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ABSTRACT 

Rising demand from electrical heating and vehicles will 

drive major distribution network reinforcement costs unless 

24-hour demand profiles can be levelled. We propose a 

demand response scheme in which the electricity supplier 

provides a signal to a “smart home” control unit that 

manages the consumer’s appliances using a novel approach 

for reconciliation of the consumer’s needs and desires with 

the incentives supplied by the signal.  The control unit 

allocates demand randomly in timeslots that are acceptable 

to the consumer but with a probability biased in accordance 

with the signal provided by the supplier. This behaviour 

ensures that demand response is predictable and stable and 

allows demand to be shaped in a way that can satisfy 

distribution network constraints.  

INTRODUCTION 

Authors at a previous CIRED conference have shown that 

rising demand from electrical heating and vehicles will 

drive major distribution network reinforcement costs unless 

24-hour demand profiles can be levelled [1] – i.e. the ratio 

of peak demand to average demand needs to be as close to 1 

as possible so that the capacity of the network is fully 

exploited. This involves signalling to consumers to indicate 

when electricity use should be constrained and when 

capacity is available. However simply signalling a time 

dependent price does not always achieve the required 

demand response and can result in unstable system 

behaviour.  This paper describes a method for reliable 

levelling of domestic demand, while retaining flexibility for 

the consumer, using controlled randomisation of the 

response to signalling. 

BACKGROUND 

Domestic demand response schemes typically consist of 

some combination of electricity tariffs which incentivise 

response, a signal to the consumer indicating when the 

response should take place, and agency in the form of 

manual or automatic control of electricity use that executes 

the response.  An illustrative example is the UK “Economy 

7” scheme which offers a discounted tariff for 7 hours 

overnight and provides a signal embedded in a 198 kHz 

radio broadcast that indicates the start of the 7 hour interval 

and causes electric heating appliances with thermal storage 

to switch on. Also consumers with this tariff often set their 

own time clocks such that water heating or wet appliance 

operation is performed during the discounted period.   

 

Research on the effectiveness of smart meters and dynamic 

pricing of electricity indicates that time-of-use pricing can 

consistently reduce peak consumption.  A range of US trials 

evaluated by Faruqui and Sergici [2] show reductions of 

between 2%-6% by user agency, but if “enabling 

technology” performs the response automatically it results 

in much higher peak reductions in the range 21%-32%.    

 

These results imply that the main burden of demand 

response should be undertaken by some form of automatic 

control system which responds flexibly to a price-based 

signal allowing a wide range of appliances to be brought 

under control at the consumer’s discretion.  This conclusion 

has motivated numerous recent studies of possible schemes 

by which domestic appliances and charging of electric 

vehicles might respond automatically to a price signal e.g. 

[3],[4].  A common feature of all these investigations is that 

the control unit executing the response has an objective 

function to minimise cost for the consumer while satisfying 

the various constraints they may have set such as the latest 

time that the dishwasher must run.  This allows the 

modelling to show that the consumer would save money.  

However, cost minimisation as an objective function has a 

strong tendency to cause demand peaks at times when the 

cost signalled is at a minimum. This can cause the peak-to-

average ratio (PAR) of the resulting aggregate demand to 

exceed that of the baseline (i.e. demand with no feedback 

signal) and hence a key objective of demand response, to 

reduce PAR, is not achieved. 

PROPOSED DEMAND RESPONSE SCHEME  

The home control unit 

The objective function of the proposed domestic automatic 

demand control unit is to distribute the electrical demand of 

its controlled appliances over the 48 half hour timeslots in 

the day (numbered i=1:48) in inverse proportion to the 48-

valued signal S provided by the electricity supplier at the 

start of each day. The signal is framed by the supplier and 

interpreted by the control unit as if it is a cost, but the 

response to the signal in each timeslot is arranged to be 

proportional to the deviation from the mean, as far as is 

possible within the consumer’s constraints on individual 

appliances.  
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This proportionality is achieved by displacing demand 

within the time window acceptable to the consumer to 

alternative timeslots with a probability proportional to the 

amplitude of the signal in each timeslot of the window.  

Because the probabilities over the window must add up to 1, 

this means that for any S with more than one non-zero 

timeslot in the window some redistribution of demand will 

take place giving this method an inherent tendency to 

reduce peaks in demand.  Taking the example of a wet 

appliance that the consumer has specified must run 

sometime in the next n timeslots with a duration of k 

timeslots, the controller will invert S to create an 

“attractiveness” vector  Aw with values given by Awi = (Smax 

– Si) where Smax is the largest value of S.  The controller 

then uses a random number generator to select one of the n-

k+1 possible timeslots in which the appliance can start, with 

a probability Pwi given by:  

           j=i+k-1           q=n-k+1    r=q+k-1 

 Pwi = ∑ Awj   /   (    ∑       (  ∑   Awr   ))         (1) 
            j=i                   q=1           r=q 

 The effect is that over a population of consumers choosing 

a similar time window demand will be allocated in 

proportion to the possible alternative averages of Aw  over k 

timeslots.  This approach is applied to heat pumps by 

introducing a gap in heating demand when Si > 0 for one or 

two timeslots such that the fall in room temperature is less 

than 0.5oC.  The heat pump is regulated by the control unit 

using the methods described in [5] making use of the 

thermal mass of the building such that the gap either 

provides energy saving or recovery of the heat input is 

spread over other timeslots so that there is no surge in 

demand after the gap. The probability Phi for a single 

timeslot gap out of the set of p timeslots for which Si > 0 is 

given by:  
                                       j=p 

 Phi = Si  /   ∑  Sj                                         (2) 
                                      j=1 

 

Charging of electric vehicles from the domestic supply 

follows the same concept.  The home control unit learns the 

usage pattern of a vehicle under control so that when it is 

reconnected after use the control unit has a prediction of 

both the amount of charge Qtot required to restore the 

battery to full capacity and the next time at which the 

vehicle will be needed. It then allocates this expected 

charge Qtot over the r timeslots available in proportion to the 

attractiveness Avi = ( Smax – Si)  of each timeslot. The charge 

Qi in each timeslot is given by: 
                                                 j=r 

 Qi = Qtot Avi  /   ∑  Avj                                 (3) 
                                                 j=1 

 

Supplier’s model of demand response 

Given a customer base of consumers equipped with control 

units as described above, it can be seen that the total 

demand in each timeslot seen by the supplier will vary 

proportionately to Si but with different constants of 

proportionality ki for each timeslot and for positive and 

negative values of Si.  These variations in proportionality 

arise from the differing constraints applied to each class of 

appliance across the consumer population.  However, if the 

supplier can determine the 96 linear functions predicting the 

response to S it can construct S to achieve a range of 

objectives which are explored in the next section. It is 

assumed that the supplier is able to predict the 48 value 

baseline demand vector B that is expected for any day, 

using established records and techniques such as neural 

network forecasting.  Then by transmitting different 

experimental constructions of S over a suitable period and 

recording the resulting difference ∂Bi in demand in each 

timeslot relative to the known baseline, the supplier can 

construct a sufficient number of equations of the form: 

  ∂Bi = Si ki Bi + ci                                       (4) 

to solve for the 96 values of ki and ci. The demand D arising 

from any S can then be predicted using: 

 Di = Bi (1+ Si ki) + ci                                  (5) 

where ki and ci are taken from the k and c vectors 

appropriate to the sign of Si.   Once in operation this model 

can be updated continuously from metering records.  In 

practice the supplier may wish to transmit a null S to a 

proportion of consumers, either to sense the current baseline 

demand, or to achieve a particular shape of aggregate 

demand.   

SIMULATION OF SCHEME  

Domestic demand model 

To evaluate the properties of this approach for shaping 

domestic demand, a model has been constructed which 

simulates the electricity consumption of a population of  

households equipped with a control unit and appliances that 

respond to a signal as specified in the previous section.  In 

order to obtain realistic demands for space and water 

heating, the occupancy and building thermal properties of 

these households were assigned to correspond with UK 

national statistics [6], [7].  For each class of appliance, a 

default daily demand profile was created giving the default 

probability that the appliance was operating in any given 

timeslot. The demand when operating was calibrated to 

match either the average demand for this class of appliance 

from national statistics, or the actual thermal load of the 

simulated household as determined by its thermal 

properties.  The electrical load Ws for space heating is given 

in kW by: 

  Ws = L(Tr – Te) / c              (6) 

where c is the coefficient of performance (CoP) of the heat 

pump, L is the loss rate for the dwelling, Te is the external 

ambient temperature, and Tr is the reference temperature 

(15.5 oC) which space heating must achieve, the remaining 
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heat input for higher room temperatures being provided by 

appliance use, occupancy, and solar gain.  The change in 

room temperature Tro when heating is ceased for one or two 

timeslots is calculated using a single node model of the 

building characteristics: 

 (Tro-Te) =  dTro /dt,   = C / L                    (7) 

where C is the thermal mass and L the loss rate.  CoPs of 

2.5 and 2.2 for space heating and water heating respectively 

are employed, based on Energy Saving Trust findings for 

UK installations [8].    

 

For simulation of electric vehicle (EV) use a single EV was 

assumed in 25% of homes. 50% of EVs were assumed to 

have a performance equivalent to the Nissan Leaf, and the 

remaining 50% were assumed equivalent to the Vauxhall 

Ampera. Baseline electricity use was determined by the 

profile of arrival times at home (shown in Figure 1) and trip 

distances derived from survey data [9] resulting in a 

distribution of charge requirements that are satisfied at a 

3kW rate (constrained by the UK 13 Amp household 

socket).     
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Figure 1. Distribution of electric vehicle return times 

Results 

   The results presented below share a common scenario of 

1000 households with space and water heating by heat 

pumps, and appliance and electrical vehicle use as specified 

above.  A winter day with overnight temperatures falling to 

-1.4 oC is simulated as this is likely to represent a worst-

case load on local distribution networks.  A typical resulting 

baseline demand profile from these households is shown in 

Figure 3 including the contributions from the various 

appliance types – the miscellaneous type covers all those 

appliances such as entertainment devices that are only 

amenable to manual control.   

 

The demand-flattening potential is fully exploited when the 

supplier uses the demand response model to generate a 

signal optimised to induce a flat response, with an objective 

function using equation (5): 

Minimise:  Dmax / D  where  Di = Bi (1+ Si ki) + ci   (8) 

The simulation employs the “active set” method to solve 

this non linear optimisation problem for S. The response of 

the consumer population with a baseline demand as 

indicated in Figure 2 to a signal S determined in this way is 

shown Figure 3, which has a PAR of 1.09.  This may be 

compared with the baseline PAR of 1.4. The residual 

variations in demand arise from the imperfections in the 

demand model held by the supplier and the various 

constraints on electricity use applied by consumers.  

 

 
Figure 2.  Baseline winter demand from consumer model – 

1000 households 

  
Figure 3. Demand response to a signal optimised for 

flattening 

 

Where distribution network capacity permits, the supplier 

can employ a suitably optimised S to obtain any desired 

shape of demand within the flexibility limits determined by 

consumer preferences and needs.  In Figure 4 it is envisaged 

that the supplier has access to a surge of wind generation 

overnight which is expected to reduce later in the day.  A 

signal optimised to a target profile lifting demand between 

00:00 and 07:30 attracts an additional 3300 kWh of demand 

into the early hours amounting to 7.7% of the demand for 

the day.  Had the wind surge been expected later in the day 

the supplier could simply have sent a null signal allowing 

the baseline demand peak to occur. 
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Figure 4. Demand optimised for overnight wind generation 

availability 

CONCLUSION 

The simulation results show that this method for inducing 

demand response is capable of both reducing demand peaks 

and moving demand in time to coincide with renewable 

electricity generation.  It also has several other useful 

properties: 

1. It is completely scalable in that the signal can be 

directed at a few households or millions.   

2. For many desirable demand profiles, such as the 

flattened profile shown in Figure 3, the amount of 

electricity consumed is reduced through user 

action to switch off  loads in response to the signal 

being interpreted and displayed as a higher price. 

3. A single home control device can manage all 

appliance types and electric vehicles using a 

common underlying concept.  There is no need for 

a specialised electric vehicle charging controller - 

the concept is readily adaptable to “vehicle to 

grid” schemes by allowing limited and 

proportionate export of energy from the vehicle 

battery in timeslots where S is positive.  It is 

similarly applicable to despatch of micro CHP 

units.  This simplification and commonality will 

aid user understanding and acceptance. 

4. Because the PAR of typical demand profiles is 

always reduced, the gain in the consumer response 

element of the demand response feedback loop is 

less than 1, so stability is enhanced in wholesale 

market pricing and total demand.      

 

A critical issue this scheme may help to resolve is the 

relationship between suppliers and distribution network 

operators (DNOs).  Both can gain from the ability to shape 

demand but have different objectives. Use of this method in 

a suitable regulatory context to reconcile these conflicting 

interests is presented in Session 6 (paper 0289). 
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