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Chapter 1 

Introduction 

Rules give structure to knowledge. Programs use rules to dictate or constrain 

specific decisions or actions. Rules are incorporated into these systems based on either 

the experiences or expectations of the organization or a subset of knowledgeable 

individuals, so that all users of these systems are guided by the same knowledge and 

constrained to identical behaviors. Rules provide the semantic functionality of a 

system and represent the know ledge core around which that system is developed and 

maintained. Regardless of their specific form and implementation, these rule-based 

programs can be viewed as knowledge systems because the rules express specific 

domain knowledge in a usable form. 

Within these programs or knowledge systems, rule revisions are typically made 

based on one of two factors: the organization's ever increasing understanding of its own 

successful practices, and the organization's response to a changing operational climate. 

These revisions reflect the real-time response of the organization to both internal and 

external changes, and also reflect the growing organizational knowledge and memory, 

and the associated 'state-of-the-organization.' As these rules have typically been tested, 

revised, and updated continuously, they represent a substantial and valuable intellectual 

asset. 

Unfortunately, these rule revisions and updates are all too often made only 

within the code of these rule-based knowledge systems. As a result, no other accurate 

written records or documentation of these rules exists. When it becomes necessary to 

re-engineer these existing systems and/or create replacement systems, these valuable 

rules are frequently not reused because the legacy program code is the only valid source 

of these rules, and their extraction from the legacy code is thought to be too difficult. 

The problem is further exacerbated when a legacy re-engineering projcct potentially 

involves rule recovery from complex systems employing mUltiple programs in multiple 

languages. Failure to capture and reuse these rules means that the refined knowledge 

embodied in these rules could be, either temporarily or permanently, lost in the new 

system. 
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1.1 Motivation for this Research 

This work was motivated by an interest in rules, their forms, and their 

importance, and by the recognition of the potential value of rule extraction from 

heterogeneous legacy systems. Based on the literature review at the initiation of this 

research, most rule extraction techniques reported in the literature have one or more 

major shortcomings that compromise their usefulness or applicability to rule extraction 

from heterogeneous systems. As discussed in detail in Chapter 2, these critical 

problems include substantial variations regarding exactly what constitutes a rule, the 

language specificity of many existing approaches and related tools, the functional 

requirement that the individual responsible for rule extraction be expert both in the 

knowledge domain and the program domain, inconsistencies associated with different 

individuals using different approaches for different languages, and the lack of 

mathematical formalism in most rule extraction approaches. Taken together, these five 

critical problems initially seemed rather daunting. 

With further reflection, three core questions emerged. 

1. What exactly is a rule? Specifically, can a genera~ succinct, formal, and 

robust rule defmition be formulated that can be used to create, analyze, 

decompose, and/or understand rules? 

2. Can a rule algebra be developed that allows the formal and consistent 

application of a formal general rule model to' the extraction of rules and, 

as appropriate, to the creation of new rules? 

3. Can a general framework be created that allows application of this rule 

model and rule algebra to the identification, analysis, and extraction of 

rules from legacy systems regardless of system, domain, platform, size, 

or language? 

If these three questions can be answered, the reverse or re-engineering of legacy 

systems, and the forward engineering of new systems, can potentially be significantly 

improved. If these three questions can be answered, existing rule-based systems can be 

analyzed and new rule-based replacement systems can be developed using a consistent 
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and complementary level of mathematical formality that is not typically applied to such 

tasks. The research presented in this thesis addresses these three core questions. 

1.2 Original Contributions of this Research 

This research makes an original and significant contribution in at least seven 

areas. Each area of original contribution is described briefly below. 

1. A general formal framework for rule extraction, applicable to a wide 

range of legacy languages, is presented. 

2. A formal general model of a rule is developed, general in that it can be 

adapted to the variety of languages and programming paradigms that 

might be encountered in different legacy code applications. Using 

Interval Temporal Logic (ITL), a rule is defmed formally as a temporal 

conjunctive relationship between a state sequence describing the rule 

conditions and a future state sequence describing the rule outcome. 

3. Using ITL and this temporal rule model, a rule algebra is developed to 

describe the set of operations that can be applied to compose, decompose, 

or transform rules. Using ITL, forty-three new lemmas are developed as 

part of this rule algebra and are presented in this thesis. 

4. Within the context of this rule model and the associated rule algebra, 

various compositional paradigms are described including sequential 

composition; nesting; recursion; deterministic and non-deterministic 

guarded composition; and disjoint paranel composition. Using these 

compositional paradigms, rule-based representations of typical legacy 

code structures - the if-then-else structure, the while structure, and the 

indexed for-loop - are developed. 

5. The strong correspondence between rules as defined in this research and 

statecharts is demonstrated. Using rule and statechart concepts, generic 

visual formalisms are developed for four common legacy-code 

programming structures. These statecharts are subsequently applied to 

represent rules extracted from different legacy programs. Whereas 

statecharts are typically used in the creation of new event-driven systems, 
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this work demonstrates that statecharts are an effective approach for 

analyzing and displaying hierarchical, non-event driven legacy systems. 

6. The applicability of this rule model and rule algebra is demonstrated by 

applying them to the extraction, transformation, and analysis of rules 

from a diverse set of existing and legacy systems. 

7. In addition to these reverse engineering applications, the forward 

engineering application of the rule model and rule algebra is 

demonstrated by developing rule-based descriptions of new software and 

hardware systems. 

1.3 Organization of this Thesis 

This thesis is organized as follows: 

In Chapter 2, a review of the relevant literature related to rules and rule 

extraction is presented. Reviewed topics include rule defmitions and rule models in 

both the forward and reverse engineering domains, code extraction, program slicing, 

and other reverse engineering methodologies relevant to rule extraction. Based on this 

literature survey, a nine-way general classification of rule extraction techniques is 

presented. The shortcomings of current rule extraction techniques are discussed .. 

In Chapter 3, a critical element necessary for a formal approach to rule 

extraction from legacy code is present~d - a general formal framework applicable to a 

wide range of legacy languages. Under this rule extraction framework, general 

mathematical formality is introduced by describing a program as a set of language 

elements and structures, such that the program can be then partitioned into program 

structures that are or are not rules. and then analyzed accordingly. 

In Chapter 4, a formal general model of a rule is developed. Starting with a 

state-based model of a rute, the temporal ordering of rule conditions and rule outcomes 

is considered. Other formalizations using temporal logic to represent and reason about 

the temporal relationships between states and/or state properties are reviewed. Using 

Interval Temporal Logic (ITL), a rule is defmed formally as a temporal conjunctive 

relationship between a state sequence describing the rule conditions and a future state 

sequence describing the rule outcome. 
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In Chapters 5 and 6, a rule algebra is presented to describe the set of operations 

that can be applied to compose, decompose, or transform rules that describe specific 

state sequences. This rule algebra is developed incrementally by considering 

fundamental systems and the corresponding relationships between the state sequences 

that compose these systems. In developing this rule algebra, significant attention is 

given to composing rules and rule systems to describe larger and more complex state 

sequences. Various compositional paradigms are demonstrated with this rule algebra. 

Using these compositional paradigms, rule-based representations of typical legacy code 

structures are developed. 

In Chapters 7, 8, and 9, the formal rule extraction framework of Chapter 3, the 

formal temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are 

applied to the extraction of rules from a variety of existing systems, specifications, and 

legacy code, and to the forward engineering of new rule-based systems. Rules are 

extracted from a fmite state machine. a detailed formal specification, a block of legacy 

Pascal code, and slices of a Wide Spectrum Language (WSL) program. In concert with 

this rule algebra, the use and value of statecharts for legacy code analysis is 

demonstrated. In addition to these rule extraction (i.e., reverse engineering) 

applications, the temporal rule model and the rule algebra are applied to the forward 

engineering of rule-based systems. These various reverse and forward applications are 

presented to demonstrate the wide-ranging applicability of the rule concepts developed 

in this research. 

In Chapter 10, observations are presented regarding the development and 

application of the rule algebra, based on the work presented in Chapters 5 through 9. 

In Chapter 11, some concluding remarks are presented and recommendations are 

made for possible future work relating to ideas introduced in this thesis. 
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Chapter 2 

Business Rules - A Review 

In this chapter, a review of current defmitions and models of business rules in 

both the forward and reverse engineering domains is presented. Formal models of 

business rules are reviewed. Rule attributes common among these various defmitions 

and models are identified, and a general defmition of a business rule is proposed. 

Program slicing is briefly reviewed, including the application of program slicing to 

reverse engineering and other domains. The use of formal methods for code extraction 

and reverse engineering is reviewed. Rule extraction experiences are reviewed. Based 

on this literature survey, a nine-way, general classification of rule extraction techniques 

is developed. The critical shortcomings of current rule extraction techniques relative to 

their usefulness or applicability to the reverse engineering of heterogeneous systems and 

the forward engineering of new code or specifications are discussed. 

2.1 Business Rules and Forward Engineering 

Ulrich (1999) presented a two-part general defmition of business rules adopted 

from the Object Management Group. Part 1 asserts that rules are declarations of 

policies or conditions that must be satisfied, and Part 2 declares that rules govern the 

manners in which businesses operate. The GUIDE Business Rules Project, as presented 

in Rouvellou et al. (2000), offered the following: "A business rule is a statement that 

defmes or constrains some aspect of the business. It is intended to assert business 

structure or to control the behavior of the business." This defmition was extended to 

distinguish between constraint, invariant, derivation, and classification rules. 

Perkins (2000) defmes business rules as capturing or implementing precise 

business logic in processes, procedures, and systems. Business rules may include term 

defmitions, data integrity constraints, mathematical and functional derivations, logical 

inferences, processing sequences, and relationships among data. A good business rule 

has three basic characteristics: (1) a rule is an explicit expression; (2) a rule is 

declarative, not procedural; and (3) a rule should be expressed in a single coherent 

model, used to express all kinds of business rules. Business rules can be implemented 

as metadata, process-driven approaches, and procedure-driven approaches. 
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Leite and Leonardi (1998) propose a business-rule taxonomy, where business 

rules are either functional or non-functional. Functional rules specify an organization's 

action, whereas non-functional rules are standards or relationships that the organization 

must observe. Non-functional rules are further divided into macro-system and quality 

rules. Macro-system rules describe policies and impose a constraint, whereas quality 

rules specify characteristics of an organization'S standards or expectations regarding its 

processes or products. 

For business process modeling, Presley and Rogers (1996) present a business 

rule model as an ontology. For the purposes of the model, this ontology is defmed as a 

set of objects that make up a given domain, the associated properties, and the 

relationships among these objects that are represented in the domain terminology. This 

approach facilitates knowledge capture of both physical and conceptual objects and 

their associated relationships. 

Odell (1995) investigated the nature of business rules in the context of object­

oriented analysis and design using VML. Three types of constraint rules were 

identified: stimulus/response, operation constraint, and structure constraint. In addition, 

two types of derivation rules were identified: inference and computation. 

Stimulus/response rules specify WHEN and IF conditions that must be true for an 

operation to be triggered. Operation constraint rules specify conditions that must be 

true before and/or after an operation. Structure constraint rules specify policies or 

conditions about objects and their associations that cannot be violated. Inference rules 

specify that if certain facts are true, a specific conclusion can be inferred. Computation 

rules achieve their results with processing algorithms. With respect to their use, rules 

allow experts to specify policies or conditions in small autonomous units using explicit 

statements. 

Ross (1997) defined a business rule as "a constraint or test exercised for the 

purpose of maintaining the integrity (Le., correctness) of data." Using this definition, 

seven general rule classifications or families are identified: instance verifiers, type 

verifiers, position verifiers, functional verifiers, comparative evaluators, mathematical 

evaluators, and project controllers. Within each family, rules are classified into atomic 
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types based on the specific type of computation the rule performs. In this data-centric 

approach. "rules compute." 

Theodoulidis et a1. (1992) investigated the temporal aspects of business rules. 

Three categories of rules were identified: constraint, derivation, and event-action. 

Constraint rules deal with both the static and transition integrity of structural 

components of the system. Derivation rules defme how new static and transition 

components can be derived from existing system components (including other derived 

components), with exactly one derivation rule for each derived component. Event­

action rules deal with the invocation of procedures. expressing conditions under which 

these procedures would be triggered. 

2.2 Business Rules and Reverse Engineering 

For the purposes of reverse engineering and legacy system analysis, Ulrich 

(1999) narrowed the general defmition offered by the Object Management Group and 

concluded that a business rule is a "combination of conditional and imperative logic that 

changes the state of an object or data element." 

For the reverse engineering domain, Sneed and Erdos (1996) defined business 

rules as a set of conditional operations attached to a given data result or output. 

Business rules are composed of four elements: results, arguments, assignments, and 

conditions. Arguments for business rules may come from many different sources 

including databases, user inputs from a terminal or window, or from other programs. 

Assignment and condition statements may be located throughout the program. 

Therefore, the authors conclude that the only easily locatable element of the business 

rule within an existing program is the result. Therefore, to identify or extract business 

rules, one must identify or know what data or output the rules produce. This definition 

based on output data was critical to their approach to business rule extraction. 

In extracting business rules from existing systems, Shao and Pound (1999) 

concluded that business rules are declarative and not procedura~ and they mayor may 

not be stated explicitly within an organization except in existing program code. 

Business rules are classified into three groups - structural rules, behavioral rules, and 

constraint rules. Structural rules are statements about data objects within an 
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organization's business. Behavioral rules are statements about the dynamic aspect or 

events in an organization's business. Constraint rules are about the conditions under 

which an organization operates. 

2.3 Formal Models of Business Rules 

Relatively few formal models of business rules exist, either in the forward or 

reverse engineering domains. This section presents a detailed review of those formal 

business rule models, with particular focus on formal representations of rule 

conditionals and rule-directed state transitions. 

Alagar and Periyasamy (2001) present a formal specification language for 

formalizing business rules and business actions. This language, Business Transaction 

Object Z or BTOZ, is an extension of the Object-Z specification language. In general, a 

business rule is defmed as a constraint on a business transaction, as specified or defined 

by the organization. A business system is formally defmed as the tuple (B, R, A), where 

B is a set of business objects, R is a set of business rules, and A is a set of agents. Every 

agent A is responsible for enforcing rules in a single category and is aware of the 

business objects B to which these rules apply. Every rule, R. is a basic predicate, 

abstracting a single business rule. Within this system, business actions are subject to 

business rules. A business action is formally defmed as a generated signal (A, 0, r), 

identifying that agent A receives rule r regarding an operation o. In general, each rule r 

is written as a logical expression. 

Huang et a!. (1998) defined a business rule as a function, constraint, or 

transformation of inputs to outputs. Consistent with their research approach to use 

program slicing to extract rules from legacy COBOL systems, a business rule was 

formally defined as a program segment F that transforms a set of input variables I into a 

set of output variables 0, such that 0 = F(l). The subsequent forward representation of 

an extracted rule as a formula requires three elements: the domain variable of interest 

(Le., the left-hand side of the formula); the expression for determining that domain 

variable (i.e., the right-hand side of the formula); and the conditions under which the 

formula holds. 
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Fu et al. (2001) studied the extraction and representation constraint rules -

statements that defIne or constrain some aspect of a business. Operationally, constraints 

describe the specwc conditions under which an organization operates and can appear in 

many forms. Focusing on this constraint reasoning, a predicate logic based language, 

Business Rule Language or BRL, was proposed. Within BRL, real world business 

objects or concepts are represented as structures. A structure is recursively deflned as 

S(S1"",Sn), where S is the structure name and each element SI is a structure that is a 

component of S. If a given structure S contains no components, it is a primitive 

structure; otherwise, it is a composite structure. A constraint specifIes the allowable or 

valid states for a given structure S. BRL has relatively limited expressive power and 

includes only a small number of built-in predicates for representing the semantics of 

constraints captured from the reverse engineering of legacy systems. Four types of 

constraints are supported by BRL: Type I - constructs the domains for structures; Type 

II - restricts the number of instances of a given structure; Type III - specifIes the 

relationships between two or more structures; Type IV • specwes the number of other 

structures that can be associated with a specifIc structure. 

Ungureanu and Minsky (2000) defmed a business rule for business-to-business 

e-commerce as a Law-Governed Interaction or LGI. The core concept of LGI is a 

policy, P, defIned as the four-tuple <M, G, CS, L>, where M is the set of messages 

regulated by this policy, G is a group of agents that exchange messages from the set M, 

CS is the set of control states describing the attributes' of G and the state of the 

individual agents within G such that there is only one CS per G, and L is the enforced 

set of laws that regulate the exchange of messages between members of G. Events 

involving members of G that are subject to a law L of a policy P are considered 

regulated events. For every active agent x in G, there is a controller C that assures the 

enforcement of L for every event at x. The control state CS" of a given agent x can be 

changed by primitive operations, subject to the requirement of L. Primitive operations 

used for the testing and update of control-state include true/false evaluation, addition, 

subtraction. removal, replacement, deliver, and forward. 

To deal with the problem of the same antecedent conditions causing outcome 

conflicts due to multiple rules, Grosef et aL (1999) proposed a generalized version of 

Courteous Logic Programs (CLP). In this approach, rules are initially represented as 
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declarative Ordinary Logic Programs (OLP) with well-founded semantics, as described 

by van Gelder et al. (1991). In an OLP, the head or outcome of a rule is the 

consequence of a series of logically connected atoms. These atoms form the body, 

premise, or antecedent conditions of the rule. Given that many contract terms involve 

conditional relationships, a rule in the e-commerce contract domain may involve an 

antecedent that contains multiple conjoined conditions. Rule conflict occurs when the 

antecedent conditions of mUltiple rules are satisfied, but the resulting consequences 

conflict. CLP extends the well-founded semantics ofOLP to include prioritized conflict 

handling. Rule prioritization information is derived from available information such as 

relative specificity, recency, and authority. As a result, some rules are subject to 

override by other higher priority conflicting rules. Rules in CLPs are then transformed 

back into a semantically equivalent OLPs. 

Plexousakis (1995) analyzed and simulated business processes using the high­

level logic programming language GOLOG. GOLOG is based on extending the 

situation calculus, a first-order language for representing dynamic and evolving 

domains where all changes within a domain are the result of named actions, to include 

complex and perceptual actions. Under this approach, business processes are 

represented as actions that affect the domain state. In the situation calculus and in 

GOLOG, A is a set of actions and S is a set of situations. For an action a E A and S E S, 

the execution of action aon situation s is described by do(a, s). Whereas all actions in 

the situation calculus are assumed to be primitive and deterministic, GOLOG allows 

complex actions through sequencing, iteration, and non-deterministic choice. GOLOG 

allows the specification of necessary pre- andlor post-conditions associated with a 

specific action. Using GOLOG, complex actions are decomposed into primitive 

actions, and the GOLOG language interpreter essentially acts as a theorem prover. 

Koubarakis and Plexousakis (1999) presented a formal framework for business 

process modeling using concepts of concurrent logic programming and situational 

calculus. In the process submodel, actors performing actions change the situation, i.e., 

the current state of a system. Actions can be primitive or complex. Actions are 

considered primitive if decomposition reveals no additional information of interest. 

Primitive actions are formally defined as the tuple <precondition, effect>, where 

precondition and effect are represented by formulas written in a formal first-order model 
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language. With these primitive actions, complex actions are formed using the syntax 

and semantics of ConGo log (De Giacomo et al., 2000), a concurrent version of 

GOLOG. Complex actions can be defmed recursively and may include sequencing, 

waiting for a condition, non-deterministic choice of action, non-deterministic choice of 

action parameters, if-then-else conditionals, while-do iteration, non-deterministic 

iteration, concurrency, prioritized concurrency, non-deterministic concurrent iteration, 

interrupts, procedures, and do nothing. System state restrictions are imposed in the 

constraints submodel, where static and dynamic constraints are expressed using 

situation calculus and the symbols defmed in the other relevant submodels. Although 

not explicitly defmed as such, these actions and constraints function as the business 

rules that change the system state. 

Herbst (1995) presents a meta-model of business rules for use in business 

systems analysis. This model extends the event-condition-action (ECA) rule model 

from the active database domain to an event-condition-action-action (ECAA) structure 

applicable to general business processes. Under this extension, every rule has exactly 

one event, no more than one condition, and only one or two actions - those resulting 

from the then portion of an if-then construct when the conditions are true, or those 

resulting from the else portion if-then-else when the conditions are not true. Events and 

conditions can be elementary or complex and can include recursive relationships. 

ECAA rules can be transformed into one or two ECA rules by negating the condition. 

Although this construct is not strictly formal, variations of this general construct are 

widely used in the logical formulation, modeling, and representation of business rules 

(Herbst et al., 1994). 

2.4 General Properties of Extractable Business Rules 

Although the research presented in the previous sections focused on specific 

issues relative to distinct needs, numerous commonalities exist with respect to what 

constitutes a business rule, in either the forward or reverse engineering domains. Based 

on the spectrum of defmitions, models, criteria, and attributes presented in the available 

literature, the following general and informal specification of the properties of business 

rules is proposed: 
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1. Business rules are explicit. They are known, articulated, and subsequently 

included in the program code that constitutes the knowledge-based system. 

That these rules are known and stated explicitly presupposes the knowledge 

that they are important and therefore worth stating. 

2. Business rules are precise. They are unambiguous relative to their 

knowledge and use domains. 

3. Business rules are logically or mathematically operative on input data to 

create output data. This can be any combination of predicate logic and math 

operations taking the form of a constraint or transformation, and may 

consider the static, dynamic, and temporal state of the input data. 

4. Business rules are imperative. Ifthe predicate requirements are satisfied, the 

rule must be executed and it must be executed now. However, the specific 

temporal attributes of 'now' must be defined relative to the knowledge and 

use domains encompassed by the rule. For example, 'now' in an airline 

cockpit is significantly different that 'now' on a university campus. 

Therefore, a rule specification may presume instantaneous execution or may 

include specific values and conditions for this imperative element. 

Regardless of the imperative specifications, logically, a rule must always be 

executed. A complete rule that can be ignored or postponed indefmitely is 

not a rule. 

5. Business rules are declarative and not procedural. A business rule identifies 

a possible output data state as either required or prohibited, but it does not 

specify the steps that must be taken to achieve or prohibit such a state 

transition. 

This rule property description - explicit, precise, operative, imperative, and declarative 

(EPOID) - provides a consistent basis to compare and assess different rules and 

implementations in both the forward and reverse engineering domains. This new 

description provides a rational basis for exploring the role of knowledge and semantics 

in rule formation. Furthermore, this rule property description helps avoid confusion 

with other rule-driven knowledge applications and domains, where the objectives may 
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include the discovery, application, or recovery of implicit, imprecise, or associative 

'rules' from data. 

2.5 Program Slicing 

Several comprehensive reviews of program slicing techniques have been 

conducted (Tip. 1995; Binkley and Gallagher, 1996). Conceptually, program slicing is 

a decomposition technique where only those program statements contributing to a 

particular action or computation are identified and extracted. Tip (1995) defmed a 

program slice as the subset of statements and control predicates of a given program that 

potentially influence the values computed at a specific point in that program. Weiser 

(1982) offered a formal defmition of a slice S as a executable program extracted from 

program P by eliminating statements zero or more statements, such that S and P halt on 

the same state trajectory T associated with input I. Francel and Rugaber (1999) offered 

a formal defmition of a program slice relative to statement S and variable X as only 

those code statements that might affect the value of X at statement S. 

Program slicing can be differentiated in numerous different ways. Dynamic 

slicing versus static slicing is one common distinction. Dynamic slicing assumes fixed 

or specific data input for the program of interest; such that only the code reached, based 

on that specific data, is identified as the dynamic slice. In dynamic slicing, only the 

code statements traversed in the specific execution associated with that specific data are 

preserved as part of the slice. All other code, on the paths not taken based on the data 

provided, is eliminated from the slice. For example, depending on the specific data 

input, one branch of an IF statement would be executed and included in the slice, 

whereas the other would not be reachable and thus would be excluded. Static slicing 

makes no assumptions and imposes no limitations regarding the input data; therefore, all 

code that could be reached, given any data input, is identified as the static slice. In this 

case, both branches of an IF statement would be included in the slice. Statements can 

be gathered or eliminated by backward or forward traversal of the program code. 

Indeed, backward versus forward is another means of partitioning for different slicing 

techniques. 

All slicing techniques require the a priori specification of a slicing criterion. For 

static slicing, this slicing criterion is the pair, that being the program statement location 
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and variables. For dynamic slicing, specific input values are added and the slicing 

criterion becomes the triple, namely, input data, program statement location, and 

variables. 

Numerous variants and hybrid approaches exist. Alternative algorithms abound 

for slicing under various circumstances of slicing objective, language, and programming 

logic. Specific implementations of program slicing in the reverse engineering domain 

include: condition-based slicing, forward slicing, and backward slicing (Ning et al., 

1993); conditioned slicing (Fox et aI., 2000; Danicic et aI., 2005); generalized program 

slicing, recursive slicing, and hierarchical slicing (Huang et aI., 1998); assignment 

reference slicing (Sneed and Erdos, 1996); transform slicing (Lanubile and Visaggio, 

1997); forward dynamic object-oriented slicing (Song and Huynh, 1999); amorphous 

slicing (Binkley et al., 2000); semantic slicing (Ward 2001; Ward et al., 2005); and 

high-level architecture slicing (Zhao, 2000). In addition to its use in reverse 

engineering, program slicing has been successfully applied to other domains including 

software debugging, program understanding, parallelization, program differencing, 

program integration, software maintenance, and compiler tuning. 

2.6 Formal Methods, Reverse Engineering, and Code 

Extraction 

The term formal methods refers to methods that have a sound basis in 

mathematics. To date, there has been little research specifically performed in applying 

formal methods to the specific problem of business rule extraction. However, the use of 

formal methods in related areas is well-studied. Therefore, this section reviews the 

application of formal methods to reverse engineering and re-engineering projects in 

general, and to the problem of code extraction in particular. 

Liu et al. (1997) reviewed the use of formal methods in the re-engineering of 

computing systems. A five-away classification of formal methods was developed based 

on model-based, logic-based, algebraic, process algebra, and net-based approaches. 

Within the context of this five-way classification, existing formal methods were 

reviewed with respect to their previous application in any reverse engineering domain. 

Consistent with their observation that formal methods are "both over-sold and under­

used," only 4 of the 24 specific formal methods reviewed had been applied to reverse 
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engineering. None of the reviewed formalisms was applicable to all three re­

engineering stages: restructuring, reverse engineering, and forward engineering. 

In research conducted as part of the REDO project, Bowen et al. (1993) 

described the use of formal methods in recovering specifications from COBOL 

applications. The overall focus of this research was to improve the maintainability, 

validation, transportability. and documentation of large software systems. The general 

process was to transform COBOL code using a succession of higher-level languages to 

produce a structured specification in Z++. an object-oriented extension of Z. Input 

COBOL code was cleaned and transformed into equivalent UNIFORM code. The 

intermediate language UNIFORM was developed to facilitate precise verification and 

code transformation. The UNIFORM code was subsequently transformed into a fIrst 

order functional language. This fIrst order functional language was then used to create 

the Z++ representation. With each intermediate step, implementation details were lost 

in favor of greater abstraction. Using the recovered specifications, a specification-based 

approach to maintenance was proposed based on exact the semantic associations 

between code and specifications. 

Blazy and Facon (1997) applied formal methods to the partial evaluation, also 

known as program specialization, of Fortran 90 code. The objective of the overall 

approach was program understanding via the creation of specialized program segments 

based on specific input values. First, an inter-procedural pointer analysis of the code 

was performed. A formal specification of that analysis was developed with different 

formalisms, including inference rules with global defmitions, as well as set and 

relational operators. These formal specifications were subsequently used to implement 

the reduced or specialized program. 

Villavicencio and Oliveria (2001) combined both formal and semi-formal 

methods to reconstruct a formal specifIcation from C language legacy code. The semi­

formal method was code slicing, implemented flIst to reduce the code complexity and 

associated requirements of implementing formal semantics for all program variables at 

the same time. The functional semantics of the resulting code slices were then 

expressed in the HASKELL programming language. The formal basis for specification 
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identification and extraction was the 'algebra of programming' applied in reverse order, 

starting with the identified output variables of interest. 

Gannod and Cheng (1999) applied both informal and formal methods to the 

reverse engineering of large systems written in the C language into formal 

specifications. The overall reverse engineering process involved the construction of an 

informal high-level model of the software, an informal low-level model of the software 

including a call graph, and then, using these informal models, the selection of a specific 

module to which formal methods were applied. One of the major advantages of using 

both formal and semi-formal methods in a combined approach is that by using a semi­

formal technique to guide the formal technique, the resulting formal specification will 

be organized based on the structure of the original program. The strongest post­

condition predicate transformer (sp) and order-preserving transformations were applied 

to the selected module to develop an as-built formal specification. The strongest post­

condition is the strongest condition R that is true after program S executes, when the 

starting specified condition Q is true. This was accomplished by the defmition of C 

language syntax in terms of the formal semantics of the strongest post-condition 

predicate transformer. Eight different C programming language constructs were 

analyzed, including various assignment operators (e.g., = and +=), alteration constructs 

such as if and if-else, iteration operators such as the do-while, while, and for constructs, 

and function calls (Gannod and Cheng, 1996). Semantic formal equivalents using terms 

of the Dijkstra guarded command language were developed. The resulting as-built 

formal specification was then generalized using a formally defmed abstraction match to 

remove undesired algorithmic and implementation details. These techniques have been 

incorporated into a suite of four tools specifically designed to assist with the 

understanding and reverse engineering of C language programs (Gannod and Cheng, 

2001). 

Zhou et a1. (1999) present a language independent technique for formally 

assessing the critical behavior of a legacy system. By inserting assertion points at 

appropriate locations within the legacy code, the state of specific system attributes or 

variables can be monitored and understood. This approach facilitates system 

understanding by monitoring system states, as opposed to explicitly identifying or 

assessing code functionality. Within the context of rule extraction, this approach 
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requires sufficient a priori knowledge regarding specific rule locations within the code 

to assign assertion points at appropriate locations to sufficiently monitor system 

behavior. 

Lanubile and Visaggio (1997) presented a formal method for extracting reusable 

function code from poorly structured programs using the concept of the transform slice. 

Transform slicing potentially avoids the capture of extraneous code, as occurs with 

other slicing approaches. Transform slicing requires knowledge that a function is 

performed in the code and that the function is partially specified in terms of input and 

output data. Thus, a three-part slicing criterion is required for transform slicing: the 

function location, the input variables, and the output variables. Domain knowledge is 

used to identify the input and output variables. To assist with this problem of 

specifying the function location, a scavenging approach, using more generalized 

transform slicing, is used to generate a set of candidate functions from the program 

code. This candidate set reduces the magnitude of human intervention required to 

establish a starting point in the program code for extraction of a particular function. Tan 

and Kow (2001) implemented this transform slicing approach to identify the code 

elements that implement program functionality in SQL programs. 

Fu et al. (2001) present a formal language for representation and presentation of 

business rules that have been extracted from legacy code. The problem of presenting 

extracted business rules as code fragments to a general ~udience is identified. Given 

that constraints can take many forms, the presentation of these constraint rules must be 

adapted to a specific user. The need for a new formal language is based on the 

observation that an extracted constraint can be obscure and difficult to comprehend 

when expressed using some low-level formalisms. The proposed language, Business 

Rule Language or BRL, is a predicate logic based language with a relative small 

number of built-in predicates focusing on constraint reasoning. Four types of 

constraints are supported and can generally be described as domain construction, 

instance restriction, relationship constraint, and instance association. 

Yang et al. (2000) proposed the application of abstraction to reverse engineering 

problems and system specification recovery. For the purposes of this research, 

abstraction was dermed as the act of hiding irrelevant details. A five-way taxonomy for 
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abstraction was developed: weakening abstraction, hiding abstraction, temporal 

abstraction, structural abstraction, and data abstraction. Re-engineering wide spectrum 

language (RWSL) was developed to implement this abstraction approach. RWSL is a 

multi-layered wide spectrum language with a sound formal semantics. Case studies 

were presented describing the recovery of system specifications from programs written 

in C and ADA. Whereas this research focused on the extraction of system 

specifications, as opposed to extraction of individual code elements or rules, this 

approach is potentially an effective way of addressing the need for both a syntactic and 

semantic understanding of a program prior to rule identification and extraction. 

Ward (2001) describes a formal transformation-based approach to source code 

analysis and manipulation, including code extraction. This approach uses Wide 

Spectrum Language (WSL), a general programming language with a theoretical 

foundation and with semantics that are defmedJormally (Ward, 1989). The general 

approach is the representation of a program, or a specific program element, as a function 

between the initial state of a given system prior to program execution and the fmal state 

of that system after program termination. By using a provable, mathematically sound 

transformation from a given programming language to WSL, a provably equivalent 

WSL program can be created. Then, by using provable program transformations within 

WSL, code can be moved, deleted, or merged, as appropriate, and equivalent higher 

level abstractions of the original program can be developed as needed. This general 

procedure of stepwise refmement using provable semantic-preserving changes for WSL 

transformations is described in Bull (1990). Using these equivalent WSL programs, the 

original program logic can be analyzed, specifications derived, or new code generated 

using a mathematically sound transformation from WSL to the new programming 

language. This approach has been successfully used to analyze and/or re-engineer 

programs where the original program code was in ADA, IBM Assembler, BASIC, 

CICS, COBOL, and Pascal (Bennett et ai., 1992; Ward, 1999; Yang and Bennett, 1994; 

Zedan and Yang, 1998). 

2.7 Business Rule Extraction 

Sneed and Jandrasics (1988) reviewed the requirements of transforming software 

code back into specifications. Three distinct semantic levels of software, each with 
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different abstraction levels, were described: the physical level, consisting of discrete 

units of code; the logical level, existing in some form of meta language describing the 

logical processing units; and the conceptual level. a set of abstract entities and the 

relationships among these entities. This conceptual level is what is typically referred to 

as the specification. In retransforming code back to a specification, the rule analyst 

must bridge the gap between the physical level where the program exists, and the 

conceptual level where the business model exists. Although software can be best 

altered or enhanced at the conceptual level, this view is frequently blocked by 

implementation details at the physical leveL A general re-engineering plan is proposed 

where program elements at the physical level are mapped to design elements at the 

logical level. The resulting data and program design elements are then mapped to 

system specifications at the concept level. Within this conceptual or specification level, 

two alternative abstraction models are possible: macro, modeling the target system as 

processes and objects; and micro, modeling the target system as elementary function 

and data elements. 

Aiken et at (1993) reported on attempts to recover business rules, domain 

information, and data architectures from the Department of Defense's heterogeneous 

computer applications. These programs and databases included homegrown database 

management systems, COBOL databases, assembly language code, and MUMPS 

databases. The most difficult aspect of this re-engineering project was the discovery of 

business rules and data entities from the different types of legacy systems. To 

accomplish this, a "divide and conquer" approach was implemented. During the top­

down phase, user screens, reports, and policy statements were reviewed to establish a 

high-level "as-is" business rule and data model framework. Using this high-level 

framework, the individual business and data model components were broken into 

individual components and analyzed. The bottom-up phase included the use of CASE 

tools, and the review of a traceability matrix, the data dictionary and data model, and 

supporting physical documents. Final rule identification and extraction appears to have 

been largely a manual process. 

Ritsch and Sneed (1993) contrasted two alternatives for extracting system 

knowledge and business rules contained in an existing system: static analysis and 

dynamic analysis. Static analysis considers program data structures and program source 
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code, including user interfaces. Dynamic analysis attempts to identify how a system, 

subsystem, or object responds to various inputs, including system function and 

performance as viewed by the user. Static analysis of the program source code and 

database schemes can yield information regarding database structure, database contents, 

entity relationships, program structure, control flow structure, decision logic, flle access, 

and other program communications. However, static analysis cannot identify which 

program components are actually used, provide performance information, or relate 

program elements to a specific business function. Given these weaknesses of static 

analysis, and the typical inadequacy of system documents and the unavailability of the 

original system developers, a dynamic analysis methodology was proposed. This 

dynamic analysis approach identifies business rules as pairs of pre- and post-assertions, 

matching input with a specific program slice. The tool developed for this dynamic 

analysis consists of four elements: an instrumentor, a test monitor, an assertion 

generator, and a database auditor. The instrumentor inserts reporting probes at mUltiple 

locations with the program. The test monitor captures and stores the contents of the 

input-output panel or file for each transaction. The assertion generator matches the 

input and the program path with the output of each system transaction. With this, two 

assertion specifications are generated, one based on the input data, and one based on the 

output data. The database auditor logs the before-transaction state and the after­

transaction state of each database file. These can then be compared and the fields 

altered by the transaction identified. Output from the assertion generator and the 

database auditor can then be combined into either formal or informal speCifications. 

Ning et a1. (1993) described the concept of reusable component recovery, where 

functional components of legacy systems are identified, extracted, adapted, and reused 

in new system development. Whereas this approach has many advantages such as 

reuse, platform flexibility, and size reduction, the approach requires a thorough analysis 

and understanding of the legacy code, which is described as a "difficult, human 

dependent, and time-consuming task." To assist with this task, a tool-assisted program 

segmentation approach to component recovery and rule recovery was described. This 

two-step approach consists of a focusing step that facilitates the identification and 

combination of functional elements, and a factoring step that facilitates extraction ofthe 

focused functional elements into reusable packages. The focusing operation helps the 
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analyst identify program code that is semantically related but may not be physically 

adjacent. Five focusing operations are used: selecting specific statements, call hierarchy 

analysis, condition-based slicing, forward slicing or ripple effect analysis, and backward 

slicing. Focusing creates localized functional code segments. In the factoring 

operation, these code segments are extracted and packaged into independent modules. 

For identifying and extracting reusable components from legacy COBOL systems, this 

program segmentation approach has been implemented in an Andersen Consulting 

proprietary tool, COBOUSRE. This tool supports a variety of code analysis and 

understanding approaches, including system-level analysis, concept or functional 

pattern recognition, data model recovery, and program-level analysis. In addition to the 

program segmentation approach described above, other program-level analysis features 

include: parsing and syntax-directed text browsing; flow analysis, including call graphs 

and control flow graphs; complexity analysis; and anomaly detection. 

Petry (1996) proposed a general methodology for rule extraction from programs 

using the concept of HyperCode, the transformation of a program source code into a 

hypertext-linked format to enable navigation through the program. The objective is to 

speed the learning and understanding of the program logic. By allowing easy 

navigation from one part of the code to another, rule extraction proceeds should proceed 

faster as compared with manual extraction. A general methodology for the use of 

HyperCode in rule extraction was presented. First, data entities of interest are 

identified. Second, the database-enforced relationships between these entities are 

identified. Third, the program code is parsed and the CRUD (create, retrieve, update or 

delete) actions taken by the program on these data items are identified. At this point, 

comments that create hypertext links are inserted into the program code, creating the 

basis for the HyperCode document. Finally, the various procedures. processes, and 

algorithms contained within the program are analyzed. This fmal step is the basis for 

the rule extraction process. Each program block is reviewed by the analyst and 

classified as either part of an overhead process, a decision process, an elementary 

process, or an algorithm. By eliminating the overhead processes, and understanding the 

relationships between the remaining decision processes, elementary processes, and 

algorithms, the business rules are identified and extracted. A prototype implementation 

using COBOL source code was presented. 

22 



Sneed and Erdos (1996) observed that, at that time, little work had been done on 

business rule extraction from real programs because the concept of business rule 

extraction had not been adequately expressed in an operational framework. It was 

observed that business rules can be extracted from source code only when four 

preconditions are met. First, variable names must be meaningful and informative. 

Second, the critical output data must be identifiable. Third, tools must be available to 

strip the program code to the essential elements. Fourth, data flow within the program 

must be identifiable. Reflecting their defmition of business rules (presented in a 

preceding section) and the associated conclusion that the only easily locatable element 

of a business rule is the result, a reengineering tool was developed that uses the data 

result as a point of entry for rule extraction from COBOL programs. Using this tool, the 

first step of the rule extraction process is the identification of all assignment statements, 

including the location within the code where the target result is assigned. Next, the 

conditions that trigger these assignments are identified. These conditions are then 

linked with the associated assignments. The program is reduced to only those 

statements, the business rule, that create the target result. With this tool, the user 

identifies the result, and the other business rule elements are identified automatically. 

Huang et a!. (1998) identified five business rule extraction criteria: 

1. The extracted business rules must be a faithful representation of the 

software. 

2. Different groups will require different representations of the extracted 

business rules. Therefore, business rules must be represented in a 

hierarchical manner. 

3. Business rules must be expressed in the domain vocabulary of the 

specific business application. 

4. Because of the size and/or complexity of most activities, automatic rule 

extraction will be difficult, if not impossible. Therefore, the ideal rule 

extraction tool should be interactive and allow human assistance. 

5. The extracted business rules should be in a form that is usable in other 

software maintenance activities, mapping between rule and code, and 

vice versa. 

23 



Consistent with their data transformation defmition of business rules, a data-centered 

approach to rule extraction from COBOL programs was used. This rule extraction 

approach involved four steps: variable identification; slicing criterion identification; 

code extraction using generalized program slicing; and rule representation. The first 

step was to identify the important variables that are or can be used to express business 

rules. Only a small subset of the many code variables in typical business application is 

suitable for expressing business rules. Code variables were classified into various types, 

such as domain data, program data, local data, global data, input data, output data, 

constant data, or control data. This classification can be conducted by either parsing the 

code directly or by analyzing dependence graphs. Once this classification has been 

conducted, two heuristic rules were presented to identify input and output variables as 

domain variables of interest. Having identified these critical domain variables, the 

slicing criterion was established and the relevant code was then extracted using 

generalized program slicing. The objective of generalized program slicing is to extract 

only the code that either affects or is affected by the identified critical domain variables. 

Six additional heuristic rules for slicing criterion and slicing algorithm identification 

were presented. Given the complex nature of most rules, recursive slicing, or high-level 

abstraction and hierarchical slicing was recommended for most circumstances. The 

fmal step was rule presentation. Three alternatives were identified, depending on the 

targeted user of the extracted rule: code view, where rules are represented as code 

fragments; formula view, where rules are represented as variables and functions; or 

input-output dependency view, depicting the dataflow relationships among the 

variables. Selection of the specific representation of the extracted business rules is 

dependent on the target audience that will be using the business rules. 

Sneed (1998) described a well-defined four-phase re-engineering process. First, 

the legacy software is measured. Next, the legacy code is reverse engineered to capture 

the design and evaluate to potential for reuse and re-engineering. Then, the legacy code 

is reorganized, restructured. or otherwise converted into separate reusable modules. 

Finally, these re-engineered modules are tested against the original legacy code to 

ensure functional equivalence. A software workbench, SOFf-REORG, developed to 

support this four-phase re-engineering process was described. SOF AUDIT evaluates 

legacy systems using seven complexity metries and seven quality checks. SOFREDOC 
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extracts design information from the code and associated data structures. SOFRECON 

allows program restructuring and program conversion. SOFRETEST allows testing of 

the reengineered programs against the origina1. With respect to program understanding 

and rule extraction, SOFREDOC provides ten basic views of the target program: data 

tree; procedure tree; decision tree; data flow diagram; macro table; constant table; 

business rules; call hierarchy; object reference diagram; and data reference diagram. To 

identify specific business rules, the data results of interest are identified by the user, and 

the SOFREDOC tool uses data flow and control flow slicing to identify the expression 

path for each selected data result. Versions of the tools have been developed for 

Assembler, PUl, and COBOL. 

Shao and Pound (1999) observed that business rules may be implemented in 

different ways in different parts of the system and different techniques may be required 

to recover them. Rule extraction techniques were classified into two broad groups, data 

understanding techniques and program understanding techniques. The objectives of 

data understanding techniques are to recover conceptual data models. Inputs for data 

understanding techniques are schema, data, program code, and transactions. Data 

understanding techniques are useful in recovering structural rules buried in the data and 

associated metadata, but they do not identify rules contained in the application 

programs. The objectives of program understanding techniques are to recover business 

rules, especially constraint and behavior rules, from these application programs. Input 

for program understanding techniques is straightforward - the program source code. 

The great majority of current program understanding techniques attempt to extract and 

describe the components of a given program syntactically. However, syntactic analysis 

does not reveal or consider the meaning of the program, and thus there is a growing 

interest in trying to extract and understand programs semantically. With regard to this 

semantically based approach, most techniques rely on a knowledge-based approach, and 

few tools currently exist. Most program understanding techniques do not analyze the 

recovered code or rules in relation to the database systems. Program-understanding 

techniques are most useful where business rules are embedded in programs only. To 

address this problem, a conceptual plan was presented for a data-centered, program 

understanding approach that attempts to integrate both data understanding and program 

understanding techniques. Using this approach, both databases and programs are 
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analyzed together to extract constraints that may be located in application programs, 

data dictionaries, triggers, or stored procedures. The proposed approach consisted of 

three stages: preparation, extraction, and presentation. The preparation stage includes 

schema tools and parsing tools. The parsing tools are used to convert a program into a 

generic representation so that different source programs in different languages can be 

analyzed together. Schema tools are used to extract the conceptual data modeL The 

extraction tools are used to analyze the generic programs and databases created with the 

parsing tools and schema tools, respectively. The presentation tools allow the extracted 

business rules to be presented differently to different users in a form that is most 

meaningful to them. 

Sellink et aL (1999) investigated restructuring of programs written in mixed 

languages, in this case COBOL interspersed with CICS. The inclusion of CICS in 

programs results in a unique challenge in that an event-driven system structure is 

created independent of the host language, in this case, COBOL. Whereas this research 

was conducted to demonstrate the substantial improvement that could be achieved in 

maintainability, the experiences are equally as important and applicable to rule 

extraction through the improved understandability of program code. This program 

restructuring approach invo ]ved four steps. First, exception handling by the problematic 

CICS statements, including the HANDLE statement, was eliminated. Next, GOTO 

logic, which result in unstructured code, was removed, and control flow was structured 

into a series of subroutines, in this case PERFORM structures in COBOL. Next, the 

processing logic was restructured by removing explicit jump instructions and 

eliminating redundant code. Finally, the code was repartitioned so that the transaction 

processing logic was isolated from the business logic or rules. With this approach, all 

CICS commands are replaced with COBOL CALLs to a wrapper, allowing elements of 

the old program functionality and the associated the event-driven structure to be 

implemented in a modern Janguage such as C++ or Java. 

Ulrich (1999) described a process of code segmentation and code reduction to 

facilitate rule identification and extraction. In genera~ business rule extraction requires 

a high-level assessment of the target application so that the system can be segmented 

prior to actual rule extraction. This segmentation process may include resolving 

identified program weaknesses, restructuring convoluted logic, splitting large modules, 
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and variable name rationalization or enrichment. Although these code improvement 

techniques may ultimately simplify the rule extraction process, the time and effort 

required to accomplish these high-level assessment tasks should be carefully considered 

before beginning. Only about 20 to 30 percent of source code within a given 

application relates to actual business rules; the remaining 70 to 80 percent of the code 

typically deals with non-business logic, such as physical operation, execution, and 

environment requirements. A general procedure for identifying and subsequently 

discarding this non-business logic and code was presented. This procedure requires the 

identification of specific code or program elements that will not contain business rules, 

including syntactically dead logic, semantically dead code, initialization logic, 

input/output logic, output area and report build logic, VO status checking, error handling 

logic, data structure manipulation, special environment logic, and extraneous and 

superfluous logic. Once identified, these non-rule program and logic structures can be 

ignored, and the remaining portions of the code searched for program and logic 

structures that may contain business rules. These rule-containing structures may include 

those leading to the creation of a specific output variable, those linked to a specific 

conditional, or those specifically associated with an input transaction. Rules that are 

identified can then be logged for evaluation and possible reuse. 

Numerous researchers have investigated the use of visualization techniques to 

elicit program structure from a variety of different program languages. Whereas an 

understanding of program structure does not explicitly identify business rules, enhanced 

program structure understanding can assist the rule analyst in the identification of 

critical program segments that may contain important business rules. 

Call graphs represent the most basic and possibly the most widely used visual 

representation of program structure. Call graphs identify and present calls between 

entities in a program, thereby representing binary relationships between entities in a 

program. Murphy et a1. (1996) conducted an empirical quantitative evaluation of five 

different call graph extractors for the C language. Substantial variation in output was 

observed between the five extractors, with most returning different call information 

from the same test program. This was largely due to different treatment of program 

elements such as macros, function pointers, and inconsistent interpretations of syntactic 

constructs. 
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Other researchers have extended the call graph paradigm to further enhance user 

functionality and facilitate program structure understanding. Feijs and de Jong (1998) 

described a proprietary 3-D visualization system in which various program module 

types are displayed as different LEGO-like bricks, and the interrelationships of these 

modules are depicted as different colored arrows. The resulting interconnected web of 

program modules and relationships are displayed such that different views, scales, and 

levels of information can be selected by the analyst. Mancoridis et al. (1999) developed 

a graphical clustering tool that created a system decomposition diagram by treating 

clustering as an optimization problem. Within a test system, modules and dependencies 

are mapped to Module Dependency Graph (MDG). Formally, a MGD is the set (M, R) 

where M is the set of named modules within a system and R is the set of dependencies 

between modules. The graphical clustering tool, Bunch, generates a visually simplified 

graph through the automatic and user-directed specification of subsystems or clusters of 

program modules. In contrast to completely automatic systems, this approach is 

especially useful in programs with a large number of modules, as the number of 

potential subsystem partitions grows exponentially with the number of program 

modules. 

Storey and Muller (1995) investigated the use of a specialized nested graph 

technique, the fisheye technique, in the visualization of program structures in very large 

legacy systems. Nested graphs are composed of nodes, representing software artifacts, 

and of arcs, representing dependencies between these artifacts including call 

dependencies. Nodes and arcs can be either atomic or composite. Composite nodes 

represent software subsystems, and composite arcs represent a collection of 

dependencies. Through the nesting of nodes, the hierarchical structure of the system 

can be represented. Nested graphs allow multiple levels of abstraction to be visualized. 

Fisheye techniques allow the user to investigate a specific subsystem graph by 

selectively highlighting nodes within a specified area of interest, while simultaneously 

reducing the remaining portion of the graph. This traditional fisheye approach was 

expanded with the Simplified Hierarchical Multi-Perspective (SHriMP) technique, 

which creates views that can show multiple graphical perspectives of the program 

concurrently. 
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2.8 A General Classification of Rule Extraction Techniques 

As different legacy knowledge systems present different challenges, most rule 

extraction experiences presented in the literature include the use of mUltiple extraction 

techniques. Based on this literature survey, the following nine-way, general 

classification of rule extraction techniques is presented. In practice, actual rule 

extraction typically involves several of these nine techniques used in a sequential 

manner. 

Semantic Enrichment - This class of techniques assists the human analyst in the 

semantic understanding of the program and the associated business rules. Semantic 

enrichment can be applied to any program entity name - variables, constants, functions, 

procedures, etc. Numerous researchers (Shao and Pound, 1999; Sneed and Erdos, 1996; 

Ning et at, 1993; Aiken et a1., 1993) have identified the importance of meaningful and 

understandable entity names as a critical element of rule extraction. This technique 

attempts to address, at the most basic level, the recurrent need to link the semantic 

elements of the system at the conceptual level with the syntactic elements of the code at 

the operational level. The value of this technique is directly related to the unavoidable 

fact that most rule extraction techniques still involve a high level of human intervention 

and interpretation in the rule extraction process. 

Code Reduction - This class of techniques deletes those portions of program 

code that do not contain business rules. By eliminating this extraneous code, the 

manual or automatic process of rule extraction is made that much easier. The 

eliminated code typically involves program overhead activities, including input/output 

activities, error handling, and any special environment requirements. Code reduction 

has been directly used by a number of researchers to simplify the rule extraction overall 

task (Ulrich, 1999; Sneed and Erdos, 1996; Petry, 1996). Given tbat 70 to 80 percent of 

a typical program is not related to business rules (Ulrich, 1999), code reduction can be 

used to significantly reduce the magnitude of the rule extraction task. Within the 

context of the EPOID extractable business rule defmition, any program element that is 

not logical or mathematically operative could be eliminated via code reduction. 

Pro&ram Segmentation and Restructuring - This class of techniques focuses on 

the process of breaking large blocks of program code into smaller, autonomous 
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segments or objects that can be more easily managed, reassembled, and understood. 

The general classification of program segmentation and restructuring may include code 

reorganization, reformatting, and remodularization. Numerous researchers have 

incorporated code segmentation into their overall rule extraction strategy (Ulrich, 1999; 

Sneed, 1998; Ning et aI., 1993; Aiken et aI., 1993) to bring semantically related portions 

of the code together physically. The substantial value of code segmentation and 

restructuring in program understanding had been demonstrated experimentally 

(Penteado et a1., 1999; Sellink et aI., 1999). 

Data StructurelModel Analysis - This class of techniques focuses on the 

identification and/or recovery of database conceptual data models so that these models 

can then be used to support other specific rule recovery techniques. These techniques 

typically focus on the recovery of relationship, structure, and constraint information that 

may be available from the schema and associated metadata (Shao and Pound, 1999). 

These techniques may also include deriving or imposing data models on legacy systems 

that may have been developed without a formal data model (Aiken et aI., 1993), or 

extracting data structures from program code (Petry, 1996). Although these data models 

mayor may not contain any explicit business rules, information obtained through data 

structure/model analysis is typically a critical input to other rule extraction techniques. 

Entities recovered using these techniques directly address the EPIOD rule requirement 

that data elements of a rule be precise; that is, unambiguous relative to their knowledge 

and use domains. 

Pro~ram Structure Analysis - This class includes a broad spectrum of techniques 

designed to identify the program hierarchy of functions, procedures, subroutines, 

paragraphs, objects, etc. Specific implementations by various researchers relative to 

rule extraction include call hierarchy analysis (Ning et aI., 1993); procedure tree and 

decision tree analyses (Sneed, 1998); a three-step process of local analysis, use analysis 

(a recursive step), and global analysis (Gannod and Cheng, 1996); and a hypertext­

assisted approach (Petry, 1996). 

Data Flow Analysis - This class of techniques identifies the steps by which data 

inputs become program outputs, and may include the analysis of program decision logic 

and control flow. Researchers that have directly considered data flow relative to 
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business rule extraction include Sneed (1998), Huang et al. (1998), and Gannod and 

Cheng (1999). The output of these data flow techniques can be used to directly address 

the operative component of the EPOID business rule defmition; that is, rules operate on 

input data to create output. In doing so, these techniques are ultimately critical to the 

identification of those portions of the program code where specific, individual rules may 

be located within a given program. 

Program Slicing - Closely allied to data flow analysis, this class of techniques 

focuses on identifying the specific path of data flow through a program relative to a 

specific single statement and variable. Widely used in other aspects of reverse 

engineering, researchers who have used slicing for rule extraction include Huang et al. 

(1998), Sneed and Erdos (1996), and Ning et al. (1993). Because program slicing can 

be used to identify input data and the logical/mathematical operations that are 

performed on that data, program slicing directly addresses the explicit, precise, and 

operative elements of the EPOID extractable rule defmition. 

Visualization - Whereas visualization itself is not a rule extraction technique, it 

is a critical element for program understanding. Visualization can be applied to data 

structure, program structure, and data flow, with each returning a critical and unique 

contribution to the total understanding. Researchers who have included visualization as 

part of a business rule or specification extraction process include Sneed (1998) and 

Gannod and Chen (1996). 

Transformation/Conversion - This class of techniques is typically associated 

with formal methods and involves the transformation of program code into a higher­

level abstracted language. This transformation is accomplished by converting a target 

code element to an equivalent abstraction in the selected formal language. As program 

implementation details are purposefully dropped during the transformatiOn/conversion 

from the target functional language, the resulting abstraction is less cluttered 

syntactically, making it easier to identify the important semantic elements. Whereas 

transformation/conversion has not been used solely for the purpose of rule extraction, it 

has been used in specification/design recovery and code extraction. Researchers who 

have used transformation/conversion for specification/design recovery and code 
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extraction include Bowen et al. (1993), Gannod and Cheng (1999), Yang et al. (2000), 

and Villavicencio and Oliveria (2001). 

2.9 Problems with Existing Rule Extraction Approaches 

Based on this literature survey, rule extraction techniques reported in the 

literature have one or more critical shortcomings that compromise their usefulness or 

applicability to rule extraction from heterogeneous systems. A discussion of these 

specific problems follows. 

Firstly, there is substantial variation among researchers and practitioners 

regarding exactly what constitutes an rule. Although this is not a research failure per se, 

it does highlight the fundamental issue that various researchers and practitioners have 

different end-points, or expectations, regarding the rule analysis and/or extraction 

process. As a result, it may be difficult, or impossible, for one to use another's specific 

methodology or associated tool if that methodology or tool embodies different 

expectations regarding what constitutes an rule. This lack of a clear standard regarding 

what constitutes an rule makes the development, implementation, and assessment of a 

general rule analysis and/or extraction process, consistent across languages and 

platforms, very difficult. The target of the extraction process must be clearly defmed, 

and agreed and accepted prior to initiating a rule extraction project on a heterogeneous, 

multiple language system. 

Secondly, many existing approaches and the related tools are language specific. 

Frequently, they are focused on unique and language-specific syntax, or on language­

specific structures, such as pointers in the C language. Although these approaches were 

developed to address the specific problems or circumstances presented by a given 

language, such language specificity may compromise the use of many approaches 

across different languages in a heterogeneous language environment. 

Rule extraction from any existing program requires both the syntactic and 

semantic understanding of the code. Whereas syntactic analysis of a given language 

program can be eventually automated (subject to the problems raised above), semantic 

analysis of that program code requires a knowledgeable expert. Many of the reviewed 

rule extraction techniques attempt to classify, organize, and present language syntax in 
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such a way as to aid in the human-based semantic extraction. Ultimately, the 

knowledgeable human must intervene, interpret the organized information, and then 

perform the actual rule identification and extraction. This yields the third major 

problem: the individual responsible for rule extraction must be expert both in the 

domain of the target rules, and in the domains of the various program languages in 

which these rules have been coded. Such multiple domain experts will be, by their very 

nature, extremely rare. 

Traditionally, this problem has been addressed by the organization of an 

extraction team of multiple expert individuals that, as a unit, satisfies the multiple 

domain expertise requirement identified above. However, this management approach 

results in the fourth problem: the unavoidable inconsistencies of different individuals 

using different approaches for different languages or environments. 

Fifthly, many rule extraction techniques are not mathematically formal or 

complete. The absence of mathematically formal, or semi-formal, elements in most 

current extraction techniques ultimately results in an underlying uncertainty regarding 

the completeness of the technique. An unintended omission of a critical rule or critical 

case would be certainly embarrassing, probably costly, and in the case of certain critical 

systems, possibly catastrophic. Most current techniques provide little basis for 

estimating the completeness of the extraction process and for assessing the possibility 

that a rule has been overlooked. Therefore, any final statement regarding the success of 

a given rule extraction exercise can be only a reasoned opinion, instead of a 

demonstrable and supportable fact. 

Finally, few of the rule models from the reverse engineering domain have been 

applied in the forward engineering domain, and vice versa. In the absence of a 

sufficiently general rule model, rules that are extracted from legacy code may have to he 

transformed into a new rule model before those rules can be used the forward 

engineering of new specifications and code. 
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Chapter 3 

A General Formal Framework for Rule Extraction 

In this chapter, a critical element necessary for a formal approach to rule 

extraction from legacy code is presented - a general formal framework applicable to a 

wide range of legacy languages. Under this rule extraction framework, general 

mathematical formality is introduced by describing a program in an arbitrary program 

language as a set of language elements and structures. Using this framework, if rule 

structures can be adequately specified in terms of that program language, a program can 

be defmitively partitioned into program structures that either are or are not rules. In 

circumstances where a rule cannot be adequately defmed, an alternative, less defmitive 

exclusionary approach is presented. This framework is assessed in relation to two 

programming languages. 

3.1 Set-Based Formal Framework 

Every programming language consists of a fmite set of language elements. For 

the purpose of this analysis, elements are the atomic units of a language that have a 

single meaning, function, purpose, or otherwise represent a single value, entity, group, 

or class. In general, these language elements may include numerical values; variables; 

mathematical operators; logical operators; assignment operators; language-specific 

reserved or key words; language-specific punctuation, separators, delimiters, and 

terminators; and other language-specific commands or tokens necessary for the 

execution of the program code. 

For this analysis, a state-based model of programming is adopted. A state is a 

function mapping a set of variables to a set of values. Programs are created to 

instantiate specific states and sequences of states. These states are defined, expanded, 

modified, selected, and/or sequenced by the programmer to reflect specific knowledge 

of a given domain. These state manipulations are achieved by the choice of specific 

program language elements. In a given programming language, two expUcit examples 

of this state model are the type statement and the assignment statement. With the type 

statement, a specific state variable of a defmed type is created. With an assignment 

statement, a value is bound to a specific variable. Whereas these two examples are 
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direct implementations of the state model of programming, within the context of this 

state model, all program elements support, either directly or indirectly, the underlying 

objective of defming, expanding, modifying, selecting, andlor sequencing states. 

For any given programming language, the syntactic composition required to 

create specific instances of the various language elements is explicitly stated or defmed. 

For example, mathematical operators may be represented as a single symbol (+, -, *, or 

I), and a variable may be defmed as a series of not more than 255 letters and numbers 

starting with a letter. Such instantiation syntax constitutes what most programmers 

know and practice as ''the language." In all languages, these syntactic requirements 

limit the total number of possible unique instances of these language elements. 

For a program written in a given language, a subset of the available language 

elements is used to create the specific language structures that form that unique 

program. These structures are constructed from language elements arranged by the 

programmer in a specific and unique sequence to accomplish an intended task. In the 

state model of programming, these tasks and the corresponding program structures 

always relate to the definition, expansion, modification, selection, andlor sequencing of 

specific states. A basic example of such a structure is the single line of code 'x := 1 ;'. 

Composed of the language elements of variable, assignment operator, number, and 

terminator, this structure dictates that, when executed, the then current state will be 

modified such that the value 1 is bound to the variable x. Within a program, multiple 

language structures can be connected and ordered, and a multi-state state sequence is 

defined by these ordered language structures. If logical branching is incorporated as a 

program structure, varying state sequences may result from the same program structure. 

Thus, a complex structure, composed of mUltiple program structures, can describe a 

wide, and possibly infinite, set of state sequences. However, regardless of the fmal 

complexity of the structures used and regardless of the potential for an infinite set of 

state sequences, in all finite programs, the total number of language structures contained 

in that program is limited and therefore knowable. 

If extractable rule forms can be defmed in terms of the set of language elements 

and structures, and all structures in a given program identified, then each identified 

structure can be assessed as to whether it is, or is not, a rule by whether it matches a 
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previously specified rule structure. If all program structures are identified and can be 

compared in a two-value manner (yes/no) against the specified rule structures, then the 

rule analyst can assert, with mathematical certainty, that all rules of specific form(s) 

have been extracted from the program. If the identified program structures can be 

assessed only in a three-value manner (yes/no/maybe) against possible rule structures, 

then the location and magnitude of any uncertainty regarding what mayor may not be a 

rule can be quantified. 

These concepts can be expressed symbolically using set builder notation. For 

any programming language, let E be the set of all elements of that language, and S be 

the set of all language structures that can be formed from these elements, subject to the 

syntactic constraints of the language. The set of all rules, R, that can be formed in that 

language can be defmed as: 

R = {x I XES A f(x, E, S) } (3.1-1) 

where the function f is an extractable rule defmition function that specifies the 

properties that a rule must have in terms ofthe language elements and structures. 

In the given language of interest, any program, P, can be defmed as a fmite 

subset of all structures S, or P s:: S. Finally, the set of all extractable rules, RE, 

contained in program P can be defmed as: 

RE = {z I Z EPA Z E R } (3.1-2) 

With these equations, the functional requirements of this approach are clear. 

First, a general rule defmition must be developed and expressed as a function in terms 

of specific language elements and structures, as required by (3.1-1). Second, all 

structures contained in a given program must be efficiently identified and elicited. If 

both requirements can be achieved, then the rule extraction process reduces to the 

intersection of these two sets, as described in (3.1-2), and all rules within a given 

program can be identified with certainty. This inclusion approach provides a two-value 

solution to the rule extraction problem in that all structures within a given program 

either are, or are not, a ru Ie. 
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If an acceptable extractable rule defmition function cannot be achieved, then an 

alternative or exclusion approach can be formulated, using this same general 

framework. Using the previously defmed sets P, a given program, and RE, all 

extractable rules within that program, the structures in that program that are not rules 

can be described as the relative complement of these two sets, or: 

P - RE = {z I Z E P /\ Z ~ R } (3.1-3) 

Using this alternative approach, two requirements must be satisfied. First, and as 

before, all structures within the program must be efficiently identified and elicited. 

Second, those structures that are not rules, i.e., Z ~ R in (3.1-3), must be identified. In 

practice, programmers and rule analysts will probably know that certain language 

structures cannot be rules. A comment is one obvious example common to all 

languages. Other specific cases of non-rules will depend on the language, and the 

presumed attributes of rules. Thus, in the absence of a rigorous definition of what is a 

rule, this alternative, or exclusion, approach provides a three-value solution to the rule 

extraction problem: no, maybe, and yes. With this approach, some structures will be 

tagged with certainty and excluded from consideration as non-rules; the classification of 

the remaining structures remains uncertain, as some will, and some will not, contain 

rules. 

Both approaches, given in (3.1-2) and (3.1-3), have their place in practice, each 

with their associated advantages and disadvantages. If an explicit, precise, and 

acceptable definition of an extractable rule can be developed, such as the extractable 

rule definition function f in (3.1-1), then the inclusive approach of (3.1-2) can be 

implemented and all rules can be identified with two-value certainty. If such an 

explicit. precise, and acceptable rule defmition is unavailable, then the alternative 

exclusionary approach (3.1-3) can be implemented. Although incomplete, this approach 

limits and identifies portions of code where rules may exist subject to the certainty and 

specificity of the criteria used to exclude non-rule structures. 
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3.2 Evaluation of the Framework - C Language 

To assess the application of this framework, the inclusion and exclusion rule­

extraction approaches presented in (3.1-2) and (3.1-3), respectively, were evaluated. 

For each of these analyses, a simple rule-based program written in the C language was 

developed and is presented in Listing 3.2-1. In this program, a simple user input, 1 or 0, 

is accepted from the keyboard, and then a reply value of yes or no is assigned and 

displayed based on a simple rule using the user input. By design, the code is very 

simple to provide the basis for clear and unambiguous examination. 

1 #include <stdio.h> 
2 #include <string.h> 

3 int main(void) 
4 { 
5 charrepJy_yes[IO] = "Yes"; 
6 char repJy_no[IO] = "No"; 
7 char repJy[IO); 
8 char user.Jnput ; 

9 /I This is a demo program 
10 printf("Enter 1 or 0 : "); 
11 user_input = getc(stdin); 
12 if(user_input == '} ') 
13 { 
14 strcpy(reply, reply_yes); 
15 } 
16 else 
17 { 
18 strcpy(reply, repJy_no); 
19 }; 

20 printf(ltAnswer: %s \nit, reply); 

21 
22 } 

return(O); 

Listing 3.2-1: A Simple Rule-Based Program in the C Language 

This example code contains twelve structures. These structures are: two library 

reference structures (lines 1 and 2); a single program block structure (lines 3,4,21, and 

22); four type definition structures (lines 5 through 8); one comment Structure (line 9); 

one input capture structure (line 11); two output display structures (lines 10 and 20); and 
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one logical if structure (lines 12 through 19). Note that the one logical if structure is 

composed of multiple, smaller structures. 

For the implementation of (3.1-2), an extractable rule defmition function is 

required. One element of the defmition of an extractable business rule presented in 

Section 2.4 is that an extractable business rule must be logically or mathematically 

operative. Using this rule attribute and considering the requirement that a rule be a 

structure, the extractable rule defmition function for this analysis will be whether a 

given structure is logically or mathematically operative. Any structure that contains a 

logical or mathematical operator will be declared a rule; any structure that does not 

contains a logical or mathematical operator will be declared a non-rule. 

On applying this extractable rule defmition function to the previously 

enumerated list of structures in the demonstration code, only one structure is found to fit 

the criteria of being mathematically or logically operative - the one logical if structure 

located at lines 12 through 19. This rule structure is highlighted in Listing 3.2-2. No 

other mathematical or logical operators exist. The other structures either contain no 

operators, or contain only assignment operators, e.g., the four type definition structures 

at lines 5 through 8. Subject to the continued acceptance of the extractable rule 

definition function used in this example, one can be mathematically certain, using the 

set requirements specified in (3.1-2), that all rules contained in the target program have 

been identified. 

For the implementation of the alternative exclusionary approach of (3.1-3), no 

extractable rule definition function is required. Instead, only a basic understanding of 

both extractable rules and the C language is needed. For this analysis, it is assumed 

with certainty that comments, library references, output/display structures, and 

block/control statements cannot contain rules. This allows the elimination of lines I, 2, 

3, 4, 9, 10, 20, 21, and 22 as non-rules. It is further assumed with certainty that a rule 

must be operative (i.e., it must do something); this allows the elimination of lines 7 and 

8 as they contain no operators of any kind. These eliminated structures are struck 

through in Listing 3.2-3. Thus, four structures are left that have not been eliminated, as 

presented in Listing 3.2-3: lines 5, 6, 11, and 12 through 19. Subject to a continued 

acceptance of the criteria used to eliminate the non-rule structures, one can be certain 

39 



1 #include <stclio.h> 
2 #include <string.h> 

3 int main (void) 
4 { 
5 char reply_yes [1 0] = "Yes"; 
6 charreplYJlo[lO] = "No"; 
7 char reply[1 0]; 
8 char usecinput ; 

9 1/ This is a demo program 
10 printf("Enter 1 or 0 : "); 
11 user_input = getc(stdin); 

12 if(user_ioput == 'I') 
13 { 
14 strcpy(reply, reply.ses); 
15 } 
16 else 
17 { 
18 strcpy(reply, replY_Do); 
19 }; 

20 printf("Answer: %s \nil, reply); 

21 returneD); 
22 

Note: The extracted rules are shown in bold. 

Listing 3.2-2: Rule Extraction from the C Language Program 
Using the Inclusion Approach of (3.1-2) 

that the eliminated structures contain no rules. However, uncertainty remains with 

respect to whether the remaining code does, or does not, contain any rules, and if so, 

what those rules are. 

The value of the exclusionary approach comes with iterative application. With 

one application using a relatively general defmition of what is not a rule, fifty percent of 

the code was eliminated. From a practical perspective, this dramatically reduced the 

effort necessary by a rule analyst in the further analysis of the target code. For example, 

if on further inspection and reflection. it is determined that all type defmition statements 

cannot be rules, then lines 5 and 6 can be eliminated. With this elimination, only two 

structures remain that can be rules - the user input structure of line 11 and the logical if 

structure of lines 12 through 19. Thus, with two iterations applying the eXclusionary 
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1 #iHell:lse (stsio.~ 
2 #iHell:lSe (striHg.~ 

3 iHt H1£IiH(\'ois) 
4 ( 
5 charrepJy_yes[lO] = "Yes"; 
6 charreply_no[lO] = "No"; 
7 eharreply[lO]; 
g ehar l:lser iHpHt ; 

9 N This is 8 semo program 
10 priHtf("EHter 1 or 0 : "); 
11 usecinput = getc(stdin); 

12 if(user_input == '1 ') 
13 { 
14 strcpy(reply. reply_yes); 
15 } 
16 else 
17 { 
18 strcpy(reply. reply_no); 
19 }; 

20 priHlf(" AH!YWer: %5 \fl". reply); 

21 rettIfH(O); 
22 

Note: The eliminated structures are shown in slriltelhretlgh. 

Listing 3.2-3: Rule Extraction from the C Language Program 
Using the Exclusion Approach of (3.1-3) 

approach of (3.1-3), the original program containing twelve structures has been reduced 

to two structures that may, or may not, contain rules. Therefore, in the absence of a 

formal definition of an extractable rule, as required for the application of the inclusion 

approach of (3.1-2), the exclusion approach of (3.1-3) allows an orderly approach to 

significantly reducing the size of the code that must be assessed for rules using other 

means. 

3.3 Evaluation of the Framework - Wide Spectrum Language 

To assess the issue of language specificity under this general framework, a 

second program analysis and rule extraction was conducted. This second assessment 

was implemented based on the translation and transformation of an original source 
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program into an equivalent Wide Spectrum ~guage (WSL) program. Rule analysis 

and extraction was then performed on the equivalent WSL program. 

With regard to rule extraction from heterogeneous systems, a WSL-based 

approach has numerous potential advantages. Firstly, using provable, mathematically 

sound transformations, programs in a variety of languages can be converted into WSL, 

thereby allowing its use with potentially any source language. Secondly, extraction 

methodologies for the WSL code could be developed and applied to the transformed 

programs with the certain knowledge that the underlying logical or mathematical 

objectives of those methodologies would be uniformly applied regardless of the original 

system language or paradigm. Thirdly, performing analyses in a single language, WSL, 

will allow the consistent execution of code analysis or rule extraction strategy regardless 

of the initial program language. Fourthly, different programs, written in different 

languages, different styles, and with different levels of extraneous code, e.g., error 

handling code, could be consistently abstracted using WSL. Finally, rules derived from 

different original source programs can be expressed easily in a common, consistent 

form. 

As before, both the inclusion and exclusion rule-extraction approaches presented 

in (3.1-2) and (3.1-3), respectively, were evaluated. For these evaluations, a second 

rule-based program, written in the C language, was developed and is presented in 

Listing 3.3-1. This program accepts the user input of two numerical values from the 

keyboard, mathematically manipUlates these two input values to determine a test value, 

then assigns and displays a reply value based on the comparison of this test value 

against a specified criterion. Although more sophisticated than the previous case 

presented in Listing 3.2-1. this code is very simple to provide the basis for clear and 

unambiguous examination. 

This C code contains 22 structures. These structures are: three library reference 

structures (lines 1. 2. and 3); a global constant defmition (line 4); a single program 

block structure (lines 5, 6, 31, and 32); five type defmition structures (lines 7 through 

11); one comment structure (line 12); two input capture structures (lines 14 and 16); 

three output display structures (lines 13, 15, and 30); five sequential mathematical 

assignments (lines 17 through 21); and one logical if structure (lines 22 through 29), 
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1 #incJude <stdio.h> 
2 #include <stdlib.h> 
3 #incJude <string.h> 
4 #define CRITERION 20 

5 int main (void) 
6 { 
7 char reply_yes[10] = "Yes"; 
8 charreply_no[lO] = "No"; 
9 char reply[lO]; 
10 char buffer[80]; 
11 double inputl, input2, test; 

12 1/ This is a demo program 

13 printf("Enter first input: to); 
14 input! = atof(gets(buffer»; 

15 printf("Enter second input: to); 
16 input2 = atof(gets(buffer»; 

17 test = input 1 + input2 ; 
18 test = test + 2 ; 
19 test = test • 2 ; 
20 test = test + input2 ; 
21 test = test + 2 ; 

22 if(test >= CRITERION) 
23 { 
24 strcpy(reply, reply_yes) ; 
25 } 
26 else 
27 { 
28 strcpy(reply, replYJ1o) ; 
29 }; 

30 printf("111C answer: %s \n", reply); 

31 return(O); 
32 

Listing 3.3-1: A Second Simple Rule-Based Program 
in the C Language 

This rule-based program was translated into WSL. The resulting WSL program 

is presented in Listing 3.3-2. This equivalent WSL program contains only seven 

structures, as compared to the 22 structures in the original C program. These structures 

are: one variable declaration structure (line I, terminating on line 10); two output 
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display structures (lines 2 and 4); two input capture structures (lines 3 and 5); one 

mathematical operation reflecting the transformation of the multi-line local procedure in 

the C code into a semantically equivalent single statement (line 6); and one logical if 

structure (lines 7 through 9) that incorporates related output display. This dramatic 

reduction in the total number of structures highlights one of the major potential 

advantages of this transformation approach to rule extraction and identification, namely, 

that using WSL allows the substantial simplification or abstraction of a target program 

code. Whereas not all circumstances will result in the magnitude of code reduction 

observed here, the elimination of code that is superfluous to the logical functioning of 

the program, either through translation into the streamlined syntax of WSL or through 

the transformation of source code into semantically equivalent WSL code, greatly aids 

in the comprehension of the program and the corresponding identification of program 

components of interest. 

1 V AR < input! := 0.0, input2 := 0.0, test := 0.0 >: 
2 PRINFLUSH("Enter first input: H); 
3 inputl := @Strin~To.-Num(@ReadJjne(Standard_Input..J>ort»; 
4 PRINFLUSH("Enter second input: "); 
5 input2 := @Strin~To.-Num(@ReadJjne(Standard_Input..J>ort»; 
6 test := input! '" 2 + input2 '" 3 + 6 ; 
7 IF test >= 20 
8 TIIEN PRINT("Answer: Yes") 
9 ELSE PRINT("Answer: No") PI; 
10 ENDVAR 

Listing 3.3-2: The Equivalent Program in WSL 

That an extractable business rule must be logically or mathematically operative, 

as presented in the definition of an extractable business rule in Section 2.4, was used 

again as the basis for the extractable rule defmition function required for the 

implementation of (3.1-2). Upon applying this extractable rule defmition function to 

the previously enumerated list of structures in the demonstration code, only two 

structures are found to fit the criterion of being mathematically or logically operative -

the mathematical assignment of the test value (line 6) and the one logical if structure 

(lines 7 through 9). These rule structures are highlighted in Listing 3.3-3. No other 

mathematical or logical operators exist. The other structures either contain no 
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operators, or contain only assignment operators. For example, since the function calls 

in lines 3 and 5 are for string input and manipulation only, and are not related to the 

mathematical or logical manipulation of these strings, these structures are determined 

not to contain any rules. Therefore, subject to the continued acceptance of the 

extractable rule defmition function used in this example, one can be mathematically 

certain, using the set requirements specified in (3.1-2), that all rules contained in the 

example program have been identified. 

1 VAR < inputl := 0.0, input2 := 0.0, test := 0.0 >: 
2 PRINFLUSH("Enter first input: "); 
3 inputl := @Strin~To_Num(@Read_line(Standard_hlput..Port»; 
4 PRINFLUSH("Enter second input: "); 
5 input2 := @Strin~To_Num(@Read_Line(Standard_h1putYort»; 
6 test := inputl • 2 + input2 • 3 + 6 ; 
7 IF test >= 20 
8 THEN PRINT("Answer: Yes") 
9 ELSE PRINT("Answer: No") FI; 
10 ENDVAR 

Note: The extracted rules are shown in bold. 

Listing 3.3-3: Rule Extraction from the WSL Program 
Using the Inclusion Approach of (3.1-2) 

For the implementation of the alternative exclusion approach of (3.1-3), no 

extractable rule definition function was required, only a basic understanding of both 

extractable rules and the WSL language is needed. For this analysis, it is assumed with 

certainty that variable declarations, outpuUdisplay structures, and simple input capture 

structures cannot contain rules. This allows the elimination of lines 1,2,3,4,5, and 10 

as non-rules. These eliminated structures are struck through in Listing 3.3-4. Thus, 

only two structures remain that have not been eliminated - line 6 and lines 7 through 9. 

Subject to a continued acceptance of the criteria used to eliminate the non-rule 

structures, one can be certain that the eliminated structures contain no rules. However, 

given the approach and the associated lack of an adequate rule defmition, uncertainty 

must remain with respect to whether the remaining code does or does not contain any 

rules. 
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1 VAR ( iHfllitl :- G.G, infllit2 :- G.G, test :- G.G >: 
2 PRINFLUSH("BBteF first infllit: "); 
~ iBfllitl :- @StriBgJe NtifB(@ReaaJjBe(St8fldaFa mflliCPert)); 
4 PRINFLUSH("BBteF seeeBd iHfll:lt: "); 
5 iBfllit2 :- @StringJe_NtifB(@Reaa UBe(St8fldaFd mIM Pert)); 
6 test := input! * 2 + input2 * 3 + 6 ; 
7 IF test >= 20 
8 THEN PRINT("Answer: Yes") 
9 ELSE PRINT("Answer: No") FI; 
1(:) BNDVAR 

Note: The eliminated structures are shown in stFike!hr8ligft. 

Listing 3.3-4: Rule Extraction from the WSL Program 
Using the Exclusion Approach of (3.1-3) 

3.4 Observations 

Although purposefully limited in scope, these studies highlight the requirements, 

similarities. advantages, and limitations of the application ofthis general framework and 

the two related approaches to rule extraction. Both the inclusion and exclusion 

approaches require the identification of all structures contained in the target code. 

Complex structures that may be composed of multiple structures or structures within 

structures must be resolved and decomposed into relatively simple structures that can be 

analyzed against a rule defmition or rule model, in this case, the extractable rule 

defmition function of (3.1-3). Given the very limited size of these demonstration 

programs, identification of all structures at the appropriate level of detail was a simple, 

straightforward matter. However, if the original target program is lengthy, or if the 

original program language is either poorly documented or little known to the rule 

analyst, or both, then the identification of all program structures in the original program 

can be a formidable mechanical and logical task. Given lengthy source code, the 

possible number of structures will increase exponentially with the number of lines of 

code, making it difficult to efficiently identify all structures within a program. As 

demonstrated in the WSL examples, program conversion potentially allows the 

substantial simplification or abstraction of the target program code, thereby reducing the 

potential magnitude of the problem. Nonetheless, the 'state explosion' associated with 

lengthy code represents a potentially significant scalability issue regarding the 
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application of this formal framework to real world rule extraction problems, regardless 

of the language on which the extraction activities are based. 

The two approaches to rule extraction differ dramatically with regard to the 

necessity for and application of a suitable rule defInition. The inclusion approach, 

based on (3.1-2), requires an explicit, precise rule defmition. If such a rule model or 

rule defmition can be developed and applied to the target program language, then all 

rules can be extracted from the target program code with absolute, mathematical 

certainty. Conversely, the exclusion approach, based on (3.1-3), requires no a priori 

defmition of what constitutes a rule, only an ordered understanding of what is not a rule. 

Consistent with that compromise, the exclusion approach affords no mathematical 

certainty whether the extracted structures contain only rules or other non-rule structures. 

Therefore, all subsequent research presented in this thesis will use the inclusion 

approach. 

Therefore, to achieve the stated goal of developing a suitable formal 

methodology for rule extraction to legacy code, two obstacles must be overcome. 

Firstly, a flexible but formal model of a businesslknowledge rule must be developed that 

can be applied to a diversity of legacy code. Secondly, a formal approach regarding the 

potential scalability issues in real-world code must be devised. A fonnal model of a 

business/knowlcdge rule is presented in Chapter 4 and an algebra describing the 

application of that rule model is presented in Chapters 5 and 6. Potential scalability 

issues are addressed in Chapter 7 using the visual formalisms of statecharts. 
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Chapter 4 

Temporal Logic and Rules 

One of the critical impediments identified in Chapter 2 is the lack of a general 

rule defmition that can be applied uniformly and consistently in the analysis of legacy 

code and in the execution of the corresponding rule extraction. In this chapter, a forma~ 

general model of a rule is developed, general in that it can be adapted to the variety of 

languages and programming paradigms that might be encountered in different legacy 

code applications. 

4.1 A State-Based Model of a Rule 

A state is a function mapping a set of variables to a set of values. As most 

legacy code languages can be analyzed readily in terms of state variables and the 

operations that change the values bound to those variables, it is convenient to 

conceptualize most legacy code programs, and the rules contained therein, in terms of 

states and state transitions. Therefore, a simple rule can be described informally as a 

state transition from an initial state to a fmal state occurring only when a specified well­

formed conditional is satisfied. Using this descriptive model of a rule, consider the 

following three-tuple: 

where: 

<I,o, C> (4.1-1) 

1: = set of valid states, such that Sin/lial. Sjinal E 1:, 

0= transition relationship, relating Sjnilja/ to Slmal. and 

C = properly formed condition that must be satisfied for the state 
transition relationship described by 0 to occur. 

Several general points merit note regarding this general descriptive model. 

Firstly, the state variables used in 1: can represent any component, object. or property of 

interest. Secondly, no limitations are placed on the nature of the transition relationship 

O. This transition is expressed as a relation and not a function to allow for non­

deterministic rules. Therefore. for a given rule, mUltiple alternative fmal states may 

48 



result for a single initial state. Thirdly, the use of the state descriptors initial andfinal 

are relative to a single rule, where each transition described by a rule will have an initial 

and fmal state. Within this context, more sophisticated rules and rule-based programs 

can be formed by defming mUltiple rules and linking those rules together, such that the 

Sfinal resulting from one rule may then be used as the Sinitial for a subsequent rule. 

A critical issue in the refmement of the basic rule model presented in (4.1-1) is 

the nature of the condition, C, that mu st be satisfied for the transition from Sinitial to sjina/, 

as described by the transition relationship 0, to proceed. As described below, the form 

of this conditional is a critical factor in determining whether a given structure 

constitutes a rule. Consider the following simple assignment: 

x:= 1 (4.1-2) 

Using the rule model presented in (4.1-1), this assignment is not a rule, as it does not 

include a condition. To include a condition, this simple assignment can be rewritten as 

the following if-then conditional: 

if true then x := 1 (4.1-3) 

In both cases, x will always evaluate to 1. Although the second form (4.1-3) includes a 

condition (Le., 'if true'), the form of the conditional dictates that x always evaluates to 

1. To that end, no state knowledge is required to evaluate x. In either form, the variable 

x always will be assigned a value of 1. Thus, both statements are unconditionally true. 

Borrowing from the concepts associated with the programming language PROLOG, 

statements that are always unconditionally true are facts (Bratko, 2001), and not rules. 

Formally, this argument can be made using propositional logic. Let the atomic 

proposition Q represent (4.1-2) and let the conditional presented in (4.1-3) be described 

using implication as true::) Q. From propositional logic, true::) Q == Q. Therefore, 

(4.1-2) and (4.1-3) are logically equivalent. Based on this proven logical equivalence, 

because (4.1-2) is not a rule by definition, (4.1-3) is not a rule by extension. 
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Now consider the following modified if-then conditional: 

if y = true then x := 1 (4.1-4) 

In this case, the evaluation of x to 1 depends on the state of y. The state of x is no longer 

certain. This conditional is formed such that the future value of x is dependent on the 

value of y, and not on the invariant form of the condition as in the previous example. 

Extending the previous analysis using propositional logic and letting the atomic 

proposition P represent y = true, (4.1-4) can be represented using implication as p::J Q. 

Without additional knowledge regarding the current state of P and the application of an 

inference rule, no further simplification of (4.1-4) can be made, supporting the 

conclusion that (4.1-4) if fundamentally different than (4.1-2) or (4.1-3). 

Therefore, for the purposes of defming a rule, the properly formed condition 

criterion relates to the mathematical form of the conditional relative to expressing the 

conditions in terms of a state and the associated state variables. Consider the following 

rule-based, two-line program describing a simple two-variable state space and 

incorporating the conditional presented in (4.1-4): 

y:= true 
if y = true then x := 1 

(4.1-5a) 

(4.1-5b) 

. Consisting of an assignment and an if-then rule, this rule-based program will always 

evaluate x to 1. However, this certain evaluation is based on the limited expression of 

knowledge within the program, i.e., that y is specified in the program to be true, and not 

based on the mathematical or logical form of the rule conditional. Whereas one may 

consider this a trivial rule, it is potentially a properly formed rule in that the fmal 

assignment of x is not constrained by the mathematical or logical form of the 

conditional controlling the assignment of x. If the knowledge about the state space 

being modeled were expanded such that y might vary, then x could vary also. In this 

case, this rule-based program is limited only by the knowledge of the state space 

relative to the interaction of the state variables, and not by the fundamental form used in 

the expression of the rule. 
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Therefore, the general concept presented in (4.1-1) is modified such that a 

business or knowledge rule is formally defmed by the three tuple: 

where: 

<~,o, C> (4.1-6) 

~ = set of valid states, such that Sinitial, Sfinal E ~, 

o = transition relationship, relating Sinitial to Sjinal, and 

C = condition that must be satisfied for the state transition relationship 
described by 0 to occur, and must be properly formed relative to 
the state such that C(s) = true for S E ~. 

Whereas this research typically discusses the condition C as a logical conditional of an 

imperative/procedural language, no limitation is imposed with regard to how this 

condition may be implemented. For example, C could be dependent on a event, 

including the receipt of a message, such that the initiation, ongoing execution, or 

completion of such an event would evaluate C to true. Similarly, C could be expressed 

in terms of a group of concurrent actions, or the truth of the conditional is based on 

some set of temporal actions set of past, current, or future behaviors. The general rule 

defmition presented in (4.1-6) has been constructed to permit the analysis of rules in a 

wide range of specifications and program codes and to support various forms of ru Ie 

implementation within those specifications and program codes. 

To further focus on the state outcome of this state-based model of a rule, the 

concept of a rule state is introduced. A rule state is the state (or state sequence, as will 

be discussed later in this chapter) that results from the implementation of a rule, that is, 

the state that results from the transition relationship 0 of a properly formed rule, as 

described in (4.1-6). The rule state of the general rule described in (4.1-6) is sfma]. 

Refining the requirements associated with the rule condition, explicitly 

incorporating the rule state concept, and generalizing to eliminate the use of initial and 

final, the three-tuple formal definition presented in (4.1-6) can be expressed in an 

alternative form: 
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C(s) = true A S' = o(s) for s, s' E ~ (4.1-7) 

where: 

s' = rule state, resulting from the transition specified by 0, 

o = transition relationship, relating s to s', and 

C(s) = rule condition to be satisfied, expressed in terms of the state s. 

4.2 A Very Basic Temporal View of Rules 

Implicit in the description presented in (4.1-7) is a temporal ordering of states. 

As previously defined, the outcome of the rule is the rule state. As the transition to rule 

state s' is conditioned on the environment being in state s, thereby satisfying the 

condition specified by C, and as no environment can be in two states at the same time, 

the rule state s' must occur after state s. These general temporal properties of (4.1-7) 

can be described in the following simplified form: 

where: 

C(s) A S/uturt for s, S' E ~ (4.2-1) 

S' = rule state described by the transition relationship 0 (relating S to 
s) and occurring in the future relative to s, and 

C(s) = rule condition to be satisfied, expressed in terms of the state s. 

As a conjunctive structure, (4.2-1) is true only if both elements of the conjunction hold 

- if the condition expressed in terms of a state s is satisfied and if the state is moved in 

the future into some state s' as defmed by the transition relationship 0. Using the model 

presented in (4.2-1), rules can be described as a conjunctive structure that specifies both 

a state that satisfies the rule condition and a future rule state. Extending this 

description, a rule defmes a temporal relationship between states. As these temporal 

aspects are critical to a formal model of a rule, the following section describes temporal 

logic and Interval Temporal Logic, as tools for expressing rules and reasoning with 

rules. 
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4.3 Temporal Logic and Interval Temporal Logic 

Temporal logic is a powerful tool for the formal reasoning about time and the 

behavior of dynamic systems without requiring the introduction or use of explicit time 

variables. Using temporal logic, time concepts relative to a sequence of states can be 

expressed using different temporal operators, including always (D), sometimes (0), and 

next (0). A comprehensive review of the development and implementation of temporal 

logic is presented in Manna and Pnueli (1992, 1995). 

This research uses Interval Temporal Logic (ITL) , a flexible notation for 

propositional and fIrst-order reasoning about periods of time (i.e., intervals) in hardware 

and software. ITL can be used to reason about both sequential and parallel composition, 

and includes powerful and extensible specifIcation and proof techniques for reasoning 

about critical properties such as safety and live ness (Moszkowski, 1996). As Cau and 

Zedan (1997) have demonstrated that most imperative programming constructs can be 

represented as formulas in ITL, it is well suited for the analysis of legacy code as well 

as the analysis and specification of other non-legacy constructs. Detailed descriptions 

of ITL can be found in Moszkowski (1986, 1994, 2000, 2003) and the ITL homepage 

(STRL, 2006). 

Fundamental to ITL is the concept of the interval - a (in)finite sequence of states 

that describes the behavior of a program or specification over time. Using the states s in 

l:, intervals of time, i.e., sequences of states, can be constructed from l:+, the set of all 

non-empty sequences of states. Such an interval of states is represented by cr and the 

length of that interval is one less than the number of states in that interval. Under this 

definition, a single state is a valid interval, and the length of a single state interval is 

zero. As intervals can themselves be composed of intervals, ITL is highly adaptable to 

both abstraction and refinement, as intervals can be either aggregated or partitioned, 

depending on the specific circumstances. 

Intervals in ITL are described by expressions and formulas. The syntax of ITL 

is presented in Table 4.3-1, where z is an integer value, a is a static variable (i.e., a 

variable that does not change within an interval), A is a state variable (i.e., a variable 

that can change within an interval), v is a static or state variable, g is a function symbol, 

and p is a predicate symbol. Formulas mayor may not include temporal operators. A 
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state formula, in this research denoted by w, is a formula that contains no temporal 

operators. The verity of a state formula for a given interval, that is, a sequence of states, 

is assessed based by the first state in that interval 

Table 4.3-1 Syntax ofITL 

Expressions 
exp ::= z I a I A I g( eXPlI ... , eXPn) I w: / 

Formulae 
/ ::= p(exPl, ... ,exPn) 1-,/111'/\ h I "Iv· / I skip 111 j hi r 

The formal semantics of ITL is listed in Table 4.3-2. The informal semantics of 

some of the ITL constructs key to the analysis of rules and the research presented herein 

include: 

• skip - unit interval 

• II ; h holds over an interval if that interval can be decomposed (or 

"chopped") into a two intervals, a prefix and suffix interval, such that II 
holds over the preflx interval and 12 holds over the sufflx. If the interval 

is infinite, then 11 must hold for that interval. The; operator is read as 

"chop." 

• I holds if the interval is decomposable (i.e., chopable) into a fmite 

number of intervals such that I holds for each of them. If the interval is 

in fmite, it must be decomposable into an infinite number of finite 

intervals for which/holds. The· operator is read as "chop-star." 

The following are some simple ITL formulas and their informal meanings. 

• I = 1 holds for a interval if the value of I in the initial state of that 

interval is 1, regardless of the value of I in any subsequent states that may 

compose that interval. This formula can hold on a single state interval. 

• 1= 2 A skip holds for a two-state interval if the value of I in the initial 

state of that interval is 2. 
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Table 4.3-2 Semantics ofITL 

l'u[v] = cro(v) 
l'u[g(eXPb ... , eXPn)] = g(l'u[eXPl] , ... , l'u[exPn]) 

l'u[za: f] = { X(u) if u # {} 
X (VaIa) otherwise 

where u = {cr'(a) I cr ""a cr' "Mul(J] = tt} 
Mu[p(exPl' ... , eXPn)] = tt iff p(l'u[eXPl] , ... , l'u[exPn]) 
Mu[-,f] = tt iff Ma[J] = ff 
Mu [h 1\ 12] = tt iff Ma [h] = tt and Ma [12] = tt 
Mu [Vv • f] = tt iff for all cr' s. t. cr ""v cr', Mu l (J] = tt 
Mu [skip] = tt iff Icrl = 1 
Mu[h ; 12] = tt iff 
(exists a k, s. t. M ao ... uk UI] = tt and 

((cr is infinite and Mak . ..I12] = ttl or 
(cr is finite and k ~ Icrl and MUk."O"'"i [12] = tt))) 

or (cr is infinite and Ma[Jd) 
Mu [r] = tt iff 
if cr is infinite then 

(exist 10, ••• , In S.t. 10 = 0 and 
MU,n . ..[f] = tt and 
for all 0 ~ i < n, Ii < lHI and MO"lj ... UI

H1 
[1] = tt) 

or 
(exist an infinite number of Ii s.t. 10 = 0 and 

for all 0 ~ i, Ii < li+l and MO"li .•. O"li+l [f] = ttl 
else 

(exist 1o, ... , In s.t. 10 = 0 and In = Icrl and 
for all 0 ~ i < n, Ii < li+] and MUli ... UI

H1 
[J) = tt) 

Souru: m hornol'8l!' at ht1p Ilwwwe .. dmu Ie ukh:.ulitlhomepagol 

• 0/ = 3 holds for interval if the value of / in the second state of that 

interval is 3. Given that the ITL next operator 0 is defmed as "skip ;", 

this formula is equivalent to the formula skip; / = 3 . 

• / = 4 ; 1= 5 holds for interval if the value of I in the initial state is 4 and 

in some later state, but not necessarily the second or next interval, the 

value of I is 5. 

Some frequently used non-temporal derived constructs, temporal derived 

constructs, concrete derived constructs, and derived constructs related to expressions are 

presented in Tables 4.3-3 through 4.3-6, respectively. 
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Table 4.3-3 Frequently used non-temporal derived constructs 

true - 0=0 true value 
false - -,true false value 
Itvh ~ -,(-,It 11.-,12) or 
It:::>h ~ ...,It v 12 implies 

It=h 
~ (It :::> h) A (12 :::> It) equivalent 

3v· I ~ 

...,'r/v· -'1 exists 

Note: Prom the m home POi,at bttpJIwww ..... dmu .. uk/-uu/idhomepap' 

Table 4.3-4 Frequently used temporal derived constructs 

01 ~ 

skip ;1 next 
~ 

Otrue non-empty interval more 
empty 

~ 

empty interval ...,more 
inf :;: true j false infinite interval 
isinf (f) .... 

inf 1\ I is infinite 
finite 

~ ...,inf finite interval 
isfin (f) ~ 

finite A I is finite 
fmore ~ 

more A finite non-empty finite interval 
01 ~ 

finite j I sometimes 
01 ~ ...,0""1 always 
®I .... ...,0...,1 weak next 
<PI ~ I j true some initial subinterval 
CDI .... ...,( <P -./) all initial subintervals 

*1 
.... 

finite j 1 ; true some subinterval 
ril .... 

-,(~ -'/) all subintervals 

~: m home poae II hnpllwww ..... dmu ... uk/"""""Uhomcpaael 
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Table 4.3-5 Frequently used concrete derived constructs 

if /0 then 11 else 12 - (fo II 11) v (-'/0 II h) if then else 
if /0 then 11 ~ 

if /0 then 11 else empty if then 
fin / - D(empty :J I) final state 
sfin / - -.(fin (-.1)) strong final state 
halt / - D(empty == I) terminate interval when 
shalt / - -.(halt (-.1)) strong terminate interval when 
keep / - [liI (skip :J I) all unit subintervals 
keepnow / 

~ 

<v(skip II f) initial unit subinterval 
/w ~ 

isinf (isfin (f)*) infinite chopstar 
fstar (f) - isfin (isfin (f)*) v 

isfin (isfin (f)*) j isinf (f) finite chopstar 
while /0 do 11 ~ (fo II 11)* II fin -'/0 while loop 
repeat /0 until 11 - /0 ; (while -'11 do /0) repeat loop 

Scurte. m bomo P&fICIl hllp 11www<R dmuocukl-uulillhomep&flel 

Table 4.3-6 Frequently used derived constructs related to expressions 

Oexp ~ 

2a: O(exp = a) next value 
fin exp 

~ 

2a: fin (exp = a) end value 
A:= exp 

~ 

OA = exp assignment 
eXPl ::::i exp2 

~ 

D(exPl = exP2) equal in interval 
eXPl +- exp2 

~ 

finite II (fin expd = exp2 temporal assignment 
eXPl gets exp2 

~ 

keep (exPl f-- eXP2) gets 
stable exp ~ 

exp gets exp stability 
padded exp ~ 

(stable (exp) j skip) v empty padded expression 
eXPl <1:v exp2 - (exPl +- eXP2) II padded eXPl padded temporal assignment 
goodindex exp - keep (exp +- exp v exp +- exp + 1) goodindex 
intlen (exp) 

~ 31· (I = 0) /\ (J gets J + 1) II (I +- exp) interval length 

Sou"" m home pallO II httpllwwwo .. elmu K.ukl-c:ouIidhomopagei 

Propositional axioms and rules for ITL are presented in Table 4.3-7. Cau and 

Moszkowski (1996) describe the development and implementation of a theorem prover 

and proof checker tool for ITL using the SRI's Prototype Verification System (PVS). 

This proof tool has been used to develop and verify an extensive library of ITL lemmas 

(STRL, 2006). A summary of selected ITL lemmas from this library that are used in 

this research is presented in Table 4.3-8. 
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Table 4.3-7 Propositional axioms and rules for ITL 

ChopAssoc I- (fo; h); 12 == fo; (h; h) 
OrChoplmp I- (fo v It)ih :J (foih) v (ltih) 
ChopOrImp I- fOi (It v h) :J (fo; h) v (fo; h) 
EmptyChop I- empty; It == It 
ChopEmpty I- Iti empty ==. II 
BiBoxChoplmpChop I- m(fo:J II) A D(h :J /3) :J (fo; h) :J (It; /3) 
StatelmpBi I- p:J m p 
NextImpNotNextNot I- 0 fo :J ..., O""fo 
KeepnowlmpNotKeepnowNot I- keepnow (fa) :J ..., keepnow (...,fo) 
BoxInduct I- fo A D(fo :J e fa) :J Dfo 
InfChop I- (fa A inf); It - (fo A inf) 
ChopStarEqv I- fo - (empty v «(fa A more) j fo)) 
Chopstarlnduct I- (inf A fa A D(fo :J (It" fmore); fa)) :J fi 
MP I- fo:J It, I- fa => I- It 
BoxGen 
BiGen 

I- fo => I- Dfo 
I- fa => I- rn fa 

This overview of ITL is provided as a basis and background for the development 

of the formal rule model presented later in this chapter and the rule algebra developed 

throughout the remainder of this thesis. As necessary, the various elements of ITL 

summarized in this section are used in the development of the rule model and rule 

algebra presented in this thesis. Lemmas introduced later in this chapter and in 

subsequent chapters to defme this rule model and rule algebra have been developed as 

part of this research using ITL 
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Table 4.3-8 Summary of selected ITL lemmas used in this research 

AndChoplmp : 
t (ifo A!I) ;12) :::> (ifo ;!2) A if I ;12» 

ChopAndImp : 

t ifo ; if I A!2» :::> (ifo ;/1) A ifo ;!2» 

ChopOrEqv: 

t ifa ; if I V!2» == (ifo ;/1) v ifo ;12» 

NextAndNextEqvNextRule: 

t (ifo A!}) == h) implies t ({% A Of}) == 0!2) 

NextChop: 
Ho!o;!}) == 0ifO;/I) 

OrChopEqv: 

t (ifo v /}) ;/2) == (ifo ;12) v ifJ ;/2» 

StateAndChop: 
t «w A/a) ;/1) == (W A ifo ;/}» 

StateAndNextChop: 

t «W A 0/0) ;/J) == (W A oifo ;/}» 

StateChop: 
t (W ;/0):::> W 

4.4 Previous Temporal Representations of State Properties 

Various formations using temporal logic have been used to represent and reason 

about the relationship between current and future states and/or state properties. 

Although these formations are not always described as rules, they do demonstrate how 

different states can be linked temporally to fonn coherent logical structures. 

Lamport (1977) introduced the 'leads to' operator to express a liveness property, 

where a liveness property requires that something must eventually happen. The 'leads 

to' operator was defined using temporal operators in Lamport (1980) as: 
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(4.4-1) 

where P and Q are assertions. Under this form, if P is true, then Q will be true 

eventually, either at the same time or at some later time. This concept was modified in 

Owicki and Lamport (1982) where the 'leads to' operator was defmed as: 

O(p:J OQ) (4.4-2) 

Under this formation of the 'leads to' operator, it is always true that if P ever becomes 

true, then Q will be true at the same time or at some later time, where P and Q are either 

immediate or temporal assertions. 

Manna and Pnueli (1990) proposed a hierarchy of related formulations involving 

implication and temporal operators, where P and Q are state formulas or assertions: 

Entailment: o(p:J Q) (4.4-3a) 

Conditional guarantee: P:JOQ (4.4-3b) 

Simple obligation: OP:J OQ (4.4-3c) 

Obligation of exceptional occurrences: OP:::> O(Q 1\ OP) (4.4-3d) 

Response o(p:J OQ) (4.4-3e) 

Conditional persistence: o(p:J OoQ) (4.4-30 

Pers Lc;tence-equ iva lent: P::> OoQ (4.4-3g) 

Reactivity: oOP:::> oOQ (4.4-3h) 

The interrelationship of some of these formulations is evident. Simple obligation is an 

extension of conditional guarantee; conditional persistence is an extension of response; 

and response incorporates entailment and conditional guarantee. Obligation of 

exceptional occurrences is a specific instantiation of simple obligation, as the authors 

observe that it guarantees that Q happens only after some occurrence of P. 

Siewe et aL (2003) used ITL to express an 'always-followed-by' operator for 

reasoning about security policies. This 'always-followed-by' operator is defined as: 
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O(/-::J 0(/; w» (4.4-4) 

where / is a temporal formula and w is a state formula. 

4.5 A Temporal, State-Based Model of a Rule 

As demonstrated in Section 4.4, temporal logic can be used to represent and 

reason about the relationship between current and future states and/or state properties. 

In these previous uses of temporal logic to express rule-like structures, implication has 

been consistently used to express the logical relationship between the formulas 

describing the current and future states. However, and as explained below, implication 

has an undesirable property with regard to the formation of rules - the vacuously true 

case. For implication, the vacuously true case exists when the antecedent is false and 

the consequent is true. The basis for the vacuously true case is evident when an 

implication, /0 -::J 0/1. is expressed in its equivalent disjunctive form, -10 v 0/1. In this 

example, if 0/1 is true, the implication (and its equivalent disjunctive form) will hold 

regardless of the verity of the antecedent /0. Whereas the logical necessity of the 

vacuously true case for implication is not questioned here, it does seriously weaken the 

use of implication as the basis for the formation of rules. This is less a logical problem 

and more an interpretive question of whether the definition of a rule using implication is 

the best alternative for expressing the formal, state-relationship basis for a rule, as 

developed above, and the informal expectations of what constitutes a rule, as previously 

discussed in Chapter 2. 

As descrihed in the previous sections, a rule is a relationship between a state and 

a future state. If the program is in a state or otherwise moved to a state such that the 

consequent of an implication-form rule is satisfied, then that implication-form rule is 

true by definit ion, even if the antecedent is false and the program is not in a state 

satisfying the rule condition expressed by the antecedent. Stated another way, using 

implicat ion to form rules allows one to unequivocally declare that an implication-form 

rule describing the relation between two states is true even though the rule condition 

(i.e., the implication antecedent) is not met; only the consequent need be true for an 

implication-form rule to be true. The vacuously true case conflicts with the intuitive 

expectations of a rule and informal requirements previously presented in Chapter 2 that 
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a rule be both explicit and precise with regard to what conditions must be met for the 

rule to hold. Therefore, an alternative logical formation - other than implication - is 

preferable for the formation and representation of rules .. 

Returning to the very basic temporal view of rules as presented in (4.2-1), a rule 

is conceptually represented as a conjunction of a rule condition, expressed in terms of a 

state, and a future state - the rule state - that results from the enforcement of the rule. 

Generalizing this to consider sequences from ~+, the set of all nonempty sequences of 

states, (4.2-1) can be recast in a form amenable to the use ofI1L: 

C( 0') A O'/ulure for 0', 0" E ~+ (4.5-1) 

where: 

0" = rule state (or sequence of states) occurring in the future relative to 
0' and described by the transition relationship 5, relating 0' to 0" 

where 0" = 0(0'). 

C(O') = rule condition to be satisfied, expressed in terms of the state (or 
sequence of states) 0'. 

The genera] state sequence and temporal concepts presented in (4.5-1) can be 

formalized using IlL and a rule can be described as: 

where: 

(4.5-2) 

fi = temporal (or state) formula in IlL describing a sequence of states 
(Le., the rule condition) that must be met for the rule to hold. 

Ii = temporal (or state) formula in I1L describing a sequence of states 
(i.e., the rule state) that must occur for the rule to hold. 

Regarding the correspondence between (4.5-1) and (4.5-2), fi describes the rule 

condition 0' that must be met;jjdescribes the rule state 0" that must occur for the rule to 

hold; and the use of the I1L next operator 0 specifies that the sequence of states 

satisfying fi must occur in the future relative to the sequence of states satisfying jj 

(subject to the specific semantics of the ITL next 0 operator as presented in Table 

4.3-2). As this rule form uses conjunction, no vacuously true case exists. In this form. 
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the rule is true only if both the rule state, described by ji, is achieved and all rule 

conditions, as expressed inh, are satisfied. 

One fmal element must be added to complete the formalization of the concepts 

presented in (4.5-2). Remembering that a state is a function that maps a set of variables 

to a set of values and that 3 is a transition relationship relating some state sequence 0' to 

some future state sequence a', a' differs from 0' based on changes to specific variables 

as specified by the transition relationship 3. The variables that change values can be 

formalized under ITL using the frame extension described by Cau and Zedan (1997). 

Letting W be a set of state variables, then frame(W) denotes that only the variables in W 

can possibly change in the transformation from 0' to a' as defined by 3. The formal 

semantics of frame, expressed in ITL, are presented in Cau and Zedan (1997). This 

frame extension can be applied to (4.5-2), and the general form of a rule can be defined 

as: 

where: 

W:ji" oji (4.5-3) 

Ji = temporal (or state) formula in ITL describing a sequence of states 
that must be met for the rule to hold. 

h = temporal (or state) formula in ITL describing a sequence of states 
that must occur for the rule to hold. 

W = set of state variables such that frame(W) denotes that only the 
variables in W can possibly change in the state transformation that 
occurs such thatJi and oh hold. 

Using the general form presented in (4.5-3), Ji specifics the rule condition and Ji 
describes the ru Ie state resulting from the rule. When it is self-evident or otherwise not 

necessary that it be explicitly stated, W can be inferred and need not be shown. 

As ITL temporal formulas include state formulas (special temporal formulas 

whose verity is assessed based on only the first state of a sequence of states), (4.5-3) can 

be restricted to only state formulas and expressed as: 

W: Wj" Oli) 
(4.5-4) 
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where: 

WI = state formula in ITL describing the frrst state in a sequence of 
states that must be met for the rule to hold. 

Wj = state formula in ITL describing the frrst state in a sequence of 
states that must occur for the rule to hold. 

W = set of state variables such that frame(W) denotes that only the 
variables in W can possibly change values in the state 
transformation that occurs such that WI and ow) hold. 

Using the general form presented in (4.5-4), WI specifies the rule condition and Wj 

describes the rule state resulting from the rule. Whereas the general form of (4.5-3) will 

be typically used for the general representation and analysis of rules, the state-restricted 

form of (4.5-4) will be occasionally used to express certain provable transformations 

that, although of limited scope, are especially applicable to certain procedural legacy 

code. 

In Cau and Zedan (1997), a specification statement in ITL is described as having 

the syntax of W : f As f in this general specification statement is an ITL formula, f can 

be instantiated with the ITL formulaJi" oli and W: Ji " oli is achieved. Therefore, the 

general rule form of (4.5-3) can be viewed as an extension of the specification statement 

that includes a conjunction of a sequence of states and a future sequence of states, in 

this case described using the ITL next operator o. 

Cau and Zedan (1997) describe the semantics of the specification statement W: f 
as frame(W) "f. Extending these semantics, the semantics of (4.5-3) is given by 

frame(W) " Ji" oli· Applying propositional logic, specifically the elimination of 

conjunction, J; " ojj can be concluded from frame(W) "J;" ojj. This conclusion is 

consistent with the previous assertion that W need not be explicitly stated when it is 

self-evident or can be inferred from the specific rule instance. 

This section closes with a fmal emphasis on the underlying concept that a rule is 

a temporal relationship between states, originally introduced in (4.1-1) and temporalized 

in (4.2-1). Let at and aj be two int.ervals 0 f states such that ai, aj E ~+ and let J; and fJ be 

valid temporal formulas expressed in ITL such that a/ 1= J; and aj 1= fJ. By definition, if 

J; "ojj is true then there is a relationship pruk between Cli and Clj. Whereas this 

64 



relationship could be represented, with sufficient formal development, as aj Prule aj or 

Prule(ai, aj), this relationship will henceforth be described in terms of the general-form 

rule Ji A ot with the understanding that this general form rule describes the temporal 

relationship between cri and aj. 

4.6 Rules versus Rule Execution 

As developed in this chapter, a rule is a relationship between a sequence of states 

and a future sequence of states, and is formally described conjunctively using ITL as 

Ji A ot. Rules can be developed, that is, the relationship described, either 

observationally or prescriptively. If a program or specification is observed to exhibit a 

sequence of states that satisfies Ji and in tpe next state that program or specification 

exhibits a sequence of states that satisfies t, then this behavior can be described by the 

rule Ji A ot. (This observational construction is supported in propositional logic in that 

p, q I- P A q). Similarly, if a program or specification is observed to exhibit a sequence 

of states that satisfies t, and in the previous state exhibits a sequence of states that 

satisfies Ji. then this behavior can also be described by the rule Ji A ot. (Although ITL 

contains no past time operators, this reverse strategy relies on the observation that there 

is a sequence of states that satisfies t, that prior to that sequence there is a sequence that 

satisfies Ji, and that ot is true relative to Ji.) Alternatively, a rule developer may 

prescribe or spccify that, at some time, the program or specification will exhibit a 

sequence of states that satisfies Ii and in the next state will exhibit a sequence of states 

that satisfiesjj. The rule developer may describe this relationship by the ruleJi A ot. In 

all cases, and whether of observational or prescriptive origin, the relationship between 

sequences of states satisfyingJi and ot is described by the general-form ruleJi A ot. 
Whereas a rule may represent a relationship between states, it is only when a 

rule is executed that the future sequence of states embodied in that rule can be achieved. 

Therefore, a rule is executed at a specific time or under specific circumstances with the 

expectation of a specific outcome. The implication form defining the execution of a 

rule can be described by the following lemma: 
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LEMMA: ImpFormExecute 

I- fa /\ o/J implies I- fa:::> ifa /\ 0fl) 

Proof: 

1 fa /\ o/J 

2 fa 

3 fa/\ o/J 

4 fa:::> ifa /\ 0fl) 

premise 

conditional proof assumption 

1, reiteration 
2-3, :::> introduction 

Using ImpFormExecute, the execution form of the rule fa /\ ofl can be described using 

implication as: 

fa -::J ifa /\ o/J) (4.6-1) 

The formation may be clearer if this implication is read as ''fa is sufficient for fa /\ ofl." 

Extending this interpretation, if the state, when the rule is executed, satisfies the rule 

condition described by fa. this satisfaction is sufficient for the imposition and 

enforcement of the relationship described by the rule fa /\ o/J. And with the imposition 

of the rule fo /\ 0fl, the next state satisfies iI. Alternatively, using the traditional 

description of implication as if. .. then, rule execution can be described as follows: if the 

rule condition specified by fa is met then impose and enforce the rulefa /\ ofl specifying 

that the next state will satisfy fl. 

With regard to the state sequences that may result from the rule execution form 

presented in (4.6-1), two alternative state sequences can be described with the 

equivalent disjunctive form of (4.6-1): 

:fa v ifo /\ of 1) (4.6-2) 

As presented in (4.6-2), the state sequence resulting from the execution of the rule can 

be described either by :fa or fa /\ ofl. Stated another way, the execution of the rule 

fa /\ 0/1 will result in either one of two state sequences - one satisfyingfo /\ ofl or one 

satisfying :fa - depending on the state at the time of rule execution. 
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The requirements for and outcome of the execution of the rule fa A ofl using 

implication can be described by the following lemma: 

LEMMA: RuleExecute 

f- fa and f- fa:::> (fa A alI) implies f- oII 

Proof: 

1 fa 

2 fa :::> (fa A 01I) 

3 (fa:::> fa) A (fa:::> of 1) 

4 true A (fa:::> of 1) 

5 fa:::> ofl 

6 ofl 

premise 

premise 

2, distribution of:::> over A 

3, propositional reasoning 

4, unit of A 

1,5, :MP 

Under this lemma, if the program or specification is in a state satisfying fa, and the rule 

fo A ofl is executed, where the logic of that execution is described by the implication 

fa:::> (fa A 01I), then the next state will satisfy fl. 

RuleExecute highlights the critical differentiation between and the logical 

separation of a rule and the execution of that rule. Rules define or describe the 

relationship between the rule condition and the rule state, expressed formally as the 

conjunctive relationship between a sequence of states satisfyingfo and a future sequence 

of states satisfying Of], or fo A 0fI. Rule execution describes the programmatic 

implementation of how this rule is called, executed, and/or enforced. Whereas the rule 

fo A ofl may describe a relation between states and future states, this rule will only 

describe a specific state change to a sequence of states satisfying ofl only when the rule 

is executed. This distinction is critical for the logical and analytical separation between 

the knowledge that rules incorporate and the programmatic implementation of those 

rules. 

Although a slightly shorter proof for RulcExecute is possible, careful analysis of 

the approach used yie Ids another lemma regarding the representation of the 

programmatic implementation of rules with implication. 
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LEMMA: RuleExecuteEqvlmp 

I- fo::> (fo 1\ oli) == fo ::> ofl 

Proof: 

1 fo::> (fo 1\ 0li) == fo::> (fo 1\ ofJ) 

2 fo::> (fo 1\ 0li) == (fo ::>fo) 1\ (fo:J oli) 

3 fo::> (fo 1\ oli) == true 1\ (fo:J of 1) 

4 fo ::> (fo 1\ oli) == to::> ofJ 

tautology 

1, distribution of::> over 1\ 

2, propositional reasoning 

3, unit of 1\ 

RuleExecuteEqvlmp demonstrates that the rule execution form fo ::> (fo 1\ of 1) is 

logically equivalent to the simple implication form fo ::> of 1· Using the conjunctive 

model of a rule as presented in this thesis, RuleExecuteEqvlmp supports a conclusion 

that the common view of a single rule-like structure as implication is actually a logical 

description of the execution of a rule and not a logical description of the rule itself, 

. where a rule is a temporal relationship between two state sequences. 

4.7 Observations 

In this chapter, a rule has been defmed formally as a conjunctive relationship 

between a state sequence and a future state sequence. This relationship is described in 

ITL as the general-form rule fi 1\ ojj. This rule form can be used to either describe or 

specify, either observationally or prescriptively, a temporal relation between a state 

sequence satisfying the rule conditionfi, and a state sequence satisfying the rule stateJj. 

Unlike the traditional use of implication to represent rules, this conjunctive form 

avoids the troubling vacuously true case associated with implication. Using implication 

to form rules allows one to unequivocally declare that an implication-form rule 

describing the relation between two states is true even though the rule condition (i.e., 

the implication antecedent) is not met. This is troubling because the vacuously true case 

conflicts with the intuitive expectations of a rule and informal requirements previously 

presented in Chapter 2 that a rule be both explicit and precise with regard to what 

conditions must be met for the rule to hold. The conjunctive general-form rulefi 1\ ojj 

avoids the problem. However. with courteous regard to the traditional (and arguably 

incorrect) view of rules as implication, proof was given that the execution of the 
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general-form rule, described using implication as/a:::> (fa A a/I), is logically equivalent 

to the simple implication form/a:::> a/I. 

A critical objective in the development of this rule model was the general 

adaptability of the rule model to a variety of programming paradigms, so that it can be 

applied in concert with the general rule extraction framework developed in Chapter 3. 

However, as the goal of many rule extraction exercises is the development of a new 

specification or program that will implement the extracted rules, this rule model should 

be equally adaptable to forward engineering. In the next chapters, a rule algebra is 

developed that describes how the general-form rule Ji A ali can be used to describe 

complicated state sequence in either the reverse or forward engineering domains. 
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Chapter 5 

Rule Algebra - Fundamentals 

The modern word algebra originates from the Arabic word al-jebr meaning 

"reunion of broken parts" (Oxford, 1971) or "reduction of parts to a whole" (Merriam­

Webster, 1998); al-jebr is derived from the Arabic word jabara meaning "reunite, ... 

consolidate, restore" (Oxford, 1971) or "to bind together" (Merriam-Webster, 1998). 

Because the next two chapters are focused on how rules can be created systematically 

from component parts including other rules and then linked to form larger structures, 

these origins of the word algebra are particularly enlightening and appropriate. 

Numerous defmitions for algebras or algebraic systems exist in the modern 

mathematics and computer science canon (Birkhoff and MacLane, 1977; Buchi, 1989; 

Burris and Sankappanavar, 1981; Gill, 1976; Hungerford, 1974; Levy, 1980; Stanat and 

McAllister, 1977). For this thesis, a very general defmition is used - that an algebra is a 

structure composed of sets of objects and operations on those objects (Denecke and 

Wismath, 2002). For this rule algebra, these objects are states and state sequences 

specified by a rule or collection of rules. Using the general formal model presented in 

Chapter 4, a rule algebra is presented that describes the set of operations that can be 

applied to compose, decompose, or transform those rules to describe other sequences of 

states. In this chapter. the fundamentals of this rule algebra are presented. Whereas 

some relatively simple rules are analyzed in the development of the fundamentals of this 

rule algebra. these simple rules are included to demonstrate how this rule algebra can be 

used to describe other simple relations typically presented in the mathematical canon. 

While simple. these fundamental rules and the associated proofs are far from trivial as 

they provide the reader a sound basis for understanding both the rule model and the 

more advanced elements of the rule algebra that follow. In the next chapter (Chapter 6). 

advanced concepts associated with this rule algebra are developed using the 

fundamentals presented in this chapter. 

5.1 Rules, Total Rules, and Rule Systems 

Consider the following general-form rule: 
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fa 1\ oJi (5.1-1) 

This rule is satisfied if the rule conditionfa is satisfied (i.e., true) and the next sequence 

of states satisfiesf}. Assuming the system currently exhibits a state sequence satisfying 

fa, execution of this rule can be performed as described by ImpFormExecute and 

RuleExecute (previously presented in Chapter 4), and ofl can be concluded. However, 

no information is provided regarding the future state sequence associated with or related 

to the non-satisfaction offa. Three cases exist iffa is false, as described below. 

In the first case, as described above, no explicit representation is made with 

regard to the next state sequence in the event of the non-satisfaction of the rule 

condition fa. Stated another way, no complementary rule including -fa as the rule 

condition is specified. Therefore, in the event of -fa, the next state sequence and any 

associated changes in system state are governed by other aspects of the system, and are 

not described by this rule. These controlling elements may include but not limited to 

the presence or absence of an overall frame axiom specifying that state variables do not 

change unless explicitly changed. In the absence of any information about such aspects 

such as an overall frame axiom, or unless redefined by a subsequent formula, the next 

state after -.fa is undefined. 

In the remaining two cases, a rule addressing the non-satisfaction of the rule 

condition is explicitly stated and a resulting rule state sequence specified. In these 

cases, both the satisfaction and non-satisfaction of the rule condition are considered, and 

these complementary rule pairs are referred to as total rules. 

In the second case, if the rule conditionfo is false, a complementary rule can be 

defined that specifies the relationship between the state sequences satisfying -fa and a 

next sequence of states satisfying/2: 

-fa 1\ oJz (5.1-2) 

Applying ImpFormExccute and RuleExecute, when the rule specified in (5.1-2) is 

executed from a state sequence satisfying -fa. the next state sequence will satisfy f2. 
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The coordinated execution of the total rule defmed by complementary rule pair 

/0" ofi and :fa " 012 is described by the following lemma: 

LEMMA: TotalFormExecute 

I- /0" a/I and I-:fa" 0/2 implies I- (fa" a/I) v (:fa" 012) 

Proof: 

1 /0" a/I premise 

2 :fa" 0/2 premise 

3 /0'::) (fa" 0fi) 1, ImpFormExecute 

4 :fa :::> (:fa" 0/2) 2, ImpFormExecute 

5 /0'::) ofi 3, RuleExecuteEqvImp 

6 :fa:::> 0/2 4, RuleExecuteEqvlmp 

7 (/0:::> 0/1) " <:fa:::> 0/2) 5, 6, " introduction 

8 (fa" 0/1) v <:fo" 012) 7, propositional reasoning 

Using TotalFormExecute and given the complementary rule pair /0 " 0/1 and :fa " 0/2, 

the total rule execution form (/0" 0fi) v <:fa" 0/2) may be concluded. In this form, the 

total rule execution form is a disjunction of the two complementary general-form rules. 

This total rule execution form corresponds with the logical form of the ITL expression 

of the concrete derived construct if-then-else, as presented in Table 4.3-5, with the 

notable exception that this total rule form (/0 " 0fi) v <:fa" 0/2) includes the ITL next 

operator in the specification of the rule state. (The if-then-else construct is discussed in 

detail in Chapter 6.) 

The third case is a specialized form of the total rule presented in the previous 

case. For this case, consider the rule W: (/0" 0/1)' For those state sequences that do 

not satisfy /0, a complementary rule can be defmed that specifies that the system state 

remains unchanged: 

W: (:fa" 0/ unchanged) (5.1-3) 
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In this complementary rule, the temporal formula/ullchanged specifies that the system state 

remains unchanged. The formal semantics Of/unchanged are defmed as follows using an 

interpretation Ma that gives meaning to expressions and formulas over an interval 0': 

Ma[funchanged] = true iff for all v E W, Ma[stable(v)ll (5.1-4 ) 

Because the semantics of /ullchanged specifies that all frame variable values remain stable 

(using the ITL stable construct), the explicit statement of the frame W in rules of this 

form will be omitted unless otherwise needed. 

With this, the total rule defmed by the complementary rule pair /0 1\ of} and 

:fo 1\ O/unchanged is used to specify that a system exhibiting a state sequence satisfying /0 

be moved in the next state to a state sequence satisfying /1. Otherwise, if the system 

does not satisfy /0, all state variables remain unchanged in the next state. Applying 

TotalFormExecute to the total rule described by /0 1\ 0/1 and :fo 1\ o/ulIChanged, the total 

rule execution form (fo 1\ 0/,) v (-fo 1\ O/unchanged) is concluded. 

The specific use of form O/ullchanged to formalize the perpetuation of the system in 

the unchanged state is important. The temporal formula O/uru:hanged is defined in ITL as 

skip ;/uII<'hanged, with skip adding one unit interval to the state sequence by definition. 

The semantics of /unchanged specify that no variables in the frame may change value. 

Therefore, the imposition of the temporal formula O/unchanged creates a sequence of two 

identical states .. . SnSn+/ ••• where SII = Sn+/. Lamport (1994) describes such a transition 

as a stuttering step, and Milner (1980) symbolizes such silent and unobservable 

transitions between states as t. Whereas the possible removal of such silent steps in 

some algebras is noted (e.g., Baeten and Weijland, 1990), the purposeful and uniform 

usc of o/UII('htlllflfd allows all rules, including those that intentionally do not result in a 

state change, to be represented using the general rule form.li A ojj. The convenience 

and advantages of this logical consistency will become evident as the rule algebra 

presented herein is developed. 

Frequently. rules are discussed andlor analyzed within the context of a rule 

system. For the purposes of this research, a rule system is defined as a collection of two 

or more related rules. Rules included in these rule systems may be presented 
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individually, expressed disjunctively (as described in the following paragraphs), or 

composed in other ways (as described later in this chapter). As will be demonstrated, 

some multiple rule systems may be transformable into a single general-form rule, but 

there is no requirement that this always hold. No formal restriction is placed on what 

can be described as related with respect to defming a rule system. 

The disjunctive association of rules from a given rule system is often a 

convenient and powerful way to logically associate related rules into a single structure. 

This disjunctive association may be allowed based on reasoning about the specifics of 

given rule system, or may be allowed based on the application of propositional logic. In 

certain rule systems, two rules may be related disjunctively because a third way is not 

given. With respect to rules, this reasoning is generally analogous to, but not directly 

derivative of, the law of the excluded middle. Alternatively, using propositionallogic, 

any rule, regardless of its verity, may be added disjunctively to a true rule (i.e., the law 

of addition or v introduction). This section examines how rules can be disjunctively 

associated, and under what circumstances such associations are accretive with regard to 

a rule algebra in that useful transformations may be enabled by such associations. Four 

disjunctive associations are examined: between rules that share a common rule 

condition; between rules that share a common rule state; between two rules with 

complementary rule conditions; and between two disjoint rules. 

Consider the system depicted in Figure 5.1·1 containing three states (so, SI, and 

92) and two transitions linking the three states. 

Figure 5.1-1: Three-State Rule System with Rules 
Sharing a Common Rule Condition 
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Three state formulas. Woo W1. and Wz. are used to describe this system. where So F woo 

S1 F W1. and Sz F W2. Multiple-state state sequences starting with one of the specified 

states will also satisfy the respective state formula. The two state transitions included in 

this system are described in rule form and organized based on the initial state in the state 

sequence satisfying the corresponding rule condition: 

So 

So 

S1 

Sz 

Wo" OW1 

Wo" OW2 

(5.1-5a) 

(5.1-5b) 

As identified in (S.l-Sa) and (S.l-Sb), the rule conditions for both rules in this 

system are satisfied by state sequences that begin with So. Given that these two rules 

describe the two and only two relations associated with So. these rules with a common 

rule condition can be combined disjunctively as: 

(5.1-6) 

An equivalence transformation to transform these two disjunctively associated rules 

sharing a common rule condition to a single general-form rule is presented in the 

following lemma: 

LEMMA: CommonRulcCondEqv 

Proof: 

I <fa" 0/1) v ifo" 0/2) == <fa" a/I) v (fa" o/z) 

2 <fo " 0/1) v (fa " 0/2) ==/0 " (0/1 v 0/2) 

3 <fa" 0/1) v lfa" o.f2) == /0" olf[ v /2) 

Applying CommonRu1eCondEqv to (S.I-6) yields: 

Tautology 

1. distribution of " over v 

2, ITL (ChopOrEqv) 

(5.1-7) 
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This demonstrates how disjunctively associating two rules sharing a common rule 

condition and then applying CommonRuleCondEqv to that disjunctive structure allows 

the two related rules to be expressed as one equivalent general-form rule. 

Consider the system depicted in Figure 5.1-2 containing three states (so, s], and 

sz) and two transitions linking the three states. 

Figure 5.1-2: Three-State Rule System with Rules 
Sharing a Common Rule State 

Three state formulas, wo, WJ, and W2, are used to describe this system, where So 1= wo, 

SII= WI, and Sz 1= W2. Multiple-state state sequences starting with one of the specified 

states will also satisfy the respective state formula. The two state transitions included in 

this system are described in rule form and organized based on the initial state in the state 

sequence satisfying the corresponding rule condition: 

So 

s} 

S2 

Wo" Owz 
WI" Owz 

(5. I-Sa) 
(S.I-8b) 

As identified in (S.I-8a) and (S.I-8b), the rule states for both rules in this system 

are satisfied by state sequences that begin with sz. Given that these two rules describe 

the two and only two relations associated with S2, these rules with a common rule state 

can be combined disjunctively as: 

(Wo 1\ 0W2) V (WI 1\ owz) (5.1-9) 
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An equivalence transformation to transform these two disjunctively associated rules 

sharing a common rule state to a single general-form rule is presented in the following 

lemma. 

LEMMA: CommonRuleStateEqv 

Proof: 

1 (fa /\ 0f2) v (f] /\ oiz) == (fa /\ oiz) V (f1 /\ oiz) 

2 (fa /\ of 1) V (fa /\ 0f2) == (fa v f1) /\ Of2 

Applying CommonRuleStateEqv to (5.1-9) yields: 

tautology 

1, distribution of /\ over v 

(S.l-IO) 

This demonstrates how disjunctively associating two rules sharing a common rule state 

and then applying CommonRuleStateEqv to that disjunctive structure allows the two 

related rules to be expressed as one equivalent general-form rule. 

Consider the following system of two rules that contain complementary ru Ie 

conditions: 

fa /\ oJi 
-fa /\ of2 

These two rules can be combined disjunctively to form: 

(S.l-11a) 

(S.l-lIb) 

(S.I-12) 

(5.1-12) is the previously discussed total rule form. Applying propositional logic (i.e., 

the distribution of v over /\ and /\ elimination) yields: 

fa v-fa (S.1-13) 
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As demonstrated with (5.1-13), all state sequences will satisfy the rule conditions 

included in the total rule form of (5.1-12). Whereas the verity of (5.1-12) can be 

assured only by either ofl or o/z, (5.1-13) highlights, but does not prove, the basis for 

the disjunctive association of two rules containing complementary rule conditions. 

Consider the following system of two rules that exhibit no obvious relationship: 

fo" 0/1 
h" 0/3 

(5.1-14a) 
(5.1-14b) 

Assuming one of these rules is known to hold for the given system. the other can be 

added disjunctively to form: 

(5.1-15) 

Expanding (5.1-15) with propositional logic yields: 

(5.1-16) 

Given the assumption that one of the two rules at (S.l-14a) and (S.1-14b) holds, the 

verity of (S.1-15) and (5.1-16) is assured. However. in the absence of any additional 

information regarding any other relationships between the contributing formulas and/or 

the corresponding state sequences, no other revealing transformations can be made. 

Although allowable within the propositional calculus (given an assumption that one of 

the two rules is known to hold). disjunctively associating two rules that share no state 

sequences or do not include complementary state sequences as rule conditions offers no 

transformational advantage. 

5.2 Rule Domain, Rule Codomain, and Rule Universe 

Whereas rules as defmed in this thesis are not functions. certain concepts that are 

used to describe functions are useful in understanding rules. In this section, the 

concepts of domain and codomain are adapted to rules, and the derivative concept of the 

rule universe is introduced. 
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5.2.1 Rule Domain 

The domain of a given rule is defmed as the set of state sequences that satisfy the 

rule condition associated with that given rule. Consider the following rule expressed in 

terms of state formulas: 

Wo 1\ ow} (5.2.1-1) 

Under this rule, the rule domain is the set of all states (or initial states in state 

sequences) that will satisfy the specified rule condition woo Consider the following rule 

expressed in terms of temporal formulas: 

(5.2.1-2) 

Under this rule, the rule domain is the set of all state sequences that will satisfy the 

specified rule condition/o. 

Formally, the rule domain domainrult for a general rule rule, defined as /01\ of}, 

is defmed in terms of a state sequence cr as: 

dOlnainrult ~ {cr E ~+ I cr 1= /0 } (5.2.1-3) 

Because the temporal formula / is inclusive of the state formula w, (5.2.1-3) describes 

the rule domain for both (5.2.1-1) and (5.2.1-2). Future defmitions and analyses are 

expressed in terms of temporal formulas only, unless there is an explicit need for the 

distinct presentation of the state formula case. 

With respect to state formulas, it is tempting to think in terms of only a single 

state satisfying a state formula, for example, So 1= woo However, in ITL, any multiple 

state sequence that starts with the specified single state also satisfies the associated state 

formula. Continuing the previous example regarding the state formula WOo soSl1= woo 

SO" .. }S21= Wo, SOSn ... 1= wo, etc. Taken to the limit, an infinite number of state sequences 

could satisfy the relevant state formula. Therefore, for the purposes of this thesis, any 

time a state is specified as satisfying a given state formula, it is understood that all 
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multiple-state state sequences starting with that specified state will also satisfy that state 

formula. Consistent with this convention. the term ''minimum rule domain" is used to 

describe the individual states that satisfy a given state formula, reflecting the 

understanding that any multiple-state state sequences starting with anyone of the 

individual states specified in the domain will also satisfy the respective state formula. 

This concept will also be used in describing the rule codomain and rule universe of rules 

composed with state formula. 

Because the rule domain is a set of states or state sequences, the rule domain for 

a rule system is described as the union of the rule domains of the rules that comprise the 

rule system. Formally. for a rule system rs consisting of n rules rulel through rulen• the 

domain of the rule system rs is described as: 

n 
domainn = U domainrJlk 

1 • 
(5.2.1-4) 

5.2.2 Rule Codomain 

The codomain or range of a given rule is the set of all rule states that are related 

to the states in the rule domain. For a general rule rule, defmed as fa A ofl where a 1= fa, 

a' = oruria). and a' 1= fl. the rule codomain is the set of all rule states that satisfy ofl 

when the rule condition fa is satisfied. The rule codomain codomainrule for a general 

rule rule is dermed as: 

codomainrure ~ {a E domain rule I oru/e( a) } (5.2.2-1) 

For a rule system rs consisting of n rules rulel through rulen• the codomain of 

the rule system rs is described as: 

n 
codomain'J = U codomain,...I, 

1 • 
(5.2.2-2) 
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5.2.3 Rule Universe 

The rule universe represents all state sequences associated with a rule as part of 

the rule condition or the rule state. Formally, the rule universe is defmed as: 

universerule ~ domainrule u codomainrule (5.2.3-1) 

As defmed above, the rule universe includes all state sequences in the rule domain and 

the rule codomain. The union described in (5.2.3-1) is feasible because both domainrule 

and codomainrule are defmed as sets of state sequences. That domainrule and 

codomain rule are both sets of state sequences suggests that the codomain of one rule can 

be the domain of another rule. thereby allowing rules to be related sequentially. 

For a rule system rs, the rule universe for that rule system is defmed similarly: 

universers ~ domainrs u codomainrs (5.2.3-2) 

5.3 Rule Satisfiability 

To be useful, rules must be satisfiable. A rule that is not satisfiable is both 

trivial and useless; it cannot describe relationships between states and represents no 

knowledge. Extending the definition of satisfiability from propositional logic. the rule 

fo" ofl is satisfiable if there exists some set of state sequences such that both the rule 

condition and the rule state are satisfiable, i.e.,jo = true and ofl = true, and satisfiable in 

such a way that conjunction defining the relation between fa and ofl holds. Rule 

satisfiability is closely allied to the concepts of rule domain and rule codomain, as 

discussed below. 

Formally, given a general rule rule defined as fo " of}, the rule condition fo is 

satisfiable if: 

30' E }:+ I 0' 'F fo (5.3-1 ) 

The similarities of this formal defmition of rule condition satisfiability with the 

definition of the rule domain should be noted. Given the necessity of rule condition 
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satisfiability, a rule may not have the empty set for the rule domain. Similarly, the rule 

state/I is satisfiable if: 

3cr' E ~+ I cr' 'r= /1 (5.3-2) 

As a conjunctive relationship, rule is satisfiable if a rule state exists for every 

state sequence that satisfies the rule condition. Formally, given the previously defmed 

rule where/a A 0/1, (J 'r= /0, cr' 1= /I, and cr' = 5rule(cr), rule is satisfiable if: 

'V cr E domain rule I r:f (5.3-3a) 

or 

(5.3-3b) 

Stated another way, if a rule state is not associated with every state sequence that 

satisfies the rule condition, the rule does not describe a valid relation. The similarities 

of this formal defmition of rule satisfiability with the formal defmition of the rule 

codomain should be noted. 

These concepts are readily expandable to total rules and rule systems. For 

example, given a total rule (jo A o/I) V (-fa A 012), the complementary rule conditions/a 

and -fa assure that all states will satisfy a rule condition. If /1 and 12 are properly 

formed, as described in (5.3-3), then the satisfiability of the total rule is assured. 

5.4 Injective, Surjective, and Bijective Rules 

As defmed in this thesis, rules are not functions, and certain concepts used to 

describe functions may not be applicable to rules. The applicability of the terms 

injective, surjective, and bijective to the description and analysis of rules is discussed in 

this section. 

5.4.1 Injective Rules 

A rule is injective, or one-te-one, if all unique state sequences in the rule domain 

result in unique state sequences in the rule codomain. Formally, given a general rule 

rule defined as/o A o/I. rule is injective if: 
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'V ao, ao' E domainrule A 'V aJ, a/ E codomainrule 
I ao:f. aO' ~ aJ::f. aJ' (5.4.1-1) 

Because ao and ao' are elements of domainruIe, then by defmition, ao t= fa and ao' t= fa. 

Similarly, because aJ, aJ' E codomainruk' aJ t= fJ and aJ' t= fl. 

5.4.2 Surjective Rules 

A rule is surjective, or onto, if all state sequences in the rule codomain can be 

reached from the rule domain. However, rule codomain has been previously defmed in 

terms of the rule domain, and by defmition all state sequences in the rule codomain 

must be associated with at least one state sequence in the rule domain. Therefore, all 

rules are surjective rules. Therefore, a classification of rules as surjective is redundant, 

and the term surjective is not used to describe rules. 

5.4.3 Bijective Rules 

A rule is bijective if that rule is both injective and surjective. Because all rules 

are surjective rules, any rule that is injective is also bijective. Therefore, classification 

of such rules as bijective is redundant, and the term bijective is not used to describe 

rules. 

5.5 Inverse Rules and Invertible Rules 

Consider two rules, rule and rule'. By definition, rule' may be described as the 

inverse of rule if: 

a. rule and rule' are injective rules 
b. domainrule = codomainrule' 
c. domainrule' = codomai12rule 
d. Oruk = (OruIe)") 

If these criteria are met, then the sequential execution of rule and rule' will leave the 

system in the state that existed prior to the execution of rule. 

An invertible rule is a rule that can have an inverse rule, although the inverse 

rule need not be specified. Stated another way, for a rule to be invertible, all of the 
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above criteria must be met regarding the rule and the associated inverse rule. Failure to 

meet these criteria can be used to demonstrate that a rule is not invertible. 

5.6 Sequentially Relating Two Rules 

5.6.1 Sequentially Associating Rules Using the General Rule Form 

Consider the following general rule: 

(5.6.1-1) 

This rule is a temporal formula that is itself composed of two temporal formulas - Ii 
describing the rule condition andjj describing the rule state. Because no limitation has 

been placed on the temporal formulas used to express Ii or Ii. and because general-form 

rules are themselves temporal formulas. rules can be used within rules to specify the 

rule state and rule conditions in another rule. Instantiating Ii with fo A 0/1 and 

instantiating jj with /1 " 012. the general rule presented in (5.6.1-1) can be instantiated 

as: 

(5.6.1-2) 

In (5.6.1-2), the rule condition is described by the rule /0 " 0/1 and the rule state is 

described by the rule /1 A 0/2' Because /1 is used both in the specification of the rule 

condition and the rule state. (5.6.1-2) describes a relationship between two related rules. 

Composed in this form. this rule specifies the sequential relationship between the 

common state sequences considered in two different rules. 

This sequential composition using the general rule form is demonstrated using 

the following example. Consider the system depicted in Figure 5.6.1-1 containing three 

state sequences (0'0. O'J. and 0'2) and two transitions linking the three state sequences. 
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Figure 5.6.1-1: Three-Sequence State Transition Diagram 

Three temporal formulas, /0,./1, and /2, are used to describe this system, where 00 1= /0, 

01 1= /1, and 021=/2. The two transitions included in this system are described in rule 

form and organized based on the state sequence satisfying the corresponding rule 

condition: 

/0 A 0./1 

/1 A 0li 
(5.6.1-3a) 

(5.6.1-3b) 

Because these transitions share a state sequence (i.e., the fmal state sequence of one 

transition is the initial state sequence ofthe another transition), the general rule form/; A 

ojj can be applied to relate the state sequences described by each rule. With is rule-form 

sequential composition of these two rules, a new rule is formed that describes a state 

sequence that may result from this system: 

(fa A 0/1) A o(ji A 0li) (5.6.1-4) 

The following lemmas describe some possible manipUlations and reductions of two 

rules sequentially composed using the general rule form as the basis for composition. 

NextAndDistEqv, used in the fol1owing proofs, is presented in Appendix A. 

LEMMA: TwoSeqRulcsEqvl 

Proof: 

1 (fa A 0/,) A 0if, " 0/2) = ifa A 0/,) A 0ifl " 0/2) 

2 (fa A 0/1)" 0ifl A 0/2) =/0" 0/1" 0/1 A ooli 

3 (fa " eft) " 0if, " 0fl) = fo" of, " 00/2 

tautology 

1, NextAndDistEqv 

2, idcmpotence of A 
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LEMMA: TwoSeqRulesEqv2 

f- ifo A 0/1) A 0(/1 A 012) = /0 A 0(/1 A 012) 

Proof: 

1 (/0 A 0/1) A 0(/1 A 012) =/0 A 0/] A 00/2 

2 (/0 A O/J) A 0(/] A 0/2) =/0 A 0(/] A 0/2) 

LEMMA: TwoSeqRulesImp 

f- (/0 A ofi) A 0(/1 A 012) implies f-!o A 00/2 

Proof: 

1 (/0 A O/J) A 0(/] A 0/2) 

2 lOA 0/1 A 00/2 

3 lOA 00/2 

TwoSeqRulesEqvl 

I, NextAndDistEqv 

Premise 

1. TwoSeqRulesEqvl 

2, Aelimination 

The outcomes of both TwoSeqRulesEqv2 and TwoSeqRulesImp are expressed in the 

general rule formfi A ofj. In both cases, the rule condition is /0, In TwoSeqRulesEqv2. 

the rule state is if, A 0/2)' In TwoSeqRulesImp, the rule state is 0/2' 

Applying TwoSeqRulesEqvl to (5.6.1-4), the equivalent form/o A 0/1 A 00/2 is 

obtained and the sequential nature of the original structure is clear. Assuming that at the 

time of rule execution the system satisfies /0, TwoSeqRulesEqv2 is applied in the 

following execution of the rule presented in (5.6.1-4): 

1 
2 

3 
4 
5 
6 

7 

/0 
(/0 A 0/1) A 0(/1 A 0/2) 

/0 A 0(/1 A 0/2) 

/0 ~ ifo A oif] A 0/2» 

0(/1 A 0/2) 

0/1 A 00/2 

ooh 

premise 
premise 

2, TwoSeqRulcsEqv2 

3, ImpFormExecute 
1. 4, RulcExecute 
5, NextAndDistEqv 
Aelimination 

As demonstrated above. sequentially composing the rule system presented in (5.6.1-3a) 

and (5.6.l-3b) using the general rule form into rule (5.6.1-4), and executing that rule 
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from a state sequence satisfying fa results in a state sequence that satisfies oofz. A 

similar result can be achieved by using TwoSeqRuleslmp. This general rule execution 

strategy is applicable to many of the rule transformations that will be presented in the 

chapter and will not be demonstrated again. 

5.6.2 Sequential Composition with Chop 

The ITL operator chop can be used to express the sequential composition of two 

temporal formulas (Moszkowski, 1986). Consider the system depicted in Figure 5.6.2-1 

containing three states (so, s], and sz) and two transitions linking the three states. 

Figure 5.6.2-1: Three-State State Transition Diagram 

Three state formulas, wo, WI. and wz, are used to describe this system, where So 1= wo, 

S} 1= WI, and Sz 1= wz. The two state transitions included in this system can be described 

in rule form and organized based on the initial state in the state sequence satisfying the 

corresponding rule condition: 

So 
s} 

Sz 

Wo /\ ow} 
W} /\ Owz 

(5.6.2-la) 

(5.6.2-lb) 

Because these two rules share a state sequence satisfying WI, the ITL operator chop can 

be used to sequentially compose the two rules. Therefore, the entire system is described 

as: 

(5.6.2-2) 

The following lemma describes how two rules, constructed of state formulas and 

sequentially composed using the ITL operator chop, can be expressed as single general-

form rule. 
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LEMMA: StateTwoChopRulesImp 

Proof: 

1 (wo A OWl) ; (WI A OW2) premise 

2 Wo A (oWl; (WI A OW2)) 1, ITL (StateAndChop) 

3 OWl; (WI A 0W2) 2, Aelimination 

4 OWl; WI A OWl; OW2 3, ITL (ChopAndImp) 

5 OW] ; OW2 4, Aelimination 

6 o(W] ; OW2) 5, ITL (NextChop) 

7 Wo 2, Aelimination 

8 Wo A o(w/ ; OW2) 5, 7, Aintroduction 

Applying StateTwoChopRulesImp to (5.6.2-2) yields: 

(5.6.2-3) 

Using StateTwoChopRulesImp, two rules that have been sequentially composed using 

chop can be expressed as a single general-form rule, where Wo specifies the rule 

condition and WI ; OW2 specifies the rule state. 

Applying NextChop to (5.6.2-3) and substituting the defmition of the ITL next 

operator 0 yields: 

Wo A skip; W/ ; skip; W2 (5.6.2-4) 

In this form, the sequential nature of the composition of (S.6.2-1a) and (5.6.2-1 b) using 

chop is clear. 

As previously discussed, a state formula is satisfied by a single state or the first 

state in a multi-state sequence. Therefore, a second state formula can be chopped to the 

second (or later) state of a given state sequence described by another state formula, 

thereby satL"fying the semantic requirements of the ITL chop operator that the two 

chopped intervals share a common state. Therefore, the sequential composition model 
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can be expanded so that two total rules that do not share a common state formula, and 

therefore common initial states, can be sequentially composed using chop. 

Consider the following sequential composition using the ITL chop operator of 

two general-form rules that do not share a temporal formula: 

(5.6.2-5) 

Applying StateAndNextChop to (5.6.2-5) yields the following equivalent form: 

(5.6.2-6) 

With this equivalence transformation, the two chopped rules of (5.6.2-5) have been 

transformed into a general-form rule that includes a chopped and nested rule in the rule 

state. An alternative transformation of two chopped rules is described in the following 

lemma. 

LEMMA: StateTwoChopRuleslmp2 

Proof: 

1 (wo A Of 1) ; (W2 1\ oh) premise 

2 Wo 1\ (ofl ; (W2 A oh» 1, ITL (StateAndChop) 

3 ofl ; (W2 A 0f3) 2, Aelirnlnation 

4 (ofl ; W2) 1\ (ofl ; 0f3) 3, ITL (ChopAndImp) 

5 Wo 2, I\elimination 

6 Wo 1\ (ofl ; W2) A (of 1; oh) 4, 5, I\introduction 

Applying StateTwoChopRuleslmp2 to (5.6.2-5) yields: 

Wo A (OWl; wz) 1\ (OWl ;.OW3) (5.6.2-7) 

In this form, the sequential aspects of (5.6.2-6) are evident, because (5.6.2-7) is a 

conjunction of three state sequences. And as a conjunctive structure, (5.6.2-7) can 

manipulated with propositional logic to eliminate conjuncts as necessary to achieve the 
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desired fmal form. Stated another way, either Wo A (0/1 ; W2) or Wo A (Ojl ; oh) can be 

concluded from StateTwoChopRuleslmp2. 

Another alternative transformation of two chopped rules is described in the 

following lemma. 

LEMMA: StateTwoChopRuleslmp3 

I- (wo A ojl) ; (W2 A oh) implies I- wo; W2 A Ojl ; Oj3 

Proof: 

1 (wo A Ojl) ; (W2 A Oj3) premise 

2 «wo A 0/1) ; W2) A «Wo A 0/1) ; Oj3) I, ChopAndImp 

3 (wo A ojl) ; W2 2, A elimination 

4 Wo ; W2 A Ojl ; W2 3, AndChoplmp 

5 (wo A Ojl) ; oj3 2, A elimination 

6 Wo ; oj] A Ojl ; oj] 5, AndChoplmp 

7 Wo ; W2 A Ojl ; W2 A Wo ; Oj3 A 0/1 ; oj] 4, 6, A introduction 

8 Wo ; W2 A Ojl ; oj] 7, A elimination 

Applying StateTwoChopRuleslmp3 to (5.6.2-5) yields: 

Wo ; W2 A OWl; OW] (5.6.2-8) 

The sequential composition of two total rules is described in the following three 

lemmas. 

LEMMA: TwoTotalRulcsChopEqvl 

I- «WaD A ola) V (-'Wao A 01a2» ; «Wbo A Ojb) V (-,Wbo A Ojb) 

== (WaD A Of a) ; (Wbo A Ojb) V (WaD A Ola) ; (-,Wbo A 0/b
2

) 

V (-,Wao A 0fa2) ; (Wbo A a/b) V (--.waD A 01a2); (-,Wbo A 0/b
2

) 

or 

I- (rulea,_ V ruleafo/N) ; (ruleb,tW V ruleb/aJu) 

E (rulea,,,,, ; ruleb,,.,) V (rulealrW ; ru1ebtab,) V (rU[eafaiu ; rU[eb,,.,) V (ruleajalu ; ru1ebfab,) 

where: rulea,,,,, ~ (Wao A ala) 
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Proof: 

rulea/ab, ~ ('Wao /\ 0/a2) 
ruleb,,,,, ~ (Wbo /\ a/b) 

ruleb/alJ. ~ ( ,Wbo /\ 0/b2) 

1 «wao /\ a/a) V (,wao /\ 0/a2» ; «Wbo /\ alb) V (,Wbo /\ 0/b2» tautology 

== «wao /\ ala) V (--,Wao /\ 0/a2» ; «Wbo /\ alb) v (,Wbo /\ a/b) 

2 == (wao /\ a/a) ; «Wbo /\ a/b) v (,Wbo /\ 0/b2» I, ITL 

V ('Wao /\ a/a) ; «Wbo /\ a/b) V (,Wbo /\ a/b) (OrChopEqv) 

3 == (Wao /\ a/a) ; (Wbo /\ alb) V (Wao /\ ala); (,Wbo /\ 0/b2) 2, ITL 

V (,wao /\ a/a,} ; (Wbo /\ alb) v (,Wao /\ O/a,} ; (,Wbo /\ O/b,) (ChopOrEqv) 

LEMMA: TwoTotaIRulesChopEqv2 

I- «Wao /\ ala) V (,wao /\ 0/a2» ; «Wbo /\ a/b) V (,Who /\ alb)~ 

= Wao /\ O(/al ; «Wbo /\ a/b) v (,Wbo /\ 0/b2))) 
v ,Wao /\ 0(/a2 ; «Wbo /\ a/b) v (,Who /\ O/bz))) 

or 

I- (rulea'TII' v rulea/alJ.) ; (ruleb,,,,, V ruleb/ab,) 

- (Wao /\ o(/al ; (ruleb'TIII V rU!eayaIJl») V ('Wao /\ 0(/a2 ; (ruleb"IU V ruleb/abe») 

where: 

Proof: 

ru!ea,rw, ~ (Wao /\ O/al) 
rulea/au• ~ ('Wao /\ a/a) 
ruleb,rw, ~ (Wbo /\ alb) 

ruleb/alJ. ~ ( -,wbo /\ a/b) 

1 «wao /\ ala) V (,wao /\ 0/a2» ; «Wbo /\ a/b) V (,Wbo /\ 0/b2» tautology 

== «wao /\ a/a) V (,wao /\ a/a) ; «Wbo /\ a/b) v (,Who /\ a/b) 

2 == (Wao /\ ola) ; «Wbo /\ alb) v (--,Wbo /\ 0lb2» I, frL 

V ('Wao /\ a/a) ; «Wbo /\ alb) V (,Who /\ 0/b2» (OrChopEqv) 

3 == Wao /\ O(/al ; «Wbo /\ a/b) V (,Who /\ a/b)) 2, ITL (State-
AndNextChop) 

LEMMA: TwoTotaiRulcsChopEqv3 
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or 

(Woo" 0(fa/ ; (WbO " O/b)) 
v (Woo" o(fa/ ; (-,wbo" 0/b2») 
v (""Wao " Oifa2 ; (Wbo " ofi,)) 
v (...,Wao " Oifa2 ; (""Wbo" 0/b2») 

I- (ruZea,,... v ruZeapJIJ,) ; (ruZeblTW v ruZeaJlal .. ) 

- (Wao " Oifa/ ; ruZebt",.» 

Proof: 

v (Wao " o(fa/ ; ruZeb/all,» 

v (""Wao " Oifa2 ; ruZeb" .. » 

v (""Wao " Oifa2 ; ruZeb/all.» 

where: ruZeat_ ~ (Wao " O/a) 

ruZeafaa• ~ (""Wao " 0/a2) 
rulebt_ ~ (Wbo " O/b) 

ruleb/aU• ~ ( -,wbo " O/b) 

1 «Wao " O/a) V (""Wao " O/a) ; «Wbo" O/b) v (""Wbo" 0/b2» 

:: «Wao " 0/0 /) v (""Wao " 0/a2» ; «Wbo" O/b) v (""Wbo" 0/b2» 
2 == (woo" o/a) ; (Wbo" O/b) v (Wao " O/a) ; (""Wbo" 0/b2) 

v (""Wao " 01a2) ; (Wbo" ofi,) v (""Wao " ola) ; (""Wbo" O/b) 

3 :: (wao " oifa/ ; (Wbo" O/b)) V (WIIO " Oifa/ ; (""Wbo" O/b2))) 

v (-,wao" oifaz; (Wbo " ofi,)) v (""wao " o(fa,; (""Wbq " O/b,))) 

tautology 

1, TwoTotal­

Ru lesChopEqv 1 
2, ITL (State­

AndNextChop) 

These lemmas are also expressed in terms of specific rule defmitions to simplify 

presentation and highlight the underlying rule structure(s). With TwoTotalRules­

ChopEqvl. two chopped total rules are decomposed to an equivalent disjunction offour 

chopped individual rules describing the possible state sequence associated with the 

original sequential composition. The individual rules that compose these four disjuncts 

follow the typical two-by-two truth matrix pattern - true-true. true-false. false-true, or 

false-false - reflecting the satisfaction or non-satisfaction of the rule conditions 

associated with the two total rules used in the original sequential composition. With 

TwoTotalRulesChopEqv2, the original chopped sequential composition of two total 

rules is transformed into a disjunction of two general-form rules. With 

TwoTotalRulesChopEqv3, the original chopped sequential composition of two total 

rules is transformed into a disjunction of four general-form rules. Together, substantial 
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flexibility is provided with these three lemmas in transforming the chopped composition 

of two total rules. 

5.7 Reflexive and Irreflexive Rules 

The concepts of reflexivity and irreflexivity as used in relations are extended to 

describe the attributes of reflexive and irreflexive rules. 

5.7.1 Reflexive Rules 

A rule is reflexive if every state sequence in the rule domain is related to itself. 

Formally, a rule rule is reflexive if: 

v cr E domain rule 3 cr E codomain rule I cr = Orule( cr) (5.7.1-1) 

Implicit in this defmition is that, for a given rule rule, all elements of the rule domain 

are contained in the rule codomain, or domainrule ~ codomainrule. 

The simplest possible reflexive rule system can be built around a one-state 

system. Consider the one-state reflexive system presented in Figure 5.7.1-1, containing 

one state transilion. 

Figure 5.7.1-1: One-State Reflexive System 

In this system, So 1= woo The one transition included in this system can be described in 

rule form and organized based on the initial state in the state sequence satisfying the 

corresponding rule condition: 

So Wo 1\ OWo (5.7.1-2) 
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Graphically, a reflexive rule is represented by a loop from a state to itself, given that the 

rule state must include the rule condition state. 

As a demonstrative exercise, the rule at (5.7.1-1) can be sequentially composed 

with itself using the general rule form fi 1\ ojj as a basis for sequential composition. 

Instantiating bothfi andjj with Wo 1\ OWo yields: 

(Wo 1\ cwo) 1\ o(wo 1\ cwo) (5.7.1-3) 

Applying TwoSeqRulesEqv to (5.7.1-3) yields the following equivalent rule expressed 

in general rule form: 

Wo 1\ o( Wo 1\ cwo) (5.7.1-4) 

Applying NextAndDistEqv to (5.7.1-4) yields the following equivalent conjunctive 

description of the state sequence associated with sequentially composing (5.7.1-2) with 

itself: 

Wo 1\ OWo 1\ OOWo (5.7.1-5) 

Consider the two-state reflexive system presented in Figure 5.7.1-2, containing 

two state transitions: 

Figure 5.7.1-2: Two-State Reflexive System 

In this system. So 1= Wo and S} 1= WI. It is noted that this is a special case of that described 

in (5.1-6). The two transitions included in this system can be described in rule form and 

organized based on the initial state in the state sequence satisfying the corresponding 

rule condition: 
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So 
So 
Sl 

WOA OWO 
Wo A OWl 

(5.7.1-6a) 

(5.7.1-6b) 

Because all states in the rule domain exist in the rule codomain and a relation exists 

between all members of the rule domain, described as Wo A owo. and at least one 

member of the rule codomain, the formal requirements for a reflexive system are met. 

As identified in (5.7.1-6a) and (5.7.1-6b), both transitions in this system are 

satisfied by state sequences that begin with So. These transitions for which So satisfies 

the rule condition can be combined disjunctively as: 

(Wo A owo) v (wo A OWl) (5.7.1-7) 

Applying CommonRuleCondEqv to (5.7.1-5) yields: 

Wo A o(wo v WI) (5.7.1-8) 

The application of CommonRuleCondEqv allows the two-rule rule system of (5.7 .1-6a) 

and (5.7.1-6b), disjunctively associated in (5.7.1-7), to be expressed as a single general­

form rule. As highlighted with this transformation, this two-state reflexive system is a 

simple example of a non-deterministic system expressible as a single rule. The 

satisfaction of the rule condition Wo is associated with two alternative future state 

sequences - either a state sequence satisfying Wo or a state sequence satisfying WI. 

5.7.2 Irreflexive Rules 

In an irreflexive rule, no state in the rule domain can be directly related to itself. 

Formally, a rule rule is irreflexive if: 

Vcr E domainrul, A V cr' E codomablrule I cr' = Srule(cr) :::> cr:f: cr' (5.7.2-1) 

This definition supports the informal view that a state sequence satisfying the rule 

condition cannot also satisfy the rule state. Graphically, an irreflcxive rule cannot 

include a loop from a state to itself. 
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Consider the two-state irreflexive system presented in Figure 5.7.2-1, containing 

one state transition: 

Figure 5.7.2-1: Two-State Irreflexive System 

In this system, So F wo, and S1 F Wi. The one transition included in this system can be 

described in rule form and organized based on the initial state in the state sequence 

satisfying the corresponding rule condition: 

So 

S1 

Wo A OW1 (5.7.2-2) 

Because this two-state irreflexive system contains only one state transition, the entire 

system is described as: 

WOA OWl (5.7.2-3) 

This two-state irreflexive system is the simplest possible two-state system, because it 

contains only one state transition and therefore is described by a single general-form 

rule without manipulation. 

5.8 Symmetric, Antisymmetric, and Asymmetric Rules 

The concepts of symmetry, anti symmetry, and asymmetry as used in relations 

are extended to describe the attributes of symmetric, anti symmetric, and asymmetric 

rules. 

5.8.1 Symmetric Rules 

A rule is symmetric if it is its own inverse. For a rule to be symmetric, 

whenever that rule includes a transition from a to cr, that rule must also include a 

transition from a' to a. Formally. a rule rule is symmetric if: 
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Vcr, cr'E uniVerSerule I cr' = cSru1e( cr) ::) cr = cSruleC cr') (5.8.1-1) 

Because there is no requirement in (5.8.1-1) that cr and cr' be unique, the simplest 

possible symmetric rule involves a one-state system. In a one-state symmetric system 

consisting of So, So 1= Woo The single state transition in this system, relating So to itself, is 

described by the rule: 

Wo A OWo (5.8.1-2) 

This one-state symmetric system is also a one-state reflexive system, previously 

described in Section 5.7.1. 

Consider the two-state symmetric system presented in Figure 5.8.1-1, containing 

two state transitions: 

Figure 5.8.1-1: Two-State Symmetric System 

In this system, So * SI, So 1= Wo, and SI 1= WI. The two transitions included in this system 

can be described in rule form and organized based on the initial state in the state 

sequence satisfying the corresponding rule condition: 

So 

SI 

Wo A OW} 

WI A OWo 

(5.8.1-3a) 

(5.8.1-3b) 

Using these two individual state transitions, the entire system is described disjunctively 

as: 

(5.8.1-4) 
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Both the individual rules of (S.8.1-3a) and (S.8.1-3a), and the disjunctive system 

description of (5.8.1-4) are used in the following paragraphs to describe the behavior of 

this two-state symmetric system. 

Because the two rules, (5.8.1-3a) and (5.8.1-3b), describing the state transitions 

for this system share a state (i.e., because the rule state specified by one rule is the rule 

condition of the other rule), the general rule form/; A ofj can be applied to sequentially 

compose these two rules to form a new rule that describes a state sequence associated 

with this system. If the system is assumed to be in So and using (5.8.1-3a) to express the 

rule condition and (5.8.1-3b) to express the rule state, the following rule describes this 

sequential association of the two rules: 

(WO A OWl) A o(WJ A owo) (5.8.1-5) 

TwoSeqRulesEqv2 is applied to (5.8.1-5) to obtain the following equivalent rule: 

Wo A o(WJ A owo) (5.8.1-6) 

Either TwoSeqRulesEqvl can be applied to (5.8.l-S) or NextAndDistEqv can be 

applied to (5.8.1-6) to obtain the following equivalent conjunctive description of the 

state sequence associated with this rule: 

Wo A OWl A OOWo (5.8.1-7) 

Alternatively. if the system is assumed to be in s} and using (5.8.1-3b) to express the 

rule condition and (S.8.1-3a) to express the rule state, the following rule describes an 

alternative sequential association of the two rules: 

(5.8.1-8) 

TwoSeqRulesEqv2 is applied to (5.8.1-8) to obtain the following equivalent rule: 

(5.8.1 -9) 
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Either TwoSeqRulesEqvl can be applied to (5.8.1-8) or NextAndDistEqv can be 

applied to (5.8.1-9) to obtain the following equivalent conjunctive description of the 

state sequence associated with this rule: 

WI 1\ OWo 1\ OOWI (5.8.1-10) 

Both Wo 1\ OWl 1\ OOWo and WI 1\ OWo 1\ OOWI describe state sequences associated with 

this symmetric system. depending on the initial system state such that either Wo or WI 

holds. 

The chop operator can be used to compose the two individual rules describing 

this two-state symmetric systenL Assuming that the system is in so, (5.8.1-3a) and 

(5.8.1-3b) can be sequentially composed, in that order, using chop and the resulting 

state sequence is described as: 

(Wo 1\ OWl) ; (WI 1\ owo) (5.8.1-11) 

StateTwoChopRulesImp and NextChop are applied to (5.8.1-11) to yield: 

Wo 1\ OWl; OWo (5.8.1-12) 

With these transformations, the two chopped rules of (5.8.1-11) have been transformed 

into one general-form rule incorporating chop only in the specification of the rule state. 

Alternatively, if the system is assumed to be in s}, (5.8.1-3b) and (5.8.1-3a) can 

be sequentially composed, in that order, using chop and the resulting the state sequence 

is described as: 

(5.8.1-13) 

As before. StateTwoChopRulcslmp and NextChop are applied to (5.8.1-13) to yield: 

WI 1\ OWo ; OWl (5.8.1-14 ) 
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As before, the two chopped rules of (5.8.1-13) have been transformed into one general­

form rule incorporating chop only in the specification of the rule state. 

Although both Wo /I. OWl; oWo and WI /I. oWo ; OWl describe state sequences that 

may result from this symmetric system, depending on the system state at rule execution, 

the above analyses have assumed an initial state condition to limit the number of 

possible cases and facilitate analysis. Now, consider the following case, where the total 

description of this system, previously presented in (5.8.1-4), is used to describe both 

possible cases. By using the total description of the symmetric system, no knowledge, 

specification, or assumption of the initial system state is required. In this analysis, this 

total description is composed with itself using chop and the resulting state sequence is 

described as: 

(5.8. totS) 

This sequential composition can be expanded, as described in the lemma 

TwoSymRulesChop presented below, to represent the possible state sequences. 

LEMMA: TwoSymRulesChop 

I- «wo /I. OWl) V (WI /I. cwo»~ ; «wo /I. OWl) V (WI /I. owo» 

== (wo /I. OWl) ; (wo /I. OWl) v (wo /I. OWl) ; (wJ /I. cwo) 
V (WI /I. cwo) ; (WI /I. cwo) V (WI /I. cwo) ; (wo /I. OWl) 

or 

I- (ruleo v rulel) ; (ruleo v rule]) 

= ruleo; ruleo v ruleo; rulel v rulel; rulel v rulel ; ruleo 

Proof: 

where: ruleo == (wo /I. OWl) 
rulel == (WI /I. cwo) 

1 «wo /I. OWl) V (WI /I. owo» ; «wo /I. OWl) V (WI /I. cwo»~ 

== «wo /I. OWl) V (WI /I. owo» ; «wo /I. OWl) v (wJ /I. owo» 

2 i5 (Cwo /I. OWl) V (WI /I. owo» ; (wo /I. OW,) 

v «wo /I. OWl) V (WI /I. cwo»~ ; (WI /I. owo» 

tautology 

I, ITL (ChopOrEqv) 
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3 == (WO A OWl) ; (WO A OWl) V (WI A OWO) ; (WO A OWl) 

V (WO A OWl) ; (Wl A OWO) V (Wl A OWO) ; (WJ A owo) 

4 == (WO A OWl) ; (WO A OWl) 

V (WO A OWl) ; (WI A OWO) 

V (Wl A OWO) ; (WI A OWO) 

V (WI A OWO) ; (WO A OWl) 

2, ITL (OrChopEqv) 

3, commutivity of V 

This lemma is also expressed in terms of specific rule defmitions to simplify 

presentation and highlight the underlying rule structure(s). 

Applying TwoSymRulesChop to (5.8.1-15) yields: 

(Wo A OWl) ; (wo A OWl) 

V (wo A OWl) ; (WI A owo) 

V (WI A owo) ; (WI A owo) 

V (WI A owo) ; (wo A OWl) (5.8.1-16) 

With the application of TwoSymRulesChop, (5.8.1-15) is expanded and the four 

possible state sequences resulting from the sequential composition of the rule (5.8.1-4) 

with itself using chop are enumerated in the equivalent form of (5.8.1-16). The four 

state sequences satisfying (5.8.1-16) are presented in Figure 5.8.1-1. These four 

possible state sequences are organized based on the state that satisfies the rule condition 

of the initial rule of the sequential composition. 

By inspection of the four state sequences presented in Figure 5.8.1-2, the state 

sequence SOSISO depicted in Figure 5.8.1-2b is subsumed by the state sequence SOSISOSj 

depicted in Figure 5.8.1-2a. Similarly. the state sequence S)SOSj depicted in Figure 

5.8.1-2d is subsumed by the state sequence SjSOS)SO depicted in Figure 5.8.1-2c. These 

sequences are also consistent with the rules (5.8.1-12) and (5.8.1-14) derived based on 

chopping the individual rules. These sequences of alternative states are consistent with 

both the formal definition of a symmetric system, as presented at (5.8.1-1), and an 

intuitive expectation of the behavior of a two-state symmetric (and irreflexive) system. 

Using the complete rule-based description of this system presented in (5.8.1-4), the ITL 

operator chop can be used to sequentially compose the rule-based structure (5.8.1-15) 

that describes the possible state sequences associated with such a symmetric state 
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So So 
..................................................................................... 

Wo skip 
Wo skip 

b. (wo /\ OW]) ; (W]/\ cwo) 

So So 
.......................................................... 

Wo skip 
skip Wo 

c. (WI/\ CWO) ; (W)/\ CWO) 

So So 
•...........................•...........................•..........................• 

skip Wo 

So 
...................................... 10 •••••••••••••••• , •• 

skip Wo 
Wo skip Wj 

skip Wo 

Figure 5.8.1-2: State Sequences Resulting from Sequentially Composing 
with chop both Rules Describing a Two-State Symmetric System 

system. If the system state at the time of rule execution is known, the specific state 

sequence can be detennined. 

Alternatively, the general rule form!; /\ oiJ can be applied using the complete 

description of this system, previously presented in (5.8.1-4), to describe the state 

sequence(s) that will result from the sequential composition of rule (5.8.1-4) with itself. 

Again, by using the complete description of the system, no knowledge, specification, or 

assumption of the initial system state is required. Using the general rule formJi /\ oiJ, 
this rule-form sequential composition is as fonows: 

(5.8.1-17) 

This rule-form composition can be expanded, as described in the lemma 

TwoSymRulesAsRule presented below. to identify the possible state sequences that 
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may result from such a sequential composition. The restriction that fa = -II has been 

added to this lemma to facilitate analysis and preclude the application of this lemma to a 

one-state system. 

LEMMA: TwoSymRulesAsRule 

I-- (if a " of I) V if I " of 0» " o(ifo " of 1) V if I "of 0» and I-- fa = -II implies 

I-- ifo" of I " oofo) V if I " of a " oofl) 

Proof: 

1 (if a " of 1) V ifl " of 0» " o (if a " of 1) v ifl " of 0» premise 

2 fo= -/J premise 

3 (if a " of 1) V ifl " of 0» 1, ITL (ChopOrEqv) 

" (oifo" of I) V oifI " of 0» 

4 (if a " of I) V if I " ofo» 3, NextAndDistEqv 

,,«ofo" oofl) v (of I "oofo» 

5 ifo" of1" of a " oofI) v ifo " 0.fJ " of I " oOfo) 4, distribution of " over v 

v if1 " of a " of a " oofl) V if1 " of a " of 1 " oofo) (three times) 

6 ifo" oII " of a " 00/1) v ifo" of I " oofo) 5, idempotence of " 

v if I " of a " oofI) V if I " of a " of I " oofo) 

7 ifo" of I " O--{l " oofI) v ifo" ofl " oofo) 2, 6, equivalence 

v ifl " of a " 00/1) v (ji " 0-11 " of I " oOfo) substitution 

8 ifo "false" oofl) v ifo " of I " oofo} 7, TemporalContra 

v if) " ofo" oofJ) V if, "false" oofo} 

9 false v ifo " of I " 00/0) V if I " of a " 00/1) v false 8, zero of" 

10 ifo" 0/,,, 00/0) v (ji " 0/0" 00/1) 9, unit ofv 

Applying TwoSymRulcsAsRule to (5.8.1-17) yields: 

(wo" ow) " oowo) V (WI" OWo" OOWl) (5.8.1-18) 

This transformation describes the two sequences of alternating states that resu It from the 

rule-form sequential composition presented in (5.8.1-17). The minimum state 

sequences satisfying (5.8.1-18) are SoSISO or SISOSI· As with the chop-form sequential 

composition, these sequences of alternative states are consistent with both the formal 
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defmition of a symmetric system and an intuitive expectation of the behavior of such a 

system. 

Using the general rule-form sequential composition presented in (5.8.1-17), an 

alternative outcome is possible, as demonstrated in TwoSymRulesAsRule2: 

LEMMA: TwoSymRuiesAsRule2 

I- (if a A a/I) v if I A a/a» A O(ifo A 0/1) V if I A a/a» and I- /0 = -II implies 

I- ifo A Oifi A a/a» v if] A oifo A a/I» 

or 

I- (ruleo v ruleI) A o(ruleo v ruleI) and I- /0 = -II implies 

I- ifo A oruZe]) v ifl A oruleo) 

where: 

Proof: 

ruleo = ifo A a/I) 
ruZel = (/J A a/a) 

1 (if a A a/I) v if] A a/a» A o(ifo A a/I) v if] A a/a}) 

2 /0=-11 
premise 

premise 

3 ifo A a/I A 00/0) v if/A a/a A 00/1) 

4 ifo A Oif/A a/a}} v iflA Oifo A O/J» 

1,2, TwoSymRulesAsRule 

3, NextAndDistEqv 

This lemma is also expressed in terms of specific rule definitions to simplify 

presentation and highlight the underlying rule structure(s). 

Applying TwoSymRuiesAsRule2 to (5.8.1-17) yields: 

(5.8.1-19) 

With this transformation, (5.8.1-17) is transformed into a disjunction of two general­

form rules. Alternatively, (5.8.1-19) is equivalent to (5.8.1-18) because it can be 

obtained directly from (5.8.1-18) by applying NextAndDistEqv. 

Using the complete rule-based description of the two-state symmetric system 

presented in (5.8.1-4), the general rule fonnfi A ejj can be used to sequentially compose 

the rule-based structure (5.8.1-17) that describes the possible state sequences associated 

with such a symmetric state system. These possible sequences can be described either 
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conjunctively or in general rule form. If the system state at the time of rule execution is 

known, the specific state sequence can be determined. 

5.8.2 Asymmetric Rules 

Informally, a rule is asymmetric if it is not its own inverse. For a rule to be 

asymmetric, whenever that rule includes a transition from cr to d, that rule cannot also 

include the transition from cr' to cr. Formally, a rule rule is asymmetric if: 

\;j cr, cr'e universerule I cr' = brule( cr) ':J) cr = brule( cr') (5.8.2-1) 

Based on this formal defmition, the simplest possible asymmetric system is a 

two-state system containing one state transition: 

Figure 5.8.2-1: Two-State Asymmetric System 

In this system, So ':/:. S}, So F Woo and S} F W1. The one transition included in this system 

can be described in rule form and organized based on the initial state in the state 

sequence satisfying the corresponding rule condition: 

So 

S} 

Wo 1\ OW1 (5.8.2-2) 

Because this two-state asymmetric system contains only one state transition, the entire 

system is described as: 

Wo 1\ OWl (5.8.2-3) 

This system is also irreflexive. as previously discussed in Section 5.7.2. The 

composition of two-state asymmetric rules into larger structures using either the general 
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rule form fi " ali or the ITL operator chop has been previously described in Sections 

5.6.1 and 5.6.2, respectively. 

Comparing the formal definition of rule symmetry presented in (5.8.1-1) with 

the formal definition of rule asymmetry presented in (5.8.2-1), a rule cannot be both 

symmetric and asymmetric, as symmetry requires that ct = 5rule(cr) :::> cr = 5ru1e(cr') and 

asymmetry requires that cr' = Srule( cr) ":t> cr = Srule( cr'). However, a rule need not be 

either symmetric or asymmetric. Consider the following two-state system: 

Figure 5.8.2-2: Two-State System that Is Neither Symmetric nor Asymmetric 

In this system, so"# Sj, So ~ wo, and Sj ~ Wj. The two transitions included in this system 

can be described in rule form and organized based on the initial state in the state 

sequence satisfying the corresponding rule condition: 

So 
So 
SJ 

Wo" OWo 

Wo" OWl 

(S.8.2-4a) 
(S.8.2-4b) 

Using these two individual state transitions, the complete system is described 

disjunctively as: 

(5.8.2-5) 

Propositional logic and NextAndDistEqv are applied to (5.8.2-5), and the system 

presented in Figure 5.8.2-2 is expressed as a single, equivalent general-form rule: 

(5.8.2-6) 
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Using the equivalent rule form (5.8.2-6) and considering the satisfaction relations bound 

to this system, the minimum rule domain is {so} and the minimum rule codomain is 

{so, S1}. Therefore, the rule universe for this system is {so, S1}. Referencing the formal 

defmition of rule symmetry presented at (5.8.1-1), there exists a transition from So to S1 

(described by the rule Wo /\ OW1) but no transition from S1 to So (and no corresponding 

rule WI /\ owo). Therefore, the requirement for symmetry is not met. Referencing the 

formal defmition of rule asymmetry presented at (5.8.2-1), because there exists a 

transition from So to So (described by the rule Wo /\ oWo), the requirement for asymmetry 

that cr' = (,ru/e( cr) ':/) cr = (,rule( cr') is not met. Therefore, this system is neither symmetric 

nor asymmetric. However, this system is reflexive. as discussed in Section 5.7.1. 

5.8.3 Antisymmetric Rules 

For a rule to be antisymmetric, whenever that rule includes a transition from cr to 

cr' and a transition from cr' to cr, cr' and cr must be equal. Formally, a rule rule is 

antisymmetric if: 

"if cr, cr'E universeru/e I cr' = (,ruleC cr) /\ cr = (,rule( cr') :::> cr = cr' (5.8.3-1) 

Using this formal definition, the simplest possible antisymmetric system 

involves only one state, So, and one state transition described by the rule Wo 1\ OWo where 

So 1= Woo This one-state rule system is also reflective and symmetric, as previously 

discussed in Section 5.7.1 and Section 5.8.1, respectively. As demonstrated with this 

case, a rule can be both symmetric and antisymmetric. 

The simplest possible two-state antisymmetric system is the two-state 

asymmetric system presented in Figure 5.8.2-1. The minimum rule universe of that 

system is {so. sIlo There is only one transition from So to S1 described by the rule Wo 1\ 

OWl and So ¢ S/. Therefore, both the antecedent cr' = Orule(cr) 1\ cr = orulicr') and the 

consequent cr = cr' of the definition at (5.8.3-1) are false. Therefore, the implication 

holds and requirements for antisymmetry is met. As demonstrated with this case, a rule 

system can be both asymmetric and antisymmetric. 
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However, an antisymmetric system need not be either symmetric or asymmetric. 

Consider the two-state system previously presented in Figure 5.8.2-2 that is neither 

symmetric nor asymmetric. The minimum rule universe of that system is {so, S1}. 

There exists a transition from So to So described by the rule Wo A owo and because So = So, 

the requirement that a' = STUle< a) A a = 8ru1e( a') :::> a = d holds. There exists a transition 

from So to S1 described by the rule Wo A OW1, but there is no transition from S1 to so. 

Because So '* s], both sides of the required implication are false, and therefore the 

implication holds. Finally, there is no rule describing a transition from S1 to SJ, but 

$1 = $1. Therefore, the implication is vacuously true and the requirement is met. 

Therefore, this system that is neither symmetric nor asymmetric is antisymmetric. 

5.9 Transitive Rule Systems 

Formally, a rule system rs is state transitive if: 

Va, a', a" E universers I d = 8rs(a) A a" = 8rs(a') :::> d' = 8rla) (5.9-1) 

where 8rs represents any of the transition relations associated with rules comprising the 

rule system rs. Although one-state and two-state systems can be transitive, these are not 

addressed here. Consider the simple three-state symmetric system presented in 

Figure 5.9-1, containing three state transitions: 

Figure 5.9-1: Three-State Transitive System 
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In this system. So ':j. S], S] ':j. S2, So *- S2, So F Wo, S]F WI and S2 F W2. The three transitions 

included in this system can be described in rule form and organized based on the initial 

state in the state sequence satisfying the corresponding rule condition: 

Wo /\ OW] 

Wo /\ OW2 

WI/\ OW2 

(5.9-2a) 

(5.9-2b) 

(5.9-2c) 

The minimum rule universe for this set of rules is {S.D, s], S2}. Based on this minimum 

rule universe and given the rule set identified in (5.9-1a), (5.9-lb), and (5.9-lc), both 

a' = ~rs(a) /\ a" = ~rs(a') and a" = ~rs(a) holds. Therefore, this system is state transitive. 

An important distinction is made here that this system must described as state 

transitive and not just transitive. Consider the two rules that share a state, (5.9-2a) and 

(5.9-2c). These two rules can be sequentially composed using the general rule formJi /\ 

ofJ to describe the resulting state sequence: 

(5.9-3) 

TwoSeqRulesImp is applied to (5.9-3) to obtain the following state sequence: 

Wo /\ OOW2 (5.9-4) 

Comparing this inferred rule, Wo /\ OOW2, with the native rule Wo /\ OW2 at (5.9-2b), the 

sequential composition implemented in (5.9-3) requires one additional time step (Le., 

one additional next) to reach the state satisfying W2. Therefore, if rules (5.9-2b) and 

(5.9-4) are executed from a state satisfying Wo, the outcomes of those rule executions are 

OW2 and OOW2, respectively. Therefore, this system is described as state transitive but 

not temporally transitive. This simple example highlights the temporal aspects of rules 

and therefore one of the critical differences of the temporal logic approach to rules as 

presented in this thesis, as compared to simple representations of rules in non-temporal 

forms. 
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Chapter 6 

Rule Algebra - Advanced Concepts 

In this chapter, advanced concepts associated with the rule algebra are developed 

using the rule algebra fundamentals presented in Chapter 5. Additional compositional 

paradigms, including nesting, recursion, deterministic and non-deterministic guarded 

composition, and disjoint parallel composition, are presented. Alternative models of 

rule equivalence are discussed. Rule-based representations of typical legacy code 

structures - the if-then-else structure, the while structure, and the indexed for-loop - are 

developed. 

6.1 Nesting 

The general rule forrn/l/\ oh is a temporal formula composed of two temporal 

formulas /I and h. Because either /I or h can be instantiated with a rule, other rules can 

be nested within a general rule formJi /\ oh, which in tum can be nested within another 

rule. Such nesting can be the basis for rule encapsulation and program abstraction in the 

reverse engineering domain, or the basis for rule expansion and program refmement in 

the forward engineering domain. With nesting, numerous types of composite rules can 

be created. In this section, several configurations are examined, and previous rule 

formation models are reviewed within the context of nesting. 

Consider the following nested rule, expressed in general rule form, where the 

rule condition is a rule: 

(Wo /\ OWl) /\ Owz (6.1-1) 

Expressed in this form, this rule conditions a property of the next state, described by wz. 

on the concurrent satisfaction of another property in that same next state, described by 

Wl. and a property in the current state, described by WOo The following lemma describes 

an equivalent alternative expression of this nested rule. 

LEMMA: NestRulcCondEqv 
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Proof: 

1 lfo /\ Of 1) /\ Of2 == (fa /\ Of 1) /\ of2 

2 (fa /\ Of 1) /\ of2 == fa /\ (ofl /\ 0f2) 

3 lfo /\ Of 1) /\ of2 == fa /\ 0(/1 /\f2) 

Applying NestRuleCondEqv to (6.1-1) yields: 

tautology 

1, associativity of /\ 

2, NextAndDistEqv 

(6.1-2) 

In this equivalent form of (6.1-2), the logic of the original rule (6.1-1) is much more 

explicit - that both WJ and W2 must hold in the next state and therefore WI /\ W2 cannot 

be a contradiction. Although an acceptable form, nesting of rules within the rule 

condition must be done with great care, because the underlying rule logic may not be as 

transparent as other equivalent forms of rule construction. 

Consider the following nested rule, expressed in general rule form, where the 

rule state is expressed as a rule: 

(6.1-3) 

Applying NextAndDistEqv, (6.1-3) is transformed to: 

Wo /\ OWl /\ OOwz (6.1-4) 

This equivalent form conjunctively describes the state sequence associated with the 

corresponding nested general-form rule (6.1-3). Because NextAndDistEqv is a logical 

equivalence, the reverse transformation strategy holds, as the conjunctive state sequence 

described in (6.1-4) can be transformed into the nested general-form rule (6.1-3). 

Consider the following general-form rule which includes a rule nested in the rule 

condition and a rule nested in the rule state: 

(6.1-5) 

The rule nesting in (6.1-5) is highlighted by the following defmitional substitution: 
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where: 

rule6.l-6 ~ rule6.l-6a A orule6.l_6b 

rule6.J-fiG ~ Wo A OWl 

rule6.J-6b ~ W2 A OW3 

The following lemma describes an equivalent expression of a double nested rule. 

LEMMA: NestBothEqv 

f- ifo A Of) A Oif2 A O/J) 5fo A oif) Af2) A OO/J 

Proof: 

1 (fa A oli) A o(ji A O/J) 5 ifa A oli) A Oif2 A 0f3) 

2 (fa A Of 1) A o(ji A oh) 5 ifo A 0li) A (of2 A 00f3) 

3 ifa A Of 1) A o(ji A oh) 5 fo A (ofl A 012) A oof3 

4 ifo A 0li) A o(ji A o/J) 5 fa A o(ji Af2) A oof3 

Applying NestBothEqv to (6.1-6) yields: 

Applying NextAndDistEqv to (6.1-7) yields: 

tautology 

I, NextAndDistEqv 

2, associativity of A 

3, NextAndDistEqv 

Again applying defInitional substitution to highlight rule nesting: 

rule6.J-9 ~ Wo A orule6.1-9a 

where: 

(6.1-6) 

(6.1-6a) 

(6.1-6b) 

(6.1-7) 

(6.1-8) 

(6.1-9) 

(6.1-9a) 

With the application of NestBothEqv and NextAndDistEqv, the double nested rule of 

(6.1-6) has been transformed into an equivalent general-form rule with only a nested 

rule state. One important benefit of this analysis is the clear identifIcation that WI A W2 
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cannot be a contradiction if this rule is to hold. This is unambiguously depicted in both 

(6.1-7) and (6.1-9a). 

The nesting of rules in both the rule condition and rule state is the basis for the 

rule-based form of sequential composition previously presented in Section 5.6.1. 

Unlike rule-based sequential composition of Section 5.6.1, the double-nested rules as 

presented in (6.1-5) and transformed by NestBothEqv need not share a common 

temporal formula. Stated another way, sequential composition using the general rule 

form, as previously discussed in Section 5.6.1 and addressed with TwoSeqRulesEqvl. 

TwoSeqRulesEqv2, and TwoSeqRuleslmp, is a special case of the double nesting 

addressed in NestBothEqv. Consider the following example incorporating nested rules 

in the rule condition and rule state that share a common temporal formula: 

(6.1-10) 

Applying NestBothEqv (6.1-10) yields: 

(6.1-11) 

Applying the idempotence of A to (6.1-11) yields: 

Wo A OWl A OOWz (6.1-12) 

Because the double nesting of (6.1-10) includes a common temporal formula, this 

example conforms to the simple sequential composition model previously presented in 

Section 5.6.1. Therefore, (6.1-12) could have been achieved by applying 

TwoSeqRulesEqvl to (6.1-10). One distinct difference associated with the simple 

sequential composition model based on shared temporal formula (supported by 

TwoSeqRulcsEqvl) and the double-nested compositional model (supported by 

NestBothEqv) is that the simple sequential composition model does not include the 

necessity that two different formulas in the same rule hold at the same time 

(e.g., Wj A Wz in ru!e6J-9a)' 
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The nesting of total rules in both the rule condition and the rule state of a 

general-form rule is described in the following lemmas. 

LEMMA: TwoNestTotalRuleEqv 1 

I- (lfao 1\ O/a}) V (-!ao 1\ 0/a2» 1\ o(f/bo 1\ O/b) v (-!bo 1\ 0/b2» 
= «(j1Jo 1\ ola) 1\ O(jbo 1\ O/b) v (lfao 1\ O/a) 1\ O(-!bo 1\ 0/b2» 

v «-!1Jo 1\ 0/a2) 1\ O(jbo 1\ O/b) V «-!ao 1\ O/a) 1\ O(-!bo 1\ 0Ji,» 

or 

I- (rulea,_ v ruleafo/H) 1\ o(ruleb,,,.. v ruleb/
alu

) 

- (rulea,_ 1\ oruleb
trlU

) v (rulea,,,.. 1\ oruleb/auJ 

Proof: 

v (rulea/Dlu 1\ oruleb, .... ) v (rulea/41u 1\ oruleb/aaJ 

where: rulea,,.. ~ (j1Jo 1\ o/a) 
rulea/aa• ~ (-!ao 1\ O/a) 
ruleb, .... ~ (jbo 1\ O/b) 
ruleb/aa• ~ (-!bo 1\ O/b) 

1 «(j1Jo 1\ ola}) v (-!ao 1\ 0/a1» 1\ O«(jbo 1\ O/b) V (--,jj,o 1\ O/b» tautology 

== «(jao 1\ ola}) v (-!ao 1\ ola) 1\ O«(jbo 1\ O/b) v (--,jj,o 1\ 0/b2» 
2 == «(jao 1\ ola}) v (-!ao 1\ 01a2» 2, NextAnd-

1\ (O(jbo 1\ O/b) V O(-!bo 1\ O/b2» DistEqv 

3 == «(j1Jo 1\ ola) 1\ O(jbo 1\ 0Ji,) 3, Distribution 

v «-!ao 1\ O/a) 1\ O(jba 1\ O/b) of 1\ over v 

v (lfao 1\ O/a) 1\ o(--,jj,o 1\ O/b2» 
v «-!ao 1\ 01a2) 1\ O(-{bo 1\0/b2» 

4 == «(jao 1\ ola) 1\ Oifbo 1\ O/b) 3, Commutivity of 

v (lfao 1\ ola/) 1\ o( --,jj,o 1\ 0/b2» 
v ((-!ao 1\ ola) 1\ of/bo 1\ O/b) 

v « -!aa 1\ ola') 1\ o( -Ibq 1\ Ob,» 

LEMMA: TwoNestTotalRuleEqv2 

I- (lfao 1\ O/a) V (-{1Jo 1\ 0/a2» 1\ O«(jbo 1\ O/b) v (-tbo 1\ O/b» 

== (jaa 1\ oifa) I\/bo) 1\ OO/b) V (-!ao 1\ Olfazl\/h) 1\ OO/bJ) 

v iflJo 1\ Oifa} 1\ -!bo) 1\ OO/b) v (-!ao 1\ olfa2 1\ -Iho) 1\ OOJi,2) 

v 
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Proof: 

1 (ifao A Ola) v (-/ao A Oja2» A O(ifbo A ojb) V (--1bo A Ojb2» 

== (ifao A oja) V (-/ao A oja) A O(ifbo A ojb) V (-/bo A ojb2» 
2 == (ifaa A ola) A Oifbo A ojb) 

V (lfaa A oja) A O(-/ba A Ojb) 

V « --!ao A oja2) A Oifba A ojb) 

V « -!ao A oja2) A o( -/ba A Ojb) 

3 == (ifaa A olfal Ajb;J A oojb) 

V (lfaa A Oifal A -/bo) A OOjb2) 

v «--!ao A Oifa2 Ajba) A oojb) 

V «-!ao A Oifaz A -/b) Aoojb) 

tautology 

1, TwoNestTotaI­

RuleEqvl 

2, NestBothEqv 

These lemmas are also expressed in terms of specific rule defmitions to simplify 

presentation and highlight the underlying rule structure(s). With TwoNestTotal­

RuleEqvl, a general-form rule composition of two nested total rules is decomposed to 

an equivalent disjunction of four general-form rules, with each disjunct composed of an 

individual rule from each of the two total rules. With TwoNestTotalRuleEqv2, the 

original composition is decomposed to an equivalent disjunction of four conjunctive 

series of state sequences. 

With the nesting of two individual rules as a general-form rule as considered by 

NestBothEqv, care must be exercised so that such a composition does not result in a 

contradiction, thereby invalidating the original composition. This is demonstrated with 

(6.1-7), where the term o(WJ A W2) cannot be a contradiction. Because NestBothEqv is 

an equivalence, if such a contradiction is created, then the original composition of (6.1-

6) is not valid. This problem can be avoided with the general-form rule nesting of two 

total rules. By inspection of the corresponding terms in outcome of 

TwoNestTotalRuleEqv2 - oifal Ajba), oifa} A -/bo)' Oifa2 A jb;J, and 0(j'a2 A -/b;J - a 

contradiction is created only if either ja} or ja2 is a contradiction. Otherwise, because 

both are conjunctively associated withjbo and -/bo' no contradiction can result. Stated 

another way, if two total rules, where each total rule has the form if; A ofj) v (:Ii A ofi) 

for any i, j, and k, are valid, then the nested composition of those two total rules as a 

general-form rule is valid. 
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The 11L operator chop can be used in creating nested rules. Consider the 

following rule which includes both the chop operator and a nested rule in the 

specification of the rule state: 

(6.1-13) 

Applying StateAndNextChop yields the following equivalent form: 

(6.1-14) 

In this equivalent form, (6.1-14) is an example of sequential composition using chop as 

previously described in Section 5.6.2. Applying StateTwoChopRuleslmp allows (6.1-

14) to be transformed to: 

(6.1-15) 

Therefore. with the application of StateAndNextChop and StateTwoChopRuleslmp. the 

rule nesting of (6.1-13) has been eliminated and (6.1-13) has been simplified to the 

general rule form of (6.1-15). 

Consider the following nested rule that includes two general-form rules that are 

chopped and nested in the rule state. 

(6.1-16) 

The overall structure of this rule can be clarified with some defmitional substitutions: 

where: 

Wo A o(rule6.J-J7a ; rule6.I-J7b) 

rule6.1.17a ~ WI A OW2 

rule6.J-J7b ~ Wj A OW4 

(6.1-17) 

(6.1-17a) 

(6.1-17b) 
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This rule is a general-form rule that includes two general-form rules nested in the rule 

state. The following lemma allows the transformation of a nested rule that includes two 

chopped rules in the rule state: 

LEMMA: StateNestRuleStateChopEqv 

or 

Proof: 

where: rulel ~ Wl A of2 
rule2 ~ W3 A of4 

1 Wo A O«Wl A 0f2) ; (W3 A of4)) 

== Wo A O«WJ A ofi) ; (W3 A 014)) 

2 == (wo A O(WJ A ofi)) ; (W3 A 014) 

3 == (Wo A OWl A 00f2) ; (W3 A of4) 

tautology 

1, I1L (StateAndNextChop) 

3, NextAndDistEqv 

This lemma is also expressed in terms of specific rule defmitions to simplify 

presentation and highlight the underlying rule structure(s). 

Applying StateNestRuleStateChopEqv to (6.1-16) yields: 

(6.1-18) 

In this form, the sequence specified by the original rule is clear. However. applying 

NextAndDistEqv and TwoSeqRulesEqvl to (6.1-18) yields an equivalent rule 

consisting of three component general-form rules: 

(6.1-19) 

Substituting defmed rule names for the component rules yields: 

(rule6.J.20a A orule6.I.17a) ; rule6.J-17b (6.1-20) 

where: 
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rule6.1-20a ~ Wo 1\ OWl (6.1-20a) 

And because rule6.J-20a 1\ orule6.1_17a is a general-form rule, an additional defmitional 

substitution can be performed: 

rule6.l-2la ; rule6.1-17b (6.1-21) 

where: 

rule6.1-21a ~ rule6.1-20a 1\ orule6.1_J7a (6.1-21a) 

The net result of this analysis is that (6.1-16), (6.1-18), and (6.1-19) are 

equivalent. Because StateNestRuleStateChopEqv, TwoSeqRulesEqv1, and NextAnd­

DistEqvare equivalence lemmas, all offer substantial flexibility when used together in 

the forward transformation of rules into equivalent forms, or the reverse transformation 

of observed sequences into equivalent rules. 

Although a wide variety of rule nestings using chop are possible, some nestings 

may have unanticipated consequences. Consider the following rule which includes both 

the chop operator and a nested rule in the rule condition: 

(wo; (wo 1\ OWl» 1\ OW2 

The following lemmas describes the reduction of this form of nested rule. 

LEMMA: NestRulcCondChoplmpl 

I- (wo; (wo 1\ of 1» 1\ of2 implies I- (wo; Of I) 1\ olz 

Proof: 

1 (Wo; (Wo 1\ of)) 1\ olz 

2 Wo; (wo 1\ 0/1) 

3 Wo; Wo 1\ Wo ; ofl 

4 Wo; ofl 

5 of2 

6 (wo; 0/1) 1\ ofz 

premise 

1,1\ elimination 

2, ITL (ChopAndlmp) 

3, 1\ elimination 

1,1\ elimination 

4, 5, 1\ introduction 

(6.1-22) 
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LEMMA: NestRuieCondChoplmp2 

I- (wo; (wo A 0/)) A OW2 implies I- Wo A 0/2 

Proof: 

1 (Wo; (wo A 0/)) A 0/2 

2 WO;(WOAO/) 

3 Wo 

4 0/2 

5 Wo A 0/2 

premise 

1, A elimination 

2, ITL (StateChop) 

3, A elimination 

3, 4, A introduction 

Applying NestRuleCondChoplmpl to (6.1-22) yields: 

Wo; ow) A OW2 (6.1-23) 

However, because ow} is chopped to the state formula Wo, and because the satisfaction 

of a state formula depends only on the first state of a multi-state sequence, the chopping 

of ow) to Wo holds if w) follows any state in the multi-state sequence satisfying woo 

Therefore, W} does not have to hold in the next state after the single state satisfying Wo 

but after some next state after the single state satisfying WOo Further, for OW2 to hold, W2 

must be satisfied by the next state after the state sequence satisfying WOo This is 

demonstrated by the application of NestRuleCondChoplmp2 to (6.1-22) which yields: 

Wo A OW2 (6.1-24) 

Therefore, with this form of nested construction, the original rule (6.1-22) and the 

derivative rule (6.1-23) will hold even if w) is satisfied by a state that occurred after the 

state satisfying W2. Although not immediately evident from an initial inspection of(6.1-

22), the transformations presented at (6.1-23) and (6.1-24) demonstrate the potential 

confusion and corresponding problems that may result from the nesting of a chopped 

rule in the rule condition. 
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6.2 Recursion 

As applied to rules, recursion describes the circumstance where a rule is defmed 

in terms of that rule. Expressed in terms of nesting, recursion is the nesting of a rule 

within itself. An example of a simple recursive rule is: 

(6.2-1) 

Substituting the defmition of rule6.2.J into an instantiation of rule6.2.J yields: 

/0 A o(fi A/O A o(fi A rule6.2.J» (6.2-2) 

Applying NextAndDistEqv twice yields the equivalent form: 

/0 A 0li A % A oofi A 00rule6.2.1 (6.2-3) 

In this equivalent form, and with the continued substitution of the defmition of rule6.2.lt 

the sequence resulting from this recursive rule is clear: 

/0 A ofi A % A ooli A 00/0 A ooo/} A ooorule6.2.1 (6.2-4) 

Although rule6.2.1 is a ideal initial example of rule recursion because of its 

simplicity, that simplicity compromises its applicability to more realistic situations. 

Referencing the previous discussion in Section 5.1 regarding total rules, rule6.u 

includes no specification regarding the state sequence that will result if the rule 

condition/o is not satisfied. Therefore, consider the following recursive rule composed 

as a total rule: 

(6.2-5) 

The expansion resulting from the substitution of the definition of rule6.2.j into an 

instantiation of rule6.2.s is described by the following lemma. 
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LEMMA: RecursTotalRuleExpan 

~ if}/\ 0(/2/\ rule» v (-/)/\ oj unchanged) == 
if} /\ 0/2/\ O/}/\ 00/2 /\ oorule) v if}/\ 012 A O-/} A oojunchanged) 

V (-/)/\ ojunchanged)ja A Oif}/\j2) /\ 00j3 

where: rule == if} A oif2 A rule» v (-/J A O/unchanged) 

Proof: 

1 rule == if} A oif2 A rule» v rulejalse 

2 == if}/\ 0(/2/\ «(/)/\ 0(/2/\ rule» v rulejaJse») 

v (-/) A a/unchanged) 

3 == if} A 0/2 A O«/} A 0(/2/\ rule)) v rUlejalst» 

v (-!I A a/unchanged) 
4 == if] /\ 0/2/\ (OfJi A 0(/2 A rule» v OruZejalse)) 

V (:fJ /\ a/unchanged) 

premise 

I, substitution of 

equivalance 

2, NextAndDistEqv 

3, NextOrDistEqv 

5 == ifl A 0/2 A Oifl /\ Oif2 /\ rule))) 4, Distribution of /\ over v 
v if} A 0/2 A O(-{I A O!unchanged» 

v (:fJ A a/unchanged) 
6 == if 1 A 0/2 A a/I A 00(ji A rule» 

v ifl A 0/2/\ OC-{I A O/unchnnged» 

V (-11 A O/unchanged) 
7 == if 1 A 0/2 /\ 0/1 A 00j2/\ oorule) 

v if)/\ Of2/\ 0(:fJ A O!unchanged» 

V (-{I A a/unchanged) 
8 ==if} A 0/2/\ Of} A 00/2 A oorule) 

v if] /\ 0/2/\ 0-{1 A OO/unchanged) 

V (-,j, A O/unchanged) 

5, NextAndDistEqv 

6, NextAndDistEqv 

7, NextAndDistEqv 

App1ying RecursTotalRulcExpan to (6.2-5) yields the fo11owing equivalent 

disjunctive structure: 

ifa A oj1 A a/a A 00/1 /\ oorule6.2.5) 
v ifa A ofl A o-la A OO/unchanged) 
v (-fa /\ a/unchanged) (6.2-6) 

With this expansion, the significance of the total rule form is clear. The state sequence 

specified by ru[c6.2.j can be expanded, consistent with the recursive definition of rule6.2. 

5, until the rule conditionfa is not met, that is, until -{a is true. lfthe first state sequence 

does not satisfy /0. the third disjunct of (6.2-6), -{a A O/urU'hanged, specifies the next state 
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as unchanged. If the fIrst state sequence satisfIes fa but the second state sequence does 

not, the second disjunct of (6.2-6),fo " of] " 0-/0" OOf unchanged, specilles the third state 

as unchanged. This unchanged status of the third state is unchanged relative to the 

second state which satisfIesf] (as specified by Of 1) but notfo. The sequence specified 

in (6.2-6) can be expanded further, as needed, by the substitution of the defmition of 

rule6.2-5 into (6.2-6) and the application of RecursTotalRuleExpan. 

An important issue associated with recursive rules is termination of the rule. 

Consider the following simple rule: 

rule6.2-7 ~ fa " oifo " rule6.2-7) (6.2-7) 

Substituting the defmition of rule6.2-7 into an instantiation of rule6.2-7 and applying the 

applying the appropriate ITL and propositional logic yields the equivalent form: 

fa" ofo A oofo" 00rule6.2-7 (6.2-8) 

If the initial rule condition fa is satisfIed, then the rule state, that is, the next state 

specified by the rule, will also satisfy fa. Because all rule states reached by the rule 

satisfy the rule condition, this recursive rule will never terminate. Therefore, for a 

recursive rule to terminate, the rule codomain must contain at one least state that is not 

in the rule domain. Formally, for the rule rulerecurslve to terminate: 

30'E codomain(rulerecursive) I (O'~ domain(rulerecursive» (6.2-9) 

A common application of rule recursion is to implement loops. Through the use 

of counter variables or logical tests, for-loops, while-loops, or similar looping 

programming structures can be created. As many legacy and non-legacy applications 

include such looping structures, rule recursion offers a powerful rule-based technique 

for reasoning about such code structures. 
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6.3 Guarded Composition 

Dijkstra (1975, 1976) introduced the logical concept of a 'guarded command' to 

allow operational non-determinacy with respect to the final system state based on, and 

subject to, the current state of a given system. This guarded command approach was 

originally conceived as a reliable method of evaluating and executing simultaneous I/O 

interrupts, thereby avoiding machine deadlock resulting from the consistent and 

deterministic choice and service of one interrupt over another. Guarded command 

concepts have been explicitly incorporated into various programming languages 

including Occam (Roscoe and Hoare, 1986) and WSL (Ward, 2001). Whereas the bar n 
is frequently used as the guarded command operator to link unordered alternatives, in 

this thesis, disjunction is used to compose rules into guarded command systems. 

Although originally conceived to represent non-determinacy, guarded 

composition can be used to implement both non-deterministic and deterministic choice 

depending on the implementation of the guards. Under guarded composition, only those 

logical structures bound to a guard that is satisfied by the current system state sequence 

are candidates for selection and execution. If the guards do not overlap and each 

guarded logical structure in the guarded composition is satisfied by a different system 

state, deterministic choice results. Such a deterministic guarded structure functions like 

the switch or case constructs found in many programming paradigms. 

Within the context of the rule model presented in this thesis, the total rule form 

(ja" 0fl) v (-/0" 0f2) is an example of a simple, deterministic guarded composition. In 

this rule-based implementation of guarded composition, the rule condition of each rule 

serves as the guard, guarding the next state sequence defIned by the ru Ie state formula. 

For total rule (ja" 0fl) v (-/0" 0f2), the state sequence satisfying 0fl is guarded by fo in 

thatfl can occur in the next state only if the guard fa is satisfied. Conversely, the state 

sequence satisfying 0f2 is guarded by -fa in thatJi can occur in the next state only if the 

guardia is not satisfied (i.e., -fa is true). Because no state sequence can satisfy bothia 

and -/0 (i.e., fa " -/0 == false), the guards cannot overlap and deterministic choice is 

implemented. Subject to the requirement that the rule conditions not overlap, this 

approach to deterministic composition can be expanded as necessary by disjunctively 

incorporating additional rules. 
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However, if two or more guards overlap such that they are satisfied by the same 

state sequence, nondeterministic choice is implemented. With such an overlapping 

guarded command approach, mUltiple alternative state sequences can be associated with 

a single guard state. Therefore, when a guarded command system with overlapping 

guards is executed repetitively, different fmal states may result from the same initial 

state. With regard to implementation, the selection of the one alternative state sequence 

from the set of multiple alternative state sequences bound to a satisfied guard must be 

random to meet the expectation of fairness with respect to the nondeterminacy. 

Abandoning this random approach and adding a probabilistic technique to the selection 

of a single rule state from the set of multiple alternative state sequences bound to a 

satisfied guard forms the basis for a probabilistic guarded composition, analogous to a 

probabilistic guarded command language (He et a1., 1997; Morgan and McIver. 1999). 

A simple nondeterministic guarded command system is described in terms of 

general-form rules as: 

lfo " of I) v lfa " 0f2) v (-fa" O!unclwnged) (6.3-1) 

The state sequences satisfying ofl and of2 are both guarded by fa in that fl or h can 

occur in the next state only if the guard fa is satisfied. Because these rules share a 

common formula expressing the rule condition. (6.3-1) is transformed by applying 

propositional logic to yield the equivalent form; 

(ja " (ofl V of2 ) V (-fa A Of unclwnged) (6.3-2) 

Applying NextOrDistEqv to (6.3-2) yields the equivalent form: 

lfa " olfl v f2» v (-fa" of unclwnged) (6.3-3) 

With these transformations. the three-rule nondeterministic guarded command structure 

of (6.3-1) has been transformed into a nondeterministic total rule - total in that all state 

sequences will either satisfy fa or -{a. and nondeterministic in that a state sequence 

satisfying either f1 or h will follow one satisfying fa. Whereas (6.3-3) has been limited 
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to two rule conditions and three rule states, there are no limitations with regard to the 

number or nature of the rules used to described a rule-based guarded command system. 

Critical to the composition of any guarded command system is the unambiguous 

representation of the logical expectations of the system. Consider the following 

guarded command system disjunctively composed of two total rules: 

«(fa A 0/1) v (-fa A O/unchanged» 

v «(/2 A O/J) v (-f2 A O/unchanged» (6.3-4) 

As previously discussed, a total rule is a simple implementation of a deterministic 

guarded command system. Therefore, (6.3-4) can be described as a guarded command 

system composed of two deterministic guarded command systems. However, careful 

analysis of (6.3-4) demonstrates that such a composition yields a nondeterministic 

guarded command system. Applying propositional logic to (6.3-4) yields: 

(6.3-5) 

In this equivalent form consisting of three rules, it is evident that the guards may 

overlap. If/a?F /2, then the guards can overlap. Therefore, (6.3-5) is nondeterministic. 

In contrast, the following rule system, not derivative of (6.3-4), is a deterministic 

guarded command system as only one rule state can be satisfied: 

(6.3-6) 

In presenting these contrasting examples, no assertion is made that either (6.3-5) or (6.3-

6) is correct or incorrect, better or worse, preferred or not. Instead, they are presented to 

demonstrate the necessity of analyzing guarded command system formations to assure 

that the implementations are consistent with the underlying logical expectations for that 

system. 

6.4 Parallel Composition 

In contrast to the explicitly linear execution order that results from sequential 

composition, paralle] composition allows for two or more programming structures to be 
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executed concurrently. Practically, parallel composition allows for two or more 

programming structures to be executed under some defmed model of concurrency. 

Parallel composition is expressed using the parallel operator II to connect the structures 

that are to be executed in parallel Applied to rules, (fa A of) II (h A 0f3) specifies that 

the rulesfo A of] andfi 1\ 013 are to be executed concurrently. 

Apt and Olderog (1997) identify three common types of parallel composition in 

programs - disjoint parallelism, parallelism with share variables, and parallelism with 

synchronization. Parallel rules with shared variables may potentially interfere with each 

other, whereas parallel rules with synchronization require rule execution to be 

suspended and then restarted. Disjoint parallelism is the most restricted form of parallel 

composition and is probably the most applicable to legacy code analysis. This section is 

limited to the analysis of rules and rule formation within the context of disjoint 

parallelism. 

The concept of disjoint parallel programs was introduced by Hoare (1975) in an 

attempt to deflne the conditions under which certain parallel programs can be reduced to 

equivalent sequential programs. Two programs are considered disjoint if neither change 

the variables accessed and used by the other. Extending this concept to rules, two rules 

are disjoint if neither rule updates variables used by the other rule in assessing 

satisfaction of the rule condition or establishing the rule state associated with that rule 

condition. Stated another way, for two rules to be disjoint, the variables in the frame of 

one rule cannot be used in the other rule in the formulas that specify the rule condition 

or the next rule state. 

The variables in the frame of a formula have been previously described as W. 

For the same formula, let V be the set of all variables used to define, specify, or 

calculate the new values of the variables in W. Because some variables in W may be 

used to calculate other variables in W, including the recursive definition of a neW 

variable value, V may include variables from W. 

Thus, for any formula, there exists some set of variables V and Wand that 

formula may be described by the set of variable V u W. Consider two formulas,fo and 

fl. such that each is described by Va u Wo and VJ U WI. fa is independent of fi if the 

variables of Vo do not include any variables in WI. or Vo () WI = 0. Similarly. fi is 
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independent of fa if the variables of V] do not include any variables in Wo, or VI n Wo 

= 0. Therefore, the two formulas,fo and/J, are independent or disjoint of each other if: 

(6.4-1) 

Expanding this concept to rules, let rule rule be a general-form rule defined asfo 

1\ of]. The variables in the frame of rule have been previously described in Section 4.5 

as Wrule• For rule, let Vrule be the set of all variables used to specify fa and used inf] to 

calculate the next values of the variables in Wrule• Because some variables in Wrule may 

be used to calculate other variables in W rule, Vrule may include variables from W rule' 

Consider parallel two rules, rulea and ru!eb, defmed as fa 1\ ofa and I!b 1\ or.b o 1 J10 ,)1 i' 

respectively. Parallel rules rulea and ruleb are disjoint if: 

(6.4-2) 

Because disjoint parallel rules are independent of each other with respect to the 

variables used to express the rule conditions and updated in the rule states, they can be 

expressed as sequential rules using either of the two previously presented techniques for 

the sequential composition. Similarly, because they are disjoint, they may also be 

expressed as parallel rules should the need arise. 

6.5 Equivalent Rules 

Numerous models of equivalence exist for comparing objects and structures in 

computer science. This section offers a brief review of some of the more relevant 

concepts as a basis for deriving equivalence models that are applicable to general-form 

rules. The rule algebra presented in this research is used to demonstrate three forms of 

rule equivalence - strong equivalence (or strong bisimulation), transformational 

equivalence, and non-temporal equivalence. 

Apt and Olderog (1997) declare two computations input/output equivalent if 

they start in the same state and then result in the same fmal state. For parane] programs, 

they extend this model to the notion of permutation equivalence, that two computations 

are permutation equivalent if they are input/output equivalent and the sequences of 
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transitions in each computation are permutations of each other. Fokkink (2000) 

describes two processes as trace equivalent if they can execute exactly the same strings 

of actions and observes that trace equivalence ignores the effect of branching and may 

be inadequate in describing concurrency. Pitts (1997) describes two program 

expressions as contextually equivalent if they can be interchanged in a program without 

changing the program outcome. De Nicola and Hennessey (1984) offer a testing 

approach to demonstrate natural equivalence; two processes are equivalent if they pass 

exactly the same set of relevant tests. 

Many formal models of equivalence are related to the concept of bisimulation. 

Park (1981) introduced the formal model ofbisimulation as an approach to assessing the 

equivalence of two fmite automata. One automaton bisimulates another automaton if 

there exists a single relationship that relates all states of the frrst automaton to the states 

of the second automaton and relates all states of the second automaton to the states of 

the fIrst automaton. This concept has been extended to numerous computational 

paradigms, including process graphs (Baeten and Weijland, 1990), fmite transition 

systems (Arnold, 1994), and calculus of communicating systems (Milner, 1989). Under 

these paradigms, the system nodes, states, or agents and the transitions that connect 

them must be considered in the relationship that defmes a bisimulation between two 

systems. Fokkink (2000) offers a general and informal description of bisimulation 

applicable to these computational paradigms - two processes are bisimilar if they can 

execute the same string of actions and have the same branching structure. Many 

bisimulation models and the corresponding equivalence models are differentiated as 

weak or strong models, depending on whether the silent actions of two systems (i.e., 

those transitions that are invisible or unobservable to the external observer) must be 

matched one-for-one. Using the concept of weak bisimulation, Milner (1989) offers a 

model of observational equivalence where the external, observable behavior of two 

systems follows the same pattern, but the internal behaviors of the two systems may 

differ substantially. 

This thesis will use a general framework for equivalence based on the assertion 

that two temporal formulas are equivalent if they are satisfied by the same state 

sequences. Because rules are themselves temporal formula, two rules are equivalent if 

they are satisfied by the same state sequences. 
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Consider the following two rules: 

rule6.5-l ~ fo 1\ on 
rule6.5-2 ~ fo' 1\ ofl' 

(6.5-1) 

(6.5-2) 

Demonstrating the equivalence of these two rules requires either the assertion or proof 

that fo == fo' and ofl == on'· With such substitutions, both rules describe and/or are 

satisfied by the same state sequences. Such substitutions of individual temporal formula 

yield the strongest claim of equivalence for the associated rules as no other 

transformations or reductions on the original rules are required. Because the 

equivalences between individual formulas forming rUle6.5_l and rule6.5-2 are 

instantiations of a single relationship that is reflexive, symmetric, and transitive, rule6.5.l 

and rule6.5.2 are described as strongly equivalent. 

Consider the following two rules, each composed of two rules: 

rule6.5-3 ~ lfo 1\ 0fl) 1\ Olfl 1\ 0f2) 

rule6.5-4 ~ lfo 1\ of 1') 1\ Olfl' 1\ 0fl) 

Applying TwoSeqRulesEqvl to each yields the equivalent forms: 

fo 1\ ofl 1\ 0012 

fo 1\ of/' 1\ oof2 

(6.5-3) 

(6.5-4) 

(6.5-5) 

(6.5-6) 

In the absence of any knowledge that 0fl == ofl" the strong equivalence discussed above 

cannot be claimed. However, applying TwoSeqRulcslmp to (6.5-3) and (6.5-4) yields 

(6.5-7) and (6.5-8), respectively: 

(6.5-7) 

(6.5-8) 

Whereas (6.5-7) and (6.5-8) are identical (and therefore equivalent), TwoSeqRuIcslmp 

is not an equivalence preserving transformation. Therefore, rule6.5-3 and rule6.5-4 are 
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considered transformationally equivalent. Alternatively, with these transformations, 

rule6.5.] and rule6.5-4 are described as input/output equivalent, because both have been 

transformed into a general-form rule that is satisfied by the same input, specified by the 

rule condition /0, and is associated with the same output, as described by the rule state 

00/2' 

Consider the following two rules: 

rule6.5.9 ~ (fa A of}) A o(f} A 0/2) 

rule6.5.]0 ~ (fa A 0/].) A o«(fj' A o/}") A o(f}" A 0/2)) 

Applying TwoSeqRuleslmp to (6.5-9) yields: 

/oA 00/2 

(6.5-9) 

(6.5-10) 

(6.5-11) 

Using NextAndDistEqv, TwoSeqRuleslmp, and propositional logic, (6.5-10) is 

transformed to: 

/OA oooh (6.5-12) 

Comparing (6.5-11) and (6.5-12), and given that 0012 ~ 000/2. rule6.5.9 and rule6.5.}o are 

not transformationally equivalent. However, both rules are described as non-temporally 

equivalent as they differ only by the number of skip constructs (i.e., the ITL next 

operator 0) chopped ahead of the common rule stateh. 

Three forms of equivalence - strong equivalence (or strong bisimulation), 

transformational equivalence, and non-temporal equivalence - have been presented in 

this section. No doubt, other forms or other models of rule equivalence are possible. 

The formalization of the models presented above and the development of ahernative 

equivalence models applicable to general-form rules remain open questions. 

6.6 Rules in Programming Structures 

In legacy programs, three programming structures are frequently used to 

represent rules - the if-then-else programming structure, the while structure, and the 
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indexed for-loop structure. In this section, these three structures are examined in 

relation to the general form-ruleJi A 0h' 

6.6.1 If-Then-Else Structures 

If-then-else programming structures are a common and widely used method in 

many imperative-programming languages for implementing deterministic choice 

between two complementary alternatives. An if-then-else structure such as 'ifP then Q 

else R' is commonly represented in non-temporal propositional logic as (P A Q) v 

(,P A R) or the equivalent form (,P v Q) A (P v R) (Hoare, 1985). As the latter form 

includes the defmition of implication, that form is equivalent to (p:J Q) A (-'p:J R). 

Moszkowski (1986) defmes an if-then-else structure in ITL as: 

if b then WI else W2 ~ (b:J WI) A (,b:J W2) (6.6.1-1) 

where b is a Boolean expression. As presented in Table 4.3-5, the 'if /0 then /1 else // 

structure in ITL is now defined as: 

(6.6.1-2) 

As previously mentioned, the conjunctive form (fo A/I) v (-fo A/2) and the implication 

form (fo :J/l) v (-fo =>/2) are provably equivalent. 

In this thesis, a variation of the current ITL definition is used, and the if-then­

else structure is implemented as a pair of general-form rules as: 

if/o then 0/1 else 0/2 ~ (fa A 0/1) v (-fo A 0/2) (6.6.1-3) 

As previously described in Section 5.1, this rule form is also described as a total rule 

because all possible cases of the rule condition are considered, either /0 or :fo. As 

previously described in Section 6.3, this rule form is an example of a simple, 

deterministic guarded composition that includes two non-overlapping guards,fo and -fo. 

A more limited if-then programming construct is implemented by substituting 

/unchanged for /2, leaving the system in an unchanged state if the condition /0 is not met. 
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The semantics of june hanged have been previously described in Section 5.1. Alternatively 

and with a minor deviation from the general rule form fi " oli, the silent transition 

associated with ojunehanged can be avoided with the use of the ITL construct empty: 

ifjo then Ojl ~ (fo" oJi) v (-fo" empty) (6.6.1-4) 

An important use of the if-then-else programming construct is in creating nested 

if-then-else constructs. With such nested constructs, multiple guards can be applied 

systematically and bound to specific outcomes. Within the context of rules, using 

nested if-then-else constructs allows the hierarchical association of multiple rule states 

to a given rule state. Using the rule-based defmition of the if-then-else construct 

presented in (6.6.1-3), a nested if-then-else is created by instantiating an if-then-else 

construct as each of the respective rule states/J andj2. Consider the following example 

of a nested if-then-else construct. 

where: 

(wo" orule6.6.l.5a) v (-.wo" orule6.6.J.5b) 

rule6.6.J.5a ~ rule6.6.J.5a" .. v rule6.6.J.Jafo/ll 

rule6.6.1·5b ~ rule6.6.J.5b/rUI v rule6.6.J.5b/aiu 

rule6.6.J.5a,,., ~ (W6.6.1.5ao" OW6.6.1.5a) 

rule6.6.J.5a/aiu ~ (-,W6.6.1.5ao" OW6.6.J.5a) 

rule6.6.1.5b" .. ~ (W6.6./.5bo 1\ OW6.6.J.5b) 

rule6.6.1.5b/obl ~ (-1W6.6.J.5bo 1\ OW6.6.1.5b1) 

(6.6.1-5) 

The following lemmas describe equivalence transformations of rule-based, nested if­

then-else constructs. 

LEMMA: NestlffhenEIseEqvl (proved at 4, below) 

r (fo" orulea) v (-{o 1\ oruleb) 

:; (fo 1\ orulea,,,,, ) v (fo 1\ orulea/.lu) v (-fo 1\ oruleb",) v (:fo 1\ oruleb/
aIu

) 
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LEMMA: NestIfI'henElseEqv2 (proved at 6, below) 

I- (fa" orulea) v (-fa" oruleb) 

== (fa" oJao" ooJa) V (fa" o-fao" ooJa) 
V (-fa" OJbo" OOJb) v (-fa" O-fbo" OOJb) 

where: rulea ~ rulea v rulea, lrv6 JalJe 

ruleb ~ ruleb v ruleb 
lnu 'faJs. 

rulea,,,,. ~ (fao" oJa) 
rulea/aue ~ (-fao" oJa) 
ruleb,,,,. ~ (fbo" 0Jb) 
ruleb/au• ~ (-fbo" OJb) 

Proof: 

1 (fa" orulea) v (-fa" oruleb) 

== (fo " orulea) v (-fo " oruleb) 

2 == (fo " o(rulea,,,,. v rulea/aJs)) 

v (-fo" o(ru!eb,r .. v ru!eb/au) 

3 == (fo " (orulea,fW v orulea/au,)) 

v (-fa" (orulebtrw v oruleb/a,) 

4 == (fo " orulea" .. ) v ifo " oruleajau,) 

v (-fo " orulebt_) v (-fa" oruleh/al,) 

5 == (fa" o(fao" oJa)) V (fo" o(:fao" o!az)) 

v (-fa " O(fbo" 0Jb)) v (-!o 1\ o( -fbo 1\ OJbz)) 

6 == «(fo 1\ 0lao) 1\ ooJa) V «(fo 1\ o-faO> 1\ ooJa) 

v «-fo 1\ OJh) 1\ OO!h) v «-fo 1\ O-,j'ha) 1\ OO!b,) 

premise 

I, defmitionaI substitution 

2, NextOrDistEqv 

3, Distribution of" over v 

4, definitional substitution 

5, NextAndDistEqv and 

Eropositionallogic 

With NestIffhenEIseEqvl, a nested if-then-else construct is transformed into an 

equivalent disjunction of four general-form rules. With NesllffhenElseEqv2, a nested 

if-then-else construct is transformed to explicitly identify each pair of rule conditions 

associated the each of the four rule states. 

Applying NestIffhcnElser::qv2 to (6.6.1-5) yields: 

«wa 1\ OWM.J-5ao) " OOW6.6.J.5a) 
V «wo 1\ O-,W6.6.1-5ao) 1\ OOW6.6.l-5az) 
V «-,wo 1\ OW6.6.J.5b) 1\ OOW6.6.J-5b) 
v «-,wo 1\ O-,W6.6.1-5ho) 1\ OOW6.6.J.5bz) ( 6.6.1-6) 
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With this transformation, the state associations of the nested if-the-else structure of 

(6.6.1-5) are clear. With this nested if-the-else structure, each of four state sequences is 

associated with the satisfaction or non-satisfaction of three conditions defmed by the 

state formulas wo, W6.6.1.5ao' and W6.6.I.5bo' Using this model, deeper if-then-else 

structures can be created as necessary by using additional nesting to incorporate 

additional conditions and rule states. Because NestIIThenElseEqv1 and 

NestIIThenEiseEqv2 are equivalences, both can be applied to either expand or 

encapsulate such nested structures as required. 

6.6.2 While Structures 

While structures are a common method in many imperative-programming 

languages for implementing a conditional loop. Using ITL, Moszkowski (1986) defines 

a while structure recursively as: 

while Wo do WI ~ if Wo then (WI; while Wo do Wj) else empty (6.6.2-1) 

Applying the Moszkowski (1986) model of the if-then-else structure from (6.6.1-1), 

(6.6.2-1) is restated as: 

while Wo do W] ~ (wo:::> (WI; while Wo do WI)) A (-lWo:::> empty) (6.6.2-2) 

Applying the ITL defmition of the if-then-else structure from Table 4.3-5, (6.6.1-1) is 

restated as: 

while Wo do WI ~ (wo ~ (Wj; while Wo do WI» v (-'1Wo A empty) (6.6.2-3) 

Cau and Zedan (1997) define the while structure in terms of temporal formulas: 

while 10 do II ~ ({fa A II) ; while 10 do II) V (:fo A empty) (6.6.2·4) 

As presented in Table 4.3-5, the while structure in ITL is now defined using chopstar as: 

(6.6.2·5) 
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In this form, ITL operator fin denotes that the final subinterval of the interval defmed by 

the while construct does not satisfy the guard fa. 

Using the general rule form of this research, the recursion implicit in the while 

structure is expressed using the if-then structure of (6.6.1-4) as: 

while!a do!] ~ (if a " Oil) ; while!a doll) v (-{a" empty) (6.6.2-6) 

Alternatively, a rule-based while structure is described using chop-star as: 

while!a doll ~ ifa" O!l)- v (-fa" empty) (6.6.2-7) 

6.6.3 Indexed For-Loop Structures 

Consider the following general indexed for loop: 

for A = b to c do fi (6.6.3-1) 

where A is a state variable that can change value over the interval, and a and b are static 

variables that cannot change in value over the interval. This indexed for loop can be 

described in terms of ITL using the while structure as: 

forA=btocdofi ~(oA=b);rule' (6.6.3-2) 

where: 

rule' ~ while (A 5. c) do ifl ; oA =A + 1) 

In the form, the index variable A is initialized with the assignment oA = band 

incremented by 1 after each interval described bY!I. This incrementing is achieved with 

the chopped assignment formula oA = A + 1. The defmition of assignment in ITL is 

presented in Table 4.3-6. Applying the if-then defmition of the while construct 

presented at (6.6.2-6) and NextChop, the indexed for-loop is described as: 

for A = b to c do fi ~ (oA = b) ; rule' (6.6.3-3) 

where: 
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rule' ~ «(A ~ c) A of I ; oA =A + 1); rule') v (..,(A ~ c) A empty) 

6.7 Some Other Interesting Rules 

In this section, several interesting instantiations of the general-form rule are 

examined - interesting in that these simple rules unambiguously capture and express a 

single fundamental concept. 

6.7.1 Excluding a Rule State with Negation 

Specific rule states can be excluded with negation, as demonstrated in the 

following rule: 

fo A o-{I (6.7.1-1) 

(6.7.1-1) is a maximally nondeterministic rule, because the satisfaction of this rule will 

allow the system to exhibit in the next state any valid state sequences except those 

satisfying fl. 

Such a maximally nondeterministic rule is extremely expressive and therefore 

very valuable in specific circumstances. Consider a set of state sequences described by 

fo that are extremely undesirable or troublesome. A simple 'get out of trouble' rule can 

be formed as: 

faA 0-/0 (6.7.1-2) 

Under this rule, if the system exhibits a trouble state sequence described as/o, this rule 

specifics that the system be moved in the next state to any valid state sequence other 

than one satisfyingfo, thereby moving the system out of the troublesome state sequence 

associated withfo. Whereas the details of how a new state sequence satisfying -/0 is to 

be chosen are important in the refinement of this rule and ultimately the final 

implementation of the system, this rule expresses clearly what is of critical importance 

regarding reasoning about the system - in this case moving the system out of a 

troublesome state immediately. Although such a simple representation may seem trivial 

at fll'st glance, it does succinctly and unambiguously express the intended notion - if the 
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system is in the undesirable state described by fa, get out of that undesirable state 

immediately. To that end, such a rule-base representation in this minimal form achieves 

what Dijkstra (1976) calls the "clear separation" between the mathematical concerns 

about desired states and the specific engineering and implementation concerns regarding 

how these states are achieved. 

6.7.2 Enforcement of Specific Criteria 

Consider the following simple rule: 

-{a" ofo (6.7.2-1) 

Under this rule, if the system state does not meet the criteria specified by fa, then the 

next state sequence is required to meet these criteria. As with the example in the 

preceding section, this simple rule succinctly and unambiguously expresses the intended 

notion - if a system does not meet the criteria expressed by fa, then require that the next 

state meet those criteria. 

6.7.3 System Inverter 

An interesting rule variant can be formed by combining the concepts of Sections 

6.7.1 and 6.7.1. as demonstrated in (6.7.1-2) and (6.7.2-1), into the following total rule 

system: 

(fa " o-{o) v (-fa" ofo) (6.7.3-1 ) 

In this form. (6.7.3-1) describes a system inverter relative to the state sequence specified 

by /0. If the system state sequence satisfies/of then the next state sequence must not, and 

if the system state sequence does not satisfy /0, then the next state sequence must. 

6.7.4 Identity Rule 

An identity rule leaves the system state unchanged. A simple example of an 

identity rule is: 

/0 " O/u,,('hang~d 
(6.7.4- J) 
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If the rule condition /0 is satisfied, then the system state remains in next state sequence. 

With regard to typical programming constructs, the most common implementation or 

use of an identity rule is as the non-satisfaction half of a total rule where the rule 

condition/o of (6.7.4-1) is instantiated with :!condition to form -!condilion " O/unchanged. 

That such an identity rule as expressed in (6.7.4-1) functions as the 

programming construct skip relative to the satisfaction of /0 is consistent with the 

defmition of the ITL next operator o. Referencing the defmition of of the ITL next 

operator ° as presented in Table 4.3-4, O/unchanged may be described as skip; /unchanged' 

Substituting, (6.7.3-1) can be read as/o" skip ;/unchanged' 

6.7.5 Any Possible Rule State 

Consider the following rule: 

/0" otrue (6.7.5-1) 

This rule can be satisfied by the satisfaction of the rule condition /0 and by any valid 

next state sequence, as the formula true describes all states and is therefore satisfied by 

any state sequence. With respect to fmite state machines, Hartmanis and Stearns (1966) 

described this as a "don't care" condition. Such a rule may be relevant if the system 

designer does not care what the resulting system state is. Possible reasons for the use of 

such a general rule are that a logical placeholder is needed, that the current system state 

may be ignored, or that the system state may be reset by some subsequent action. 
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Chapter 7 

Analysis of Rules in Models and Specifications 

In this chapter, the formal rule extraction framework of Chapter 3, the formal 

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied 

to the extraction of rules from a variety of existing systems and the analysis of those 

rules. In Section 7.1, rules are extracted from an existing fmite state machine; these 

extracted rules are then used to identify the state sequence that results from the 

application of an example input sequence to that machine. In Section 7.2, rules are 

extracted from a detailed formal specification; with these extracted rules, alternative 

formal transformations are presented, thereby allowing a formal, rule-based analysis of 

the original specification. In Section 7.3, statecharts are investigated within the context 

of the formal rule model and the corresponding rule algebra as developed in the 

research; generic visual formalisms of various rule-based coding paradigms are 

developed and the rules extracted in Section 7.2 are represented as statecharts. 

7.1 Analysis of Rules from a Finite State Machine 

In this section, rules are extracted from an existing finite state machine and 

analyzed. Consider the finite state machine depicted in Figure 7.1-1 from STRL (2003). 

Figure 7.1-1: Three-State Finite State Machine 
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The system consists of three states (so, Si, and sz), and three state formulas, wo, Wi, and 

W2, are used to describe this system, where So 1= Wo, S1 1= Wj, and Sz 1= wz. For the 

purposes of describing this system, x is the next symbol read from the input and the 

acceptable input alphabet is the set {O, 1,2,3,4,5,6,7,8, 9}. For the purposes of this 

analysis and consistent with the transitions depicted in Figure 7.1-1, this input alphabet 

is divided into two sets, a1 = {O, I} and az = {2, 3, 4, 5, 6, 7, 8, 9}. The state transitions 

included in this system can be described based on the starting state, the recognized 

input. and the ending state. Within the context of the general form rule, the starting 

state and the recognized input are the rule conditions and the ending state is the rule 

state. These five state transitions, described as rules and organized based on the state 

satisfying the corresponding rule condition, are as follows: 

So (WOAXE al)A OW1 (7.1-la) 

So (WOAXE az) A Owz (7.1-tb) 

S1 (WI AX E aJ) A OWl (7.I-Ie) 

s] (WJ A x E az) A OWz (7.t-Id) 

S2 (W2A(XE ajVXE az»A OWz (7.t-Ie) 

This set of five individual rules describes all five transitions in the fInite state machine, 

and can be combined disjunctively to describe the entire system as: 

(WOAXE aJ)A OWl 

v (wo A X E az) A Owz 

V (WI AXE aJ)A OWl 

v (WI A X E a2) A Owz 

V {Wz A (x E aI v x E a2» A OWz (7.1-2) 

This rule system can be assessed by considering the individual rules that share a 

common rule state. Consider the following rule-pair from (7.1-2) that shares the 

common formula WI for the rule state: 

(7.1-3) 
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Applying CommonRuleStateEqv and propositional logic to (7.1-3) yields the following 

equivalent form: 

(7.1-4) 

Consider the following rule-pair from (7.1-2) that shares the common formula 

W2 for the rule state: 

(7.1-5) 

Applying CommonRuleStateEqv and propositional logic to (7.1-5) yields the following 

equivalent form: 

(7.1-6) 

With these equivalent transformations, (7.1-2) is transformed by substituting 

(7.1-4) and (7.1-6) for the rule pairs considered in (7.1-3) and (7.1-5), respectively, to 

yield: 

«(wo v WI) 1\ x E al) 1\ OWl) 

v «wo v WI) 1\ x E a2) 1\ OW2) 

v «W2 1\ (x E al v x E a2» 1\ OW2) (7.1-7) 

With (7.1-7), the finite state machine depicted in Figure 7.1-1. including the 

corresponding five transitions presented in (7.1-1a) through (7.1-1e), is described by 

three general-form rules. 

Given that two component rules included in (7.1-7) share a common rule state 

described by W2. a further simplification is possible. Consider the following rule-pair 

from (7.1-7) that shares the common formu la W2 for the rule state: 

Applying CommonRulcStateEqv to (7.1-8) yields the following equivalent fonn: 
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«(Wo v WI) "X E aZ) V (WZ" (X E al V X E aZ») " OWZ (7.1-9) 

Applying propositional logic to (7.1-9) yields the following equivalent form: 

«(Wo V Wj v wz) "X E az) v (wz "X E al» " OWz (7.1-10) 

With these equivalent transformations, (7.1-7) is transformed by substituting (7.1-10) 

for the rule pairs considered in (7.1-8) to yield: 

«(wo v Wj) "X E al) " OWl) 
v ««wo v WI v W2)" x E az) v (W2" X E aj» " OWz) (7.1-11) 

With (7.1-11), the fmite state machine depicted in Figure 7.1-1, including the 

corresponding five transitions presented in (7.I-la) through (7.1-le), is described by 

two general-form rules. 

As depicted in Figure 7.1-1, the fmite state machine is initially in So. Therefore, 

the initial behavior of this finite state machine prior to any input can be described as: 

Wo (7.1-12) 

Letting rule7.J.ll represent the rule system presented in (7.1-11), the behavior of this 

finite state machine in response to a single input from the input alphabet can be 

described using the ITL operator chop as: 

wo; rule,.l.ll (7.1-13) 

The behavior of this finite state machine in response to two inputs from the input 

alphabet can be described as: 

Wo ; ru[e7.J./J ; rule7.J.11 (7.1-14) 

For an infinite series of inputs from the input alphabet, the behavior of this finite state 

machine can be described using frL chop-star operator as: 
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Wo ; ruZe7.].1I * (7.1-15) 

Alternatively, rule composition based on the general rule form can be used to 

describe the behavior of this system to multiple inputs. For this description, consider 

the three-rule disjunctive description previously presented in (7.1-7): 

(((Wo v WI) A x E aI) A OW]) 

V «wo v WI) A x E a2) A OW2) 

v «W2 A (x E a] v x E a2» A OW2) (7.1-7) 

Letting (7.1-7) be represented by ruIe7.l.7, a longer state sequence is described by 

composing ruIe7.1.7 with itself using the general rule form: 

ruZe7.1.7 A orule7.1.7 (7.1-16) 

Using the general ru Ie form, (7.1-16) is composed with itself to describe even longer 

state sequences: 

(rule7.1.7 A omle7.].7) A o(mle7.J.7 A orule7.1.7) (7.1-17) 

(7.1-17) is transformed using TwoSeqRulcEqvl (from Section 5.6.1) and yields the 

equivalent form: 

ru/e7.J.7 A orule7.J.7 A oorule7.1.7 (7.1·18) 

Alternatively. (7.1-17) is transformed using TwoScqRulcEqv2 (from Section 5.6.1) and 

yields the equivalent form: 

ru[e7.l.7 A o(ru[e7.1.7 A orule7.J.7) (7.1-19) 

As previously demonstrated in Section 5.6.1, the forms of (7.1-17), (7.1-18), and 

(7.1-19) are equ iva lent. 
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Considering the repetitive forms presented in (7.1-18) and (7.1-19), recursion 

can be used to describe fmite state machine behaviors. For multiple inputs, the behavior 

ofthe finite state machine presented in Figure 7.1-1 is defmed recursively as: 

ruleFsM ~ rule7./.7 1\ oruleFSM (7.1-20) 

As a demonstration of the use of this recursive rule, ruleFSM is instantiated using the 

defmition of ruZeFSM as: 

ruleFsM == rule7.1.7 1\ o(rule7.l.7 1\ oruleFsM) (7.1-21) 

Applying NextAndDistEqv to (7.1-21) yields: 

rule7.l.71\ oruZe7.l.71\ ooruleFSM (7.1-22) 

Applying the defmition of ruZeFSM at (7.1-20) to (7.1-22) yields: 

rule7./.71\ orule7./.71\ oo(rule7./.7 1\ oruleFsM) (7. ]·23) 

Applying NextAndDistEqv to (7.1-23) yields: 

rule7.J.71\ o ruZe7./. 7 1\ oorule7.}.7 1\ oooruleFSM (7.1·24) 

Given the recursive form of ruieFsM, ruleFSM can be used to describe an infinite behavior 

associated with the finite state machine presented in Figure 7.1-1. Alternatively, the 

fmite behavior associated the finite state machine (i.e., the behavior associated with a 

finite input sequence) can be described by applying propositional logic to the infinite, 

recursive description. For example, the application of propositional logic (conjunction 

elimination) to (7.1-24) yields: 

rule7./.71\ orule7.}.71\ ooru!e7.J.7 (7.1·25) 

144 



With the transformation presented at (7.1-25), the recursive defmition of the system 

presented at (7.1-20) can be easily manipUlated to yield the same description of the 

system behavior previously presented at (7.1-18). 

In the demonstration that follows, ruleFSM is used to identify the specific 

sequence of states that results from a specific input. For this analysis, a minor algebraic 

simplification is made to the various rule representations to transform terms containing 

the set membership operator E. As originally defmed, input to the system can be any 

of the ten digits defined by the set {O, I, 2, 3, 4, 5, 6, 7, 8, 9}. In the original system 

description of (7.1-la) through (7J-Ie) and in the corresponding rule7.J-7 and ruleFsM, 

input associated with each specific transition is described in terms of x such that x E Q} 

or x E Q2, where Q} = {O, I} and Q2 = {2, 3, 4, 5, 6, 7, 8, 9}. Alternative terms are 

defmed such that: 

Applying these definitions to rulc7.1-7 yields: 

«(Wo v WI)" y) " OWl) 
v «wo v Wi)" -,y)" OW2) 

V «W2 " (y v -,y» " OW2) 

(7.1-26a) 

(7.1-26b) 

(7.1-27) 

Applying propositional logic to (7.1-27) to eliminate the tautology (y v -,y) yields: 

«(Wo v WI) "Y) " OWl) 

v «wo v WI) " -,y) " OW2) 

v (W2 " OW2) (7.1-28) 

Henceforth, (7.1-28) is descrihed as rulc7.1-28. The definition of ruleFsM is updated such 

that: 

ruleFsM ;; rule7.128 " oruleFsM (7.1-29) 
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Instantiating the defmition (7.1-29) with itself yields: 

ruleFsM == rule7.1-28 /I. o(rule7.J-28 /I. oruleFSM) (7.1-30) 

In the following demonstration, the input sequence 012 is tested against ruleFsM 

to determine the system response. In terms of the original input variable x, the sequence 

is described as formula x /I. ox /I. oox, where x = 0, ox = 1, and oox = 2. Using the 

algebraic transformations described at (7.1-26a) and (7.1-26b), the input sequence 012 

is represented as the formula y /I. oy /I. oo,y. Decomposing this formula, y represents 

x E aJ which holds for x = O. With the next term, oy represents ox E QJ which holds for 

ox = 1. And the fmal term, oo,y represents oox E a2, which holds for oox = 2. 

In this demonstration, four premises are asserted. In the fIrst premise, a fmite 

state machine exists and is described by ruleFsM and the associated defmitions. In the 

second premise, the input stream to be processed by the fmite state machine is described 

by the temporal formula y /I. oy /I. oo,y. In the third premise, the fmite state machine is 

started in a state satisfying Woo In the fourth premise, the relative uniqueness of the 

three formulas describing the three states of fmite state machine is asserted. 

The processing of the input stream 012 with the fmite state machine described 

by ruleFsM is as follows: 

1 ruleFSM premise 

where: 

ruleFsM ~ rule7.J-28 /I. oruleFSM 

rule7.J-28 ~ «Cwo v WI) /I. y) /I. OWl) 

v «(wo v WI) /I. ,y) /I. OW2) 

v (W2 /I. OW2) 

2 y /I. oy /I. oo-,y premise 

3 Wo premise 

4 (wo::> (,w] /I. ,W2» premise 

/I. (WI ~ (,Wo /I. ,W2» 

/I. (W2 ~ (,wo /I. ,WI» 

5 rule7.1_28/1. oruleFSM 1, defmition substitution 

6 rule7.1-28 5, /I. elimination 

7 y 2, /I. elimination 
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8 Wo :::J ( ..... 1WI 1\ ""W2) 4, 1\ elimination 

9 ""WII\ ""W2 3,8,MP 

10 ""WI 9, 1\ elimination 

11 ""W2 9, 1\ elimination 

12 «(wo v WI) 1\ y) 1\ OWl) 6, defmition substitution 

v «(wo v WI) 1\ ...,y) 1\ OW2) 

v (W21\ OW2) 

13 «true v false) 1\ true 1\ OWl) 3, 7, 10, 11, 12, prop. logic 

v ((true v false) "false 1\ OW2) 

v ifalse 1\ OW2) 

14 (true 1\ true 1\ OWl) 13, unit of v, zero of 1\ 

v (true I\false 1\ OW2) 

v ifalse) 

15 OWl 14, unit of 1\, zero of 1\, unit of v 

16 oy 2, 1\ elimination 

17 WI :::J (...,wo 1\ ""W2) 4,1\ elimination 

18 OWl :::J o( ""Wo " ""W2) 17, TTL (NextlmpNext) 

19 OWl :::J O""Wo 1\ O""W2 18, NextAndDistEqv 

20 O""Wo 1\ O""W2 11,19, MP 

21 O...,Wo 20, 1\ elimination 

22 O""W2 20,1\ elimination 

23 oruleFSM 5, 1\ elimination 

24 o(rule7.J.28 " oruleFsM) 23, definition substitution 

25 orule7.J.281\ ooruleFsM 24, NextAndDistEqv 

26 orule7.1·28 25, 1\ elimination 

27 o««wo v WI) 1\ y) 1\ OWl) 26, defmition substitution 

v «Cwo v WI) 1\ ...,y) 1\ OW2) 

v (W2 1\ OW2» 

28 o«(wo v WI) 1\ y) 1\ OWl) 27, NextOrDistEqv 

v o«(wo v WI) 1\ ...,y) 1\ OW2) 

V O(W2 1\ OW2) 

29 (o«wo v WI) 1\ y) 1\ OOWI) 28, NextAndDistEqv 

v (o«wo v WI) 1\ ...,y) 1\ OOW2) 

v (OW2 1\ OOW2) 

30 «o(wo v WI) 1\ oy) 1\ OOWI) 29, NextAndDistEqv 

v «o(wo v WI) 1\ o...,y) 1\ OOW2) 

v (OW2 1\ OOW2) 

147 



31 «owo v OWl) A oy A OOWI) 30, NextOrDistEqv 

v «owo v OWl) A o-,y A OOW2) 

V (OW2 A OOW2) 

32 «(false v true) A true A OOWI) 15, 16,21,23,31, prop. logic 

v «(false v true) Afalse A OOW2) 

v (false A OOW2) 

33 (true A true A OOWI) 32, unit of v, zero of A 

v (true Afalse A OOW2) 

v (false) 

34 OOWI 33, unit of A, zero of A, unit of v 

35 oo-,y 2, A elimination 

36 WI ::> (-,wo A -,W2) 4, A elimination 

37 OWl::> o( -'wo A -,W2) 36, In (NextImpNext) 

38 OWl::> (O-,wo A O-'W2) 37, NextAndDistEqv 

39 OOWl ::> o( O-,wo A O-,W2) 38, I1L (NextImpNext) 

40 OOWI ::> (OO-,wo A OO-,W2) 39, NextAndDistEqv 

41 oo-,wo A OO""W2 34,40,MP 

42 OO""Wo 41, A elimination· 

43 OO-,W2 41, A elimination 

44 ooruleFsM 25, A elimination 

45 oo(rule7.l_28 A oruleFsM) 44, defmition substitution 

46 o( orule7.J_28 A ooruleFSM) 45, NextAndDistEqv 

47 oorule7.J_28 A oooruleFsM 46, NextAndDistEqv 

48 o o rule 47, A elimination 

49 oo««wo v WI) A y) A OWl) 48, defmition substitution 

v «(wo v WI) A -,y) A OW2) 

V (W2 A OW2» 

50 o( o«(wo v WI) A Y) A OWl) 49, NextOrDistEqv 

v o«(wo v Wl) A -,y) A OW2) 

V O(W2 A OW2» 

51 o«o«wo v Wl) A Y) A OOWI) 50, NextAndDistEqv 

v (o«wo v WI) A -,y) A OOW2) 

V (OW2 A OOW2» 

52 o«o(wo v WI) A oy A OOWl) 51, NextAndDistEqv 

v (o(wo v WI) A o-,y A OOWz) 

v (OW2 A OOW2» 
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53 

54 

55 

56 

57 

58 

59 

60 

o«(owo v OWl) /\ oy /\ OOWI) 

V «OWO V OWl) /\ o-,y A 00W2) 

V (OW2 /\ 00W2» 

o«owo V OWl) A oy /\ OOWI) 

V 0« OWO V OWl) /\ o-,y /\ 00W2) 

V O( OW2 A oowz) 

(o( oWo V OWl) /\ ooy /\ OOOWI) 

V (O( OWO V OWl) /\ oo-,y A 000W2) 

V (00W2 A 000W2) 

«oowo V OOWI) /\ ooy A OOOWj) 

V «OOWO V OOWj) A oo-,y /\ OOOWZ) 

V (00W2 /\ 000W2) 

«(false V true) Afalse /\ OOOWj) 

V «(false V true) A true /\ 000W2) 

V (false /\ 000W2) 

(true Afalse A OOOWj) 

V (true A true /\ 000W2) 

V (false) 

000W2 

Wo /\ OWl A OOWj /\ 000W2 

52, NextOrDistEqv 

53, NextOrDistEqv 

54, NextAndDistEqv 

55, NextOrDistEqv 

34, 35, 42, 43, 56, prop. logic 

57, unit of v, zero ofv 

58, zero of A, unit of A, unit of v 

3, 15, 34, 59, A introduction 

With this processing of the input sequence 012, subject to the four premises, the 

resulting state sequence is described at sequent 60 by the temporal forrnu la: 

Wo /\ OWl /\ OOWj /\ 000W2 (7.1-31) 

Associating the states that are satisfied by these state formulas, the corresponding state 

sequence is: 

(7.1-32) 

Although relatively lengthy, this analysis is quite straightforward. With each 

recursive iteration, the verity of each rule element is assessed based on the available 

information. These verities are then applied to the rule model, and propositional logic is 

applied to determine which of the future states described by the rule model is true. For 
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example, in the fIrst iteration, Wo is true by premise; and y, isolated using propositional 

logic at sequent 7, is true also by premise. Given that Wo is true, the relevant portion of 

the uniqueness assertion premise is isolated using propositional logic, and ",Wl and ",W2 

are concluded using modus ponens and propositional logic (at sequent 8 through 11). 

The verity of each or their complement are substituted into the rule model and the only 

formula that can hold is identifIed (at sequent 12 through 15). With this, OWl is shown 

to hold, and the next iteration is performed. The process is repeated with minor 

variations to account for the iterative application of rule model to describe the next 

terms in the state sequence. The ITL lemma NextlmpNext (previously defmed in Table 

4.3-8) is applied (at sequent 18) to the relevant portion of the uniqueness assertion 

premise to temporalize it. The defmition of ruleFSM is applied recursively to defme the 

next possible states in the state sequence (at sequent 24). In all cases, NextOrDistEqv 

and NextAndDistEqv are applied to distribute the ITL next operator 0 across the 

formula. With the ITL next operator 0 fully distributed, the verities of all known terms 

are assigned, the formula reduced using propositional logic, and the only formula that 

can hold is identifIed. With this, OOWl is shown to hold (at sequent 34). The next 

iteration is performed using the same logic, and OOOW2 is shown to hold (at sequent 59). 

For a longer input sequence, this process of iteration and resolution is repeated as 

needed. 

Whereas the fmite state machine of Figure 7.1-1 is purposefully limited in scope 

to facilitate examination, this example does demonstrate that general-form rules can be 

extracted from the graphical depiction of a fmite state machine, and that those general­

form rules can be used to effectively describe the behavior of that fmite state machine. 

As demonstrated above, once extracted, these rules can be methodically applied to 

identify the specific behavior of the machine for a specific input sequence. 

7.2 Analysis of Rules from a Specification 

In this section, rules are extracted from an existing concrete specifIcation and 

analyzed. The following specification for cash withdrawal from an automatic teller 

machine, developed by Cau and Zedan (2000), is considered. 

var c, M, Cu, {Cardj:j E ac}, {Pint, AI: i E c} 
atm_int 
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while true do ( 
while atm_non_empty do ( 

waiCcustomer; 
read_card; 
if card_disabled then take_disabled_card 
else ( 

) 

gecpin; 
if max-pin then ( 

disable_card; 
take_disabled3ard 
) 

) 

else ( 

) 

if pin_exit then take_card_pin_exit 
else ( 

) 

requesCmoney ; 
if money_exit then take3ard_money_exit 
else ( 

debiCaccount; 
take_card_money 

); 
refilCatm 

) 

Based on a review of the specification and within the context of the rule extraction 

framework presented in Chapter 3, this specification contains two types of rule 

structures - the if-then-else structure and the while structure. The specification is 

processed from the top down (i.e., outside in), analyzing each structure as it occurs, and 

replacing that structure with the appropriate rule-based formation. 

Starting with the outermost or top while structure, the entire specification is 

represented as: 

var c, M, Cu, {Card}:j E ac}, {Pin;, A;: i E c} 
atm_int 
ruZe7.2-a 

Within the context of the general rule extraction framework and the stated context for 

this analysis, the var declaration and the initialization atm_int are not rules in that they 

are not if-then-else or while structures. However, they are included here for 
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completeness. In the above representation, rule7.2.a represents the following portion of 

the original specification: 

while true do ( 
while atm_non_empty do ( 

waiccustomer; 
read3ard; 

); 

if card_disabled then take_disabled_card 
else ( 

) 

gecpin; 
if max-pin then ( 

disable3ard; 
take_disabled3ard 
) 

) 

else ( 

) 

if pin_exit then take_card_pin3xit 
else ( 

) 

requesCmoney ; 
if money_exit then take_card_money_exit 
else ( 

debicaccount; 
take_card_money 

Applying the rule-form defmition of the while structure, previously presented at 

(6.6.2-6), in this portion of the specification, rule7.2.a is defmed as: 

rule7.2oa ~ (true 1\ orule7.2ob ; refill_atm); rule7.2oa ) 
v (-,true 1\ empty) (7.2-1) 

Consistent with the disjunctive structure of the rule-form while structure, rule7.2-a is 

presented as a disjunction of two rules, even though the falsity of the disjunct -,true 1\ 

empty is certain. In this form. and consistent with the specification, rule7.2oa describes 

an infmite sequence. 

In (7.2-1), rule7.2ob represents the following portion of the original specification: 
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while atm_non_empty do ( 
waiCcustomer; 
read3ard; 

) 

if card_disabled then take_disabled3ard 
else ( 

) 

gecpin; 
if max-pin then ( 

disable_card; 
take_disabled_card 
) 

) 

else ( 

) 

if pin_exit then take_card_pin_exit 
else ( 

) 

requescmoney ; 
if money_exit then take_card_money_exit 
else ( 

debiCaccount; 
take3ard_money 

Applying the rule-form defmition to the top while structure in this remaining portion of 

the specification, rule7.2-b is defmed as: 

rule7.2-b ~ « atm_non_empty 
1\ owaiCcustomer ; read_card; rule7.2-e) ; rule7.2-b) 
v (-,atm_non_empty 1\ empty) (7.2-2) 

In (7.2-2), rule7.2-e represents the following portion of the original specification: 

if card_disabled then take_disabled3ard 
else ( 

geCpin; 
if max-pin then ( 

disable3ard ; 
take_disabled_card 
) 
else ( 

if pinjxit then take_card_pin_exit 
else ( 

requesCmoney ; 
if money_exit then take_card_money_exit 
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) 
) 

) 

else ( 

) 

debiCaccount; 
take_card_money 

Applying the rule-form defmition to the top if-then-else structure in this remaining 

portion of the specification, rule7.2-c is defmed as: 

rule7.2-c £: (card_disabled /\ otake_disabled3ard) 
v (-,card_disabled /\ ogecpin ; rule7.2-d) (7.2-3) 

In (7.2-3), rule7.2-d represents the following portion of the original specification: 

if max....[Jin then ( 
disable3ard ; 
take_disabled3ard 
) 

) 

else ( 

) 

if pin_exit then take3ard_pin_exit 
else ( 

) 

requestJDoney ; 
if money_exit then take_card_money_exit 
else ( 

debiCaccount; 
take_card_money 

Applying the rule-form defmition to the top if-tben-else structure in this remaining 

portion of the specification, rule7.2-d is defmed as: 

rule7.2-d £: (max....[Jin /\ odisable3ard ; take_disabled_card) 
v (-,max....[Jin /\ orule7.2_e) (7.2-4) 

In (7.2-4), rule7.2-e represents the following portion of the original specification: 

if pin_exit then take_card_pin_exit 
else ( 
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) 
) 

requesCmoney ; 
if money_exit then take_card_money_exit 
else ( 

debiCaccount; 
take_card_money 

Applying the rule-form defmition to the top if-then-else structure in this remaining 

portion of the specification, rule7.2-e is defmed as: 

rule7.2-e ~ (pin_exit /\ otake_card_pin_exit) 
v (-,pin_exit /\ orequescmoney ; rule7.21) (7.2-5) 

In (7.2-5), rule7.21 represents the following portion of the original specification: 

) 

if money _exit then take_card_money _exit 
else ( 

debiCaccount; 
take_card_money 

Applying the rule-form definition to the if-then-else structure in this remaining portion 

of the specification, rule7.2_! is defined as: 

rule7.2_! ~ (money_exit /\ otake_card_money_exit) 
v (,money_exit 
/\ odebicaccount ; take_card_money) (7.2-6) 

The total rule rule7.21 contains two disjunctively connected rules reflecting the 

satisfaction and non-satisfaction of the rule conditions money_exit and ,money_exit. 

Because there are no additional rules nested in this rule, the entire specification has been 

assessed and the rule extraction is complete. 

Based on this analysis, six rules have been extracted from the original 

specification: 

rule7.2-a ~ ((true /\ oruZe7.2-b ; refIlI_atm) ; ruZe7.2-a) v (,true /\ empty) 

ruZe7.2-b ~ «atm_non_empty /\ owaiccustomer ; read_card; rule7.2-c) ; ruZe7.2-b) 
v (,atm_nonjmpty /\ empty) 
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rule7.2-c ~ (card_disabled A otake_disabled3ard) 
v (-,card_disabled A ogeCpin ; rule7.2-d) 

rule7.2-d ~ (max-pin A odisable_card ; take_disabled_card) 
v (-,max-pin A orule7.2_e) 

rule7.2-e ~ (pin_exit A otake_card_pin_exit) 
v (-,pin_exit A orequesCmoney ; rule7.2-j) 

rule7.2-j ~ (money_exit A otake_card_moneY3xit) 
v (-,money_exit A odebiCaccount; take_card_money) 

In this form, the specification can be analyzed as desired using ITL and other 

techniques. Because these rules are temporal formulas that describe sequences of states, 

the behavior of the specified system (that is, the sequence of states that results from the 

execution of the specification) can be tested and assessed by manipulating these 

formulas. 

In the following analysis, the specific system behavior required to take money 

from the automatic teller machine is assessed. Using the desired fmal state sequence 

take3ardJl1oney as the goal (i.e., take_card_money is asserted to be true for this 

specific analysis), the required state sequence necessary to reach this goal is assembled 

from the extracted rules by starting with the desired fmal state sequence and working 

backwards through the rules. Within this goal-oriented re-assembly, those portions of 

the rules associated with state sequences that do not lead to the desired fmal state 

sequence are discarded, and the remaining rules are re-assembled, leaving only those 

rules that lead to the state sequence take3ard_money. 

Consider the extracted rule rule7.2j that includes the goal take3ard_money: 

rule7.2j ~ (money_exit A otake3ard_money_exit) 
v (-,money_exit A odebicaccount; take3ard_money) 

The total rulerule7.2-j contains two disjunctively connected rules. However, only one 

rule includes the goal take3ard_money. Given the imposition of this goal, the rule 

(money_exit A otake3ard_money_exit) must evaluate false. Applying propositional 

logic, this disjunct is eliminated and the remaining sequence is described as: 

156 



Stated another way, ruZe7.21,w_card_money is the only half of the total rule ruZe7.2j that leads 

to and includes the sequence take_card_money. 

Continuing to move backwards through the extracted rules, consider ruZe7.2-e: 

ruZe7.2-e ~ (pin_exit /I. otake_card_pin_exit) 
v (-,pinjxit /I. orequesCmoney ; rule7.2j) 

With the imposition of the goal take_card_money, the disjunct (pin_exit /I. 

otake_card_pin_exit) must evaluate faZse because it does not include rule7.2-f and 

therefore cannot lead to the goal take_card_money. Applying propositional logic, this 

disjunct is eliminated and the remaining sequence is described as: 

Substituting the defmition of ru[e7.21,w_card..moDey into ruZe7.2-e,w_card..money yields: 

rule7.2-e,w_card..money == (-,pin_exit /I. orequesCmoney ; (,money_exit 
/I. odebicaccount ; take3ard_money» 

Continuing to work backwards through the extracted rules by eliminating disjuncts that 

do not lead to the goal and expanding the remaining pruned rules by substituting 

equivalences yields: 

rule7.2-d!4b_card..money == (,max-pin /I. o( ,pin_exit /I. orequescmoney ; 
(-,money_exit /I. odebicaccount ; take_card_money») 

ruZe7.2-c,w_card_money == (,card_disabled /I. ogecpin ; (,max-pin 
/I. o(-,pin_exit /I. orequescmoney ; (,moneYjxit 
/I. odebiCaccount ; take3ard_money»» 
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rule7.2-b tUe_cardJDODey ~ (atm_non_empty A owaiccustomer ; 
read_card; rule7.2-ctUe_caIdJDODOY) 

rule7.2-btUe_cardJDODey == (atm_non_empty A owaiccustomer; read_card; 
(,card_disabled A ogecpin ; (,max...,pin 
A o(opin_exit A orequesCmoney; (,money_exit 
A odebicaccount ; take3ardJIlOney))))) ; 
rule7.2-b take_caIdJDODeY 

With rule7.2-b take_caIdJDooey' the state sequence that leads to take3ard_money is identified 

and described. Because rule7.2-a is a system rule and not a business/knowledge rule (that 

is, the rule condition of rule7.2-a is true and therefore reflects no domain-specific 

knowledge), rule7.2-a is not included in this analysis. 

With this methodical elimination of those elements of the various rules that do 

not contribute to the defmed goal, it is tempting to view the above analysis as a form of 

backwards slicing. However, unlike most other slicing techniques that target program 

code, this analysis considers state sequences explicitly described by ITL formulas. 

Unlike traditional slicing that returns a fragment of code that leads to or from a specific 

data state, this analysis yields the entire behavior of a system, representing a sequence 

of states. Unlike traditional slicing where the result is the sliced code, this analysis 

yields a formal description of a state sequence. Thus, if the above analysis is to be 

viewed as slicing, it is best described as state sequence slicing. 

With this series of reduced rules, reduced in that only the rules associated with 

take3ard_money are included, a variety of analyses are possible. For example, because 

each of these take3ard_money rules are general-form rules consisting of a rule 

condition and a rule state in the form!; A oli, the rule conditions necessary to achieve 

the goal take3ard_ffioney are easily identified by assessing the individual rules: 

rule7.2-b tUe_caIdJDODOY 

rule7.2-c tUe_caId..moAey 

rule7.2-d tUe_<an\JDODOY 

rule7.2-e tUe_clldJDOAoy 

rule7.2j tUe_card_IPoney 

Rule Condition 

atm_non_empty 
,card_disabled 
,max...,pin 
,pin_exit 
,money_exit 
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Whereas ruZe7.2-b lAke.card.monoy is a complete description of the state sequence that 

includes take_card_money, partial state sequences that contribute to the complete 

sequence described by ruZe7.2-b 'aka.card_monoy can be derived with the application of ITL and 

the rule algebra of Chapters 5 and 6. These partial state sequences can be used to 

describe and reason about the behavior of the rule in alternative ways. Consider 

rule7.2-b lAke.canUnonoy == (atm_non_empty 1\ owaiccustomer ; read_card; 
(,card_disabled 1\ ogeCpin ; (,max-pin 
1\ o( -.pin_exit 1\ orequesCmoney ; (,money_exit 
1\ odebicaccount ; take3ard_money))))) ; 
rule7.2-b lAke.cardJllOnoy 

As presented, ruZe7.2-b lAke.card...monoy considers multiple instances of take_card_money, 

because it includes a recursive reference to ruZe7.2-b lAke.card...moncy as the last element of the 

sequence. However, for the following analysis, only one instance of take_card_money 

is considered. By limiting this to one instance of take_card_money, the requirements 

and actions for one customer can be assessed. Therefore, for this analysis, all state 

sequences after the first instance of take_card_money will be dropped. Assuming the 

that formula describing the state sequence up to and including take_card_money is 

known to hold for a given customer, this elimination of the trailing chopped sequence 

(i.e., the recursive ru!e7.2-b lAke.card.monOy) is allowed in ITL based on the semantics of chop. 

Therefore, using this approach, the state sequence that precedes and includes a single 

instance of take3ard_money is: 

atm_non_empty 1\ owaiCcustomer ; read3ard ; 
(,card_disabled 1\ ogecpin ; (,max..,pin 
1\ o( ,pinjxit 1\ orequesCmoney ; 
(,money_exit 1\ odebiCaccount ; take_card_money)))) 

Applying NextAndDistEqv to (7.2-7) yields: 

atm_non_empty 1\ owaiccustomer ; read_card; 
(,card_disabled 1\ ogecpin ; (,max,.pin 
1\ o-.pinjxit 1\ oorequesCmoney ; 
(,money_exit 1\ odebicaccount ; take3ard_money))) 

(7.2·7) 

(7.2-8) 
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Applying propositional logic (conjunction elimination) to (7.2-8) yields: 

owaiccustomer ; read3ard; 
(,card_disabled" ogecpin ; (,max...[Jin 
" o,pin_exit" oorequescmoney ; 
(,money_exit A odebicaccount ; take3ard_money))) 

Applying ITL (AndChopImp) to (7.2-9) yields: 

owaiccustomer ; read_card ; ,card_disabled 
/I. owaiccustomer ; read3ard ; ogecpin ; 
(,max...[Jin A o-,pin_exit" oorequescmoney; 
(,money_exit" odebicaccount; take3ard_money)) 

Applying propositional logic (conjunction elimination) to (7.2-10) yields: 

owaiccustomer ; read3ard ; ogecpin ; 
(,max...[Jin" o-pin_exit /I. oorequesCmoney ; 
(,money_exit" odebicaccount ; take_card_money))) 

Applying ITL (ChopAndlmp) to (7.2-11) yields: 

owaiCcustomer ; read_card ; ogecpin ; -,max...[Jin 
" owaiccustomer ; read_card; ogeCpin ; o-pin_exit 
" owait3ustomer; read_card; ogeCpin; oorequescmoney; 
(,money_exit" odebicaccount ; take_card_money) 

Applying propositional logic (conjunction elimination) to (7.2-12) yields: 

owaiCcustomer; read_card; ogecpin ; oorequesCmoney; 
(-,money_exit /I. odebiCaccount ; take3ard_money) 

Applying ITL (ChopAndImp) to (7.2-13) yields: 

owaiCcustomer ; read3ard ; ogecpin ; 
o orequesCmoney ; ,money_exit 
/I. owaiCcustomer ; read3ard ; ogeCpin ; 
oorequesCmoney ; odebicaccount ; take_card_money 

(7.2-9) 

(7.2-10) 

(7.2-11) 

(7.2-12) 

(7.2-13) 

(7.2-14) 
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With these transformations, the state sequence leading to take_card_money, as 

presented in (7.2-7), has been transformed into a series of conjunctively connected 

chopped state sequences. To demonstrate this, the following conjuncts are extracted 

from (7.2-8), (7.2-10), (7.2-12), and (7.2-14) using propositional logic: 

owaiccustomer ; read3ard ; -,card_disabled 

owaiccustomer ; read3ard ; ogecpin ; -,max-pin 

owaiccustomer ; read3ard ; ogecpin ; o-,pin_exit 

owaiccustomer ; read_card; ogeCpin ; 
oorequesCmoney ; -,money_exit 

owaiCcustomer ; read3ard ; ogecpin ; 
oorequesCmoney; odebiCaccount; take3ard_money 

(7.2-1Sa) 

(7.2-1Sb) 

(7.2-1Sc) 

(7.2-1Sd) 

(7.2-1Se) 

(7.2-1Sf) 

(7.2-15a) through (7.2-15f) are combined using propositional logic to form a single 

statement: 

atm_non_empty 
1\ owaiCcustomer ; read3ard ; -,card_disabled 
1\ owaiccustomer ; read_card; ogeCpin ; -max-pin 
1\ owaiCcustomer ; read_card; ogeCpin ; o-,pin_exit 
1\ owaiCcustomer ; read_card; ogecpin ; 

oorequescmoney; -,money_exit 
1\ owaiCcustomer ; read_card; ogecpin ; 

oorequesCmoney; odebicaccount ; take3ard_money (7.2-16) 

With the above analysis, (7.2-7) has been transformed into (7.2-16). Both 

describe the rule conditions that must be met prior to and the state sequences that lead to 

a single instance of take3ard_money. Whereas (7.2-7) describes the entire rule form 

necessary to reach a instance of take3ard_money, the state sequences and rule 

conditions associated with (7.2-7) can be assessed easily using (7.2-16). 

For example, because (7.2-16) is a conjunction, all conjuncts must hold. 

Therefore, the rule condition atm_non_empty must hold to achieve take_card_money. 

In addition to atm_non_empty, the state sequence satisfying owaiCcustomer ; read_card 
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must hold and then the rule condition -,eard_disabled must hold. In addition, a state 

sequence satisfying owaiccustomer ; read3ard ; ogeCpin must hold and then the rule 

condition -,max...]Jin must hold. This continues for all conjuncts, including the fmal 

conjunct that specifies that a state sequence satisfying owaiccustomer ; read_card ; 

ogecpin ; oorequesCmoney ; odebiCaccount must hold before the state sequence 

take_card_money. 

With this individual and collective assessment of the conjuncts that compose 

(7.2-16), the state sequence and rule condition ordering associated with (7.2-7) are 

clearly, succinctly, and unambiguously presented. Let there be no misunderstanding -

(7.2-16) is not a replacement for (7.2-7). However, (7.2-16) allows a simple and clear 

presentation of the conditions and behaviors associated with (7.2-7). Given that 

(7.2-16) is fonnally derived from (7.2-7), conclusions can be drawn from (7.2-16) with 

the certain knowledge that those conclusions are applicable to (7.2-7). 

In (7.2-16), each of the conjuncts terminate with a rule condition or, in the case 

of the last conjunct, the target sequence take3ard_money. This pattern is explored as 

another basis for rule transformation, analysis, and understanding, as follows. 

The sequences described in (7.2-15a) through (7.2-15f) are derived from (7.2-7), 

which is asserted to be a fmite sequence. Therefore, each of the sequences (7.2-15a) 

through (7.2-15f) must be fmite sequences. Using the ITL sometimes operator 0 (also 

readable as eventually), if two temporal formulas fo and f1 are fmite, then fo ; /1 :::> 0/1 

(Cau, 2006, personal communication). Therefore, from (7.2-15b), (7.2-15c), (7.2-15d), 

and (7.2-15e), the following statements are concluded: 

(7.2-17a) 

O-,max...]Jin (7.2-17b) 

(7.2-17c) 

(7.2-17d) 

Applying DiamondNextlmpDiamond to (7.2-17c) yields: 

(7.2-18) 
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Applying propositional logic to (7.2-15a), (7.2-15f), (7.2-17a), (7.2-17b), (7.2-17d), and 

(7.2-18) yields: 

atm_non_empty /\ O,card_disabled /\ 
O,max-pin /\ O-,pin_exit /\ O,money_exit 
/\ owaiCcustomer; read3ard; ogeCpin; 
oorequesCmoney; odebiCaccount; take_card_money (7.2-19) 

With the application of parentheses to this conjunctive structure, the fundamental 

general rule form structure of (7.2-19) is highlighted: 

(atm_non3mpty /\ O,card_disabled /\ 
O,max-pin /\ O-,pin_exit /\ O,money_exit) 

/\ owaiCcustomer ; read_card; ogecpin ; 
oorequesCmoney; odebiCaccount ; take_card_money (7.2-20) 

With this series of transformations, the state sequence necessary to achieve the 

state sequence take_card_money, presented in (7.2-7), has been transformed to the 

general-form rule presented in (7.2-20). With the form/; /\ ojj, the rule condition.fi is 

described as the conjunction atm_non_empty /\ O,card_disabled /\ O,max-pin /\ 

O,pin_exit /\ O,money_exit and the rule state Ii is described by the chopped sequence 

wait3ustomer ; read_card ; ogecpin ; oorequescmoney ; odebiCaccount ; 

take3ard_money. Stated another way, to achieve the sequence take_card_money, 

atm_non_empty must hold, ,card_disabled, ,max-pin, -,pin_exit, and ,moneY3xit 

must eventually hold, and the sequence wait3ustomer ; read_card ; ogecpin ; 

oorequescmoney; odebiCaccount ; take_card_money must hold. As before, (7.2-20) 

is not a replacement for (7.2-7), nor is it intended to be. However, it does afford a 

different analysis path with regard to understanding the conditions and the state 

sequences that must hold to achieve the take_card_money. 

In this analysis, the fmal transformation incorporating the ITL sometimes 

operator 0, presented at (7.2-20), is based on an extended series of individual 

transformations starting with (7.2-7). These transformations are generalized with the 

following lemma: 
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LEMMA: ChopRuleDiaRulelmp 

f- fo /\ ofl ; (ji /\ 0f3) and f- fo /\ ofl ; if2 /\ 013) ::> finite implies 

f- fo /\ 012 /\ ofl ; of3 

Proof: 

1 fo /\ ofl ; if2/\ 0f3) premise 

2 fo /\ 0.fJ ; if2 /\ 0f3) ::> finite premise 

3 finite 1,2,MP 

4 ofl ; if2 /\ 0f3) 1, /\ elimination 

5 ofl ;12 /\ ofl ; 013 4, ITL (ChopAndlmp) 

6 0.fJ ;12 5, /\ elimination 

7 012 3, 6, ITL (ifmite /\fa ;fb) ::> Of b) 

8 fo I, /\ elimination 

9 fo /\ Of2 7, 8, /\ introduction 

10 ofl ; 013 5, /\ elimination 

11 fo /\ Of2 /\ ofl ; 0/3 9, 10, /\ introduction 

The use of this lemma to simplify the transformation of a state sequence is 

demonstrated with the following reanalysis of the reduced version of rule7.2.b tW_card...mouy, 

previously presented at (7.2-7). For convenience, (7.2-7) is reiterated: 

atm_non_empty /\ owaiCcustomer ; read3ard; 
(-,card_disabled /\ ogeCpin ; (-,max...jJin 
/\ o(-,pin_exit /\ orequesCmoney ; (-,money_exit 
/\ odebicaccount ; take_card_money»» 

Applying NextAndDistEqv to (7.2-7) yields: 

atm_non_empty /\ owaiccustomer ; read3ard; 
(-,card_disabled /\ ogecpin; (-,max...jJin 
A ( o-,pin_exit /\ 0 orequest~oney ; (-,money _exit 
/\ odebicaccount ; take_card~oney»))) 

Applying ChopRuleDiaRulelmp to (7.2-21) yields: 

(7.2-7) 

(7.2-21) 
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atm_non_empty 1\ O,card_disabled 1\ 

owaiCcustomer ; read_card; ogeCpin ; (,max-pin 
1\ (o,pin_exit 1\ oorequesCmoney ; (,money_exit 
1\ odebicaccount ; take_card_money))) 

Applying ChopRuleDiaRulelmp to (7.2-22) yields: 

atm_non_empty 1\ O,card_disabled 1\ O,max-pin 
1\ owaiccustomer ; read3ard ; ogecpin ; 
(o-,pin_exit 1\ oorequesCmoney ; (,money_exit 
1\ odebicaccount; take3ard_money)) 

Applying ChopRuleDiaRulelmp to (7.2-23) yields: 

atm_non_empty 1\ O,card_disabled 1\ O,max...,pin 
1\ Oo-,pin_exit 1\ owaiccustomer ; read_card; ogeCpin ; 
oorequesCmoney; (,money_exit 
1\ odebicaccount ; take3ard_money) 

Applying ChopRuleDiaRulelmp to (7.2-24) yields: 

atm_non_empty 1\ O,card_disabled 1\ O,max...,pin 
1\ Oo-,pin_exit 1\ O,moneYjxit 1\ 

owaiCcustomer ; read3ard ; ogecpin ; 
oorequesCmoney ; odebiCaccount ; take_card_money 

(7.2-22) 

(7.2-23) 

(7.2-24) 

(7.2-25) 

To transform Oo-,pin_exit to O-,pin_exit, propositional logic, and ITL (Diamond­

NextImpDiamond) are applied to (7.2-25) to yield: 

atm_nonjmpty 1\ O,card_disabled 1\ O,max...,pin 
1\ O,pin_exit 1\ O,moneyjxit 1\ 

owaiCcustomer ; read3ard ; ogecpin ; 
oorequesCmoney ; odebiCaccount; take_card_money (7.2-26) 

With (7.2-26), the transformation is complete because the chopped sequence 

owaiCcustomer ; read3ard ; ogecpin ; oorequescmoney ; odebicaccount ; 

take3ard_money contains no general form rules of the formJi 1\ ojj. Although the strict 

and total temporal ordering of (7.2-7) is not preserved with respect to when the various 
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conditions must be met, (7.2-26) does provide an alternative view of the conditions and 

sequences that comprise the total state sequence leading to take3ard_money. 

The preceding analyses have focused on only one portion of a set of rule, or 

more specifically, the one path through the set of rules that leads to a single outcome. 

In these preceding analyses, this involved selecting only those rules (i.e., the halves of a 

total rule) that lead to the goal take3ard_money. Alternatively, sets of total rules can 

be analyzed. Analyzing the total rule precludes the necessity of state sequence slicing 

on a specific outcome. By analyzing the total rules, all possible outcomes can be 

assessed. 

To demonstrate the analysis of an entire set of rules, five of the previously 

extracted total rules are considered: 

rule7.2-b ~ «atm_non_empty A owaiCcustomer; read_card; rule7.2-c) ; rule7.2-b) 
v (,atm_non_empty A empty) 

rule7.2-c ~ (card_disabled A otake_disabled3ard) 
v (.card_disabled A ogecpin ; rule7.2-d) 

rule7.2-d ~ (max-pin A odisable_card ; take_disabled_card) 
v (,max-pin A orule7.2-e) 

rule7.2-e ~ (pin_exit 1\ otake_card_pin_exit) 
v (opinjxit 1\ orequesCmoney ; rule7.2-j) 

rule7.2j ~ (money_exit A otake_card_money_exit) 
v (,money_exit 1\ odebicaccount ; take_card_money) 

As previously discussed, rule7.2_a is always true and is implemented to assure the 

repetitive and non-terminating application of rule7.2-b. Therefore, rule7.2-a is not 

considered in this analysis. 

In the following analysis, these five rules - rule7.2-b, rule7.2-c, rule7.2-d, rule7.2-e, 

and rule7.2j - are used as premises, and a transformation is derived that describes the 

rule conditions and rule states associated with these five rules. One assumption is made 

for this analysis. The rule conditions of these five rules - atm_nonjmpty, 

card_disabled, money_exit, max-pin, and pin_exit - are asserted to be state formulas. 

Given the expected operatio~ of a typical ATM machine - that the satisfaction of these 
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individual conditions is based on the current state of the system and not some future 

state or sequence of states - this is a reasonable assertion. 

To implement these rule transformations, six lemmas are introduced -

AndChopDrop, ChopSwaplmpl, ChopSwaplmp2, ChopS wapImp3 , RuleChopTwo­

RuleImp, TwoChopRulesImp, and TwoChopRulesImp2. ChopSwaplmpl, ChopSwap­

Imp2, and ChopSwaplmp3 are used to replace an ITL formula (typically a general form 

rule) in a chopped sequence with a transformed formula, thereby maintaining the order 

and associations of the original chopped sequence. AndChopDrop, RuleChop­

TwoRulelmp, TwoChopRulesImp, and TwoChopRuleslmp2 are used to separate and 

collect the rule conditions and rule states of the two chopped rules and transform them 

into a single, general form rule. TwoChopRulesImp is a generalization of 

StateTwoChopRuleslmp3, previously presented in Section 5.6.2. In a deviation from 

previously consistent use of the general rule forml; A oli in the development of other 

lemmas that comprise this rule algebra, these lemmas are developed using I; A Ii to 

accommodate both the general rule form I; A ojj and special cases such as I; A empty. 

Given that fn can be instantiated with ofn as needed in these lemmas, this alternative 

form is fully expressive with regard to the general rule form used throughout this thesis. 

LEMMA: AndChopDrop 

f- ifo Ali) ;fz implies f- fa Afi ;fz 

Proof: 

1 ifo Af1) ;12 
2 fa ;f2 Af1 ;f2 

3 fa ;f2 

4 fa 

5 f1 ;fz 

6 fa Afi ;f2 

LEMMA: ChopSwaplmpl 

f- fo;/1 and f- fi =:Jf2 implies f- /0 ;/2 

premise 

1, ITL (AndChoplmp) 

2, A elimination 

3, semantics of chop 

2, A elimination 

4, 5, A introduction 
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Proof: 

1 10 ;11 
2 11-:::J12 
3 10 ;II-:::J/o;h 
4 /0 ;12 

LEMMA: ChopSwapImp2 

f- /0 ;12 and f- 10 -:::JII implies f- II ;12 

Proof: 

1 10 ;12 
2 la-:::JII 
3 10;12 -:::J./J ;12 
4 /I ;12 

LEMMA: ChopSwapImp3 

f- la:!I;13 and f- II :::>12 implies f- 10 ;12 ;13 

Proof: 

1 10 :11 :/3 
2 IJ -:::J12 
3 II :13:::> h :13 
4 10 ;11 ;/3 -:::Jla ;12 ;13 

5 to ;12 ;13 

LEMMA: TwoChopRulesImp 

I- (fa I\!I) : (ji 1\13) implies I- (fa ;12) 1\ (fl :13) 

Proof: 

1 (fo All) ; (f2 A13) 
2 «(fa 1\11) ;12) 1\ «(fa All) ;13) 
3 (fa 1\11) ;12 
4 (fo :12) 1\ (o/J :12) 

premise 

premise 

2, ITL (RightChopImpChop) 

1,3,MP 

premise 

premise 

2, ITL (LeftChopImpChop) 

1,3,MP 

premise 

premise 

2, ITL (LeftChopImpChop) 

3, ITL (RightChopImpChop) 

1,4,MP 

premise 

1, ITL (ChopAndlmp) 

2, 1\ elimination 

3, ITL (AndChopImp) 
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5 (fo A/1) ;/3 

6 (fo ;/3) A (fl ;/3) 

7 (fo ;/2) 

8 {/J ;/3) 

9 (fo ;/2) A (f1 ;/3) 

LEMMA: TwoChopRuleslmp2 

Proof: 

1 (fo A/I) ; (f2 A/3) ;/4 

2 (f2 A/3) ;/4 

3 /2 A/3;14 

4 (h A/3);14 ~ 12 A/3 ;/4 

5 (fo A/I) ; (f2 A/3) ;/4 ~ (fo A/I) ; (h A/3 ;/4) 

6 (fo A/I) ; (f2 A/3 ;/4) 

7 ifo ;/2) A (f] ;/3 ;/4) 

LEMMA: RuleChopTwoRulelmp 

Proof: 

1 (fo A/I) ; «h A/3) v (f4 A/5)) 

2 «(fo A/I) ; (f2 A/3)) V «(fo A/I) ; (f4 A!s)) 

3 (fo A/I) ; (f2 A/3) 

4 (fo ;/2) A (f1 ;/3) 

5 «(fo ;12) A {/J ;/3)) v «(fo ;14) A {/J ;/5)) 

6 (fo A/I) ; (f4 A/5) 

7 (fo ;/4) A (fl ;/5) 

8 «(fo ;14) A {/J ;/5)) v «(fo ;Ji) A {/J ;/3)) 

9 «(fo ;/2) A {/J ;/3)) v «(fo ;14) A {/J ;/5)) 

10 «(fo ;/2) A {/J ;/3)) v «(fo ;14) A (f1 ;/5)) 

2, A elimination 

5, ITL (AndChoplmp) 

4, A elimination 

6, A elimination 

7, 8, A introduction 

premise 

CP assumption 

2, AndChopDrop 

2-3, ~ introduction 

4, ITL (RightChoplmpChop) 

1,5, MP 

6, TwoChopRuleslmp 

premise 

1, ITL (ChopOrEqv) 

CP assumption 

3, TwoChopRuleslmp 

4, v introduction 

CP assumption 

6, TwoChopRuleslmp 

7, v introduction 

8, commutativity of v 
2, 3-5, 6-9, v elimination 
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The general transformation strategy for this complete analysis of all state 

sequences or behaviors associated with rule7.2-b (and rule7.2-e, rule7.2-d, rule7.2-e, and 

rule7.2j by inclusion) is to cleave each contributory rule into the component rule 

condition and rule state, and then add those .components, in order, into the aggregate 

descriptions of rule conditions and corresponding system behaviors. This disassembly 

and subsequent reassembly is performed using In and the rule algebra presented in this 

research. Because this is an assessment of all possible behaviors associated with an 

entire set of rules, these alternative behaviors are expressed disjunctively. The target 

rules are processed in reverse order, that is, from the deepest rule upwards. In this way, 

behaviors are transformed systematically, and each subsequent behavior associated with 

a specific rule rests on the behavior defmed by that rule's component rules. 

This transformation of the five rules ruZe7.2-b, ruZe7.2-e, rule7.2-d, rule7.2-e, and 

rule7.2j is presented in Appendix B. As the deepest rule, rule7.2-t includes no other rules 

and therefore, by defmition, totally describes all behaviors associated with ruZe7.2-t· 

Therefore, rule7.2j needs no transformation. Therefore, ruZe7.2-e is transformed first and 

incorporates the behaviors associated with rule7.2j. Then, rule7.2-d is transformed and 

incorporates the behaviors derived from rule7.2-e and rule7.2j. Then, rule7.2-e is 

transformed and incorporates the behaviors derived from rule7.2-d, rule7.2-e, and rule7.21· 

Finally, ruZe7.2-b is transformed and incorporates the behaviors derived from rule7.2-e, 

rule7.2-d, rule7.2-t, and ruZe7.2-f 

The transformations for rule7.2-e, rule7.2-d, rule7.2-e, and rule7.2j are presented in 

Appendix B. The transformation for rule7.2-b is presented below: 

(atm_non_empty ; ..,card_disabled ; 
..,max...[Jin ; -,pin_exit; ..,money_exit 
" owaiccustomer; read3ard; ogecpin ; oorequescmoney ; 

odebiCaccount ; take3ard_ffioney; rule7.2-b) (7.2-27a) 

v (atm_non_empty ; ""'leard_disabled; 
..,max...[Jin ;..,pin_exit; money_exit 
A owaiccustomer; read_card; ogecpin ; 

oorequesCmoney ; otake_card_money_exit ; rule7.2-b) 

v (atmJWn_empty ; ..,card_disabled ; -,max-pin ; pin3xit 
A owaiccustomer; read_card; oget-pin ; 

ootake_card_p~exit ; rule7.2-b) 

(7.2-27b) 

(7.2-27c) 
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v (atm_nonjmpty; ,card_disabled; max-pin 
A owaiCcustomer; read_card; ogecpin ; 

odisable_card ; take_disabled_card; rule7.2-b) 

v (atm_non_empty; card_disabled 
A owaiCcustomer; read_card; 

take_disabled_card; rule7.2-b) 

(7.2-27d) 

(7.2-27e) 

(7.2-270 

Although (7.2-27) is a single disjunctive statement, each component disjunct is 

numbered individually to facilitate discussion. 

With the above transformation and given the premises rule7.2-b, rule7.2-c, rule7.2-d, 

rule7.2-e, and ru[e7.2-!, (7.2-27) is proven to hold. Stated another way, for a system where 

rule7.2_b, rule7.2_c, rule7.2-d, rule7.2-e, and rule7.2jare known to hold, (7.2-27) describes the 

behaviors that are associated with that system. Using (7.2-27) and knowing the verity 

of the five rule conditions atm_non_empty, card_disabled, max-pin, pin_exit and 

money_exit for a specific instance, the system behavior for that instance can be 

determined. For example and as depicted in (7.2-27f), if ,atm_nonjmpty is satisfied, 

then empty holds and the system behavior described by rule7.2-b ends. Similarly and as 

depicted in (7.2-27e), if atm_non_empty and then card_disabled holds, then 

take_disabled_card holds (after both waiccustomer and read_card hold). Alternatively, 

using the transformation presented in (7.2-27), the rule conditions necessary for a 

desired rule state can be identified. For example and as depicted in (7.2-27a), to achieve 

the rule state take3ard_money, the rule conditions atm_non_empty, ,card_disabled, 

,max-pin, -,pin_exit, and ,money_exit must hold and must hold in that order. 

Another important issue with these transformations is that the recursive nature of 

ru[e7.2-b is preserved. Specifically, each alternative behavior, except that behavior 

associated with -,atm_non_empty, ends with an instance of rule7.2-b. For example and 

as depicted in (7.2-27d), if the rule condition atm_non_empty ; ,card_disabled; 

max-pin is satisfied, then the sequence owaiccustomer ; read_card ; oget_pin ; 

odisable3ard ; take_disabled_card must hold and then that sequence is followed by 

rule7.2-b. 
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A critical issue in this overall approach is that the transformation of rule7.2-b as 

presented in (7.2-27) and the corresponding transformations of rule7.2-c, rule7.2-d, and 

rule7.2-e as presented in Appendix B are disjunctively connected sets of general form 

rules. Therefore, as a rule system of general form rules, these transformations can be 

used for additional reasoning about the overall system. Just as the transformation of 

rule7.2-c is used to reason about rule7.2-b and so on, this transformation of rule7.2-b 

presented in (7.2-27) can be used to reason about other systems that include rule7.2-b, 

this including this transformation itself. 

The results produced with this transformation are consistent with the results 

from previous analyses. For example, consider the results of the previous 

transformation on the reduced rule rule7.2-b take_card.)llOlley presented at (7.2-26) and reiterated 

below for convenience: 

(atmjlOn_empty 1\ O-,card_disabled 1\ 

O-,max..[Jin 1\ O-,pin_exit 1\ O-,money_exit) 
1\ owaiCcustomer ; read_card; ogecpin ; 

oorequesCmoney ; odebicaccount ; take_card_money (7.2-26) 

Recall that (7.2-26) is a transformation of rule7.2-b take.card..Jlloney and that rule7.2-b take.cardJDDney is 

the result of a state slicing analysis of rule7.2-b, rule7.2-c, rule7.2-d, rule7.2-e, and rule7.21 to 

identify only the portions of those rules that describe the sequence ending with 

take3ardJlloney. Therefore, (7.2-26) is compared against (7.2-27a) which, with the 

exception of the recursive inclusion of rule7.2-b, describes the state sequence that ends 

with take_card_money. Both (7.2-26) and (7.2-27a) describe the same state sequence 

starting with waiccustomer and ending with take3ard_money. Both (7.2-26) and 

(7.2-27a) describe the same rule conditions that must be met: atm.J1,on_empty, 

-,card_disabled, -,max..[Jin, -,pin_exit, and -,moneYjxit. However, (7.2-27a) specifies 

the ordering with which these conditions must be met relative to each other. Therefore, 

the transformation concluding with (7.2-27a) retains more information relative to the 

original rules than the transformation concluding with (7.2-26). However, both are 

consistent with each other. 

In this section, a concrete specification is analyzed and the rules are extracted 

using the rule algebra developed in this research. These extracted rules offer an 
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equivalent, more manipulatable, and more understandable depiction of the logic, 

conditions, and nesting associated with each element of the original specification. 

These six extracted rules, presented at (7.2-1) through (7.2-6), can be manipulated and 

analyzed in numerous ways as demonstrated herein. However, the various rule analysis 

examples are offered without prejudice. Which of these techniques are more, or less, 

useful with respect to analyzing a given system depends on the overall expectations and 

objectives of a specific rule extraction process. With the state slice of (7.2-7), only 

those rule components leading to a specific outcome are identified. The transformations 

(7.2-15a) through (7.2-15f) are derived from these state-slice rule components and are 

examples of ordered individual sequences leading to the specific conditions that must be 

met to achieve a specific outcome. These ordered individual sequences are 

conjunctively connected into the single structure presented at (7.2-16). Using the 

transformations (7.2-15a) through (7.2-15f), all rule conditions that must be met to 

achieve a specific outcome and the associated state sequence that supports that outcome 

are succinctly represented in a single structure in (7.2-26). All rule conditions and the 

order in which they must be met to achieve all possible behaviors are succinctly 

represented in a single structure in (7.2-27). Regardless of the specific scrutiny that is 

subsequently applied, as demonstrated here, once a concrete specification is represented 

as a set of equivalent general-form rules, a wide range of logical analyses are possible. 

7.3 Rule Analysis and the Statechart Approach 

Although conceptually sound, the general formal framework for rule extraction, 

as previously presented in Chapter 3, may be compromised by the 'state explosion' 

problem - the exponential growth of the number of states under analysis - if applied 

directly to larger programs. Such a problem represents a potentially significant 

scalability issue regarding the application of this formal framework to real-world rule 

extraction problems. In this section, statecharts are used to address this problem. 

Statecharts are an extension of the fmite state machines used to represent rule systems in 

Section 7.1. Coupled with the rule model introduced in Chapter 4 and the rule algebra 

developed in Chapters 5 and 6, statecharts represent a robust approach to managing the 

'state explosion' problem that may result in the extraction and analysis of rules in real­

world legacy systems. 
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7.3.1 Overview of Statecharts 

Statecharts are a visual formalism for representing the behavior of state systems, 

especially event-driven, reactive systems (Harel, 1987). In an attempt to counter 

objections associated with conventional state transition diagrams, statecharts extend 

state transition diagrams through the inclusion of hierarchy, concurrency, and broadcast 

communication. To deal with the state explosion problem traditionally associated with 

a fmite state machine representation of larger systems, statecharts include depth so that 

states and events can be well structured and hierarchical. Statecharts provide for the 

clustering or abstraction of sub states into superstates, and the refmement of superstates 

into supporting substates. Orthogonality between states, achieved by allowing 

combinations of synchronization and independence, allows system concurrency. 

Graphically, statecharts are an ideal aid to system understanding as they provide the 

ability to move up or down, or zoom, between various levels of the user-defmed system 

abstraction. The semantics of statecharts as implemented in STATEMATE are 

described by Harel and Naamad (1996). The semantics of UML-statecharts are 

described by von der Beeck (2001). 

State transitions, changes from one system state to another system state, are the 

core element of the event-driven, reactive system described by statecharts. Harel (1987) 

describes a state transition as "when event a occurs in state A, if condition C is true at 

that time, the system transfers to state B." These state transitions are depicted 

graphically on statecharts as labeled arrows between two states. The general syntax of 

these state transitions is a [C] / P w here a is the event that triggers the state transition, 

C is the guarding condition that must be true for the state transition to occur, and Pis 

the action that is executed when the transition occurs (Harel et aI., 1990). All of the 

elements are optional. In general, a and C are inputs and p is an output; however, P 
may also serve as an input, ie., a triggering event, to a state transition in an orthogonal 

system component. Although actions are represented as part of the transitions between 

states, as in a Mealy automaton, actions may also be associated with the entrance to or 

the exit from a specific state, thereby conceptually representing the system as a Moore 

automaton (Harel, 1987; Harel et al, 1990). Multiple events, conditions, and actions 
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are allowed using Boolean combinations. Wide latitude is afforded regarding what can 

be defmed as an event, condition, or action. 

The original motivation for statecharts was reactive systems. Such systems must 

respond to multiple internal and external inputs, each occurring under different temporal 

constraints. System changes must occur only when specific triggers occur and only 

when the corresponding conditions are satisfied. State changes may occur 

independently of or be synchronized with other subsystems, but will typically occur 

subject to strict temporal requirements. An example of a complex reactive system is the 

flight control system in a modern military jet. 

Although not typically thought of as a temporally based reactive system, legacy 

procedural code can be viewed under the same general model. Legacy system code is a 

defmed sequence of code that effectively creates an internal, but enforced, linear 

temporal system logic. Procedures and functions are called in a specified order, 

executed, and the mandated state changes made. Control is then returned to the calling 

object. When executed or 'triggered,' test conditionals are evaluated, and state changes 

are made subject to explicit instructions specified by the code bound to that conditional. 

Although such legacy code typically does not involve concurrency and the external 

inputs may be relatively limited in number and/or monotonic, legacy procedural code 

can be described as a simpJe reactive system - simple in that the system logic is 

explicitly linear with no concurrency requirement and reactive in that the system 

behavior is determined by internal and possibly external events. 

7.3.2 Previous Application of Statecharts to Legacy Code Analysis 

The use of statecharts and fmite state machines (FSMs) for legacy code and 

reverse engineering analysis has been very Bmited. Although frequently used for new 

model verification, there are very few reported cases of the use of statecharts or FSMs 

for rule extraction or specification recovery from legacy systems. A review of these 

applications of statecharts or FSMs to legacy code is presented in this section. Given 

the limited experience in this area, some new system verification work involving 

statecharts or FSMs that is potentially applicable to legacy system analysis is also 

reviewed. 
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Britt (1994) describes the process of comparing a legacy pseudo-code 

specification for a critical aircraft collision avoidance system with a replacement system 

requirements specification developed using statecharts. This was largely a cross­

mapping exercise by two separate teams, with one team mapping the pseudo-code to the 

statechart system, and a second team mapping the statecharts to the pseudo-code. 

Although not explicitly stated, it appears that this mapping was primarily a manual, 

human-driven process, as opposed to an automated comparison. The correlation 

between the two systems was not straightforward, as one pseudo-code process might 

map to several statechart transitions, or one statechart transition might map to several 

pseudo-code processes. 

Corbert et aI. (2000) reported on the development and use of an integrated 

collection of program analysis tools, called Bandera, that can be used to extract fmite 

state models from Java source code. Whereas fmite-state verification techniques offer 

potential with regard to checking hardware design, the authors opine that a major 

impediment to practical application of finite-state verification techniques is the "model 

construction problem." Currently, most FSM model construction is manual, which is 

expensive, prone to error, and difficult to optimize. Further, unlike most system 

development, which is performed in common general-purpose languages, most model 

checking programs accept specifications only in a highly specialized, tool-specific input 

language. To address this semantic and syntactic gap, Bandera takes Java source code 

as input and generates FSM model code for use in one of several existing verification 

tools. Bandera was designed to achieve multiple functional criteria: use of existing 

model checking technologies; automated support for abstractions; model customization; 

extensibility; and integration of testing and debugging techniques. Bandera consists of 

a slicer, an abstraction engine, a model generator(including model checker language 

generation), and a graphical user interface to facilitate component analysis. In model 

building, three major techniques are applied in the construction of tractable models: 

irrelevant component elimination, data abstraction, and restriction of the components 

that are included in the fmal model. The completed model can then be translated into 

language for the model checkers Spin, SMV, or SAL. 

Popovic et al. (2002) describe the extraction of FSMs from communication 

software and their use in formal software verification and automated theorem proving. 
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FSMs are extracted as well-formulated formulas. As the original software was written 

in C++ and all target FSMs were written as instances of the same class, automated 

extraction was possible. The left-hand sides of the well-formulated formulas were 

constructed by looking for two specific functions and extracting the associated state and 

event names. The right-hand sides of the well-formulated formulas were constructed by 

analyzing transition functions. These extracted, well-formulated formulas, representing 

the FSMs in the original code, were then analyzed using the automatic theorem prover 

THEO to compare the extracted FSMs against the original system specifications. 

Giomi (1995) presents a series of techniques for extracting FSMs from hardware 

description languages (HDLs) such as VHDL and Verilog. In these HDLs, system 

behaviors can be described, after parsing, by a control flow graph and data flow 

information. However, FSM description of the system requires the set of inputs, the set 

of outputs, and a state transition graph consisting of states, state transitions, and 

transition labels. Techniques are presented for implicitly and explicitly extracting FSMs 

from HDL sequential behaviors. The implicit technique requires evaluating all 

executable paths between wait states. The explicit technique requires the construction 

and evaluation of an explicit state register defming the state machine at the clock edge. 

Wang and Edsall (1998) investigated the extraction of FSMs from Verilog code 

from an industriaVcommercial operation. Faced with the substantial challenge of 

extracting FSMs from different Verilog coding styles, a standardized FSM coding style 

was implemented. By standardizing the coding style, a custom parser was created to 

extract the FSMs directly from the Verilog code. These extracted FSMs were then 

analyzed using various proprietary and commercially available analysis tools. 

Verification activities included reachability and terminal state analysis, dynamic 

verification of function coverage, and visual verification of the FSM bubble diagram 

7.3.3 Visual Formalisms of Rule-Based Legacy Code Structures 

Recalling the underlying basis of the general rule model presented in Section 

4.1, a rule is a formal description of a relationship between two states. As refmed in 

Section 4.2, a rule describes a temporal relationship between two states - a state and a 

future state. As presented in Section 4.5, the general rule formJi 1\ afJ describes a rule 

as a relationship between two state sequences, where Ji describes the rule condition in 
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terms of the state sequence properties that must be met for the relationship to hold and 

where Ii describes the next state sequence that must occur for the relationship to hold. 

Both in its basis and as formally implemented, a rule is a conditioned relationship 

between two state sequences. And as demonstrated in this research, rules can be refmed 

so that rules - relationships between states - can be incorporated within other rules. 

Therefore, because statecharts describe relationships between state sequences, because 

statecharts allow for the explicit association of conditions with the transitions describing 

these relationships, and because statecharts allow for the hierarchical representation of 

state sequences within state sequences, there exists a strong correspondence between the 

critical elements of rules as defmed in this research and statecharts. In this section, 

statecharts are used to represent rules. 

In general, these statecharts will be represented using the ST A TEMA TE syntax, 

with any exceptions or assumptions noted. In the STATEMATE syntax, transitions are 

labeled as a [C] I fl, where a is the event that triggers the state transition, C is the 

guarding condition that must be true for the state transition to occur, and fl is the action 

that is executed when the transition occurs (Harel et aI., 1990). All transition elements 

are optionaL 

As an introductory exercise to using statecharts to describe rules, consider the 

simple two-state system presented in Figure 7.3.3-1. 

Figure 7.3.3-1: A Simple Two-State System 

As noted in Chapter 5, this simple two-state system is irreflexive, asymmetric, and 

antisymmetric. This system is the simplest possible two-state system, because it 

contains only one state transition and therefore is described, without manipulation, by a 

single general-form rule. 
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In this system, So F= wo, and S] F= WI. The one transition included in this system 

can be described in rule form as Wo 1\ OW]. In this rule, the rule condition is described 

by Wo and the rule state is described by WI. 

This simple two-state system is represented as a statechart in Figure 7.3.3-2. 

) 
Figure 7.3.3-2: A Simple Two-State Statechart 

States (or state sequences) are represented using rounded rectangles and the state 

transition between the two states So and s] is represented using the labeled arrow. The 

rule condition Wo is associated with this transition using the ST ATEMATE syntax 

described above. For this transition, there is no event a or action fJ associated with the 

transition. Consistent with the rule Wo 1\ OW] describing the simple two-state system 

presented in Figure 7.3.3-1, an interpretation of the simple statechart presented in Figure 

7.3.3-1 is that the transition between state So and state S1 occurs only if the condition Wa 

is met. With the previous specification that s] F= WI, the rule Wo 1\ OW1 holds under this 

statechart. 

This example is purposefully simple to facilitate demonstration. To facilitate the 

analysis and extraction of rules in legacy code, several generic visual formalisms of 

rule-based legacy code structures have been developed using statecharts. Four common 

rule-based legacy code structures are analyzed: the 'if-then-else' structure, the 'while' 

structure, the 'indexed for loop' structure, and the 'switch' structure. Using statechart 

concepts, generic visual formalisms are developed for each of these legacy structures. 

7.3.3.1 Statechart of the 'if-then-else' Structure 

In Section 6.6.1, a rule-based 'if-then-else' structure is defmed as: 

(fa 1\ of]) V (--fa 1\ 0f2) (7.3.3.1-1) 
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With this rule pair, two state sequence relationships are described. Iffo is satisfied, the 

next state sequence must satisfy fl. Conversely, if -/0 is satisfied, the next state 

sequence must satisfy f2. Letting a1 represent the state sequence that satisfies f1 (ie., 

a11= /1) and letting a2 represent the state sequence that satisfies f2 (i.e., a21= h), the 

generic visual formalism for the 'if-then-else' structure of (7.3.3.1-1) is presented in 

Figure 7.3.3.1-1. 

Figure 7.3.3.1-1: Generic Visual Formalism of the 'if-then-else' Structure 

Within the super-state a, the branching between the state sequences a1 and 0'2 is 

depicted with the C-connector. If the condition fo is satisfied, then the next state 

sequence is a1. That this condition is met is denoted by the labeling of the transition as 

[fo], consistent with STATEMATE labeling conventions. Alternatively, if the condition 

-/0 is satisfied, then the next state sequence is a2. 

A variation of the rule-based 'if-then-else' structure is the 'if-then' structure. This 

structure is defmed in Section 6.6.1 as: 

(fo" 0f1) v (-/0" empty) (7.3.3.1-2) 

Letting 0'1 represent the state sequence that satisfies /1 (ie., a1 1= f1), the generic visual 

formalism for the 'if-then' structure of (7.3.3.1-2) is presented in Figure 7.3.3.1-2. 
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Figure 7.3.3.1-2: Generic Visual Formalism of the 'if-then' Structure 

7.3.3.2 Statechart of the 'while' Structure 

In Section 6.6.2, a rule-based 'while' structure has been defmed as a recursive 

loop as: 

whilefo do ofl ~ ((fo A of1) ; whilefo doiJ) v (-{o A empty) (7.3.3.2-1) 

In this structure, if fo is satisfied, the next state sequence must satisfy f1' .and this 

relationship betweenfo and ofl exists untilfo is no longer satisfied. Letting (11 represent 

the state sequence that satisfies iJ (i.e., (11 1= /1), the generic visual formalism for the 

'while' structure of (7.3.3.2-1) is presented in Figure 7.3.3.2-1. 

Figure 7.3.3.2-1: Generic Visual Formalism of the 'while' Structure 

7.3.3.3 Statechart of the 'indexed for-loop' Structure 

In Section 6.6.3, a rule-based indexed for-loop structure is defmed in terms of a 

'while' structure as : 

181 



for A = b to c do /I ~ (oA = b) ; rule' (7.3.3.3-1) 

where: 

rule' ~ «(A:::; c) /\ of1 ; oA =A+ 1) ; rule') v (...,(A :::; c) /\ empty) 

Letting (51 represent the state sequence that satisfiesf1 (i.e., (511= f1), the generic visual 

formalism for the indexed for-loop structure of (7.3.3.3-1) is presented in 

Figure 7.3.3.3-1. 

Figure 7.3.3.3-1: Generic Visual Formalism of the Indexed 'for-loop' Structure 

This visual formalism incorporates two additional elements associated with the 

STATEMATE statecharts. On entry to the super-state (5, the index counter A is 

initialized and set to b. This is denoted by the nsf A := b statement. With each exit from 

the state sequence (5], the index counter A is incremented by 1. This is denoted by the 

xs/ A := A + 1 statement. With these two additions, the visual similarities between the 

indexed for-loop and the 'while' statement are evident, reflecting the underlying logical 

similarities. 

7.3.3.4 Statechart of the 'switch' Structure 

Consider the following guarded command statement: 

(7.3.3.4-1) 

This guarded command concept has various implementations in different languages, 

including the switch statement in C and Java, the evaluate statement in COBOL, and the 

case statement in Pascal and Ada. Although details vary with language, all 
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implementations of the switch-type construct follow the same general concept. As 

discussed in Section 6.3, guarded command statements can be logically represented 

with disjunction. Therefore, (7.3.3.4-1) can be represented as: 

(7.3.3.4-2) 

Given three state sequences 0'2, 0'3, and 0'4, such that 0'21= /2, 0'31= /3, and 0'41= /4, the 

generic visual formalism for the 'switch' structure of (7.3.3.4-1) is presented in Figure 

7.3.3.4-1. 

Figure 7.3.3.4-1: Generic Visual Formalism of the 'switch' Structure 

Similarities in both structure and function between 'switch' structures and 'if-then-else' 

structures are noted frequently in comparisons of languages and language structures 

(e.g., Sebesta, 2002; Scott, 2000). The similarities between the 'switch' structure in 

Figure 7.3.3.4-1 and the 'if-then-else' structure in Figure 7.3.3.1-1 are evident. 

7.3.4 Representing Extracted Rules with Statecharts 

In this section, statecharts are used to depict the rules that were extracted from 

the automatic teller machine specification in Section 7.2. In that section, the following 

six rules were extracted from the original specification: 

rule7.2.a ~ ((true A orule7.2.b ; refilLatm) ; rule7.2.a) v (,true A empty) 

ru[e7.2.b ~ «atm_nonjmpty A owaiccustomer ; read_card; rule7.2-c) ; ru[e7.2-b) 
v (,afm_nonjmpty A empty) 

rule7.2_c ~ (card_disabled A otake_disabled_card) 
v (,card_disabled A ogecpin ; ruZe7.2-d) 

183 



rule7.2-d t: (max-pin" odisable3ard ; take_disabled3ard) 
v (-,max-pin " orule7.2_~) 

rule7.2_~ t: (pin_exit" otake_card_pin3xit) 
v (-,pin_exit" orequesCmoney ; rule7.2-j) 

rule7.2j t: (money_exit" otake_card_money_exit) 
v (-,money_exit" odebiCaccount ; take3ard_money) 

To highlight how these hierarchical properties of statecharts allow for rules and the 

corresponding state sequences to be embedded in each subsequent statechart, these six 

rules will be processed from the top down. Statecharts are developed for each rule, and 

each statechart depicts the state sequence that satisfies the corresponding temporal 

formula in each rule. For example, (Jrule7.2_a satisfies rule7.2-a, (JrefilLatm satisfies 

refill_atm, etc. With the exception of the last rule, which contains no explicit rules, 

each statechart includes a state sequence described by another rule. Just as the above 

six rules describe a logical connection and hierarchy between one rule and the next, the 

corresponding statecharts depict those connections and hierarchy graphically. 

Starting with the ftrst or top rule, rule7.2-a is defmed as: 

rule7.2-a t: «true" orule7.2-b; refill_atm) ; rule7.2-a) v (-,true" empty) 

The statechart depicting the state sequences satisfying ruZe7.2-a is presented in Figure 

7.3.4-1. The statechart for rule7.2-a is based on the generic visual formalism for the 

'while' structure as previously presented in Section 7.3.3.2. rule7.2-a is a system rule, and 

the corresponding state sequence is described such that it does not terminate. (The 

termination case of -,true is shown on this statechart for completeness.) This statechart 

includes the state sequences described by rule7.2-b and refilCatm After (JrefilLatm, (Jrule7.2_a 

is repeated. Thus, the formula (true" orule7.2-b ; refilCatm) ; rule7.2-a is satisfied by 

(Jrule7.2 .. as depicted in this statechart. 
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Figure 7.3.4-1: Statechart for rule7.2.a 

rule7.2.a and the corresponding statechart for rule7.2.a (presented in Figure 7.3.4-

1) include rule7.2.b. The defmition of rule7.2-b is: 

rule7.2.b ~ «atm_non_empty 1\ owaiccustomer; read_card; rule7.2.c) ; rule7.2.b) 
v (-,atm_nonjmpty 1\ empty) 

The statechart depicting the state sequences satisfying rule7.2.b is presented in Figure 

7.3.4-2. The statechart for rule7.2.b is based on the generic visual formalism for the 

'while' structure as previously presented in Section 7.3.3.2. In rule7.2.b, branching 

between two alternative state sequences is based on the rule condition atm_non_empty. 

If atm_non_empty is satisfied, a state sequence described by waiccustomer, then 

read3ard, and then rule7.2.c follows, and then rule7,2.b is repeated. With this series of 

state sequences, the formula (atm_nonjmpty 1\ owaiccustomer ; read_card; rule7.2.c) ; 

rule7,2.b is satisfied. If atm_non_empty is not satisfied, the state sequence satisfying 

rule7.2.b ends, and the formula -,atm_non_empty 1\ empty is satisfied. In this statechart, 

this termination is depicted with the stubbed arrow. Given that (jrule7.2.b is part of (jrule7.Z.a' 

with the termination of rule7.2.b, the state sequence described by rule7.2.a continues with 

refill_atm (as previously depicted in Figure 7.3.4-1). 
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(J rule7.2_b 

Figure 7.3.4-2: Statechart for rule7.2-b 

rule7.2-b and the corresponding statechart for rule7.2-b (presented in Figure 7.3.4-

2) include rule7.2-c. The defmition of rule7.2.c is: 

rule7.2-c ~ (card_disabled" otake_disabled3ard) 
v (-,eard_disabled " ogecpin ; rule7.2-d) 

The statechart depicting the state sequences satisfying rule7.2-c is presented in Figure 

7.3.4-3. The statechart for rule7.2-c is based on the generic visual formalism for the 

'if-then-else' structure as previously presented in Section 7.3.3.1. In rule7.2-c, branching 

between two alternative state sequences is based on the rule condition card_disabled. If 

card_disabled is not satisfied (that is. if -,card_disabled is true). a state sequence 

described by gecpin and then rule7.2-d follows. Thus, the formula -,card_disabled " 

oget-pin ; rule7.2.d is satisfied. If card_disabled is satisfied, a state sequence described 

by take_disabled_card follows and the formula card_disabled" otake_disabled3ard is 

satisfied. 
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(j rulen_c 

Figure 7.3.4-3: Statechart for ruZe7.2-c 

ru[e7.2-c and the corresponding statechart for ru[e7.2-c (presented in Figure 7.3.4-

3) include ruZe7.2-d. The defmition of ruZe7.2-d is: 

ruZe7.2-d ~ (max..,pin /\ odisable3ard ; take_disabled_card) 
v (-,max..,pin /\ oruZe7.2_e) 

The statechart depicting the state sequences satisfying ru[e7.2-d is presented in Figure 

7.3.4-4. The statechart for ruZe7.2-c is based on the generic visual formalism for the 

'if-then-else' structure as previously presented in Section 7.3.3.1. In rUZe7.2_d, branching 

between two alternative state sequences is based on the rule condition max..,pin. If 

max..,pin is not satisfied, a state sequence described by ruZe7.2-e follows. Thus, the 

formula -,max..,pin /\ oruZe7.2-e is satisfied. If max..,pin is satisfied, a state sequence 

described by disable3ard follows and the formula card_disabled /\ odisable_card is 

satisfied. 

[maxyin] [....,maxyin] 

Figure 7.3.4-4: Statechart for rule7.2_d 
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ruZe7.2-d and the corresponding statechart for ruZe7.2-d (presented in Figure 7.3.4-

4) include ruZe7.2-e. The defmition of ruZe7.2-e is: 

ruZe7.2-e ~ (pin_exit" otake3ard_pin3xit) 
v (-pin_exit" orequescmoney ; ruZe7.2-/) 

The statechart depicting the state sequences satisfying ruZe7.2-e is presented in Figure 

7.3.4-5. The statechart for ruZe7.2-t is based on the generic visual formalism for the 

'if-then-else' structure as previously presented in Section 7.3.3.1. In ruZe7.2-e, branching 

between two alternative state sequences is based on the rule condition pin_exit. If 

pin_exit is not satisfied, a state sequence described by requesCmoney and then ruZe7.2-t 

follows. Thus, the formula -pin_exit " orequesCmoney ; ruZe7.2-/ is satisfied. If 

pin_exit is satisfied, a state sequence described by take3ard_pin_exit follows and the 

formula pin_exit" otake3ard_pin_exit is satisfied. 

cr rule7.2_e 

Figure 7.3.4-5: Statechart for ruZe7.2-t 

ruZe7.2-t and the corresponding statechart for rule7.2-e (presented in Figure 7.3.4-

5) include ruZe7.2-/. The defmition of rule7.2-/ is: 

ruZe7.2j ~ (money_exit" otake_card_money_exit) 
v (-,money_exit" odebicaccount; take3ard.-money) 

The· statechart depicting the state sequences satisfying rule7.2j is presented in Figure 

7.3.4-6. The statechart for ruZe7.2j is based on the generic visual formalism for the 
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'if-then-else' structure as previously presented in Section 7.3.3.1. In rule7.21, br~ching 

between two alternative state sequences is based on the rule condition money_exit. If 

money_exit is not satisfied, a state sequence described by debicaccount and then 

take_card_money follows. Thus, the formula ,money_exit /\ odebiCaccount ; 

take3ard_money is satisfied. If money_exit is satisfied, a state sequence described by 

take_card_moneY3xit follows and the formula money_exit /\ otake_card_money_exit 

is satisfied. 

O'rule7.2-f 

Figure 7.3.4-6: Statechart for rule7.21 

Whereas each of these individual statecharts describes the state sequences 

satisfying each individual rule, the power and value of statecharts can be understood 

best by looking at these statecharts and the associated rules as a unified whole. As this 

rule system is composed of six rules, the resulting statechart is six layers deep. 

Therefore, the composite chart is presented in Figures 7.3.4-7a and 7.3.4-7b. The state 

sequences satisfying rule7.2_Q, rule7.2-b, and rule7.2-c are presented in Figure 7.3.4-7a, 

which includes a minimal depiction of rule7.2-d and a corresponding reference to Figure 

7.3.4-7b. The state sequences satisfying rule7.2-d, rulen-e, and rule7.2_! are presented in 

Figure 7.3.4-7b. 
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(j ru!e7.2_a 
[-.true] 

See Figure 7.3.4-7b 

Figure 7.3.4-7a: Statechart for rule7.2.a, rule7.2-b. and rule7.2-c 
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(J'rule7.2_d 

[maxyin] [-,maxyin] 

(j disable card (Jrule7.2_e 

Figure 7.3.4-7b: Statechart for rule7.2-d, rule7.2_e, and ru[e7.21 

Quite literally, rUZe7_2-a is described in Figures 7.3.4-7a and 7.3.4-7b as a 

statechart inside of a statechart inside of a statechart, etc., just as the six rules rUle7.2-a 

through ruZe7.2j are, quite literally, a rule within a rule within a rule, etc. In statechart 

form. the logical connections, sequencing, and nested relationships of the six rules 

ruZe7.2-a through ruTe7.2! are clearly depicted graphically. Just as the general rule form/i 

A ofJ allows the encapSUlation of the logical relationships between state sequences by 

using rules within rules, statecharts allow the same encapsulation by imbedding 

statecharts within statecharts. In both cases, with this encapsulation comes the ability to 

represent depth, and limit or focus interest to a specific depth as necessary or 

appropriate. 
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For example, ignore the reference to Figure 7.3.4-7b and consider Figure 7.3.4-

7a as an autonomous statechart. With the suspension of Figure 7.3.4-7b, the three rules 

depicted in the statechart presented in Figure 7.3.4-7a are: 

rule7.2-a £: «true 1\ orule7.2-b ; refUCatm) ; rule7.2-a) v (-,true 1\ empty) 

rule7.2-b £: «atm_non_empty 1\ owaiccustomer ; read3ard; rule7.2-c) ; rule7.2-b) 
v (-,atm_non_empty 1\ empty) 

rule7.2-c £: (card_disabled 1\ otake_disabled_card) 
v (-,card_disabled 1\ ogeCpin ; rule7.2-d) 

Without additional details regarding rule7.2-d, rule7.2-d is just another minimally-defmed 

state sequence. Like waiccustomer or read_card, no details are available regarding the 

state sequence that rule7.2-d represents. If the label rule7.2-d were replaced with the label 

rule_to_take_money, the similarities would be even more dramatic. However, with the 

. addition of Figure 7.3.4-7b to Figure 7.3.4-7a, rule7.2-d is expanded, and additional depth 

and details are added regarding the state sequence that rule7.2-d represents. Similarly, 

with the additional description of rule7.2-d in terms of the general form rule f; 1\ ofj, 

including defmitions and references to rule7.2-d and rule7.2-e, additional depth and details 

are added to the rule-based description of the system. 

This comparison is made to highlight a critical issue - that general form rules 

(i.e., f; 1\ ofj) and statecharts as presented here are different representations of the same 

information, specifically the conditioned relationships between state sequences. If the 

visual formalisms of the various legacy code structures presented in Section 7.3.3 are 

accepted as accurate representations of the underlying logical concepts, and the implied 

correspondences between the statechart elements and the rule elements are accepted, 

then the statecharts of Figures 7.3.4-7a and 7.3.4-7b and the extracted six rules are 

equivalent. And with that, these presentations differ not in content, but only in hoW 

they can be used in future analysis and understanding. Whereas the statechart approach 

allows a visual presentation that is readily understandable by a wider audience, the 

formulaic approach of representing the extracted rules as ITL formulas is readily 

adaptable to computer analysis techniques. 
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7.3.5 The Value of Statecharts in Legacy Code Analysis 

Several important issues regarding rule extraction, legacy code analysis, and 

statecharts merit special note. Common legacy code concepts, previously expressed in 

Chapter 6 in terms of the general form rule Ii 1\ oiJ, have been expressed in terms of 

statechart visual formalisms. These visual formalisms provide a graphical 

representation of the system state changes that occur with each legacy structure. These 

visual formalisms depict the location of program rules and the resulting state changes. 

These various visual formalisms demonstrate the similarities and differences between 

various code structures, again facilitating both understanding and analysis. This 

statechart approach is consistent with the rule model presented in Chapter 4 and the 

associated rule algebra presented in Chapters 5 and 6. Using these four legacy code 

formalisms developed here, more complex logical and programming structures can be 

built using the rule algebra presented in Chapters 5 and 6, either by linking these 

concepts together or by nesting structures within structures. With such an expanded 

approach, sophisticated and complex legacy codes can be graphically represented for 

both understanding and analysis. Similarly, with the corresponding ability to 

encapsulate or hide states within states, the 'state explosion' problem associated with the 

application of the formal framework presented in Chapter 3 can be managed. 

Considering these factors, statecharts, in concert with the rule model and rule algebra 

presented in this research, provide a robust tool for legacy code analysis. 
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Chapter 8 

Analysis of Rules in Legacy Code 

In this chapter, the formal rule extraction framework of Chapter 3, the formal 

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied 

to the extraction and analysis of rules from legacy code. In Section 8.1, the formal rule 

model and the corresponding rule algebra are applied to the extraction and analysis of 

the rules contained in a small but relatively complicated block of legacy code; using the 

rule model and rule algebra, a corresponding database is developed to describe the rule 

and non-rule elements of this legacy code. A statechart is developed to assist in code 

analysis and understanding, and the extracted rules are assessed based on specific 

variables of interest. In Section 8.2, the FermaT tool is used to slice an example WSL 

program, and rules are extracted from the associated program slice(s). 

8.1 Using Rules to Build a Database for Legacy Code Analysis 

In this section, the concepts developed in this research are applied to a small but 

relatively complicated block of legacy code. Using the rule extraction framework 

presented in Chapter 3, the rule model presented in Chapter 4, and the rule algebra 

presented in Chapters 5 and 6, rules are extracted and a simple rule-analysis database is 

developed to describe the rules and non-rule elements in the legacy code. To 

supplement this rule extraction and the associated database, a statechart of the target 

legacy code is developed using the statechart concepts presented in Section 7.3. 

As demonstrated in the section, the rule algebra is applied and the legacy code is 

transformed into a series of rules and formulas. Then, the properties of these rules and 

formulas are recorded in the associated database. Within this analysis paradigm, the 

application of this rule algebra provides a formal context for the identification of a wide 

range of rule and formula properties that may be of specific interest to the user relative 

to the user's analysis objectives. Therefore, the design of this database can and will vary 

substantially depending on how the database will be used, including specific project 

needs, database analysis techniques, and other anticipated applications of the database 

information. Also, the design of the database depends on whether the database is an 

adjunct to the transformed code or a replacement for the original code. Therefore, the 
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database that is developed using this analysis paradigm can be as simple or as 

complicated as desired. For this demonstration, a relatively small set of properties have 

been selected. The following fields are included in the rule database: 

• Rule or formula label 

• 1TL formula 

• W (frame variable set) 

• V (used variable set) 

• Primary membership of the rule or formula 

Based on the extraction and analysis presented below, this completed database is 

presented at the end of this section in Table 8.1-1. 

The legacy code used in this example has been the subject of previous formal 

abstraction analysis (Cau and Zedan, 2006). The legacy code example analyzed here is 

a procedure from a published lexical scanner package written in Pascal. The total 

package, the overall package structure, and related procedures are discussed in detail in 

Cau and Zedan (2006). The target of this rule analysis, the procedure printerrorline, is 

presented as follows: 

procedure printerrorline(var Lbuf: linebufrec); 
var 

Co\umn,I,J,Num: integer; 
begin 

Co\umn:=O; 
with Lbufdo 
begin 

printLine(Lbuf); 
writeC*****': 6, ' '); 
for 1:=1 to length +1 do 

if eline[I] < > errnone then 
begin 

errorset:= errorset+[eline[1]]; 
Num:= ord(eline[I]); 
if I > Column then 
begin 

for J:= Column + 2 to 1 do writeC '); 
writeCj');Column:= I 

end 
else begin writeC,');Column:= Column + 1 end 
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write(Num: 1); 
Column:= Column + 1; 
if Num > 9 then Column:= Column + 1; 
eline[I]:= errnone 

end; {of if and for} 
writeln; 
lineerror:= false; 
fIleerror:= true 

end {of with} 
end; {of procedure printerrorline} 

Within this legacy code, rules are identified based on the if-then-else, while, and 

indexed for-loop code structures. These rule structures reflect locations in the legacy 

code where alternative state sequences may be created based on the satisfaction or 

non-satisfaction of the associated rule conditions. To facilitate the incremental analysis 

of this legacy code, mixed formulas are allowed. Consistent with the Spec 

representation used in Cau and Zedan (2006), mixed formulas used to represent the 

associated legacy code may contain concrete code structures, ITL formulas, and other 

abstract specifications, as needed and as appropriate. 

Rules and non-rule formulas are extracted from the target code using the 

procedure described below: 

1. Consistent with the general framework outlined in Chapter 3, the legacy 

code is analyzed and broken into individual units based on the syntax of 

the target language, in this case, Pascal. 

2. Working from the top down, these individual units are analyzed 

iteratively to identify structures that represent rules and structures that 

specify states such as assignment statements. Based on the legacy code 

forms analyzed in Section 6.6 and considering the language being 

analyzed, rule structures are if-then-else, while, and indexed for-loop 

code structures. Assignment statements are identified. Other structures 

(i.e., structures that are not rules and not assignments) are identified but 

left unclassified. Within the context of the Spec concept, these 

unclassified structures are left unmodified for later assessment if 

necessary and as appropriate. 
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3. The start and end of each rule, assignment, and unclassified structu~e are 

determined. Each rule is labeled and the code associated with that rule 

marked for further assessment on a subsequent iteration. Assignment 

statements are converted into temporal formulas and labeled. As 

appropriate, unclassified structures are labeled. 

4. For each formula, the frame Wand the variable set V (i.e., variables used 

to calculate those variables in the frame, as described in Chapter 6) are 

identified. Wand V for each rule are calculated later, after the analyses 

of all contributing formulas are completed. 

5. A single sequence of labels is created, identifying and ordering the 

formulas, rules, and other unclassified structures visible at the current 

level. 

6. Adjacent formulas are assessed to determine if any other reductions are 

possible or appropriate. Unclassified structures are assessed, and 

aggregated, deleted, processed, andlor left unchanged, as appropriate. 

7. With the next iterative pass, the code associated with the first rule of the 

above sequence is assessed. This code is analyzed to identify the 

elements used to specify the rule condition and the elements used to 

specify the rule state, including new rules. 

8. The code representing the rule state is processed, as described above 

starting at (3) above, and a sequence of formulas and rules is generated 

reflecting the code structures visible at that level. 

9. Each element of this sequence is processed iteratively until all rules have 

been reduced to their component formulas. 

10. The next rule in the original sequence at (2) above is processed using this 

procedure. 

11. This process is repeated until all code has been processed and 

transformed to a sequence of formulas, rules, and unclassified structures. 

Using this process and with the first iterative analysis of the target code, the 

following sequence of formulas, rules, and unclassified structures are identified. 
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procedure printerrorline(var Lbuf: linebufrec); 
var 

Column,I,J,Num: integer; 
begin 

fOa; 
with Lbufdo 
begin 

hi; 
fOb; 
rule1 ; 
fac ;fOd ;foe ; 

end {of with} 
end; {of procedure printerrorline} 

where: 

faa f: oColumn = 0 

hi f: printline(Lbuf) 

fOb f: owrite(,*****'. ' ') 

fac f: owriteln 

fOd f: olineerror = false 

foe f: ofileerror = true 

With these defmitions. the operative portions of the procedure printerrorline can be 

described as follows: 

fa == fOa ;fpl :fob ; ruZel :fac :fod :foe (8.1-1) 

In this expression of the legacy code, hi. representing the procedure printline(Lbuf), is 

unclassified with regard to rules and formulas. The specific code associated with rule} 

is described later and is transformed into the component formulas and/or rules in a 

subsequent iteration. 

Forfoa,fob,foc,fod, andfoe. the frame set Wfor each formula is: 

WOa = {Column} 

WOb = {lIOwrite} 

Wac = {I10write } 

Wad = {lineerror} 
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WOe = {fileerror} 

For this analysis, a variable 1I0write is imposed to describe the system service that is 

updated by the PASCAL 'write,' 'writeln,' and similar commands. For I'. I'. I'. I'. JOa, Jab, JOe, JOd, 

andjoe, the variable set V for each formula is: 

VOa =0 

VOb =0 

VOe =0 

VOd =0 

VOe =0 

In the preceding analysis, rulel represents the following code: 

for 1:=1 to length + 1 do 
if eline[I] < > ermone then 
begin 

errorset:= errorset+[ eline[l]]; 
Num:= ord(eline[I]); 
if I > Column then 
begin 

for J:= Column + 2 to I do write(' '); 
write('i');Column:= I 

end 
else begin write(',');Column:= Column + 1 end 
write(Num: 1); 
Column:= Column + I; 
if Num > 9 then Column:= Column + 1; 
eline[I]:= errnone 
end; {of if and for} 

Based on the next iterative analysis of this code, rule} is an indexed for-loop. Using the 

indexed for-loop rule-form presented in Section 6.6.3, rulel is described as: 

rule} ~ for I:=1 to length +1 do ruZe2 (8.1-2) 

The specific code associated with rule2 is described later and is transformed into the 

component formulas and/or rules in a subsequent iteration. 

199 



As an indexed for-loop and consistent with Section 6.6.3, rulel is transformed to 

a while structure as: 

(8.1-3) 

where: 

flo ~ (01=1) 

rulel' ~ while (I ~ length +1) do (rule2 ; 01 = 1+ 1) 

Using the defmitions presented in Section 6.6.2, the while structure rulel' is transformed 

to: 

rule/' == «(I ~ length +1) A orule2 ; 01 = I + 1) ; rule/') 
v (-,(1 ~ length + 1) A empty) 

With these transformations, rule I can be described as: 

where: 

flo ~ 01 = 1 

rulel' ~ «wCl' A orule2 ;flb) ; rulel) v (-,weI' A empty)) 

WCI' ~ I ~ length + 1 

fIb ~ 01 = I + 1 

(8.1-4) 

(8.1-5) 

For each of the above non-rule formulas, the sets Vand Ware determined based on their 

respective defmitions, and the database is updated accordingly. The determination of V 

and W for rulel' is deferred until all contributory formulas are identified. 

In rulel', the rule condition WCI' is a state formula. Therefore, to transform rulel' 

to a simpler form, StateAndNextChop is applied to rulel' to yield: 

ruZe/, ~ (WCI' A orule2 ;jlb ; rulel') v (-,WCl' A empty) (8.1-6) 

In the specification of rulel', rule2 represents the following code: 
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if eline[I] < > errnone then 
begin 

errorset:= errorset+[ eline[IJ]; 
Num:= ord(eline[I]); 
if! > Column then 
begin 

for J:= Column + 2 to I do writeC '); 
writeCj');Column:= I 

end 
else begin writeC,');Column:= Column + 1 end 
write(Num: 1); 
Column:= Column + I; 
if Num > 9 then Column:= Column + 1; 
eline[I]:= errnone 

end; {of if and for} 

Based on the next iterative analysis of this code, rule2 is an if-then-else rule structure. 

Consistent with the defmition presented in Section 6.6.1, rule2 is described as follows: 

rule2 == (WC2" oh) V (-lWC2" empty) (8.1-7) 

where: 

WC2 ~ eline(I) *' errnone 

For each of the above non-rule formulas, the sets Vand Ware determined based on their 

respective definitions, and the database is updated accordingly. The determination of V 

and W for rule2 is deferred until all contributory formulas are identified. 

In the specification of ru[e2,J3 represents the following code: 

errorset:= errorset+[eline[I]]; 
Num:= ord(eline[I]); 
if I > Column then 
begin 

for J:= Column + 2 to I do writeC '); 
writeCj');Column:= I 

end 
else begin write(',');Column:= Column + 1 end 
write(Num: 1); 
Column:= Column + 1; 
if Num > 9 then Column:= Column + I; 
eline[I]:= errnone 

201 



Based on the next iterative analysis of this code, /3 is described by the following 

sequence: 

where: 

/3a ~ oerrorset = errorset +( eline(I» 

/3b ~ oNum = ord(eline(I» 

/3c ~ owrite(Num) 

/3d ~ oColumn = Column + 1 

be ~ oeline(I) = errnone 

(8.1-8) 

For each of the above non-rule formulas, the sets V and Ware determined based on their 

respective defmitions, and the database is updated accordingly. The determination of V 

and W for rule3 and rule4 is deferred until all contributory formulas are identified. 

With the above expansion of/3, rule2 is restated as: 

rule2 == (WC2 A O/3a ;/3b ; rule3 ;/3c ;/3d; rule4 ;/3e) 
v (-,WC2 A empty) 

In the specification of ruZe2, rule3 represents the following code: 

if I > Column then 
begin 

for J:= Column + 2 to I do write(, '); 
write('i');Co!umn:= I 

end 
else begin write(',');Column:= Column + 1 end 

(8.1-9) 

Based on the next iterative analysis of this code, rule3 is an if-then-else rule structure. 

Consistent with the defmition presented in Section 6.6.1, rule3 is described as follows: 

(8.1-to) 

where: 

We3 ~ I > Column 
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/4a 1:.. owrite('i') 

/4b ~ oColumn = I 

/4c 1:.. owrite(':) 

J4d A 

oColumn = Column + I 

For each of the above non-rule formulas, the sets V and Ware determined based on their 

respective defmitions, and the database is updated accordingly. The determination of V 

and W for rules is deferred until all contributory formulas are identified. 

In the specification of rule3, rules represents the following code: 

for J:= Column + 2 to I do writeC '); 

Based on the next iterative analysis of this code, rules is an indexed for-loop. Using the 

indexed for-loop rule-form presented in Section 6.6.3, rules is described as: 

where: 

rules == /6a ; rules' 

/6a ~ oJ = Column + 2 

rules' ~ while WCS' do /6b 

WCS' ~ J s; I 

/6b ~ owriteC ') 

(8.1-11) 

Using the definitions presented in Section 6.6.2, the while structure rule5' is transformed 

to: 

rules' == «WC5'1\ O/6b ;/6c ) ; rules) v (""wcs'l\ empty) (8.1-12) 

where: 

/6C ~ oJ = J + 1 

For each of the above non-rule formulas, the sets Vand Ware determined based on their 

respective defmitions, and the database is updated accordingly. The determination of V 

and W for rules' is deferred until all contributory formulas are identified. 
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In rules'. the rule condition WCS' is a state formula. Therefore, to transform rules' 

to a simpler form, StateAndNextChop is applied to rules' to yield: 

rules' == (wcS' A Oj6b ;j6c ; rules') v (-,wcs' A empty) (8.1-13) 

Returning to and completing the specification of rulez, rule4 represents the 

following code: 

ifNum> 9 then Column:= Column + 1; 

Based on the next iterative analysis of this code, rule4 is an if-then-else rule structure. 

Consistent with the defmition presented in Section 6.6.1, rule4 is described as follows: 

rule4 == (WC4 A ojSa) v (-1WC4 A empty) (8.1-14) 

where: 

WC4 ~ Num>9 

jSa ~ oColumn = Column + 1 

For each of the above non-rule formulas, the sets V and Ware determined based on their 

respective defmitions, and the database is updated accordingly. 

With the identification of all rules and all formulas that compose these rules, the 

frames associated with each rule can be determined. For a given rule, the frame of that 

rule is the set of variables that are modified by that rule, and is the union of all frames 

for the formulas and other rules that are part of that rule. 

For example, rules' has been previously defined as: 

rules, == «wcs' A Oj6b ;j6c) ; rules') V (...,WCS' A empty) (8.1-15) 

Therefore, the frame for rules' is: 

(8.1-16) 

Substituting the values for the various frames yields: 
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Wrule5 , = 0 u {lIOwrite} u {J} 
= {I10write, J} 

(8.1-17a) 

(8.1-17b) 

The frames for all rules are determined using this approach and the database is updated 

accordingly. The V set is determined for each rule in a similar manner. 

Summarizing these analyses, the following rules have been extracted from the 

legacy code: 

/0 == /Oa ;/pl ;/Ob ; rulel ;/oc ;/Od ;/Oe 

rulel == /la ; ruler 

rulel' == (WCl' /\ orule2 ;/lb ; rulel') v (,WC]' /\ empty) 

rule2 == (WC2/\ oha ;/3b ; rule3 ;/3c ;/3d; rule4 ;/3e) v (,WC2 /\ empty) 

rule3 == (WC3/\ orules ;j4a ;/4b) v (--,WC3 /\ 0/4C ;/4d) 

rule4 == (WC4/\ olsa) v (--,WC4 /\ empty) 

rules == /6a ; rules' 

rules' == «wcs' /\ 0/6b ;/6c) ; rules') v (,wcs' /\ empty) 

The database associated with these extracted rules is presented in Table 8.1-1. Using 

the concepts described in Section 7.3, a statechart, based on and representing these 

extracted rules, is presented in Figure 8.1-1. Because this statechart is based on these 

extracted rules, the database presented in Table 8.1-1 is applicable to the statechart in 

Figure 8.1-1. 

As a demonstration of the coordinated use of these extracted rules, the associated 

database, and the rule algebra presented in this thesis, the rules extracted from this 

legacy code are analyzed for those formulas that result in the writing to an output 

device. As previously discussed, the variable /IOwrite is used as a frame variable to 

describe the system service that is updated by the PASCAL 'write,' 'write In,' and similar 

commands. Therefore, the database is searched for formulas that have only /IOwrite as 

the frame. 
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Figure 8.1-1: Statechart for Procedure printerrorline Legacy Code 

Based on this search of the database. six formulas meet this criterion - fOb. foe. 

f3c. f4a. f4c. and f6a. V sing the database. these formulas have primary membership in fa. 

ruZez. rule3. and rules·. Therefore. fa. rulez. rule3. and rules· must be analyzed. 

However. these four rules and formulas are not directly connected. Referencing the 

database. rules· is not a primary member of rule3. Instead. rules· is a member of rules 
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and ruZes is a member of ruZe3. Similarly, rule2 is not a primary member of rule3. 

Instead, ruZe2 is a member of ruleI', ruZel' is a member of rule], and rule] is a member of 

10. Therefore, rules, rule}" and ruZe] must be included in the analysis. Summarizing, 

seven rules - 10, rule], ruZe]" ruZe2, rule3, rules, and rules' - are analyzed regarding 

formulas that result in the writing to an output device. Because rule4 does not include 

any I/O activities, as demonstrated in the database by the absence of I10write in the frame 

of any formula with a primary membership to rule4, rule4 is not considered in this 

analysis. 

In this analysis, these seven rules are transformed to create a single rule 

structure, and this rule structure is used to assess the specific rule conditions that are 

associated with specific I/O activities. To implement these rule transformations, an 

additional lemma is introduced - TwoChopRulesImp3. TwoChopRuiesImp3 is a 

continuation of the series TwoChopRulesImp and TwoChopRuiesImp2 introduced in 

Section 7.2. 

LEMMA: TwoChopRuiesImp3 

Proof: 

I 10; (II "h) ; (13 "14) ;ls premise 

2 if] "12) ; (13 "14) ;ls CP assumption 

3 if} ;13) " if2 ;14 ;ls) 2, TwoChopRuiesImp2 

4 (fI "12) ; (13 "14) ;ls::l if] ;13 "12 ;14 ;ls) 2-3, ::l introduction 

5 10 ; if] "h) ; (13 ,,/4) ;ls 4, ITL (RightChoplmpChop) 

:::;10; «fI ;13)" if2 ;/4 ;ls)) 

6 10; (if] ;13) " if2 ;14 ;ls)) I,5,MP 

The general transformation strategy for the analysis of this set of extracted 

legacy code rules is similar to that implemented in the transformation of the 

specification in Section 7.2. Each contributory rule is separated into the component rule 

condition and rule state, and then the components are added in order into the aggregate 

description of the possible system behaviors. Because this transformation considers 

multiple rules and therefore multiple behaviors, the resulting alternative behaviors are 
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expressed disjunctively. The target rules are processed in reverse order. that is. from the 

deepest rule upwards. In this way. behaviors are transformed systematically. and each 

subsequent behavior associated with a specific rule rests on the behavior(s) defmed by 

that rule's component rules. 

This transformation rests on seven premises that reflect the rules extracted from 

legacy code that directly or indirectly include the variable I10write - jo. rule]. rule]'. rule2. 

rule3. rules. and rules'. Because the deepest rule. rules (including the subrule rules) 

includes no other rules and therefore. by defmition. totally describes all behaviors 

associated with rules. rules needs no transformation. Therefore. rule3 is transformed 

first and incorporates the behaviors associated with rules. Then. rule2 is transformed 

and incorporates the behaviors derived from rule3 and rules. Then. rulel (including the 

subrule ruleI') is transformed and incorporates the behaviors derived from rule2. rule3. 

and rules. Finally.jo is transformed and incorporates the behaviors derived from rule], 

ruZe2. rule3. and rules. This formal transformation is presented in Appendix C. 

With this transformation and based on the premisesjo. rule]. rule]'. rule2. rule3. 

rules. and rules, as extracted from the legacy code. the following disjunctive rule 

structure is concluded: 

joa :fpl : jOb :.fIa ; ( 

(WCI'; WC2 ; WC3 ; Wcs' 
A OOj3a ;j3b ; oj6a ; Oj6b ;j6c ; rules' ;.f4a ;.f4b : 

j3c ;j3d ; rule4 ;j3e ;jlb ; rule]· ;joc ;jOd ;joe) 

v (WCI'; WC2 ; WC3 ; -,wcs' 
A OOj3a ;j3b ; oj6a ;j4a ;/4b ;./Jc ;j3d ; rule4 ; 

j3e ;jlb ; rulel' ;joc ;jOd ;jOe) 

v (WCI' ; WC2 ; -,WC3 
A ooj3a ;j3b ; O.f4c ;.f4d ;!Jc ;!Jd ; rule4 ; 

j3e ;jlb ; rulel' ;jOe ;jOd ;jOe) 

v (WC]' ; -,WC2 A Ojlb ; rule]' ;jOc ;jod ;joe) 

v (-,wC]' Ajoe ;jOd ;joe» 

(S.l-lSa) 

(S.l-lSb) 

(S.1-1Sc) 

(S.1-18d) 

(S.l-lSe) 

(S.l-lSf) 

Although (8.1-18) is a single structure. each component is numbered individually to 

facilitate discussion. 
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With the transformation presented in (8.1-18), the behavior associated with the 

legacy code is described as a sequence of chopped formulas at (8.1-18a) and then one of 

the five disjunctively connected general-form rules presented at (8.1-18b) through 

(8.1-18t). Specifically which of these five disjunctively-connected general-form rules 

describes the specific behavior in a given circumstance depends on the verity of the rule 

conditions Wc]" WC2, WC3, and WC5' under that given circumstance. The transformation 

(8.1-18) provides an orderly basis for assessing and understanding the specific behavior 

associated with the verities for each condition. For example, ",WCl' results in the 

behavior specified by (8.1-18t), whereas WCI' is associated with the behaviors specified 

by (8.1-18b) through (8.1-18e). Similarly, ",WC2 results in the behavior specified in 

(8.1-18t), whereas WC2 is associated with the behaviors specified in (8.1-18b) through 

(8.1-18e), etc. 

This analysis and understanding of this transformation can be facilitated by 

restoring specific formulas of interest. Referencing the various substitutions performed 

earlier in this section, the rule conditions in (8.1-18) are represented by one or more of 

the following state formulas: 

WCI' == (1 ::;; length + 1) 
WC2 == (eline(I) * errnone) 
WC3 == (1 > Column) 
WC5' == (J ::;; 1) 

Based on an analysis of the database developed for this legacy code using the rule 

algebra, the following formulas result in the writing to an VO device: 

fOb == owriteC*****', ") 
JOe == owriteln 
j3e == owrite(Num) 
j4a == owriteCj') 
j4e == owrite(',') 
j6b == owrite(, ') 

Substituting the above rule conditions and VO-related formulas into (8.1-18) yields: 

foa ;/Pl ; owrite('*****', , ') ;fIa ; { (S.1-19a) 

«1 ::;; length +1) ; (eline(I) * errnone) ; (1) Column) ; (J ::;; I) 

209 



A OOha ;hb ; Oj6a; oowrite(' ') ;j6c ; rules' ; owrite('i') ;j4b ; 
owrite(Num) ;!Jd ; rule4 ;j3e ; 
jIb; rulel' ; owriteln ;jOd ;jOe) (S.I-19b) 

v «I ~ length +1) ; (eline(I):;t: errnone) ; (I > Column) ; -,(J ~ I) 
A OOj3a ;j3b ; Oj6a ; owrite('i') ;j4b ; owrite(Num) ;j3d ; rule4 ; 

j3e ;jIb ; rule]'; owriteln ;jOd ;joe) (S.I-19c) 

v «I ~ length +1) ; (eline(1):;t: errnone) ; ...,(1 > Column) 
A oOha ;j3b ; oowrite('.1 ;j4d ; owrite(Num) ;j3d; rule4 ; 

j3e ;jIb ; rulel' ; owriteln ;jOd ;joe) 

v «I ~ length +1) ; ...,(eline(I):;t: errnone) 
A Ojib ; rule1' ; owriteln ;jod ;joe) 

v (...,(1 ~ length +1) A owriteln ;jOd ;joe)} 

(S.1-19d) 

(S.1-1ge) 

(S.1-19t) 

With these substitutions, the value of this transformation is demonstrated. I/O 

operations are identified in the order they occur relative to the satisfaction of the various 

rule conditions. For example, as described in (8.1-19b), the I/O operation write(, ') 

occurs only when the rule condition (I ~ length +1) ; (eline(l) :;t: errnone) ; (I > 

Column) ; (J ~ I) is satisfied. As another example, the I/O operations write('i') and 

write(Num) only occur together and in that order in (S.1-19b) and (8.1-19c), and require 

the satisfaction of the rule condition (1 ~ length +1) ; (eline(I) :;t: errnone) ; (I > 

Column). Inspection of the rule conditions associated with (8.1-19b) and (S.1-19c) 

reveals that the verity of the rule condition (J ~ I) does not affect the occurrence of I/O 

operations write('i') and write(Num). As a fmal example, the I/O operation writeln is 

associated with all disjuncts and therefore is not dependent on the satisfaction of a 

specific set of rule conditions. 

Whereas numerous other transformations and analyses are possible using these 

extracted rules, the rule extraction and analysis presented in this section demonstrates 

the use and applicability of this rule model and rule algebra in the assessment of legacy 

code. 
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Table 8.1-1 Legacy code analysis database 

Formula Description W V 
Primary 

Membership 

fa faa ;/Pl ;fob ; rulel ;foe ;fOd ;fo Column, eline(I), Column, errnone, 
errorset, fileerror, I, eline(I), errorset, I, 
/JOwrite, J, lineerror, J, length, Nurn 
Num 

faa oColumn= 0 Column 0 fa 

/PI printline(Lbuf) - unclassified - - unclassified - fa 

fOb owrite('*****', ' ') /JOwrile 0 fa 

fac owriteln IIOwrite 0 fa 

fad olineerror = false lineerror 0 fa 

foe ofileerror = true fileerror 0 fa 

rulel ha; rulel' Column, eJine(I), Column, errnone, fa 
error set, I, /J Owrile, J, eline(I), errorset, I, 
Num J, length, Nurn 

fla 01 = 1 0 rulel 

rule/' rule /'-true V rule /,-/aJ .. Column, eJine(I), Column, errnone, rule1 
errorset, I, /JOwrtte, J, eIine(I), errorset, I, 
Nurn J, length, Num 

rule/,_tr .. WCI' A orule2 ;hb ; rule/' Column, eIine(I), Column, errnone, rulel' 
errorset, I, l/Owrtte, J, eline(I), errorset, I, 
Num J, length, Num 

rule 1'-/al .. ....,WC/, A empty 0 I, length rule/' 

WCI' I ::; length +1 0 I, length rule l'-tru .. 
rule l'-/al .. 

fIb 01 = I + 1 rule I '-true 

rule2 rulez_true V rUle2jals. Column, eIine(l), Column, errnone, rule l'-true 
errorset, l/Owrite, J, eline(l), errorset, I, 
Nurn J,Num 

rule2_tru. WC2 A oha ;f3b ; rule3 ;A ;j3d ; Column, eIine(I), Column, errnone, rule2 
rule4 ;he errorset, l/Owrile, J, eJine(I), errorset, I, 

Num J,Num 

rule2jalse "",WC2 A empty 0 errnone, eline(l), I rule2 

WC2 eline(l) ":f- errnone 0 errnone, eline(l), I ruZe2-tru .. 
rule2jalst 

f3a Oerrorset = error set +( eIine(l) errorset eline(I), errorset, I rule2_true 

f3b oNum = ord(eline(I» Num eline(I), I rule2-tru. 

he owrite(Num) [IOwrile Num ruZe2_true 

fJd oCoJumn = Column + I Column Column rule2-trut 

he oeline(I) = errnone eline(I) errnone rule2_true 
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Table 8.1-1 (continued) Legacy code analysis database 

Formula Description W V 
Primary 

Membership 

rulej rulej-lrue v rulej1alse Column, IIOwrile, J Column, I. J rule2.,ru. 

rule3-1rue WC3 " orules ;/4a ;/4b Column, IIOwrile, J Column, I, J rulej 

rule31alse -,WCJ" of4c ;/4d Column, I10write Column, I rule3 

WC3 I> Column 0 Column, I rule !I.lru., 
rule31alSl 

f4a owriteCi') I10write 0 rule3.,ru. 

/4b oColumn = I Column I rule3.,ru. 

/4c owriteC,') I10write 0 rule31a1S1 

/4d oColumn = Column + I Column Column, I rule31als. 

rule4 rule4-1ru. v rule41als. Column Column,Num rule2.,rue 

rule4-,rue WC4" o/Sa Column Column,Num rule4 

rule41als. -,WC4 " empty 0 Num rule4 

WC4 Num>9 0 Num rule4.,ru .. 
rule41alse 

/Sa oColumn = Column + 1 Column Column rule4.,ru. 

rules /6a; rules' I10write, J Column, 1, J rule] 

rules, rules'.,ru. v rules'1a1se I10write, J I, J rules 

rule 5'.lrut WC5' " 0.kb ;/6C ; ruleS' I10write, J I, J ruleS' 

rule 5'-!aI .. -,WC5' " empty 0 I, J rule5' 

WCS' J S I 0 I, J rule 5'.lru_ 
rule 5'.false 

/6a oj = Column + 2 J Column rule5 

/6b owriteC ') IIOwrite 0 rule 5'.lru. 

/6c oj = J + 1 J J rule 5'.lru. 
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8.2 Representing WSL Program Slices as Rules 

In this section, a Wide Spectrum Language (WSL) program is sliced, and rules 

are extracted from each slice and analyzed using the rule model and rule algebra 

developed in this research. Two different rules are extracted from this program in two 

separate slicing exercises. In the fIrst slicing exercise, rules are extracted from the 

program slice and the rule algebra is applied to simply and clarify the extracted rule. In 

the second slicing exercise, rules are extracted from the program slice, and the rules are 

then conditioned and transformed using the rule algebra. The results of these rule 

transformations are compared with previous analyses of the same program. 

The program analyzed herein is used to compute income tax and various tax­

related amounts, including a non-taxable personal allowance, for a United Kingdom 

citizen for the tax year April 1998 to April 1999. The non-taxable personal allowance is 

dependent on specifIc attributes of a given citizen. Within this program, these attributes 

are represented by the variables 'age,' 'married,' 'widowed,' and 'blind.' This program, or 

an alternative language version, has been analyzed previously in Ward et al. (2005) and 

Fox et al. (2000). The WSL version of this program. as used in the research, is as 

follows: 

IF age >= 75 
THEN personal := 5980 

ELSE IF age >= 65 
THEN personal := 5720 
ELSE personal := 4335 FI FI; 

IF age >= 65 AND income> 16800 
THEN V AR < t := personal- (income - 16800)/2 >: 

1Ft> 4335 
THEN personal := t 
ELSE personal := 4335 FI ENDV AR FI; 

IF blind = 1 
THEN personal := personal + 1380 FI; 

IF married = 1 AND age >= 75 
THEN pclO:= 6692 
ELSE IF married = 1 AND age >= 65 

THEN pclO:= 6625 
ELSE IF married = 1 OR widow = 1 

THEN pelO := 3470 
ELSE pelO:= 1500 PI PI PI; 

IF married = 1 AND age >= 65 AND income> 16800 
THEN V AR < t := pclO - «income - 16800)/2) >: 
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1Ft> 3740 
THEN pclO := t 
ELSE pclO := 3740 H ENDV AR H; 

IF income <= personal 
THEN tax :=0 
ELSE income := income - personal; 

IF income <= pelO 
THEN tax := income * ratelO 
ELSE tax := pelO * ratelO; 

income:= income - pelO; 
IF income <= 28000 
THEN tax := tax + income * rate23 
ELSE tax:= tax + 28000 * rate23; 

income := income - 28000; 
tax := tax + income * rate40 H H H . 

Slicing of this WSL program code was conducted using the FermaT 

transformation system. FermaT is an industrial-strength formal transformation system 

applicable to program comprehension and language migration. The FermaT 

transformation system is based on a comprehensive catalog of formal, proven program 

transformations that preserve or refme the semantics of a program while changing its 

form. By applying the appropriate program transformations to a program, the resulting 

transformed program is guaranteed to be equivalent to the original program logic. The 

FermaT transformation system, including theory and applications, is described in Ward 

(1999, 2000, 2004), and is available under the GNU General Public License (GPL) at 

http://www.cse.dmu.ac.uk!-mwardifermat.html. 

Using the FermaT Syntactic_Slice transformation, the following slice was 

generated as a backward slice on the variable 'pclO': . 

IF married = I AND age >= 75 
THEN pelO := 6692 
ELSE IF married = 1 AND age >= 65 

THEN pelO := 6625 
ELSE IF married = 1 OR widow = 1 

THEN pclO := 3470 
ELSE pelO := 1500 H H PI; 

IF married = 1 AND age >= 65 AND income> 16800 
THEN V AR < t := pelO - (income - 16800) /2>: 

IF t > 3740 THEN pclO := t ELSE pclO := 3740 PI 
ENDVARFI 
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Based on an inspection and analysis of the programming structures that comprise this 

slice, this slice on the variable 'pclO' can be represented as a sequence of chopped rules: 

where: 

rulepclo == ru[epclO-1 ; ru[epc10_2 

ru[epc10-1 ~ IF married = 1 AND age >= 75 
THEN pclO:= 6692 
ELSE IF married = 1 AND age >= 65 

THEN pc 10 := 6625 
ELSE IF married = 1 OR widow = 1 

THEN pclO := 3470 
ELSE pclO := 1500 FI FI FI; 

(8.2-1) 

ru[epc10-2 ~ IF married = 1 AND age >= 65 AND income> 16800 
THEN V AR < t := pclO - (income - 16800) /2>: 

IF t > 3740 THEN pclO := t ELSE pclO := 3740 FI 
ENDVARFI 

Applying the rule-form description of the if-then-else programming structure as 

presented in Section 6.6.1, ru[epclo-l is described as: 

ru[epc10-1 == 
(married = 1 A age ~ 75 opclO = 6692) 
v (,(married = 1 A age ~ 75) A oruZepc10-la) (8.2-2) 

In ruZepc10_J. rulepc10-la is described as: 

rulepclO-Ja == 
(married = 1 A age ~ 65 A opclO = 6625) 
v (,(married = 1 A age ~ 65) A oruZepc10-lb) (8.2-3) 

In ru[epc10-la, ru[epc1o-lb is described as: 

rulepcJO-lb == 
((married = 1 v widow = 1) A opclO = 3470) 
v (,(married = 1 v widow = 1) A opclO = 1500) (8.2-4) 
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Applying propositional logic and algebraic equivalence regarding negation and equality 

to rulepcJo-lb yields: 

rulepclO-lb == 
(married = 1 A opelO = 3470) 
v (widow = 1 A opc10 = 3470) 
v (married =f. 1 A widow =f. 1 A opc10 = 1500) (8.2-5) 

Regarding rulepcJO-la at (8.2-3), applying propositional logic and algebraic equivalences 

regarding the great-than-or-equal and negation operations yields: 

rulepcJO-la == 
(married = 1 A age ~ 65 A opc10 = 6625) 
v (married =f. 1 A orulepcJO-lb) 

v (age < 65 A orulepcJO-lb) 

Substituting rulepc1o-1b at (8.2-5) into rulepcJO-la at (8.2-6) yields: 

rulepcJO-Ja == 
(married = 1 A age ~ 65 A opclO = 6625) 
v (married =f. 1 A o«married = 1 A opclO = 3470) 

v (widow = 1 A opc10 = 3470) 
v (married =f. 1 A widow =f. 1 A opclO = 1500») 

v (age < 65 A o«married = 1 A opc10 = 3470) 
v (widow = 1 A opclO = 3470) 

(8.2-6) 

v (married =f. 1 A widow =f. 1 A opc10 = 1500») (8.2-7) 

Applying NextOrDistEqv, then NextAndDistEqv, and then propositional logic to 

rulepclO-la at (8.2-7) yields: 

rulepcJO-la == 
(married = 1 A age ~ 65 A opclO = 6625) 
v (married =f. 1 A omarried = 1 A oopelO = 3470) 
v (married =f. 1 A owidow = 1 A oopclO = 3470) 
v (married * 1 A omarried =f. 1 A owidow =f. 1 A oopclO = 1500) 
v (age < 65 A omarried = 1 A oopclO = 3470) 
v (age < 65 A owidow = 1 A oopclO = 3470) 
v (age < 65 A omarried =f. 1 A owidow =f. 1 A oopclO = 1500) (8.2-8) 
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Considering rulepcJo-l as described at (8.2-2), applying propositional logic and 

algebraic equivalences regarding the great-than-or-equal and negation operators yields: 

rulepcJO-l == 
(married = 1 /I. age 2:: 75 opclO = 6692) 
v (married :t 1 /I. orulepcJo_Ja) 

v (age < 75 /I. orulepcJO-la) 

Substituting rulepcJo-Ja at (8.2-8) into rulepclO-I at (8.2-9) yields: 

rulepcJO-I == 
(married = 1 /I. age 2:: 75 opc10 = 6692) 
v (married:t 1 /I. o«married = 1 /I. age 2:: 65/1. opc10 = 6625) 

v (married :t 1 /I. omarried = 1 /I. oopclO = 3470) 
v (married:t 1 /I. owidow = 1 /I. oopclO = 3470) 
v (married:t 1 /I. omarried :t 1 /I. owidow :t 1 

/I. oopc10 = 1500) 
v (age < 65 /I. omarried = 1 /I. oopcl0 = 3470) 
v (age < 65/1. owidow = 1 /I. oopclO = 3470) 
v (age < 65 /I. omarried :t 1 /I. owidow :t 1 

/I. oopc10 = 1500») 
v (age < 75/1. o«married = 1 /I. age 2:: 65 /I. ope 10 = 6625) 

v (married:t 1 /I. omarried = 1 /I. oopcl0 = 3470) 
v (married:t 1 /I. owidow = 1/1. oopclO = 3470) 
v (married :t 1 /I. omarried :t 1 /I. owidow :t 1 

/I. oopclO = 1500) 
v (age < 65 /I. omarried = 1 /I. oopclO = 3470) 
v (age < 65 /I. owidow = 1 /I. o opc 10 = 3470) 
v (age < 65 /I. omarried :t 1 /I. owidow :t 1 

(8.2-9) 

/I. oopclO = 1500») (8.2-10) 

Applying NextOrDistEqv and then NextAndDistEqv yields: 
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rulepc1o-1 == 
(married = 1 A age ~ 75 A opc10 = 6692) 
v (married,* 1 A « omarried = 1 A oage ~ 65 A oopc10 = 6625) 

v (omarried '* 1 A oomarried = 1 A ooopc10 = 3470) 
v (omarried '* 1 A oowidow = 1 A ooopcl0 = 3470) 
v (omarried '# 1· A oomarried '* 1 A oowidow '* 1 

A ooopc10 = 1500) 
v (oage < 65 A oomarried = 1 A ooopc10 = 3470) 
v (oage < 65 A oowidow = 1 A ooopcl0 = 3470) 
v (oage < 65 A oomarried '# 1 A oowidow '* 1 

A ooopclO = 1500))) 
v (age < 75 A {(omarried = 1 A oage ~ 65 A oopc10 = 6625) 

v (omarried '* 1 A oomarried = 1 A ooopclO = 3470) 
v (omarried '* 1 A oowidow = 1 A ooopcl0 = 3470) 
v (omarried '* 1 A oomarried '* 1 A oowidow '* 1 

A ooopcl0 = 1500) 
v (oage < 65 A oomarried = 1 A ooopc10 = 3470) 
v (oage < 65 A oowidow = 1 A ooopc10 = 3470) 
v (oage < 65 A oomarried '* 1 A oowidow '* 1 

A ooopc10 = 1500))) (8.2-11) 

Applying propositional logic to (8.2-11) yields: 

ru[epcJo-J == 
(married = 1 A age ~ 75 A opc10 = 6692) 
v (married '# 1 A omarried = 1 A oage ~ 65 A oopc10 = 6625) 
v (married '* 1 A omarried '# 1 A oomarried = 1 A ooopclO = 3470) 
v (married '* 1 A omarried '* 1 A oowidow = 1 A ooopclO = 3470) 
v (married '* 1 A omarried '* 1 A oomarried '* 1 A oowidow '* 1 

A ooopclO = 1500) 
v (married '# 1 A oage < 65 A oomarried = 1 A ooopclO = 3470) 
v (married '* 1 A oage < 65 A oowidow = 1 A ooopc10 = 3470) 
v (married '# 1 A oage < 65 A oomarried '# 1 A oowidow '# 1 

A ooopclO = 1500) 
v (age < 75 A omarried = 1 A oage ~ 65 A oopc10 = 6625) 
v (age < 75 A omarried "* 1 A oomarried = 1 A ooopclO = 3470) 
v (age < 75 A omarried '# 1 A oowidow = 1 A ooopclO = 3470) 
v (age < 75 A omarried '* 1 A oomarried '* 1 A oowidow '* 1 

A ooopclO = 1500) 
v (age < 75 A oage < 65 A oomarried = 1 A ooopclO = 3470) 
v (age < 75 A oage < 65 A oowidow = 1 A ooopclO = 3470) 
v (age < 75 A oage < 65 A oomarried '* 1 A oowidow '* 1 

A ooopclO = 1500) (8.2-12) 
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Within the context of the strict linear nature of the system and the corresponding 

absence of any concurrent actions, and because the frame of rulepcJO-l is limited to the 

variable 'pclO' and therefore does not interfere with any rule conditions in rulepc1o_J, the 

following implications are asserted: 

(omarried = 1):::> (married = 1) 
(oomarried = 1):::> (married = 1) 
(omarried ¢ 1):::> (married ¢ 1) 
(oomarried ¢ 1):::> (married ¢ 1) 
(oowidow = 1):::> (widow = 1) 
(oowidow ¢ 1):::> (widow ¢ 1) 
(oage 2: 65) :::> (age 2: 65) 
(oage < 65) :::> (age < 65) 

(S.2-13a) 

(8.2-13b) 

(S.2-13c) 

(S.2-13d) 

(S.2-13e) 

(8.2-130 

(S.2-13g) 

(S.2-13h) 

All of these implications have the form CWO :::> Wo or OOWo :::> WOo They are applied to 

detemporalize a rule condition that what would otherwise be a simple state formula. 

Applying (8.2-13a) through (8.2-13h) to rulepc10-J as described at (8.2-12) using 

propositional logic (i.e., disjunction elimination) yields: 

rulepclo-l :::> 
(married = 1/\ age 2: 75/\ opclO = 6692) 
v (married ¢ 1/\ married = 1/\ age 2: 65 /\ oopclO = 6625) 
v (married ¢ 1/\ married :f:. 1/\ married = 1/\ ooopclO = 3470) 
v (married :f:. 1/\ married :f:. 1 A widow = 1 /\ ooopclO = 3470) 
v (married :f:. 1 A married :f:. 1 /\ married ¢ 1 /\ widow :f:. 1 

/\ ooopc10 = 1500) 
v (married ¢ 1/\ age < 65 A married = 1/\ ooopc10 = 3470) 
v (married ¢ 1/\ age < 65 A widow = 1 A ooopclO = 3470) 
v (married ¢ 1/\ age < 65 /\ married ¢ 1/\ widow ¢ 1 

A ooopc10 = 1500) 
v (age < 75 A married = 1/\ age 2: 65 A oopclO = 6625) 
v (age < 75 A married ¢ 1 A married = 1/\ ooopc 10 = 3470) 
v (age < 75 A married:f:. 1 A widow = 1/\ ooopc10 = 3470) 
v (age < 75 A married :f:. 1 A married :f:. 1/\ widow ¢ 1 

/\ ooopc10 = 1500) 
v (age < 75 /\ age < 65 /\ married = 1 A ooopclO = 3470) 
v (age < 75 A age < 65 A widow = 1 A ooopc10 = 3470) 
v (age < 75 A age < 65 A married :f:. 1 A widow :f:. 1 

A ooopclO = 1500) (8.2-14) 
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Applying propositional logic to (8.2-14) to eliminate contradictions and idempotent 

terms, and then reordering yields: 

rulepelO-1 :::> 
(married = 1/\ age ~ 75 /\ opclO = 6692) 
v (married = 1/\ age ~ 65 /\ age < 75 /\ oopclO = 6625) 
v (married = 1/\ age < 65/\ age < 75/\ ooopclO = 3470) 
v (married '* 1/\ widow = 1/\ ooopclO = 3470) 
v (married '* 1 /\ widow = 1/\ age < 65 /\ ooopclO = 3470) 
v (married '* 1/\ widow = 1/\ age < 75/\ ooopclO = 3470) 
v (widow = 1/\ age < 65 /\ age < 75/\ ooopcl0 = 3470) 
v (married '* 1/\ widow '* 1/\ ooopclO = 1500) 
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500) 
v (married '* 1/\ widow '* 1/\ age < 75 /\ ooopclO = 1500) 
v (married '* 1/\ widow '* 1/\ age < 65 /\ age < 75 

/\ ooopclO = 1500) (8.2-15) 

Considering the overlapping rule conditions in (8.2-15) with regard to the 

variable 'age,' the following equivalence is noted: 

age < 65 == (age < 75/\ age < 65) (8.2-16) 

Applying (8.2-16) to rulepelO-1 as described at (8.2-15) and eliminating idempotent terms 

yields: 

rule pel 0-1 :::> 
(married = 1/\ age ~ 75 /\ opclO = 6692) 
v (married = 1/\ age ~ 65 /\ age < 75/\ oopc10 = 6625) 
v (married = 1/\ age < 65 /\ ooopclO = 3470) 
v (married '* 1/\ widow = 1/\ ooopclO = 3470) 
v (married '* 1/\ widow = 1/\ age < 65/\ ooopclO = 3470) 
v (married '* 1/\ widow = 1 A age < 75 A ooopclO = 3470) 
v (widow = 1/\ age < 65/\ ooopcl0 = 3470) 
v (married '* 1/\ widow '* 1/\ ooopclO = 1500) 
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500) 
v (married '* 1 /\ widow '* 1/\ age < 75 /\ ooopclO = 1500) (8.2-17) 
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Although substantial transformation and simplification has been achieved, 

various redundancies exist. Consider the following three disjunctively connected rules 

included in rulepc1o-1 as described at (8.2-17): 

(married :t 1/\ widow :t 1/\ ooopclO = 1500) 
v (married '* 1/\ widow '* 1/\ age < 65 /\ ooopclO = 1500) 
v (married '* 1 /\ widow '* 1/\ age < 75 /\ ooopclO = 1500) (8.2-18) 

Given that the rule condition variable 'age' is not included in the first rule, given that the 

rule conditions are otherwise identica~ and given that each rule has the identical rule 

state, the inclusion of the rule condition variable 'age' in the second and third rule is 

irrelevant. Referencing the concept of transformational equivalence as previously 

presented Section 6.5, these three rules can be transformed into identical rules with the 

application of the appropriate logic. To support such transformations, the following 

implications are derived under propositional logic: 

married,* 1 /\ widow :t 1/\ age < 65/\ ooopc10 = 1500 :J 

married :t 1 /\ widow :t 1 /\ ooopclO = 1500 

married,* 1/\ widow '* 1/\ age < 75 /\ ooopcl0 = 1500 :) 
married:t 1/\ widow '* 1/\ ooopclO = 1500 

married:t 1/\ widow = 1/\ age < 65 /\ ooopclO = 3470:) 
married,* 1/\ widow = 1/\ ooopclO = 3470 

married :t 1 /\ widow = 1/\ age < 75 /\ ooopclO = 3470 :J 

married,* 1/\ widow = 1/\ ooopclO = 3470 

(8.2-19a) 

(8.2-19b) 

(8.2-19c) 

(8.2-19d) 

Applying (8.2-19a) through (8.2-19d) to rulepc10-J as described at (8.2-17) using 

propositional logic (i.e., disjunction elimination) and then eliminating the idempotent 

terms yields: 

ru!epclO-1 :J 

(married = 1/\ age?: 75 /\ opclO = 6692) 
v (married = 1/\ age 2: 65 /\ age < 75 /\ oopclO = 6625) 
v (married = 1 /\ age < 65 /\ ooopclO = 3470) 
v (married '* 1/\ widow = 1/\ ooopclO = 3470) 
v (widow = 1/\ age < 65 /\ ooopc10 = 3470) 
v (married:t 1/\ widow '* 1/\ ooopclO = 1500) (8.2-20) 
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One fmal simplifying transformation is possible. Considering the domain of and 

relation between the rule condition variables 'married' and 'widow,' the following 

observation is made: 

(married::f:. 1 A widow = 1) :::> (widow = 1) (8.2-21) 

Informally, (8.2-21) describes the fact that a widow cannot be married. To complete 

this transformation, the following implication, similar to those previously presented at 

(8.2-19), is derived under propositional logic 

widow = 1 A age < 65 A ooopclO = 3470:::> 
widow = 1 A ooopclO = 3470 (8.2-22) 

Applying (8.2-21) and (8.2-22) to rulepc1o-1 as described at (8.2-20) using propositional 

logic (i.e., disjunction elimination) and then eliminating the idempotent term yields: 

rulepclO-l :::> 
(married = 1 A age ~ 75 A opclO = 6692) 
v (married = 1 A age ~ 65 A age < 75/\ oopclO = 6625) 
v (married = 1/\ age < 65 /\ ooopclO = 3470) 
v (widow = 1 A ooopclO = 3470) 
v (married ::f:. 1 A widow ::f:. 1 A ooopc10 = 1500) (8.2-23) 

To facilitate further analysis and rule representation, the consequent of (8.2-23) is 

defmed as: 

rulepc1o-1' £ 
(married = 1/\ age ~ 75 A opcl0 = 6692) 
v (married = 1/\ age ~ 65 A age < 75 /\ oopc10 = 6625) 
v (married = 1 /\ age < 65 A ooopclO = 3470) 
v (widow = 1 A ooopclO = 3470) 
v (married ::f:. 1/\ widow ::f:. 1 A ooopclO = 1500) 

With the introduction of this defmition, (8.2-23) can be restated as: 

rulepc1o-J :::> rulepc1o_J' 

(8.2-24) 

(8.2-25) 
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With (8.2-24) and (8.2-25), the transformation of rulepcJo-l is complete', The 

original program code for rulepcJo_l, consisting of three nested if-then-else statements, 

has been transformed into five disjunctively connected rules as described by rulepclO-l'. 

As a disjunctive structure, the component rules (i.e., disjuncts) can be reordered as 

necessary, As an ITL formula, rulepclo-l' can be used, as necessary, for additional 

reasoning about the overall system 

Based on an analysis of the programming structures associated with rulepclO-2, 

and applying the rule-form description of the if-then and the if-then-else programming 

structures presented in Section 6.6.1 and the rule-form sequential composition presented 

in Section 5.6.1, rulepclO-2 is described as: 

rulepcJo-2 E (rulepcJo-2a(true) A orulepclo-2b) v rulepclO-2a(false) (8.2-26) 

where: 

rulepclO-2a(true)';' «married = 1 A age ~ 65 A income> 16800) A ot) 
rulepclO-2a(false) ,;, (,(married = 1 A age ~ 65 A income> 16800) A empty) 

rulepclo-2b';' (t > 3740 A opel 0 = t) 
v (,(t > 3740) A opelO = 3740) 

t ~ pelO - (income - 16800) /2 

Applying the rule algebra and imposing some limited assumptions of the form 

oWo :J wo regarding specific rule conditions variables, rulepclo,2 is transformed, as 

described in Appendix D, such that: 

where: 

rulepclO-2 :J 

(married = 1 A age ~ 65 A income> 16800 At> 3740 
A oopclO = t) 

v (married = 1 A age ~ 65 A income> 16800 A t s 3740 
A o opel 0 = 3740) 

v (married :t 1A empty) 
v (age < 65 A empty) 
v (income s 16800 A empty) 

t';' pclO - (income - 16800) / 2 

(8.2-27) 
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To facilitate further analysis and rule representation, the consequent of (8.2-27) is 

defmed as: 

where: 

rulepclo-2' ~ 
(married = 1 A age ~ 65 A income> 16800 At> 3740 

A oopcW = t) 
v (married = 1 A age ~ 65 A income> 16800 A t ~ 3740 

A oopclO = 3740) 
v (married :t: lA empty) 
v (age < 65 A empty) 
v (income ~ 16800 A empty) 

t ~ pelO - (income - 16800) /2 

With the introduction of this defmition, (8.2-26) can be restated as: 

rulepclO-2 :J rulepclO-2' 

(8.2-27) 

(8.2-28) 

With (8.2-27) and (8.2-28), the transformation of rulepclo-2 is complete. The 

original program code for rulepclo-2, consisting of an if-then-else statement nested in an 

if-then statement, has been transformed into a set of disjunctively connected rules as 

described by rulepclo-2'. In this set of rules, all conditions associated with each rule state 

are explicitly stated. As a disjunctive structure, the component rules (i.e., disjuncts) can 

be reordered as necessary. As an ITL formula, rulepclO-2' can be used as necessary for 

additional reasoning. For example, a simple manipulation allows the demonstration that 

the rule conditions of rulepclo-2' are of the form Wo A WJ, Wo A -'Wl. or -,Wo, supporting 

the observation that all possible conditions are considered under rulepclo-2'. 

Returning to rulepclo, the rule-based representation ofthe slice on variable 'peW,' 

rulepc10 has been defmed at (8.2-1) as: 

rulepcJO-l ; ruZepcJo-2 (8.2-29) 

Applying (8.2-25) and (8.2-28) to (8.2-29) with ChopSwapImp2 and ChopSwapImp. 

respectively, yields: 
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rulepc10-1' ; rulepc1o-2' (8.2-30) 

With (8.2-30), the slice on variable 'pclO' is described as two chopped state 

sequences, where each component sequence is described by a set of disjunctively 

connected general-form rules. Unlike the original program code that includes nested if­

then-else statements, these formulas reflect a substantial logical simplification. In each 

set of rules, the rule conditions associated with each rule state are explicitly stated. For 

specific values of the rule conditions, the applicable rule state can be easily identified by 

applying those values and assessing the verity of the conditions within each disjunct. 

This is particularly significant with regard to identifying the rules that apply to a limited 

set of conditions. For example, for an unmarried individual (i.e., married ~ 1), it is 

immediately apparent that only one disjunct in rulepc1o-1' and only one disjunct in 

rulepc10-2' applies. This is in contrast to the code slice, in which the code must be 

walked, that is, each line of code evaluated and the if-then-else statements followed, to 

determine what portion of the code applies to the specific condition. Although the 

relative order of the two component rules, rulepc1o-1' and rulepcIO-2', is fixed, the 

component disjuncts within each rule can be reordered as needed for presentation 

purposes. Continuing the previous example of the unmarried individual, the disjuncts 

of (8.2-24) and (8.2-27) can be reordered to list the disjuncts with the rule condition 

'married ~ I' first. Finally, and as previously stated regarding the component rules, 

(8.2-30) is an ITL formula and can be used as needed for additional reasoning, either 

about the slice itself or as part of an analysis of the entire block of code. 

As a second slicing exercise, the WSL tax program was backward sliced on the 

variable 'personal' using the FermaT Syntactic_Slice tranformation, and the following 

slice was generated: 

IF age >= 75 
THEN personal := 5980 
ELSE IF age >= 65 

THEN personal := 5720 
ELSE personal := 4335 F1 F1; 

IF age >= 65 AND income> 16800 
THEN VAR < t := personal- (income - 16800) /2>: 

IFt > 4335 
THEN personal := t 
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ELSE personal := 4335 PI ENDV AR PI; 
IF blind = 1 

THEN personal:= personal + 1380 PI 

Based on an inspection and analysis of the programming structures that comprise this 

slice, this slice on the variable, 'personal' can be represented as a sequence of three 

chopped rules: 

where: 

rulepersonal == rulepers-l ; rulepers-2 ; rulepers-3 

rulepers-l ~ IF age >= 75 
THEN personal := 5980 . 
ELSE IF age >= 65 

THEN personal := 5720 
ELSE personal:= 4335 PI PI; 

rulepers-2 ~ IF age >= 65 AND income> 16800 

(8.2-31) 

THEN V AR < t := personal- (income - 16800) 12 >: 
IFt > 4335 
THEN personal := t 
ELSE personal := 4335 PI ENDV AR PI; 

rulepers-3 ~ IF blind = 1 
THEN personal := personal + 1380 PI 

Applying the rule-form description of the if-then-else programming structure as 

presented in Section 6.6.1, rulepers-l is described as: 

rulepers-l == 
(age ~ 75" opersonal = 5980) 
v (-,( age ~ 75) " 0« age ~ 65 " opersonal = 5720) 

v (-,(age ~ 65) " opersonal = 4335))) (8.2-32) 

Applying algebraic equivalences regarding the great-than-or-equal and negation 

operators yields: 
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rulepers-l == 
(age ~ 75 A opersonal = 5980) 
v (age < 75 A o«age ~ 65 A opersonal = 5720) 

v (age < 65 A opersonal = 4335») (8.2-33) 

Applying NextOrDistEqv and then NextAndDistEqv to (8.2-33) yields: 

rulepers-l == 
(age ~ 75 A opersonal = 5980) 
v (age < 75 A (( oage 2:: 65 A oopersonal = 5720) 

v (oage < 65 A oopersonal = 4335») (8.2-34) 

With the application of propositional logic to (8.2-34), rulepers-l is described as a 

disjunction of three general form rules: 

rulepers-l == 
(age 2:: 75 A opersonal = 5980) 
v (age < 75 A oage ~ 65 A oopersonal = 5720) 
v (age < 75 A oage < 65 A oopersonal = 4335) (8.2-35) 

Within the context of the strict linear nature of the system and the corresponding 

absence of any concurrent actions, and because the frame of rulepers-l is limited to the 

variable 'personal' and therefore does not interfere with any rule conditions, the 

following implications of the form CWo :::) Wo are asserted: 

oage ~ 65 :::) age ~ 65 
oage < 65 :::) age < 65 

(8.2-36a) 

(8.2-36b) 

Applying these implications to (8.2-35) using propositional logic (i.e., disjunction 

elimination) yields: 

rulepers-l :::) 

(age ~ 75 A opersonal = 5980) 
v (age < 75 A age ~ 65 A oopersonal = 5720) 
v (age < 75 A age < 65 A oopersonal = 4335) (8.2-37) 
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The following equivalence regarding the variable 'age' has been asserted previously at 

(8.2-16): 

age < 65 == (age <75 A age < 65) 

Applying this equivalence to (8.2-37) yields: 

rulepers-l ::::> 
(age ~ 75 A opersonal = 5980) 
v (age < 75 A age ~ 65 A oopersonal = 5720) 
v (age < 65 A oopersonal = 4335) 

(8.2-16) 

(8.2-38) 

Based on an analysis of the programming structures associated with rulepers-2, 

and applying the rule-form description of the if-then and the if-then-else programming 

structures presented in Section 6.6.1 and the rule-form sequential composition presented 

in Section 5.6.1, rulepers-2 is described as: 

where: 

rulepers-2 == (rulepers-2a(true) A orulepers-2b) v rulepers-2a(false) 

rulepers-2a(true) ~ «age ~ 65 A income> 16800) A ot) 
rulepers-2a(false) ~ (-,(age 2:: 65 A income> 16800) A empty) 
rulepers-2b ~ (t > 4335 A opersonal = t) 

v (-,(t > 4335) A opersonal = 4335) 
t ~ personal- (income - 16800) 12 

(8.2-39) 

Using these representations of rulepers-2a and rulepers-2b, rulepers-2 is transformed, 

as described in Appendix D, such that: 

where: 

rulepers-2 ::::> 
(age 2:: 65 A income> 16800 A ot > 4335 A oopersonal = t) 
v (age 2:: 65 A income> 16800 A ot ~ 4335 A oopersonal = 4335) 
v (age < 65 A empty) 
v (income ~ 16800 A empty) (8.2-40) 

t ~ personal- (income - 16800) 12 
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Applying the rule-form description of the if-then programming structure as 

presented in Section 6.6.1, rulepers-3 is described as: 

rulepers-3 == (blind = 1 A opersonal = personal + 1380) 
v (,(blind = 1) A empty) (8.2-41) 

Applying algebraic equivalences regarding the equality and negation operators to 

(8.2-41) yields: 

rulepers-3 == (blind = 1 A opersonal = personal + 1380) 
v (blind :t 1 A empty) (8.2-42) 

With (8.2-42), the transformation of the three rules that compose rulepersonal is 

complete. Summarizing, the slice on the variable 'personal' of WSL tax program code is 

described as a rule system with three sequential rules: 

rulepersonal == rulepers-l ; rulepers-2 ; rulepers-3 (8.2-43) 

These three rules are described as rule systems of disjunctively connected general-form 

rules where: 

where: 

rulepers-l :J 

(age ~ 75 A opersonal = 5980) 
v (age < 75 A age ~ 65 A oopersonal = 5720) 
v (age < 65 A oopersonal = 4335) 

rulepers-2 ::> 
(age ~ 65 A income> 16800 A ot > 4335 A oopersonal = t) 

(8.2-44a) 

v (age ~ 65 A income> 16800 A ot::5 4335 A oopcrsonal = 4335) 
v (age < 65 A empty) 
v (income ::5 16800 A empty) (8.2-44b) 

t ~ personal- (income - 16800) / 2 

rulepers-3 == (blind = 1 A opersonal = personal + 1380) 
v (blind ;f:. 1 A empty) (8.2-44c) 

These extracted rules can be used to analyze the original WSL code. In previous 

evaluations of this code, Ward et al. (2005) and Fox et al. (2000) applied various forms 
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of conditioned slicing to answer the question "What is the personal allowance 

calculation for a blind widow aged over 68?" These conditions are expressed in terms 

of the WSL program variables as: 

blind = 1 
married = 0 
widow = 1 
age> 68 

(S.2-45a) 
(8.2-45b) 
(S.2-45c) 
(S.2-45d) 

In the following analysis, these same conditions are applied to the extracted rules to 

generate conditioned rules that reflect those specific conditions. These conditioned 

rules are then compared to the slices generated by others for the same conditions. 

Referencing rulepers.J at (8.2-44a) and applying the specific conditions at 

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions 

yields rulepers.l.cond: 

rulepers.J.cond ~ 
(age ~ 75 " opersonal = 5980) 
v (age < 75" true" oopersonal = 5720) 
v ifalse " oopersonal = 4335) 

Applying propositional logic to (8.2-46) yields: 

rulepers.l.cond ~ 
(age ~ 75 A opersonal = 5980) 
v (age < 75" oopersonal = 5720) 

(S.2-46) 

(8.2-47) 

Referencing rulepers.2 at (8.2-44b) and applying the specific conditions at 

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions 

yields rulepers.2.cond: 

rulepers-2.cond ::> 
(true" income> 16800 " ot > 4335 " oopersonal = t) 
v (true" income> 16800" ot ~ 4335 "oopersonal = 4335) 
v ifalse " empty) 
v (income ~ 16800 " empty) (8.2-48) 
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Applying propositional logic to (8.2-48) yields: 

rulepers-2-cond :::) 

(income> 16800 A ot > 4335 A oopersonal = t) 
v (income> 16800 A ot:s 4335 A oopersonal = 4335) 
v (income:s 16800 A empty) (8_2-49) 

Referencing rulepers-3 at (8.2-44c) and applying the specific conditions at 

(8.2-45) to access the satisfaction or non-satisfaction of the relevant rule conditions 

yields rulepers-3-cond: 

rulepers-3-cond == (true A opersonal = personal + 1380) 
v (false A empty) 

Applying propositional logic to (8.2-50) yields: 

rulepers-3-cond == (opersonal = personal + 1380) 

(8-2-50) 

(8-2-51) 

Given the previous defmition of ruiepersonal at (8.2-43), the conditioned rule 

rulepersonal-cond, conditioned based on the specific conditions presented at (8.2-45), is 

defmed as the chopped sequence: 

ruiepersonal-cond == ru[epers-J-cond ; ru[epers-2-cond ; rulepers-3-cond (8.2-52) 

Using (8.2-52), applying rulepers-J-cond as described at (8.2-47) with ChopSwaplmpl and 

then applying OrChopEqv yields: 

rulepersonal-cond :::) 

(age 2': 75 A opersonal = 5980) ; rulepers-2-cond ; ru[epers-3-cond 

v (age < 75 A oopersonal = 5720) ; rulepers-2-cond ; rulepers-3-cond (8.2-53) 

Using (8.2-53), applying propositional logic (i.e., disjunction elimination) and then 

applying ru!epers-2-cond as described at (8.2-49) with ChopSwaplmp3 yields: 
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rulepersonal-cond :::> 

(age 2: 75 1\ opersonal = 5980) ; 
«income> 168001\ ot > 4335 1\ oopersonal = t) 
v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) 
v (income ~ 16800 1\ empty» ; rulepers-3-cond 

v (age < 751\ oopersonal = 5720) ; 
«income> 16800 1\ ot> 43351\ oopersonal = t) 
v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) 
v (income ~ 16800 1\ empty» ; rulepers-3-cond 

Applying OrChopEqv to (8.2-54) yields: 

rulepersonal-cond :::> 

(age 2: 75 1\ opersonal = 5980) ; 
«income> 16800 1\ ot> 4335 1\ oopersonal = t) ; rulepers-3-cond 

(8.2-54) 

v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) ; rulepers-3-cond 

v (income ~ 168001\ empty) ; rulepers-3-cond) 

v (age < 751\ oopersonal = 5720) ; 
«income> 16800 1\ ot> 43351\ oopersonal = t) ; rulepers-3-cond 

v (income> 168001\ ot ~ 4335 1\ oopersonal = 4335) ; rulepers-3-cond 

v (income ~ 16800 1\ empty) ; rulepers-3-cond) (8.2-55) 

Applying ChopOrEqv and substituting for rulepers-3-cond yields: 

rulepersonal-cond :::> 

(age 2: 751\ opersonal = 5980) ; 
(income> 16800 1\ ot > 43351\ oopersonal = t) ; 
( opersonal = personal + 1380) 

v (age ~ 75 1\ opersonal = 5980) ; 
(income> 16800 1\ ot ~ 4335 1\ oopersonal = 4335) ; 
(opersonal = personal + 1380) 

v (age 2: 751\ opersonal = 5980) ; 
(income ~ 16800 1\ empty) ; 
(opersonal = personal + 1380) 

v (age < 75 1\ oopersonal = 5720) ; 
(income> 16800 1\ ot > 43351\ oopersonal = t) ; 
(opersonal = personal + 1380) 
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v (age < 75 A oopersonal = 5720) ; 
(income> 16800 A ot ~ 4335 /I. oopersonal = 4335) ; 
( opersonal = personal + 1380) 

v (age < 75 A oopersonal = 5720) ; 
(income ~ 16800/1. empty) ; 
(opersonal = personal + 1380) (8.2-56) 

With (8.2-56), rulepersonal-cond is described as a disjunction of six alternative 

sequences, where each sequence is composed of two rules and a fmal assignment of a 

value to the variable 'personal.' Given the similar structure of these six sequences, the 

fmal value of the variable 'personal' in each sequence is dependant on the satisfaction of 

the specified (and complementary) rule conditions. This observation is supported by the 

final transformation of rulepersonal-cond, presented in Appendix D, where: 

rulepersonal-cond :::> 

(age;::: 75; (income> 16800 A income < 20090) 
/I. fin(personal = 15760 - incomel2)) 

v (age;::: 75 ; (income> 16800 A income;::: 20090) 
A fin (personal = 5715)) 

v (age;::: 75; income ~ 16800 
A fin(personal = 7360)) 

v (age < 75 ; (income> 16800 A income < 19570) 
A fin (personal = 15500 - income/2)) 

v (age < 75 ; (income> 16800 A income;::: 19570) 
A fin(personal = 5715)) 

v (age < 75; income ~ 16800 
A fin (personal = 7100)) (8.2-57) 

In (8.2-57), the ITL construct fin is used to denote that the specified formula is true on 

the final subinterval (in this case the fmal state) of the corresponding interval. Whereas 

the form of the disjuncts of (8.2-57) is a deviation from the general rule-formJi A ojj as 

developed and used in this research, some conceptual similarities are noted. Consistent 

with the temporal-relationship concepts developed in Chapter 4, the formula Ji A fin jj 

describes a conjunctive relationship between a set of conditions describable by Ji and 
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some set of properties describable by jj that hold in the fmal subinterval considered by 

the formula Ji " fin jj. 

With (8.2-57), the relationships between the variables 'age' and 'income' and the 

variable 'personal' as specified in rulepersonal-cond are described in the six disjuncts. In 

each disjunct, the rule conditions are noted and the resulting final value of the variable 

'personal' is specified. With regard to the use of the ITL operator chop in the expression 

of the conditions, given that the conditions based on the variables 'age' and 'income' are 

expressed in terms of state formulas, and given the semantics of chop, both condition 

formulas can hold for the same state. 

For comparison, consider the following "conditioned slice," sliced by Fox et al. 

(2000) from the tax program code using the previously defined conditions and 

converted to WSL by Ward et al. (2005): 

IF age >=75 
THEN personal := 5980 

ELSE IF age >= 65 
THEN personal := 5720 F1 F1; 
IF age >= 65 AND income> 16800 

THEN V AR < t := personal- (income-16800)12 >: 
IFt> 4335 

THEN personal := t 
ELSE personal := 4335 FI ENDV AR FI; 

IF blind = 1 
THEN personal:= personal + 1380 FI 

Also for comparison, consider the following "semantic slice," sliced by Ward et al. 

(2005) from the tax program code using the previously defmed conditions: 

IF age < 75 AND income >= 19570 
THEN personal:= 5715 

ELSIF age < 75 AND income> 16800 
THEN personal:= (16800 - income)/2 + 7100 

ELSIF age < 75 
THEN personal:= 7100 

. ELSIF income >= 20090 
THEN personal:= 5715 

ELSIF income> 16800 
THEN personal:= (16800 - income)/2 + 7360 
ELSE personal := 7360 FI 
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Ward et al. (2005) describe semantic slices as business rules for a particular situation, in 

this case, the business rule for the personal allowance for a blind widow aged over 68. 

The expression of this conditioned rule rulepersonal-cond as (8.2-56) and/or (8.2-57) 

has at least three distinct advantages over the above conditioned slice or semantic slice. 

Firstly, the conditioned rule rulepersonal-cond is potentially easier to understand. Whereas 

Ward et al. (2005) argues that the semantic slice is "clearly easier to understand" as 

compared to the conditioned slice, the conditioned rule is arguably easier to understand 

than the conditioned slice or semantic slice. This is because all conditions in 

rulepersonal-cond are explicitly listed and associated with each specific outcome. For 

example, in (8.2-57), the conditions age < 75 and income:::; 16800 are explicitly 

associated with the fmal outcome of personal = 7100. In the conditioned slice and 

semantic slice, the sliced code must be walked to determine the fmal outcome 

associated with the specific conditions. Secondly, because (8.2-56) and (8.2-57) are 

disjunctions, the six component structures can be presented in any order that is 

necessary for optimum rule presentation. Conversely, because the conditioned slice and 

semantic slice are expressed in a program language, the order of the program code and 

corresponding elements cannot be changed. Finally, as logical formulas, (8.2-56) 

and/or (8.2-57) can be used directly in further logical reasoning about the target system. 

Conversely, because the conditioned slice and semantic slice are expressed in a program 

language, neither support any further reasoning without substantial code-based 

transformations. Because of these three reasons, the advantages of this general-form 

rule approach to manipulating program slices are demonstrated. as compared with 

program code representation of slices. 

In this section, a block of WSL program code is sliced and the ru les extracted 

from the program slices. The rule algebra presented in this research is then used to 

analyze these extracted rules. In the first code slicing and rule extraction exercise, the 

rule algebra is applied to simply and clarify the extracted rule. Unlike the original 

program code that includes mUltiple if-then-else statements that must be traced to 

determine the specific conditions associated with a given outcome, with the transformed 

rules, the rule conditions associated with each rule state are explicitly identified and 

bound to that rule state. Therefore, these transformed rules reflect a substantial 

simplification. In the second code slicing and rule extraction exercise, the rules 
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extracted from the program slices are conditioned, and these conditioned rules are 

compared to conditioned slices and semantic slices on the same variable. For program 

understanding and analysis, these conditioned rules are superior to the conditioned 

slices or semantic slices because they are more easily understood, can be more easily 

manipulated for presentation, and can be used directly in further reasoning about the 

slice or about the source program. As demonstrated in this section, the rule algebra 

presented in this research is a powerful and complementary addition to slicing for use in 

program understanding and analysis. 
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Chapter 9 

Applying the Rule Algebra to Specify New Rules 

In this chapter, the formal rule extraction framework of Chapter 3, the formal 

temporal rule model of Chapter 4, and the rule algebra of Chapters 5 and 6 are applied 

to the forward engineering of a rule-based system. This forward-engineering 

application of the rule model and rule algebra is presented to demonstrate the wide­

ranging applicability of the concepts developed in this research. 

9.1 Refining an Existing Rule with New Rules 

Consider rule7.2-c (repeated below), extracted in Section 7.2 from the automated 

teller machine specification: 

rule7.2-c ~ (card_disabled A otake_disabled_card) 
v (-,card_disabled A ogeCpin ; rule7.2_d) (7.2-3) 

This rule includes the state sequence gecpin. In this section, gecpin is refmed using 

the general-form rule model presented in Chapter 4 and the rule algebra presented in 

Chapters 5 and 6. 

For this analysis, the refmement relation I: is defined as: 

for;.Ji ~fl-::Jfo (9.1-1) 

The refmement calculus was fIrst described by Back (1988). Refmement rules 

expressed as ITL formulas are presented in Cau and Zed an (2000). For this analysis, 

refmement is achieved by instantiating fl in (9.1-1) as a sequence of component state 

sequences (e.g., Jia ; Jib), including state sequences described in terms of general-form 

rules (e.g., fla ; (ha A Ojib». As previously presented in Section 5.7, two forms of 

sequential composition are available under this rule algebra - using the general rule 

form and using the ITL operator chop. With regard to the target sequence geCpin, 

additional details are added by defming equivalent state sequences that split gecpin into 

component sequences, thereby adding new details and refining gecpin. 
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Based on an inspection of (7.2-3), the state sequence gecpin is chopped to the 

state sequence described by rule7.2-d. Based on an inspection of rule7.2-d and subsequent 

rules ruZe7.2-e and rule7.2-j, previously presented at (7.2-4), (7.2-5), and (7.2-6), 

respectively, gecpin represents the behavior in which a valid PIN either is or is not 

obtained within an maximum number of attempts. Within this context, the following 

informal specification for geCpin is used as the basis for the refmement of geCpin: 

''Each ATM customer must enter a valid PIN within a limited number of tries" 

Implicit in informal specification is the requirement that the PIN entry process 

must be initialized with each new customer. Therefore, state sequence gecpin can be 

defmed as two sequentially-composed state sequences: 

(9.1-2) 

From the defmition presented in (9.1-2): 

init-pin3ntry; rulepin...entry:::> gecpin (9.1-3) 

Considering (9.1-3) and referencing the refmement relation I: as defmed in (9.1·1): 

(9.1-4) 

Subsequent refmements of the state sequences composing gecpin are implemented in a 

similar manner. 

In (9.1·2), inicpin_entry is the state sequence that results from resetting and 

initializing the various state variables necessary to accommodate a new customer. 

Although unspecified at this time, these various state variables include the various flags 

and counters used in subsequent rules that define the state sequence gecpin. Whereas 

init-pin_entry must eventually be refined prior to system implementation. this analysis 

will focus only on rulepin...eDtry. 



In (9.1-2), the state sequence described by rulepiJuntry includes the behaviors 

specifically associated with the PIN entry and validation processes. Within the context 

of the informal specification for gecpin, as presented above, several distinct elements 

are required. Firstly, a valid PIN must be entered. Secondly, the customer has only a 

limited number of attempts to correctly enter a valid pin. Finally, given that there can 

be multiple (although limited) attempts to enter a valid PIN, a repetitive or looping 

construct is needed to express the underlying requirement of this specification. The first 

two elements are incorporated into the rule condition and the third element is used to 

defme the rule form. Letting the rule condition attempclimit be a state formula that is 

true in a state where the allowable number of entry tries has been exceeded and letting 

the rule condition valid-IJin be a state formula that is true in a state where the entered 

PIN has been validated, rulepiruntry is described as a recursive general-form rule as: 

rulepifLentry ~ «(-,attempclimit 1\ -,valid-IJin) 
1\ oprocess_pin) ; rulepirLentry)) 
v (-,(-,aftempclimit 1\ -,valid-IJin) 1\ empty) 

Applying propositional logic, (9.1-5) is expressed in an equivalent form as: 

rulepifLentry ~ «((-,attempclimit 1\ -,valid-IJin) 
1\ oprocess_pin) ; rulepin_entry» 
v (validJJin 1\ empty) 
v (attempclimit 1\ empty) 

(9.1-5) 

(9.1-6) 

As a recursive rule, the state sequence defined by rulepifLentry will end when either of the 

rule conditions validJJin or attempClimit is satisfied, thereby ending the recursion. 

Based on the above analysis and interpretation of the informal specification for geCpin, 

the refinement of gccpin to inicpin_entry ; rulepiuntry is consistent with the informal 

specification for gecpin. 

The definition of rulepifLentry is a recursive rule that includes the state sequence 

process_pin. Within the context of the informal specification of geCpin, for this 

analysis, process_pin is defined as a sequence of state sequences such that: 

(9.1-7) 
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With this partitioning of process_pin into three separate state sequences, each state 

sequence can be refined independently. As display_pin_screen is relatively straight­

forward, only two of the three separate state sequences in process_pin will be refmed -

rulereaOey_pad and rulevalidattLpin. 

The state sequence rulereaocy_pad is a user-directed event. As a event-driven 

sequence, PIN entry is terminated with a specific key from the keypad - typically the 

enter key. Therefore, the rule defming the state sequence rulereaOey_pad must 

incorporate this event-driven element. Letting the rule condition enter _key be a state 

formula that is true in a state where the enter key has been pressed, rulereaoey_pad is 

described as a recursive general-form rule as: 

rulereaOey_pad ~ (-,enter_key A okey_buffer) ; ruleread.Jr.ey_pad 
v (enter_key A oincremencattempt) (9.1-8) 

In this form, rulereaOey_pad differs from previous recursive rules (i.e., the rule form of 

the while structure as previously discussed in Section 6.6.2) in that defmed state 

sequences are associated with both the satisfaction and non-satisfaction of the rule 

conditions. In ruleread.Jr.ey_pad, the state sequences key_buffer and incremencattempt 

must be refmed (at some future time) to describe, respectively, how the keypad key 

entries are processed and how a counter is incremented with each PIN that is entered 

(where this counter can be used to assess the satisfaction of the rule condition 

attempclimit in rulepi,untry). 

As specified in (9.1-7), the state sequence described by rulereaoey_pad is followed 

by rulevalidate_pin. The state sequence described by rulevalidate_pin must consider at least 

two business rules. Firstly, the PIN must be the proper length - typically four digits. 

although this may vary based on the specific institution. Secondly. and only after a PIN 

of proper length is entered. the user-entered PIN must match the PIN on file with the 

institution for that card/account. Therefore. the general-form rule(s) defming the state 

sequence rulevalidatc-pin must incorporate these two business rules. That the PIN length 

can be assessed locally and the PIN must be matched at centralized location supports the 

decision that these activities are best described by two rules. 
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Letting the rule condition pin_length be a state formula that is true in a state 

where the PIN of proper length has been entered, rulevalidate_pin is described as: 

rulevalidate_pin ~ (pin_length A orulecompare_pin) 
V (,pin_length A empty) (9.1-9) 

In (9.1-9), the state sequence rulecompare_pin describes the behaviors resulting from the 

comparing of the user-entered PIN with the PIN on fIle with the institution for that 

card/account. Letting the rule condition pin_match be a state formula that is true in a 

state where the user-entered PIN matches the PIN on file, rulecompare_pin is described as: 

rulecompare_pin ~ (pin_match A opin_ valid) 
v (-.pin_length A empty) (9.1-10) 

Whereas not refmed in this analysis, the state sequence pin_valid must satisfy the rule 

condition valid_pin in the rule rulepiQ..entry at (9.1-6). With regard to the general 

refmement strategy, rulevalidate_pin and rulecompare_pin reflect sequential association of two 

state sequences based on the general rule form, as previously presented in Section 5.6.1. 

This is in contrast to process_pin at (9.1-7), where rules are sequentially composed 

using the chop operator, as previously presented in Section 5.6.2. 

In summary, the following rules and rule structures have been developed to 

refme the state sequence gecpin: 

rulepin3ntry ~ «(,attempClimit A ,valid..,pin) 
A oprocess_pin) ; rulepiQ..enuy» 
v (valid..,pin A empty) 
v (attempClimit A empty) 

rulereaOey_pad ~ (,enter _key A okey_buffer) ; ruleread_key_pad 
v (enter _key A empty) 

rulevalidate_pin ~ (pin_length A orulecompare_pin) 
v (-.pin_length A empty) 

(9.1-2) 

(9.1-6) 

(9.1-7) 

(9.1-8) 

(9.1-9) 
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rulecompare_pin f: (pinJn,atch /\ opin_ valid) 
v (-pin_match /\ empty) (9.1-10) 

Using the statechart concepts described in Section 7.3, a statechart representing these is 

presented in Figure 9.1-1. 

[attempCiimit v validJlin] 

[ .., attempt_limit 1\..., validJlin) 

Figure 9.1-1: Statechart for Refmed State Sequence gecpin 
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9.2 Analyzing the New Rules Using the Rule Algebra 

To assess these rules. including the rule conditions and the associated rule states, 

the rule algebra presented in this research is applied to the analysis of ru[epifLentry 

(including process_pin), rulereadJ<ey_pad, rUlevalidate_pin, and rulecompare_pin. Because the 

state sequence inicpin_entry is focused only on the initialization of various program 

flags and counters, and at this refmement level contains no rules, iniCpin_entry is not 

considered in this analysis. 

To implement these rule transformations, an additional lemma is introduced -

TwoChopRuleslmp4. TwoChopRuleslmp4 is a continuation TwoChopRuleslmp series 

previously presented in Sections 7.2 and 8.1, and is used to separate and collect the rule 

conditions and rule states of the two chopped rules and transform them into a single 

general form rule. 

LEMMA: TwoChopRuleslmp4 

Proof: 

1 /0; if1 A/z) ; if3 Ah) 

2 if1 A/2) ; if3 Ah) 

3 (ji ;/3) A (fi ;/4) 

4 (ji Ah) ; if3 Ah) => if1 ;/3) A (fi ;/4) 

5 /0; if1 A/z) ; if3 A/4) =>/0; ((/1 ;/3) A if2 ;.14» 
6 /0; (ifJ ;/3) A if2 ;/4» 

premise 

CP assumption 

2, TwoChopRulesImp 

2-3, ::::> introduction 

4, ITL (RightChoplmpChop) 

1,5, MP 

In this analysis, these four rules (rulepiruntry. rulereao.ey_pad, ru[evalidate_pin, and 

rulecompare_pin) are used as premises. The general transformation strategy for this 

complete analysis of all state sequences or behaviors associated with ru!epifLentry (and 

rulereadJ<ey_pad, ru!evalidate_pin, and rU[ecompare_pin by inclusion) is identical to that used in 

the rule transformation of Section 7.2 - cleave each contributory rule into the 

component rule condition and rule state, and then add those components, in order, into 

the aggregate descriptions of rule conditions and corresponding system behaviors. This 

disassembly and subsequent reassembly is performed using ITL and the rule algebra 

presented in this research. Because this is an assessment of all possible behaviors 
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associated with an entire set of rules, these alternative behaviors are expressed 

disjunctively. The target rules are processed in reverse order, that is, from the deepest 

rule upwards. In this way, behaviors are transformed systematically, and each 

subsequent behavior associated with a specific rule rests on the behavior defmed by that 

rule's component rules. This transformation is presented in Appendix E. 

The fmal result of this transformation, representing the various behaviors of 

rulepin...entry, is presented below: 

« (-,attempclimit A -,valid-pin) ; -,enter _key) 
A (odisplay_pin_screen ;okey_buffer; 

rulereaoeY_IY<Id ; rulepin...entry» 

v «(-,attempclimit A -,valid-pin) ; enter_key; 
(pin_length A opinJn,atch» 

A (odisplay_pin_screen ; oincremencattempt ; 
oopin_valid ; rulepin...entry» 

v «(-,attempclimit A -,valid-pin) ; enter_key; 
(pin_length A o-,pin_match» 

A odisplay_pin.....screen; oincremencattempt ; 
oOdisplay_invalid_screen ; rulepin...entry» 

v «(-,attempClimit A -,valid-pin) ; enter_key; -,pin_length) 
A (odisplay_pin_screen; oincremencattempt ; 

odisplay_invalid_screen ; rulepin...entry» 

v (valid-pin A empty) 

v (attempclimit A empty» 

(9.2-1a) 

(9.2-1b) 

(9.2-lc) 

(9.2-ld) 

(9.2-le) 

(9.2-1f) 

Although (9.2-1) is a single disjunctive statement, each component disjunct is numbered 

individually to facilitate discussion. 

Using (9.2-1) and knowing the verity of the five rule conditions attempClimit, 

valid-pin, enter j,ey, pin_length, and pinJn,atch for a specific instance, the system 

behavior under rulepiruntry for that instance can be determined. For example and as 

depicted in (9.2-1£), if attempclimit is satisfied, then empty holds and the state 

sequence described by rulepin...entry ends. Referencing (9.1-2), when rulepin...entry ends, 

gecpin ends. Referencing rule7.2-c in Section 7.2 at (7.2-3), after gecpin, the system 

behavior is described by rule7.2-d. A similar behavior is depicted in (9.2-1e) associated 
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with the satisfaction of the rule condition valid-pin. Because disjuncts (9.2-1e) 'and 

(9.2-1f) are the only disjuncts that do not include a recursive reference to rulepiruntry, the 

satisfaction of either attempclimit or valid-pin is the only way that rulepin-.entry and 

gecpin ends. As depicted in (9.2-1c) and (9.2-1d), if -,attempclimit and -,valid-pin 

are satisfied, if enter _key is satisfied, and either -,pin_length is satisfied or pin_length 

and -,pin_match are satisfied, the resulting state sequence is described by 

display_in valid_screen, informing the user that an invalid PIN was entered. With the 

satisfaction of the rule conditions specified in (9.2-1b), the state sequence pin_valid 

results so that with the next recursive execution of rulepifLentry, the rule condition 

valid-pin will be satisfied. Finally, in (9.2-1a), if the rule condition ,enter _key is 

satisfied, signaling that the enter key has not been pressed at the key pad, system 

behavior continues to be defmed by the recursive reference to ruZereacUey_pad, thereby 

accepting additional key pad input. 

As demonstrated above, this transformation allows an alternative form for 

checking the formation of the original rules. In addition to the assessment of the rule 

verities and the associated fmal behaviors, this transformation allows the order of the 

rule conditions to be assessed. With each set of rule conditions, the associated order(s) 

of the intermediate behaviors leading to a specific fmal behavior can be assessed. 

Finally, because this transformation is a disjunctively connected sets of general-form 

rules, this transformation can be used for additional reasoning about the overall system 

of which rulereacUey_pad is a part. 

In this section, the rule model and rule algebra of this research are applied to the 

forward engineering of rules to refine a specification. Additional details regarding 

system behavior are achieved by dividing a previously specified state sequence into a 

composition of two or more state sequences. These new and more detailed state 

sequences can be expressed as a single state sequence (e.g., inicpin_entry) or they can 

be described as a system of two or more disjunctively connected rules, thereby 

describing two or more possible state sequences. For example, the state_sequence 

gecpin is initially refined into two state sequences, inicpin_entry and rulepifLentry' 

where inicpin3ntry defines only one state sequence (subject to future refmement) and 

rulepifLentry defines alternative multiple state sequences depending on the satisfaction of 
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the associated rule conditions. This refmement process is repeated for selected state 

sequences until sufficient detail is introduced. Then, the resulting rules can be 

transformed using the rule algebra presented in the research. With these 

transformations, the rules can be assessed with regard to the rule conditions and the 

associated rule states. With this example, the rule model and rule algebra presented in 

this research are demonstrated to be a viable and useful basis for the orderly and 

stepwise development and refmement of rules and rule-based descriptions of specific 

system behaviors. 
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Chapter 10 

Observations regarding the Rule Algebra and its Application 

In this chapter, observations are presented regarding the basis and development 

of the rule algebra and regarding the application of the rule algebra to both the analysis 

and the development of rule-based models, specifications, and code. A brief discussion 

of this rule algebra and its application relative to rule analysis, relative to literature 

previously reviewed in Chapter 2, is presented. 

10.1 On the Rule Algebra 

In Chapters 5 and 6, a rule algebra is developed using the temporal rule model 

presented in Chapter 4. Given the underlying principle behind that rule model, that a 

rule is a conjunctive relationship between a state sequence and a future state sequence 

describable by the general-form rule!;. A ofj, this rule algebra is incrementally developed 

in Chapter 5 by considering fundamental systems and the corresponding relationships 

between the state sequences that compose those systems. Using the concept of a rule 

system - a collection of two or more related rules - more complicated state sequences 

are described. One extremely important rule system used extensively in this rule 

algebra is the total rule - a pair of disjunctively associated rules incorporating 

complementary rule conditions. With this inclusion of complementary rule conditions, 

it is assured that all the state sequences will satisfy one or the other of the rule 

conditions included in the total rule. 

In Chapter 6, significant attention is given in this rule algebra to composing rules 

and rule systems in order to describe larger and more complex state sequences. 

Compositional paradigms that are demonstrated include: sequential composition using 

both the general rule form itself and the ITL operator chop; nesting; recursion; 

deterministic and non-deterministic guarded composition; and disjoint parallel 

composition. Using these compositional paradigms, rule-based representations of 

typical legacy code structures - the if-then-else structure, the while structure, and the 

indexed for-loop - are developed. 

Although not easily quantified, a critical element of this rule algebra is the 

fundamental simplicity with which a diverse spectrum of rules are defmed and 
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manipulated. Forty-three lemmas are developed in this research as part of this rule 

algebra to describe allowable and desirable transformations of various rules and rule 

systems. With the expressiveness of ITL, the proofs necessary to support these lemmas 

are quite direct. In the development of this rule algebra, no problems or issues were 

encountered in the description of increasingly complicated state sequences or with the 

systematic development of the related lemmas. Whereas the rule algebra developed 

herein provides sufficient means to achieve the immediate goals of this research, the 

lemmas presented in this research form a core for the development of additional 

transformations as needed. Because this rule algebra is built on ITL, the richness of ITL 

is available, if and as needed, for additional development and future refmement of this 

rule algebra. 

10.2 On the Application of the Rule Algebra 

In Chapters 7, 8, and 9, the rule model of Chapter 4 and the rule algebra of 

Chapters 5 and 6 are applied to the extraction of rules from existing systems, to the 

analysis of those rules, and to the development of new rules. Rules are extracted from a 

variety of existing systems: a fmite state machine, a detailed formal specification, a 

block of legacy Pascal code, and slices from a WSL program The flexibility and 

adaptability of this rule algebra are demonstrated both with the diversity of systems 

from which rules are extracted and with the transformations and analyses that are 

achieved using the extracted rules. With these demonstrations, as least eight significant 

benefits are demonstrated regarding the value and applicability of this rule model and 

rule algebra. 

Firstly, the rule algebra developed in this research is sufficiently expressive to 

allow the analysis of a range of existing models, specifications, and programs. No 

model, specification, and program structures are encountered that cannot be adequately 

represented with the rule model, rule algebra, and ITL. The general-form rule defmed 

in Chapter 4, the fundamental structures explored in Chapter 5, and the compositional 

models presented in Chapter 6 are sufficient, either directly or indirectly, to describe all 

elements of the various systems considered in this research. By linking the rule algebra 

concepts presented in Chapters 5 and 6, either by composing rules sequentially or by 
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nesting rules within rules, complex logical and programming structures can be 

addressed, as demonstrated with the diversity of systems analyzed. 

Secondly, and closely related to the previously discussed expressiveness, the 

rule algebra is adaptable. Given the underlying formations of the rule algebra and the 

depth of ITL, additional lemmas can be developed to support and expand the rule 

algebra as needed, as demonstrated with the additional lemmas introduced in Sections 

7.2 and 8.1 to achieve rule transformations. Similarly, the rule algebra is not overly 

restrictive with regard to new or allied concepts. In Section 7.2, the ITL sometimes 

operator 0 is used to allow an alternative expression of the temporal ordering of the rule 

conditions while still maintaining the underlying general-rule form. In Section 8.2, the 

ITL fin construct is used to describe the properties of the fmal state in the state sequence 

described by the rule. Although the fin form is a deviation from the general rule-form 

used throughout this research, the conceptual similarities are noted. 

Thirdly, the rule algebra supports different levels of analysis. As demonstrated 

with each of the rule analysis cases presented in Chapters 7 and 8, the application of the 

rule algebra can be tailored as needed to meet overall expectations and objectives of a 

specific rule extraction process. As demonstrated with each case considered herein, the 

rule algebra can be applied incrementally, and the resulting rule transformations can be 

used for additional reasoning about other rules and the overall system. This incremental 

approach is extremely important in the early phases of a legacy-system analysis when 

system-specific knowledge may be limited, and specific expectations and objectives 

may be vague and uncertain. 

Fourthly, statecharts are used to represent legacy-code programming structures, 

and their use is consistent and compatible with the rule model and rule algebra 

presented in this research. Together, statecharts and this rule algebra provide a robust 

tool for legacy code analysis. Correspondences between the statechart elements and the 

rule elements are presented in Section 7.3 such that statecharts can be developed that are 

equivalent to extracted general-form rules. Therefore, these equivalent presentations of 

the same program structures differ not in content, but only in how they can be used in 

future analysis and understanding. The statechart approach allows a visual presentation 

that is readily understandable by a wider audience, and the formulaic approach of 
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representing the extracted rules as TIL formulas is readily adaptable to computer 

analysis techniques. Coupled with the rule algebra, statecharts represent a robust 

approach to managing the 'state explosion' problem that may result in the analysis and 

extraction of rules in real-world legacy systems, as identified in Chapter 3. 

Fifthly, this rule algebra is applicable within the context of other program 

analysis techniques such as those described in Chapter 2. In Section 7.2, with the 

transformation of the extracted rules, the specific sequence of rule conditions and 

associated rule states leading to a defmed goal is identified. Borrowing from the 

nomenclature of other program understanding techniques, the resulting sequence is 

described as a state-sequence slice. In Section 8.1, the rule algebra is used as the basis 

for developing and populating a database usable for legacy code analysis. In Section 

8.2, the rule algebra is applied in concert with traditional program slicing. 

Sixthly, simplification is achieved with the transformation and representation of 

these systems using the rule algebra. At (7.1-11), a three-state, five-transition fmite 

state machine is described with two general-form rules. At (7.2-27), a recursive while­

form specification that includes four nested if-then-else specifications is transformed 

into a disjunction of six general-form rules. In each of these general-form rules, the rule 

conditions that must be met are identified and the corresponding system behavior is 

clearly presented as an ordered sequence of state sequences, including the recursive 

behavior of the original specification. At (8.2-25), three nested if-then-else statements 

are transformed into a disjunction of five easily understood rules, where all rule 

conditions associated with each rule state are explicitly identified. 

Seventhly, the application of the rule algebra for the analysis of the rules from a 

given model, specification, or program allows the direct assessment of the behavior of 

that system with regard to specific conditions. In Section 7.1, the rules extracted from a 

fmite state machine were used to model the state sequence response of that machine to a 

specific input. In Section 8.1, the extracted rules and the associated database were used 

to assess the specific rule conditions necessary for specific I/O writing operations in the 

original legacy code. In Section 8.2, conditioned rules - transformed and reduced rules 

reflecting the imposition of specific rule condition values - are demonstrated to be 

superior to conditioned slices or semantic slices with respect to program behavior, as 
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well as rule presentation and further reasoning activities. With these assessments of 

specific system behaviors, substantial knowledge of the original system is obtained. 

Finally, this rule algebra is not limited to rule extraction, but also can be applied 

to the forward engineering of new rules to describe new specifications/programs and 

their behaviors. Such forward engineering of rules is demonstrated in Chapter 9. The 

forward engineering of rules to describe a simple hardware system is presented in 

Appendix F. A significant advantage of using this rule algebra as the basis for forward 

engineering new rules is that these newly created rules can be then analyzed, reasoned 

about, and/or tested with the rule algebra, similar to the processes used to assess legacy 

code, to assure that these new rules meet all expectations associated with the new 

system. Whereas note explicitly explored in this research, the rule model presented in 

Chapter 4 is consistent with the inclusion and use of pre-condition and post-condition 

assertions in specification and program code development, including other language and 

programming paradigms that directly support such assertions. 

Based on these eight observations, and as supported by the specific analyses 

presented in this research, the rule model and rule algebra developed in the research 

form the robust and adaptable basis for the extraction of rules from a spectrum of 

existing or legacy systems, the forward engineering of new systems, the formal 

transformation and analysis of rules, and specification/program comprehension. 

10.3 Comparison with Existing Models and Approaches 

This rule model and rule algebra differ substantially from rule models and rule 

analysis techniques presented in the Hterature as reviewed in Chapter 2. Unlike the 

informal, descriptive models or defmitions of rules presented by Ulrich (1999), Perkins 

(2000), Odell (1995), Ross (1997), Sneed and Erdos (1996), and others, this rule model 

is formalJy defined under ITL and therefore incorporates ITL's well-defmed semantics. 

Unlike the formal rule models presented by Alagar and Periyasamy (2001) and 

Ungureanu and Minsky (2000) that require identification or specification of an agent, 

this rule model and the application of the associated rule algebra require no such agent 

identification or specification. 
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Other research models or approaches have some specified limitations with 

regard to application. For example, in Fu et a!. (2001), four types of constraints are 

supported by the Business Rule Language. With the expressiveness oflTL, no arbitrary 

limits are place on the number or type of constraints that can be expressed with the 

general form rule model developed as part of this research. 

Numerous researchers attempt to partition rules into different and distinct 

categories and suggest these categories may influence how these various rules are 

modeled, analyzed, or represented. Theodoulidis et a!. (1992) identified three 

categories of rules: constraint, derivation, and event-action. Shao and Pound (1999) 

classified business rules into three groups - structural rules, behavioral rules, and 

constraint rules. Leite and Leonardi (1998) propose classifying business rules as either 

functional or non-functional. Odell (1995) identified three types of constraint rules and 

two types of derivation rules. Unlike these approaches, the application of this rule 

model and associated rule algebra require no arbitrary partitioning or classification of 

the rules in the subject domain. Under the state-based model incorporated in this rule, 

any rule that is or can be implemented in a state-based architecture can be captured 

using this rule model. For example, structural changes can be modeled with the general 

form rule model of this research by adding or removing variables from the state space. 

Constraint rules can be modeled with the general form rule model of this research by 

adding additional conditions to the rule condition. Behavioral rules can be modeled 

with the general form rule model of this research by associating specific behaviors (i.e., 

sequences of states) with specific rule conditions. 

Finally, few researchers identified or acknowledged the explicitly temporal 

nature of rules in their rule models, with Theodoulidis et aL (1992) being the rare 

exception. Considering that this rule model and the associated rule algebra are built on 

temporal logic, the temporal nature of rules are explicitly acknowledged and directly 

incorporated. 

With respect to the application of the rule model and rule algebra for rule 

analysis, the rule algebra is applicable within the context of other rule analysis 

techniques such as program slicing. The rule model and rule algebra can be used in 

close association with program slicing to further reduce sliced code. As demonstrated 
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in Chapter 7, the rule model and rule algebra can be applied to create state sequence 

slices, a type of logical slice heretofore not investigated nor applied in the other 

program slicing research reviewed. 

With respect to the graphical analysis and representation of rules, the association 

of the rule model and rule algebra developed as part of this research with statecharts has 

been demonstrated. The ability to both nest and hide rules using statecharts is 

consistent with the objectives of techniques presented by Storey and Muller (1995). As 

statecharts have achieved a relatively widespread acceptance and understanding, the use 

of statecharts for graphical rule representation is preferable to the use of specialized 

graphical objects such as those used in Feijs and de Jong (1998). 

In Section 2.9, six critical shortcomings are identified regarding existing rule 

analysis and extraction procedures. The rule model and rule algebra developed as part 

of this research and the associated rule analyses in both the reverse and forward 

engineering domains address the critical shortcomings. Firstly, the rule model 

presented in the research is explicit with regard to what is meant by the concept of a 

rule. Using ITL, the formal semantics of the general rule form presented in this 

research are well defined. Secondly, the rule model presented in this research is 

language independent. Therefore, this rule model and the associated rule algebra are 

ideal for application in heterogeneous environments. Thirdly, use of ITL as a formal 

notation eliminates the impact of alternative syntax in the analysis process and 

maintains focus on the semantic elements of the rule. Fourthly, use of ITL as a formal 

notation for the representation of rules minimizes the potential for variation in rule 

representation and interpretation by different practitioners in the analysis process. 

Fifthly, expressing the rule model and the rule algebra in ITL allows for formal and 

provable analyses. Finally, the rule model and rule algebra presented in the research 

support both the reverse and forward engineering analysis of ru les. 
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Chapter 11 

Conclusions and Recommendations for Future Research 

In this chapter, the underlying vision that prompted this research is reviewed, the 

significant achievements associated with this research are enumerated, and some 

promising directions for future research are suggested. 

11.1 Vision 

As asserted in the introduction, rules give structure to knowledge. Within this 

context, knowledge-based business practices are structured by rules. Rules specify what 

is expected, what is preferred, what is a priority, what is allowable, and what is 

unacceptable. Within an organization, these rules are incorporated into computerized 

businesslknowledge systems based on the organizational experiences and expectations 

so that all users of these systems are either guided or constrained (depending on the 

rule) with regard to their choice of behaviors. Over time, these rules are changed, 

refmed, and/or updated to reflect acquired additional knowledge regarding successful 

and unsuccessful practices. Using this rule-based model of business practices, two 

different information systems, or more specifically two different program code 

elements, can be compared based on similarities and/or differences in their component 

rules. Should it be necessary to integrate these two systems or re-engineer a single 

replacement system, these rules can form the functional basis for the new system. 

Therefore, this rule-based model forms a rational basis for the analysis of 

heterogeneous business systems. Within these systems, the component rules are used to 

express the knowledge-based business practices of the organization. If one identifies 

and extracts these rules, the refined knowledge expressed in the business system can be 

preserved, analyzed, and reused as desired. 

Within the context of this rule-based model of knowledge-based business 

information systems, three fundamental questions emerged: 

1. What is a rule? 

2. Can rules be extracted from a diversity of different types of information 

systems? 
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3. Once extracted, can these extracted rules be manipulated and analyzed to 

yield information about the original system and/or to allow comparisons 

with other rules? 

This rule-based model of knowledge-based business information systems and these 

three associated questions have driven the research presented herein. 

11.2 Achievements 

Within the context of the vision described above, the following eight 

achievements have been realized with the research: 

1. A set-based formal framework is presented that allows the description 

and analysis of a program or information system as a set of structures that 

are describable as rules and non-rules. With thls formal framework, the 

feasibility of representing information system as rules and extracting 

those rules is demonstrated, subject to the formalization of a sufficiently 

general defmition of a rule. 

2. A general formal model of a rule is developed, general in that it can be 

adapted to the variety of languages and programming paradigms that 

might be encountered in different legacy code applications. Using 

Interval Temporal Logic (ITL), a rule is defmed formally as a 

conjunctive and temporal relations hlp between a state sequence and a 

future state sequence. Using the ITL next operator 0, a general-form rule 

is defined as ii A 0li, where ii describes the state sequence that satisfies 

the rule condition and jj describes the future (i.e., next) state sequence 

that satisfies the rule state. Informally, this ITL formula describes a rule 

as a conjunctive and temporal relationship between a state sequence 

satisfying the rule condition ii, and a future state sequence satisfying the 

rule state Ii. Given the underlying simplicity of this defmition - that a 

rule is a temporal relationship between two state sequences - no arbitrary 

limitations are introduced with this definition. Therefore, the general­

form rule ii A 0h can be used for both reverse engineering of existing 

systems and forward engineering of new systems. 
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3. Using this general formal model, a rule algebra is developed that 

describes the set of operations that can be applied to compose, 

decompose, or transform rules. This rule algebra is developed 

incrementally by considering fundamental systems and presenting rules 

that describe the relationships between the state sequences that compose 

these fundamental systems. Given the underlying formations of the rule 

algebra and the depth of ITL, this rule algebra is adaptable. In addition 

to the 43 lemmas presented to describe this rule algebra, additional 

lemmas can be developed to support and expand the rule algebra as 

needed. 

4. In developing this rule algebra, significant attention is given to 

composing rules and rule systems to describe larger and more complex 

state sequences. Compositional paradigms demonstrated with this rule 

algebra include sequential composition, nesting, recursion, deterministic 

and non-deterministic guarded composition, and disjoint parallel 

composition. Using these compositional paradigms, rule-based 

representations of typical legacy code structures - the if-then-else 

structure, the while structure, and the indexed for-loop - are developed. 

5. Within the context of the formal rule model and the corresponding rule 

algebra, the use and the value of statecharts for legacy code analysis are 

demonstrated. Generic statecharts of different rule-based coding 

paradigms are developed. These generic statecharts are applied and 

various rule-based legacy code structures are presented as both ITL 

formulas and statecharts. The statechart approach allows a visual 

presentation that is readily understandable by a wider audience, and the 

formulaic approach of representing the extracted rules as ITL formulas is 

readily adaptable to computer analysis techniques. Coupled with the rule 

model and rule algebra, statecharts are demonstrated to be a robust 

approach to managing the 'state explosion' problem that may result in the 

analysis and extraction of rules in real-world legacy systems. 
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6. Using this rule algebra, rules are extracted from a range of rule-based 

systems, specifications, and legacy code: an existing fmite state machine, 

a detailed formal specification, a small but relatively complicated block 

of Pascal legacy code, and a block of code from a tax calculation 

program. The flexibility and adaptability of this rule algebril are 

demonstrated both with the types of systems from which rules are 

extracted and with the transformations and analyses that are achieved 

using the extracted rules. In these rule extraction exercises, the 

application of this rule algebra is demonstrated to be compatible with 

other traditional approaches to legacy code analysis including traditional 

slicing, conditioned and semantic slicing, program simplification, 

program transformation, and database approaches. 

7. To demonstrate the applicability of this rule algebra with respect to 

forward engineering, rules are developed using this rule model and rule 

algebra to describe two systems - specification of a new business process 

and a simple hardware system. 

8. With the reverse and forward engineering applications described herein, 

the rule model and rule algebra, as developed in the research, are 

demonstrated to be a robust, flexible, and expressive approach for the 

extraction of rules from a spectrum of existing or legacy systems, the 

forward engineering of new rule-based systems, the formal 

transformation and analysis of rules, and system comprehension. 

11.3 Future Research Directions 

In the course of this research, as with any journey, numerous interesting 

avenues were observed but left unexplored. In this section, some possible research 

directions are discussed. 

11.3.1 Equivalence and Isomorphism 

Two of the most important concepts that merit future research are equivalence 

and isomorphism. Informally, the two concepts relate to the fundamental questions 

"Are these rules the same?" and "If they are not the same, then are they similar?" Three 
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forms of equivalence - strong equivalence (or strong bisimulation), transformational 

equivalence, and non-temporal equivalence - are discussed in Section 6.5. Given the 

knowledge-basis for this rule approach to assessing legacy systems (as articulated in the 

vision described in Section 11.1), demonstrating the extent of equivalence between tWO 

rules is critical. Therefore, formalization of the three equivalence models presented in 

Section 6.5 and the development of alternative equivalence models is an important 

research direction. Within the context that there are multiple models of equivalence and 

that the assessment of equivalence is not strictly binary, the formalization of 

equivalence models for rules is critical for rendering domain-specific judgments that 

two rules are sufficiently equivalent for a given domain-specific application. 

The root of the word isomorphism is derived from two Greek words - iso 

meaning the 'same' and morphe meaning 'form.' Unlike rule equivalence, which is 

concerned with whether two rules are the same with respect to rule states, rule 

conditions, input/output, and observable changes, isomorphism considers whether twO 

rules have the same structural form. With respect to legacy code analysis, isomorphic 

rules may suggest mUltiple implementations of similar rules. 

At a minimum, for two rules to be isomorphic there must exist a bijective 

function such that each state sequence in the domain of the first rule maps to a state 

sequence in the domain in the second rule, and a second bijective function such that 

each state sequence in the codomain of the first rule maps to a sequence in the codomain 

in the second rule. As these two functions are bijective, two inverse bijective functions 

must exist mapping the state sequences of the domain and codomain of the second rule 

to state sequences in the domain and codomain, respectively, of the first rule. Whereas 

these bijective functions are minimum requirements and additional properties may be 

necessary to prove an isomorphism between the two rules, these minimum requirements 

contribute to the following demonstration. 

Consider these two rules: 

fa /\ Ofl 

ofo/\ OOfl 

(11.3.1-1) 

(11.3.1-2) 
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Are these two rules the same? If not the same, are they similar? And if so, how 

similar? Given that fa == fa and fl == fI. the existence of the two bijective functions and 

their inverses is assured. Therefore, an isomorphism between (11.3.1-1) and (11.3.1-2) 

may exist (subject to any additional requirements that are added in a formal and 

complete defmition of rule isomorphism). By inspection, (11.3.1-1) and (11.~.1-2) 

differ only by the presence of an additional ITL next operator 0 in (11.3.1-2). Therefore 

and informally, (11.3.1-1) and (11.3.1-2) can be described as non-temporally equivalent. 

However, in the absence of a domain-specific assertion of the formf'::) oj, neither non­

temporal equivalence nor transformational equivalence can be proven formally at this 

time and without additional research. This simple example illustrates the need for 

additional research regarding equivalence and isomorphism within the context of rules. 

11.3.2 Alternative Rule Forms 

This research has centered on the general rule form fi A oIi. As developed in 

Chapter 4, this rule form describes a temporal relationship between the state sequence OJ 

where OJ F fi and the future state sequence OJ where OJ F Ii. However, various 

alternatives can be created using ITL to describe similar temporal relationships. In this 

section, several of these alternatives are discussed to highlight additional research 

directions. 

As demonstrated in Section 8.2, the ITL construct fin f is a powerful technique 

for describing or specifying a set of properties, describable by J, that must hold in the 

fmal subinterval of a given state sequence. Therefore, the general rule form used in this 

research can be extended such that a rule is defined as: 

01.3.2-1) 

In (11.3.2-1),fi specifies the rule conditions that must be met, Ii describes the rule state, 

and fin( Wk) describes the state properties of the fmal state sequence of the state sequence 

specified by the rule. Within the context of the stated objectives associated with this 

alternative form, the following form is tempting: 

(11.3.2-2) 
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However, representing the implication in (11.3.2-1) as ,ali v fin(w,t) and with the 

application of propositional logic, (11.3.2-1) and (11.3.2-2) can be demonstrated to be 

equivalent. Therefore, either (11.3.2-1) or (11.3.2-2) capture the fundamental notion of 

this alternative approach. Finally, applying propositional logic to (11.3.2-1), the 

following can be concluded: 

(11.3.2-3) 

Note that the reduced form of (11.3.2-3) mimics the form of the consequents in (8.2-57). 

Therefore, the alternative form it A ali A fin(w,t) may hold distinct advantages in the 

analysis of legacy systems. 

Extending the concepts embodied in (11.3.2-1) and loosely borrowing from the 

'always-followed-by' construct proposed by Siewe et al (2003) as discussed in Chapter 

4, consider the following alternative representation of a rule: 

(11.3.2-4) 

In (11.3.2-4),ji andli are as previously described and W,t describes the state properties of 

a state sequence that 'follows'jj, subject to the semantics of the ITL chop operator. 

The general rule form ji A ali used in this research incorporates the ITL next 

operator. However, the use of the ITL next operator may cause problems in certain 

logical and programming constructs, including certain forms of parallelism. Therefore, 

temporal relationships described in Chapter 4 can be formalized using the ITL 

sometimes 0 operator. Under this paradigm, an alternative rule defmition is: 

(11.3.2-5) 

This form has the advantage that the rule state satisfying Ii need not hold in the next 

state sequence, but can hold instead in some state sequence including an eventual state 

sequence some time in the future. Using the concepts described in (11.3.2-1) and 

(11.3.2-4), other alternative rule forms based on the ITL sometimes 0 operator include: 
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/i" OfJ" fin(wk) 

/i" OfJ; Wk 

(11.3.2-6) 

(11.3.2-7) 

Whereas no representation is made at this time regarding the superiority of any 

of these forms relative to each other or to form /i" ofJ as used in this research, these 

alternative forms may have some distinct advantages in certain circumstances. 

Therefore, these alternative forms, and any other related forms that support the temporal 

relationship concepts as developed in Chapter 4, merit additional investigation. 

11.3.3 Interdependence, Independence, and Interference 

Fundamental to the rule model presented in Chapter 4 is the concept of the state 

- a function mapping a set of variables to a set of values. Given the general form rule 

/i " ofJ, each rule considers at least two state sequences, one described by /i and another 

described by ofJ. Therefore, in the specification of the rule elements /i and ofJ, various 

sets of variables are used to describe the satisfying state sequences. These variable sets 

can be used as a basis for comparison and analysis. This concept can be applied in at 

least two ways - the comparison of the various elements within a single rule and the 

comparison of two or more rules with each other. This concept has been previously 

applied in Section 6.4 with regard to the assessment of the independence of any two ITL 

formulas. 

However, a more sophisticated model is desirable as it may afford a significantly 

more detailed assessment of how rule elements and rules are similar or dissimilar. With 

regard to the variable sets used to formulate rules, at least three concepts merit 

additional research and formalization - interdependence, independence, and 

interference. Rule interdependence describes how the various elements of a single rule 

are or are not interrelated. Rule independence describes how two rules are or are not 

interrelated. Rule inference describes how two rules may conflict with regard to the 

assessment of the verity of the formulas describing the rule condition and the rule state. 

To highlight how such additional research and formalization might be 

prosecuted, consider the following model. Let rule be a general-form rule defined as 

/i " ofJ, and let the sets C, V, and W be sets of variables defmed as follows: 
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w ~ The set of state variables that can possibly change values under 
rule such that Ii and oli holds. This is typically referred to as the 
frame. 

V ~ The set of state variables used to specify, calculate, or otherwise 
defme the new values of variables in the set W. 

C ~ The set of state variables used to specify the rule conditionli. 

Using this model, a variety of potentially useful concepts can be defmed formally, as 

described below. 

For a non-interdependent rule: 

CIlVrlW=0 (11.3.3-1) 

Informally, for a non-interdependent rule, the formula specifying the rule condition does 

not include any frame variables or any variables used in calculating the new values for 

the frame variables. 

For a maximally interdependent rule: 

C=V=W (11.3.3-2) 

Informally, for a maximally interdependent rule, all variables used in specifying the rule 

conditions are also in the frame and are also used to calculating the new values for the 

frame variables. 

Regarding rule independence, consider two rules, rule] with C], Vb and W}, and 

ruZe2 with C2, V2, and W2. These two rules are totally independent if: 

(11.3.3-3) 

Informally, the two rules rulel and rulez are totally independent if they have no 

variables in common. Continuing with this concept of rule independence, these two 

rules are rule condition independent if: 

(11.3.3-4) 
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Rule interference is a potential problem with regard to parallel composition. 

Informally, two rules in parallel may interfere with each other if a variable in the frame 

of one rule is used to specify the rule condition of the other rule or is used to calculate 

the value of a variable in the frame of the other rule. Formally, potential interference 

may exist between rulel and rule2 if: 

(Cl (1 W2 ':f:. 0) V (C2 (1 WI ':f:. 0) 
V (VI (1 W2 ':f:. 0) V (V2 (1 WI ':f:. 0) (11.3.3-5) 

The above representations of rule interdependence, rule independence, and rule 

interference are very basic; other more appropriate and/or more detailed formalizations 

likely exist. However, these general formalizations do provide a solid basis for 

understanding the importance of these concepts, and the importance of additional 

research in these areas. Given the nature and scope of rule interdependence, rule 

independence, and rule interference, the adequate formalization of these concepts can be 

an important segue to other rule analysis and research issues. 

11.3.4 Detemporalization 

In Section 8.2, selected implications of the form OWj :::) Wj or OOWj :::) Wj were 

asserted to detemporalize specific rule conditions to facilitate rule simplification and 

analysis. Given the absence of parallelism in the target code, these assertions were 

supported by a code-specific analysis and assessment of the non-interdependence of the 

rule condition variables and the rule state variables. A formal defmition of non­

interdependence between the elements of a given rule is presented at (11.3.3-1). As 

demonstrated in Section 8.2, such detemporalization is a powerful pathway to rule 

simplification. Therefore, additional research into detemporalization, including a 

formal approach and basis for detemporalization, is very important. In the absence of 

such formalization, deternporalization can only be achieved by code-specific analysis 

and reasoning. 

11.3.5 Formal Proof of Equivalence of Specific Statechart Constructs and 

Specific Rule Formulas 

In Section 7.3, strong correspondences between specific statechart constructs 

and specific rule formulations were demonstrated. With these correspondences, the 
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value of statecharts, when used in concert with the rule algebra presented herein, was 

demonstrated with regard to legacy code analysis. However, no formal proofs of 

equivalence between specific statechart constructs and specific rule formulas were 

presented. Given the demonstrated value of statecharts in legacy code analysis, and 

noting the general scarcity of other research regarding statecharts and legacy code, this 

could be a rich area for significant research. 

11.3.6 Metadata About Rules 

This research has focused on the analysis of legacy systems within the context of 

a formal rule defmition and rule algebra. However, significant benefit can be realized 

through the analysis of the rules themselves. The database approach to legacy code 

analysis as presented in Section 8.1 incorporated with this concept in that the some of 

the database fields (i.e., W, V, and Primary Membership) were derived from the 

properties of the rules. Other rule properties that could be used to describe the rules 

themselves include the extent of nesting, the use of recursion, non-determinism, the C 

variable set as defmed in Section 11.3.3, and the rule properties of interdependence, 

independence, and interference. As this area has not been investigated in this research, 

the depth and potential of such research cannot be quantified. However, given the 

formal basis of this rule algebra, its use to classify rules seems to be, a reasonable and 

rational extension. 

11.3.7 Automated Tool Using the Rule Algebra 

As presented in this research, this rule algebra is demonstrated to be a robust, 

flexible, and expressive approach for the extraction of rules from a spectrum of existing 

or legacy systems. The development and implementation of an automated tool using 

this rule algebra approach would allow easier and faster analysis of a range of legacy 

systems, and could significantly speed the testing and expansion of the underlying rule 

algebra. 
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Appendix A 

Supporting Lemmas for the Rule Algebra 

The following is a presentation of several general proofs that have been used is 

support of other proofs that are presented elsewhere in this thesis. Proofs are presented 

for NextAndDistEqv, NextAndOrDistEqv, NextOrAndDistEqv, NextOrDistEqv, and 

TemporalContra. 

LEMMA: NextAndDistEqv 

Proof: 

1 /0 ,,/1 == /0 "/1 
2 /0 "/1 == ifo ,,/1) 
3 0/0" 0/1 == oifo "/1) 

4 oifo ,,/1) == 0/0" 0/1 

LEMMA: NextAndOrDistEqv 

Proof: 

tautology 

1, associativity of" 

2, ITL (NextAndNextEqvNextRule) 

3, commutivity of == 

1 o(ifo v /1) " if2 v h» == o(ifo v /1) " (j2 v /3» 
2 == oifo v /1)" 0(j2 v h) 

tautology 

1, NextAndDistEqv 

2, NextOrDistEqv 

3, NextOrDistEqv 

3 == (0/0 V 0/1) " 0(/2 v /3) 

4 ;;: (of a v of 1) " (012 v oh) 

LEMMA: NextOrAndDistEqv 

Proof: 

1 o(ifo "/1) v if2 "h» == o(ifo "/1) v if2 "h» 
2 == oifo A/1) V 0(/2 "h) 
3 == (0/0" 0/1) V Oif2 "h) 
4 == (0/0" 0/1) v (oJi " 0/3) 

tautology 

1, NextOrDistEqv 

2, NextAndDistEqv 

3, NextAndDistEqv 
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LEMMA: NextOrDistEqv 

f- o(f] V f2) == oJi V Of2 

Proof: 

1 fa ; (f] v h) == (fa ;f]) v (fa ;f2) 

2 skip; if] v h) == (skip ;f]) v (skip ;f2) 

3 oifI v f2) == oli v Of2 

LEMMA: TemporalContra 

f- ofa 1\ 0-10 == false 

Proof: 

1 ofo 1\ o-{o == ofo 1\ o-{o 

2 ofo 1\ o-{o == oifo 1\ -10) 

3 ofo 1\ o-{o == o(false) 

4 ofo 1\ o-{o == skip ; false 

5 ofo 1\ o-{o == false 

ChopOrEqv (ITL) 

1, substitution of skip for fa 

2, defmition of 0 (ITL) 

tautology 

1, NextAndDistEqv 

2, law of contradiction 

3, ITL (defmition of next) 

4, ITL (semantics of chop) 
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Appendix B 

Formal Transformation of Rules 

Extracted from a Specification 

In Section 7.2, rules are extracted from a concrete specification describing the 

operation of an automated teller machine. Five of the extracted total rules are 

considered in this formal transformation: 

rule7.2-b ~ ((atmJl,on_empty A owaiCcustomer ; read_card; rule7.2-c) ; rule7.2-b) 
v (-,atm_non_empty A empty) 

rule7.2-c ~ (card_disabled A otake_disabled_card) 
v (-,card_disabled A ogecpin ; rule7.2-d) 

rule7.2-d ~ (max..]Jin A odisable3ard ; take_disabled_card) 
v (-.max..]Jin A orule7.2_e) 

rule7.2-e ~ (pin_exit A otake3ard_pin_exit) 
v (-pin_exit A orequesCmoney ; rule7.2-j) 

rule7.2-j ~ (money_exit A otake_cardJlloneY3xit) 
v (-,money_exit A odebicaccount; take_card_money) 

To facilitate analysis, the following variable name substitutions are made: 

da~ debiCaccount 
dc~ disable3ard 
gp~ geCpin 
rc~ read3ard 
rm ~ requesCmoney 
tcm ~ take3ard_money 
tcme ~ take3ard_money 3xit 
tcpe ~ take_card_pin_exit 
tdc ~ take_disabled3ard 
wc ~ waiccustomer 
xane ~ atm_non_empty 
xed ~ card_disabled 
xme ~ money_exit 
xmp ~ max..]Jin 

. xpe ~ pin_exit 
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Regarding these variable names, rule conditions variables begin with the letter x and are 

depicted in italics. Using these rule conditions and rule state variable names, these five 

rules of interest are rewritten as: 

ruZe7.2-b ~ «xane /\ owe; rc; rule7.2-c) ; ruZe7.2-b) v (-,xane /\ empty) 

rule7.2-c ~ (xed /\ otde) v (-,xed /\ ogp ; ruZe7.2-d) 

rule7.2-d ~ (xmp /\ ode; tdc) v (-,xmp /\ orule7.2_e) 

ruZe7.2-e ~ (xpe /\ otepe) v (-,xpe /\ orm ; ruZe7.2-/) 

ru[e7.2-/ ~ (xme /\ otcme) v (-,xme /\ oda ; tern) 

Each of these rules is assumed as a premise. The formal transformation of these rules is 

as follows: 

1 ruZe7.2-b premise 

where: 

ruZe7.2-b == «xane /\ owe; rc ; ruZe7.2-c) ; ruZe7.2-b) 

v (-,xane /\ empty) 

2 rule7.2-c premise 

where: 

rule7.2-c == (xed /\ otde) v (-,xed /\ ogp; ruZe7.2-d) 

3 rule7.2-d premise 

where: 

rule7.2-d == (xmp /\ ode; tde) v (-,xmp /\ orule7.2-e) 

4 rule7.2-e premise 

where: 

rule7.2-e == (xpe /\ otcpe) v (-,xpe /\ orm ; rule7.2-/) 

5 rule7.2-/ premise 

where: 

rule7.2-/ == (xme /\ oteme) v (-,xme /\ oda ; tern) 

6 rule7.2-e 4, reiteration 

7 (xpe /\ otepe) v (-,xpe /\ orm; rule7.2-/) 4, 6, eqv. subst. 
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8 (xpe 1\ otepe) v (-,xpe 1\ orm; «xme 1\ oteme) 5, 8, eqv. subst. 

v (..xme 1\ oda ; tern))) 

9 (xpe 1\ otepe) v «-,xpe 1\ orm) ; «xme 1\ oteme) 8,ITL 

v (..xme 1\ oda ; tern))) (StateAndChop) 

10 (-,xpe 1\ orm) ; «xme 1\ oteme) v (..xme 1\ oda ; tern» CP assumption 

11 (-,xpe ; xme 1\ orm ; oteme) 10, RuleChop-

v (-,xpe ; -,xme 1\ orm ; oda ; tern) TwoRulelmp 

12 (-,xpe ; xme 1\ orm; oteme) 11, v introduction 

v (-,xpe ; -,xme 1\ orm ; oda ; tern) 

v (xpe 1\ otepe) 

13 (xpe 1\ otepe) CP assumption 

14 (-,xpe ; xme 1\ orm ; oteme) 13, v introduction 

v (-,xpe ; ..xme 1\ orm ; oda ; tern) and eomm. ofv 

v (xpe 1\ otepe) 

15 (-,xpe ; xme 1\ orm ; oteme) 9, 10-12, 13-14, 

v (-,xpe ; ..xme 1\ orm ; oda ; tern) v elimination 

v (xpe 1\ otepe) 

16 -,rule7.2-e v «-,xpe ;xme 1\ orm; oteme) 15, v introduction 

v (-,xpe; -,xme 1\ orm; oda ; tern) v (xpe 1\ otepe» and eorom. of v 

17 rule7.2-e::> «-,xpe ; xme 1\ orm; oteme) 16, defmition of::> 

v (-,xpe ; -,xme 1\ orm; oda ; tern) v (xpe 1\ otepe» 

18 rule7.2-d 3, reiteration 

19 (xmp 1\ ode ; tde) v (..xmp 1\ orule7.2_e) 3, 18, eqv. subst. 

20 (xmp 1\ ode ; tde) v (..xmp 1\ skip ; rule7.2-e) 19, m (def. of 0) 

21 (xmp 1\ ode; tde) v «-,xmp 1\ skip) ; rule7.2-e) 20,m 

(StateAndChop) 

22 (..xmp 1\ skip) ; rule7.2-e CP assumption 

23 (..xmp 1\ skip) ; « -,xpe ; xme 1\ orm ; oteme) 17,22, 

v (-,xpe ; ..xme 1\ orm ; oda ; tern) v (xpe 1\ otepe» ChopS waplmp 1 
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24 (-,xmp A skip) ; (-,xpe ; xme A orm ; oteme) 23, ITL (ChopOr) 

v (-,xmp A skip) ; (-,xpe ; -,xme A orm ; oda ; tern) 

v (-,xmp A skip) ; (xpe A otepe) 

25 (-,xmp A skip) ; (-,xpe ; xme A orm; otcme) CP assumption 

26 -,xmp ; -,xpe ; xme A skip; orm ; otcme 25, TwoChop-

Ruleslmp 

27 (-,xmp ; -,xpe ; xme A skip; orm ; oterne) 26, v introduction 

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern) 

v (-,xmp ; xpe A skip; otepe) 

28 (-,xmp A skip) ; (-,xpe ; -,xme A orm; oda ; tern) CP assumption 

29 -,xmp ; -,xpe ; -,xme A skip ; orm ; oda ; tern 28, TwoChop-

Ruleslrnp 

30 (-,xmp ; -,xpe ; xme A skip ; orm ; otcrne) 29, v introduction 

v (-,xmp ; -,xpe ; -,xme A skip; orm; oda ; tern) and eomm. of v 

v (-,xmp ; xpe A skip ; otepe) 

31 (-,xmp A skip) ; (xpe A otepe) CP assumption 

32 -,xmp ; xpe A skip; otepe 31, TwoChop-

Ruleslrnp 

33 (-,xmp ; -,xpe ; xme A skip ; orm ; oteme) 32, v introduction 

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern) and comm. of v 

v (-,xmp ; xpe A skip ; otcpe) 

34 (-,xmp ; -,xpe ; xme A skip ; orm ; oteme) 24,25-27,28-30, 

v (-,xmp ; -,xpe ; -,xme A skip; orm ; oda ; tern) 31-33, v elimination 

v (-,xmp ; xpe A skip ; otcpe) 

35 (-,xmp ; -,xpe ; xme A oorm ; otcme) 34, ITL (def. of 0) 

v (-,xmp; -,xpe; -,xme A oorm; oda; tern) 

v (-,xmp ; xpe A 0 otepe) 
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36 (-,xmp ; -.xpe ; xme 1\ oorm ; oteme) 35, v introduction 

v (-,xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern) 

v (-,xmp ; xpe 1\ 0 otepe) 

v (xmp 1\ ode; tde) 

37 (xmp 1\ ode ; tde) CP assumption 

38 (-,xmp; -.xpe ; xme 1\ oorm; oteme) 37, v introduction 

v (-,xmp ; -.xpe ; -.xme 1\ oorm ; oda ; tern) and eomm. of v 

v (-,xmp ; xpe 1\ 0 otepe) 

v (xmp 1\ ode ; tde) 

39 (-,xmp ; -.xpe ; xme 1\ oorm ; otcme) 21,22-36,37-38, 

v (-,xmp ; -.xpe ; -,xme 1\ oorm; oda ; tern) v elimination 

v (-,xmp ; xpe 1\ ootepe) 

v (xmp 1\ ode ; tde) 

40 -,rule7.2-d 39, v introduction 

v « -,xmp ; -.xpe ; xme 1\ oorm ; oteme) and eomm. of v 

v (-,xmp ; -.xpe ; -,xme 1\ oorm; oda ; tern) 

v (-,xmp ; xpe 1\ 0 otepe) 

v (xmp 1\ ode; tdc» 

41 rule7.2-d -::J «-,xmp ; -,xpe ; xme 1\ oorm; oteme) 40, defmition of;:) 

v (-,xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern) 

v (-,xmp ; xpe 1\ 0 otepe) 

v (xmp 1\ ode; tde» 

42 rule7.2-c 2, reiteration 

43 (xed 1\ otdc) v (-,xed 1\ 0 gp ; rule7.2-d) 2, 42, eqv. subst. 

44 (xed 1\ otdc) v «-,xed 1\ ogp) ; rule7.2-d) 43, ITL 

(StateAndChop) 

45 (-,xcd 1\ ogp) ; rule7.2-d CP assumption 

46 (-,xcd 1\ ogp) ; «-,xmp ; -.xpe; xme 1\ oorm; oteme) 41,45, 

v (-.xmp ; -.xpe ; -,xme 1\ oorm ; oda ; tern) ChopSwaplmpl 

v (-.xmp ; xpe 1\ 0 otepe) 

v (xmp 1\ ode; tde» 
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47 (-,xed A Ogp) ; (-,xmp ; -,xpe; xme A oonn; oteme) 46, ITL (ChopOr) 

v (-,xed A ogp) ; (-,xmp; -,xpe;-,xme 

A oorm; oda; tem) 

v (-,xed A ogp) ; (-,xmp ; xpe A ootepe) 

v (-.xed A ogp) ; (xmp A ode; tde) 

48 (-.xed A ogp) ; (-,xmp ; -,xpe; xme A oonn; oteme) CP assumption 

49 (-,xed; -,xmp ; -,xpe; xme) A (ogp ; oonn; oteme) 48, TwoChop-

Ruleslmp 

50 (-,xed; -,xmp ; -,xpe ; xme A 0 gp ; oonn ; oteme) 49, v introduction 

v (-,xed; -,xmp ; -,xpe ; -,xme and eomm. ofv 

A ogp; oorm; oda; tern) 

v (-,xed; -,xmp ; xpe A ogp; ootepe) 

v (-.xed; xmp A ogp; ode; tde) 

51 (-.xed A ogp); (-.xmp; -.xpe; -.xme A oonn; oda; CP assumption 

tem) 

52 (-.xed; -.xmp ; -.xpe ; -.xme) 51, TwoChop-

A (ogp ; oorm ; oda ; tern) Ruleslmp 

53 (-.xed; -.xmp; -,xpe; xme A ogp; oonn; oteme) 52, v introduction 

v(-.xed;-,xmp;-.xpe;-.xme and comm. of v 

A ogp; oorm; oda; tern) 

v (-.xed; -,xmp; xpe A ogp; ootepe) 

v (-.xed; xmp A ogp; ode; tde) 

54 (-.xed A 0 gp) ; (-,xmp ; xpe A 0 otepe) CP assumption 

55 (-.xed; -,xmp ; xpe) A ( 0 gp ; 0 otepe) 54, TwoChop-

Ruleslmp 

56 (-.xed; -.xmp ; -,xpe; xme A ogp; oonn; oteme) 55, v introduction 

v(-,xed;-.xmp;-,xpe;-,xme andeomm.ofv 

A ogp ; oorm ; oda ; tern) 

v (-.xed; -.xmp ; xpe A ogp; ootepe) 

v (-,xed; xmp A ogp; ode; tde) 

57 (-.xed A ogp) ; (xmp A ode; tde) CP assumption 
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58 (-,xed; xmp) 1\ (ogp ; ode; tde) 57, TwoChop-

RulesImp 

59 (-,xed; -,xmp; -,xpe; xme 1\ ogp ; oorm.; oteme) 58, v introduction 

v(-,xed;~p;-,xpe;~e and eomm. of v 

1\ ogp; oorm; oda; tern) 

v (-,xed; ~p ; xpe 1\ ogp; ootepe) 

v (-,xed; xmp 1\ ogp ; ode; tde) 

60 (-,xed ; ~p ; -,xpe ; xme 1\ ogp ; oorm. ; oteme) 47, 48-50, 51-53, 

v (-,xed ; ~p ; -,xpe ; ~e 54-56, 57-59, 

1\ ogp ; oorm ; oda ; tern) v elimination 

v (-,xed; ~p; xpe 1\ ogp; ootepe) 

v (-,xed; xmp 1\ ogp; ode; tdc) 

61 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp ; oorm.; oteme) 60, v introduction 

v(-,xed;-,xmp;-,xpe;-,xme 

1\ ogp ; oorm ; oda ; tern) 

v (-,xed; ~p ; xpe 1\ ogp; ootepe) 

v (-,xed; xmp 1\ ogp ; ode; tde) 

v (xed 1\ otde) 

62 (xed 1\ otde) CP assumption 

63 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp ; oorm.; oteme) 62, v introduction 

v(-,xed;~p;-,xpe;-,xme and comm. of v 

1\ ogp ; oorm; oda ; tcm) 

v (-,xed; ~p ; xpe 1\ ogp; ootepe) 

v (-,xed; xmp 1\ ogp ; odc ; tde) 

v (xed 1\ otde) 

64 (-,xed; -,xmp ; -,xpe ; xme 1\ ogp; oorm.; oteme) 44, 45-61, 62-63, 

v (-,xed; ~p; -,xpe; ~e 1\ ogp ; oorm.; oda; tcm) v elimination 

v (-,xed; ~p ; xpe 1\ ogp ; ootcpe) 

v (-,xed; xmp 1\ ogp ; ode ; tde) 

v (xed 1\ otdc) 
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65 -,rule7.2.c 

((-,xed; -,xmp; -,xpe; xme /\ ogp; oorm; oteme) 

v (-,xed; -,xmp ; -,xpe; -,xme /\ ogp ; oorm; oda; tem) 

v (-,xed; -,xmp ; xpe /\ ogp ; 0 otepe) 

v (-,xed; xmp /\ ogp ; ode ; tde) 

v (xed /\ otde» 

64, v introduction 

and eomm. of v 

66 rule7.2-c ::J 65, defmition of::> 

((-,xed; -,xmp ; -,xpe; xme /\ ogp; oorm; oteme) 

v (-,xed; oxmp ; -,xpe ; -,xme /\ ogp; oorm; oda; tem) 

v (-,xed; -,xmp ; xpe /\ ogp ; ootepe) 

v (-,xed; xmp /\ ogp ; ode ; tde) 

v (xed /\ otde» 

67 rule7.2-b I, reiteration 

68 ((xane /\ owe; re ; rule7.2_c) ; rule7.2-b) v (-,xane /\ empty) 1,67, eqv. subst. 

69 

70 

71 

72 

((xane /\ owe; re ; rule7.2-c) ; rule7.2-b) 

(((xane 1\ owe; re) ; rule7.2-c) ; rule7.2-b) 

(xane 1\ owe; re) ; rule7.2-c ; rule7.2-b 

(xane 1\ owe; re) ; ((-,xed; oxmp ; -,xpe; xme 

1\ ogp ; oorm ; oteme) 

v(-,xed;-,xmp;-,xpe;-,xme 

1\ ogp ; oorm ; oda ; tem) 

v (-,xed; -,xmp ; xpe /\ ogp ; ootepe) 

v (-,xed; xmp 1\ ogp; ode; tde) 

v (xed 1\ otde» ; rule7.2-b 

CP assumption 

69,ITL 

(StateAndChop) 

70, ChopAssoe 

66,71, 

ChopSwaplmp3 
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73 «xane /\ owe ; re) ; (-,xed; -.xmp ; -,xpe ; xme 72, ITL (ChopOr) 

/\ ogp ; oorm ; oteme) 

v (xane /\ owe ; re) ; (-,xed; -.xmp ; -,xpe ; -,xme 

/\ ogp ; oorm ; oda ; tem) 

v (xane /\ owe ; re) ; (-,xed; -,xmp ; xpe 

/\ ogp ; ootepe) 

v (xane /\ owe; re) ; (.......xed; xmp /\ ogp; ode; tde) 

v (xane /\ owe; re) ; (xed /\ otde» ; rule7.2ob 

74 (xane /\ owe; re) ; (.......xed; .......xmp ; -,xpe ; xme 73, ITL (OrChop) 

/\ ogp ; oorm ; oteme) ; rule7.2ob 

v (xane /\ owe ; re) ; (.......xed; -.xmp ; -,xpe ; .......xme 

/\ ogp; oorm; oda; tem) ; rule7.2ob 

v (xane /\ owe; rc) ; (.......xed; -.xmp ; xpe 

/\ ogp ; ootepe) ; rule7.2ob 

v (xane /\ owe; re) ; (.......xed; xmp 

/\ ogp ; ode; tde) ; rule7.2ob 

v (xane /\ owe ; re) ; (xed /\ otde) ; rule7.2ob 

75 (xane /\ owe ; re) ; (-,xed; -.xmp ; .......xpe ; xme CP assumption 

/\ ogp ; oorm ; oteme) ; rule7.2ob 

76 (xane ; -,xed; -,xmp ; -,xpe ; xme) /\ (owe; re ; ogp ; 75, TwoChop-

oorm; oteme ; rule7.2ob) RulesImp2 

77 «xane ; -,xed; -.xmp ; -,xpe ; xme) 76, v introduction 

/\ (owe; re ; ogp ; oorm; oteme ; rule7.2ob» 

v «xane ; -,xed; -.xmp ; .......xpe ; -.xme) 

/\ (owe; re ; ogp ; oorm ; oda ; tem ; rule7.2ob» 

v «xane ; -,xed; -vcmp ; xpe) 

/\ (owe; re ; ogp ; ootepe ; rule7.2.b» 

v «xane ; -,xed; xmp) 

/\ (owe; re ; ogp ; ode; tde; rule7.2ob» 

v «xane ; xed) /\ (owe; re ; otde ; rule7.2ob» 

78 (xane A owe; re) ; (-,xed; -,xmp ; -,xpe ; -,xme CP assumption 

/\ ogp; oorm; oda ; tem) ; rule7.2ob 
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79 (xane ; --..xed; --..xmp ; --..xpe ; --..xme) 78, TwoChop-

A (owe; re ; ogp ; oorm ; oda ; tem ; ruZe7.2-b) Ruleslmp2 

80 «xane ; --..xed; --..xmp ; --..xpe ; xme) 79, v introduction 

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b» and eomm. ofv 

v «xane ; --..xed; --..xmp ; --..xpe ; --..xme) 

A (owe; re ; ogp ; oorm ; oda ; tem ; ruZe7.2-b» 

v «xane ; --..xed; --..xmp ; xpe) 

A (owe; re ; ogp ; ootepe ; ruZe7.2-b» 

v «xane ; --..xed; xmp) 

A (owe; re ; ogp ; ode; tde; ruZe7.2-b» 

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b» 

81 (xane A owe; re) ; (--..xed; --..xmp ; xpe CP assumption 

A ogp ; ootepe) ; ruZe7.2_b 

82 (xane ; --..xed; --..xmp ; xpe) 81, TwoChop-

A (owe; re ; ogp ; ootepe ; ruZe7.2-b) Ruleslmp2 

83 «xane ; --..xed; --..xmp ; --..xpe ; xme) 82, v introduction 

A (owe; rc ; ogp ; OOrm ; otcme ; ruZe7.2-b» and eomm ofv 

v «xane ; --..xed; --..xmp ; --..xpe ; --..xme) 

A (owe; rc ; ogp ; oorm; oda; tern; rUZe7.2.b» 

v «xane; --..xed; --..xmp ; xpe) 

A (owe; re ; ogp ; ootepe ; ruZe7.2-b» 

v «xane ; --..xed; xmp) 

A (owe; re ; ogp ; ode; tde; ruZe7.2-b» 

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b» 

84 (xane A owe; rc) ; (--..xed; xmp CP assumption 

A ogp ; ode; tdc) ; ruZe7.2.b 

85 (xane ; --..xed; xmp) 84, TwoChop-

A (owe; re ; ogp ; ode; tde; ruZe7.2-b) Ruleslmp2 
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86 

87 

88 

89 

90 

«xane; -,xed; -,xmp; -,xpe; xme) 

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b» 

v «xane ; -,xed; -.xmp ; -,xpe ; -.xme) 

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b» 

v «xane ; -,xed; -.xmp ; xpe) 

A (owe; re ; ogp ; ootepe ; ruZe7.2-b» 

v «xane ; -,xed; xmp) 

A (owe; re ; ogp ; ode; tde; ruZe7.2-b» 

v «xane ; xed) A (owe; re ; otde ; ruZe7.2-b» 

(xane A owe ; re) ; (xed A otde) ; ruZe7.2-b 

(xane ; xed) A (owe ; re ; otde ; ruZe7.2-b) 

«xane ; -,xed; -,xmp ; -,xpe ; xme) 

A (owe; re ; ogp ; oorm ; oteme ; ruZe7.2-b» 

v «xane; -,xed; -,xmp ; -,xpe; -,xme) 

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b» 

v «xane ; -,xed; -.xmp ; xpe) 

A (owe; re ; ogp ; ootcpe ; ruZe7.2-b» 

v «xane ; -,xed; xmp) 

A (owe; re ; ogp ; ode; tde; ruZe7.2-b» 

v «xane ; xed) A (owe; re ; otde ; ruZe7.2_b» 

«xane ; -,xed; -,xmp ; -,xpe ; xme) 

A (owe; rc ; ogp ; oorm ; oteme ; ruZe7.2-b» 

v «xane ; -,xed; -,xmp ; -,xpe ; -,xme) 

A (owe; re ; ogp ; oorm ; oda ; tern; ruZe7.2-b» 

v «xane ; -,xed; -,xmp ; xpe) 

A (owe; re ; ogp ; ootepe ; ruZe7.2-b» 

v «xane ; -,xed; xmp) 

A (owe; rc ; ogp ; ode; tde; ruZe7.2-b» 

v «xane ; xed) A (owe; re ; otdc ; ruZe7.2-b» 

85, v introduction 

and eomm. of v 

CP assumption 

87, TwoChop­

RulesImp2 

88, v introduction 

and eomm. of v 

74, 75-77, 78-80, 

81-83,84-86,87-89, 

v elimination 
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91 

92 

93 

«xane ; -,xed; -.xmp ; -,xpe ; xme) 

A (owc ; rc ; ogp ; oorm ; otcme ; rule7.2-b» 

v «xane ; -,xed; -.xmp ; -,xpe ; -,xme) 

A (owe; re ; ogp ; oorm ; oda ; tcm ; rule7.2-b» 

v «xane ; -,xed; -,xmp ; xpe) 

A (owe; rc ; ogp ; ootcpe ; rule7.2-b» 

v «xane; -,xed; xmp) 

A (owe; rc ; ogp ; odc ; tdc; rule7.2-b» 

v «xane ; xed) A (owc ; re ; otde ; rule7.2-b» 

v (-,xane A empty) 

(-,xane A empty) 

«xane ; -,xed; -,xmp ; -,xpe ; xme) 

A (owc; re ; ogp ; oorm; otcme; rule7.2-b» 

v «xane ; -,xed; -.xmp ; -,xpe ; -,xme) 

A (owe; re ; ogp ; oorm; oda; tcm; rule7.2-b» 

v «xane ; -,xed; -,xmp ; xpe) 

A (owe; re ; ogp ; ootcpe ; rule7.2-b» 

v «xane ; -,xed; xmp) 

A (owe; re ; ogp ; ode; tdc; rule7.2-b» 

v «xane ; xed) A (owe; rc ; otdc ; rule7.2-b» 

v (-,xane A empty) 

94 «xane; -,xed; -.xmp ; -,xpe ; xme) 

A (owe; re ; ogp ; oorm ; oteme ; rule7.2-b» 

v «xane ; -,xed; -,xmp ; -,xpe ; -.xme) 

A (owe; re ; ogp; oorm; oda; tern; rule7.2-b» 

v «xane ; -,xed; -,xmp ; xpe) 

A (owe; re ; ogp; ootepe; rule7.2-b» 

v «xane; -,xed; xmp) 

A (owe; re ; ogp ; ode; tde; rule7.2-b» 

v «xane ; xed) A (owe; re ; otdc ; rule7.2-b» 
v (-,xane A empty) 

v introduction 

CP assumption 

92, v introduction 

and comm. of v 

68,69-91,92-93, 

v elimination 
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Based on these transformations, the following observations are made. By 

defmition, rule7.2_fdescribes the behaviors associated with rule7.21 and no transformation 

is required. The two possible behaviors associated with rule7.21 are: 

The transformation of rule7.2-e is complete at sequent 15 and incorporates the behaviors 

associated with rule7.21. The three possible behaviors associated with rule7.2-e are: 

v (-,pin_exit; -,money_exit 1\ 

orequesCmoney ; odebicaccount ; take_card_money) 

The transformation of rule7.2-d is complete at sequent 39 and incorporates the behaviors 

associated with rule7.2-e and rule7.21- The four possible behaviors associated with 

rule7.2-e are: 

(-,max..]Jin ; -,pin_exit; money_exit 
1\ oorequescmoney ; otake_card_money_exit) 

v (-,max..]Jin ; -,pin3xit ; -,money_exit 
1\ oorequescmoney ; odebiCaccount; take_card_money) 

The transformation of rule7.2-c is complete at sequent 64 and incorporates the behaviors 

associated with rule7.2-d, rule7.2-e, and rule7.2_/o The five possible behaviors associated 

with rule7.2-c are: 

(-,card_disabled; -,max..]Jin ; -,pin_exit; money_exit 
1\ ogecpin ; oorequesCmoney; otake_card_money_exit) 

v (-,card_disabled; -,max..]Jin ; -,pin_exit; -,money_exit 
1\ ogeCpin ; oorequesCmoney ; 
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odebiCaccount ; take3ard_money) 

v (-,card_disabled ; -,max-pin ; pin_exit 
/I. ogeCpin ; ootake_card_pin_exit) 

v (-,card_disabled ~ max-pin 
/I. ogeCpin ; odisable3ard ; take_disabled_card) 

The transformation of rule7.2.b is complete at sequent 94 and incorporates the behaviors 

associated with rule7.2.c, rule7.2.d, rule7.2.e, and rule7.2.t. The six possible behaviors 

associated with rule7.2.b are: 

(atm_non_empty; -,card_disabled; -,max-pin ; -,pin3xit; money_exit 
/I. owaiCcustomer; read_card; ogecpin ; oorequesCmoney; 

otake3ard_money_exit ; ruZe7.2.b) 

v (atm_non_empty; -,card_disabled; -,max-pin ; -,pin3xit; -,money_exit 
/I. owaiccustomer; read3ard; ogecpin; oorequesCmoney; 

odebiCaccount ; take_card_money ; ruZe7.2.b) 

v (atm_non3mpty ; -,card_disabZed ; -,max-pin ; pin3xit 
/I. owaiCcustomer ; read3ard ; ogecpin ; 

ootake3ard_pin3xit ; ruZe7.2-b) 

v (atm_non_empty ; -,card_disabled ; max-pin 
/I. owait3ustomer ; read3ard ; ogecpin ; 

odisable_card ; take_disabled3ard ; ruZe7.2.b) 

v (atm_non_empty ; card_disabled 
/I. owaiccustomer ; read3ard ; take_disabled_card ; ruZe7.2.b) 
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Appendix C 

Formal Transformation of VO Rules in Legacy Code 

In this formal transformation, the specific rules derived from the legacy code 

presented in Section 8.1 are transformed to create a single rule structure. The focus of 

this transformation are the rules associated with specific I/O activities. Because rule4 

does not include any I/O activities, rule4 is not considered in this transformation. 

This transformation rests on seven premises that reflect the rules extracted from 

legacy code that directly or indirectly include the variable UOwrite - fo, rule1, rule1', rule2. 

rule3, rules. and rules'. Because the deepest rule, rules (including the subrule rules') 

includes no other rules and therefore, by defmition, totally describes all behaviors 

associated with rules. rules needs no transformation. Therefore, rule3 is transformed 

fITst and incorporates the behaviors associated with rules. Then, rule2 is transformed 

and incorporates the behaviors derived from rule3 and rules. Then. rule1 (including the 

subrule rule]') is transformed and incorporates the behaviors derived from rule2. rule3. 

and rules. Finally,fo is transformed and incorporates the behaviors derived from rule}, 

rule2. rule3. and rules. 

1 fo 

where: fo ~ fOa ;fpl ;!ob ; rule1 ;fOc ;fOd ;!oe 

2 rule1 

where: rulel ~ f1a ; rule], 

3 rule}' 

where: rule}' ~ (WCl' A orule2 ;/Jb ; rule}) 

v (-,WC)' A empty) 

4 rule2 

where: rule2 ~ (WC2 A Of3a ;f3b ; rule3 ;/Jc ;/Jd ; rule4 ;f3e) 

v (""WC2 A empty) 

5 rule3 

where: rule3 ~ (WC3 A orules ;/4a ;/4b) 

V (-,we3 A Oj4c ;f4d) 

premise 

premise 

premise 

premise 

premise 
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6 rules premise 

where: rules ~ j6a ; rules' 

7 rules' premise 

where: rules' ~ (Wes' A Oj6b ;/6c ; rules) 

v (,Wcs' A empty) 

8 rule3 5, reiteration 

9 (We3 A orules ;j4a ;j4b) v (,WC3 A Oj4c ;j4d) 5, 8, def. subst. 

10 rules == j6a ; rules' 6, reiteration 

11 (WC3 A (Oj6a ; rules) ;j4a ;j4b) v (,WC3 A Oj4c ;j4d) 9, 10, eqv. subst. 

12 «WC3 A Oj6a) ; rules' ;j4a ;j4b) v (oWC3 A Oj4c ;j4d) StateAndChop 

13 rules' == (wcS' A Oj6b ;J6c ; rules) v (,WCS' A empty) 7, reiteration 

14 «We3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules) 12, 13, def. subst. 

v (,wcS' A empty)) ;j4a ;j4b) v (,We3 A Oj4c ;j4d) 

15 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules) ;j4a ;j4b 14,OrChop 

v (,WcS'A empty) ;j4a ;j4b)) v (,WC3 A Oj4c ;j4d) 

16 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) 15, StateAndChop 

v (,wes' A empty ;j4a ;j4b))) v (,WC3 A Oj4c ;j4d) 

17 «WC3 A Oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) 16, EmptyChop 

v (,WCS' Aj4a ;j4b))) v ('WC3 A Oj4c ;j4d) 

18 (WC3 A oj6a) ; «WCS' A Oj6b ;j6c ; rules' ;j4a ;j4b) CP assumption 

v (,WCS' Aj4a ;j4b)) 

19 « WC3 ; WCS) A (Oj6a ; Oj6b ;j6c ; rules' ;j4a ;j4b)) 18, RuleChop-

v «We3 ; ,WCS) A (Oj6a ;j4a ;j4b)) TwoRulelmp 

20 «WC3 ; WCS) A (oj6a ; oj6b ;j6c ; rules' ;j4a ;j4b)) 19, v introduction 

v «WC3 ; ,WCS) A (Oj6a ;j4a ;j4b)) 

v (,WC3 A Oj4c ;j4d) 

21 (,WC3 A Oj4c ;j4d) CP assumption 

295 



22 «WC3 ; wcs') A. (oj6a ; Oj6b ;j6c ; rules' ;j4a ;j4b» 21, v introduction 

v ({WC3 ; -,WCS) A. (oj6a ;j4a ;j4b» and comm. of v 

v (-,WC3 A. Oj4c ;j4d) 

23 «WC3; WCS) A. (oj6a; Oj6b ;j6c; rules' ;j4a ;j4b» . 18-20,21-22, 

v «WC3 ; -,WCS) A. (oj6a ;j4a ;j4b» v elimination 

v (-,WC3 A. Oj4c ;j4d) 

24 «WC3 ; WCS') A. (oj6a; oj6b ;j6c; ruleS' ;j4a ;j4b» 23, v introduction 

v «WC3 ; -,WCS) A. (oj6a ;/4a ;j4b» 

v (-,WC3 A. Oj4c ;j4d) 

v -,rule3 

25 rule3::) «(WC3 ; WCS') A. (oft,a ; Oj6b ;j6c ; rules' ;j4a ;j4b» 24, comm. of v and 

v «WC3 ; -,WCS') A. (oj6a ;j4a ;j4b» defmition of::) 

v (-,WC3 A. Oj4c ;j4d» 

26 rule2 4, reiteration 

27 (WC2 A. oj3a ;j3b ; rule3 ;j3c ;/Jd ; rule4 ;/Je) 4, 26, def. subst. 

v (-,WC2 A. empty) 

28 «WC2 A. oj3a ;j3b) ; rule3 ;j3c ;j3d ; rule4 ;j3e) 27, StateAndChop 

v (-,WC2 A. empty) 

29 (WC2 A. oj3a ;j3b) ; rule3 ;j3c ;/3d ; rule4 ;j3e CP assumption 

30 (WC2 A. oj3a ;j3b) ; «(WC3; WCS) A. (oj6a; Oj6b ;j6c; 29, ChopSwaplmp3 

rules' ;j4a ;j4b» v «WC3 ; -'WCS') A. (oj6a ;j4a ;j4b» 

v (-,weJ A. Oj4c ;j4d» ;j3c ;j3d; rule4 ;j3e 

31 (WC2 A. oj3a ;j3b) ; «(WC3; WCS) A. (oj6a; oj6b ;j6c; 30,OrChop 

rules' ;/4a ;/4b» ;/Jc ;/Jd ; rule4 ;j3e v «WC3 ; -,WCS-) A. 

(oft,a ;j4a ;j4b» ;/3c ;j3d ; rule4 ;j3e 

v (-,WC3 A. Oj4c ;j4d) ;j3c ;j3d; rule4 ;/Je) 

32 (WC2 A. o/3a ;j3b) ; «(WC3; WCS) A. (oj6a; oj6b ;j6c; rules' 31, v introduction 

;j4a ;j4b» ;/Jc ;j3d ; rule4 ;/3e 

v «WC3 ; -,WCS') A. (oj6a ;j4a ;j4b» ;/3c ;j3d; rule4 ;j3e 

v (-,WC3 A. oj4c ;j4d) ;j3c ;/Jd ; rule4 ;/3e) 
v (-,WC2 A. empty) 
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33 ("",WC2 /\ empty) CP assumption 

34 (WC2/\ oj3a ;j3b) ; «(WC3 ; WC5') /\ (oj6a ; oj6b ;j6c ; 33, v introduction 

rule5' ;j4a ;j4b» ;/Jc ;j3d ; rule4 ;/Je v «WC3 ; "",WC5) and comm. of v 

/\ (oj6a ;j4a ;/4b» ;j3c ;j3d ; rule4 ;j3e 

v ("",WC3 /\ Oj4c ;j4d) ;j3c ;j3d; rule4 ;/Je) 

v ("",WC2 /\ empty) 

35 (WC2/\ o/Ja ;j3b) ; «(WC3 ; WC5') /\ (oj6a ; Oj6b ;j6c; rule5'; 34, v elimination 

j4a ;j4b» ;j3c ;/Jd; rule4 ;j3e v «WC3 ; "",WC5') 

/\ (oj6a ;j4a ;j4b» ;/Jc ;j3d ; rule4 ;j3e 

v ("",WC3 /\ Oj4c ;/4d) ;j3c ;j3d; rule4 ;j3e) 

v ("",WC2 /\ empty) 

36 (WC2/\ oj3a ;j3b) ; «WC3 ; WC5') /\ (oj6a ; Oj6b ;j6c ; rule5' ; 35, ChopOr 

j4a ;j4b» ;j3c ;j3d ; rule4 ;/Je v (WC2 /\ oj3a ;j3b) ; «WC3 ; 

"",WC5) /\ (oj6a ;/4a ;j4b» ;j3c ;j3d ; rule4 ;/Je 

v (WC2 /\ o/Ja ;/Jb) ; ("",WC3/\ Oj4c ;/4d) ;j3c ;/Jd; rule4 ;/Je 

v ("",WC2 /\ empty) 

37 (WC2/\ oj3a ;j3b); «WC3; WC5-) /\ (oj6a; Oj6b ;j6c; rule5'; CP assumption 

j4a ;j4b» ;j3c ;/Jd; rule4 ;/Je 

38 (WC2 ; WC3 ; WC5-) /\ (oj3a ;j3b ; oj6a; Oj6b ;j6c ; rule5' ;/4a 37, TwoChop-

;j4b ;j3c ;/Jd ; rule4 ;/Je) Ruleslmp2 

39 «WC2 ; WC3 ; WC5) /\ (oj3a ;j3b ; oj6a; Oj6b ;j6c ; rule5' ; 38, v introduction 

j4a ;j4b ;j3c ;j3d ; rule4 ;/Je» v «WC2 ; WC3 ; "",WC5') /\ 

(o/Ja ;/Jb ; oj6a ;/4a ;/4b ;/Jc ;/Jd ; rule4 ;j3e» v «WC2 ; 

"",WC3) /\ (oj3a ;/Jb ; oj4c ;j4d ;j3c ;j3d ; rule4 ;/Je)) 

v ("",WC2 /\ empty) 

40 (WC2 /\ oj3a ;j3b) ; «WC3 ; "",WC5) /\ (oj6a ;j4a ;j4b» ; CP assumption 

j3c ;j3d ; rule4 ;j3e 

41 (WC2 ; WC3 ; "",WC5) /\ (oj3a ;j3b ; oj6a ;j4a ;/4b ;j3c ;j3d ; 40, TwoChop-

rule4 ;j3e) Ruleslmp2 
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42 «WC2 ; WC3 ; WCS) A (Oj3a ;bb; Oj6a; Oj6b ;j6c; rules,; 41, v introduction 

j4a ;/4b ;bc ;bd; rule4 ;be» v «WC2 ; WC3 ; ...,Wcs') A and comm. ofv 

(oba ;j3b ; oj6a ;j4a ;j4b ;j3c ;j3d ; rule4 ;j3e» v «WC2 ; 

""WC3) A (Oj3a ;bb ; Oj4c ;/4d ;j3c ;j3d ; rule4 ;be» 

v (""WC2 A empty) 

43 (WC2 A Oj3a ;j3b) ; (""WC3 A Oj4c ;j4d) ;bc ;j3d; rule4 ;j3e CP assumption 

44 (WC2 ; ""WC3) A (Oj3a ;j3b ; Oj4c ;j4d ;j3c ;j3d ; rule4 ;j3e) 43, TwoChop-

Ruleslmp2 

45 «WC2 ; WC3 ; WCS') A (Oj3a ;bb; Oj6a; Oj6b ;j6c; rules'; 44, v introduction 

j4a ;j4b ;bc ;bd ; rule4 ;be» v «WC2 ; WC3 ; ...,Wcs') A and comm. of v 

(oba ;j3b ; oj6a ;j4a ;j4b ;j3c ;bd ; rule4 ;j3e)) v «WC2 ; 

""WC3) A (Oj3a ;bb ; Oj4c ;/4d ;j3c ;bd ; rule4 ;be» 

v (""WC2 A empty) 

46 (""WC2 A empty) CP assumption 

47 «WC2 ; WC3 ; WCS-) A (Oj3a ;j3b ; Oj6a; Oj6b ;j6c ; rules' ; 46, v introduction 

j4a ;/4b ;j3c ;j3d; rule4 ;be)) v «WC2 ; WC3 ; ...,Wcs') A and comm. of v 

(oba ;j3b; oj6a ;j4a ;j4b ;j3c ;bd; rule4 ;be» v «WC2 ; 

""WC3) A (Oba ;bb ; Oj4c ;j4d ;j3c ;j3d ; rule4 ;be» 

v (""WC2 A empty) 

48 «WC2; WC3 ; WCS) A (Oj3a ;j3b ; Oj6a ; Oj6b ;j6c ; rules' ;/4a; 47, v elimination 

j4b ;j3c ;j3d ; rule4 ;j3e» 

v «WC2 ; WC3 ; ""Wcs') A (Oba ;bb ; oj6a ;j4a ;j4b ;j3c ;j3d ; 

rule4 ;be)) 

v «WC2 ; ""WC3) A (Oha ;j3b ; Oj4c ;j4d ;hc ;j3d ; rule4 ;j3e» 

v (""WC2 A empty) 

49 «WC2; WC3; WCS-) A (Oj3a ;j3b ; Oj6a ; Oj6b ;j6c; rules' ;/4a; 48, v introduction 

j4b ;bc ;j3d ; rule4 ;j3e)) 

v «WC2 ; WC3 ; ""Wcs') A (Oba ;bb ; oj6a ;j4a ;j4b ;bc ;j3d ; 
rule4 ;j3e)) 

v «WC2 ; ""WC3) A (Oha ;bb; Oj4c ;j4d ;j3c ;j3d; rule4 ;j3e» 
v (""WC2 A empty) 

v ...,rule2 
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50 rule2 :::> «(WC2 ; WC3 ; wcs) A (O/3a ;/3b ; 0/6a; 0/6b ;/6e ; 49, comm. ofy and 

rules' ;/4a ;/4b ;/3e ;/3d ; rule4 ;/3e)) defmition of:::> 

y «WC2 ; WC3 ; ,WCS) A (0/3a ;/3b ; 0/00 ;/4a ;/4b ;/3e ;/3d ; 

rule4 ;/3e)) 

y «WC2 ; ,WC3) A (0/3a ;/3b ; 0/4c ;/4d ;/3e ;/3d ; rule4 ;/3e)) 

y (,WC2 A empty)) 

51 /0 1, reiteration 

52 /Oa ;hl ;/Ob ; rule1 ;/Oe ;/Od ;/Oe 1,51, def. subst. 

53 rule1 == /Ja ; rule}' 2, reiteration 

54 /Oa ;hl ;/ob ;/Ja ; rule1' ;/Oe ;/Od ;/Oe 2, 52, def. subst. 

55 rule}' == (WC)' A orule2 ;/}b ; rule}) y (oWC) , A empty) 3, reiteration 

56 /Oa ;hl ;/Ob ;/la ; «WC] , A orule2 ;/lb ; rule}) 54, 55, eqv. subst. 

y (,WC)' A empty)) ;/Oe ;/Od ;/Oe 

57 /Oa ;hl ;/Ob ;/la ; «(We1' A orule2) ;/Jb ; rule}') 56, StateAndChop 

y (,we)' A empty)) ;/Oe ;/Od ;/Oe 

58 loa ;/pl ;/Ob ;/1a ; «(WCl' A orule2) ;/lb ; rule},) ;/Oe ;/Od ;/Oe 57,OrChop 

y (,we)' A empty) ;/Oe ;/Od ;/Oe) 

59 /Oa ;/pl ;/Ob ;/}a ; «(WC) , A orule2) ;/Jb ; ruled ;/Oe ;/Od ;/Oe 58, StateAndEmpty-

y (,WC]' A/oe ;/Od ;/Oe)) Chop 

60 /Oa ;hl ;/Ob ;/Ja ; «(wCl' A orule2) ;/lb ; rule], ;/Oe ;/Od ;/Oe) 59, ChopAssoc 

y (,we)' A/oe ;/Od ;/Oe)) 

61 foa ;jpl ;fOb ;f1a ; «(WCl' A skip; rule2) ;flb ; rule}' ;joe ;fOd 60, ITL defmition 

;joe) y (,We)' Ajoe ;jod ;joe)) of 0 

62 /Oa ;hl ;jOb ;jla ; «(wCl' A skip) ; rule2 ;/}b ; rule]' ;joe ;/Od 61, StateAndChop 

;/0,,) y (,we)' A/oe ;/Od ;/Oe)) 

63 faa ;/pl ;/Ob ;jla ; «we)' A skip) ; rule2 ;/Jb ; rulel' ;/Oe ;/Od; 62, ChopOr 

foe) y /Oa ;hl ;/Ob ;/Ja ; (owe}' A/Oe ;/Od ;/Oe) 

64 /Oa ;/pl ;/Ob ;/la ; (wCl' A skip) ; ruZe2 ;/lb ; ruZe] , ;/Oc ;/Od ; 63, ChopAssoc 

fOe y /Oa ;fpl ;/Ob ;/]a ; (,we]' A/oe ;/od ;/0,,) 
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65 faa ;/Pl ;/Ob ;/Ia ; (WCI'" skip) ; ruZe2 ;/Ib ; ruZel' ;/Oc ; CP assumption 

/Od ;/Oe 

66 /Oa ;/Pl ;/Ob ;jia ; (WC), " skip) ; 65, ChopSwaplmp3 

«(WC2 ; WC3 ; WC5') " (O/3a ;/3b ; O/6a ; O/6b ;/6c ; ruZe5' ; 

/4a ;/4b ;/3c ;/3d ; ruZe4 ;/3e)) 

v «WC2 ; WC3 ; ,WC5) " (oha ;j3b ; o/6a ;/4a ;/4b ;/3c ; 

/3d; rule4 ;/3e)) 

v «WC2 ; ,WC3) " (O/3a ;j3b; O/4c ;/4d ;/3c ;/3d; 

rule4 ;/3e)) 

v (,WC2" empty)) ;/lb ; rulel' ;/oc ;/Od ;/Oe 

67 (foa ;fpl ;/Ob ;/Ia ; (WCl''' skip) ; «WC2 ; WC3 ; WC5) 66, ChopOr 

" (O/3a ;j3b ; O/6a ; O/6b ;/6c ; rules' ;/4a ;/4b ;j3c ;/3d ; 
rule4 ;/3e)) 

v loa ;/Pl ;/Ob ;/Ia ; (WCI' " skip) ; «WC2 ; WC3 ; ,We5) 

" (O/3a ;/3b ; O/6a ;/4a ;/4b ;/3c ;/3d ; rule4 ;/3e)) 

v /Oa ;fpl ;/Ob ;/Ia; (WCl''' skip) ; «WC2 ; ,WC3) 

" (O/3a ;/3b ; o/4c ;/4d ;/3c ;/3d ; rule4 ;j3e)) 

v loa ;fpl ;/Ob ;jia ; (WCI' " skip) ; (-,WC2 " empty)) ;jib ; 

rulel';/oc ;/Od ;/Oe 

68 /Oa ;/pl ;/Ob ;/Ia ; (wc}''' skip) ; «WC2 ; WC3 ; WC5) 67, OrChop 

" (o/3a ;/3b ; O/6a; o/6b ;/6c ; rule5' ;/4a ;/4b ;j3c ;/3d ; 

rule4 ;j3e)) ;jIb ; rulel' ;joc ;jOd ;joe 

v loa ;fpl ;jOb ;jIa ; (WCl''' skip) ; «WC2 ; WC3 ; ,Wcs) 

" (oj3a ;j3b ; oj6a ;j4a ;j4b ;j3c ;/3d ; rule4 ;/3e)) ;jIb ; 

rule}' ;joc ;jOd ;/Oe 

v /Oa ;fp, ;job ;jIa ; (WCI' " skip) ; «WC2 ; ,WC3) 

" (oj3a ;j3b ; o/4c ;j4d ;/3c ;j3d ; rule4 ;j3e)) ;jIb ; rulel' ; 

fOe ;jOd ;/Oe 

v joa ;fpl ;jOb ;/Ia; (WCl''' skip) ; (,WC2" empty) ;jlb; 

rulel' ;joc ;jod ;joe 

69 joa ;jpl ;/Ob ;jla ; (WCI' " skip) ; «WC2 ; WC3 ; WC5') CP assumption 

,,(oha ;j3b; O/6a; o/6b :/6c; rule5' ;/4a ;/4b ;hc ;/3d; 

rule4 ;/3e)) ;/Ib ; rulel' ;/oc ;/Od ;/Oe 
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70 jaa ;jpl ;job ;jla ; (WC]' ; WC2 ; WC3 ; Wcs' 69, TwoChop-

/I. skip; oj3a ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;14a ;14b ;/Je ; Ruleslmp3 

j3d; rule4 ;j3e ;jlb ; ruleI' ;joe ;jod ;joe) 

71 joa ;fpl ;jOb ;na ; (WCl' ; Wcz ; WC3 ; Wcs' 70, ITL defmition 

/I. oo/Ja ;j3b ; oj6a ; O~b ;j6e ; rules' ;j4a ;j4b ;j3e ;/Jd ; ofo 

rule4 ;j3e ;nb ; rulel' ;joe ;jod ;joe) 

72 jaa ;fpl ;jOb ;jIa ; (WC]' ; WC2 ; WC3 ; WcS' 71, v introduction 

/I. oo/Ja ;/Jb ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;j4b ;j3e ;/Jd ; 

rule4 ;j3e ;jlb ; rulel' ;joc ;jOd ;jOe) 

v faa ;fpl ;jOb ;jla ; (WCl' ; WC2 ; WC3 ; -'Wcs' 

/I. ooj3a ;hb ; oj6a ;J4a ;14b ;he ;hd ; rule4 ;j3e ;jIb ; 

rule], ;joe ;jod ;joe) 

v joa ;fpl ;jOb ;jla ; (WCI' ; WC2 ; -,WC3 

/I. ooj3a ;j3b ; Oj4e ;14d ;/Je ;j3d ; rule4 ;j3e ;jlb ; 

rule)' ; jOe ;jod ;jOe) 

v joa ;fpl ;jOb ;na ; (WCl'; -,WC2 /I. Ojlb; rule]' ; 

JOe ;jOd ;jOe) 

73 jaa ;fpl ;job ;j]a ; (WC]' /I. skip) ; «WC2 ; WC3 ; -,WCS) CP assumption 

/I. (oj3a ;j3b ; oj6a ;14a ;j4b ;j3c ;j3d ; rule4 ;/Je» ;jlb ; 

rule]' ; jOe ;jod ;joe 

74 jaa ;fpl ;fab ;j1a ; (WCl' ; WC2 ; WC3 ; -,Wcs' 73, TwoChop-

/I. skip; oj3a ;j3b ; oj6a ;j4a ;j4b ;/Jc ;j3d ; rule4 ;j3e ; RuJeslmp3 

jIb; rulel' ;jOe ;jOd ;jOe) 

75 jaa ;fpl ;jOb ;jIa ; (WC]' ; WC2 ; WC3 ; -'WcS' 74, ITL defmition 

/I. ooj3a ;j3b ; oj6a ;j4a ;14b ;J3e ;j3d ; rule4 ;j3e ;jlb ; ofo 

rule)' ;joe ;jod ;joe) 
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76 /Oa ;1;,1 ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; WC5' 75, v introduction 

A 00/3a ;/3b ; 0/6a; O/6b ;/6c ; rule5' ;/4a ;/4b ;/3c ;/3d ; . and comm. of v 

rule4 ;/3e ;/lb ; rule)' ;/oc ;/Od ;/Oe) 

v /Oa ;fpl ;/Ob ;/la; (WC)'; WC2 ; WC3 ; ",WC5' 

A 00/3a ;/3b ; 0/6a ;/4a ;fsb ;/3c ;/3d ; rule4 ;/3e ;/lb ; 

rulel' ;/Oc ;/Od ;/Oe) 

v /Oa ;fpl ;/Ob ;/la ; (WCl' ; WC2 ; ",WC3 

A Oo/3a ;/3b ; 0/4c ;fsd ;/3c ;/3d ; rule4 ;/3e ;/lb ; 

rulel' ;/Oc ;/Od ;/Oe) 

v /Oa ;/pl ;/Ob ;/la ; (WCI'; ..,WCZ A O/lb; rulel'; 

/oc ;/Od ;/Oe) 

77 /Oa ;1;,1 :!ob ;/la ; (WCl' A skip) ; ((WC2 ; ",WC3) CP assumption 

A (o/3a ;/3b ; ofsc ;/4d ;/3c ;/3d ; rule4 ;/3e)) ;/lb ; 

rulel' ;/oc ;/Od ;/Oe 

78 /Oa ;1;,1 ;/Ob ;/la ; (wc)' ; WC2 ; "'WC3 77, TwoChop-

A skip; 0/3a ;/3b ; 0/4c ;fsd ;/3c ;/3d ; rule4 ;/3e ; RulesImp3 

/lb ; rulel' ;/Oc ;/Od ;/Oe) 

79 /Oa ;fpl ;!ob ;/la ; (WCl' ; Wcz ; ",WC3 78, ITL defmition 

A 00/3a ;/3b ; 0/4c ;/4d ;j3e ;/3d ; rule4 ;/3e ;/lb ; ofo 

rulel' ;/Oe ;/Od ;/Oe) 

80 /Oa ;1;,1 ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; WC5' 79, v introduction 

A 00/3a ;/3b ; 0/6a ; Of6b ;/6e ; rules' ;/4a ;/4b ;/3e ;/3d ; and comm. of v 

rule4 ;/3e ;/lb ; rule)' ;/Oe ;/Od ;/Oe) 
v loa ;fpl ;/Ob ;/la ; (WCl' ; Wcz ; WC3 ; ",WC5' 

A 00/3a :/3b ; 0/6a ;/4a :/4b ;/3e ;/3d ; rule4 ;/3e ;/lb ; 

rule1' ;/Oc ;/Od ;/Oe) 

v /Oa ;fpl ;/Ob ;/la; (WCl'; WC2 ; ",WC3 

A 00/3a ;/3b ; 0/4e ;fsd ;/3e ;/3d ; rule4 ;/3e ;/lb ; 

rule)' ;/Oe ;/Od ;/Oe) 

v loa ;1;,1 :/Ob ;/la ; (WCl'; ",WC2 A O/lb ; rulel' ; 

fOe ;/Od ;/Oe) 

81 /Oa ;1;,1 ;/Ob ;Jia ; (WCI' A skip) ; (-,WCZ A empty) ;/lb ; CP assumption 

rule1' ;/Oe ;/Od :/Oe 
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82 fOa ;fpl ;!ob ;/la ; (WC1'; ",WC2 1\ skip; empty ;/lb ; 81, TwoChop-

rule)' ; foe ;fOd ;fOe) Ruleslmp3 

83 foa ;fpl ;fOb ;/la ; (WC1' ; "'WC2 1\ skip ;f1b ; rule1' ;foe ; 82, EmptyChop 

fOd ;fOe) 

84 fOa ;fpl ;!ob ;/la ; (WC]' ; ",WC2 A O/lb ; rule1' ;fOe ;fOd ; 83, ITL defmition 

joe) of 0 

85 fOa ;fpl ;!ob ;/la ; (WCl' ; WC2 ; WC3 ; WCS' 84, V introduction 

A 00j3a ;j3b; Oj6a; Oj6b ;j6e; rule5' ;j4a ;j4b ;j3e ;j3d; and comm. ofv 
rule4 ;f3e ;/lb ; rulel' ;joe ;jOd ;foe) 

v joa ;fpl ;fOb ;f1a ; (WC)' ; WC2 ; WC3 ; "'Wcs' 

1\ 00f3a ;j3b ; oj6a ;j4a ;i4b ;f3e ;f3d ; rule4 ;iJe ;f1b ; 

rule]' ;foe ;fOd ;foe) 

v foa ;fpz ;jOb ;jIa ; (WCl' ; WC2 ; ",WC3 

1\ 00f3a ;j3b ; Oj4e ;i4d ;f3e ;iJd ; rule4 ;f3e ;j1b ; 

rule]' ;joe ;jod ;joe) 

v joa ;fpl ;jOb ;fIa ; (WCl' ; ",WC2 A O/lb; rule], ; 

JOe ;jOd ;jOe) 

86 jOa ;fpl ;fOb ;/la ; (WCl'; WC2 ; WC3 ; WC5' 85, v elimination 

1\ 00f3a ;j3b ; oj6a; Oj6b ;f6e ; rule5' ;j4a ;j4b ;iJe ;iJd ; 

rule4 ;j3e ;jjb ; rule1' ;joe ;jod ;joe) 

v loa ;fpz ;jOb ;fla; (WCI'; WC2 ; WC3; ",WC5' 

A OOiJa ;iJb ; Oj6a ;j4a ;j4b ;iJe ;iJd ; rule4 ;iJe ;fIb; 

rule]' ;joc ;fOd ;joe) 

v loa ;fpz ;jOb ;j1a ; (WC1' ; WC2 ; ",WC3 

1\ OOiJa ;iJb ; oj4e ;j4d ;iJe ;j3d ; rule4 ;j3e ;jlb ; rule)' ; 

JOe ;jOd ;jOe) 

V loa ;fpl ;jOb ;jla ; (WeI' ; ",WC2 

1\ O/Jb ; rule], ;joe ;jod ;joe) 
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87 jaa ;/Pl ;jOb ;/Ja ; (WCl' ; WC2 ; WC3 ; Wcs' 86, v introduction 

88 

89 

" ooha ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;/4b ;j3e ;/Jd ; 

rule4 ;j3e ;jlb ; rulel' ;joe ;jod ;joe) 

v loa ;/Pl ;job ;jla ; (WCI' ; WC2 ; WC3 ; 'WCS' 

" ooj3a ;j3b ; oj6a ;j4a ;/4b ;/Je ;j3d ; rule4 ;j3e ;jlb ; 

rulel' ;jOe ;jOd ;jOe) 

v loa ;/Pl ;job ;jla ; (WCl' ; WC2 ; ,WC3 

" ooj3a ;/Jb ; oj4e ;/4d ;/Je ;j3d ; rule4 ;/Je ;jlb ; rulel' ; 

fOe ;jOd ;jOe) 

V joa ;/Pl ;jOb ;jla ; (WCl' ; ,WC2 

" ojlb ; rule]' ;joe ;jod ;joe) 

v loa ;/Pl ;jOb ;jla ; (,WCI' "foe ;jOd ;jOe) 

joa ;/Pl ;jOb ;jla ; (oWCI' "fOe ;jOd ;jOe) 

jaa ;/Pl ;job ;jla ; (WCl' ; WC2 ; WC3 ; Wcs' 

" ooj3a ;j3b ; oj6a; oj6b ;j6e ; rules' ;j4a ;/4b ;j3e ;/Jd; 

rule4 ;j3e ;jlb ; rulel' ;joe ;jOd ;joe) 

v loa ;/Pl ;job ;jla ; (WCI' ; WC2 ; WC3 ; ,WcS' 

" ooj3a ;j3b ; oj6a ;j4a ;/4b ;j3e ;j3d; rule4 ;j3e ;jlb ; 

rulel' ;jOe ;jOd ;jOe) 

v loa ;/Pl ;jOb ;jla ; (WCI' ; WC2 ; ""WC3 

" ooj3a ;j3b ; oj4e ;j4d ;/Je ;j3d ; rule4 ;j3e ;jlb ; rulel' ; 

fOe ;jOd ;joe) 

V joa ;/Pl ;jOb ;jla ; (WCl' ; ,WC2 

. " O/Jb ; rulel' ;joe ;jOd ;joe) 

V joa ;/Pl ;job ;jla; (,WCI' "fOe ;jOd ;joe) 

CP assumption 

88, V introduction 

and comm. of v 
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90 jDa ;fpl ; jab ;jla ; (WCI' ; WC2 ; WC3 ; Wcs' 

A ooj3a ;j3b ; oj6a ; Oj6b ;j6c ; rules, ;j4a ;j4b ;j3e ;/Jd ; 

rule4 ;j3e ;!Ib ; rule}' ;joc ;jOd ;joe) 

v joa ;fpl ;jOb ;jla; (WCI'; WC2 ; WC3 ; "'Wcs' 

A ooj3a ;/Jb ; oj6a ;j4a ;j4b ;j3c ;j3d ; rule4 ;j3e ;jlb ; 

rule}' ;joe ;jod ;joe) 

v joa ;fpl ;job ;jla ; (WC}'; WC2 ; "'WC3 

ooj3a ;j3b ; oj4e ;j4d ;j3c ;j3d ; rule4 ;/Je ;!Ib ; rulel' ;joe ; 

jOd ;joe) 

v joa ;fpl ;job ;jla ; (WeI'; ",WC2 A Ojlb ; rulel' ;jOe ;jOd ;jOe) 

v joa ;fpl ;jOb ;jla ; (-,WeI' A jOe ;jOd ;jOe) 

91 joa ;jpl ;Iob ;jla; «WCI'; WC2 ; WC3 ; Wcs' 

A OO/Ja ;/Jb ; oj6a ; OJ6b ;j6e ; rules' ;j4a ;j4b ;j3c ;j3d ; 

rule4 ;/Je ;jlb ; rulel' ;joe ;jod ;joe) 

v (WCI'; WC2 ; WC3 ; "'Wcs' 

A ooj3a ;hb ; oj6a ;j4a ;j4b ;/Jc ;/Jd ; rule4 ;j3e ;jlb ; 

rulel' ;jOe ;jOd ;jOe) 

V (WeI' ; WC2 ; ",WC3 

ooj3a ;j3b ; oj4e ;j4d ;j3e ;j3d ; rule4 ;/Je ;!Ib ; rule}' ;joe ; 

jOd ;jae) 

v (WCI'; ",WC2 A O!Ib; rulel' ;jOe ;jOd ;jOe) 

v (-,WCI' Aloe ;jOd ;jOe)) 

89, v elimination 

ITL (OrChopEqv) 

With this transformation and based on the premisesjo, ruleI, ruleI', ruZe2, rule3, 

rules, and rules' as extracted from the legacy code, the following disjunctive rule 

structure is concluded: 

jDa ;jpl ; jOb ;jla ; ( 

(WCI'; WC2 ; WC3 ; WCS' 
A Ooj3a ;j3b ; oj6a ; Oj6b ;j6e ; rules' ;j4a ;j4b ; 

/Je ;j3d ; rule4 ;/Je ;jlb ; ruleI' ;jOc ;jOd ;joe) 

v (WCI' ; WC2 ; WC3 ; "'Wcs' 
A OO/Ja ;j3b ; oj6a ;j4a ;j4b ;j3e ;j3d ; rule4 ; 

j3e ;jlb ; rule}' ;joe ;jod ;joe) 

305 



v (WCl'; WC2; ""WC3 
A 00/3a ;/3b ; O/4e ;/4d ;/3e ;/3d; rule4 ; 

/3e ;/lb ; rulel' ;/Oe ;/Od ;/Oe) 

V (WCl' ; ""WC2 A O/Jb ; ruler ;/Oe ;/Od ;/Oe) 

v (""WCl' A/Oe ;/Od ;/Oe)) 
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Appendix 0 

Formal Transformation of Rules 

Extracted from WSL Slices 

In Section 8.2, various rules are extracted from a WSL program using the 

FermaT Syntactic_Slice tranformation. In this appendix, these extracted rules are 

transformed using the rule algebra presented in this research. In Section D.I, rulepc1o-2 

is transformed. In Section D.2, rulepers-2 is transformed. In Section D.3, rulepersonal-cond 

is transformed. 

0.1 Transformation of rulepc7D-2 

In Section 8.2, rulepcJo-2 is described as : 

rulepcJo-2 == (rulepcJo-2a(true) A orulepcJo-2b) v rulepc10-2a(false) 

where: 

rulepcJO-2a(true) ~ «married = I A age ~ 65 A income> 16800) A ot) 
rulepcJO-2a(false) ~ (,(married = I A age ~ 65 A income> 16800) A empty) 
rulepcJo-2b ~ (t > 3740 A opc10 = t) 

v (,(t > 3740) A opclO = 3740) 
t ~ pclO - (income - 16800) /2 

In the following transformation, rulepcJo-2 is transformed and simplified such that: 

where: 

rulepcJo-2 ::J 

(married = 1 A age ~ 65 A income> 16800 At> 3740 
A oopc10 = t) 

v (married = 1 A age ~ 65 A income> 16800 A t:5 3740 
A oopclO = 3740) 

v «married * 1 v age < 65 v income:S 16800) A empty) 

t ~ pcl0 - (income - 16800) / 2 

Alternatively, ru[epc1o-2 can be described as: 
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1 

2 

3 

4 

5 

6 

7 

rulepc10-2 :;) 

(married = 1/\ age;:::: 65 /\ income> 16800/\ t > 3740 
/\ oopclO = t) 

v (married = 1/\ age;:::: 65 /\ income> 16800/\ t::; 3740 

where: 

/\ oopc10 = 3740) 
v (married :#: 1/\ empty) 
v (age < 65 /\ empty) 
v (income ::; 16800/\ empty) 

t ~ pcl0 - (income - 16800) / 2 

rulepc1o-2 == (rulepc10-2a{true) /\ orulepc1o-2b) v rulepc10-2a(false) 

where: 

rulepc10-2a{true) ~ 

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot) 

rulepcIO-2a(false) ~ 

(,(married = 1/\ age;:::: 65/\ income> 16800) /\ empty) 

rulepc1o-2b ~ 

(t> 3740/\ opclO = t) v (,(t > 3740) /\ opclO = 3740) 

t ~ Ec10 - (income - 16800) /2 

o(t> 3740) :;) (t> 3740) 

o(t::; 3740) :;) (t ::; 3740) 

(ruleec1o-2a(truel/\ oruleec1o-2b) == (ruleecJO-2a(truel/\ oruleecJO-2b) 

(rulepcJo-2a{true) /\ orulepclo-2b) == 

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot) 

/\ o«t > 3740/\ opc10 = t) 

v (,(t > 3740) /\ opclO = 3740» 

(rulepcIO-2a{true) 1\ orulepclo-2b) == 

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot) 

1\ o«(t> 3740) /\ opclO = t) 
v «t::; 3740) /\ opc10 = 3740» 

(rulepcIO-2a{frue) /\ orulepc1o-2b) == 

«married = 1/\ age;:::: 65 /\ income> 16800) /\ ot) 

/\ (o«t > 3740) 1\ opclO = t) 
v o«t < 3740) /\ opclO = 3740» 

premise 

I2remise 

I2remise 

tautology 

1,4, equiv. subst. 

5, algebraic equiv. 

6, NextOrDistEqv 
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8 (rulepcJo-2a(true) /\ orulepc10_2b) == 7, NextAnd-

«married = 1/\ age ~ 65 /\ income> 16800) /\ ot) DistEqv 

/\ «o(t > 3740) /\ oopclO =t) 

v (o(t ~ 3740) /\ oopc10 = 3740» 

9 (rulepc10-2a(true) /\ orulepc1o_2b) == 8, dist. of /\ over v 

(married = 1/\ age ~ 65 /\ income> 16800/\ ot 

/\ oCt > 3740) /\ oopc10 = t) 
v (married = 1/\ age ~ 65 /\ income> 16800/\ ot 

/\ oCt ~ 3740) /\ oopclO = 3740) 

10 rulepc10-2aifalse) == 1, reiteration 

-,(married = 1 /\ age ~ 65 /\ income> 16800) /\ empty 

11 rulepc10-2aifalse) == 10, prop. logic 

(-,(married = 1) v -,(age ~ 65) v -,(income > 16800» /\ 

empty 

12 rulepc10-2aifalse) == 11, algebraic 

(married :f:. 1 v age < 65 v income < 16800) /\ empty eguiv. 

13 rulepcJo_2 == (ruleec1o-2a(true) /\ oruleeclo-2b) v ruleec10-2alLalse) 1, reiteration 

14 rulepc1o-2 == 9, 12, 13, equiv. 

(married = 1/\ age ~ 65 /\ income> 16800/\ ot subst. 

/\ o(t> 3740) /\ oopc10 = t) 
v (married = 1/\ age ~ 65 /\ income> 16800/\ ot 

/\ oCt ~ 3740) /\ oopc10 = 3740) 

v «married :f:. 1 v age < 65 v income < 16800) /\ empty) 

15 ruleec1o-2 CP assumption 

16 (married = 1/\ age ~ 65/\ income> 16800/\ ot 14, 15, equiv. 

/\ o(t> 3740) /\ oopc10 = t) subst. 

v (married = 1/\ age ~ 65 /\ income> 16800/\ ot 

/\ oCt ~ 3740) /\ o opc 10 = 3740) 

v «married:f:. 1 v age < 65 v income < 16800) /\ empty) 

17 married = 1/\ age ~ 65/\ income> 16800/\ ot CP assumption 

/\ oCt > 3740) /\ oopclO = t 
18 o(t> 3740) 17, /\ elimination 

19 (t> 3740) 2,18, MP 

20 married = 1/\ age ~ 65/\ income> 16800 17, /\ elimination 

/\ oopclO = t 
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21 married = 1 A age ~ 65 A income> 16800 19,20,A 

At> 3740 A oopc1O = t introduction 

22 (married = 1 A age ~ 65 A income> 16800 21, v introduction 

At> 3740 A oopc1O = t) 

v (married = 1 A age ~ 65 A income> 16800 

A t ~ 3740 A oopc10 = 3740) 

v «married ¢ 1 v age < 65 v income ~ 16800) 

A empty) 

23 married = 1 A age ~ 65 A income> 16800 A ot CP assumption 

A oCt < 3740) A oOEcl0 = 3740 

24 oCt ~ 3740) 23, A elimination 

25 t~ 3740 3, 24,MP 

26 married = 1 A age ~ 65 A income> 16800 23, A elimination 

A oopc10 = 3740 

27 married = 1 A age ~ 65 A income> 16800 25,26, A 

A t ~ 3740 A oopc1O = 3740 introduction 

28 (married = 1 A age ~ 65 A income> 16800 27, v introduction 

At> 3740 A oopc10 = t) 
v (married = 1 A age ~ 65 A income> 16800 

A t ~ 3740 A oopc1O = 3740) 

v «married ¢ 1 v age < 65 v income ~ 16800) 

A empty) 

29 «married ¢ 1 v age < 65 v income ~ 16800) A empty) CP assumption 

30 (married = 1 A age ~ 65 A income> 16800 29, v introduction 

At> 3740 A oopc10 = t) 
v (married = 1 A age ~ 65 A income> 16800 

A t ~ 3740 A oopc10 = 3740) 

v «married ¢ 1 v age < 65 v income ~ 16800) 

A empty) 

31 (married = 1 A age ~ 65 A income> 16800 17-22,23-28,29-

At> 3740 A oopclO = t) 30, v elimination 

v (married = 1 A age, ~ 65 A income> 16800 

A t ~ 3740 A oopc1O = 3740) 

v «married ¢ 1 v age < 65 v income ~ 16800) 

A empty) 
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32 rulepcJo-2 ~ 

(married = 1 /\ age ~ 65 /\ income> 16800 

/\ t > 3740 /\ oopclO = t) 
v (married = 1/\ age ~ 65 /\ income> 16800 

/\ t:S 3740 /\ oopc10 = 3740) 

v «married * 1 v age < 65 v income:s 16800) 

/\ empty) 

33 rulepcJo-2 ~ 

(married = 1/\ age ~ 65 /\ income> 16800 

/\ t > 3740 /\ oopclO = t) 
v (married = 1 /\ age ~ 65 /\ income> 16800 

/\ t:S 3740 /\ oopclO = 3740) 

v (married * 1/\ empty) 

v (age < 65/\ empty) 

v (income :s 16800 /\ empty) 

0.2 Transformation of rulepers-2 

In Section 8.2, rulepers-2 is described as : 

15-31, ~ 

introduction 

32, dist. of /\ 

over v 

rulepers-2 == (rulepers-2a(true) /\ orulepers-2b) v rulepers-2a(false) (8.2-39) 

where: 

rulepers-2a(true) ~ «age ~ 65 /\ income> 16800) /\ ot) 
ruZepers-2a(false) ~ (-,(age ~ 65 /\ income> 16800) /\ empty) 
ruZepers-2b ~ (t> 4335 /\ opersonal = t) 

v (-,(t > 4335) /\ opersonal = 4335) 
t ~ personal- (income - 16800) / 2 

In the following transformation, rulepers-2 is transformed and simplified such that: 

where: 

rulepers-2 ~ 

(age ~ 65/\ income> 16800/\ ot > 4335/\ oopersonal = t) 
v (age ~ 65/\ income> 16800/\ ot:s 4335 /\ oopersonal = 4335) 
v (age < 65 /\ empty) 
v (income:s 16800/\ empty) 
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t ~ personal- (income - 16800) 12 

1 rulepers-2 premise 

where: 

rulepers-2 ~ (rulepers-2a(true) /\ orulepers_2b) 

v rulepers-2afjalse) 

rulepers-2a(lrue) ~ «age ~ 65 /\ income> 16800) /\ ot) 

rulepers-2aifalse) ~ (-,(age ~ 65/\ income> 16800) 

/\ empty) 

rulepers-2b ~ (t > 4335 /\ opersonal = t) 

v (-,(t > 4335) /\ opersonal = 4335) 

t ~ personal - (income - 16800) I 2 

2 WI ~ (age ~ 65/\ income> 16800) premise (defmitions) 

0/1 ~ ot 

W2 ~ (t > 4335) 

.-,W2 ~ (t ~ 4335) 

0/2 ~ (opersonal = t) 

Oj3 ~ ( opersonal = 4335) 

3 rulepers-2a(lrue) ~ WI /\ Ojl 1, 2, def. subst. 

4 rulepers-2aifalse) ~ -,Wl /\ empty 1,2, def. subst. 

5 rulepers-2b ~ (wz /\ 0/2) V (-'W2 /\ oj3) 1,2, def. subst. 

6 rulepers-2 1, reiteration 

7 (rulepers-Za(lrue) A orulepers-2b) v rulepers-2aifalse) 1,6, def. subst. 

8 rulepers-2a(true) /\ orulepers_2b CP assumption 

9 (WI/\ OjI) /\ 0«W2 /\ oj2) V (-,W2 /\ Oj3)) 3, 5, 8, def. subst. 

10 (WI /\ OjI) /\ (0(W2 /\ o/z) v o( -,W2 /\ oj3)) 9, NextOrDistEqv 

11 «WI /\ 0/1) /\ 0(W2 /\ Oj2)) 10, comm. of /\ over v 

v «WI /\ ojI) A o( -,W2 /\ 0/3)) 

12 (wJ /\ OjI) /\ 0(W2 /\ 0/2) CP assumption 

13 Wl /\ OjI /\ OW2 /\ ooh 12, NextAndDistEqv 

14 WI /\ OWz /\ 00/2 13, /\ elimination 

15 (Wl/\ OW2 /\ 00/2) 14, v introduction 

v (WI /\ 0-,W2 /\ 00/3) 

16 (WI/\ oJi) /\ 0(-,W2 /\ 0/3) CP assumption 

17 WI /\ oJi /\ 0-,W2 /\ oof3 16, NextAndDistEqv 

18 WI /\ 0""W2 /\ 00/3 17, /\ elimination 
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19 (WI A. OW2 A. 00!2) 18, v introduction 

v (WI A. O,W2 A 00/3) 

20 (WI A OW2 A 00!2) 12-15, 16-19, 

v (WI A. o,W2 A. 00!3) v elimination 

21 (WI A. OW2 A. 00!2) 20, v introduction 

v (WI A O,W2 A 00!3) 

v (,WI A. empty) 

22 rulepers-2a(false) CP assumption 

23 ,WI A empty 4, 22, def. subst. 

24 (WI A OW2 A. 00!2) 23, v introduction 

v (WI A O,W2 A. 00!3) 

v (,WI A empty) 

25 (WI A. OW2 A 00!2) 8-21, 22-24, 

v (WI A O,W2 A 00!3) v elimination 

v (,WI A empty) 

26 (WI A OW2 A 00!2) 2, 25, def. sub st. 

v (WI A O,W2 A 00/3) 

v (,(age> 65 A income> 16800) A empty) 

27 (WI A. OW2 A. 00!2) 26, prop. logic 

v (WI A. O,W2 A. 00!3) 

v «,(age 2: 65) v ,(income> 16800» A empty) 

28 (WI A. OW2 A 00!2) 27, prop. logic 

v (WI A. O,W2 A. 00!3) 

v «,(age 2: 65) A. empty)) 

v (,(income> 16800) A empty)) 

29 (Wl A OW2 A 00!2) 28, algebraic equiv. 

v (Wl A. O,W2 A. 00!3) 

v (age < 65 A empty) 

v (income < 16800 A empty) 

30 rulepers-2 CP assumption 

31 (Wl A OW2 A 00!2) 29, reiteration 

v (Wl A O,W2 A 00!3) 

v (age < 65 A empty) 

v (income < 16800 A empty) 
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32 rulepers-2 ~ 30-31, ~ introduction 

(wJ 1\ OW2 1\ 00/2) 

V (wJ 1\ 0-,W2 1\ 0013) 

v (age < 651\ empty) 

v (income ~ 168001\ empty) 

33 rulepers-2 ~ 2, 28, def. subst. 

«age ~ 65 1\ income> 16800) 1\ oCt > 4335) 

1\ o( opersonal = t)) 
v «age ~ 65 1\ income> 16800) 1\ o-,(t > 4335) 

1\ o( opersonal = 4335» 

v (age < 65 1\ empty) 

v (income ~ 16800 1\ empty) 

34 rulepers-2 ~ 33, algebraic equiv. 

«age ~ 65 1\ income> 16800) 1\ oCt > 4335) 

1\ o( opersonal = t)) 
v «age ~ 65 1\ income> 16800) 1\ oCt ~ 4335) 

1\ o( opersonal = 4335)) 

v (age < 651\ empty) 

v (income ~ 16800 1\ empty) 

0.3 Transformation of rulepersonal-cond 

In Section 8.2, rulepersonal-cond is described as : 

rule personal-cond ~ 

(age ~ 751\ opersonal = 5980) ; 
(income> 16800 1\ ot > 43351\ oopersonal = t) ; 
(opersonal = personal + 1380) 

v (age ~ 75 1\ opersonal = 5980) ; 
(income> 16800 1\ ot $ 4335 1\ oopersonal = 4335) ; 
(opersonal = personal + 1380) 

v (age ~ 75 1\ opersonal = 5980) ; 
(income ~ 16800 1\ empty) ; 
( opersonal = personal + 1380) 

v (age < 751\ oopersonal = 5720) ; 
(income> 168001\ ot > 43351\ oopersonal = t) ; 
(opersonal = personal + 1380) 
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v (age < 751\ oopersonal = 5720) ; 
(income> 168001\ ot S 4335 1\ oopersonal = 4335) ; 
( opersonal = personal + 1380) 

v (age < 751\ oopersonal = 5720) ; 
(income S 168001\ empty) ; 
(opersonal = personal + 1380) 

In the following transformation, rulepersonal-cond is transformed and simplified such that: 

1 rulepersonal-cond :::::> premise 

(age ~ 751\ opersonal = 5980) ; 

(income> 168001\ ot > 4335 1\ oopersonal = t) ; 
( opersonal = personal + 1380) 

v (age ~ 75 1\ opersonal = 5980) ; 

(income> 168001\ ot S 4335 1\ oopersonal = 4335) ; 

(opersonal = personal + 1380) 

v (age ~ 75 1\ opersonal = 5980) ; 

(income S 168001\ empty) ; 

(opersonal = personal + 1380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income> 168001\ ot > 4335 1\ oopersonal = t) ; 
(opersonal = personal + 1380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income> 168001\ ot S 4335 1\ oopersonal = 4335) ; 

(opersonal = personal + 1380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income S 168001\ empty) ; 

(opersonal = personal + 1380) 

where: 

t ~ personal- (income - 16800) / 2 

2 o(income < 20090):::::> (income < 20090) premise 

3 o(income ~ 20090) :::::> (income ~ 20090) premise 

4 o(income < 19570) :::::> (income < 19570) premise 

5 o(income ~ 19570):::::> (income> 19570) premise 
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6 (age ~ 751\ opersonal = 5980) ; CP assumption 

(income> 168001\ ot > 43351\ oopersonal = t) ; 
(opersonal = personal + l380) 

v (age ~ 75 1\ opersonal = 5980) ; 

(income> 168001\ ot :::; 4335 1\ oopersonal = 4335) ; 

(opersonal = personal + l380) 

v (age ~ 751\ opersonal = 5980) ; 

(income:::; 16800 1\ empty) ; 

(opersonal = personal + 1380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income> 168001\ ot > 43351\ oopersonal = t) ; 
(opersonal = personal + l380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income> 16800 1\ ot :::; 4335 1\ oopersonal = 4335) ; 

( opersonal = personal + l380) 

v (age < 75 1\ oopersonal = 5720) ; 

(income :::; 16800 1\ empty) ; 

(opersonal = personal + l380) 

7 (age ~ 75 1\ opersonal = 5980) ; CP assumption 

(income> 168001\ oCt > 4335) 1\ oopersonal = t) ; (disjunct #1) 

(opersonal = personal + 1380) 

8 t > 4335 == income < 20090 I, 7, semantics of 

ITL 

9 oCt > 4335) == o(income < 20090) 8,ITL 

(NextEqvN ext) 

10 (age ~ 75 1\ opersonal = 5980) ; 7,9, equiv. subst. 

(income> 168001\ o(income < 20090) 

1\ oopersonal = t) ; 

( opersonal = personal + l380) 

11 income> 168001\ o(income < 20090) CP assumption 

1\ oopersonal = t 

12 o(income < 20090) II, 1\ elimination 

l3 income < 20090 2,12,MP 

14 income> 168001\ oopersonal = t II, 1\ elimination 

15 income> 16800 1\ income < 20090 1\ introduction 

1\ oopersonal = t 
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16 (income> 16800 A o(income < 20090) 11-15, 

A oopersonal = t) :::> :::> introduction 

(income> 16800 A income < 20090 

A oopersonal = t) 
17 (age ~ 75 A opersonal = 5980) ; 10,16, 

(income> 16800 A income < 20090 ChopSwaplmp3 

A oopersonal = t) ; 
(opersonal = personal + 1380) 

18 (age ~ 75 A opersonal = 5980) ; CP assumption 

(income> 16800 A income < 20090 

A oopersonal = t) 
19 age ~ 75 ; (income> 16800 A income < 20090) 18, 

A opersonal = 5980; oopersonal = t TwoChopRuleslmp 

20 (age ~ 75 A opersonal = 5980) ; 18-19, 

(income> 16800 A income < 20090 :::> introduction 

A oopersonal = t) ; 
(opersonal = personal + 1380) 

:::> age ~ 75; (income> 16800 A income < 20090) 

A opersonal = 5980 ; oopersonal = t 
21 (age ~ 75 ; (income> 16800 A income < 20090) 17,20, 

A opersonal = 5980 ; oopersonal = t) ; ChopSwaplmp2 

( opersonal = personal + 1380) 

22 age ~ 75; (income> 16800 A income < 20090) ; 21, AndChoplmp 

(opersonal = personal + 1380) 

A opersonal = 5980 ; oopersonal = t ; 
( opersonal = personal + 1380) 

23 age ~ 75; (income> 16800 A income < 20090) ; 22, A elimination 

( opersonal = personal + 1380) 

24 age ~ 75; (income> 16800 A income < 20090) 23, ITL (semantics 

of chop) 

25 opersonal = 5980; oopersonal = t ; 22, A elimination 

(opersonal = Eersonal + 1380) 

26 fin (personal = 15760 - income/2) 25, ITL (semantics 

offin) 

27 age ~ 75; (income> 16800 A income < 20090) 24,26, 

A fin(personal = 15760 - income/2) A introduction 
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28 (age ~ 75; (income> 168001\ income < 20090) 27, v introduction 

1\ fin (personal = 15760 - incomel2)) 

v {age ~ 75 ; (income> 16800 1\ income ~ 20090) 

1\ fin(personal = 5715)) 

v (age ~ 75; income :516800 

1\ fin(personal = 7360)) 

v {age < 75; (income> 168001\ income < 19570) 

1\ fin (personal = 15500 - income/2)) 

v (age < 75; (income> 168001\ income ~ 19570) 

1\ fin (personal = 5715) 

v (age < 75 ; income :5 16800 

1\ fin (personal = 7100)) 

29 (age ~ 75 1\ opersonal = 5980) ; CP assumption 

(income> 16800 1\ o(t:5 4335) (disjunct #2) 

1\ oopersonal = 4335) ; 

(opersonal = personal + 1380) 

30 (t:5 4335) == (income ~ 20090) 1,29, semantics of 

ITL 

31 oCt :5 4335) == o(income ~ 20090) 30,ITL 

(NextEqvNext) 

32 (age ~ 75 1\ opersonal = 5980) ; 29, 32, equiv. subst 

(income> 168001\ o(income ~ 20090) 

1\ oopersonal = 4335) ; 

(oEersonal = Eersonal + 1380) 

33 income> 168001\ o{income ~ 20090) CP assumption 

1\ oOEersonal = 4335 

34 o(income ~ 20090) 33,1\ elimination 

35 income ~ 20090 3,34,MP 

36 income> 168001\ oOEersonal = 4335 1\ elimination 

37 income> 16800 1\ income ~ 20090 1\ introduction 

1\ oopersonal = 4335 

38 (income> 168001\ o(income ~ 20090) 33-37, 

1\ oopersonal = 4335) ::J ::J introduction 

(income> 168001\ income;::: 20090 

1\ oopersonal = 4335) 
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39 (age 2:: 751\ opersonal = 5980) ; 32,38, 

(income> 168001\ income 2:: 20090 ChopSwaplmp3 

1\ oopersonal = 4335) ; 

(opersonal = personal + 1380) 

40 (age 2:: 75 1\ opersonal = 5980) ; CP assumption 

(income> 168001\ income 2:: 20090 

1\ opersonal = 4335) 

41 age 2:: 75 ; (income> 168001\ income 2:: 20090) 40, 

1\ opersonal = 5980 ; opersonal = 4335 TwoChopRuleslmp 

42 (age 2:: 75 1\ opersonal = 5980) ; 41, ::J introduction 

(income> 168001\ income 2:: 20090 

1\ opersonal = 4335) ::J 

(age 2:: 75 ; (income> 168001\ income 2:: 20090) 

1\ opersonal = 5980 ; opersonal = 4335) 

43 (age 2:: 75; (income> 168001\ income 2:: 20090) 42, ChopSwaplmp2 

1\ opersonal = 5980 ; opersonal = 4335) ; 

( opersonal = personal + 1380) 

44 age 2:: 75 ; (income> 168001\ income 2:: 20090) ; 43, AndChoplmp 

( opersonal = personal + 1380) 

1\ opersonal = 5980 ; opersonal = 4335 ; 

(opersonal = personal + 1380) 

45 age 2:: 75 ; (income> 168001\ income 2:: 20090) ; 44, 1\ elimination 

( opersonal = eersonal + 1380) 

46 age 2:: 75; (income> 168001\ income 2:: 20090) 45, ITL (semantics 

of chop) 

47 opersonal = 5980 ; opersonal = 4335 ; 46, 1\ elimination 

(oeersonal = eersonal + 1380) 

48 fin (personal = 5715) 47, ITL (semantics 

offin) 

49 age 2:: 75; (income> 168001\ income 2:: 20090) 46,48, 

1\ fin(personal = 5715) 1\ introduction 
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50 (age ~ 75 ; (income> 168001\ income < 20090) 49, v introduction 

1\ fin(personal = 15760 - incomel2» 

v (age ~ 75; (income> 168001\ income ~ 20090) 

1\ fin (personal = 5715» 

v (age ~ 75; income :516800 

1\ fin (personal = 7360» 

v (age < 75; (income> 168001\ income < 19570) 

1\ fin(personal = 15500 - income/2» 

v (age < 75; (income> 168001\ income ~ 19570) 

1\ fin(personal = 5715» 

v (age < 75 ; income :5 16800 

1\ fin(personal = 7100» 

51 (age ~ 75 1\ opersonal = 5980) ; CP assumption 

(income:5 16800 1\ empty) ; (disjunct #3) 

(opersonal = :eersonal + 1380) 

52 (age ~ 75 1\ opersonal = 5980) ; CP assumption 

(income ~ 168001\ empty) 

53 age ~ 75; income ~ 16800 52, 

1\ opersonal = 5980 ; empty TwoChopRulesImp 

54 age ~ 75; income:5 168001\ opersonal = 5980 53,ITL 

(ChopEmpty) 

55 (age ~ 75 1\ opersonal = 5980) ; 51-54, 

(income:5 168001\ empty) ~ introduction 

::> age ~ 75; income :516800 1\ o:eersonal = 5980 

56 (age ~ 75; income:5 168001\ opersonal = 5980) ; 51,55, 

( o:eersonal = :eersonal + 1380) ChopSwapImp2 

57 age ~ 75; income:5 16800 ; 56, AndChopImp 

( opersonal = personal + 1380) 

1\ opersonal = 5980 ; 

(opersonal = personal + 1380) 

58 age ~ 75; income:5 16800 ; 57, 1\ elimination 

( opersonal = personal + 1380) 

59 age ~ 75; income:5 16800 58, ITL (semantics 

of chop) 

60 opersonal = 5980 ; 57, 1\ elimination 

( opersonal = personal + 1380) 
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61 fin (personal = 7360) 60, ITL (semantics 

offin) 

62 age;:::: 75; income:S 16800 61, A introduction 

A fin(personal = 7360) 

63 (age;:::: 75 ; (income> 16800 A income < 20090) 62, v introduction 

A fin(personal = 15760 - income/2» 
v (age;:::: 75 ; (income> 16800 A income;:::: 20090) 

A fin (personal = 5715» 

v (age;:::: 75 ; income:s 16800 

A fin (personal = 7360» 

v (age < 75; (income> 16800 A income < 19570) 

A fin(personal = 15500 - incorne/2» 
v (age < 75; (income> 16800 A income;:::: 19570) 

A fin (personal = 5715)) 

v (age < 75; income:s 16800 

A fin (personal = 7100» 

64 (age < 75 A oopersonal = 5720) ; CP assumption 

(income> 16800 A oCt > 4335) A oopersonal = t) ; (disjunct #4) 

(opersonal = personal + 1380) 

65 (t > 4335) == (income < 19570) 1, 64, semantics of 

ITL 

66 o(t> 4335) == o(income < 19570) 65,ITL 

(NextEqvNext) 

67 (age < 75 A oopersonal = 5720) ; 64,67, equiv. subst 

(income> 16800 A o(income < 19570) 

A oopersonal = t) ; 
(opersonal = personal + 1380) 

68 income> 16800 A o(income < 19570) CP assumption 

A oOEersonal = t 
69 o(income < 19570) 68, A elimination 

70 income < 19570 4, 69,MP 

71 income> 16800 A oopersonal = t 68, A elimination 

72 income> 16800 A income < 19570 70,72, 

A oopersonal = t A introduction 

321 



73 (income> 16800" o(income < 19570) 68-72, 

" oopersonal = t) ::) ::> introduction 

(income> 16800" income < 19570 

" oopersonal = t) 
74 (age < 75" oopersonal = 5720) ; 67,73, 

(income> 16800" income < 19570 ChopSwaplmp3 

" oopersonal = t) ; 
( opersonal = personal + 1380) 

75 (age < 75 " oopersonal = 5720) ; CP assumption 

(income> 16800" income < 19570 

" oOEersonal = t) 
76 age < 75; (income> 16800" income < 19570) 75, 

" oopersonal = 5720; oopersonal = t TwoChopRuleslmp 

77 (age < 75 " oopersonal = 5720) ; 75-77, 

(income> 16800" income < 19570 ::) introduction 

" oopersonal = t) ::) 
age < 75 ; (income> 16800" income < 19570) 

" oOEersonal = 5720; oOEersonal = t 
78 (age < 75 ; (income> 16800" income < 19570) 74,77, 

" oopersonal = 5720 ; oopersonal = t) ; ChopSwaplmp2 

(oEersonal = Eersonal + 1380) 

79 age < 75 ; (income> 16800" income < 19570) ; 78, AndChoplmp 

( opersonal = personal + 1380) 

" oopersonal = 5720; oopersonal = t ; 
( oEersonal = personal + 1380) 

80 age < 75 ; (income> 16800" income < 19570) ; 79, " elimination 

( 0Eersonal = Eersonal + 1380) 

81 age < 75 ; (income> 16800" income < 19570) 80, ITL (semantics 

. of chop) 

82 oopersonal = 5720; oopersonal = t ; 79, "elimination 

(oEersonal = personal + 1380) 

83 fin(personal = 15500 - income/2) 82, ITL (semantics 

offin) 

84 age < 75; (income> 16800" income < 19570) 81,83, 

" fin (personal = 15500 - income/2) " introduction 
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85 (age ~ 75 ; (income> 168001\ income < 20090) 84, v introduction 

1\ fin (personal = 15760 - income/2» 

v (age ~ 75 ; (income> 168001\ income ~ 20090) 

1\ fin (personal = 5715» 

v (age ~ 75; income::; 16800 

1\ fin (personal = 7360» 

v (age < 75 ; (income> 168001\ income < 19570) 

1\ fin(personal = 15500 - income/2» 

v (age < 75; (income> 168001\ income ~ 19570) 

1\ fin(personal = 5715» 

v (age < 75 ; income::; 16800 

1\ fin(personal = 7100» 

86 (age < 75 1\ oopersonal = 5720) ; CP assumption 

(income> 168001\ o(t::; 4335) (disjunct #5) 

1\ oopersonal = 4335) ; 

( opersonal = personal + 1380) 

87 (t::; 4335) == (income ~ 19570) 1, 86, semantics of 

ITL 

88 oCt ::; 4335) == o(income ~ 19570) 87,ITL 

(NextEqvNext) 

89 (age < 751\ oopersonal = 5720) ; 86,88, equiv. subst 

(income> 168001\ o(income ~ 19570) 

1\ oopersonal = 4335) ; 

(opersonal = personal + 1380) 

90 income> 168001\ o(income ~ 19570) CP assumption 

1\ oopersonal = 4335 

91 o(income ~ 19570) 90, 1\ elimination 

92 income ~ 19570 5,91, MP 

93 income> 168001\ oopersonal = 4335 90, 1\ elimination 

94 income> 168001\ income ~ 19570 91,93, 

1\ oO)2ersonal = 4335 1\ introduction 

95 (income> 168001\ o(income ~ 19570) 90-94, 

1\ oopersonal = 4335) ::J ::J introduction 

(income> 168001\ income ~ 19570 

1\ oopersonal = 4335) 
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96 (age < 75 A oopersonal = 5720) ; 89,95, 
(income> 16800 A income;:::: 19570 ChopSwaplmp3 

A oopersonal = 4335) ; 

(opersonal = Eersonal + 1380) 

97 (age < 75 A oopersonal = 5720) ; CP assumption 
(income> 16800 A income;:::: 19570 

A oopersonal = 4335) 

98 age < 75; (income> 16800 A income;:::: 19570) 97, 
A oopersonal = 5720; oopersonal = 4335 TwoChopRuleslmp 

99 (age < 75 A oopersonal = 5720) ; 97-98, 
(income> 16800 A income;:::: 19570 :J introduction 

A oopersonal = 4335) :J 

age < 75 ; (income> 16800 A income;:::: 19570) 

A oopersonal = 5720; oopersonal = 4335 

100 (age < 75; (income> 16800 A income;:::: 19570) 96,99, 

A oopersonal = 5720; opersonal = 4335) ; ChopSwaplmp2 

(opersonal = personal + 1380) 

101 age < 75; (income> 16800 A income;:::: 19570) ; 100, AndChoplmp 

( opersonal = personal + 1380) 

A oopersonal = 5720 ; opersonal = 4335 ; 

( opersonal = Eersonal + 1380) 

102 age < 75; (income> 16800 A income;:::: 19570) ; 10 1, A elimination 

(oEersonal = personal + 1380) 

103 age < 75 ; (income> 16800 A income;:::: 19570) 102, ITL (semantics 

of chop) 

104 oopersonal = 5720 ; opersonal = 4335 ; 10 1, A elimination 

(oEersonal = Eersonal + 1380) 

105 fin(personal = 5715) 104, ITL (semantics 

offin) 

106 age < 75 ; (income> 16800 A income;:::: 19570) 103,105, 

A fin (personal = 5715) A introduction 
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107 (age 2: 75; (income> 16800/\ income < 20090) 106, v introduction 

/\ fin (personal = 15760 - incomel2» 

v (age 2: 75 ; (income> 16800/\ income 2: 20090) 

/\ fin(personal = 5715» 

v (age 2: 75; income ~ 16800 

/\ fin (personal = 7360)) 

v (age < 75 ; (income> 16800/\ income < 19570) 

/\ fin(personal = 15500 - income/2)) 

v (age < 75; (income> 16800/\ income 2: 19570) 

/\ fin(personal = 5715» 

v (age < 75; income ~ 16800 

/\ fin(personal = 7100» 

108 (age < 75 /\ oopersonal = 5720) ; CP assumption 

(income ~ 16800/\ empty) ; (disjunct #6) 

(opersonal = personal + 1380) 

109 (age < 75 /\ oopersonal = 5720) ; CP assumption 

(income ~ 16800/\ empty) 

110 age < 75; income ~ 16800 109, 

/\ oopersonal = 5720; empty TwoChopRuleslmp 

111 age < 75; income ~ 16800/\ oopersonal = 5720 11O,ITL 

(ChopEmpty) 

112 «age < 75 /\ oopersonal = 5720) ; 109-111, 

(income ~ 16800/\ empty» ~ ~ introduction 

(age < 75 ; income ~ 16800/\ oOEersonal = 5720) 

113 (age < 75 ; income ~ 16800/\ oopersonal = 5720) ; 108,112, 

(opersonal = personal + 1380) ChopSwaplmp2 

114 age < 75 ; income ~ 16800 ; 113, AndChoplmp 

(opersonal = personal + 1380) 

/\ oopersonal = 5720 ; 

( opersonal = personal + 1380) 

115 age < 75; income ~ 16800 ; 114, /\ elimination 

(opersonal = personal + 1380) 

116 age < 75 ; income ~ 16800 115, ITL (semantics 

of chop) 

117 oopersonal = 5720 ; (opersonal = personal + 1380) 114, /\ elimination 
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118 

119 

120 

fin(personal = 7100) 

age < 75 ; income :5 16800 

A fin(personal = 7100) 

(age 2: 75 ; (income> 16800 A income < 20090) 

A fin(personal = 15760 - income/2)) 

v (age 2: 75; (income> 16800 A income 2: 20090) 

A fin(personal = 5715)) 

v (age 2: 75 ; income:5 16800 

A fin (personal = 7360)) 

v (age < 75; (income> 16800 A income < 19570) 

A fin (personal = 15500 - income/2)) 

v (age < 75; (income> 16800 A income;::: 19570) 

A fin(personal = 5715)) 

v (age < 75 ; income :5 16800 

A fin (personal = 7100)) 

121 (age;::: 75; (income> 16800 A income < 20090) 

A fin(personal = 15760 - income/2)) 

v (age 2: 75; (income> 16800 A income;::: 20090) 

A fin(personal = 5715)) 

v (age 2: 75; income:5 16800 

A fin (personal = 7360)) 

v (age < 75; (income> 16800 A income < 19570) 

A fin (personal = 15500 - income/2)) 

v (age < 75; (income> 16800 A income;::: 19570) 

A fin(personal = 5715)) 

v (age < 75; income::; 16800 

A fin (personal = 7100)) 

117, ITL (semantics 

of fin) 

116,118, 

A introduction 

119, v introduction 

7-28,29-50,51-63, 

64-85,86-107, 

108-120, 

v elimination 
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122 (age ~ 75 A opersonal = 5980) ; 

(income> 16800 A ot > 4335 A oopersonal = t) ; 
(opersonal = personal + 1380) 

v (age ~ 75 A opersonal = 5980) ; 

(income> 16800 A ot:::; 4335 A oopersonal = 4335) ; 

(opersonal = personal + 1380) 

v (age ~ 75 A opersonal = 5980) ; 

(income:::; 16800 A empty) ; 

(opersonal = personal + 1380) 

v (age < 75 A oopersonal = 5720) ; 

(income> 16800 A ot > 4335 A oopersonal = t) ; 
(opersonal = personal + 1380) 

v (age < 75 A oopersonal = 5720) ; 

(income> 16800 A ot :::; 4335 A oopersonal = 4335) ; 

(opersonal = personal + 1380) 

v (age < 75 A oopersonal = 5720) ; 

(income:::; 16800 A empty) ; 

(opersonal = personal + 1380) 

::> (age ~ 75 ; (income> 16800 A income < 20090) 

A fin (personal = 15760 - income/2» 

v (age ~ 75 ; (income> 16800 A income ~ 20090) 

A fin (personal = 5715» 

v (age ~ 75; income:::; 16800 

A fin (personal = 7360» 

v (age < 75; (income> 16800 A income < 19570) 

A fin (personal = 15500 - income/2» 

v (age < 75; (income> 16800 A income ~ 19570) 

A fin(personal = 5715» 

v (age < 75 ; income:::; 16800 

A fin (personal = 7100» 

6-121, 

::> introduction 
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123 rulepersonal-cond::> 

(age ~ 75; (income> 16800" income < 20090) 

" fin (personal = 15760 - incomel2» 

v (age ~ 75 ; (income> 16800 " income ~ 20090) 

" fin (personal = 5715» 

v (age ~ 75 ; income =516800 

" fin(personal = 7360)) 

v (age < 75; (income> 16800" income < 19570) 

"fin(personal = 15500 - income/2» 

v (age < 75; (income> 16800" income~ 19570) 

" fin(personal = 5715» 

v (age < 75 ; income =5 16800 

" fin (personal = 7100» 

1, 122, prop. logic 
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Appendix E 

Formal Transformation of Rules Created 

to Refine a Specification 

In Section 9.1, the following rules are developed to refme the description of the 

state sequence gecpin. (The state sequence gecpin was extracted from a concrete 

specification describing the operation of an automated teller machine in Section 7.2.) 

the following rules and rule structures have been developed as part of the refmement of 

geCpin: 

rulepin_entry ~ «(,attempClimit /\ ,valid~in) 
/\ oprocess_pin) ; rulep~entry» 
v (valid~in /\ empty) 
v (attempClimit /\ empty) 

ruleread_key_pad ~ (,enter_key /\ okey_buffer) ; ruleread.Jcey_pad 
v (enter_key /\ oincremencattempt) 

rulevalidate_pin ~ (pin_length /\ oru[ecompare_pin) 
v (,pin_length /\ odlsplay _invalid_screen) 

rulecomparqin ~ (pin_match /\ opin_ valid) 
v (-,pin_match /\ odisplay_invalid_screen) 

To facilitate analysis, the following variable name substitutions are made: 

dps~ 

dis ~ 
gp~ 

ia ~ 
ipe ~ 
kb~ 

pe~ 

pp~ 

pv~ 

xal~ 

displa y _pin_screen 
disp lay_in valid_screen 
geCpin 
incremenCattempt 
in iCp in_entry 
key_buffer 
pin_entry 
process_pin 
pin_valid 
attempClimit 
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xek~ 

xpl~ 

xpm~ 

xvp~ 

enter_key 
pin_length 

pin_match 
valid-pin 

Regarding these variable names, rule conditions variables begin with the letter x and are 

depicted in italics. Using these rule conditions and rule state variable names, the rules 

of interest are rewritten as: 

A • 1 gp = Ipe ; ru epilLetltry 

rulepilLentry ~ (((-,;cal A -,xvp) A opp) ; rulepilLentry» 
v (xvp A empty) 
v (xal A empty) 

rulevalidato_pin ~ (xpl A orulecompare_pin) v (-,;cpl A odis) 

rulecompare_pin ~ (xpm A opv) v (-,;cpm A odis) 

Five of these rules and rule structures are assumed as premises for this tranformation -

rulepilLetlU-Y, process_pin (pp), ruleread~ey_pad, rulevalidato_pin, and rule compare_pin. The formal 

transformation of these rules is as follows: 

1 rulepilLetltry 

where: 

rulepilLentry ~ «(-,;cal A -,xvp) A opp) ; rulepilLentry» 

v (xvp A empty) v (xal A empty) 

2 pp 

where: 

pp == dps ; rulereaUey_pad ; rulevalidate_pin 

3 rulereaoey_pad 

where: 

rulereaoey_pad ~ (-,;cek A okb) ; ruleread...).ey_pad 

v (xek A oia) 

premise 

premise 

premise 
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4 rUlevaIidate_pin premise 

where: 

rulevalidate_pin ~ (xpl A orulecompare_piJ v (-.x pI A odis) 

5 rulecompare_pin premise 

where: 

rulecomparcpin ~ (xpm A OPy) v (-.xpm A odis) 

6 rulevalidatqin == (xpl A orulecomparqin) v (-.xpl A odis) 4, reiteration 

7 rulevalidate_pin == 5, 6, eqy. subst. 

(xpl A o«xpm A OPy) V (-.x pm A odis») 

v (-.xpl A odis) 

8 rulevalidate_pin == 7, NextOrDistEqy 

(xpl A (o(xpm A OPy) V o(-.xpm A odis» 

v (-.xpl A odis) 

9 rUlevalidate_pin == 8, NextAndDistEqy 

(xpl A « oxpm A OOPY) V (o-.xpm A oodis») 

v (-.xpl A odis) 

10 rulevalidate_pin == 9, dist. of A oyer v 

(xpl A (oxpm A OOPY» 

v (xpl A (o-.xpm A oodis» 

v (-.x pI A odis) 

11 rule validate_pin == 10, prop. logic 

«xpl A Ox pm) A OOPY) 

v «xpl A o-.xpm) A oodis) 

v (-.xpl A odis) 

12 dps ; ruleread_key_pad ; rule validate_pin 2, reiteration 

13 dps ; ruleread_key_pad ; 11, 12, eqy. subst. 

«(xpl A oxpm) A OOPY) 

v «xpl A o-.xpm) A oodis) 

v (-.xpl A odis» 

14 ruleread_key_pad CP assumption 

15 (-.xek A okb) ; rulerea/Uey_pad v (xek A oia) 3, 14, eqy. subst. 
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16 (-tXek /\ okb) ; rulereaUey_pad CP assumption 

17 -tXek /\ okb ; rulereaUey_pad 16, StateAndChop 

18 (-tXek /\ okb ; rulereaueY-Pl\d) v (xek /\ oia) 17, v introduction 

19 (xek /\ oia) CP assumption 

20 (-tXek /\ okb ; rulereaUey--pa~ v (xek /\ oia) 19, v introduction 

21 (-tXek /\ okb ; rulereaUey_pad) v (xek /\ oia) 16-18, 19-20, 

v elimination 

22 rulereaueY-Pl\d ::J 14-21, ::J introduction 

(-tXek /\ okb ; rulereaUey_pad) v (xek /\ oia) 

23 dps ; « -tXek /\ okb ; rulereaUey_pad) v (xek /\ oia» ; 13,22, 

(((xpl/\ oxpm) /\ OOPy) ChopSwapImp3 

v «xpl /\ o-tXpm) /\ oodis) 

v (-,xpl /\ odis» 

24 (dps ; (-tXek /\ okb ; rulereaUey_pad) v dps ; (xek /\ oia» ; 23, ChopOrEqy 

«(xpl/\ oxpm) /\ OOPY) 

v «xpl /\ o-tXpm) /\ oodis) 

v (-,xpl /\ odis» 

25 dps ; (-tXek /\ okb ; rulereaUey_pad) ; 24, OrChopEqy 

«(xpl/\ oxpm) /\ OOPY) 

v «xpl /\ o-,xpm) /\ oodis) 

v (-,xpl /\ odis» 

v dps ; (xek /\ oia) ; 

«(xpl/\ oxpm) /\ OOPY) 

v «xpl /\ o-,xpm) /\ oodis) 

v (-tXpl /\ odis» 

26 dps ; (-tXek /\ okb ; rulereaUey_pad) ; CP assumption 

«(xpl/\ oxpm) /\ OOPY) 

v «xpl /\ o-tXpm) /\ oodis) 

v (-,xpl /\ odis» 

27 dps ; (-tXek /\ okb ; rulereaUey_pad) 26, semantics of chop 
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28 dps ; (-,xek A okb ; rulereaUey_pad) 27, v introduction 

v dps ; «xek; (xpl A oxpm» A (oia ; OOpV» 

v dps ; «xek; (xpl A o-,xpm» A (oia ; oodis» 

v dps ; «xek ; -,xpl ) A (oia ; odis» 

29 dps ; (xek A oia) ; «(xpl A oxpm) A oopv) 28, CP assumption 

v «xpl A o-,xpm) A oodis) 

v (-,xpl A odis» 

30 dps ; (xek A oia) ; «xpl A oxpm) A oopv) 29, ChopOrEqv 

v dps ; (xek A oia) ; «xpl A o-,xpm) A oodis) 

v dps ; (xek A oia) ; (-,xpl A odis) 

31 dps ; (xek A oia) ; «xp/ A oxpm) A oopv) CP assumption 

32 dps; «xek; (xpl A oxpm» A (oia; oopv» 31, 

TwoChopRuleslmp4 

33 dps ; «xek; (xpl A oxpm» A (oia ; oopv)) 32, v introduction 

v dps ; «xek; (xpl A o-,xpm» A (oia; oodis» 

v dps; «xek ; -,xpl) A (oia ; odis» 

34 dps ; (xek A oia) ; «xpl A o-,xpm) A oodis) CP assumption 

35 dps ; «xek ; (xpl A o-,xpm) A (oia; oodis) 34, 

TwoChopRuleslmp4 

36 dps; «xek; (xpl A oxpm» A (oia; oopv» 35, v introduction 

v dps ; «xek ; (xpl A o-,xpm» A (oia ; oodis» 

v dps ; «xek ; -,xpl) A (oia ; odis» 

37 dps ; (xek A oia) ; (-,x pi A odis) CP assumption 

38 dps ; «xek ; -,xpl) A (oia ; odis» 36, 

TwoChopRuleslmp4 

39 dps ; «xek ; (xp/ A oxpm» A (oia ; oopv» 38, v introduction 

v dps; «xek; (xp/ A o-,xpm») A (oia ; oOdis» 

v dps ; «xek ; -,xp/ ) A (oia ; odis» 
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40 dps ; «xek ; (xpl A oxpm» A (oia ; oopv» 31-33,34-36,29-39, 

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oodis» V elimination 

v dps ; «xek ; -..xpl) A (oia ; odis» 

41 dps ; (-.xek A okb ; rulereacLkeY-PIld) 40, v introduction 

v dps ; «xek; (xpl A oxpm» A (oia ; oopv» 

v dps; «xek; (xpl A O-..xpm» A (oia; oodis» 

v dps ; «xek ; -..xpl ) A (oia ; odis» 

42 dps ; (-.xek A okb ; rulereacLkcy_pad) 26-28,29-41, 

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv» v elimination 

v dps; «xek; (xpl A o-..xpm» A (oia; oodis» 

v dps ; «xek ; -..xpl ) A (oia ; odis» 

43 pp CP assumption 

44 dps ; (-.xek A okb ; rulereacLkey_pad) 42, reiteration 

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv» 

v dps ; «xek ; (xpl A O-..xpm» A (oia ; oodis» 

v dps ; «xek ; -..xpl ) A (oia ; odis» 

45 pp ~ (dps ; (-.xek A okb ; rulereacLkey_pad) 44, ~ introduction 

v dps ; «xek ; (xpl A oxpm» A (oia ; oopv» 

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oodis» 

v dps ; «xek ; -..xpl ) A (oia ; odis») 

46 opp ~ o(dps ; (-.xek A okb ; rulereacLkey_pad) 45, NextlmpNext 

v dps ; «xek ; (xpl A ox pm» A (oia ; oopv» 

v dps ; «xek ; (xpl A o-..xpm» A (oia ; oOdis» 

v dps ; «xek ; -..xpl ) A (oia ; odis))) 

47 opp:::J (odps; (-.xek A okb; rulereacLkey_pad) 46, NextOrDistEqv 

v odps ; «xek ; (xpl A oxpm» A (oia ; oopv» 

v odps ; «xek ; (xpl A o-..xpm» A (oia ; oodis» 

v odps ; «xek ; -.xpl ) A (oia ; odis))) 

48 opp ; rulepiILentry ~ (odps ; (-.xek A okb ; rulereacLkcy_pa~ 47, LeftChoplmpChop 

v odps ; «xek ; (xpl A oxpm» A (oia ; oopv» 

v odps ; «xek ; (xpl A o-.xpm» A (oia ; oodis)) 

v odps ; «xek ; -..xpl) A (oia ; odis») ; ruiepiILentry 
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~-----------------------------------------------------
i~ 
~entIy 

:(-...xal A -.xvp) A Opp) ; ruZepiJUntIy» 

~ A empty) v (xaZ A empty) 

eaZ A -.xvp) A opp) ; ruZepin...entIy 

~l A -.xvp) A (opp ; rulepin...entIy) 

~; rulepifLentIy 

(Odps ; (-,xek A okb ; rulereaUey_pad) 

v Odps; «xek; (xpZ A oxpm» A (oia ; oopv» 

v odps ; «xek ; (xpZ A o-,xpm» A (oia ; oodis» 

,~ps ; «xek ; -,xpZ) A (oia ; odis») ; ruZepin_entIy 

; Odps ; (-,xek A okb ; ruZereaUey_pad) ; ruZepifLentry 

V Odps ; «xek; (xpl A oxpm» A (oia ; oopv» ; 

, rulepin...entry 

;V Odps; «xek; (xpZ A o-,xpm» A (oia; oodis»; 

; ruzepin...entry 

1, reiteration 

1,49, eqv. subst. 

CP assumption 

, StateAndChop 

A elimination 

MP 

OrChopEqv 

,v Odps ; «xek ; -,xpZ) A (oia ; odis» ; ruZepin...entry 
'-----------~---------------------------------------
, ("'"1XaZ A -.xvp) 
'-------~----------------------------------------------

A elimination 

, ("'"1XaZ A -.xvp) A 

(Odps ; (-,xek A okb ; ruZeread.J<ey_pad) ; ruZepifLentry 

v Odps ; «xek; (xpl A oxpm» A (oia; oopv» ; 

ruZepin...entry 

v odps ; «xek ; (xpZ A o-,xpm» A (oia ; oodis»; 

ruZepin...entry 

A introduction 

v odps ; «xek ; -,xpZ ) A (oia ; odis» ; ruZepin...entry) 
'-------------------------------------------------------
« ~al A -,xvp) A (odps ; (-,xek 

'" okb ; rulereaUey_pad) ; rulepin_entry» 

v «-,xal A -,xvp) A (odps ; «xek; (xpl A oxpm» 

'" (oia ; oopv» ; rulepin...entry» 
v «-,xal A -,xvp) A (odps ; «xek; (xpl A o-,xpm» 

"(oia; oodis»; rulepin...eotry» 

v «-,xal A -,xvp) A (odps ; «xek ; -,xpl) 

\ (oia ; odis» ; ruZepifLentry» 

dist. of A over v 

'------------------------------------------------------

335 
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66 «-,xal /I. -,xvp) /I. odps) ; «xek; (xpl/l. o-,xpm» CP assumption 

/I. (oia ; oodis» ; rulep~entry 

67 « -..tal /I. -,xvp) ; xek ; (xpl /I. o-,xpm» /I. TwoChopRuleslmp2 

(odps; oia; oodis ; rulepiD-entry) 

68 «(-..tal /I. -,xvp) ; -..tek) /I. V introduction 

(odps ;okb ; rulereadj.ey-IJad ; rulepiD-entry» 

v «(-..tal /I. -,xvp) ; xek ; (xpl /I. oxpm» /I. 

(odps ; oia ; OOPy ; rulepin..entry» 

v «(-..tal /I. -,xvp) ; xek ; (xpl/l. o-,xpm» /I. 

(odps ; oia ; oodis ; rulepirLentry» 

v «(-..tal /I. -,xvp) ; xek ; -,xpl) /I. 

(odps ; oia ; odis ; rulepifLentry» 

69 «-..tal /I. -,xvp) /I. odps) ; «xek ; -,xpl ) CP assumption 

/I. (oia ; odis» ; rulepiD-entry 

70 «-..tal /I. -,xvp) ; xek ; -,xpl) /I. TwoChopRuleslmp2 

(odps ; oia ; odis ; rulepiD-entry) 

71 «(-..tal /I. -,xvp) ; -..tek) /I. v introduction 

(odps ;okb ; rulereadj.ey_pad ; rulepiD-entry» 

v «(-..tal /I. -,xvp) ; xek ; (xpl /I. ox pm» /I. 

(odps ; oia ; OOPy ; ruZepifLentry» 

v « (-..tal /I. -,xvp) ; xek ; (xpl /I. o-,xpm» /I. 

(odps ; oia ; oodis ; rulepin_entry» 

v «(-..tal /I. -,xvp) ; xek ; -,xpl) /I. 

(odps ; oia ; odis ; rulepifLentry» 

72 «(-..tal/l. -,xvp); -..tek) /I. v elimination 

(odps ;okb ; rulereadj.ey_pad ; rulepiTLentry» 

v «(-,xal /I. -,xvp); xek; (xpl/l. oxpm» /I. 

(odps ; oia ; OOPy ; rulepifLentry» 

v «(-..tal /I. -,xvp) ; xek; (xpl /I. o-,xpm» /I. 

(odps ; oia ; oodis ; rulepifLentry» 
v «(-,xal /I. -,xvp); xek ; -,xpl) /I. 

(odps ; oia ; odis ; rulepifLentry» 
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73 «(oXal A -.xvp) ; oXek) A V introduction 

(odps ;okb ; rulereaOey_pad ; rulepin....entry)) 

v «(oXal A -.xvp) ; xek ; (xpl A oxpm)) A 

(odps ; oia ; oopv ; rulepin....entry» 

v «(oXal A -.xvp) ; xek; (xpl A o-,xpm» A 

(odps; oia ; oodis ; rulepil13ntry» 

v «(oXal A -.xvp) ; xek ; -,xpl) A 

(odps; oia ; odis ; rulepin....enrry» 

v (XVp A empty) 

v (xal A empty) 

74 (xvp A empty) CP assumption 

75 «(oXal A -.xvp) ; oXek) A v introduction 

(odps ;okb ; rulereaOey_pad ; rulepin....enrry») 

v «(oXal A -.xvp) ; xek; (xpl A oxpm» A 

(odps; oia ; oopv ; rulepin3 ntry)) 

v «(oXal A -.xvp) ; xek; (xpl A o-,xpm» A 

(odps ; oia ; oodis ; rulepin....entry» 

v «(oXal A -.xvp) ; xek ; oXpl) A 

(odps ; oia ; odis ; rulepin....entry» 

v (XVp A empty) 

v (xal A empty) 

76 (xal A empty) CP assumption 

77 «(oXal A -.xvp) ; oXek) A v introduction 

(odps ;okb ; rulereaQ.key_pad ; rulepin....enrry» 

v «(oXal A -.xvp) ; xek; (xpl A oxpm» A 

(odps ; oia ; oopv ; rulepiQ..enrry)) 

v «(oXal A -.xvp) ; xek ; (xpl A o-,xpm» A 

(odps ; oia ; oodis ; rulepiQ..entry)) 

v «(oXal A -.xvp) ; xek ; -,xpl) A 

(odps ; oia ; odis ; rulepin....entry» 

v (xvp A empty) 

v (xal A empty) 
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78 «(-xal A -.xvp) ; -,xek) A 

(odps ;okb ; rulereaOey_pad ; rulepin..entry» 

v «(-,xal A -.xvp) ; xek; (xpl A oxpm» A 

(odps; oia; OOpV; rulepi~entry» 

v « (-xal A -.xvp) ; xek ; (xpl A o-,xpm» A 

(odps ; oia ; oodis ; rulepin_entry» 

v «(-,xal A -.xvp) ; xek; -,xpl) A 

(odps; oia ; odis ; rulepi~eotry» 

v (XVp A empty) 

v (xal A empty) 

v elimination 

Based on these transformations, the possible behaviors associated with rulepi~entry are: 

«(-,attempclimit A -,valid-pin) ; -,enter_key) 
A (odisplay_pin_screen ;okey_buffer; 

rulereaoey_pad ; rulepin..entry» 

v «(-,attempclimit A -,valid-pin) ; enter_key; 
(pin_length A opinflatch» 

A (odisplay_pin_screen; oincremencattempt ; 
o opin_ valid ; rulepin..entry» 

v «(-,attempClimit A -,valid-pin) ; enter_key; 
(pin_length A o-.pinJnatch» 

A odisplay_pin_screen ; oincremencattempt ; 
oOdisplay_invalid_screen ; rulepin..entry» 

v «(-,attempClimit A -,valid-pin) ; enter_key; -.pin_length) 
A (odisplay_pin_screen; oincremencattempt ; 

odisplay_invalid_screen ; rulepio_entry» 

v (valid-pin A empty) 

v (attempclimit A empty) 
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Appendix F 

Creating Rules to Describe a Simple Hardware System 

In this appendix, rules are used to describe the behavior of a simple hardware 

system. Consider the simple NOR-based flip-flop system (Feynman, 1996) presented in 

Figure F-l. 

s---\ 
b--_-Q 

R---f 
"0---'"-- Q 

Figure F-l: A Simple Flip-Flop 

Depending on the current state of Q and the values of the Set (S) and Reset (R) lines, 

the next state of Q is specified. The behavior of this simple flip-flop is described in 

Table F-l. 

Table F-l Behavior ofa simple flip-flop 

Current Q Set (S) Reset (R) NextQ 

0 0 0 0 
0 0 1 0 
0 1 0 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 

For the purposes of this exercise, the two possible cases where both Set (S) and Reset 

(R) are equal to one are undefined. Alternatively, the behavior of this simple flip-flop is 

described using the ITL next operator in Table F-2. 
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Table F-2 Behavior of a simple flip-flop expressed in ITL 

Q 

o 
o 
o 
1 
1 
1 

S 

o 
o 
1 
o 
o 
1 

R 

o 
1 
o 
o 
1 
o 

oQ 

o 
o 
1 
1 
o 
1 

Under the system behavior as defmed in Table F-2, each of the four conditions 

must hold for each of the six cases. Therefore, six general-form rules can be composed 

to describe the behavior of the simple flip-flip presented in Figure F-l: 

(Q = 0 /\ S = 0 /\ R = 0) /\ (oQ = 0) 

(Q = 0 /\ S = 0 /\ R = 1) /\ (oQ = 0) 

(Q = 0 /\ S = 1/\ R = 0) /\ (oQ = 1) 

(Q = 1/\ S = 0 /\ R = 0) /\ (oQ = 1) 

(Q = 1/\ S = 0 /\ R = 1) /\ (oQ = 0) 

(Q = 1 /\ S = 1 /\ R = 0) /\ (oQ = 1) 

Given that the domain ofR and S are {0,1}, the following defmitions are made: 

x ~ (Q = 1) and .-,x ~ (Q = 0) 
y ~ (R = 1) and -,y ~ (R = 0) 
z ~ (S = 1) and -,z ~ (S = 0) 

Substituting the defmitions at (F-2) into (F-I) yields: 

(-,x /\ -,z /\ -,y) /\ (o--"x) 

(-,x /\ -,z /\ y) /\ (O--"x) 

(-,x /\ z /\ -,y) /\ (ox) 

(x /\ -,z /\ -,y) /\ (ox) 

(F-Ia) 

(F-Ib) 

(F-Ic) 

(F-Id) 

(F-Ie) 

(F-lt) 

(F-2a) 

(F-2b) 

(F-2c) 

(F-3a) 

(F-3b) 

(F-3c) 

(F-3d) 

341 



(x /\ -,z /\ y) /\ (o-,x) (F-3e) 

(x /\ Z /\ -,y) /\ (ox) (F-3f) 

These six individual rules can be combined disjunctively to form a single rule-base 

structure that describes the behavior of the flip-flop system: 

(-,x /\ -,z /\ -,y /\ o-,x) 
V (-,x /\ -,z /\ Y /\ o-,x) 
V (-,x /\ z /\ -,y /\ ox) 
v (x /\ -,z /\ -,y /\ ox) 
v (x /\ -,z /\ Y /\ o-,x) 
V (x /\ Z /\ -,y /\ ox) 

Consider the following pair of disjunctively connected rules: 

(-,x /\ -,z /\ Y /\ o-,x) V (x /\ -,z /\ Y /\ o-,x) 

Applying propositional logic to (F-5) yields the equivalent expression: 

(-,x /\ x) V (-,z /\ Y /\ o-,x) 

Applying propositional logic to (F-6) yields the equivalent expression: 

(-,z /\ Y /\ o-,x) 

Combining (F-5), (F-6), and (F-7) yields: 

(F-4) 

(F-5) 

(F-6) 

(F-7) 

(-,x /\ -,z /\ Y /\ o-,x) v (x /\ -,z /\ Y /\ o-,x) == (-,z /\ Y /\ o-,x) (F-8) 

Applying the equivalence (F-8) to (F-4) yields: 

(-,x /\ -,z /\ -,y /\ o-,x) 
V (-,x /\ Z /\ -,y /\ ox) 
v (x /\ -,z /\ -,y /\ ox) 
v (x /\ Z /\ -,y /\ ox) 
v (-,z /\ Y /\ o-,x) (F-9) 
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Consider the following pair of disjunctively connected rules: 

(-,x A Z A -,y A ox) v (x A Z A -,y A ox) 

Applying propositional logic to (F-lO) yields the equivalent expression: 

Applying propositional logic to (F-11) yields the equivalent expression: 

(z A -'YA ox) 

Combining (F-IO), (F-ll), and (F-12) yields: 

Applying the equivalence (F-13) to (F-9) yields: 

(-,x A -,z A -'YA o-,x) 
V (x A .....,z A -,y A ox) 
V (ZA -'YA ox) 
V (-,z AY A o-,x) 

Applying the defmitions presented at (F-2) to (F-14) yields: 

(Q=OAS=OAR=OA oQ=O) 
v (Q = 1 AS = 0 A R = 0 A oQ = 1) 
v (S = 1 1\ R = 0 A oQ = 1) 
v (S = 0 A R = 1 A oQ = 0) 

(F-IO) 

(F-ll) 

(F-12) 

(F-13) 

(F-14) 

(F-15) 

Remembering that the domain of Q is {O, I}, consider the following defmitions: 

OQunchanged ~ (Q = 1 A oQ = 1) 
oQUllChanged ~ (Q = 0 A OQ = 0) 

Applying these defmitions to (F-16) yields: 

(F-16a) 

(F-16b) 
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(S = 0 A R = 0 A OQunchanged) 

V (S = 0 A R = 0 A OQunchanged) 

V (S = 1 A R = 0 A OQ = 1) 
v (S = 0 A R = 1 A OQ = 0) 

Applying propositional logic to (F-17) yields: 

(S = 0 A R = 0 A OQunchanged) 

v (S = 1 A R = 0 A OQ = 1) 
v (S = 0 A R = 1 A OQ = 0) 

(F-17) 

(F-18) 

With these transformations, the original six rules of (F-l) and the corresponding 

six-rule disjunctive structure of (F-4) have been reduced to three rules expressed as a 

disjunctive structure at (F-18). (F-18) describes the behavior of the hardware system 

presented in Figure F-l and described in Table F-l. Although purposefully limited in 

scope, this example is a demonstration of how rules can be formed using this rule model 

and rule algebra to describe a given system. 

These rules can be used to reason about, analyze, and/or understand the target 

system. For example, in comparison with the information conveyed in Figure F-l and 

Table F-l, these rules provide a clear and succinct description of the system behavior: 

if Set (S) is high and Reset (R) is low, the next Q is set high; if Set (S) is low and Reset 

(R) is high, the next Q is set low; and if both Set (S) and Reset (R) are low, the next Q is 

unchanged from its current status. Whereas this information can be gleaned from 

Figure F-l and Table F-l, the rules in (F-18) provide a simple and immediately 

comprehensible depiction of system behavior. As these rules have been developed 

using the rule model and rule algebra presented in this research, these rules can be 

integrated into a larger rule system, as appropriate, using the rule algebra. 

344 


