmp /\ ode; tdc) v (-,xmp /\ orule7.2_e)

ruZe7.2-e ~ (xpe /\ otepe) v (-,xpe /\ orm ; ruZe7.2-/)

ru[e7.2-/ ~ (xme /\ otcme) v (-,xme /\ oda ; tern)

Each of these rules is assumed as a premise. The formal transformation of these rules is

as follows:

1 ruZe7.2-b premise

where:

ruZe7.2-b == «xane /\ owe; rc ; ruZe7.2-c) ; ruZe7.2-b)

v (-,xane /\ empty)

2 rule7.2-c premise

where:

rule7.2-c == (xed /\ otde) v (-,xed /\ ogp; ruZe7.2-d)

3 rule7.2-d premise

where:

rule7.2-d == (xmp /\ ode; tde) v (-,xmp /\ orule7.2-e)

4 rule7.2-e premise

where:

rule7.2-e == (xpe /\ otcpe) v (-,xpe /\ orm ; rule7.2-/)

5 rule7.2-/ premise

where:

rule7.2-/ == (xme /\ oteme) v (-,xme /\ oda ; tern)

6 rule7.2-e 4, reiteration

7 (xpe /\ otepe) v (-,xpe /\ orm; rule7.2-/) 4, 6, eqv. subst.

281

8 (xpe 1\ otepe) v (-,xpe 1\ orm; «xme 1\ oteme) 5, 8, eqv. subst.

v (..xme 1\ oda ; tern)))

9 (xpe 1\ otepe) v «-,xpe 1\ orm) ; «xme 1\ oteme) 8,ITL

v (..xme 1\ oda ; tern))) (StateAndChop)

10 (-,xpe 1\ orm) ; «xme 1\ oteme) v (..xme 1\ oda ; tern» CP assumption

11 (-,xpe ; xme 1\ orm ; oteme) 10, RuleChop-

v (-,xpe ; -,xme 1\ orm ; oda ; tern) TwoRulelmp

12 (-,xpe ; xme 1\ orm; oteme) 11, v introduction

v (-,xpe ; -,xme 1\ orm ; oda ; tern)

v (xpe 1\ otepe)

13 (xpe 1\ otepe) CP assumption

14 (-,xpe ; xme 1\ orm ; oteme) 13, v introduction

v (-,xpe ; ..xme 1\ orm ; oda ; tern) and eomm. ofv

v (xpe 1\ otepe)

15 (-,xpe ; xme 1\ orm ; oteme) 9, 10-12, 13-14,

v (-,xpe ; ..xme 1\ orm ; oda ; tern) v elimination

v (xpe 1\ otepe)

16 -,rule7.2-e v «-,xpe ;xme 1\ orm; oteme) 15, v introduction

v (-,xpe; -,xme 1\ orm; oda ; tern) v (xpe 1\ otepe» and eorom. of v

17 rule7.2-e::> «-,xpe ; xme 1\ orm; oteme) 16, defmition of::>

v (-,xpe ; -,xme 1\ orm; oda ; tern) v (xpe 1\ otepe»

18 rule7.2-d 3, reiteration

19 (xmp 1\ ode ; tde) v (..xmp 1\ orule7.2_e) 3, 18, eqv. subst.

20 (xmp 1\ ode ; tde) v (..xmp 1\ skip ; rule7.2-e) 19, m (def. of 0)

21 (xmp 1\ ode; tde) v «-,xmp 1\ skip) ; rule7.2-e) 20,m

(StateAndChop)

22 (..xmp 1\ skip) ; rule7.2-e CP assumption

23 (..xmp 1\ skip) ; « -,xpe ; xme 1\ orm ; oteme) 17,22,

v (-,xpe ; ..xme 1\ orm ; oda ; tern) v (xpe 1\ otepe» ChopS waplmp 1

282

24 (-,xmp A skip) ; (-,xpe ; xme A orm ; oteme) 23, ITL (ChopOr)

v (-,xmp A skip) ; (-,xpe ; -,xme A orm ; oda ; tern)

v (-,xmp A skip) ; (xpe A otepe)

25 (-,xmp A skip) ; (-,xpe ; xme A orm; otcme) CP assumption

26 -,xmp ; -,xpe ; xme A skip; orm ; otcme 25, TwoChop-

Ruleslmp

27 (-,xmp ; -,xpe ; xme A skip; orm ; oterne) 26, v introduction

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern)

v (-,xmp ; xpe A skip; otepe)

28 (-,xmp A skip) ; (-,xpe ; -,xme A orm; oda ; tern) CP assumption

29 -,xmp ; -,xpe ; -,xme A skip ; orm ; oda ; tern 28, TwoChop-

Ruleslrnp

30 (-,xmp ; -,xpe ; xme A skip ; orm ; otcrne) 29, v introduction

v (-,xmp ; -,xpe ; -,xme A skip; orm; oda ; tern) and eomm. of v

v (-,xmp ; xpe A skip ; otepe)

31 (-,xmp A skip) ; (xpe A otepe) CP assumption

32 -,xmp ; xpe A skip; otepe 31, TwoChop-

Ruleslrnp

33 (-,xmp ; -,xpe ; xme A skip ; orm ; oteme) 32, v introduction

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern) and comm. of v

v (-,xmp ; xpe A skip ; otcpe)

34 (-,xmp ; -,xpe ; xme A skip ; orm ; oteme) 24,25-27,28-30,

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern) 31-33, v elimination

v (-,xmp ; xpe A skip ; otcpe)

35 (-,xmp ; -,xpe ; xme A oorm ; otcme) 34, ITL (def. of 0)

v (-,xmp; -,xpe; -,xme A oorm; oda; tern)

v (-,xmp ; xpe A 0 otepe)

283

36 (-,xmp ; -.xpe ; xme 1\ oorm ; oteme) 35, v introduction

v (-,xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern)

v (-,xmp ; xpe 1\ 0 otepe)

v (xmp 1\ ode; tde)

37 (xmp 1\ ode ; tde) CP assumption

38 (-,xmp; -.xpe ; xme 1\ oorm; oteme) 37, v introduction

v (-,xmp ; -.xpe ; -.xme 1\ oorm ; oda ; tern) and eomm. of v

v (-,xmp ; xpe 1\ 0 otepe)

v (xmp 1\ ode ; tde)

39 (-,xmp ; -.xpe ; xme 1\ oorm ; otcme) 21,22-36,37-38,

v (-,xmp ; -.xpe ; -,xme 1\ oorm; oda ; tern) v elimination

v (-,xmp ; xpe 1\ ootepe)

v (xmp 1\ ode ; tde)

40 -,rule7.2-d 39, v introduction

v « -,xmp ; -.xpe ; xme 1\ oorm ; oteme) and eomm. of v

v (-,xmp ; -.xpe ; -,xme 1\ oorm; oda ; tern)

v (-,xmp ; xpe 1\ 0 otepe)

v (xmp 1\ ode; tdc»

41 rule7.2-d -::J «-,xmp ; -,xpe ; xme 1\ oorm; oteme) 40, defmition of;:)

v (-,xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern)

v (-,xmp ; xpe 1\ 0 otepe)

v (xmp 1\ ode; tde»

42 rule7.2-c 2, reiteration

43 (xed 1\ otdc) v (-,xed 1\ 0 gp ; rule7.2-d) 2, 42, eqv. subst.

44 (xed 1\ otdc) v «-,xed 1\ ogp) ; rule7.2-d) 43, ITL

(StateAndChop)

45 (-,xcd 1\ ogp) ; rule7.2-d CP assumption

46 (-,xcd 1\ ogp) ; «-,xmp ; -.xpe; xme 1\ oorm; oteme) 41,45,

v (-.xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern) ChopSwaplmpl

v (-.xmp ; xpe 1\ 0 otepe)

v (xmp 1\ ode; tde»

284

47 (-,xed A Ogp) ; (-,xmp ; -,xpe; xme A oonn; oteme) 46, ITL (ChopOr)

v (-,xed A ogp) ; (-,xmp; -,xpe;-,xme

A oorm; oda; tem)

v (-,xed A ogp) ; (-,xmp ; xpe A ootepe)

v (-.xed A ogp) ; (xmp A ode; tde)

48 (-.xed A ogp) ; (-,xmp ; -,xpe; xme A oonn; oteme) CP assumption

49 (-,xed; -,xmp ; -,xpe; xme) A (ogp ; oonn; oteme) 48, TwoChop-

Ruleslmp

50 (-,xed; -,xmp ; -,xpe ; xme A 0 gp ; oonn ; oteme) 49, v introduction

v (-,xed; -,xmp ; -,xpe ; -,xme and eomm. ofv

A ogp; oorm; oda; tern)

v (-,xed; -,xmp ; xpe A ogp; ootepe)

v (-.xed; xmp A ogp; ode; tde)

51 (-.xed A ogp); (-.xmp; -.xpe; -.xme A oonn; oda; CP assumption

tem)

52 (-.xed; -.xmp ; -.xpe ; -.xme) 51, TwoChop-

A (ogp ; oorm ; oda ; tern) Ruleslmp

53 (-.xed; -.xmp; -,xpe; xme A ogp; oonn; oteme) 52, v introduction

v(-.xed;-,xmp;-.xpe;-.xme and comm. of v

A ogp; oorm; oda; tern)

v (-.xed; -,xmp; xpe A ogp; ootepe)

v (-.xed; xmp A ogp; ode; tde)

54 (-.xed A 0 gp) ; (-,xmp ; xpe A 0 otepe) CP assumption

55 (-.xed; -,xmp ; xpe) A (0 gp ; 0 otepe) 54, TwoChop-

Ruleslmp

56 (-.xed; -.xmp ; -,xpe; xme A ogp; oonn; oteme) 55, v introduction

v(-,xed;-.xmp;-,xpe;-,xme andeomm.ofv

A ogp ; oorm ; oda ; tern)

v (-.xed; -.xmp ; xpe A ogp; ootepe)

v (-,xed; xmp A ogp; ode; tde)

57 (-.xed A ogp) ; (xmp A ode; tde) CP assumption

285

58 (-,xed; xmp) 1\ (ogp ; ode; tde) 57, TwoChop-

RulesImp

59 (-,xed; -,xmp; -,xpe; xme 1\ ogp ; oorm.; oteme) 58, v introduction

v(-,xed;~p;-,xpe;~e and eomm. of v

1\ ogp; oorm; oda; tern)

v (-,xed; ~p ; xpe 1\ ogp; ootepe)

v (-,xed; xmp 1\ ogp ; ode; tde)

60 (-,xed ; ~p ; -,xpe ; xme 1\ ogp ; oorm. ; oteme) 47, 48-50, 51-53,

v (-,xed ; ~p ; -,xpe ; ~e 54-56, 57-59,

1\ ogp ; oorm ; oda ; tern) v elimination

v (-,xed; ~p; xpe 1\ ogp; ootepe)

v (-,xed; xmp 1\ ogp; ode; tdc)

61 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp ; oorm.; oteme) 60, v introduction

v(-,xed;-,xmp;-,xpe;-,xme

1\ ogp ; oorm ; oda ; tern)

v (-,xed; ~p ; xpe 1\ ogp; ootepe)

v (-,xed; xmp 1\ ogp ; ode; tde)

v (xed 1\ otde)

62 (xed 1\ otde) CP assumption

63 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp ; oorm.; oteme) 62, v introduction

v(-,xed;~p;-,xpe;-,xme and comm. of v

1\ ogp ; oorm; oda ; tcm)

v (-,xed; ~p ; xpe 1\ ogp; ootepe)

v (-,xed; xmp 1\ ogp ; odc ; tde)

v (xed 1\ otde)

64 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp; oorm.; oteme) 44, 45-61, 62-63,

v (-,xed; ~p; -,xpe; ~e 1\ ogp ; oorm.; oda; tcm) v elimination

v (-,xed; ~p ; xpe 1\ ogp ; ootcpe)

v (-,xed; xmp 1\ ogp ; ode ; tde)

v (xed 1\ otdc)

286

65 -,rule7.2.c

((-,xed; -,xmp; -,xpe; xme /\ ogp; oorm; oteme)

v (-,xed; -,xmp ; -,xpe; -,xme /\ ogp ; oorm; oda; tem)

v (-,xed; -,xmp ; xpe /\ ogp ; 0 otepe)

v (-,xed; xmp /\ ogp ; ode ; tde)

v (xed /\ otde»

64, v introduction

and eomm. of v

66 rule7.2-c ::J 65, defmition of::>

((-,xed; -,xmp ; -,xpe; xme /\ ogp; oorm; oteme)

v (-,xed; oxmp ; -,xpe ; -,xme /\ ogp; oorm; oda; tem)

v (-,xed; -,xmp ; xpe /\ ogp ; ootepe)

v (-,xed; xmp /\ ogp ; ode ; tde)

v (xed /\ otde»

67 rule7.2-b I, reiteration

68 ((xane /\ owe; re ; rule7.2_c) ; rule7.2-b) v (-,xane /\ empty) 1,67, eqv. subst.

69

70

71

72

((xane /\ owe; re ; rule7.2-c) ; rule7.2-b)

(((xane 1\ owe; re) ; rule7.2-c) ; rule7.2-b)

(xane 1\ owe; re) ; rule7.2-c ; rule7.2-b

(xane 1\ owe; re) ; ((-,xed; oxmp ; -,xpe; xme

1\ ogp ; oorm ; oteme)

v(-,xed;-,xmp;-,xpe;-,xme

1\ ogp ; oorm ; oda ; tem)

v (-,xed; -,xmp ; xpe /\ ogp ; ootepe)

v (-,xed; xmp 1\ ogp; ode; tde)

v (xed 1\ otde» ; rule7.2-b

CP assumption

69,ITL

(StateAndChop)

70, ChopAssoe

66,71,

ChopSwaplmp3

287

73 «xane /\ owe ; re) ; (-,xed; -.xmp ; -,xpe ; xme 72, ITL (ChopOr)

/\ ogp ; oorm ; oteme)

v (xane /\ owe ; re) ; (-,xed; -.xmp ; -,xpe ; -,xme

/\ ogp ; oorm ; oda ; tem)

v (xane /\ owe ; re) ; (-,xed; -,xmp ; xpe

/\ ogp ; ootepe)

v (xane /\ owe; re) ; (.......xed; xmp /\ ogp; ode; tde)

v (xane /\ owe; re) ; (xed /\ otde» ; rule7.2ob

74 (xane /\ owe; re) ; (.......xed;xmp ; -,xpe ; xme 73, ITL (OrChop)

/\ ogp ; oorm ; oteme) ; rule7.2ob

v (xane /\ owe ; re) ; (.......xed; -.xmp ; -,xpe ;xme

/\ ogp; oorm; oda; tem) ; rule7.2ob

v (xane /\ owe; rc) ; (.......xed; -.xmp ; xpe

/\ ogp ; ootepe) ; rule7.2ob

v (xane /\ owe; re) ; (.......xed; xmp

/\ ogp ; ode; tde) ; rule7.2ob

v (xane /\ owe ; re) ; (xed /\ otde) ; rule7.2ob

75 (xane /\ owe ; re) ; (-,xed; -.xmp ;xpe ; xme CP assumption

/\ ogp ; oorm ; oteme) ; rule7.2ob

76 (xane ; -,xed; -,xmp ; -,xpe ; xme) /\ (owe; re ; ogp ; 75, TwoChop-

oorm; oteme ; rule7.2ob) RulesImp2

77 «xane ; -,xed; -.xmp ; -,xpe ; xme) 76, v introduction

/\ (owe; re ; ogp ; oorm; oteme ; rule7.2ob»

v «xane ; -,xed; -.xmp ;xpe ; -.xme)

/\ (owe; re ; ogp ; oorm ; oda ; tem ; rule7.2ob»

v «xane ; -,xed; -vcmp ; xpe)

/\ (owe; re ; ogp ; ootepe ; rule7.2.b»

v «xane ; -,xed; xmp)

/\ (owe; re ; ogp ; ode; tde; rule7.2ob»

v «xane ; xed) /\ (owe; re ; otde ; rule7.2ob»

78 (xane A owe; re) ; (-,xed; -,xmp ; -,xpe ; -,xme CP assumption

/\ ogp; oorm; oda ; tem) ; rule7.2ob

288

79 (xane ; --..xed; --..xmp ; --..xpe ; --..xme) 78, TwoChop-

A (owe; re ; ogp ; oorm ; oda ; tem ; ruZe7.2-b) Ruleslmp2

80 «xane ; --..xed; --..xmp ; --..xpe ; xme) 79, v introduction

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b» and eomm. ofv

v «xane ; --..xed; --..xmp ; --..xpe ; --..xme)

A (owe; re ; ogp ; oorm ; oda ; tem ; ruZe7.2-b»

v «xane ; --..xed; --..xmp ; xpe)

A (owe; re ; ogp ; ootepe ; ruZe7.2-b»

v «xane ; --..xed; xmp)

A (owe; re ; ogp ; ode; tde; ruZe7.2-b»

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b»

81 (xane A owe; re) ; (--..xed; --..xmp ; xpe CP assumption

A ogp ; ootepe) ; ruZe7.2_b

82 (xane ; --..xed; --..xmp ; xpe) 81, TwoChop-

A (owe; re ; ogp ; ootepe ; ruZe7.2-b) Ruleslmp2

83 «xane ; --..xed; --..xmp ; --..xpe ; xme) 82, v introduction

A (owe; rc ; ogp ; OOrm ; otcme ; ruZe7.2-b» and eomm ofv

v «xane ; --..xed; --..xmp ; --..xpe ; --..xme)

A (owe; rc ; ogp ; oorm; oda; tern; rUZe7.2.b»

v «xane; --..xed; --..xmp ; xpe)

A (owe; re ; ogp ; ootepe ; ruZe7.2-b»

v «xane ; --..xed; xmp)

A (owe; re ; ogp ; ode; tde; ruZe7.2-b»

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b»

84 (xane A owe; rc) ; (--..xed; xmp CP assumption

A ogp ; ode; tdc) ; ruZe7.2.b

85 (xane ; --..xed; xmp) 84, TwoChop-

A (owe; re ; ogp ; ode; tde; ruZe7.2-b) Ruleslmp2

289

86

87

88

89

90

«xane; -,xed; -,xmp; -,xpe; xme)

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b»

v «xane ; -,xed; -.xmp ; -,xpe ; -.xme)

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b»

v «xane ; -,xed; -.xmp ; xpe)

A (owe; re ; ogp ; ootepe ; ruZe7.2-b»

v «xane ; -,xed; xmp)

A (owe; re ; ogp ; ode; tde; ruZe7.2-b»

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b»

(xane A owe ; re) ; (xed A otde) ; ruZe7.2-b

(xane ; xed) A (owe ; re ; otde ; ruZe7.2-b)

«xane ; -,xed; -,xmp ; -,xpe ; xme)

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b»

v «xane; -,xed; -,xmp ; -,xpe; -,xme)

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b»

v «xane ; -,xed; -.xmp ; xpe)

A (owe; re ; ogp ; ootcpe ; ruZe7.2-b»

v «xane ; -,xed; xmp)

A (owe; re ; ogp ; ode; tde; ruZe7.2-b»

v «xane ; xed) A (owe; re ; otde ; ruZe7.2_b»

«xane ; -,xed; -,xmp ; -,xpe ; xme)

A (owe; rc ; ogp ; oorm ; oteme ; ruZe7.2-b»

v «xane ; -,xed; -,xmp ; -,xpe ; -,xme)

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b»

v «xane ; -,xed; -,xmp ; xpe)

A (owe; re ; ogp ; ootepe ; ruZe7.2-b»

v «xane ; -,xed; xmp)

A (owe; rc ; ogp ; ode; tde; ruZe7.2-b»

v «xane ; xed) A (owe; re ; otdc ; ruZe7.2-b»

85, v introduction

and eomm. of v

CP assumption

87, TwoChop­

RulesImp2

88, v introduction

and eomm. of v

74, 75-77, 78-80,

81-83,84-86,87-89,

v elimination

290

91

92

93

«xane ; -,xed; -.xmp ; -,xpe ; xme)

A (owc ; rc ; ogp ; oorm ; otcme ; rule7.2-b»

v «xane ; -,xed; -.xmp ; -,xpe ; -,xme)

A (owe; re ; ogp ; oorm ; oda ; tcm ; rule7.2-b»

v «xane ; -,xed; -,xmp ; xpe)

A (owe; rc ; ogp ; ootcpe ; rule7.2-b»

v «xane; -,xed; xmp)

A (owe; rc ; ogp ; odc ; tdc; rule7.2-b»

v «xane ; xed) A (owc ; re ; otde ; rule7.2-b»

v (-,xane A empty)

(-,xane A empty)

«xane ; -,xed; -,xmp ; -,xpe ; xme)

A (owc; re ; ogp ; oorm; otcme; rule7.2-b»

v «xane ; -,xed; -.xmp ; -,xpe ; -,xme)

A (owe; re ; ogp ; oorm; oda; tcm; rule7.2-b»

v «xane ; -,xed; -,xmp ; xpe)

A (owe; re ; ogp ; ootcpe ; rule7.2-b»

v «xane ; -,xed; xmp)

A (owe; re ; ogp ; ode; tdc; rule7.2-b»

v «xane ; xed) A (owe; rc ; otdc ; rule7.2-b»

v (-,xane A empty)

94 «xane; -,xed; -.xmp ; -,xpe ; xme)

A (owe; re ; ogp ; oorm ; oteme ; rule7.2-b»

v «xane ; -,xed; -,xmp ; -,xpe ; -.xme)

A (owe; re ; ogp; oorm; oda; tern; rule7.2-b»

v «xane ; -,xed; -,xmp ; xpe)

A (owe; re ; ogp; ootepe; rule7.2-b»

v «xane; -,xed; xmp)

A (owe; re ; ogp ; ode; tde; rule7.2-b»

v «xane ; xed) A (owe; re ; otdc ; rule7.2-b»
v (-,xane A empty)

v introduction

CP assumption

92, v introduction

and comm. of v

68,69-91,92-93,

v elimination

291

Based on these transformations, the following observations are made. By

defmition, rule7.2_fdescribes the behaviors associated with rule7.21 and no transformation

is required. The two possible behaviors associated with rule7.21 are:

The transformation of rule7.2-e is complete at sequent 15 and incorporates the behaviors

associated with rule7.21. The three possible behaviors associated with rule7.2-e are:

v (-,pin_exit; -,money_exit 1\

orequesCmoney ; odebicaccount ; take_card_money)

The transformation of rule7.2-d is complete at sequent 39 and incorporates the behaviors

associated with rule7.2-e and rule7.21- The four possible behaviors associated with

rule7.2-e are:

(-,max..]Jin ; -,pin_exit; money_exit
1\ oorequescmoney ; otake_card_money_exit)

v (-,max..]Jin ; -,pin3xit ; -,money_exit
1\ oorequescmoney ; odebiCaccount; take_card_money)

The transformation of rule7.2-c is complete at sequent 64 and incorporates the behaviors

associated with rule7.2-d, rule7.2-e, and rule7.2_/o The five possible behaviors associated

with rule7.2-c are:

(-,card_disabled; -,max..]Jin ; -,pin_exit; money_exit
1\ ogecpin ; oorequesCmoney; otake_card_money_exit)

v (-,card_disabled; -,max..]Jin ; -,pin_exit; -,money_exit
1\ ogeCpin ; oorequesCmoney ;

292

odebiCaccount ; take3ard_money)

v (-,card_disabled ; -,max-pin ; pin_exit
/I. ogeCpin ; ootake_card_pin_exit)

v (-,card_disabled ~ max-pin
/I. ogeCpin ; odisable3ard ; take_disabled_card)

The transformation of rule7.2.b is complete at sequent 94 and incorporates the behaviors

associated with rule7.2.c, rule7.2.d, rule7.2.e, and rule7.2.t. The six possible behaviors

associated with rule7.2.b are:

(atm_non_empty; -,card_disabled; -,max-pin ; -,pin3xit; money_exit
/I. owaiCcustomer; read_card; ogecpin ; oorequesCmoney;

otake3ard_money_exit ; ruZe7.2.b)

v (atm_non_empty; -,card_disabled; -,max-pin ; -,pin3xit; -,money_exit
/I. owaiccustomer; read3ard; ogecpin; oorequesCmoney;

odebiCaccount ; take_card_money ; ruZe7.2.b)

v (atm_non3mpty ; -,card_disabZed ; -,max-pin ; pin3xit
/I. owaiCcustomer ; read3ard ; ogecpin ;

ootake3ard_pin3xit ; ruZe7.2-b)

v (atm_non_empty ; -,card_disabled ; max-pin
/I. owait3ustomer ; read3ard ; ogecpin ;

odisable_card ; take_disabled3ard ; ruZe7.2.b)

v (atm_non_empty ; card_disabled
/I. owaiccustomer ; read3ard ; take_disabled_card ; ruZe7.2.b)

293

Appendix C

Formal Transformation of VO Rules in Legacy Code

In this formal transformation, the specific rules derived from the legacy code

presented in Section 8.1 are transformed to create a single rule structure. The focus of

this transformation are the rules associated with specific I/O activities. Because rule4

does not include any I/O activities, rule4 is not considered in this transformation.

This transformation rests on seven premises that reflect the rules extracted from

legacy code that directly or indirectly include the variable UOwrite - fo, rule1, rule1', rule2.

rule3, rules. and rules'. Because the deepest rule, rules (including the subrule rules')

includes no other rules and therefore, by defmition, totally describes all behaviors

associated with rules. rules needs no transformation. Therefore, rule3 is transformed

fITst and incorporates the behaviors associated with rules. Then, rule2 is transformed

and incorporates the behaviors derived from rule3 and rules. Then. rule1 (including the

subrule rule]') is transformed and incorporates the behaviors derived from rule2. rule3.

and rules. Finally,fo is transformed and incorporates the behaviors derived from rule},

rule2. rule3. and rules.

1 fo

where: fo ~ fOa ;fpl ;!ob ; rule1 ;fOc ;fOd ;!oe

2 rule1

where: rulel ~ f1a ; rule],

3 rule}'

where: rule}' ~ (WCl' A orule2 ;/Jb ; rule})

v (-,WC)' A empty)

4 rule2

where: rule2 ~ (WC2 A Of3a ;f3b ; rule3 ;/Jc ;/Jd ; rule4 ;f3e)

v (""WC2 A empty)

5 rule3

where: rule3 ~ (WC3 A orules ;/4a ;/4b)

V (-,we3 A Oj4c ;f4d)

premise

premise

premise

premise

premise

294

6 rules premise

where: rules ~ j6a ; rules'

7 rules' premise

where: rules' ~ (Wes' A Oj6b ;/6c ; rules)

v (,Wcs' A empty)

8 rule3 5, reiteration

9 (We3 A orules ;j4a ;j4b) v (,WC3 A Oj4c ;j4d) 5, 8, def. subst.

10 rules == j6a ; rules' 6, reiteration

11 (WC3 A (Oj6a ; rules) ;j4a ;j4b) v (,WC3 A Oj4c ;j4d) 9, 10, eqv. subst.

12 «WC3 A Oj6a) ; rules' ;j4a ;j4b) v (oWC3 A Oj4c ;j4d) StateAndChop

13 rules' == (wcS' A Oj6b ;J6c ; rules) v (,WCS' A empty) 7, reiteration

14 «We3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules) 12, 13, def. subst.

v (,wcS' A empty)) ;j4a ;j4b) v (,We3 A Oj4c ;j4d)

15 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules) ;j4a ;j4b 14,OrChop

v (,WcS'A empty) ;j4a ;j4b)) v (,WC3 A Oj4c ;j4d)

16 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) 15, StateAndChop

v (,wes' A empty ;j4a ;j4b))) v (,WC3 A Oj4c ;j4d)

17 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) 16, EmptyChop

v (,WCS' Aj4a ;j4b))) v ('WC3 A Oj4c ;j4d)

18 (WC3 A oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) CP assumption

v (,WCS' Aj4a ;j4b))

19 « WC3 ; WCS) A (Oj6a ; Oj6b ;j6c ; rules' ;j4a ;j4b)) 18, RuleChop-

v «We3 ; ,WCS) A (Oj6a ;j4a ;j4b)) TwoRulelmp

20 «WC3 ; WCS) A (oj6a ; oj6b ;j6c ; rules' ;j4a ;j4b)) 19, v introduction

v «WC3 ; ,WCS) A (Oj6a ;j4a ;j4b))

v (,WC3 A Oj4c ;j4d)

21 (,WC3 A Oj4c ;j4d) CP assumption

295

22 «WC3 ; wcs') A. (oj6a ; Oj6b ;j6c ; rules' ;j4a ;j4b» 21, v introduction

v ({WC3 ; -,WCS) A. (oj6a ;j4a ;j4b» and comm. of v

v (-,WC3 A. Oj4c ;j4d)

23 «WC3; WCS) A. (oj6a; Oj6b ;j6c; rules' ;j4a ;j4b» . 18-20,21-22,

v «WC3 ; -,WCS) A. (oj6a ;j4a ;j4b» v elimination

v (-,WC3 A. Oj4c ;j4d)

24 «WC3 ; WCS') A. (oj6a; oj6b ;j6c; ruleS' ;j4a ;j4b» 23, v introduction

v «WC3 ; -,WCS) A. (oj6a ;/4a ;j4b»

v (-,WC3 A. Oj4c ;j4d)

v -,rule3

25 rule3::) «(WC3 ; WCS') A. (oft,a ; Oj6b ;j6c ; rules' ;j4a ;j4b» 24, comm. of v and

v «WC3 ; -,WCS') A. (oj6a ;j4a ;j4b» defmition of::)

v (-,WC3 A. Oj4c ;j4d»

26 rule2 4, reiteration

27 (WC2 A. oj3a ;j3b ; rule3 ;j3c ;/Jd ; rule4 ;/Je) 4, 26, def. subst.

v (-,WC2 A. empty)

28 «WC2 A. oj3a ;j3b) ; rule3 ;j3c ;j3d ; rule4 ;j3e) 27, StateAndChop

v (-,WC2 A. empty)

29 (WC2 A. oj3a ;j3b) ; rule3 ;j3c ;/3d ; rule4 ;j3e CP assumption

30 (WC2 A. oj3a ;j3b) ; «(WC3; WCS) A. (oj6a; Oj6b ;j6c; 29, ChopSwaplmp3

rules' ;j4a ;j4b» v «WC3 ; -'WCS') A. (oj6a ;j4a ;j4b»

v (-,weJ A. Oj4c ;j4d» ;j3c ;j3d; rule4 ;j3e

31 (WC2 A. oj3a ;j3b) ; «(WC3; WCS) A. (oj6a; oj6b ;j6c; 30,OrChop

rules' ;/4a ;/4b» ;/Jc ;/Jd ; rule4 ;j3e v «WC3 ; -,WCS-) A.

(oft,a ;j4a ;j4b» ;/3c ;j3d ; rule4 ;j3e

v (-,WC3 A. Oj4c ;j4d) ;j3c ;j3d; rule4 ;/Je)

32 (WC2 A. o/3a ;j3b) ; «(WC3; WCS) A. (oj6a; oj6b ;j6c; rules' 31, v introduction

;j4a ;j4b» ;/Jc ;j3d ; rule4 ;/3e

v «WC3 ; -,WCS') A. (oj6a ;j4a ;j4b» ;/3c ;j3d; rule4 ;j3e

v (-,WC3 A. oj4c ;j4d) ;j3c ;/Jd ; rule4 ;/3e)
v (-,WC2 A. empty)

296

33 ("",WC2 /\ empty) CP assumption

34 (WC2/\ oj3a ;j3b) ; «(WC3 ; WC5') /\ (oj6a ; oj6b ;j6c ; 33, v introduction

rule5' ;j4a ;j4b» ;/Jc ;j3d ; rule4 ;/Je v «WC3 ; "",WC5) and comm. of v

/\ (oj6a ;j4a ;/4b» ;j3c ;j3d ; rule4 ;j3e

v ("",WC3 /\ Oj4c ;j4d) ;j3c ;j3d; rule4 ;/Je)

v ("",WC2 /\ empty)

35 (WC2/\ o/Ja ;j3b) ; «(WC3 ; WC5') /\ (oj6a ; Oj6b ;j6c; rule5'; 34, v elimination

j4a ;j4b» ;j3c ;/Jd; rule4 ;j3e v «WC3 ; "",WC5')

/\ (oj6a ;j4a ;j4b» ;/Jc ;j3d ; rule4 ;j3e

v ("",WC3 /\ Oj4c ;/4d) ;j3c ;j3d; rule4 ;j3e)

v ("",WC2 /\ empty)

36 (WC2/\ oj3a ;j3b) ; «WC3 ; WC5') /\ (oj6a ; Oj6b ;j6c ; rule5' ; 35, ChopOr

j4a ;j4b» ;j3c ;j3d ; rule4 ;/Je v (WC2 /\ oj3a ;j3b) ; «WC3 ;

"",WC5) /\ (oj6a ;/4a ;j4b» ;j3c ;j3d ; rule4 ;/Je

v (WC2 /\ o/Ja ;/Jb) ; ("",WC3/\ Oj4c ;/4d) ;j3c ;/Jd; rule4 ;/Je

v ("",WC2 /\ empty)

37 (WC2/\ oj3a ;j3b); «WC3; WC5-) /\ (oj6a; Oj6b ;j6c; rule5'; CP assumption

j4a ;j4b» ;j3c ;/Jd; rule4 ;/Je

38 (WC2 ; WC3 ; WC5-) /\ (oj3a ;j3b ; oj6a; Oj6b ;j6c ; rule5' ;/4a 37, TwoChop-

;j4b ;j3c ;/Jd ; rule4 ;/Je) Ruleslmp2

39 «WC2 ; WC3 ; WC5) /\ (oj3a ;j3b ; oj6a; Oj6b ;j6c ; rule5' ; 38, v introduction

j4a ;j4b ;j3c ;j3d ; rule4 ;/Je» v «WC2 ; WC3 ; "",WC5') /\

(o/Ja ;/Jb ; oj6a ;/4a ;/4b ;/Jc ;/Jd ; rule4 ;j3e» v «WC2 ;

"",WC3) /\ (oj3a ;/Jb ; oj4c ;j4d ;j3c ;j3d ; rule4 ;/Je))

v ("",WC2 /\ empty)

40 (WC2 /\ oj3a ;j3b) ; «WC3 ; "",WC5) /\ (oj6a ;j4a ;j4b» ; CP assumption

j3c ;j3d ; rule4 ;j3e

41 (WC2 ; WC3 ; "",WC5) /\ (oj3a ;j3b ; oj6a ;j4a ;/4b ;j3c ;j3d ; 40, TwoChop-

rule4 ;j3e) Ruleslmp2

297

42 «WC2 ; WC3 ; WCS) A (Oj3a ;bb; Oj6a; Oj6b ;j6c; rules,; 41, v introduction

j4a ;/4b ;bc ;bd; rule4 ;be» v «WC2 ; WC3 ; ...,Wcs') A and comm. ofv

(oba ;j3b ; oj6a ;j4a ;j4b ;j3c ;j3d ; rule4 ;j3e» v «WC2 ;

""WC3) A (Oj3a ;bb ; Oj4c ;/4d ;j3c ;j3d ; rule4 ;be»

v (""WC2 A empty)

43 (WC2 A Oj3a ;j3b) ; (""WC3 A Oj4c ;j4d) ;bc ;j3d; rule4 ;j3e CP assumption

44 (WC2 ; ""WC3) A (Oj3a ;j3b ; Oj4c ;j4d ;j3c ;j3d ; rule4 ;j3e) 43, TwoChop-

Ruleslmp2

45 «WC2 ; WC3 ; WCS') A (Oj3a ;bb; Oj6a; Oj6b ;j6c; rules'; 44, v introduction

j4a ;j4b ;bc ;bd ; rule4 ;be» v «WC2 ; WC3 ; ...,Wcs') A and comm. of v

(oba ;j3b ; oj6a ;j4a ;j4b ;j3c ;bd ; rule4 ;j3e)) v «WC2 ;

""WC3) A (Oj3a ;bb ; Oj4c ;/4d ;j3c ;bd ; rule4 ;be»

v (""WC2 A empty)

46 (""WC2 A empty) CP assumption

47 «WC2 ; WC3 ; WCS-) A (Oj3a ;j3b ; Oj6a; Oj6b ;j6c ; rules' ; 46, v introduction

j4a ;/4b ;j3c ;j3d; rule4 ;be)) v «WC2 ; WC3 ; ...,Wcs') A and comm. of v

(oba ;j3b; oj6a ;j4a ;j4b ;j3c ;bd; rule4 ;be» v «WC2 ;

""WC3) A (Oba ;bb ; Oj4c ;j4d ;j3c ;j3d ; rule4 ;be»

v (""WC2 A empty)

48 «WC2; WC3 ; WCS) A (Oj3a ;j3b ; Oj6a ; Oj6b ;j6c ; rules' ;/4a; 47, v elimination

j4b ;j3c ;j3d ; rule4 ;j3e»

v «WC2 ; WC3 ; ""Wcs') A (Oba ;bb ; oj6a ;j4a ;j4b ;j3c ;j3d ;

rule4 ;be))

v «WC2 ; ""WC3) A (Oha ;j3b ; Oj4c ;j4d ;hc ;j3d ; rule4 ;j3e»

v (""WC2 A empty)

49 «WC2; WC3; WCS-) A (Oj3a ;j3b ; Oj6a ; Oj6b ;j6c; rules' ;/4a; 48, v introduction

j4b ;bc ;j3d ; rule4 ;j3e))

v «WC2 ; WC3 ; ""Wcs') A (Oba ;bb ; oj6a ;j4a ;j4b ;bc ;j3d ;
rule4 ;j3e))

v «WC2 ; ""WC3) A (Oha ;bb; Oj4c ;j4d ;j3c ;j3d; rule4 ;j3e»
v (""WC2 A empty)

v ...,rule2

298

50 rule2 :::> «(WC2 ; WC3 ; wcs) A (O/3a ;/3b ; 0/6a; 0/6b ;/6e ; 49, comm. ofy and

rules' ;/4a ;/4b ;/3e ;/3d ; rule4 ;/3e)) defmition of:::>

y «WC2 ; WC3 ; ,WCS) A (0/3a ;/3b ; 0/00 ;/4a ;/4b ;/3e ;/3d ;

rule4 ;/3e))

y «WC2 ; ,WC3) A (0/3a ;/3b ; 0/4c ;/4d ;/3e ;/3d ; rule4 ;/3e))

y (,WC2 A empty))

51 /0 1, reiteration

52 /Oa ;hl ;/Ob ; rule1 ;/Oe ;/Od ;/Oe 1,51, def. subst.

53 rule1 == /Ja ; rule}' 2, reiteration

54 /Oa ;hl ;/ob ;/Ja ; rule1' ;/Oe ;/Od ;/Oe 2, 52, def. subst.

55 rule}' == (WC)' A orule2 ;/}b ; rule}) y (oWC) , A empty) 3, reiteration

56 /Oa ;hl ;/Ob ;/la ; «WC] , A orule2 ;/lb ; rule}) 54, 55, eqv. subst.

y (,WC)' A empty)) ;/Oe ;/Od ;/Oe

57 /Oa ;hl ;/Ob ;/la ; «(We1' A orule2) ;/Jb ; rule}') 56, StateAndChop

y (,we)' A empty)) ;/Oe ;/Od ;/Oe

58 loa ;/pl ;/Ob ;/1a ; «(WCl' A orule2) ;/lb ; rule},) ;/Oe ;/Od ;/Oe 57,OrChop

y (,we)' A empty) ;/Oe ;/Od ;/Oe)

59 /Oa ;/pl ;/Ob ;/}a ; «(WC) , A orule2) ;/Jb ; ruled ;/Oe ;/Od ;/Oe 58, StateAndEmpty-

y (,WC]' A/oe ;/Od ;/Oe)) Chop

60 /Oa ;hl ;/Ob ;/Ja ; «(wCl' A orule2) ;/lb ; rule], ;/Oe ;/Od ;/Oe) 59, ChopAssoc

y (,we)' A/oe ;/Od ;/Oe))

61 foa ;jpl ;fOb ;f1a ; «(WCl' A skip; rule2) ;flb ; rule}' ;joe ;fOd 60, ITL defmition

;joe) y (,We)' Ajoe ;jod ;joe)) of 0

62 /Oa ;hl ;jOb ;jla ; «(wCl' A skip) ; rule2 ;/}b ; rule]' ;joe ;/Od 61, StateAndChop

;/0,,) y (,we)' A/oe ;/Od ;/Oe))

63 faa ;/pl ;/Ob ;jla ; «we)' A skip) ; rule2 ;/Jb ; rulel' ;/Oe ;/Od; 62, ChopOr

foe) y /Oa ;hl ;/Ob ;/Ja ; (owe}' A/Oe ;/Od ;/Oe)

64 /Oa ;/pl ;/Ob ;/la ; (wCl' A skip) ; ruZe2 ;/lb ; ruZe] , ;/Oc ;/Od ; 63, ChopAssoc

fOe y /Oa ;fpl ;/Ob ;/]a ; (,we]' A/oe ;/od ;/0,,)

299

65 faa ;/Pl ;/Ob ;/Ia ; (WCI'" skip) ; ruZe2 ;/Ib ; ruZel' ;/Oc ; CP assumption

/Od ;/Oe

66 /Oa ;/Pl ;/Ob ;jia ; (WC), " skip) ; 65, ChopSwaplmp3

«(WC2 ; WC3 ; WC5') " (O/3a ;/3b ; O/6a ; O/6b ;/6c ; ruZe5' ;

/4a ;/4b ;/3c ;/3d ; ruZe4 ;/3e))

v «WC2 ; WC3 ; ,WC5) " (oha ;j3b ; o/6a ;/4a ;/4b ;/3c ;

/3d; rule4 ;/3e))

v «WC2 ; ,WC3) " (O/3a ;j3b; O/4c ;/4d ;/3c ;/3d;

rule4 ;/3e))

v (,WC2" empty)) ;/lb ; rulel' ;/oc ;/Od ;/Oe

67 (foa ;fpl ;/Ob ;/Ia ; (WCl''' skip) ; «WC2 ; WC3 ; WC5) 66, ChopOr

" (O/3a ;j3b ; O/6a ; O/6b ;/6c ; rules' ;/4a ;/4b ;j3c ;/3d ;
rule4 ;/3e))

v loa ;/Pl ;/Ob ;/Ia ; (WCI' " skip) ; «WC2 ; WC3 ; ,We5)

" (O/3a ;/3b ; O/6a ;/4a ;/4b ;/3c ;/3d ; rule4 ;/3e))

v /Oa ;fpl ;/Ob ;/Ia; (WCl''' skip) ; «WC2 ; ,WC3)

" (O/3a ;/3b ; o/4c ;/4d ;/3c ;/3d ; rule4 ;j3e))

v loa ;fpl ;/Ob ;jia ; (WCI' " skip) ; (-,WC2 " empty)) ;jib ;

rulel';/oc ;/Od ;/Oe

68 /Oa ;/pl ;/Ob ;/Ia ; (wc}''' skip) ; «WC2 ; WC3 ; WC5) 67, OrChop

" (o/3a ;/3b ; O/6a; o/6b ;/6c ; rule5' ;/4a ;/4b ;j3c ;/3d ;

rule4 ;j3e)) ;jIb ; rulel' ;joc ;jOd ;joe

v loa ;fpl ;jOb ;jIa ; (WCl''' skip) ; «WC2 ; WC3 ; ,Wcs)

" (oj3a ;j3b ; oj6a ;j4a ;j4b ;j3c ;/3d ; rule4 ;/3e)) ;jIb ;

rule}' ;joc ;jOd ;/Oe

v /Oa ;fp, ;job ;jIa ; (WCI' " skip) ; «WC2 ; ,WC3)

" (oj3a ;j3b ; o/4c ;j4d ;/3c ;j3d ; rule4 ;j3e)) ;jIb ; rulel' ;

fOe ;jOd ;/Oe

v joa ;fpl ;jOb ;/Ia; (WCl''' skip) ; (,WC2" empty) ;jlb;

rulel' ;joc ;jod ;joe

69 joa ;jpl ;/Ob ;jla ; (WCI' " skip) ; «WC2 ; WC3 ; WC5') CP assumption

,,(oha ;j3b; O/6a; o/6b :/6c; rule5' ;/4a ;/4b ;hc ;/3d;

rule4 ;/3e)) ;/Ib ; rulel' ;/oc ;/Od ;/Oe

300

70 jaa ;jpl ;job ;jla ; (WC]' ; WC2 ; WC3 ; Wcs' 69, TwoChop-

/I. skip; oj3a ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;14a ;14b ;/Je ; Ruleslmp3

j3d; rule4 ;j3e ;jlb ; ruleI' ;joe ;jod ;joe)

71 joa ;fpl ;jOb ;na ; (WCl' ; Wcz ; WC3 ; Wcs' 70, ITL defmition

/I. oo/Ja ;j3b ; oj6a ; O~b ;j6e ; rules' ;j4a ;j4b ;j3e ;/Jd ; ofo

rule4 ;j3e ;nb ; rulel' ;joe ;jod ;joe)

72 jaa ;fpl ;jOb ;jIa ; (WC]' ; WC2 ; WC3 ; WcS' 71, v introduction

/I. oo/Ja ;/Jb ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;j4b ;j3e ;/Jd ;

rule4 ;j3e ;jlb ; rulel' ;joc ;jOd ;jOe)

v faa ;fpl ;jOb ;jla ; (WCl' ; WC2 ; WC3 ; -'Wcs'

/I. ooj3a ;hb ; oj6a ;J4a ;14b ;he ;hd ; rule4 ;j3e ;jIb ;

rule], ;joe ;jod ;joe)

v joa ;fpl ;jOb ;jla ; (WCI' ; WC2 ; -,WC3

/I. ooj3a ;j3b ; Oj4e ;14d ;/Je ;j3d ; rule4 ;j3e ;jlb ;

rule)' ; jOe ;jod ;jOe)

v joa ;fpl ;jOb ;na ; (WCl'; -,WC2 /I. Ojlb; rule]' ;

JOe ;jOd ;jOe)

73 jaa ;fpl ;job ;j]a ; (WC]' /I. skip) ; «WC2 ; WC3 ; -,WCS) CP assumption

/I. (oj3a ;j3b ; oj6a ;14a ;j4b ;j3c ;j3d ; rule4 ;/Je» ;jlb ;

rule]' ; jOe ;jod ;joe

74 jaa ;fpl ;fab ;j1a ; (WCl' ; WC2 ; WC3 ; -,Wcs' 73, TwoChop-

/I. skip; oj3a ;j3b ; oj6a ;j4a ;j4b ;/Jc ;j3d ; rule4 ;j3e ; RuJeslmp3

jIb; rulel' ;jOe ;jOd ;jOe)

75 jaa ;fpl ;jOb ;jIa ; (WC]' ; WC2 ; WC3 ; -'WcS' 74, ITL defmition

/I. ooj3a ;j3b ; oj6a ;j4a ;14b ;J3e ;j3d ; rule4 ;j3e ;jlb ; ofo

rule)' ;joe ;jod ;joe)

301

76 /Oa ;1;,1 ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; WC5' 75, v introduction

A 00/3a ;/3b ; 0/6a; O/6b ;/6c ; rule5' ;/4a ;/4b ;/3c ;/3d ; . and comm. of v

rule4 ;/3e ;/lb ; rule)' ;/oc ;/Od ;/Oe)

v /Oa ;fpl ;/Ob ;/la; (WC)'; WC2 ; WC3 ; ",WC5'

A 00/3a ;/3b ; 0/6a ;/4a ;fsb ;/3c ;/3d ; rule4 ;/3e ;/lb ;

rulel' ;/Oc ;/Od ;/Oe)

v /Oa ;fpl ;/Ob ;/la ; (WCl' ; WC2 ; ",WC3

A Oo/3a ;/3b ; 0/4c ;fsd ;/3c ;/3d ; rule4 ;/3e ;/lb ;

rulel' ;/Oc ;/Od ;/Oe)

v /Oa ;/pl ;/Ob ;/la ; (WCI'; ..,WCZ A O/lb; rulel';

/oc ;/Od ;/Oe)

77 /Oa ;1;,1 :!ob ;/la ; (WCl' A skip) ; ((WC2 ; ",WC3) CP assumption

A (o/3a ;/3b ; ofsc ;/4d ;/3c ;/3d ; rule4 ;/3e)) ;/lb ;

rulel' ;/oc ;/Od ;/Oe

78 /Oa ;1;,1 ;/Ob ;/la ; (wc)' ; WC2 ; "'WC3 77, TwoChop-

A skip; 0/3a ;/3b ; 0/4c ;fsd ;/3c ;/3d ; rule4 ;/3e ; RulesImp3

/lb ; rulel' ;/Oc ;/Od ;/Oe)

79 /Oa ;fpl ;!ob ;/la ; (WCl' ; Wcz ; ",WC3 78, ITL defmition

A 00/3a ;/3b ; 0/4c ;/4d ;j3e ;/3d ; rule4 ;/3e ;/lb ; ofo

rulel' ;/Oe ;/Od ;/Oe)

80 /Oa ;1;,1 ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; WC5' 79, v introduction

A 00/3a ;/3b ; 0/6a ; Of6b ;/6e ; rules' ;/4a ;/4b ;/3e ;/3d ; and comm. of v

rule4 ;/3e ;/lb ; rule)' ;/Oe ;/Od ;/Oe)
v loa ;fpl ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; ",WC5'

A 00/3a :/3b ; 0/6a ;/4a :/4b ;/3e ;/3d ; rule4 ;/3e ;/lb ;

rule1' ;/Oc ;/Od ;/Oe)

v /Oa ;fpl ;/Ob ;/la; (WCl'; WC2 ; ",WC3

A 00/3a ;/3b ; 0/4e ;fsd ;/3e ;/3d ; rule4 ;/3e ;/lb ;

rule)' ;/Oe ;/Od ;/Oe)

v loa ;1;,1 :/Ob ;/la ; (WCl'; ",WC2 A O/lb ; rulel' ;

fOe ;/Od ;/Oe)

81 /Oa ;1;,1 ;/Ob ;Jia ; (WCI' A skip) ; (-,WCZ A empty) ;/lb ; CP assumption

rule1' ;/Oe ;/Od :/Oe

302

82 fOa ;fpl ;!ob ;/la ; (WC1'; ",WC2 1\ skip; empty ;/lb ; 81, TwoChop-

rule)' ; foe ;fOd ;fOe) Ruleslmp3

83 foa ;fpl ;fOb ;/la ; (WC1' ; "'WC2 1\ skip ;f1b ; rule1' ;foe ; 82, EmptyChop

fOd ;fOe)

84 fOa ;fpl ;!ob ;/la ; (WC]' ; ",WC2 A O/lb ; rule1' ;fOe ;fOd ; 83, ITL defmition

joe) of 0

85 fOa ;fpl ;!ob ;/la ; (WCl' ; WC2 ; WC3 ; WCS' 84, V introduction

A 00j3a ;j3b; Oj6a; Oj6b ;j6e; rule5' ;j4a ;j4b ;j3e ;j3d; and comm. ofv
rule4 ;f3e ;/lb ; rulel' ;joe ;jOd ;foe)

v joa ;fpl ;fOb ;f1a ; (WC)' ; WC2 ; WC3 ; "'Wcs'

1\ 00f3a ;j3b ; oj6a ;j4a ;i4b ;f3e ;f3d ; rule4 ;iJe ;f1b ;

rule]' ;foe ;fOd ;foe)

v foa ;fpz ;jOb ;jIa ; (WCl' ; WC2 ; ",WC3

1\ 00f3a ;j3b ; Oj4e ;i4d ;f3e ;iJd ; rule4 ;f3e ;j1b ;

rule]' ;joe ;jod ;joe)

v joa ;fpl ;jOb ;fIa ; (WCl' ; ",WC2 A O/lb; rule], ;

JOe ;jOd ;jOe)

86 jOa ;fpl ;fOb ;/la ; (WCl'; WC2 ; WC3 ; WC5' 85, v elimination

1\ 00f3a ;j3b ; oj6a; Oj6b ;f6e ; rule5' ;j4a ;j4b ;iJe ;iJd ;

rule4 ;j3e ;jjb ; rule1' ;joe ;jod ;joe)

v loa ;fpz ;jOb ;fla; (WCI'; WC2 ; WC3; ",WC5'

A OOiJa ;iJb ; Oj6a ;j4a ;j4b ;iJe ;iJd ; rule4 ;iJe ;fIb;

rule]' ;joc ;fOd ;joe)

v loa ;fpz ;jOb ;j1a ; (WC1' ; WC2 ; ",WC3

1\ OOiJa ;iJb ; oj4e ;j4d ;iJe ;j3d ; rule4 ;j3e ;jlb ; rule)' ;

JOe ;jOd ;jOe)

V loa ;fpl ;jOb ;jla ; (WeI' ; ",WC2

1\ O/Jb ; rule], ;joe ;jod ;joe)

303

87 jaa ;/Pl ;jOb ;/Ja ; (WCl' ; WC2 ; WC3 ; Wcs' 86, v introduction

88

89

" ooha ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;/4b ;j3e ;/Jd ;

rule4 ;j3e ;jlb ; rulel' ;joe ;jod ;joe)

v loa ;/Pl ;job ;jla ; (WCI' ; WC2 ; WC3 ; 'WCS'

" ooj3a ;j3b ; oj6a ;j4a ;/4b ;/Je ;j3d ; rule4 ;j3e ;jlb ;

rulel' ;jOe ;jOd ;jOe)

v loa ;/Pl ;job ;jla ; (WCl' ; WC2 ; ,WC3

" ooj3a ;/Jb ; oj4e ;/4d ;/Je ;j3d ; rule4 ;/Je ;jlb ; rulel' ;

fOe ;jOd ;jOe)

V joa ;/Pl ;jOb ;jla ; (WCl' ; ,WC2

" ojlb ; rule]' ;joe ;jod ;joe)

v loa ;/Pl ;jOb ;jla ; (,WCI' "foe ;jOd ;jOe)

joa ;/Pl ;jOb ;jla ; (oWCI' "fOe ;jOd ;jOe)

jaa ;/Pl ;job ;jla ; (WCl' ; WC2 ; WC3 ; Wcs'

" ooj3a ;j3b ; oj6a; oj6b ;j6e ; rules' ;j4a ;/4b ;j3e ;/Jd;

rule4 ;j3e ;jlb ; rulel' ;joe ;jOd ;joe)

v loa ;/Pl ;job ;jla ; (WCI' ; WC2 ; WC3 ; ,WcS'

" ooj3a ;j3b ; oj6a ;j4a ;/4b ;j3e ;j3d; rule4 ;j3e ;jlb ;

rulel' ;jOe ;jOd ;jOe)

v loa ;/Pl ;jOb ;jla ; (WCI' ; WC2 ; ""WC3

" ooj3a ;j3b ; oj4e ;j4d ;/Je ;j3d ; rule4 ;j3e ;jlb ; rulel' ;

fOe ;jOd ;joe)

V joa ;/Pl ;jOb ;jla ; (WCl' ; ,WC2

. " O/Jb ; rulel' ;joe ;jOd ;joe)

V joa ;/Pl ;job ;jla; (,WCI' "fOe ;jOd ;joe)

CP assumption

88, V introduction

and comm. of v

304

90 jDa ;fpl ; jab ;jla ; (WCI' ; WC2 ; WC3 ; Wcs'

A ooj3a ;j3b ; oj6a ; Oj6b ;j6c ; rules, ;j4a ;j4b ;j3e ;/Jd ;

rule4 ;j3e ;!Ib ; rule}' ;joc ;jOd ;joe)

v joa ;fpl ;jOb ;jla; (WCI'; WC2 ; WC3 ; "'Wcs'

A ooj3a ;/Jb ; oj6a ;j4a ;j4b ;j3c ;j3d ; rule4 ;j3e ;jlb ;

rule}' ;joe ;jod ;joe)

v joa ;fpl ;job ;jla ; (WC}'; WC2 ; "'WC3

ooj3a ;j3b ; oj4e ;j4d ;j3c ;j3d ; rule4 ;/Je ;!Ib ; rulel' ;joe ;

jOd ;joe)

v joa ;fpl ;job ;jla ; (WeI'; ",WC2 A Ojlb ; rulel' ;jOe ;jOd ;jOe)

v joa ;fpl ;jOb ;jla ; (-,WeI' A jOe ;jOd ;jOe)

91 joa ;jpl ;Iob ;jla; «WCI'; WC2 ; WC3 ; Wcs'

A OO/Ja ;/Jb ; oj6a ; OJ6b ;j6e ; rules' ;j4a ;j4b ;j3c ;j3d ;

rule4 ;/Je ;jlb ; rulel' ;joe ;jod ;joe)

v (WCI'; WC2 ; WC3 ; "'Wcs'

A ooj3a ;hb ; oj6a ;j4a ;j4b ;/Jc ;/Jd ; rule4 ;j3e ;jlb ;

rulel' ;jOe ;jOd ;jOe)

V (WeI' ; WC2 ; ",WC3

ooj3a ;j3b ; oj4e ;j4d ;j3e ;j3d ; rule4 ;/Je ;!Ib ; rule}' ;joe ;

jOd ;jae)

v (WCI'; ",WC2 A O!Ib; rulel' ;jOe ;jOd ;jOe)

v (-,WCI' Aloe ;jOd ;jOe))

89, v elimination

ITL (OrChopEqv)

With this transformation and based on the premisesjo, ruleI, ruleI', ruZe2, rule3,

rules, and rules' as extracted from the legacy code, the following disjunctive rule

structure is concluded:

jDa ;jpl ; jOb ;jla ; (

(WCI'; WC2 ; WC3 ; WCS'
A Ooj3a ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;j4b ;

/Je ;j3d ; rule4 ;/Je ;jlb ; ruleI' ;jOc ;jOd ;joe)

v (WCI' ; WC2 ; WC3 ; "'Wcs'
A OO/Ja ;j3b ; oj6a ;j4a ;j4b ;j3e ;j3d ; rule4 ;

j3e ;jlb ; rule}' ;joe ;jod ;joe)

305

v (WCl'; WC2; ""WC3
A 00/3a ;/3b ; O/4e ;/4d ;/3e ;/3d; rule4 ;

/3e ;/lb ; rulel' ;/Oe ;/Od ;/Oe)

V (WCl' ; ""WC2 A O/Jb ; ruler ;/Oe ;/Od ;/Oe)

v (""WCl' A/Oe ;/Od ;/Oe))

306

Appendix 0

Formal Transformation of Rules

Extracted from WSL Slices

In Section 8.2, various rules are extracted from a WSL program using the

FermaT Syntactic_Slice tranformation. In this appendix, these extracted rules are

transformed using the rule algebra presented in this research. In Section D.I, rulepc1o-2

is transformed. In Section D.2, rulepers-2 is transformed. In Section D.3, rulepersonal-cond

is transformed.

0.1 Transformation of rulepc7D-2

In Section 8.2, rulepcJo-2 is described as :

rulepcJo-2 == (rulepcJo-2a(true) A orulepcJo-2b) v rulepc10-2a(false)

where:

rulepcJO-2a(true) ~ «married = I A age ~ 65 A income> 16800) A ot)
rulepcJO-2a(false) ~ (,(married = I A age ~ 65 A income> 16800) A empty)
rulepcJo-2b ~ (t > 3740 A opc10 = t)

v (,(t > 3740) A opclO = 3740)
t ~ pclO - (income - 16800) /2

In the following transformation, rulepcJo-2 is transformed and simplified such that:

where:

rulepcJo-2 ::J

(married = 1 A age ~ 65 A income> 16800 At> 3740
A oopc10 = t)

v (married = 1 A age ~ 65 A income> 16800 A t:5 3740
A oopclO = 3740)

v «married * 1 v age < 65 v income:S 16800) A empty)

t ~ pcl0 - (income - 16800) / 2

Alternatively, ru[epc1o-2 can be described as:

307

1

2

3

4

5

6

7

rulepc10-2 :;)

(married = 1/\ age;:::: 65 /\ income> 16800/\ t > 3740
/\ oopclO = t)

v (married = 1/\ age;:::: 65 /\ income> 16800/\ t::; 3740

where:

/\ oopc10 = 3740)
v (married :#: 1/\ empty)
v (age < 65 /\ empty)
v (income ::; 16800/\ empty)

t ~ pcl0 - (income - 16800) / 2

rulepc1o-2 == (rulepc10-2a{true) /\ orulepc1o-2b) v rulepc10-2a(false)

where:

rulepc10-2a{true) ~

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot)

rulepcIO-2a(false) ~

(,(married = 1/\ age;:::: 65/\ income> 16800) /\ empty)

rulepc1o-2b ~

(t> 3740/\ opclO = t) v (,(t > 3740) /\ opclO = 3740)

t ~ Ec10 - (income - 16800) /2

o(t> 3740) :;) (t> 3740)

o(t::; 3740) :;) (t ::; 3740)

(ruleec1o-2a(truel/\ oruleec1o-2b) == (ruleecJO-2a(truel/\ oruleecJO-2b)

(rulepcJo-2a{true) /\ orulepclo-2b) ==

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot)

/\ o«t > 3740/\ opc10 = t)

v (,(t > 3740) /\ opclO = 3740»

(rulepcIO-2a{true) 1\ orulepclo-2b) ==

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot)

1\ o«(t> 3740) /\ opclO = t)
v «t::; 3740) /\ opc10 = 3740»

(rulepcIO-2a{frue) /\ orulepc1o-2b) ==

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot)

/\ (o«t > 3740) 1\ opclO = t)
v o«t < 3740) /\ opclO = 3740»

premise

I2remise

I2remise

tautology

1,4, equiv. subst.

5, algebraic equiv.

6, NextOrDistEqv

308

8 (rulepcJo-2a(true) /\ orulepc10_2b) == 7, NextAnd-

«married = 1/\ age ~ 65 /\ income> 16800) /\ ot) DistEqv

/\ «o(t > 3740) /\ oopclO =t)

v (o(t ~ 3740) /\ oopc10 = 3740»

9 (rulepc10-2a(true) /\ orulepc1o_2b) == 8, dist. of /\ over v

(married = 1/\ age ~ 65 /\ income> 16800/\ ot

/\ oCt > 3740) /\ oopc10 = t)
v (married = 1/\ age ~ 65 /\ income> 16800/\ ot

/\ oCt ~ 3740) /\ oopclO = 3740)

10 rulepc10-2aifalse) == 1, reiteration

-,(married = 1 /\ age ~ 65 /\ income> 16800) /\ empty

11 rulepc10-2aifalse) == 10, prop. logic

(-,(married = 1) v -,(age ~ 65) v -,(income > 16800» /\

empty

12 rulepc10-2aifalse) == 11, algebraic

(married :f:. 1 v age < 65 v income < 16800) /\ empty eguiv.

13 rulepcJo_2 == (ruleec1o-2a(true) /\ oruleeclo-2b) v ruleec10-2alLalse) 1, reiteration

14 rulepc1o-2 == 9, 12, 13, equiv.

(married = 1/\ age ~ 65 /\ income> 16800/\ ot subst.

/\ o(t> 3740) /\ oopc10 = t)
v (married = 1/\ age ~ 65 /\ income> 16800/\ ot

/\ oCt ~ 3740) /\ oopc10 = 3740)

v «married :f:. 1 v age < 65 v income < 16800) /\ empty)

15 ruleec1o-2 CP assumption

16 (married = 1/\ age ~ 65/\ income> 16800/\ ot 14, 15, equiv.

/\ o(t> 3740) /\ oopc10 = t) subst.

v (married = 1/\ age ~ 65 /\ income> 16800/\ ot

/\ oCt ~ 3740) /\ o opc 10 = 3740)

v «married:f:. 1 v age < 65 v income < 16800) /\ empty)

17 married = 1/\ age ~ 65/\ income> 16800/\ ot CP assumption

/\ oCt > 3740) /\ oopclO = t
18 o(t> 3740) 17, /\ elimination

19 (t> 3740) 2,18, MP

20 married = 1/\ age ~ 65/\ income> 16800 17, /\ elimination

/\ oopclO = t

309

21 married = 1 A age ~ 65 A income> 16800 19,20,A

At> 3740 A oopc1O = t introduction

22 (married = 1 A age ~ 65 A income> 16800 21, v introduction

At> 3740 A oopc1O = t)

v (married = 1 A age ~ 65 A income> 16800

A t ~ 3740 A oopc10 = 3740)

v «married ¢ 1 v age < 65 v income ~ 16800)

A empty)

23 married = 1 A age ~ 65 A income> 16800 A ot CP assumption

A oCt < 3740) A oOEcl0 = 3740

24 oCt ~ 3740) 23, A elimination

25 t~ 3740 3, 24,MP

26 married = 1 A age ~ 65 A income> 16800 23, A elimination

A oopc10 = 3740

27 married = 1 A age ~ 65 A income> 16800 25,26, A

A t ~ 3740 A oopc1O = 3740 introduction

28 (married = 1 A age ~ 65 A income> 16800 27, v introduction

At> 3740 A oopc10 = t)
v (married = 1 A age ~ 65 A income> 16800

A t ~ 3740 A oopc1O = 3740)

v «married ¢ 1 v age < 65 v income ~ 16800)

A empty)

29 «married ¢ 1 v age < 65 v income ~ 16800) A empty) CP assumption

30 (married = 1 A age ~ 65 A income> 16800 29, v introduction

At> 3740 A oopc10 = t)
v (married = 1 A age ~ 65 A income> 16800

A t ~ 3740 A oopc10 = 3740)

v «married ¢ 1 v age < 65 v income ~ 16800)

A empty)

31 (married = 1 A age ~ 65 A income> 16800 17-22,23-28,29-

At> 3740 A oopclO = t) 30, v elimination

v (married = 1 A age, ~ 65 A income> 16800

A t ~ 3740 A oopc1O = 3740)

v «married ¢ 1 v age < 65 v income ~ 16800)

A empty)

310

32 rulepcJo-2 ~

(married = 1 /\ age ~ 65 /\ income> 16800

/\ t > 3740 /\ oopclO = t)
v (married = 1/\ age ~ 65 /\ income> 16800

/\ t:S 3740 /\ oopc10 = 3740)

v «married * 1 v age < 65 v income:s 16800)

/\ empty)

33 rulepcJo-2 ~

(married = 1/\ age ~ 65 /\ income> 16800

/\ t > 3740 /\ oopclO = t)
v (married = 1 /\ age ~ 65 /\ income> 16800

/\ t:S 3740 /\ oopclO = 3740)

v (married * 1/\ empty)

v (age < 65/\ empty)

v (income :s 16800 /\ empty)

0.2 Transformation of rulepers-2

In Section 8.2, rulepers-2 is described as :

15-31, ~

introduction

32, dist. of /\

over v

rulepers-2 == (rulepers-2a(true) /\ orulepers-2b) v rulepers-2a(false) (8.2-39)

where:

rulepers-2a(true) ~ «age ~ 65 /\ income> 16800) /\ ot)
ruZepers-2a(false) ~ (-,(age ~ 65 /\ income> 16800) /\ empty)
ruZepers-2b ~ (t> 4335 /\ opersonal = t)

v (-,(t > 4335) /\ opersonal = 4335)
t ~ personal- (income - 16800) / 2

In the following transformation, rulepers-2 is transformed and simplified such that:

where:

rulepers-2 ~

(age ~ 65/\ income> 16800/\ ot > 4335/\ oopersonal = t)
v (age ~ 65/\ income> 16800/\ ot:s 4335 /\ oopersonal = 4335)
v (age < 65 /\ empty)
v (income:s 16800/\ empty)

311

t ~ personal- (income - 16800) 12

1 rulepers-2 premise

where:

rulepers-2 ~ (rulepers-2a(true) /\ orulepers_2b)

v rulepers-2afjalse)

rulepers-2a(lrue) ~ «age ~ 65 /\ income> 16800) /\ ot)

rulepers-2aifalse) ~ (-,(age ~ 65/\ income> 16800)

/\ empty)

rulepers-2b ~ (t > 4335 /\ opersonal = t)

v (-,(t > 4335) /\ opersonal = 4335)

t ~ personal - (income - 16800) I 2

2 WI ~ (age ~ 65/\ income> 16800) premise (defmitions)

0/1 ~ ot

W2 ~ (t > 4335)

.-,W2 ~ (t ~ 4335)

0/2 ~ (opersonal = t)

Oj3 ~ (opersonal = 4335)

3 rulepers-2a(lrue) ~ WI /\ Ojl 1, 2, def. subst.

4 rulepers-2aifalse) ~ -,Wl /\ empty 1,2, def. subst.

5 rulepers-2b ~ (wz /\ 0/2) V (-'W2 /\ oj3) 1,2, def. subst.

6 rulepers-2 1, reiteration

7 (rulepers-Za(lrue) A orulepers-2b) v rulepers-2aifalse) 1,6, def. subst.

8 rulepers-2a(true) /\ orulepers_2b CP assumption

9 (WI/\ OjI) /\ 0«W2 /\ oj2) V (-,W2 /\ Oj3)) 3, 5, 8, def. subst.

10 (WI /\ OjI) /\ (0(W2 /\ o/z) v o(-,W2 /\ oj3)) 9, NextOrDistEqv

11 «WI /\ 0/1) /\ 0(W2 /\ Oj2)) 10, comm. of /\ over v

v «WI /\ ojI) A o(-,W2 /\ 0/3))

12 (wJ /\ OjI) /\ 0(W2 /\ 0/2) CP assumption

13 Wl /\ OjI /\ OW2 /\ ooh 12, NextAndDistEqv

14 WI /\ OWz /\ 00/2 13, /\ elimination

15 (Wl/\ OW2 /\ 00/2) 14, v introduction

v (WI /\ 0-,W2 /\ 00/3)

16 (WI/\ oJi) /\ 0(-,W2 /\ 0/3) CP assumption

17 WI /\ oJi /\ 0-,W2 /\ oof3 16, NextAndDistEqv

18 WI /\ 0""W2 /\ 00/3 17, /\ elimination

312

19 (WI A. OW2 A. 00!2) 18, v introduction

v (WI A. O,W2 A 00/3)

20 (WI A OW2 A 00!2) 12-15, 16-19,

v (WI A. o,W2 A. 00!3) v elimination

21 (WI A. OW2 A. 00!2) 20, v introduction

v (WI A O,W2 A 00!3)

v (,WI A. empty)

22 rulepers-2a(false) CP assumption

23 ,WI A empty 4, 22, def. subst.

24 (WI A OW2 A. 00!2) 23, v introduction

v (WI A O,W2 A. 00!3)

v (,WI A empty)

25 (WI A. OW2 A 00!2) 8-21, 22-24,

v (WI A O,W2 A 00!3) v elimination

v (,WI A empty)

26 (WI A OW2 A 00!2) 2, 25, def. sub st.

v (WI A O,W2 A 00/3)

v (,(age> 65 A income> 16800) A empty)

27 (WI A. OW2 A. 00!2) 26, prop. logic

v (WI A. O,W2 A. 00!3)

v «,(age 2: 65) v ,(income> 16800» A empty)

28 (WI A. OW2 A 00!2) 27, prop. logic

v (WI A. O,W2 A. 00!3)

v «,(age 2: 65) A. empty))

v (,(income> 16800) A empty))

29 (Wl A OW2 A 00!2) 28, algebraic equiv.

v (Wl A. O,W2 A. 00!3)

v (age < 65 A empty)

v (income < 16800 A empty)

30 rulepers-2 CP assumption

31 (Wl A OW2 A 00!2) 29, reiteration

v (Wl A O,W2 A 00!3)

v (age < 65 A empty)

v (income < 16800 A empty)

313

32 rulepers-2 ~ 30-31, ~ introduction

(wJ 1\ OW2 1\ 00/2)

V (wJ 1\ 0-,W2 1\ 0013)

v (age < 651\ empty)

v (income ~ 168001\ empty)

33 rulepers-2 ~ 2, 28, def. subst.

«age ~ 65 1\ income> 16800) 1\ oCt > 4335)

1\ o(opersonal = t))
v «age ~ 65 1\ income> 16800) 1\ o-,(t > 4335)

1\ o(opersonal = 4335»

v (age < 65 1\ empty)

v (income ~ 16800 1\ empty)

34 rulepers-2 ~ 33, algebraic equiv.

«age ~ 65 1\ income> 16800) 1\ oCt > 4335)

1\ o(opersonal = t))
v «age ~ 65 1\ income> 16800) 1\ oCt ~ 4335)

1\ o(opersonal = 4335))

v (age < 651\ empty)

v (income ~ 16800 1\ empty)

0.3 Transformation of rulepersonal-cond

In Section 8.2, rulepersonal-cond is described as :

rule personal-cond ~

(age ~ 751\ opersonal = 5980) ;
(income> 16800 1\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + 1380)

v (age ~ 75 1\ opersonal = 5980) ;
(income> 16800 1\ ot $ 4335 1\ oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age ~ 75 1\ opersonal = 5980) ;
(income ~ 16800 1\ empty) ;
(opersonal = personal + 1380)

v (age < 751\ oopersonal = 5720) ;
(income> 168001\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + 1380)

314

v (age < 751\ oopersonal = 5720) ;
(income> 168001\ ot S 4335 1\ oopersonal = 4335) ;
(opersonal = personal + 1380)

v (age < 751\ oopersonal = 5720) ;
(income S 168001\ empty) ;
(opersonal = personal + 1380)

In the following transformation, rulepersonal-cond is transformed and simplified such that:

1 rulepersonal-cond :::::> premise

(age ~ 751\ opersonal = 5980) ;

(income> 168001\ ot > 4335 1\ oopersonal = t) ;
(opersonal = personal + 1380)

v (age ~ 75 1\ opersonal = 5980) ;

(income> 168001\ ot S 4335 1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

v (age ~ 75 1\ opersonal = 5980) ;

(income S 168001\ empty) ;

(opersonal = personal + 1380)

v (age < 75 1\ oopersonal = 5720) ;

(income> 168001\ ot > 4335 1\ oopersonal = t) ;
(opersonal = personal + 1380)

v (age < 75 1\ oopersonal = 5720) ;

(income> 168001\ ot S 4335 1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

v (age < 75 1\ oopersonal = 5720) ;

(income S 168001\ empty) ;

(opersonal = personal + 1380)

where:

t ~ personal- (income - 16800) / 2

2 o(income < 20090):::::> (income < 20090) premise

3 o(income ~ 20090) :::::> (income ~ 20090) premise

4 o(income < 19570) :::::> (income < 19570) premise

5 o(income ~ 19570):::::> (income> 19570) premise

315

6 (age ~ 751\ opersonal = 5980) ; CP assumption

(income> 168001\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + l380)

v (age ~ 75 1\ opersonal = 5980) ;

(income> 168001\ ot :::; 4335 1\ oopersonal = 4335) ;

(opersonal = personal + l380)

v (age ~ 751\ opersonal = 5980) ;

(income:::; 16800 1\ empty) ;

(opersonal = personal + 1380)

v (age < 75 1\ oopersonal = 5720) ;

(income> 168001\ ot > 43351\ oopersonal = t) ;
(opersonal = personal + l380)

v (age < 75 1\ oopersonal = 5720) ;

(income> 16800 1\ ot :::; 4335 1\ oopersonal = 4335) ;

(opersonal = personal + l380)

v (age < 75 1\ oopersonal = 5720) ;

(income :::; 16800 1\ empty) ;

(opersonal = personal + l380)

7 (age ~ 75 1\ opersonal = 5980) ; CP assumption

(income> 168001\ oCt > 4335) 1\ oopersonal = t) ; (disjunct #1)

(opersonal = personal + 1380)

8 t > 4335 == income < 20090 I, 7, semantics of

ITL

9 oCt > 4335) == o(income < 20090) 8,ITL

(NextEqvN ext)

10 (age ~ 75 1\ opersonal = 5980) ; 7,9, equiv. subst.

(income> 168001\ o(income < 20090)

1\ oopersonal = t) ;

(opersonal = personal + l380)

11 income> 168001\ o(income < 20090) CP assumption

1\ oopersonal = t

12 o(income < 20090) II, 1\ elimination

l3 income < 20090 2,12,MP

14 income> 168001\ oopersonal = t II, 1\ elimination

15 income> 16800 1\ income < 20090 1\ introduction

1\ oopersonal = t

316

16 (income> 16800 A o(income < 20090) 11-15,

A oopersonal = t) :::> :::> introduction

(income> 16800 A income < 20090

A oopersonal = t)
17 (age ~ 75 A opersonal = 5980) ; 10,16,

(income> 16800 A income < 20090 ChopSwaplmp3

A oopersonal = t) ;
(opersonal = personal + 1380)

18 (age ~ 75 A opersonal = 5980) ; CP assumption

(income> 16800 A income < 20090

A oopersonal = t)
19 age ~ 75 ; (income> 16800 A income < 20090) 18,

A opersonal = 5980; oopersonal = t TwoChopRuleslmp

20 (age ~ 75 A opersonal = 5980) ; 18-19,

(income> 16800 A income < 20090 :::> introduction

A oopersonal = t) ;
(opersonal = personal + 1380)

:::> age ~ 75; (income> 16800 A income < 20090)

A opersonal = 5980 ; oopersonal = t
21 (age ~ 75 ; (income> 16800 A income < 20090) 17,20,

A opersonal = 5980 ; oopersonal = t) ; ChopSwaplmp2

(opersonal = personal + 1380)

22 age ~ 75; (income> 16800 A income < 20090) ; 21, AndChoplmp

(opersonal = personal + 1380)

A opersonal = 5980 ; oopersonal = t ;
(opersonal = personal + 1380)

23 age ~ 75; (income> 16800 A income < 20090) ; 22, A elimination

(opersonal = personal + 1380)

24 age ~ 75; (income> 16800 A income < 20090) 23, ITL (semantics

of chop)

25 opersonal = 5980; oopersonal = t ; 22, A elimination

(opersonal = Eersonal + 1380)

26 fin (personal = 15760 - income/2) 25, ITL (semantics

offin)

27 age ~ 75; (income> 16800 A income < 20090) 24,26,

A fin(personal = 15760 - income/2) A introduction

317

28 (age ~ 75; (income> 168001\ income < 20090) 27, v introduction

1\ fin (personal = 15760 - incomel2))

v {age ~ 75 ; (income> 16800 1\ income ~ 20090)

1\ fin(personal = 5715))

v (age ~ 75; income :516800

1\ fin(personal = 7360))

v {age < 75; (income> 168001\ income < 19570)

1\ fin (personal = 15500 - income/2))

v (age < 75; (income> 168001\ income ~ 19570)

1\ fin (personal = 5715)

v (age < 75 ; income :5 16800

1\ fin (personal = 7100))

29 (age ~ 75 1\ opersonal = 5980) ; CP assumption

(income> 16800 1\ o(t:5 4335) (disjunct #2)

1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

30 (t:5 4335) == (income ~ 20090) 1,29, semantics of

ITL

31 oCt :5 4335) == o(income ~ 20090) 30,ITL

(NextEqvNext)

32 (age ~ 75 1\ opersonal = 5980) ; 29, 32, equiv. subst

(income> 168001\ o(income ~ 20090)

1\ oopersonal = 4335) ;

(oEersonal = Eersonal + 1380)

33 income> 168001\ o{income ~ 20090) CP assumption

1\ oOEersonal = 4335

34 o(income ~ 20090) 33,1\ elimination

35 income ~ 20090 3,34,MP

36 income> 168001\ oOEersonal = 4335 1\ elimination

37 income> 16800 1\ income ~ 20090 1\ introduction

1\ oopersonal = 4335

38 (income> 168001\ o(income ~ 20090) 33-37,

1\ oopersonal = 4335) ::J ::J introduction

(income> 168001\ income;::: 20090

1\ oopersonal = 4335)

318

39 (age 2:: 751\ opersonal = 5980) ; 32,38,

(income> 168001\ income 2:: 20090 ChopSwaplmp3

1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

40 (age 2:: 75 1\ opersonal = 5980) ; CP assumption

(income> 168001\ income 2:: 20090

1\ opersonal = 4335)

41 age 2:: 75 ; (income> 168001\ income 2:: 20090) 40,

1\ opersonal = 5980 ; opersonal = 4335 TwoChopRuleslmp

42 (age 2:: 75 1\ opersonal = 5980) ; 41, ::J introduction

(income> 168001\ income 2:: 20090

1\ opersonal = 4335) ::J

(age 2:: 75 ; (income> 168001\ income 2:: 20090)

1\ opersonal = 5980 ; opersonal = 4335)

43 (age 2:: 75; (income> 168001\ income 2:: 20090) 42, ChopSwaplmp2

1\ opersonal = 5980 ; opersonal = 4335) ;

(opersonal = personal + 1380)

44 age 2:: 75 ; (income> 168001\ income 2:: 20090) ; 43, AndChoplmp

(opersonal = personal + 1380)

1\ opersonal = 5980 ; opersonal = 4335 ;

(opersonal = personal + 1380)

45 age 2:: 75 ; (income> 168001\ income 2:: 20090) ; 44, 1\ elimination

(opersonal = eersonal + 1380)

46 age 2:: 75; (income> 168001\ income 2:: 20090) 45, ITL (semantics

of chop)

47 opersonal = 5980 ; opersonal = 4335 ; 46, 1\ elimination

(oeersonal = eersonal + 1380)

48 fin (personal = 5715) 47, ITL (semantics

offin)

49 age 2:: 75; (income> 168001\ income 2:: 20090) 46,48,

1\ fin(personal = 5715) 1\ introduction

319

50 (age ~ 75 ; (income> 168001\ income < 20090) 49, v introduction

1\ fin(personal = 15760 - incomel2»

v (age ~ 75; (income> 168001\ income ~ 20090)

1\ fin (personal = 5715»

v (age ~ 75; income :516800

1\ fin (personal = 7360»

v (age < 75; (income> 168001\ income < 19570)

1\ fin(personal = 15500 - income/2»

v (age < 75; (income> 168001\ income ~ 19570)

1\ fin(personal = 5715»

v (age < 75 ; income :5 16800

1\ fin(personal = 7100»

51 (age ~ 75 1\ opersonal = 5980) ; CP assumption

(income:5 16800 1\ empty) ; (disjunct #3)

(opersonal = :eersonal + 1380)

52 (age ~ 75 1\ opersonal = 5980) ; CP assumption

(income ~ 168001\ empty)

53 age ~ 75; income ~ 16800 52,

1\ opersonal = 5980 ; empty TwoChopRulesImp

54 age ~ 75; income:5 168001\ opersonal = 5980 53,ITL

(ChopEmpty)

55 (age ~ 75 1\ opersonal = 5980) ; 51-54,

(income:5 168001\ empty) ~ introduction

::> age ~ 75; income :516800 1\ o:eersonal = 5980

56 (age ~ 75; income:5 168001\ opersonal = 5980) ; 51,55,

(o:eersonal = :eersonal + 1380) ChopSwapImp2

57 age ~ 75; income:5 16800 ; 56, AndChopImp

(opersonal = personal + 1380)

1\ opersonal = 5980 ;

(opersonal = personal + 1380)

58 age ~ 75; income:5 16800 ; 57, 1\ elimination

(opersonal = personal + 1380)

59 age ~ 75; income:5 16800 58, ITL (semantics

of chop)

60 opersonal = 5980 ; 57, 1\ elimination

(opersonal = personal + 1380)

320

61 fin (personal = 7360) 60, ITL (semantics

offin)

62 age;:::: 75; income:S 16800 61, A introduction

A fin(personal = 7360)

63 (age;:::: 75 ; (income> 16800 A income < 20090) 62, v introduction

A fin(personal = 15760 - income/2»
v (age;:::: 75 ; (income> 16800 A income;:::: 20090)

A fin (personal = 5715»

v (age;:::: 75 ; income:s 16800

A fin (personal = 7360»

v (age < 75; (income> 16800 A income < 19570)

A fin(personal = 15500 - incorne/2»
v (age < 75; (income> 16800 A income;:::: 19570)

A fin (personal = 5715))

v (age < 75; income:s 16800

A fin (personal = 7100»

64 (age < 75 A oopersonal = 5720) ; CP assumption

(income> 16800 A oCt > 4335) A oopersonal = t) ; (disjunct #4)

(opersonal = personal + 1380)

65 (t > 4335) == (income < 19570) 1, 64, semantics of

ITL

66 o(t> 4335) == o(income < 19570) 65,ITL

(NextEqvNext)

67 (age < 75 A oopersonal = 5720) ; 64,67, equiv. subst

(income> 16800 A o(income < 19570)

A oopersonal = t) ;
(opersonal = personal + 1380)

68 income> 16800 A o(income < 19570) CP assumption

A oOEersonal = t
69 o(income < 19570) 68, A elimination

70 income < 19570 4, 69,MP

71 income> 16800 A oopersonal = t 68, A elimination

72 income> 16800 A income < 19570 70,72,

A oopersonal = t A introduction

321

73 (income> 16800" o(income < 19570) 68-72,

" oopersonal = t) ::) ::> introduction

(income> 16800" income < 19570

" oopersonal = t)
74 (age < 75" oopersonal = 5720) ; 67,73,

(income> 16800" income < 19570 ChopSwaplmp3

" oopersonal = t) ;
(opersonal = personal + 1380)

75 (age < 75 " oopersonal = 5720) ; CP assumption

(income> 16800" income < 19570

" oOEersonal = t)
76 age < 75; (income> 16800" income < 19570) 75,

" oopersonal = 5720; oopersonal = t TwoChopRuleslmp

77 (age < 75 " oopersonal = 5720) ; 75-77,

(income> 16800" income < 19570 ::) introduction

" oopersonal = t) ::)
age < 75 ; (income> 16800" income < 19570)

" oOEersonal = 5720; oOEersonal = t
78 (age < 75 ; (income> 16800" income < 19570) 74,77,

" oopersonal = 5720 ; oopersonal = t) ; ChopSwaplmp2

(oEersonal = Eersonal + 1380)

79 age < 75 ; (income> 16800" income < 19570) ; 78, AndChoplmp

(opersonal = personal + 1380)

" oopersonal = 5720; oopersonal = t ;
(oEersonal = personal + 1380)

80 age < 75 ; (income> 16800" income < 19570) ; 79, " elimination

(0Eersonal = Eersonal + 1380)

81 age < 75 ; (income> 16800" income < 19570) 80, ITL (semantics

. of chop)

82 oopersonal = 5720; oopersonal = t ; 79, "elimination

(oEersonal = personal + 1380)

83 fin(personal = 15500 - income/2) 82, ITL (semantics

offin)

84 age < 75; (income> 16800" income < 19570) 81,83,

" fin (personal = 15500 - income/2) " introduction

322

85 (age ~ 75 ; (income> 168001\ income < 20090) 84, v introduction

1\ fin (personal = 15760 - income/2»

v (age ~ 75 ; (income> 168001\ income ~ 20090)

1\ fin (personal = 5715»

v (age ~ 75; income::; 16800

1\ fin (personal = 7360»

v (age < 75 ; (income> 168001\ income < 19570)

1\ fin(personal = 15500 - income/2»

v (age < 75; (income> 168001\ income ~ 19570)

1\ fin(personal = 5715»

v (age < 75 ; income::; 16800

1\ fin(personal = 7100»

86 (age < 75 1\ oopersonal = 5720) ; CP assumption

(income> 168001\ o(t::; 4335) (disjunct #5)

1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

87 (t::; 4335) == (income ~ 19570) 1, 86, semantics of

ITL

88 oCt ::; 4335) == o(income ~ 19570) 87,ITL

(NextEqvNext)

89 (age < 751\ oopersonal = 5720) ; 86,88, equiv. subst

(income> 168001\ o(income ~ 19570)

1\ oopersonal = 4335) ;

(opersonal = personal + 1380)

90 income> 168001\ o(income ~ 19570) CP assumption

1\ oopersonal = 4335

91 o(income ~ 19570) 90, 1\ elimination

92 income ~ 19570 5,91, MP

93 income> 168001\ oopersonal = 4335 90, 1\ elimination

94 income> 168001\ income ~ 19570 91,93,

1\ oO)2ersonal = 4335 1\ introduction

95 (income> 168001\ o(income ~ 19570) 90-94,

1\ oopersonal = 4335) ::J ::J introduction

(income> 168001\ income ~ 19570

1\ oopersonal = 4335)

323

96 (age < 75 A oopersonal = 5720) ; 89,95,
(income> 16800 A income;:::: 19570 ChopSwaplmp3

A oopersonal = 4335) ;

(opersonal = Eersonal + 1380)

97 (age < 75 A oopersonal = 5720) ; CP assumption
(income> 16800 A income;:::: 19570

A oopersonal = 4335)

98 age < 75; (income> 16800 A income;:::: 19570) 97,
A oopersonal = 5720; oopersonal = 4335 TwoChopRuleslmp

99 (age < 75 A oopersonal = 5720) ; 97-98,
(income> 16800 A income;:::: 19570 :J introduction

A oopersonal = 4335) :J

age < 75 ; (income> 16800 A income;:::: 19570)

A oopersonal = 5720; oopersonal = 4335

100 (age < 75; (income> 16800 A income;:::: 19570) 96,99,

A oopersonal = 5720; opersonal = 4335) ; ChopSwaplmp2

(opersonal = personal + 1380)

101 age < 75; (income> 16800 A income;:::: 19570) ; 100, AndChoplmp

(opersonal = personal + 1380)

A oopersonal = 5720 ; opersonal = 4335 ;

(opersonal = Eersonal + 1380)

102 age < 75; (income> 16800 A income;:::: 19570) ; 10 1, A elimination

(oEersonal = personal + 1380)

103 age < 75 ; (income> 16800 A income;:::: 19570) 102, ITL (semantics

of chop)

104 oopersonal = 5720 ; opersonal = 4335 ; 10 1, A elimination

(oEersonal = Eersonal + 1380)

105 fin(personal = 5715) 104, ITL (semantics

offin)

106 age < 75 ; (income> 16800 A income;:::: 19570) 103,105,

A fin (personal = 5715) A introduction

324

107 (age 2: 75; (income> 16800/\ income < 20090) 106, v introduction

/\ fin (personal = 15760 - incomel2»

v (age 2: 75 ; (income> 16800/\ income 2: 20090)

/\ fin(personal = 5715»

v (age 2: 75; income ~ 16800

/\ fin (personal = 7360))

v (age < 75 ; (income> 16800/\ income < 19570)

/\ fin(personal = 15500 - income/2))

v (age < 75; (income> 16800/\ income 2: 19570)

/\ fin(personal = 5715»

v (age < 75; income ~ 16800

/\ fin(personal = 7100»

108 (age < 75 /\ oopersonal = 5720) ; CP assumption

(income ~ 16800/\ empty) ; (disjunct #6)

(opersonal = personal + 1380)

109 (age < 75 /\ oopersonal = 5720) ; CP assumption

(income ~ 16800/\ empty)

110 age < 75; income ~ 16800 109,

/\ oopersonal = 5720; empty TwoChopRuleslmp

111 age < 75; income ~ 16800/\ oopersonal = 5720 11O,ITL

(ChopEmpty)

112 «age < 75 /\ oopersonal = 5720) ; 109-111,

(income ~ 16800/\ empty» ~ ~ introduction

(age < 75 ; income ~ 16800/\ oOEersonal = 5720)

113 (age < 75 ; income ~ 16800/\ oopersonal = 5720) ; 108,112,

(opersonal = personal + 1380) ChopSwaplmp2

114 age < 75 ; income ~ 16800 ; 113, AndChoplmp

(opersonal = personal + 1380)

/\ oopersonal = 5720 ;

(opersonal = personal + 1380)

115 age < 75; income ~ 16800 ; 114, /\ elimination

(opersonal = personal + 1380)

116 age < 75 ; income ~ 16800 115, ITL (semantics

of chop)

117 oopersonal = 5720 ; (opersonal = personal + 1380) 114, /\ elimination

325

118

119

120

fin(personal = 7100)

age < 75 ; income :5 16800

A fin(personal = 7100)

(age 2: 75 ; (income> 16800 A income < 20090)

A fin(personal = 15760 - income/2))

v (age 2: 75; (income> 16800 A income 2: 20090)

A fin(personal = 5715))

v (age 2: 75 ; income:5 16800

A fin (personal = 7360))

v (age < 75; (income> 16800 A income < 19570)

A fin (personal = 15500 - income/2))

v (age < 75; (income> 16800 A income;::: 19570)

A fin(personal = 5715))

v (age < 75 ; income :5 16800

A fin (personal = 7100))

121 (age;::: 75; (income> 16800 A income < 20090)

A fin(personal = 15760 - income/2))

v (age 2: 75; (income> 16800 A income;::: 20090)

A fin(personal = 5715))

v (age 2: 75; income:5 16800

A fin (personal = 7360))

v (age < 75; (income> 16800 A income < 19570)

A fin (personal = 15500 - income/2))

v (age < 75; (income> 16800 A income;::: 19570)

A fin(personal = 5715))

v (age < 75; income::; 16800

A fin (personal = 7100))

117, ITL (semantics

of fin)

116,118,

A introduction

119, v introduction

7-28,29-50,51-63,

64-85,86-107,

108-120,

v elimination

326

122 (age ~ 75 A opersonal = 5980) ;

(income> 16800 A ot > 4335 A oopersonal = t) ;
(opersonal = personal + 1380)

v (age ~ 75 A opersonal = 5980) ;

(income> 16800 A ot:::; 4335 A oopersonal = 4335) ;

(opersonal = personal + 1380)

v (age ~ 75 A opersonal = 5980) ;

(income:::; 16800 A empty) ;

(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income> 16800 A ot > 4335 A oopersonal = t) ;
(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income> 16800 A ot :::; 4335 A oopersonal = 4335) ;

(opersonal = personal + 1380)

v (age < 75 A oopersonal = 5720) ;

(income:::; 16800 A empty) ;

(opersonal = personal + 1380)

::> (age ~ 75 ; (income> 16800 A income < 20090)

A fin (personal = 15760 - income/2»

v (age ~ 75 ; (income> 16800 A income ~ 20090)

A fin (personal = 5715»

v (age ~ 75; income:::; 16800

A fin (personal = 7360»

v (age < 75; (income> 16800 A income < 19570)

A fin (personal = 15500 - income/2»

v (age < 75; (income> 16800 A income ~ 19570)

A fin(personal = 5715»

v (age < 75 ; income:::; 16800

A fin (personal = 7100»

6-121,

::> introduction

327

123 rulepersonal-cond::>

(age ~ 75; (income> 16800" income < 20090)

" fin (personal = 15760 - incomel2»

v (age ~ 75 ; (income> 16800 " income ~ 20090)

" fin (personal = 5715»

v (age ~ 75 ; income =516800

" fin(personal = 7360))

v (age < 75; (income> 16800" income < 19570)

"fin(personal = 15500 - income/2»

v (age < 75; (income> 16800" income~ 19570)

" fin(personal = 5715»

v (age < 75 ; income =5 16800

" fin (personal = 7100»

1, 122, prop. logic

328

Appendix E

Formal Transformation of Rules Created

to Refine a Specification

In Section 9.1, the following rules are developed to refme the description of the

state sequence gecpin. (The state sequence gecpin was extracted from a concrete

specification describing the operation of an automated teller machine in Section 7.2.)

the following rules and rule structures have been developed as part of the refmement of

geCpin:

rulepin_entry ~ «(,attempClimit /\ ,valid~in)
/\ oprocess_pin) ; rulep~entry»
v (valid~in /\ empty)
v (attempClimit /\ empty)

ruleread_key_pad ~ (,enter_key /\ okey_buffer) ; ruleread.Jcey_pad
v (enter_key /\ oincremencattempt)

rulevalidate_pin ~ (pin_length /\ oru[ecompare_pin)
v (,pin_length /\ odlsplay _invalid_screen)

rulecomparqin ~ (pin_match /\ opin_ valid)
v (-,pin_match /\ odisplay_invalid_screen)

To facilitate analysis, the following variable name substitutions are made:

dps~

dis ~
gp~

ia ~
ipe ~
kb~

pe~

pp~

pv~

xal~

displa y _pin_screen
disp lay_in valid_screen
geCpin
incremenCattempt
in iCp in_entry
key_buffer
pin_entry
process_pin
pin_valid
attempClimit

329

xek~

xpl~

xpm~

xvp~

enter_key
pin_length

pin_match
valid-pin

Regarding these variable names, rule conditions variables begin with the letter x and are

depicted in italics. Using these rule conditions and rule state variable names, the rules

of interest are rewritten as:

A • 1 gp = Ipe ; ru epilLetltry

rulepilLentry ~ (((-,;cal A -,xvp) A opp) ; rulepilLentry»
v (xvp A empty)
v (xal A empty)

rulevalidato_pin ~ (xpl A orulecompare_pin) v (-,;cpl A odis)

rulecompare_pin ~ (xpm A opv) v (-,;cpm A odis)

Five of these rules and rule structures are assumed as premises for this tranformation -

rulepilLetlU-Y, process_pin (pp), ruleread~ey_pad, rulevalidato_pin, and rule compare_pin. The formal

transformation of these rules is as follows:

1 rulepilLetltry

where:

rulepilLentry ~ «(-,;cal A -,xvp) A opp) ; rulepilLentry»

v (xvp A empty) v (xal A empty)

2 pp

where:

pp == dps ; rulereaUey_pad ; rulevalidate_pin

3 rulereaoey_pad

where:

rulereaoey_pad ~ (-,;cek A okb) ; ruleread...).ey_pad

v (xek A oia)

premise

premise

premise

330

4 rUlevaIidate_pin premise

where:

rulevalidate_pin ~ (xpl A orulecompare_piJ v (-.x pI A odis)

5 rulecompare_pin premise

where:

rulecomparcpin ~ (xpm A OPy) v (-.xpm A odis)

6 rulevalidatqin == (xpl A orulecomparqin) v (-.xpl A odis) 4, reiteration

7 rulevalidate_pin == 5, 6, eqy. subst.

(xpl A o«xpm A OPy) V (-.x pm A odis»)

v (-.xpl A odis)

8 rulevalidate_pin == 7, NextOrDistEqy

(xpl A (o(xpm A OPy) V o(-.xpm A odis»

v (-.xpl A odis)

9 rUlevalidate_pin == 8, NextAndDistEqy

(xpl A « oxpm A OOPY) V (o-.xpm A oodis»)

v (-.xpl A odis)

10 rulevalidate_pin == 9, dist. of A oyer v

(xpl A (oxpm A OOPY»

v (xpl A (o-.xpm A oodis»

v (-.x pI A odis)

11 rule validate_pin == 10, prop. logic

«xpl A Ox pm) A OOPY)

v «xpl A o-.xpm) A oodis)

v (-.xpl A odis)

12 dps ; ruleread_key_pad ; rule validate_pin 2, reiteration

13 dps ; ruleread_key_pad ; 11, 12, eqy. subst.

«(xpl A oxpm) A OOPY)

v «xpl A o-.xpm) A oodis)

v (-.xpl A odis»

14 ruleread_key_pad CP assumption

15 (-.xek A okb) ; rulerea/Uey_pad v (xek A oia) 3, 14, eqy. subst.

331

16 (-tXek /\ okb) ; rulereaUey_pad CP assumption

17 -tXek /\ okb ; rulereaUey_pad 16, StateAndChop

18 (-tXek /\ okb ; rulereaueY-Pl\d) v (xek /\ oia) 17, v introduction

19 (xek /\ oia) CP assumption

20 (-tXek /\ okb ; rulereaUey--pa~ v (xek /\ oia) 19, v introduction

21 (-tXek /\ okb ; rulereaUey_pad) v (xek /\ oia) 16-18, 19-20,

v elimination

22 rulereaueY-Pl\d ::J 14-21, ::J introduction

(-tXek /\ okb ; rulereaUey_pad) v (xek /\ oia)

23 dps ; « -tXek /\ okb ; rulereaUey_pad) v (xek /\ oia» ; 13,22,

(((xpl/\ oxpm) /\ OOPy) ChopSwapImp3

v «xpl /\ o-tXpm) /\ oodis)

v (-,xpl /\ odis»

24 (dps ; (-tXek /\ okb ; rulereaUey_pad) v dps ; (xek /\ oia» ; 23, ChopOrEqy

«(xpl/\ oxpm) /\ OOPY)

v «xpl /\ o-tXpm) /\ oodis)

v (-,xpl /\ odis»

25 dps ; (-tXek /\ okb ; rulereaUey_pad) ; 24, OrChopEqy

«(xpl/\ oxpm) /\ OOPY)

v «xpl /\ o-,xpm) /\ oodis)

v (-,xpl /\ odis»

v dps ; (xek /\ oia) ;

«(xpl/\ oxpm) /\ OOPY)

v «xpl /\ o-,xpm) /\ oodis)

v (-tXpl /\ odis»

26 dps ; (-tXek /\ okb ; rulereaUey_pad) ; CP assumption

«(xpl/\ oxpm) /\ OOPY)

v «xpl /\ o-tXpm) /\ oodis)

v (-,xpl /\ odis»

27 dps ; (-tXek /\ okb ; rulereaUey_pad) 26, semantics of chop

332

28 dps ; (-,xek A okb ; rulereaUey_pad) 27, v introduction

v dps ; «xek; (xpl A oxpm» A (oia ; OOpV»

v dps ; «xek; (xpl A o-,xpm» A (oia ; oodis»

v dps ; «xek ; -,xpl) A (oia ; odis»

29 dps ; (xek A oia) ; «(xpl A oxpm) A oopv) 28, CP assumption

v «xpl A o-,xpm) A oodis)

v (-,xpl A odis»

30 dps ; (xek A oia) ; «xpl A oxpm) A oopv) 29, ChopOrEqv

v dps ; (xek A oia) ; «xpl A o-,xpm) A oodis)

v dps ; (xek A oia) ; (-,xpl A odis)

31 dps ; (xek A oia) ; «xp/ A oxpm) A oopv) CP assumption

32 dps; «xek; (xpl A oxpm» A (oia; oopv» 31,

TwoChopRuleslmp4

33 dps ; «xek; (xpl A oxpm» A (oia ; oopv)) 32, v introduction

v dps ; «xek; (xpl A o-,xpm» A (oia; oodis»

v dps; «xek ; -,xpl) A (oia ; odis»

34 dps ; (xek A oia) ; «xpl A o-,xpm) A oodis) CP assumption

35 dps ; «xek ; (xpl A o-,xpm) A (oia; oodis) 34,

TwoChopRuleslmp4

36 dps; «xek; (xpl A oxpm» A (oia; oopv» 35, v introduction

v dps ; «xek ; (xpl A o-,xpm» A (oia ; oodis»

v dps ; «xek ; -,xpl) A (oia ; odis»

37 dps ; (xek A oia) ; (-,x pi A odis) CP assumption

38 dps ; «xek ; -,xpl) A (oia ; odis» 36,

TwoChopRuleslmp4

39 dps ; «xek ; (xp/ A oxpm» A (oia ; oopv» 38, v introduction

v dps; «xek; (xp/ A o-,xpm») A (oia ; oOdis»

v dps ; «xek ; -,xp/) A (oia ; odis»

333

40 dps ; «xek ; (xpl A oxpm» A (oia ; oopv» 31-33,34-36,29-39,

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oodis» V elimination

v dps ; «xek ; -..xpl) A (oia ; odis»

41 dps ; (-.xek A okb ; rulereacLkeY-PIld) 40, v introduction

v dps ; «xek; (xpl A oxpm» A (oia ; oopv»

v dps; «xek; (xpl A O-..xpm» A (oia; oodis»

v dps ; «xek ; -..xpl) A (oia ; odis»

42 dps ; (-.xek A okb ; rulereacLkcy_pad) 26-28,29-41,

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv» v elimination

v dps; «xek; (xpl A o-..xpm» A (oia; oodis»

v dps ; «xek ; -..xpl) A (oia ; odis»

43 pp CP assumption

44 dps ; (-.xek A okb ; rulereacLkey_pad) 42, reiteration

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv»

v dps ; «xek ; (xpl A O-..xpm» A (oia ; oodis»

v dps ; «xek ; -..xpl) A (oia ; odis»

45 pp ~ (dps ; (-.xek A okb ; rulereacLkey_pad) 44, ~ introduction

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv»

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oodis»

v dps ; «xek ; -..xpl) A (oia ; odis»)

46 opp ~ o(dps ; (-.xek A okb ; rulereacLkey_pad) 45, NextlmpNext

v dps ; «xek ; (xpl A ox pm» A (oia ; oopv»

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oOdis»

v dps ; «xek ; -..xpl) A (oia ; odis)))

47 opp:::J (odps; (-.xek A okb; rulereacLkey_pad) 46, NextOrDistEqv

v odps ; «xek ; (xpl A oxpm» A (oia ; oopv»

v odps ; «xek ; (xpl A o-..xpm» A (oia ; oodis»

v odps ; «xek ; -.xpl) A (oia ; odis)))

48 opp ; rulepiILentry ~ (odps ; (-.xek A okb ; rulereacLkcy_pa~ 47, LeftChoplmpChop

v odps ; «xek ; (xpl A oxpm» A (oia ; oopv»

v odps ; «xek ; (xpl A o-.xpm» A (oia ; oodis))

v odps ; «xek ; -..xpl) A (oia ; odis») ; ruiepiILentry

334

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

Pages 335 and 336 copied
as original. Text also very

close to spine.

~---
i~
~entIy

:(-...xal A -.xvp) A Opp) ; ruZepiJUntIy»

~ A empty) v (xaZ A empty)

eaZ A -.xvp) A opp) ; ruZepin...entIy

~l A -.xvp) A (opp ; rulepin...entIy)

~; rulepifLentIy

(Odps ; (-,xek A okb ; rulereaUey_pad)

v Odps; «xek; (xpZ A oxpm» A (oia ; oopv»

v odps ; «xek ; (xpZ A o-,xpm» A (oia ; oodis»

,~ps ; «xek ; -,xpZ) A (oia ; odis») ; ruZepin_entIy

; Odps ; (-,xek A okb ; ruZereaUey_pad) ; ruZepifLentry

V Odps ; «xek; (xpl A oxpm» A (oia ; oopv» ;

, rulepin...entry

;V Odps; «xek; (xpZ A o-,xpm» A (oia; oodis»;

; ruzepin...entry

1, reiteration

1,49, eqv. subst.

CP assumption

, StateAndChop

A elimination

MP

OrChopEqv

,v Odps ; «xek ; -,xpZ) A (oia ; odis» ; ruZepin...entry
'-----------~---------------------------------------
, ("'"1XaZ A -.xvp)
'-------~--

A elimination

, ("'"1XaZ A -.xvp) A

(Odps ; (-,xek A okb ; ruZeread.J<ey_pad) ; ruZepifLentry

v Odps ; «xek; (xpl A oxpm» A (oia; oopv» ;

ruZepin...entry

v odps ; «xek ; (xpZ A o-,xpm» A (oia ; oodis»;

ruZepin...entry

A introduction

v odps ; «xek ; -,xpZ) A (oia ; odis» ; ruZepin...entry)
'---
« ~al A -,xvp) A (odps ; (-,xek

'" okb ; rulereaUey_pad) ; rulepin_entry»

v «-,xal A -,xvp) A (odps ; «xek; (xpl A oxpm»

'" (oia ; oopv» ; rulepin...entry»
v «-,xal A -,xvp) A (odps ; «xek; (xpl A o-,xpm»

"(oia; oodis»; rulepin...eotry»

v «-,xal A -,xvp) A (odps ; «xek ; -,xpl)

\ (oia ; odis» ; ruZepifLentry»

dist. of A over v

'--

335

op

on

Jeslmp2

n

In

eslmp2

336

66 «-,xal /I. -,xvp) /I. odps) ; «xek; (xpl/l. o-,xpm» CP assumption

/I. (oia ; oodis» ; rulep~entry

67 « -..tal /I. -,xvp) ; xek ; (xpl /I. o-,xpm» /I. TwoChopRuleslmp2

(odps; oia; oodis ; rulepiD-entry)

68 «(-..tal /I. -,xvp) ; -..tek) /I. V introduction

(odps ;okb ; rulereadj.ey-IJad ; rulepiD-entry»

v «(-..tal /I. -,xvp) ; xek ; (xpl /I. oxpm» /I.

(odps ; oia ; OOPy ; rulepin..entry»

v «(-..tal /I. -,xvp) ; xek ; (xpl/l. o-,xpm» /I.

(odps ; oia ; oodis ; rulepirLentry»

v «(-..tal /I. -,xvp) ; xek ; -,xpl) /I.

(odps ; oia ; odis ; rulepifLentry»

69 «-..tal /I. -,xvp) /I. odps) ; «xek ; -,xpl) CP assumption

/I. (oia ; odis» ; rulepiD-entry

70 «-..tal /I. -,xvp) ; xek ; -,xpl) /I. TwoChopRuleslmp2

(odps ; oia ; odis ; rulepiD-entry)

71 «(-..tal /I. -,xvp) ; -..tek) /I. v introduction

(odps ;okb ; rulereadj.ey_pad ; rulepiD-entry»

v «(-..tal /I. -,xvp) ; xek ; (xpl /I. ox pm» /I.

(odps ; oia ; OOPy ; ruZepifLentry»

v « (-..tal /I. -,xvp) ; xek ; (xpl /I. o-,xpm» /I.

(odps ; oia ; oodis ; rulepin_entry»

v «(-..tal /I. -,xvp) ; xek ; -,xpl) /I.

(odps ; oia ; odis ; rulepifLentry»

72 «(-..tal/l. -,xvp); -..tek) /I. v elimination

(odps ;okb ; rulereadj.ey_pad ; rulepiTLentry»

v «(-,xal /I. -,xvp); xek; (xpl/l. oxpm» /I.

(odps ; oia ; OOPy ; rulepifLentry»

v «(-..tal /I. -,xvp) ; xek; (xpl /I. o-,xpm» /I.

(odps ; oia ; oodis ; rulepifLentry»
v «(-,xal /I. -,xvp); xek ; -,xpl) /I.

(odps ; oia ; odis ; rulepifLentry»

337

73 «(oXal A -.xvp) ; oXek) A V introduction

(odps ;okb ; rulereaOey_pad ; rulepin....entry))

v «(oXal A -.xvp) ; xek ; (xpl A oxpm)) A

(odps ; oia ; oopv ; rulepin....entry»

v «(oXal A -.xvp) ; xek; (xpl A o-,xpm» A

(odps; oia ; oodis ; rulepil13ntry»

v «(oXal A -.xvp) ; xek ; -,xpl) A

(odps; oia ; odis ; rulepin....enrry»

v (XVp A empty)

v (xal A empty)

74 (xvp A empty) CP assumption

75 «(oXal A -.xvp) ; oXek) A v introduction

(odps ;okb ; rulereaOey_pad ; rulepin....enrry»)

v «(oXal A -.xvp) ; xek; (xpl A oxpm» A

(odps; oia ; oopv ; rulepin3 ntry))

v «(oXal A -.xvp) ; xek; (xpl A o-,xpm» A

(odps ; oia ; oodis ; rulepin....entry»

v «(oXal A -.xvp) ; xek ; oXpl) A

(odps ; oia ; odis ; rulepin....entry»

v (XVp A empty)

v (xal A empty)

76 (xal A empty) CP assumption

77 «(oXal A -.xvp) ; oXek) A v introduction

(odps ;okb ; rulereaQ.key_pad ; rulepin....enrry»

v «(oXal A -.xvp) ; xek; (xpl A oxpm» A

(odps ; oia ; oopv ; rulepiQ..enrry))

v «(oXal A -.xvp) ; xek ; (xpl A o-,xpm» A

(odps ; oia ; oodis ; rulepiQ..entry))

v «(oXal A -.xvp) ; xek ; -,xpl) A

(odps ; oia ; odis ; rulepin....entry»

v (xvp A empty)

v (xal A empty)

338

78 «(-xal A -.xvp) ; -,xek) A

(odps ;okb ; rulereaOey_pad ; rulepin..entry»

v «(-,xal A -.xvp) ; xek; (xpl A oxpm» A

(odps; oia; OOpV; rulepi~entry»

v « (-xal A -.xvp) ; xek ; (xpl A o-,xpm» A

(odps ; oia ; oodis ; rulepin_entry»

v «(-,xal A -.xvp) ; xek; -,xpl) A

(odps; oia ; odis ; rulepi~eotry»

v (XVp A empty)

v (xal A empty)

v elimination

Based on these transformations, the possible behaviors associated with rulepi~entry are:

«(-,attempclimit A -,valid-pin) ; -,enter_key)
A (odisplay_pin_screen ;okey_buffer;

rulereaoey_pad ; rulepin..entry»

v «(-,attempclimit A -,valid-pin) ; enter_key;
(pin_length A opinflatch»

A (odisplay_pin_screen; oincremencattempt ;
o opin_ valid ; rulepin..entry»

v «(-,attempClimit A -,valid-pin) ; enter_key;
(pin_length A o-.pinJnatch»

A odisplay_pin_screen ; oincremencattempt ;
oOdisplay_invalid_screen ; rulepin..entry»

v «(-,attempClimit A -,valid-pin) ; enter_key; -.pin_length)
A (odisplay_pin_screen; oincremencattempt ;

odisplay_invalid_screen ; rulepio_entry»

v (valid-pin A empty)

v (attempclimit A empty)

339

Appendix F

Creating Rules to Describe a Simple Hardware System

In this appendix, rules are used to describe the behavior of a simple hardware

system. Consider the simple NOR-based flip-flop system (Feynman, 1996) presented in

Figure F-l.

s---\
b--_-Q

R---f
"0---'"-- Q

Figure F-l: A Simple Flip-Flop

Depending on the current state of Q and the values of the Set (S) and Reset (R) lines,

the next state of Q is specified. The behavior of this simple flip-flop is described in

Table F-l.

Table F-l Behavior ofa simple flip-flop

Current Q Set (S) Reset (R) NextQ

0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 1

For the purposes of this exercise, the two possible cases where both Set (S) and Reset

(R) are equal to one are undefined. Alternatively, the behavior of this simple flip-flop is

described using the ITL next operator in Table F-2.

340

Table F-2 Behavior of a simple flip-flop expressed in ITL

Q

o
o
o
1
1
1

S

o
o
1
o
o
1

R

o
1
o
o
1
o

oQ

o
o
1
1
o
1

Under the system behavior as defmed in Table F-2, each of the four conditions

must hold for each of the six cases. Therefore, six general-form rules can be composed

to describe the behavior of the simple flip-flip presented in Figure F-l:

(Q = 0 /\ S = 0 /\ R = 0) /\ (oQ = 0)

(Q = 0 /\ S = 0 /\ R = 1) /\ (oQ = 0)

(Q = 0 /\ S = 1/\ R = 0) /\ (oQ = 1)

(Q = 1/\ S = 0 /\ R = 0) /\ (oQ = 1)

(Q = 1/\ S = 0 /\ R = 1) /\ (oQ = 0)

(Q = 1 /\ S = 1 /\ R = 0) /\ (oQ = 1)

Given that the domain ofR and S are {0,1}, the following defmitions are made:

x ~ (Q = 1) and .-,x ~ (Q = 0)
y ~ (R = 1) and -,y ~ (R = 0)
z ~ (S = 1) and -,z ~ (S = 0)

Substituting the defmitions at (F-2) into (F-I) yields:

(-,x /\ -,z /\ -,y) /\ (o--"x)

(-,x /\ -,z /\ y) /\ (O--"x)

(-,x /\ z /\ -,y) /\ (ox)

(x /\ -,z /\ -,y) /\ (ox)

(F-Ia)

(F-Ib)

(F-Ic)

(F-Id)

(F-Ie)

(F-lt)

(F-2a)

(F-2b)

(F-2c)

(F-3a)

(F-3b)

(F-3c)

(F-3d)

341

(x /\ -,z /\ y) /\ (o-,x) (F-3e)

(x /\ Z /\ -,y) /\ (ox) (F-3f)

These six individual rules can be combined disjunctively to form a single rule-base

structure that describes the behavior of the flip-flop system:

(-,x /\ -,z /\ -,y /\ o-,x)
V (-,x /\ -,z /\ Y /\ o-,x)
V (-,x /\ z /\ -,y /\ ox)
v (x /\ -,z /\ -,y /\ ox)
v (x /\ -,z /\ Y /\ o-,x)
V (x /\ Z /\ -,y /\ ox)

Consider the following pair of disjunctively connected rules:

(-,x /\ -,z /\ Y /\ o-,x) V (x /\ -,z /\ Y /\ o-,x)

Applying propositional logic to (F-5) yields the equivalent expression:

(-,x /\ x) V (-,z /\ Y /\ o-,x)

Applying propositional logic to (F-6) yields the equivalent expression:

(-,z /\ Y /\ o-,x)

Combining (F-5), (F-6), and (F-7) yields:

(F-4)

(F-5)

(F-6)

(F-7)

(-,x /\ -,z /\ Y /\ o-,x) v (x /\ -,z /\ Y /\ o-,x) == (-,z /\ Y /\ o-,x) (F-8)

Applying the equivalence (F-8) to (F-4) yields:

(-,x /\ -,z /\ -,y /\ o-,x)
V (-,x /\ Z /\ -,y /\ ox)
v (x /\ -,z /\ -,y /\ ox)
v (x /\ Z /\ -,y /\ ox)
v (-,z /\ Y /\ o-,x) (F-9)

342

Consider the following pair of disjunctively connected rules:

(-,x A Z A -,y A ox) v (x A Z A -,y A ox)

Applying propositional logic to (F-lO) yields the equivalent expression:

Applying propositional logic to (F-11) yields the equivalent expression:

(z A -'YA ox)

Combining (F-IO), (F-ll), and (F-12) yields:

Applying the equivalence (F-13) to (F-9) yields:

(-,x A -,z A -'YA o-,x)
V (x A,z A -,y A ox)
V (ZA -'YA ox)
V (-,z AY A o-,x)

Applying the defmitions presented at (F-2) to (F-14) yields:

(Q=OAS=OAR=OA oQ=O)
v (Q = 1 AS = 0 A R = 0 A oQ = 1)
v (S = 1 1\ R = 0 A oQ = 1)
v (S = 0 A R = 1 A oQ = 0)

(F-IO)

(F-ll)

(F-12)

(F-13)

(F-14)

(F-15)

Remembering that the domain of Q is {O, I}, consider the following defmitions:

OQunchanged ~ (Q = 1 A oQ = 1)
oQUllChanged ~ (Q = 0 A OQ = 0)

Applying these defmitions to (F-16) yields:

(F-16a)

(F-16b)

343

(S = 0 A R = 0 A OQunchanged)

V (S = 0 A R = 0 A OQunchanged)

V (S = 1 A R = 0 A OQ = 1)
v (S = 0 A R = 1 A OQ = 0)

Applying propositional logic to (F-17) yields:

(S = 0 A R = 0 A OQunchanged)

v (S = 1 A R = 0 A OQ = 1)
v (S = 0 A R = 1 A OQ = 0)

(F-17)

(F-18)

With these transformations, the original six rules of (F-l) and the corresponding

six-rule disjunctive structure of (F-4) have been reduced to three rules expressed as a

disjunctive structure at (F-18). (F-18) describes the behavior of the hardware system

presented in Figure F-l and described in Table F-l. Although purposefully limited in

scope, this example is a demonstration of how rules can be formed using this rule model

and rule algebra to describe a given system.

These rules can be used to reason about, analyze, and/or understand the target

system. For example, in comparison with the information conveyed in Figure F-l and

Table F-l, these rules provide a clear and succinct description of the system behavior:

if Set (S) is high and Reset (R) is low, the next Q is set high; if Set (S) is low and Reset

(R) is high, the next Q is set low; and if both Set (S) and Reset (R) are low, the next Q is

unchanged from its current status. Whereas this information can be gleaned from

Figure F-l and Table F-l, the rules in (F-18) provide a simple and immediately

comprehensible depiction of system behavior. As these rules have been developed

using the rule model and rule algebra presented in this research, these rules can be

integrated into a larger rule system, as appropriate, using the rule algebra.

344

