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ABSTRACT	
A	Predictive	Modeling	Approach	for	Assessing	Seismic	Soil	Liquefaction	Potential	Using	CPT	Data	

Jonathan	Paul	Schmidt	
	

Soil	liquefaction,	or	loss	of	strength	due	to	excess	pore	water	pressures	generated	during	
dynamic	loading,	is	a	main	cause	of	damage	during	earthquakes.	When	a	soil	liquefies	(referred	
to	 as	 triggering),	 it	 may	 lose	 its	 ability	 to	 support	 overlying	 structures,	 deform	 vertically	 or	
laterally,	or	cause	buoyant	uplift	of	buried	utilities.	Empirical	liquefaction	models,	used	to	predict	
liquefaction	potential	based	upon	in-situ	soil	index	property	measurements	and	anticipated	level	
of	 seismic	 loading,	are	 the	 standard	of	practice	 for	assessing	 liquefaction	 triggering.	However,	
many	 current	models	 do	 not	 incorporate	 predictor	 variable	 uncertainty	 or	 do	 so	 in	 a	 limited	
fashion.	Additionally,	past	model	creation	and	validation	lacks	the	same	rigor	found	in	predictive	
modeling	in	other	fields.		

This	study	examines	the	details	of	creating	and	validating	an	empirical	liquefaction	model,	
using	the	existing	worldwide	cone	penetration	test	liquefaction	database.	Our	study	implements	
a	logistic	regression	within	a	Bayesian	measurement	error	framework	to	incorporate	uncertainty	
in	predictor	variables	and	allow	for	a	probabilistic	interpretation	of	model	parameters.	Our	model	
is	built	using	a	hierarchal	approach	account	for	 intra-event	correlation	in	 loading	variables	and	
differences	in	event	sample	sizes	that	mirrors	the	random/mixed	effects	models	used	in	ground	
motion	prediction	equation	development.	The	model	is	tested	using	an	independent	set	of	case	
histories	from	recent	New	Zealand	earthquakes,	and	performance	metrics	are	reported.			

We	found	that	a	Bayesian	measurement	error	model	considering	two	predictor	variables,	
qc,1	and	CSR,	decreases	model	uncertainty	while	maintaining	predictive	utility	for	new	data.		Two	
forms	of	model	 uncertainty	were	 considered	 –	 the	 spread	of	 probabilities	 predicted	by	mean	
values	 of	 regression	 coefficients	 (apparent	 uncertainty)	 and	 the	 standard	 deviations	 of	 the	
predictive	 distributions	 from	 fully	 probabilistic	 inference.	 	 Additionally,	 we	 found	 models	
considering	friction	ratio	as	a	predictor	variable	performed	worse	than	the	two	variable	case	and	
will	require	more	data	or	informative	priors	to	be	adequately	estimated.				
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1 INTRODUCTION		

1.1 Research	Motivation	

	 Seismic	soil	liquefaction	is	a	major	cause	of	earthquake	damage	to	the	built	environment,	

second	only	 to	 tsunamis	 in	overall	 cost.	 	Many	West	 coast	US	metropolitan	 cities	 (and	plenty	

others	worldwide)	are	located	in	regions	of	high	seismicity	and	have	sizeable	developments	built	

upon	potentially	liquefiable	soils.	Recently,	the	Canterbury	earthquake	sequence	in	New	Zealand	

and	 the	 Tōhoku	 earthquake	 in	 Japan	 (both	 in	 2011)	 have	 shown	 how	 devastating	 the	

consequences	of	liquefaction	can	be	in	an	urban	environment.					

Broadly	speaking,	seismic	soil	liquefaction	is	when	a	loose,	saturated,	granular	soil	loses	

strength	due	 to	dynamic	earthquake	 loading	 (NAE,	2016).	Although	seismic	 soil	 liquefaction	 is	

often	 foremost	 in	 engineers	 minds,	 liquefaction	 can	 also	 occur	 from	 blasting	 or	 pile	 driving,	

groundwater	seepage,	wave	action,	and	other	loading	situations.			

When	shaken,	a	loose	soil	will	tend	to	densify	–	much	like	pressing	your	knuckles	on	your	

two	hands	together,	then	sliding	them	past	one	another	into	the	grooves	between.	However,	if	

Figure	1	–	Damage	Resulting	from	Liquefaction	Induced	Ground	Failure	in	the	1964	Niigata	
Earthquake	
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this	space	(the	soil	pores)	is	fully	saturated	with	water	the	soil	cannot	immediately	densify	and	

will	instead	“squeeze”	the	pore	water.	This	practically	incompressible	pore	water	will	then	push	

back	 on	 the	 soil	 particles	 and	move	 them	 apart.	 This	 loss	 of	 contact	 (and	 associated	 friction)	

between	soil	particles	manifests	itself	as	a	loss	of	shear	strength.	If	the	loads	are	high	enough	and	

applied	quicker	 than	 the	pore	water	 can	 flow	out	of	 the	 soil	 the	particles	will	become	almost	

completely	 separated	 and	 the	 strength	will	 eventually	 drop	 to	 near	 zero.	When	 this	 happens	

(referred	to	as	liquefaction	triggering),	the	soil	will	behave	like	a	fluid.		

Liquefaction	damages	engineered	features	in	a	variety	of	ways	(NAE,	2016):	

• Foundations	that	rely	on	the	strength	of	the	competent	soil	to	support	structures	can	tilt	

and	sink	into	the	ground	(undergoing	a	bearing	capacity	failure),	damaging	the	structures	

they	support.	

• Soil	on	inclined	ground	may	flow,	referred	to	as	lateral	spreading,	and	damage	supported	

structures	that	cannot	tolerate	lateral	movements.	

• The	fluidized	soil	will	have	a	different	dynamic	response	and	may	amplify	seismic	waves	

transmitted	to	surface	structures.	

• When	 pore	 pressures	 dissipate	 soils	 may	 densify,	 causing	 vertical	 settlement	 and	

potential	structural	damage.	

• Underground	structures	will	become	buoyant,	 causing	damage	 to	utility	 lines	or	other	

buried	 features	 resulting	 in	 significant	 economic	 damage	 despite	 often	 not	 directly	

threatening	life	safety.		

• Soil	and	water	may	erupt	at	the	ground	surface	(sand	boils)	causing	cracking	of	pavements	

and	burying	objects	like	vehicles,	fire	hydrants,	or	sidewalks.	This	not	only	impedes	clean-

up	efforts	but	can	delay	critical	emergency	first	responders.	
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To	 assess	 the	 potential	 for	 liquefaction	 triggering,	 current	 practice	 relies	 on	 empirical	

liquefaction	models	(ELM’s)	(NAE,	2016).	These	ELM’s	are	developed	by	measuring	or	estimating	

soil	properties	and	seismic	 loads	at	 sites	of	observed	 liquefaction	or	nonliquefaction	 following	

earthquakes.	Modelers	then	use	a	variety	of	statistical	methods	ranging	from	simple	regressions	

to	 complex	 machine	 learning	 techniques	 to	 determine	 the	 relationship	 between	 soil	

properties/seismic	 loads	 and	 liquefaction	 potential.	 These	 relationships	 are	 used	 to	 make	

predictions	 of	 potential	 liquefaction	 occurrence	 at	 future	 sites	 during	 engineering	 design	 and	

analysis.	However,	as	discussed	at	length	by	the	Committee	on	State	of	the	Art	and	Practice	in	

Earthquake	Induced	Soil	Liquefaction	Assessment	there	are	significant	shortcomings	of	current	

ELM’s	(NAE,	2016).		

Ideally,	liquefaction	assessment	will	eventually	be	conducted	in	a	fully	performance	based	

engineering	(PBE)	approach	that	evaluates	engineered	features	over	the	entire	range	of	possible	

loadings	rather	than	a	single	or	discrete	group	of	seismic	events	(NAE,	2016).	This	approach,	which	

is	how	ground	acceleration	hazards	are	currently	handled,	requires	a	probabilistic	description	of	

liquefaction	potential	(NAE,	2016).		Currently,	only	two	models	used	in	common	practice	(Moss	

et	al.,	2006,	and	Idriss	and	Boulanger,	2016)	provide	this.		

Furthermore,	 a	 PBE	 approach	 requires	 explicit	 quantification	 of	 the	 uncertainty	

associated	with	 all	 levels	 of	 liquefaction	 assessment,	 from	 triggering	 to	 soil-structural	 system	

response	to	financial/life	losses	from	failure	(NAE,	2016).	In	this	framework,	reducing	uncertainty	

associated	with	the	potential	for	liquefaction	triggering	will	naturally	result	in	a	better	assessment	

of	liquefaction	(NAE,	2016).	The	principal	components	of	this	uncertainty	come	from	imperfect	

measurements	 or	 estimations	 of	 input	 variables	 (variable	 uncertainty)	 and	 from	 an	 imperfect	

model	 fit	 to	 the	 training	 data	 (model	 uncertainty).	While	 no	model	 can	 perfectly	 capture	 the	

triggering	relationship,	there	is	potential	for	choices	during	the	modeling	process	to	reduce	model	
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uncertainty	 while	 maintaining	 (or	 improving)	 predictive	 ability.	 By	 explicitly	 incorporating	

uncertainties	associated	with	predictor	variable,	a	modeler	can	often	reduce	overall	uncertainty	

in	the	final	product	(NAE,	2016).	A	primary	goal	of	this	thesis	is	to	apply	a	Bayesian	measurement	

error	model	to	liquefaction	triggering.	

Another	significant	limitation	of	existing	ELM’s	is	a	lack	of	openness	regarding	the	model	

building	 process.	 In	 this	 process,	 a	 modeler	 must	 make	 choices	 regarding	 which	 predictor	

variables	to	include,	how	to	pre-process	these	predictors,	what	model	forms	to	use,	and	many	

more.	When	a	modeler	makes	 these	decisions,	either	manually	or	as	part	of	pre-programmed	

algorithm,	they	will	naturally	have	some	idea	of	what	“good	model	performance”	 is	and	make	

their	 choices	 to	 achieve	 it.	 This	 notion	 of	 good	 performance	 can	 be	 concrete	 such	 as	 some	

statistical	 metric,	 based	 on	 engineering	 judgement	 and	 experience,	 or	 most	 often	 some	

combination	of	the	two.		While	necessary	to	the	modeling	process,	this	introduces	bias.	Because	

these	 training	 methods	 and	 metrics	 are	 often	 not	 reported	 along	 with	 the	 finished	 product,	

practitioners	and	code	writers	cannot	currently	evaluate	these	model	biases	when	selecting	which	

relationships	 to	 use	 or	 recommend	 in	 guidance	 documents.	 Within	 this	 context	 of	 our	 own	

definition	of	“good	model	performance”	we	discuss	 the	 impacts	of	modeling	choices	and	how	

they	can	be	used	in	future	model	development.	

Furthermore,	when	reporting	performance	metrics	most	use	the	same	data	as	was	used	

to	build	the	model	to	validate	it.	This	will	lead	to	optimistically	biased	performance	metrics	and	

possibly	overfit	models	(Kuhn	and	Johnson,	2013).	To	date,	only	several	relevant	models	(Oomen	

et	al.,	2010,	Rezania	et	al.,	2011,	etc.)	split	their	databases	into	training	and	testing	sets	through	

cross	validation	or	other	methods	to	develop	relatively	unbiased	metrics	of	model	performance.	

As	will	be	discussed	in	the	literature,	these	models	unfortunate	do	not	offer	a	useable	product	
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from	a	practical	engineering	standpoint.	 	 	A	second	goal	of	this	thesis	 is	to	show	how	a	model	

validation	strategy	that	seeks	to	minimize	bias	can	be	justified	and	implemented.		

In	closing,	although	all	popular	triggering	models	more	or	less	follow	the	same	“simplified	

method”	 framework	 they	 differ	 (often	 notably)	 in	 both	 their	 inputs	 and	 results.	 Currently,	

practitioners	 must	 choose	 between	 models	 without	 clear	 guidance	 on	 their	 limitations	 or	

applicability	(NAE,	2016).		To	address	this,	the	Next-Generation	Liquefaction	(NGL)	project	funded	

by	the	Pacific	Earthquake	Engineering	Research	Center,	California	Department	of	Transportation,	

and	Nuclear	Regulatory	Commission	(among	others)	aims	to	rebuild	consensus	and	develop	new,	

usefully	sophisticated	models	for	liquefaction	assessment	(Stewart	et	al.,	2019).		

The	 NGL	 project	 envisions	 an	 “open,	 collaborative	 process	 for	model	 development	 in	

which	developer	teams	share	ideas	and	results	during	model	development,	so	as	to	reduce	the	

potential	 for	mistakes	and	to	mutually	benefit	 from	best	practices”	 (Stewart	et	al.,	2019).	This	

thesis	aims	to	contribute	to	this	ongoing	research	in	the	following	ways:		

• Develop	transparent	model	validation	strategies	to	be	used	when	examining	the	effects	

of	modeling	choices	including:	

o Predictor	variable	selection			

o Predictor	variable	transformations	

o Treatment	of	predictor	variable	uncertainty	

o Mode	form	and	complexity	

• Reduce	model	uncertainty,	while	maintaining	(or	improving)	predictive	capability.	

• Present	a	novel	model	framework	that	can	be	built	upon	in	future	efforts.			

1.2 Organization	of	Thesis	

This	thesis	is	written	with	the	hope	that	readers	with	a	basic	understanding	of	probability	

and	statistics	and	the	principles	of	geotechnical	earthquake	engineering	can	understand	the	work.	
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Chapter	 2,	 following	 this	 introduction,	 presents	 relevant	 background	 information	 regarding	

predictive	modeling,	soil	mechanics	and	liquefaction	assessment,	and	the	progression	of	ELM’s	in	

common	engineering	practice	up	to	the	present	day.	The	first	part	of	Chapter	2	deals	with	the	

fundamentals	of	liquefaction	mechanics	and	the	commonly	used	“Simplified	Procedure”	method	

of	analysis.	The	second	part	summarizes	relevant	statistical	and	mathematical	concepts	useful	for	

understanding	the	models	used	in	earlier	work	and	the	ones	developed	in	this	thesis.	The	final	

part	of	Chapter	2	reviews	prior	probabilistic	CPT	liquefaction	triggering	models	to	provide	context	

and	motivation	for	our	present	efforts.	Chapter	3	details	our	modeling	process,	focusing	on	the	

choices	a	researcher	must	make	before	arriving	at	a	final	product.	The	effect	of	these	choices	on	

the	 models’	 relative	 performances	 is	 presented	 in	 Chapter	 4,	 followed	 by	 conclusions	 and	

recommendations	for	future	research	in	Chapter	5.		
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2 BACKGROUND	AND	LITERATURE	REVIEW	

	 This	aim	of	this	chapter	is	to	give	background	knowledge	of	empirical	models	developed	

to	predict	 liquefaction	potential	 and	present	 statistical	 theory	 relevant	 to	our	model	building.	

Although	 the	 overview	 is	 written	 with	 the	 intent	 that	 readers	 with	 an	 undergraduate	

understanding	 of	 geotechnical	 engineering	 and	 statistics	 should	 be	 able	 to	 understand	 our	

modeling	techniques,	further	reading	of	the	provided	reference	will	give	more	depth.								

2.1 A	Review	of	Soil	Mechanics	Relevant	to	Liquefaction		

Soil	can	be	thought	of	as	a	three	phase	material	--	in	a	given	volume	there	will	be	some	

solid	 particles,	 (usually	 between	 0.001	 and	 75mm),	 some	 liquid	 (typically	 water),	 and	 some	

amount	of	gas	(typically	air)	(Holtz	ET	AL.,	2011).	The	macroscopic	material	response	of	soil	is	a	

combination	of	the	complicated	interactions	of	all	of	these.	While	it	is	prohibitively	complicated	

to	 account	 for	 all	 of	 the	 forces	 from	 these	 soil-soil	 and	 soil-fluid	 interactions,	 the	principle	 of	

effective	stress	states	that	the	engineering	behavior	of	soil	is	governed	by	the	following	equation	

(after	Holtz	et	al.,	2011):	

𝜎"# = 𝜎" − 𝑢	
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Where	𝜎"	 is	 the	 vertical	 total	 stress	 (an	 averaged	 inter-particle	 contact	 stress	 on	 a	 horizontal	

plane),	u	is	the	pore	water	pressure,	and	𝜎"# 	is	the	vertical	effective	stress	(visualized	in	Figure	2,	

following)	

Nearly	 every	 relevant	 engineering	 property	 (strength,	 stiffness,	 dynamic	 properties,	 etc.)	 is	

affected	to	some	degree	by	the	current	stress	state.		 	

Because	soil	is	a	particulate	material,	shear	failure	occurs	when	the	particles	slide	or	roll	

past	one	another	(Holtz	et	al.,	2011).	Thus,	a	soil’s	strength	depends	primarily	on	the	interactions	

between	 the	 particles	 and	 pore	 water,	 although	 particle	 crushing	 can	 occur	 under	 very	 high	

confining	stresses.	These	interactions	are	broadly	grouped	into	frictional,	resulting	from	physical	

contact	 between	 particles,	 and	 cohesive,	 the	 “stickiness”	 that	 results	 from	 electrostatic	

attraction,	chemical	bonding,	capillary	action,	and	other	small-scale	forces	(Holtz	et	al.,	2011).	The	

Mohr-Coulomb	shear	strength	equation	is	the	most	common	model	for	soil	strength	soil	strength,	

expressed	as	(after	Holtz	et	al.,	2011):	

𝜏 = 	𝜎# tan 𝜙# + 𝑐′	

where	𝜏	is	the	shear	strength	along	a	plane	of	interest,	𝜎#	is	the	effective	stress	normal	to	that	

plane,	𝜙#	 is	 the	soil’s	 friction	angle,	an	 intrinsic,	stress	 independent	property	which	defines	 its	

Figure		2	–	A	Visualization	of	the	Principle	of	Effective	Stress.	Reproduced	from	
NAE,	2016	
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frictional	strength,	and	c’	is	the	soil’s	cohesion,	an	intrinsic,	stress	independent	property	which	

defines	its	“stickiness”.		

From	 these	 two	 simple	 equations	 alone	 one	 can	 understand	 a	 great	 deal	 about	

liquefaction	behavior.	 Firstly,	as	pore	water	pressure	 increases	effective	stress	will	decrease—

leading	to	a	reduction	in	shear	strength.	If	 it	 increases	high	enough	shear	strength	will	drop	to	

near	zero,	provided	the	soil	has	negligible	cohesion	typical	of	many	sands.		Secondly,	soils	that	

have	enough	intrinsic	cohesion,	typically	from	high	fines	content	and	plasticity),	will	not	liquefy	

because	of	the	stress	independence	of	this	property.	They	may	undergo	a	different	type	of	failure	

called	cyclic	softening	but	because	it	is	fundamentally	different	type	of	failure	than	liquefaction	

we	will	not	discuss	it	in	this	work	(NAE,	2016).		

Naturally,	 determining	 the	 boundary	 between	 predominantly	 sand-like	 and	

predominantly	clay-like	behavior	(i.e.	which	soils	are	susceptible	to	liquefaction)	is	nontrivial	and	

the	subject	of	ongoing	research	(NAE,	2016).	For	the	remainder	of	this	section,	the	discussion	will	

be	focused	on	soils	exhibiting	sand	like	behavior.		

Figure	3	–	A	Visualization	of	Idealized	Dry	Sand	Stress-strain	Behaviors	Under	Monotonic	
Loading	with	Different	Starting	Void	Ratios.	Reproduced	from	NAE,	2016	
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2.1.1 Soil	Behavior	Under	Dynamic	Loading	

Under	 monotonic	 loading	 (sheared	 only	 in	 one	 direction),	 a	 dry	 sand	 will	 undergo	

different	volume	changes	depending	on	its	initial	void	ratio	(Figure	3).		

Sands	that	are	initially	very	loose	will	densify,	called	contractive	behavior,	and	sands	that	

are	 initially	dense	with	become	less	dense,	called	dilative	behavior.	However,	even	very	dense	

sands	will	still	densify	to	some	degree	before	dilating.	This	is	because	it	is	highly	unlikely	they	are	

at	their	theoretical	maximum	density	and	thus	have	some	small	amount	of	room	to	contract.		

Importantly,	 at	 very	 large	 shear	 strains	both	dense	and	 loose	 sands	 tend	 to	 the	 same	

asymptotic	 strength	 and	 void	 ratio.	 This	 void	 ratio,	 at	 which	 the	 soil	 shears	 with	 continuous	

deformation	and	no	change	in	principal	stresses,	is	termed	the	critical	void	ratio	and	separates	

contractive	and	dilative	states	(Holtz	et	al.,	2011).	The	critical	void	ratio	(CVR)	has	been	found	to	

be	a	function	of	effective	stress,	and	follows	a	general	trend	shown	below	(Figure	4).			

	

		 Another	 important	 distinction	 made	 when	 describing	 soil	 strength	 and	 deformation	

behavior	 is	 that	 of	 drained	 versus	 undrained	 behavior.	 When	 drained	 conditions	 apply,	 the	

Figure		4	–	The	Relationship	Between	Critical	Void	Ratio	and	Effective	Stress	That	Separates	
Contractive	and	Dilative	Soil	States.	Reproduced	from	NAE,	2016	
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loading	rate	is	slow	relative	to	the	permeability	of	the	soil.	Water	can	drain	from	the	voids	during	

shear	and	the	soil	 skeleton	 is	able	 to	change	volume	 leading	 to	no	significant	changes	 in	pore	

water	pressure.	Conversely,	when	undrained	conditions	apply	the	loading	rate	is	fast	relative	to	

the	permeability	of	the	soil.	Water	cannot	drain	from	the	voids	and	significant	changes	in	pore	

water	pressure	do	occur.	Returning	to	the	knuckles	analogy	described	in	the	first	chapter,	one	can	

see	that	a	tendency	for	contraction	will	cause	positive	pore	pressure	generation	and	a	tendency	

for	dilation	will	cause	negative	 (suction)	pore	pressure	generation.	The	different	“paths”	a	soil	

takes	 during	 loading,	 either	 through	 void	 ratio	 change	 or	 effective	 stress	 change,	 are	 shown	

conceptually	in	Figure	5,	following.		

When	drained,	a	loose	sand	will	decrease	in	void	ratio	(contract)	and	a	dense	sand	will	

increase	in	void	ratio	(dilate).	However,	in	undrained	loadings	these	tendencies	to	volume	

change	will	instead	cause	reduced	or	increased	effective	stress	(respectively)	from	pore	water	

pressure	generation.	The	state	parameter,	𝜓,	is	a	measure	of	how	contractive	or	dilative	a	soil	

is.	

Figure	5	–		The	Behavior	of	a	Saturated	Sand	in	Both	Drained	and	Undrained	Loading.	
Reproduced	from	NAE,	2016	
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2.1.2 Behavior	Under	Shear	Reversal	(Cyclic	Loading)	

Unlike	 many	 typical	 loading	 scenarios	 (surcharge,	 slopes,	 etc.)	 seismic	 loads	 are	

characterized	by	repeated	application	of	shear	stresses	that	change	in	direction	and	intensity	as	

earthquake	waves	move	 through	 the	 soil	 profile	 and	 are	 reflected	 by	 boundaries.	 	 The	more	

complicated	behavior	is	shown	and	described	for	a	typical	liquefiable	soil	during	a	cyclic	laboratory	

test	in	Figure	6,	following.		

(1)	The	soil	begins	at	an	initial	stiffness,	and	softens	dramatically	as	the	test	progresses	

(the	numbers	above	plot	points	 indicate	cycle	number).	 (2)	The	 soil	 is	 initially	 contractive	and	

effective	stress	decreases	throughout	the	test	as	pore	pressures	rise	then	becomes	dilative	when	

it	reaches	the	phase	transformation	line	(in	green).	(3)	The	initial	maximum	amplitude	of	shear	

strain	 for	each	cycle	 is	 relatively	 small,	 then	becomes	 larger	and	 larger	as	 the	soil	approaches	

Figure	6	–	Cyclic	Loading	Response	of	a	Typical	Loose,	Liquefiable	Soil.	Reproduced	from	NAE,	
2016	
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failure.	(4)	The	effective	stress	decreases	with	increasing	cycles,	and	exhibits	oscillatory	behavior	

when	the	soil	begins	to	dilate.	Eventually,	it	reaches	near	zero	and	liquefaction	is	triggered.	

2.1.3 Factors	That	Affect	Liquefaction	Potential	

A	wide	variety	of	in-situ	soil	properties	and	earthquake	loading	characteristics	can	affect	

the	potential	for	a	susceptible	soil	to	liquefy.	The	simplest	of	these	is	saturation,	or	the	percentage	

of	pore	space	filled	with	water	–	most	research	indicates	that	a	saturation	level	of	near	100%	(i.e.	

below	 the	 groundwater	 table)	 is	 required	 for	 a	 soil	 to	 liquefy	 (NAE,	 2016).	 Load	 magnitude,	

duration,	and	soil	relative	density	have	a	similarly	intuitive	relationship	with	liquefaction	potential	

(Figure	7).		

Increased	load	requires	fewer	cycles	to	failure	while	denser	soils	require	more.	Importantly,	even	

a	somewhat	dense	soil	will	liquefy	with	a	high	enough	load	and	long	enough	shaking.		Similarly,	

Figure	7	–	Relationship	Between	Load	Magnitude,	Duration,	and	Cycles	to	Liquefaction.	
Expressed	as	shear	stress	required	to	trigger	liquefaction	(y-axis),	duration,	expressed	as	
number	of	cycles	to	liquefaction	(x-axis),	and	density,	shown	as	three	different	curves.	

Reproduced	from	NAE,	2016	
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greater	magnitudes	of	maximum	strain	amplitude	are	also	associated	with	larger	pore	pressure	

development.		

	Soil	type	is	also	extremely	important,	as	plastic	fine	grained	soils	have	significantly	less	

contractive	behavior	under	loading.	Beyond	a	certain	fines	content	and	plasticity	index	a	soil	will	

no	longer	be	susceptible	to	liquefaction	(NAE,	2016).	Initial	shear	stresses,	from	sloping	ground	or	

foundations,	 can	 either	 increase	 the	 rate	 of	 pore	 pressure	 generation,	 for	 very	 loose	 soils,	 or	

suppress	 it,	 for	 medium	 dense	 to	 dense,	 though	 research	 is	 not	 yet	 decided	 on	 the	 exact	

magnitude	of	these	effects	(NAE,	2016).		Aging	and	cementation	also	effect	liquefaction	potential	

—	Holocene	age	younger	deposits	have	been	observed	to	 liquefy	more	often	than	Pleistocene	

age	 or	 other	 older	 deposits	 (NAE,	 2016).	 Finally,	 the	 spatial	 variability	 in	 pore	 pressure	

development	within	the	deposit,	such	as	when	it	is	capped	by	an	impermeable	layer	or	makes	up	

the	core	of	an	earthen	dam,	will	also	effect	liquefaction	potential	(NAE,	2016).		

2.1.4 Measurement	of	Soil	Properties	Relevant	to	Liquefaction	Triggering	

	 Laboratory	testing	is	typically	not	used	to	assess	liquefaction	triggering	potential	because	

of	 the	 potentially	 unconservative	 effect	 of	 sample	 disturbance.	 Even	 with	 extremely	 careful	

sampling,	 liquefiable	 sands	unavoidably	densify	 some	amount	before	 testing	which	will	 under	

predict	liquefaction	potential	(NAE,	2016).	Instead,	liquefaction	assessments	use	representative	

in-situ	test	parameters	from	tests	such	as	the	standard	penetration	test	(SPT),	shear	wave	velocity	

(Vs)	 testing,	 or	 the	 cone	 penetration	 test	 (CPT).	Of	 all	 of	 all	 the	methods	 for	 determining	 soil	

liquefaction	 resistance,	 CPT	 measurements	 are	 preferred	 because	 of	 their	 high	 quality,	

repeatable,	near-continuously	sampled	data,	and	their	insensitivity	to	operator	error	which	is	a	

drawback	of	SPT	blow	counts	(NAE,	2016).		A	cone	penetrometer	is	equipped	with	load	cells	and	

friction	transducers	to	measure	the	force	per	unit	area	on	both	the	tip	of	the	cone	and	sleeve	

(Figure	8).		
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These	are	referred	to	in	practice	as	tip	resistance	(qc)	and	sleeve	friction	(fs).	For	ease	of	

interpretation,	 often	 times	 the	 friction	 ratio	 (Rf)	 of	 sleeve	 friction	 divided	 by	 tip	 resistance	 is	

reported	 instead.	 Pore	 water	 pressure	measurements	 (u)	 are	 also	 often	 recording	 to	 correct	

tip/friction	 measurements	 for	 dynamic	 effects.	 A	 typical	 CPT	 sounding	 is	 shown	 in	 Figure	 9,	

following.	 The	 data	 obtained	 from	 the	 test	 are	 empirically	 correlated	 with	 many	 useful	

engineering	properties.	In	certain	cases,	the	penetration	resistance	is	normalized	to	correct	for	

overburden	 stresses	 and	 referred	 to	 as	 qc,1.	 Many	 ELM’s	 will	 further	 modify	 the	 penetration	

resistance,	often	denoted	by	additional	subscripts	following	the	1.			

	

	 	

Figure	8	–	An	Overview	of	CPT	Procedures	and	the	Data	Obtained	During	Testing.	Many	rigs	
are	also	equipped	with	geophones	to	measure	Vs.		Reproduced	from	the	NHCRP	report	“	Cone	

Penetration	Testing:	A	synthesis	of	highway	practice”.		
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In	closing,	liquefaction	behavior	is	highly	complex	and	usually	very	dependent	on	specific	

site	 conditions	 and	 earthquake	 loads.	 It	 is	 unlikely	 that	 any	model	 derived	 entirely	 from	 soil	

mechanics	would	be	able	to	be	generalized	to	a	suitable	breadth	of	field	conditions	to	be	useful	

in	 general	 practice.	 Instead,	 engineers	 turn	 to	 a	 semi-empirical	 “simplified	 method”	 when	

performing	 liquefaction	assessment.	That	 statistical	methods	used	 to	develop	 these	ELM’s	are	

discussed	in	the	following	section.	

	

Figure	9	–	A	Typical	CPT	Sounding	Showing	qc,	Rf,	and	u.	Many	reports	may	also	include	
correlations	for	typical	soil	properties	such	as	behavior	type,	shear	strength,	unit	weight,	and	

others.	Reproduced	from	Green	et	al.,	2011.	
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2.2 Review	of	Statistical	Methods	Commonly	Used	in	ELM	Development	

The	following	section	presents	a	brief	theoretical	background	of	the	statistical	methods	

used	to	develop	popular	ELM’s	and	in	our	study.	

2.2.1 Introduction	to	Regression	Modeling	

Regression	 models	 relate	 the	 expectation,	 or	 mean,	 of	 each	 observed	 outcome	 to	 a	

function	of	predictor	variables	and	regression	parameters	and	each	response	is	assumed	to	come	

from	 some	 specified	 distribution	 (Dunn	 and	 Smyth,	 2018).	 Formally,	 (after	 Dunn	 and	 Smyth,	

2018):	

𝐸 𝑦 = 𝜇4 = 𝑓 𝒙; 𝜷 	

𝑦	~	Some	Distribution 𝜇, 𝜎E 	

𝜇, 𝜎E 	

Where	y	is	an	observed	outcome	associated	with	two	vectors	(not	necessarily	the	same	length);	

x	of	predictor	variables	and	β	model	parameters.	Although	the	input	to	f	could	be	any	combination	

of	x’s	and	β’s,	 it	 is	often	convenient	 to	assume	that	 is	some	 linear	combination	of	 the	two,	as	

expressed	by	the	following	equation	(after	Duncan	and	Smyth,	2018):	

𝜂 = 𝛽H +	𝛽I𝑥I + ⋯+ 𝛽L𝑥L		

Where	𝜂	is	commonly	called	a	linear	predictor	encompassing	n	predictor	variables.		

2.2.2 Generalized	Linear	Models:	An	Overview		

Generalized	linear	models	(GLM)	are	a	specific	class	of	regression	models	that	are	widely	

used	to	model	binary	outcomes,	though	they	are	also	useful	for	count,	proportion	and	other	data	

(Dunn	and	Smyth,	2018).	In	this	model,	observed	outcomes	are	assumed	to	have	a	distribution	

from	 the	 exponential	 dispersion	 model	 family	 --	 a	 broad	 group	 of	 discrete	 and	 continuous	

probability	 functions	 that	 include	 the	 normal,	 binomial,	 and	 Poisson	 distributions	 (Dunn	 and	



18	

Smyth	2018).	Further,	the	linear	predictor	is	related	to	the	mean	via	a	special	function	called	a	

link	 function	 (after	 Dunn	 and	 Smyth,	 2018):	

𝑔 𝜇4 = 𝜂	𝑜𝑟	𝜇4 = 𝑔PI(𝜂)	

Where	g(	 )	 is	monotonic	and	differentiable.	 In	this	model	each	predictor	variable	 is	associated	

with	a	unique	regression	parameter.	

Any	GLM	can	be	fully	specified	by	the	link	function	and	specific	distribution	for	each	data	

point,	often	referred	to	as	the	variance	family	(Dunn	and	Smyth,	2018).	For	example,	setting	the	

link	function	to	simply	be	the	identity	function	and	the	error	distribution	to	be	normal	recovers	

the	classic	linear	least	squares	regression	(Dunn	and	Smyth,	2018).	Of	specific	interest	to	this	study	

is	the	logistic	regression,	a	widely	used	statistical	tool	for	modeling	binary	outcomes	(Oomen	et	

al.,	2010).		

2.2.3 Logistic	Regression	and	Bernoulli	Random	Variables	

Logistic	regression	is	a	GLM	with	a	logit	link	function	and	a	binomial	variance	family	(Dunn	

and	Smyth,	2018).	Although	many	link	functions	exist	for	binary	data,	Zhang	et	al.	2013	showed	

that	 for	 liquefaction	 triggering	 the	 logit	 link	 performs	 as	 good	 as	 or	 better	 than	 others	 as	

measured	using	a	Bayesian	model	comparison	method,	described	 in	 their	paper.	The	 logit	 link	

function	is	defined	as	(after	Liao	et	al.,	1988):	

𝑔 𝜇4 = ln
𝜇4

1 − 𝜇4
	

𝑦	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑛 = 1, 𝑝)	

The	binomial	probability	mass	 function	 for	a	 single	 trial	 is	 referred	 to	as	 the	Bernoulli	

distribution.	A	Bernoulli	random	variable	parametrized	by	a	probability	of	occurrence	p	has	the	

following	mass	function	(after	DeGroot	and	Schervish,	2012):	
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𝑓 𝑥 𝑝 = 𝑝\(1 − 𝑝)IP\	for	𝑥 = 0,1
0	else

	

	

or	in	tabular	form:	

x	 0	(no)	 1	(yes)	
f(x)	 1-p	 p	

	

The	mean	is	calculated	as:	

𝐸 𝑥 = 	𝑝 1 + 1 − � 0 = 𝑝	

Usefully,	 the	mean	of	a	Bernoulli	 variable	 is	 simply	 the	probability	of	a	positive	outcome.	The	

variance	is:	

𝑉𝑎𝑟 𝑥 = 𝑝(1 − 𝑝)	

Variance	is	maximized	at	p	=	0.5	and	approaches	0	as	p	approaches	0	or	1,	expressing	the	intuition	

that	when	speaking	about	a	yes	or	no	outcome	we	are	more	certain	when	giving	it	a	high	or	low	

probability.		

Returning	to	our	formulation	of	a	logistic	regression,	it	is	natural	to	replace	the	mean	with	

the	 probability	 of	 the	 desired	 outcome	 when	 formulating	 the	 regression	 model.	 Considering	

probability	of	liquefaction	(denoted	PL),	we	can	state	(after	Liao	et	al.,	1988):		

ln
𝑃a

1 − 𝑃a
= 𝜂	

Inverting	the	logit	transformation,	we	now	have	a	direct	formula	for	computing	the	probability	of	

liquefaction	for	a	generic	data	point,	given	n	predictor	variables	and	regression	parameters	(after	

Liao	et	al.,	1988):	

𝑃b =
1

1 + exp −(𝛽H + 	𝛽I𝑥I + ⋯+ 𝛽L𝑥L	)
	

To	improve	model	utility,	it	is	common	to	use	transformations,	typically	powers	or	logarithms,	of	

the	original	predictor	variables	(Liao	et	al.,	1988).		
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2.2.4 Logistic	Regression:	Parameter	Estimation	

Although	other	methods	exist,	the	most	common	means	of	determining	the	regression	

parameters	is	via	maximum	likelihood	estimation.	The	estimated	coefficients	commonly	referred	

to	 as	maximum	 likelihood	estimates	 (MLE)	 (Dunn	and	 Smyth,	 2018).	 For	β,	 a	 vector	of	model	

coefficients,	the	likelihood	of	observing	nL	liquefied	cases	and	nNL	non-liquefied	cases	given	data	

x	associated	with	outcomes	y	is	(after	Zhang	et	al.,	2013):	

𝑙 𝜷|𝒚, 𝒙 = 	 𝑃b,g

Lh

giI

(1 − 𝑃b,j)
Lkh

jiI

	

Where	PL,i	is	calculated	from	the	equation	preceding	for	the	ith	instance	of	liquefaction	using	the	

corresponding	 predictor	 variables.	 Similarly,	 PL,j	 is	 computed	 for	 the	 jth	 instance	 of	

nonliquefaction.	 The	 value	 of	β	 that	maximizes	 this	 function	 is	 called	 its	maximum	 likelihood	

estimate.		For	efficiency,	most	computer	programs	actually	maximize	the	logarithm	of	the	above	

function	(called	the	log-likelihood).		

2.2.5 Dealing	with	Class	Imbalance	

Because	post-earthquake	geotechnical	reconnaissance	is	often	focused	on	sites	that	have	

experienced	 ground	 failure	 (and	 subsequence	 impacts	 to	 engineered	 features)	 liquefaction	

databases	contain	more	liquefied	cases	than	non-liquefied	cases.	Several	papers	have	examined	

the	influence	of	this	class	imbalance	on	various	liquefaction	models	(e.g.,	Cetin	et	al.,	2004;	Hu	et	

al.,	 2017;	 Yazdi	 et	 al,.	 2013;	Oomen	 et	 al.,	 2011),	 but	 their	 results	 are	 often	 contradictory	 or	

inconclusive.	Many	models	(Cetin	et	al.	2004,	Moss	et	al.	2006,	Idriss	and	Boulanger,	2016,	etc.)	

use	a	weighting	method	that	assigns	different	weights	to	liquefaction	and	nonliquefaction	cases	

in	the	parameter	estimation	process.	One	such	weighted	log-likelihood	is	formulated	as	follows	

(after	Zhang	et	al,	2013)	
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ln 𝑙 𝜷 = 	𝑤b ln 𝑃b,g + 𝑤mb ln	(1 − 𝑃b,j)
Lkh

jiI

Ln

giI

	

Where	wl	and	wNL	are	weights	assigned	to	cases	of	liquefaction	and	non-liquefaction,	respectively.		

Alternatively,	 instead	 of	 assigning	 case	 weights	 during	 the	 fitting	 process,	 resampling	

procedures	attempt	to	balance	the	dataset	before	the	model	is	built	(Kuhn	and	Johnson,	2013).	

Up-sampling	 procedures	 randomly	 select	 observations	 in	 the	minority	 (less	 frequent)	 class	 to	

duplicate	and	down-sampling	procedures	randomly	select	observations	in	the	majority	class	to	

remove	(Kuhn	and	Johnson,	2013).	In	the	context	of	liquefaction	modeling,	Hu	et	al.,	2017	showed	

that	 up-sampling	 procedures	 have	 the	 potential	 to	 improve	 models’	 predictive	 ability.	

Importantly,	 they	also	demonstrated	 that	 the	best	method	 for	weighting	classes	differently	or	

compensating	minority/majority	classes	is	model	dependent,	and	should	be	adjusted	during	the	

fitting	process	(Hu	et	al.,	2017).		

The	 above	 likelihood	 formulations	 assume	 that	 liquefaction	 or	 nonliquefaction	 are	

statistically	independent.	In	reality,	there	is	likely	correlation	between	the	predictor	variables	of	

interest.	Whereas	resistance	data	can	be	(and	for	this	database-	are)	selected	to	be	statistically	

independent	there	will	be	some	unavoidable	correlation	in	the	loading	variables.	Specifically,	a	

group	of	observations	 in	an	event	are	all	 subjected	 to	 the	same	earthquake	 loading	 (although	

each	site	response	will	be	different	due	to	local	soil	conditions).	Thus,	it	is	natural	to	believe	that	

certain	groups	will	be	more	likely	to	liquefy	and	certain	groups	will	not.	If	this	is	not	accounted	

for,	the	resulting	model	may	be	poorly	fit	and	give	misleading	results	(Clark	and	Linzer,	2015).	

2.2.6 An	Introduction	to	Mixed	Effects	and	Multilevel	Modeling	

Multilevel	models,	sometimes	referred	to	as	mixed	effects,	random	effects,	or	hierarchal	

models,	extend	classical	regression	models	by	allowing	model	parameters	(slopes	and	intercepts)	

to	change	between	groups	(Jiang,	2007).	For	the	purpose	of	this	paper	we	will	refer	to	parameters	
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that	do	not	change	between	groups	as	fixed	effects	and	parameters	that	do	as	random	effects,	

recognizing	that	literature	on	the	subject	does	not	always	agree	on	these	definitions	(Gelman	and	

Hill,	 2007).	 Mixed	 effects	 models	 have	 seen	 noticeable	 use	 in	 ground	 motion	 attenuation	

relationship	 development	 (e.g.	 Brillinger	 and	 Preisler,	 1985,	 Abrahamson	 and	 Youngs,	 1992,	

Kuehn	and	Scherbaum,	2015).		

The	 motivation	 for	 mixed	 models	 typically	 arises	 from	 data	 that	 has	 some	 natural	

grouping	or	hierarchy.	For	example,	a	modeler	investigating	student	test	performance	may	group	

students	into	classes,	classes	into	schools,	and	schools	into	districts.	Or,	a	modeler	investigating	

voter	preferences	may	group	voters	by	ethnicity,	gender,	class,	and	geographic	location.	There	

will	be	natural	correlation	in	these	groups	–	students	in	a	better	school	will	likely	perform	better	

than	others	or	voters	from	a	certain	economic	class	may	tend	to	vote	one	way	or	another.	A	classic	

regression	approach	that	does	not	account	for	data	grouping	is	unable	to	determine	these	group	

effects	and	the	impact	they	have	on	population	mean	trends	(Gelman	and	Hill,	2007).	However,	

a	hierarchal	approach	(mixed	effects	model)	has	a	systematic	way	of	estimating	and	accounting	

for	 this	 inter-group	 variability	without	 having	 to	 explicitly	model	 its	 causes	 (Abrahamson	 and	

Youngs,	1992).		

Recommendations	for	when	to	use	a	mixed	model	are	often	unclear	or	not	immediately	

applicable	 to	 the	 research	 problem	 of	 interest	 (Clark	 and	 Linzer,	 2015).	 Commonly,	 the	

recommendation	is	to	use	a	mixed	model	when	interest	is	in	the	underlying	population	as	a	whole	

or	when	the	population	includes	groups	not	in	the	data,	both	of	which	would	make	sense	in	the	

context	of	liquefaction	modeling	(Gelman	and	Hill,	2007).	However,	with	the	current	model	fitting	

abilities	of	software	it	is	possible	to	almost	always	fit	both	a	mixed	and	classical	model	especially	

with	the	rise	of	powerful	Bayesian	inference	programs	(e.g.	Stan).	By	doing	so	the	researcher	can	



23	

investigate	 the	 scale	of	 the	 inter-event	 variances,	 the	 impact	of	 the	differing	 coefficients,	 and	

decide	for	themselves	the	value	added	by	the	mixed	model.		

A	properly	defined	multilevel	model	will	have	the	following	benefits	over	a	classical	model	

that	are	useful	in	the	context	of	our	work.	A	multilevel	model	accounts	for	both	inter	and	intra	

group	 variation	 resulting	 in	 better	 estimates	 for	 both	 group	 level	 parameters	 and	 population	

means	(Gelman	and	Hill,	2007).	They	also	allow	for	better	prediction	of	events	in	new	groups	–	a	

model	that	ignores	group	variability	will	tend	to	understate	the	variability	in	predictors	for	new	

groups	(Gelman	and	Hill,	2007).		

Models	 fit	 to	 grouped	data	 conceptually	 fall	 between	 two	extremes	–	no	pooling	 and	

complete	 pooling	 (Gelman	 and	 Hill,	 2007).	 A	 completely	 pooled	model,	 as	 the	 name	 implies,	

groups	all	the	data	together	and	estimates	a	single	set	of	parameters.	However,	this	completely	

ignores	 the	 impacts	 of	 group	 level	 variability	 and	 may	 potentially	 violate	 assumptions	 of	

independent	data	due	to	 its	grouped	nature	(Gelman	and	Hill,	2007).	On	the	other	hand,	a	no	

pooling	model	fits	a	regression	for	each	group	separately.	Whereas	the	completely	pooled	model	

understates	the	group	level	variability,	this	approach	will	often	over	estimate	it	(Gelman	and	Hill,	

2007).	For	example,	if	a	group	has	a	small	number	of	data	points	compared	to	others	in	the	data	

set,	its	estimations	of	a	predictors	effect	on	the	outcome	may	diverge	significantly	from	the	true	

effect	due	to	chance	alone	(Clark	and	Linzer,	2015).		

Mixed	models	 can	 be	 visualized	 as	 a	 compromise	 between	 no	 pooling	 and	 complete	

pooling	 (Gelman	and	Hill,	2007).	They	allow	parameters	to	vary	between	groups	but	constrain	

these	parameters	to	come	from	a	population	level	distribution	with	hyperparameters	estimated	

from	the	data,	hence	their	“hierarchical”	description.		To	illustrate	this	concept,	we	consider	the	

most	basic	multilevel	model:	a	linear	regression	where	the	intercept	is	allowed	to	vary	by	event	

and	the	slope	is	fixed.	A	model	with	i	data	points,	j	groups,	a	single	slope	(𝛽),	an	intercept	(𝛼)	that	
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varies	between	groups,	and	a	normally	distributed	error	 term	(𝜖)	 can	be	expressed	as	 follows	

(after	Gelman	and	Hill,	2007):	

𝑦g = 	𝛼j g + 𝛽 ∗ 𝑥g + 𝜖g 	

𝜖	~	Normal(0, 𝜎s)	

This	is	equivalent	to	stating:	

𝑦g~	Normal 𝛼j g + 𝛽 ∗ 𝑥g, 𝜎s 	

The	 subscript	 on	 the	 intercept	 term	 𝛼j, g indicates	 that	 is	 for	 the	 j
th	 event.	 The	 event	 level	

intercepts	are	given	the	further	constraint	that	they	come	from	a	normal	distribution	with	mean	

and	standard	deviation	estimated	from	the	dat.	The	full	model	is	typically	stated	as:	

Prior:	
𝛼j~Normal(𝜇t	, 𝜎t)	

Data:	
𝑦g~	Normal 𝛼j g + 𝛽 ∗ 𝑥g, 𝜎s 	

	
Technically,	 the	 model	 for	 y	 is	 conditional	 on	 the	 𝛼’s.	 An	 alternate	 but	 equivalent	 “random	

effects”	formulation	would	be	to	state:	

𝑦g~	Normal (𝛽H + 𝛼j g ) + 𝛽I ∗ 𝑥g, 𝜎s 	

𝛼j~Normal(0, 𝜎t)	

In	 this	model	 the	 population	 level	 intercepts,	 the	mean	 of	 the	 event	 level	 terms,	 are	

included	explicitly	and	the	random	effect	is	modeled	as	a	normally	distributed	deviation	from	this	

value.	However,	because	the	two	models	are	functionally	identical	we	prefer	the	first	formulation	

because	with	many	varying	coefficients	stating	an	adjustment	term	for	each	becomes	tedious.	

Furthermore,	we	believe	that	the	first	formulation	is	a	more	natural	way	of	expressing	the	data’s	

hierarchy.			

Returning	to	our	varying	intercepts	linear	model,	each	group’s	intercept	can	be	expressed	

as	a	weighted	average	of	the	no	pooling	estimate	and	the	mean	intercept	of	all	the	groups.	In	the	
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following	formula	the	following	new	terms	are	introduced:,	nj	the	number	of	data	points	in	the	jth	

event,	𝑦j 	and	the	𝑥j 	the	j
th	event’s	mean	response	and	predictor	respectively,	𝜎4E	the	pooled	data’s	

variance,	and	𝜎tE	the	inter-group	intercept	variance	:	

𝛼j ≈

𝑛j
𝜎4E

𝑛j
𝜎4E

+ 1
𝜎tE

∗ 𝑦j − 𝛽 ∗ 𝑥v +

1
𝜎tE

𝑛j
𝜎4E

+ 1
𝜎tE

∗ 𝜇t 	

Because	equation	requires	a	simultaneous	estimate	of	the	variance	parameters	for	𝜎tE	and	𝜎4E	it	

is	typically	solved	using	some	algorithmic	technique	(e.g	Abrahamson	and	Youngs,	1985).	While	

the	 estimation	 of	 group	 level	 effects	 becomes	 significantly	 more	 complicated	 outside	 of	 this	

example,	the	behavior	described	by	this	equation	remains	the	same.		

Averages	from	groups	with	smaller	sample	sizes	carry	less	information	and	the	weighting	

pulls	 the	 multilevel	 estimate	 closer	 to	 the	 population	 average.	 This	 effectively	 “shrinks”	

anomalous	 parameter	 estimates	 from	 sparse	 data	 groups	 closer	 to	 a	 better	 estimate	 and	

mitigates	the	effects	of	sample	size	disparity	(Clark	and	Linzer,	2015).		Conversely,	averages	from	

groups	 with	more	 data	 carry	more	 weight	 and	 the	multilevel	 estimate	 is	 pulled	 towards	 the	

group’s	 value.	 Two	 limiting	 cases	 naturally	 arise	 --	 If	 a	 group	 has	 no	 data,	 its	 estimate	 is	 the	

population	average	and	if	 it	has	an	extremely	 large	amount	of	data	 its	estimate	will	be	almost	

exactly	the	group’s	average.	Intermediate	cases	will	result	in	a	multilevel	estimate	between	the	

extremes	(Gelman	and	Hill,	2007).	

Multilevel	models	can	be	easily	extended	to	GLM’s	as	well.	In	our	case,	we	would	like	to	

define	a	multilevel	model	that	allows	coefficients	to	vary	between	events	Formally,	we	take		the	

original	equation	for	probability	of	 liquefaction		and	state	 it	 for	a	data	point	 in	the	jth	event	as	

(after	Gelman	and	Hill,	2007):	

𝑃b[j] =
1

1 + exp −(𝛽jH + 𝛽j,I𝑥I + ⋯+ 𝛽j,L)
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𝛽H,j	~	Nomal(𝜇yz, 𝜎yz)	
𝛽I,j	~	Nomal(𝜇y{, 𝜎y{)	

...	
𝛽L,j, ~	Nomal(𝜇y|, 𝜎y|)	

In	this	model,	each	event	gets	its	own	set	of	parameters	which	are	constrained	to	come	from	a	

normal	 population	 distribution.	 The	 population	 means	 and	 standard	 deviations	 for	 each	

parameter,	referred	to	as	the	coefficent’s	hyperparameters,	are	also	estimated.		

The	resulting	likelihood	function	does	not	have	a	closed	form	for	most	generalized	linear	

models	 and	 is	 approximated	 through	 numerical	 integration,	 typically	 Gaussian	 quadrature	

(Breslow	and	Clayton,	1993).	Most	books	on	the	subject	(e.g.	Jiang,	2007)	include	more	detailed	

descriptions	of	 these	methods	 for	 the	 interested	 reader.	However,	when	data	 is	 sparse	at	 the	

group	 or	 the	 number	 of	 groups	 is	 small	 level	 these	 numerical	 maximum	 likelihood	 methods	

become	 unstable	 or	 wholly	 unusable	 (Gelman	 and	 Hill,	 2007).	 Bayesian	 inference	 often	 can	

commonly	be	used	to	estimate	hierarchal	models	that	cannot	be	solved	by	maximum	likelihood	

techniques	(Gelman	and	Hill,	2007).		

2.2.7 Introduction	to	Bayesian	Modeling	

A	major	 limitation	of	any	 frequentist	 (or	maximum	 likelihood)	based	approach	 is	 that,	

philosophically,	 parameters	 cannot	 be	 treated	 in	 a	 probabilistic	 fashion	 (Kruschke,	 2015).	 A	

Bayesian	analysis,	on	the	other	hand	solves	for	the	probability	of	observing	different	parameter	

values	given	experimental	data	and	prior	knowledge.	The	value	in	this	approach	first	lies	in	ability	

to	quantify	model	uncertainty	in	readily	understandable	terms.		Secondly,	the	inclusion	of	prior	

information	 provides	 a	 consistent	 and	 mathematically	 sound	 framework	 for	 allowing	 expert	

consensus	and	physical	behavior	of	the	system	being	studied	to	 inform	models	when	data	are	

sparse.		

Bayes’	 Rule	 is	 the	 mathematical	 framework	 for	 updating	 our	 prior	 beliefs	 about	 the	

probability	of	an	event	occurring	based	upon	observed	evidence	(Christensen	et	al.,	2011).	In	a	
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data	analysis	 setting,	we	begin	with	a	hypothesis	about	our	data,	 typically	 regarding	values	of	

some	population	parameter	or	regression	model	coefficients.	We	then	update	the	prior	based	

upon	the	evidence	in	the	data	set	Bayes	rule	is	formally	stated	as	(after	Kruschke,	2015):		

𝑝 𝐻 𝐸 =
𝑝 𝐸 𝐻 𝑝 𝐻

𝑝 𝐸
		

where	the	prior	that	our	hypothesis	is	correct	p(H)	is	updated	according	to	the	probability	p(E|H)	

of	observing	the	evidence	if	our	hypothesis	was	true,	referred	to	as	the	likelihood.	The	result	is	a	

posterior	probability	P(H|E)	that	our	hypothesis	is	correct	given	the	evidence	we	have	observed.	

The	 term	 p(E),	 the	 unconditional	 probability	 of	 the	 evidence,	 serves	 only	 as	 a	 normalization	

constant	to	ensure	that	our	calculated	values	obey	the	axioms	of	probability	(Kruschke,	2015).	

Thus,	it	is	conceptually	useful	to	think	of	Bayes	rule	as:	

Posterior	𝛼	Prior	×	Likelihood	

In	a	typical	data	analysis	setting	there	are	many	possible	parameter	values,	so	we	have	

many	 different	 hypotheses	 we	 wish	 to	 evaluate.	 In	 this	 case,	 the	 denominator,	 p(E)	 is	 often	

calculated	using	the	total	probability	rule	as	follows	(after	Kruschke,	2015):	

𝑝 𝐸 = 	 𝑝 𝐸 𝐻� 𝑝(𝐻�)
�

	

Where	p(Hm)	is	the	prior	regarding	the	mth	hypothesis,	p(E|Hm)	is	the	likelihood	of	observing	the	

data	if	the	mth	hypothesis	is	true,	which	are	summed	over	all	possible	hypotheses.	Combining	the	

two	above	equations,	we	arrive	at	the	practical	statement	of	Bayes	rule	in	for	discrete	variables	

(after	Kruschke,	2015):	

𝑝 𝐻� 𝐸 =
𝑝 𝐸 𝐻 𝑝 𝐻�
𝑝 𝐸 𝐻� 𝑝(𝐻�� )

	

However,	 even	 for	 discrete	 data	 (counts,	 binary	 etc.)	 the	 parameters	 themselves	 are	

often	continuous	 (i.e.,	a	population	mean	or	 regression	coefficients).	Additionally,	because	we	

have	 many	 observations	 and	 possibly	 many	 parameters,	 both	 the	 likelihood	 and	 posterior	
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distributions	will	be	multivariate	(i.e.,	 the	return	a	single	probability	density	value	for	an	 input	

vector	of	data	x	or	parameters	θ).		Thus,	in	full	generality,	the	posterior	density	function	(pdf),	is	

computed	as	follows	(after	DeGroot	and	Schervish,	2012).		

𝑓 𝜽 𝒙 =
𝑓 𝒙	 𝜽)𝑓(𝜽)

… 𝑓 𝒙 𝜽 𝑓 𝜽 𝑑𝜃
		

	The	total	probability	rule	becomes	the	iterated	integral	of	the	product	of	the	prior	and	likelihood	

over	the	support	of	all	θ’s.	Using	this	framework,	it	is	now	possible	to	cast	our	logistic	regression	

in	a	Bayesian	setting.	The	Bayesian	model	uses	the	same	likelihood	function	as	before,	but	now	

includes	Bayes	rule	to	calculate	the	probability	distributions	of	the	regression	parameters.	

For	most	realistic	problems,	this	Bayesian	formula	is	quite	difficult	to	compute.	In	a	small	

dimension	 (i.e.	 only	 one	 or	 two	model	 parameters)	 it	 is	 possible	 to	 approximate	 the	 density	

functions	as	mass	functions	on	a	fine	enough	grid,	but	in	a	larger	space	we	simply	cannot	create	

a	dense	enough	grid.	For	example,	a	 six	parameter	model	with	a	grid	of	1000	values	 for	each	

parameter	 has	 10006	 parameter	 combinations	 to	 evaluate;	 far	 beyond	 the	 ability	 of	 modern	

computers	(Kruschke,	2015).	Therefore,	we	are	limited	to:	choosing	“nice”	parametric	forms	that	

have	 a	 known	 analytic	 solution	 for	 the	 posterior,	 a	 numerical	 integration	 (e.g.,	 Gaussian	

quadrature	or	Laplace	approximations),	or	simulation	approaches	(randomly	generating	values	

from	the	posterior).		Simulation	is	often	preferred	to	numerical	integration	due	to	the	poor	scaling	

of	numerical	integration	with	higher	dimensions—a	grid	of	length	N	in	D-dimensional	space	will	

require	Nd	evaluations	of	the	integrand	(Betancourt,	2018).	As	such,	simulation	warrants	further	

discussion	here.		

2.2.8 Markov	Chain	Monte	Carlo	(MCMC)	Methods	

Mote	 Carlo	 simulation,	 qualitatively,	 involves	 generating	 many	 representative	 values	

(called	draws)	of	a	random	variable	(Kruschke,	2015).	For	some	random	variable	X,	with	pdf	f(x)	

which	is	often	called	the	target	distribution,	we	can	imagine	a	spinner	marked	with	the	possible	
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values	of	X	that	is	biased	to	point	at	various	values	of	X	exactly	according	to	f(x)	(Kruschke,	2015).	

Spin	 it	 enough	 times	 and	 record	 what	 values	 are	 chosen,	 and	 we	 have	 a	 large	 number	 of	

representative	values	of	X.		With	enough	of	these,	we	can	approximate	many	useful	distributional	

characteristics	of	the	original	random	variable	such	as	mean,	standard	deviation,	and	cumulative	

probability	(Kruschke,	2015).		

In	 a	 practical	 implementation,	 all	 simulation	 really	 requires	 is	 an	 ability	 to	 generate	 a	

random	number	 and	 some	 criteria	 to	 determine	 if	 it	 should	 be	 included	 in	 your	 collection	 of	

representative	values	of	the	target	distribution	(DeGroot	and	Schervish,	2012).	Many	methods	of	

specifying	an	acceptance/rejection	criteria	exist	(envelope	methods,	importance	sampling,	etc.)	

but	 MCMC	 methods	 are	 the	 most	 useful	 for	 simulating	 from	 higher	 dimension	 distributions	

(Christensen	et	al.,	2011).					

A	Markov	chain	is	a	series	of	random	vectors	θ(1),	θ(2)	,	θ(3),	…		drawn	from	a	set	A,	with	

conditional	 densities	 q(1)(θ(1)),q(2)(θ(2)),q(3)(θ(3)),…	 that	 satisfy	 the	 following	 property	 (after	

Christensen	et	al.,	2011):	

Pr 𝜽� ∈ 𝐴 𝜽I, … , 𝜽�PI = Pr	(𝜽� ∈ 𝐴|𝜽�PI)	

Suppose	k-1	represents	the	current	step	in	the	process	and	k	the	next	step.	Then	given	the	current	

value	𝜃�PI	 ,	 the	next	 value	𝜃� 	 is	 conditionally	 independent	of	 past	 values	 (𝜃I, … , 𝜃�PE).	 This	

expresses	what	 is	called	a	Markov	property;	what	state	you	transition	to	 is	only	dependent	on	

your	current	state	(Christensen	et	al.,	2011).	To	construct	a	Markov	chain	all	we	need	to	do	 is	

specify	 some	 initial	 distribution	 q(1)(θ(1))	 and	 the	 conditional	 distributions	 𝑞j|jPI(𝜽j|𝜽 jPI )	

(Christensen	et	al.,	2011).	While	not	immediately	obvious,	with	appropriate	choices	of	the	initial	

distribution	 and	 transition	 densities	 (and	 appropriate	 mathematical	 justification)	 we	 can	

construct	algorithms	that	will	eventually	end	up	sampling	from	the	target	posterior	distribution.	
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The	mathematical	proofs	required	are	summarized	in	(Christensen	et	al.,	2011)	in	the	context	of	

the	popular	Metropolis-Hastings	algorithm,	described	below.	

2.2.9 The	Metropolis	–	Hastings	(MH)	Algorithm	and	Hamiltonian	Monte	Carlo	

The	general	 idea	behind	 the	MH	algorithm,	 first	developed	 in	1953	 to	 solve	 statistical	

mechanics	problems	in	nuclear	chemistry,	is	to	perform	a	random	walk	through	the	parameter	

space	of	a	target	distribution	(in	our	case,	the	posterior).	To	retain	the	Markov	property,	where	

the	jump	lands	on	the	next	step	is	determined	only	by	its	current	location.	At	each	jump,	if	the	

ratio	proposed	to	the	current	posterior	probability	is	compared.	Importantly,	this	only	requires	

product	of	the	prior	and	likelihood	(un-normalized	posterior)	because	normalizing	constants	will	

cancel	out.	To	ensure	that	the	algorithm	can	repeat	indefinitely,	not	all	jumps	with	a	ratio	of	less	

than	 one	 are	 rejected.	 By	 doing	 so,	 parameter	 values	 are	 sampled	 in	 proportion	 to	 their	

probability	density	(Metropolis	et	al,	1953).	This	style	of	accepting/rejecting	proposals	requires	

that	the	method	of	generating	proposals	is	symmetric	i.e	the	probability	of	going	from	state	x	to	

y	is	the	same	as	going	from	y	to	x.	Formally,	at	step	k	where	we	have	already	sampled	(θ(1),	θ(2)	,	

θ(3),	…,	θ(k))		(after	Christensen	et	al.,	2011):	

1) Generate	a	proposed	value	θ(*)	from	some	proposal	method	conditional	on	the	last	

draw.	

2) Define	𝛼 ≡ 𝑚𝑖𝑛 1, � 𝜽 ∗

� 𝜽�
	,	where	p(	)is	the	target	distribution.	In	Bayesian	statistics	

this	is	the	unnormalized	posterior	i.e.	prior	times	likelihood	(both	known).		

3) Simulate	a	random	number	U	between	0	and	1.	

4) Then,	𝜽��I = 	 𝜽
∗ 	𝑖𝑓	𝛼 ≥ 𝑈

𝜽(�)	𝑖𝑓	𝛼 < 𝑈
			

The	 software	 used	 in	 our	 study,	 Stan	 (Carpenter	 et	 al,	 2012),	 uses	 an	 adaptively	 tuned	

Hamiltonian	Monte	Carlo	(HMC)	method,	described	in	depth	in	Neal,	2012.	The	primary	difference	
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between	HMC	and	MH	is	that	the	proposal	mechanism	is	modified	to	produce	less	rejected	draws,	

improving	 the	 algorithms	 computational	 efficiency.	 As	 a	 high	 level	 overview,	 it	 does	 so	 by	

transforming	the	unnormalized	posterior	distribution	into	a	sort	of	“landscape”	that	a	particle	can	

move	through.	At	each	step,	the	algorithm	gives	a	fictitious	particle	some	randomly	generated	

momentum,	and	solves	for	its	trajectory	via	Hamiltonian	dynamics	(Neal,	2012).	After	some	preset	

time,	the	particles	new	location	is	used	as	the	proposed	value	in	the	MH	algorithm	and	the	process	

is	repeated.	The	intuition	behind	why	this	improves	standard	MH	is	simple	:	we	want	to	sample	

values	with	higher	probability,	or	if	we	invert	the	distribution	from	the	“valleys”,	more	often.	As	

the	 fictitious	 particle	 moves	 across	 the	 landscape	 it	 will	 often	 become	 “trapped”	 in	 these	

“valleys”,	 corresponding	 to	higher	 regions	of	probability	density.	This	produces	proposals	 that	

have	a	better	chance	of	acceptance	and	improves	sampling	efficiency.		

2.2.10 Reliability	Concepts	Used	in	ELM’s		

A	reliability-based	analysis	begins	by	assuming	that	the	performance	of	the	“system”	is	

characterized	by	a	vector	x	of	directly	observable	random	variables	(Der	Kiureghian,	2004)	The	

probability	of	 failure	 can	be	calculated	 from	 the	 joint	distribution	of	x	by	 integrating	over	 the	

subset	of	their	outcome	space	which	defines	the	failure	event	(Der	Kiureghian,	2004).	Defining	

the	 failure	 region	 requires	 formulating	a	 limit-state	 function	 for	each	component,	often	called	

g(x),	often	such	that	when	g(x)	≤	0	the	component	is	in	a	failure	state.		The	failure	state	of	the	

system	as	a	whole	depends	on	whether	the	components	are	linked	 in	series,	parallel,	or	some	

combination	of	the	two	(Der	Kiureghian,	2004).		

To	illustrate	the	above	concepts,	consider	a	beam	failing	in	a	single	mode	such	as	shear	

or	flexure.	The	governing	random	variables	could	be	a	maximum	stress,	typically	called	demand,	

which	would	 be	 a	 function	 of	 other	 random	 variables	 such	 as	 the	magnitude	 and	 location	 of	

applied	 load	and	member	geometry;	and	a	minimum	strength,	 typically	 called	capacity,	which	
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would	 also	 be	 a	 function	 of	 other	 random	 variables	 such	 as	member	 geometry	 and	material	

properties.	The	natural	choice	for	the	limit-state	function	is	g	=	Capacity	–	Demand.	The	failure	

subset	would	then	be	all	possible	combinations	where	load	exceeds	resistance,	or	when	the	limit-

state	function	is	negative.	However,	even	for	this	simple	example,	performing	the	integral	over	

the	 failure	 region	 is	 often	 difficult	 or	 impossible	 so	 practitioners	 usually	 turn	 to	 numerical	

methods	such	as	first	or	second	order	reliability	methods	(FORM	and	SORM),	discussed	in	depth	

in	Der	Kiureghian,	2004.	

Reliability-based	 approaches	 to	 liquefaction	 triggering	 typically	model	 the	 initiation	 of	

liquefaction	as	a	 single	component	problem	and	 require	developing	an	appropriate	 limit-state	

function	based	upon	the	observed	data.		

2.2.11 Evaluating	the	Performance	of	Probabilistic	Classifiers	

While	a	predictive	model	produces	a	probability	of	 liquefaction,	 in	current	engineering	

applications	we	often	need	to	classify	sites	as	 liquefiable	or	not	to	determine	 if	 it	 is	necessary	

proceed	with	further	analyses	or	mitigation	(Oomen	et	al.,	2010).	This	is	usually	done	by	setting	a	

threshold	of	liquefaction	risk	(THL),	based	upon	potential	consequences,	defined	as	the	highest	

probability	of	liquefaction	we	can	tolerate	without	moving	to	mitigation.	Sites	falling	above	that	

threshold	are	classified	as	liquefiable	and	those	below	are	not.	These	threshold	of	risk	may	differ	

significantly	 –	 when	 designing	 a	 hospital	 we	 will	 want	 to	 mitigate	 at	 a	 lower	 probability	 of	

liquefaction	than	for	a	non-occupied	warehouse.	At	a	given	threshold,	the	confusion	matrix	is	a	

useful	tool	for	visualizing	model	performance	(after	Kuhn	and	Johnson,	2013):		
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With	these	counts	(which	will	be	dependent	on	the	specified	threshold),	several	useful	metrics	

can	 be	 calculated.	 Overall	model	 accuracy	 is	 computed	 as	 the	 proportion	 of	 events	 classified	

correctly:	

ACC =
TP + TN

TP + TN + FP + FN
	

However,	this	metric	can	be	misleading	as	it	is	sensitive	to	natural	class	frequencies.	If	negative	

outcomes	 are	 infrequent	 then	 a	model	 can	 achieve	 near	 perfect	 accuracy	 by	 only	 predicting	

positive	outcomes	 (Kuhn	and	 Johnson,	2013).	Thus,	 if	 there	 is	 substantial	 cost	associated	with	

false	positives	(i.e.	with	expensive	ground	improvements)	this	 is	an	inappropriate	performance	

metric.	 	 Precision	 of	 a	 model	 measures	 the	 proportion	 of	 events	 in	 a	 single	 class	 predicted	

correctly	(after	Oomen	et	al.,	2011):		

𝑃� =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
	or	PP = 	

𝑇𝑁
𝑇𝑁 + 𝐹𝑁

	

And	recall	of	a	model	measures	the	proportion	of	correct	predictions	out	of	all	prediction	of	that	

class	(after	Oomen	et	al.,	2011):	

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
	or	

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

	

These	two	metrics	can	be	combined	into	an	F-Score	by	taking	their	weighted	harmonic	mean	and	

specifying	β,	the	importance	of	recall	to	precision	(after	Oomen	et	al.,	2011):	

	
Predicted	

O
bs
er
ve
d	

	 Yes	 No	

Yes	 #	of	True	
Positives	(TP)	

#	of	False	
Negatives	

No	 #	of	False	
Positives	(FP)	

#	of	True	
Negatives	

(TN)	
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𝐹y =
1 + 𝛽E 𝑃 ∗ 𝑅
𝛽E ∗ 𝑃 + 𝑅

	

A	final	metric	is	known	as	the	Matthew’s	correlation	coefficient	which	ranges	from	-1	to	1,	with	-

1	being	the	worst	and	1	being	the	best.	It	measures	the	correlation	between	actual	and	predicted	

classes	and	is	calculated	as	follows	(Yazdi	and	Moss,	2016):	

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑁 ∗ 𝐹𝑃

𝑇𝑃 + 𝐹𝑁 𝑇𝑁 + 𝐹𝑃 𝑇𝑃 + 𝐹𝑃 𝑇𝑁 + 𝐹𝑁
	

Importantly,	all	of	these	metrics	will	change	based	upon	the	specified	yes/no	threshold.	Since	the	

threshold	of	acceptable	risk	may	vary	considerably	from	project	to	project	we	want	a	model	that	

performs	well	at	all	levels	of	THL.			

Receiver	operating	characteristics	(ROC)	curves	are	a	useful	tool	for	evaluating	a	model’s	

performance	 across	 all	 possible	 threshold	 values.	 They	 compare	 the	 true	 positive	 rate	 (after	

Fawcett,	2006):	

TPR =
Postives	correctly	classified

Total	Postives
=

TP
TP + FN

		

And	the	false	positive	rate	(After	Fawcett,	2006):	

FPR =
Negatives	incorrectly	classified

Total	negatives
=

FP
FP + TN
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ROC	curves	are	plotted	as	FPR	vs	TPR	 (Figure	10),	with	each	point	 corresponding	 to	a	 specific	

threshold	value.		

A	 threshold	 of	 1.0	will	 produce	 no	 positive	 classifications	 (the	 point	 0,0).	 As	 the	 threshold	 is	

reduced,	the	model	begins	to	produce	true	and	false	positive	classifications	until	the	threshold	

crosses	 the	 last	 actual	 positive	 occurrence	 and	 only	 false	 positives	 are	 produced.	 If	 a	 model	

guesses	at	random,	its	ROC	curve	will	be	a	straight	line	45-degree	line.	This	represents	a	rational	

lower	 bound	 for	 performance,	 and	 any	 model	 that	 performs	 worse	 is	 likely	 flawed	 in	 its	

formulation.	The	dotted	line	corresponds	to	a	model	that	classifies	perfectly	(no	false	positives).		

Qualitatively,	we	can	think	of	comparing	how	“close”	our	curve	is	to	this	ideal	curve	as	a	means	

of	describing	comprehensive	model	performance.	Practically,	this	is	done	by	computing	the	area	

under	the	curve	(AUC),	which	will	range	from	0.5	to	1.0	with	higher	values	indicating	better	model	

performance	(Fawcett,	2006).	The	statistical	interpretation	of	this	value	is	the	probability	that	a	

False positive rate
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Figure	10	–	A	Sample	ROC	Curve.	Showing	true	and	false	positive	rates	at	all	classification	
thresholds.		The	dashed	and	dotted	lines	represented	lower	and	upper	bounds	for	
performance,	respectively.	The	curve	is	colorized	by	threshold	values	and	the	area	

underneath	reported.			
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randomly	chosen	positive	instance	will	have	a	computed	higher	probability	of	occurrence	than	a	

randomly	 chosen	 negative	 one	 (Fawcett,	 2006).	 	 ROC	 curves	 also	 have	 the	 benefit	 of	 being	

insensitive	to	class	 imbalances,	a	change	 in	the	ratio	of	positive	to	negative	outcomes	will	not	

change	the	ROC	curve	(Fawcett,	2006).		

With	 the	 rise	 in	 computational	 power	 and	 increased	 research	 into	 predictive	 models	

many	current	functional	forms	can	learn	the	structure	of	a	complex	data	set	(Kuhn	and	Johnson,	

2013).		Figure	11	shows	a	two	class,	two	predictor	variable	data	set	and	two	models	fit	to	the	data.		

Model	1	attempts	to	encircle	every	possible	data	point,	producing	unrealistically	complex	class	

boundaries.	 It	has	 learned	not	 just	 the	signal	 in	the	data	but	 its	unique	noise	as	well.	Because	

future	data	is	unlikely	to	have	the	same	noise	pattern	the	model	will	perform	poorly	when	making	

future	 predictions.	 This	 model	 is	 said	 to	 be	 “over-fit”.	 Model	 2	 presents	 a	 more	 generalized	

boundary	that	will	have	greater	utility	when	making	future	predictions.	Importantly,	if	Model	1	

was	validated	using	the	same	data	set	as	it	was	built	on	the	estimated	accuracy	would	be	overly	

optimistic	and	potentially	misleading	if	it	was	being	evaluated	for	its	usefulness	in	practice.		

To	avoid	the	problems	associated	with	overfitting,	modelers	split	their	data	into	training	

and	testing	sets.	As	their	names	imply,	training	sets	are	the	data	points	the	model	is	fit	on	and	

testing	sets	are	those	that	 the	validation	metrics	are	developed	on	(Kuhn	and	Johnson,	2013).	

With	a	large	enough	data	set	a	modeler	can	simply	set	aside	a	suitable	number	of	points	to	create	
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a	single	 training	set	without	having	to	worry	about	 limiting	their	ability	 to	develop	the	model.	

Usually,	 there	 is	 a	 natural	method	 of	 creating	 these	 splits	 –	 a	 spam	 filter	may	 be	 trained	 on	

messages	collected	in	the	past	years	and	tested	on	messages	collected	in	the	current	month.	The	

sets	could	also	be	split	randomly,	or	consciously	based	upon	properties	such	as	class	frequency	or	

predictor	variable	magnitudes	(Kuhn	and	Johnson,	2013).	Because	the	testing	set	was	never	used	

in	 the	 validation	 process	 this	 represents	 the	 most	 unbiased	 assessment	 of	 how	 a	 model	

generalizes	to	new	data	(Kuhn	and	Johnson,	2013).	However,	 it	 is	often	desirable	to	use	more	

than	one	training/testing	split	and	resampling	methods	are	used	instead.	

Resampling	methods	refer	to	repeatedly	splitting	the	data	set	 into	training	and	testing	

subsets,	 fitting	and	validating	models,	and	averaging	model	parameters	and	validation	metrics	

across	 all	 runs.	 With	 an	 appropriate	 data	 splitting	 strategy	 all	 the	 data	 points	 can	 be	 used	

Figure	11	–	A	Sample	Predictive	Modeling	Classification	Problem.	Reproduced	from	Kuhn	
and	Johnson,	2013.	
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independently	for	training	and	testing.	One	of	the	most	popular	resampling	method	is	known	as	

k-fold	 cross	 validations.	 In	 k-fold	 cross	 validation	 the	 dataset	 is	 randomly	 split	 into	 k	 subsets	

(“folds”)	and	in	each	run	the	model	is	trained	on	all	but	one	of	them	and	tested	on	the	held	out	

group	(Figure	12).		

There	is	no	formal	rule,	but	typically	5	or	10	folds	are	used	(Kuhn	and	Johnson,	2013).	The	

process	continues	until	all	the	folds	have	been	used	for	both	training	and	testing.	By	doing	this,	

the	 model	 can	 use	 all	 the	 available	 data	 points	 while	 still	 reporting	 relatively	 unbiased	

performance	metrics.	All	the	data	is	then	used	to	determine	the	final	model	parameters.	Because	

the	 splitting	 process	 is	 random	 many	 modelers	 will	 repeat	 the	 entire	 k-fold	 cross	 validation	

process	several	times	to	capture	the	uncertainty	in	performance	estimates.	Other	methods	for	

random	resampling	exist,	 such	as	bootstrapping	or	 leave	one	out	cross	validation,	but	 in	most	

practical	 applications	 their	 performance	 is	 comparable	 to	 k-fold	 cross	 validation	 (Kuhn	 and	

Johnson,	2013).		Additionally,	researchers	may	also	decide	to	use	non-random	splitting	methods	

because	of	nuances	in	the	data	set	or	model	(Kuhn	and	Johnson,	2013).						

	

Figure	12	–	A	Visualization	of	3-fold	Cross	Validation.	The	dataset	is	split	into	three	
groups	of	equal	size	then	trained	on	2	and	tested	on	the	third.	This	is	repeated	until	all	

the	groups	have	been	used	for	both	training	and	testing.		
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2.3 Modern	Liquefaction	Assessment		

A	 complete	 liquefaction	 assessment	 is	 typically	 conducted	 in	 the	 following	 steps	

described	on	 the	 following	page	 (Figure	13).	While	 all	 of	 these	 steps	 are	 critical	 in	 a	 properly	

performed	liquefaction	assessment,	this	thesis	focuses	on	the	aspect	of	liquefaction	triggering.	

	

	

Figure	13	–	A	Modern	Liquefaction	Assessment	Framework.	Importantly,	these	procedures	are	only	
applied	to	soils	that	are	determined	to	be	susceptible	to	liquefaction.	Applying	triggering	models	to	
soils	whose	behavior	is	governed	by	physical	principles	that	preclude	liquefaction	will	give	misleading	

(and	wrong!)	results.		Reproduced	from	Seed	et	al.,	2003	
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2.3.1 Overview	of	the	Simplified	Method	

First	developed	in	1971	by	Seed	and	Idriss,	the	“Simplified	Method”	is	the	most	commonly	

used	means	for	assessing	 liquefaction	triggering	 in	practice	today.	Simply	put,	 it	compares	the	

“load”	of	the	earthquake	(expressed	as	the	cyclic	stress	ratio,	or	CSR)	to	the	“resistance”	of	the	

soil	 (expressed	as	 the	 cyclic	 resistance	 ratio,	 CRR).	 	 CSR,	 as	 a	 function	of	 depth	 (z)	 is	 formally	

defined	as	the	ratio	of	the	peak	shear	stress	(𝜏)	to	the	pre-existing	vertical	effective	stress	(𝜎"£# )	

(after	NAE):	

𝐶𝑆𝑅 ¥,¦§¨© 	 (𝑧) =
0.65 ∗ 𝜏L®\ 𝑧

𝜎"£# 𝑧
	

The	0.65	scaling	term	serves	to	reduce	the	peak	value,	which	is	only	experienced	once	in	an	event	

by	definition,	to	a	more	representative	value	experienced	multiple	times.	The	subscripts	indicate	

that	 it	 is	 computed	 for	 a	 specific	moment	magnitude	 and	 preexisting	 stress	 state.	 	 However,	

computing	the	peak	shear	stress	requires	a	site	specific	dynamic	analysis	which	can	be	difficult	

and	time	consuming.	The	“simple”	part	of	the	simplified	method	estimates	the	peak	shear	stress	

as	the	product	of	peak	ground	acceleration	(as	a	fraction	of	gravitational	acceleration,	g)	and	total	

stress	times	a	depth	factor	(rd)	that	accounts	for	the	nonlinear	response	of	the	soil	profile	(after	

NAE,	2016):	

𝐶𝑆𝑅 ¥,¦§¨© (𝑧) =
0.65 ∗ 𝜎" 𝑧 ∗ 𝑃𝐺𝐴𝑔 𝑧 ∗ 𝑟°	

𝜎"£# 𝑧
	

To	account	for	effects	of	shaking	duration	and	adjust	to	reference	values	of	M	=	7.5	and	�"£
# 	=	1	

atmosphere,	the	expression	is	standardized	with	a	magnitude	scaling	factor	(MSF),	effective	stress	

correction	factor	(𝐾¦)	and	driving	shear	stress	correction	factor	(𝐾t)	(after	Yazdi	and	Moss,	2016):			

𝐶𝑆𝑅 ¥i².³,¦§¨© iI	®´� 𝑧 =
0.65 ∗ 𝜎" 𝑧 ∗ 𝑃𝐺𝐴𝑔 𝑧 ∗ 𝑟°	

𝜎"£# 𝑧
∗

1
𝑀𝑆𝐹

∗
1
𝐾¦

∗
1
𝐾t
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All	 of	 these	 correction	 factors,	 including	 rd,	 are	 empirically	 derived	 and	 different	

researchers	have	proposed	various	means	of	calculating	them.	Interested	readers	are	referred	to	

the	NAE	text	 for	 further	discussion	of	the	ongoing	research	 in	this	area.	 	 Importantly,	because	

they	are	based	upon	a	scatter	of	observed	data	points,	even	if	all	other	terms	in	the	equation	can	

be	calculated	exactly	(and	often	they	cannot)	there	will	always	be	uncertainty	associated	with	the	

CSR.	Furthermore,	because	ELM’s	are	developed	using	CSR’s	calculated	with	specific	methods	for	

each	coefficient	 it	 is	 important	to	use	the	original	methods	when	making	predictions	with	that	

model	(NAE,	2016).		

The	 cyclic	 resistance	 ratio,	 as	 its	 name	 implies,	 is	 defined	 as	 the	 ratio	 of	 a	 soil’s	

liquefaction	 resistance	 to	 the	 earthquake	 loading.	 This	 naturally	 extends	 to	 a	 deterministic	

engineering	design	framework	where	the	factor	of	safety	(FS)	is	calculated	as:	

𝐹𝑆 =
𝐶𝑅𝑅
𝐶𝑆𝑅

	

Many	methods	for	determining	the	CRR	in	this	framework	exist.	They	all	correlate	CRR	with	an	in-

situ	soil	property,	typically	from	a	standard	penetration	test	(SPT)	cone	penetration	test	(CPT).		

Popular	 triggering	curves	 for	SPT	energy	corrected,	normalized	blow	count	 (N1,60)	are	 found	 in	

Youd	et	al.,	2001,	Cetin	et	al.,	2004,	Idriss	and	Boulanger,	2008	etc.	For	normalized	tip	resistance	

(qc,1),	occasionally	with	other	modification	factors	applied,	curves	can	be	found	in	Robertson	and	

Wride,	1998,	Moss	et	al.	2006,	Idriss	and	Boulanger,	2016,	etc.	Correlations	also	exist	for	shear	

wave	velocity	(Andrus	and	Stoke,	2000,	Kayen	et	al.,	2013	etc.)		and	less	common	in-situ	tests,	

such	as	the	Becker	penetrometer	(NAE,	2016).		

Probabilistic	models	follow	the	same	principle	of	basing	soil	liquefaction	resistance	off	of	

an	index	property	measurement,	but	instead	of	directly	providing	a	CRR	they	instead	provide	a	

probability	 of	 liquefaction	 given	 the	 anticipated	 CSR	 and	 index	 measurements.	 This	 nuanced	

treatment	 of	 whether	 or	 not	 liquefaction	 will	 occur	 is	 necessary	 for	 a	 performance	 based	
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engineering	approach	(NAE).	These	models	are	often	“converted”	to	a	deterministic	approach	by	

setting	some	probability	of	liquefaction,	usually	based	on	expert	consensus,	as	the	FS	=	1.0	curve	

for	code	based	design	that	requires	a	certain	FS	to	be	achieved.			

2.4 Review	of	Existing	CPT	Based	ELM’s		

Because	this	work	deals	with	a	CPT	based	probabilistic	liquefaction	triggering	assessment,	

a	brief	description	of	the	existing	models	developed	for	this	purpose	follows.	While	this	discussion	

mostly	focuses	on	the	actual	statistical	methods	used	to	fit	the	models	to	the	CPT	case	histories,	

important	 research	 into	more	 accurately	 estimating	 soil	 resistances	 (often	 accounting	 for	 the	

more	nuanced	behavior	of	fines	content	and	thin	layers)	and	CSR	modification	factors	was	also	

occurring	and	had	a	similar	impact	on	the	state	of	practice.	

2.4.1 Early	Deterministic	Models		

Prior	to	the	late	1990s	a	variety	of	deterministic	CPT	based	triggering	relationships	had	

been	established	through	the	work	of	Olsen	and	Koester,	1995,	Suzuki	et	al.,	1995	Robertson	and	

Wride,	 1997,	 and	 others.	 These	 provided	 a	 curve	 that	 represented	 the	 boundary	 between	

liquefaction	 and	 nonliquefaction,	 usually	 estimated	 from	 engineering	 judgement	 to	 provide	 a	

conservative	 lower	 bound	 for	 occurrences	 of	 liquefaction	 (Juang	 et	 al.,	 1999).	 An	 example	 is	

provided	in	Figure	14,	following.		

To	 use	 these,	 an	 engineer	 first	 measures	 field	 CPT	 data	 and	 selects	 the	 value	

representative	of	the	liquefiable	layer.	They	then	can	use	the	solid	CRR	curve	to	determine	the	

CSR	required	to	mobilized	liquefaction	for	their	measured	value.	The	ratio	between	this	CSR	and	

their	design	CSR	is	the	factor	of	safety.	
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2.4.2 Early	Probabilistic	Models		

Toprak	 et	 al.,	 1999	 developed	 one	 of	 the	 first	 probabilistic	 CPT	 based	 triggering	

relationship	by	performing	a	logistic	regression	on	case	histories	recorded	after	the	Loma	Prieta	

earthquake	(Figure	15).		

	

	

	

	

Figure	14	–	A	Sample	Chart	for	Determining	CRR	from	Corrected	CPT	Tip	Resistance.	
Reproduced	from	Robertson	and	Wride,	1997.	
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Logistic	regression	was	actually	first	proposed	by	Liao	et	al.,	1988	as	a	means	of	predicting	

liquefaction	probability	but	was	not	applied	to	CPT	case	histories	until	this	work.	Because	of	the	

limited	dataset,	the	regression	is	able	to	separate	the	classes	fairly	well	but	lacks	generalization	

to	 predictions	 that	 fall	 outside	 the	 range	 of	 tip	 resistances	 and	 CSR’s	 used	 to	 fit	 the	model.	

Although	limited	to	a	relatively	small	number	of	cases	and	only	a	single	earthquake	it	was	still	an	

important	 step	 in	 probabilistic	 liquefaction	 assessment	 and	 provided	 motivation	 for	 later	

research.					

Figure	15	–	One	of	the	First	Published	Probabilistic	CPT-based	Liquefaction	Triggering	
Relationships.	Reproduced	from	Toprak	and	Bennet,	1999.	
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Juang	et	al.,	2002	extended	this	work	by	applying	the	logistic	regression	to	a	much	larger	

database	to	produce	the	next	triggering	relationship	(Figure	16).	An	 important	aspect	of	these	

curves	is	how	far	apart	or	the	spread	the	probability	contours	which	represents	a	greater	amount	

of	model	uncertainty.		

In	 work	 around	 the	 same	 time,	 researchers	 began	 to	 develop	 another	 method	 for	

modeling	triggering	relationships	using	reliability	concepts.	Juang	et	al.,	1999	was	among	the	first	

to	develop	probabilistic	triggering	models	using	these	reliability	methods.		They	selected	a	limit-

state	 function	 representing	 the	 boundary	 between	 liquefaction	 and	 nonliquefaction	 of	 g(x)	 =	

Figure	16	–	An	Updated	Logistic	Regression	Model	Using	a	Larger	Set	of	Case	Histories.	
Compared	to	previous	models,	it	covers	a	wider	spread	of	possible	tip	resistances	and	CSR’s	but	

has	greater	uncertainty	in	its	predictions.	Reproduced	from	Juang	et	al.,	2002.	
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CSR/CRR	–	1	=	0,	where	x	is	the	vector	of	random	variables	that	are	transformed	into	CSR	and	CRR	

(Juang	et	al.,	1999).	To	determine	the	probability	distribution	for	CSR,	they	estimated	standard	

deviations	and	assumed	normal	distributions	for	the	relevant	inputs	for	CSR	formula	to	allow	for	

an	analytical	solution	for	the	transformed	distribution.	For	the	CRR,	they	used	an	artificial	neural	

network	to	fit	a	curve	similar	to	the	earlier	Robertson	and	Wride	work	and	included	a	term	to	

account	for	the	uncertainty	associated	with	this	fit.	Using	an	advanced	first	order	second	moment	

(FOSM)	technique	described	in	their	paper	they	developed	triggering	relationships	similar	to	the	

Figure	17	–	The	Reliability	Based	Bayesian	Mapping	Curves.	Developed	using	the	same	
dataset	as	the	previous	chart.	Reproduced	from	Juang	et	al.,	1999.	
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logistic	regression,	but	with	greater	flexibility	in	the	shape	of	the	contours	(Figure	17).					Lai	et	al.,	

2006	extended	this	work	using	logistic	regression	models	incorporating	more	case	histories	from	

earthquakes	in	Taiwan	and	China.	Notably,	they	separated	cases	by	CPT	determined	soil	behavior	

type	index	(Ic)	to	account	for	the	influence	of	fines	content	of	liquefaction	behavior	

2.4.3 The	Current	State	of	Practice	for	CPT-based	Probabilistic	Models		

The	early	2000’s	saw	improvements	in	both	the	size	and	quality	of	case	history	databases	

and	correction	factors	applied	to	CSR	or	in-situ	test	measurements	(discussed	at	length	in	Seed	et	

al.,	2003).		The	work	of	Moss	et	al.,	published	in	a	Pacific	Earthquake	Engineering	Research	Center	

Report	in	2003	and	an	ASCE	journal	article	in	2006,	was	a	step	forward	in	CPT	based	triggering	

relationships	and	is	one	of	the	most	used	models	in	practice	currently	(NAE,	2016).		They	used	a	

reliability-based	 formulation	 similar	 to	 the	 SPT-based	 modeling	 efforts	 of	 Cetin	 et	 al.,	 2002,	

employing	 a	 flexible	 limit-state	 formulation	 that	 used	 Bayesian	 updating	 to	 determine	 the	

posterior	distributions	of	model	parameters	based	upon	the	data.	The	general	form	of	the	limit-

state	 function	they	selected,	with	predictor	variables	 (x)	and	model	parameters	 (Q)	was	 (after	

Moss	et	al.,	2006):		

𝑔(𝜽, 𝒙) = 𝑞µ,I ∗ 1 + 𝜃I ∗ 𝑅¶ + 𝜃E ∗ 𝑅¶ + 𝑐 ∗ 1 + 𝜃· ∗ 𝑅¶ − 𝜃¸ ∗ ln 𝐶𝑆𝑅 − 𝜃³ ∗ ln Mº

− 𝜃» ∗ ln 𝜎"# − 𝜃²)		

Where	CSR	is	the	simplified	cyclic	stress	ratio	calculated	using	correction	factors	described	in	the	

paper,	Mw		is	the	moment	magnitude;		𝜎"# 	is	the	vertical	effective	stress;	qc,1	is	the		normalized	CPT	

tip	resistance;	Rf		is	the	CPT	friction	ratio,	c	is	the	CPT	normalization	exponent;	and	the	Θ’s	are	

model	 parameters.	 They	 also	 reported	 that	 this	 form	 was	 chosen	 because	 it	 minimized	 the	

standard	deviation	of	e,	minimized	 the	 cross	 correlations	 of	 predictor	 variables,	 and	provided	

mathematical	flexibility.	As	discussed	in	the	previous	chapter,	this	reporting	of	what	metrics	were	
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used	to	judge	the	utility	of	changes	to	the	model	made	during	the	modeling	process	(training)	is	

lacking	in	other	works.			

To	account	for	an	imperfect	formulation	of	the	limit-state	function,	they	also	included	an	

error	term	(e)	so	that	liquefaction	and	nonliquefaction	states	can	be	expressed	as	(after	Moss	et	

al.,	2006):	

𝑔 𝒙, 𝜽 + 𝜖 ≤ 0	and	𝑔 𝒙, 𝜽 + 𝜖 > 0			

If	e	is	taken	to	be	normally	distributed	with	mean	0	and	standard	deviation	𝜎¾ 	and	distributions	

are	specified	for	the	predictor	variables	for	x,	the	likelihood	of	observing	nL	liquefied	cases	and	

nNL	non-liquefied	cases	is	(after	Moss	et	al.,	2006):	

𝑙 𝒙, 𝜽 ∝ 	 𝜙 −
𝑔 𝒙𝒊, 𝜽
𝜎¾

Ln

giI

H.Á

∗ 	 𝜙
𝑔 𝒙𝒋, 𝜽
𝜎¾

I.EL|n

jiI

	

Where	j	is	the	standard	cumulative	normal	distribution	function	and	the	limit-state	function	is	

evaluated	 for	 the	 ith	 instance	 of	 liquefaction	 and	 jth	 instance	 of	 nonliquefaction	 using	 the	

appropriate	values	of	predictor	variables.	Additionally,	the	included	weighting	terms	to	account	

for	the	imbalance	between	liquefied	and	nonliquefed	case	histories.	Using	the	above	likelihood	

and	a	non-informative	prior	they	used	importance	sampling	to	solve	for	the	posterior	distributions	

of	model	 parameters	 and	 the	 error	 standard	 deviation.	 They	 then	 used	 a	mean	 value	 FOSM	

approach,	validated	by	FORM	and	SORM	methods,	to	carry	out	the	reliability	integral	and	develop	

the	triggering	relationships	that	follow	(Figure	18).	These	represented	a	significant	reduction	in	

uncertainty	over	previous	efforts	while	using	improved	correction	factors	and	a	better	curated	

database	(Moss	et	al.,	2006).	
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Figure	18	–	The	Current	Standard	of	Practice	in	CPT	Based	Probabilistic	Liquefaction	
Triggering.	This	model	has	appreciably	less	uncertainty	than	previous	efforts	while	also	
incorporating	substantial	improvements	in	database	curation	and	empirical	correction	

factors.	Reproduced	from	Moss	et	al.,	2006.	
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2.4.4 Interim	Models		

In	 the	 years	 between	 the	 publication	 of	 the	 updated	 CPT	 database	 in	 2003	 and	 the	

completion	 of	 post-earthquake	 reconnaissance	 for	 the	 recent	 Chile,	 New	 Zealand,	 and	 Japan	

events	most	of	the	effort	was	focused	on	developing	novel	triggering	relationships.	These	often	

used	modern	pattern	recognition	techniques	such	as	support	vector	machines,	artificial	neural	

networks,	 or	 evolutionary	 polynomials	 developed	 in	 computer	 science	 and	 other	 predictive	

modeling	fields.	Examples	of	these	works	include:	Goh	and	Goh,	2007,	Hanna	et.	al.	2007,	Rezania	

et.	al.,	2010	and	2011,	Oomen	et.	al.,	2010,	and	Yazdi	et.	al.,	2012.	Most	of	 these	 focused	on	

developing	a	deterministic	separation	between	liquefaction	and	nonliquefaction	cases	and	used	

older	databases	than	the	current	work	at	the	time.	Because	of	this,	they	typically	did	not	make	

their	way	 into	engineering	practice	and	a	detailed	discussion	 is	not	particularly	relevant	 in	the	

scope	of	this	study.	 	However,	many	of	them	did	use	predictive	modeling	techniques	not	seen	

previously.	Almost	all	used	some	form	of	splitting	the	data	into	training	and	testing	sets	–	a	critical	

step	in	avoiding	bias	associated	with	model	validation	metrics	(Kuhn	and	Johnson,	2013).		

Oomen	et.	al.,	2010	was	one	of	the	only	ones	to	develop	a	probabilistic	model	–	though	

they	 did	 not	 provide	 equations	 or	 figures	 that	 engineers	 could	 readily	 use.	 Their	 paper	 did	

introduce	 new	 concepts	 regarding	 how	 probabilistic	 models	 are	 created	 and	 validated.	 They	

developed	their	model	using	k-fold	cross	validation	to	ensure	the	model	used	all	of	the	available	

data,	while	reporting	validation	metrics	that	are	not	optimistically	biased	(Oomen	et.	al.,	2010).		

Figure	19,	below	shows	a	comparison	of	the	probabilistic	performance	of	their	new	SVM	model	

and	the	Moss	et.	al.,	2006	model.		
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Notably,	the	performance	between	the	two	is	very	similar,	although	the	Moss	et.	al.	work	

was	developed	and	tested	on	the	same	data	and	its	performance	metrics	are	likely	optimistically	

biased.	This	work	also	illustrates	an	important	motivation	for	our	study.	Publishing	performance	

metrics	such	as	these	is	useful	when	practitioners	are	deciding	on	a	threshold	of	unacceptable	

liquefaction	risk	and	need	to	know	the	probability	that	the	model	will	misclassify	a	liquefaction	

occurrence	at	that	threshold.		

In	2013,	Zhang	et	al.	extended	research	using	logistic	regression	(and	some	other	closely	

related	models).	They	investigated	the	effects	of	using	different	link	functions	in	the	formulation	

of	a	generalized	linear	model	and	different	strategies	of	weighting	liquefaction/nonliquefaction	

Figure	19	–	A	Comparison	of	the	Performances	of	the	Moss	et	al.	and	the	Support	Vector	
Machine	Model.	Both	models	perform	fairly	well,	with	AUC’s	above	0.9.	Reproduced	from	

Oomen	et	al.,	2010.	
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cases.	They	observed	that	the	effects	of	functional	form	choices	were	more	prominent	for	small	

probabilities	of	liquefaction	and	when	the	CSR	is	high.	They	also	found	that	the	effect	of	sampling	

bias	and	methods	for	accounting	for	 it	are	more	noticeable	in	the	regions	of	high	CSR.	Using	a	

Bayesian	model	 comparison,	which	 develops	 posterior	model	 probabilities	 in	 support	 of	 each	

model	based	upon	their	individual	likelihoods	and	possible	prior	beliefs,	they	found	the	greatest	

support	for	the	logit	and	complementary	log-log	link	functions.	However,	the	database	they	used	

for	their	study	is	not	as	thoroughly	developed	as	the	current	standards	of	practice	and	their	results	

are	mainly	useful	for	model	building	strategies.		

2.4.5 Recent	Probabilistic	Models		

In	2014,	Idriss	and	Boulanger	published	a	new	probabilistic	triggering	model	incorporating	

new	case	histories	from	the	Canterbury	earthquake	sequence	in	New	Zealand.	Their	paper	also	

included	modifications	to	the	empirical	correction	factors.	They	used	a	similar	reliability-based	

approach	to	Moss	et.	al.,	2006	but	employed	a	formulation	of	the	limit-state	function	that	only	

included	a	single	model	fitting	parameter	(After	Boulanger	and	Idriss,	2016):	

𝑔 𝑞µImµÃ, 𝐶H, 𝐶𝑆𝑅 = ln 𝐶𝑅𝑅 − ln 𝐶𝑆𝑅 	

𝐶𝑅𝑅 = 𝑒𝑥𝑝
𝑞µImµÃ
113

+
𝑞µImµÃ
1000

E
−

𝑞µImµÃ
140

·
+

𝑞µImµÃ
137

¸
− 𝐶H 	

Where	 CSR	 is	 calculated	 as	 normal	 using	 correction	 factors	 described	 in	 the	 paper,	 and	 the	

normalized	clean	sand	equivalent	cone	penetration	values	qc1N,cs	and	unknown	model	parameter	

C0	 are	 used	 to	 calculate	 CRR.	 Similar	 to	 the	 Moss	 et.	 al.	 work	 they	 created	 error	 terms	 to	

incorporate	 uncertainty	 in	 measured	 predictor	 variables	 and	 account	 for	 imperfect	 model	

behavior.	They	assumed	standard	deviations	for	the	normally	error	terms	associated	with	CSR	and	

qc1N,cs	but	left	the	standard	deviation	of	the	CRR	error	term	to	be	estimated	by	the	model.	They	

combined	 all	 these	 uncertainties	 into	 a	 single	model	 standard	 deviation,	𝜎´.	 To	 estimate	 the	
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unknown	model	parameter	C0	 and	CRR	 relationship	uncertainty	𝜖ÈÉ Ê 	they	used	 the	 following	

likelihood	function	(after	Boulanger	and	Idriss,	2016):	

𝑙 𝒙, 𝜽 ∝ 	 𝜙 −
𝑔 𝑞µImµÃ, 𝐶H, 𝐶𝑆𝑅

𝜎´

Ln

giI

H.Á

∗ 	 𝜙
𝑔 𝑞µImµÃ, 𝐶H, 𝐶𝑆𝑅

𝜎´

I.EL|n

jiI

	

They	used	a	maximum	likelihood	solution	to	develop	a	series	of	triggering	relationships,	with	an	

example	shown	below	(Figure	20).	Their	paper	did	not	discuss	the	process	they	used	to	develop	

the	CRR	limit-state	formulation,	nor	did	it	provide	model	validation	metrics.			

	 In	2016,	Yazdi	and	Moss	published	the	most	current	applicable	probabilistic	ELM	(Figure	

21).	Their	work	was	based	a	slightly	updated	version	of	the	Moss	et	al.,	2006	dataset	(Yazdi	and	

Figure	20	–	The	Most	Recent	Widely	Used	Probabilistic	CPT	Based	Liquefaction	Triggering	
Relationships.	These	use	a	simpler	model	functional	form	than	the	Moss	et	al.	work	but	do	
incorporate	a	larger	database	(augmented	by	case	histories	from	New	Zealand	and	Japan).		

Reproduced	from	Idriss	and	Boulanger,	2016.	
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Moss,	 2016).	 They	 used	 a	 Bayes	 classification	 method,	 which	 expresses	 the	 probability	 of	

liquefaction	given	an	event	X	as	(after	Yazdi	and	Moss,	2016):	

𝑝 𝐿 𝑋 =
𝑝 𝑋 𝐿 𝑝 𝐿

𝑝 𝐿 𝑋 𝐿 + 𝑃(𝑁𝐿)𝑃(𝑋|𝑁𝐿)
	

where	P(L)	and	P(NL)	are	the	prior	probabilities	of	liquefaction	and	nonliquefaction,	and	P(X|L)	

and	 P(X|NL)	 are	 the	 likelihoods	 for	 liquefaction	 and	 nonliquefaction.	 To	 determine	 these	

likelihood	 functions	 instead	 of	 assuming	 a	 functional	 form	 (such	 as	 independent	 Bernoulli	

outcomes	as	with	a	logistic	regression),	they	used	a	nonparametric	approach	employing	a	kernel	

density	estimator	to	numerically	estimate	the	likelihood	functions	(Yazdi	and	Moss,	2016).		The	

kernel	density	estimation	function	they	used	has	several	 tuning	parameters,	described	 in	their	

paper,	which	were	optimized	for	the	likelihood	shape	and	Matthew’s	correlation	coefficient.		

Figure	21	–	The	Nonparametric	Triggering	Curves	from	Yazdi	and	Moss,	2016.		
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With	 their	 estimated	 likelihood	 functions,	 they	 carried	 out	 the	 Bayes	 rule	 computation	 and	

produced	the	triggering	curves.		

The	shape	of	the	contours	is	dramatically	more	flexible	than	previous	work,	but	follows	

the	same	general	 trend.	This	work	demonstrates	how	modern	sophisticated	predictive	models	

can	 capture	 highly	 nonlinear	 relationships	 in	 the	 data.	 They	 also	 developed	model	 validation	

metrics	for	a	single	cutoff	threshold	and	compared	results	to	previous	models.	(Figure	22).							

The	Juang	et	al.	and	Idriss	and	Boulanger	models	are	deterministic	so	they	only	have	a	single	

threshold	curve.	While	the	validation	metrics	have	some	degree	of	variation,	the	models	

generally	perform	comparably.	All	models	were	tested	on	the	Moss	et	al.,	2006	dataset	which	

could	arguably	introduce	bias	in	favor	of	the	models	built	using	it.		 	

Figure	22	–	Model	Comparison	of	a	Variety	of	ELM’s.	The	metrics	reported	are	for	a	single	classification	
threshold	listed	for	each	model	in	the	second	column.	Reproduced	from	Yazdi	and	Moss,	2016.			
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3 Model	Building	Process	

The	following	chapter	describes	our	model	building	process.	As	a	general	overview,	we	

built	our	models	following	a	predictive	model	building	workflow	outlined	by	Kuhn	and	Johnson	

(Figure	23).		

We	considered	sequentially	more	complex	functional	forms	using	the	results	from	simpler	

model	 runs	 to	 inform	 later	 computational	 choices	 (Figure	 24).	 	 The	 following	 sections	 give	 a	

detailed	description	of	these	steps.		

For	this	study,	we	used	the	R	packages	of	caret,	lme4,	and	ROCR	for	model	development	

and	 validation,	 ggplot2	 for	 visualization,	 rstan	 to	 interface	 with	 Stan	 (our	 MCMC	 Bayesian	

Figure	23	–	Our	Predictive	Model	Building	Process.		
	

Figure	24	–	Model	Complexity	Progression	
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inference	engine),	and	shinystan	for	visualizing	MCMC	diagnostics.	The	following	code	will	check	

if	the	proper	packages	are	installed:	

require(caret)	
##	Loading	required	package:	caret	
##	Loading	required	package:	lattice	
##	Loading	required	package:	ggplot2	
require(ggplot2)	
require(ROCR)	
##	Loading	required	package:	ROCR	
##	Loading	required	package:	gplots	
##		
##	Attaching	package:	'gplots'	
##	The	following	object	is	masked	from	'package:stats':	
##		
##					lowess	
require(lme4)	
##	Loading	required	package:	lme4	
##	Loading	required	package:	Matrix	
require(rstan)	
##	Loading	required	package:	rstan	
##	Loading	required	package:	StanHeaders	
##	rstan	(Version	2.18.2,	GitRev:	2e1f913d3ca3)	
##	For	execution	on	a	local,	multicore	CPU	with	excess	RAM	we	recommend	calling	
##	options(mc.cores	=	parallel::detectCores()).	
##	To	avoid	recompilation	of	unchanged	Stan	programs,	we	recommend	calling	
##	rstan_options(auto_write	=	TRUE)	
rstan_options(auto_write	=	TRUE)	
options(mc.cores	=	parallel::detectCores())	
require(shinystan)	
##	Loading	required	package:	shinystan	
##	Loading	required	package:	shiny	
##		
##	This	is	shinystan	version	2.5.0	
require(caret)	
	

If	any	packages	are	not	installed	or	are	out	of	date,	call	install.packages("package	name")	

or	update.packages().		

3.1 Model	Development	–	Preliminary	steps	

This	section	describes	the	steps	taken	before	any	models	are	fit,	including	visualizing	the	

liquefaction	database,	predictor	variable	selection,	and	predictor	variable	transformation.				
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3.1.1 Importing	Data		

The	models	in	this	study	were	developed	using	the	database	from	Moss	et	al.,	2006.	This	

database	includes	CPT	data	from	18	events,	with	139	instances	of	liquefaction	and	43	instances	

of	 no	 liquefaction	 (nonliquefaction).	 The	 original	 paper	 estimated	mean	 values	 and	 standard	

deviations	for	𝜎"# ,	peak	ground	acceleration	(amax),	CSR,	qc,1,	Rf,	and	Mw.	The	first	step	 in	R	 is	to	

import	 this	 .csv	database	and	store	the	values	 in	a	data	 frame.	Note	that	 the	variable	and	file	

names/locations	are	arbitrary	choices	on	the	part	of	the	programmer.	To	easily	subset	the	data	

frame	by	predictor	variable	for	later	modeling,	it	is	useful	to	re-name	the	columns	as	necessary.	

setwd("/Users/appleuser/downloads/1-Thesis	Stuff")	
datan	<-	read.csv("mosDAt.csv")	
datan$event	<-	as.factor(datan$event)	
datan$liq	<-	as.factor(datan$liq)	
head(datan)	
##			liq	CSR_mean	CSR_sd	qc1_mean	qc1_sd	rf_mean	rf_sd		event	
##	1	Yes					0.36			0.10					4.46			2.07				1.11		0.06	chichi	
##	2	Yes					0.59			0.15					3.22			1.19				0.96		0.08	chichi	
##	3	Yes					0.59			0.16					3.16			0.73				1.84		0.08	chichi	
##	4	Yes					0.56			0.16					0.99			0.38				2.14		0.12	chichi	
##	5	Yes					0.60			0.18					2.52			1.36				2.18		0.09	chichi	
##	6	Yes					0.25			0.07					2.78			0.54				1.08		0.11	chichi	
	

The	database	 file	also	 includes	a	 label	 for	 liquefaction/nonliquefaction,	and	a	 label	 for	

event.		

3.1.2 Database	Overview		

The	original	database	included	12	predictor	variables:	

• Data	class	(A,	B,	or	C),	subjectively	assigned	based	upon	confidence	in	field	data	

• Critical	depth:	the	depth	range	of	the	layer	determined	to	have	liquefied	

• Groundwater	table	level:	Depth	below	ground	surface	of	the	groundwater	table	

• Vertical	total	stress	(𝜎")	

• Vertical	effective	stress	(𝜎"#)	
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• Peak	 ground	 acceleration	 (amax),	 usually	 estimated	 indirectly	 from	 attenuation	

relationships	

• Shear	stress	reduction	coefficient	(rd)	used	to	calculate	CSR	

• Cyclic	stress	ratio	(CSR)	

• CPT	normalization	exponent	(c),	an	input	to	the	equation	for	normalizing	CPT	measured	

tip	resistance	

• Normalized	CPT	tip	resistance	(qc,1)	

• Friction	ratio	(rf):	the	CPT	measured	sleeve	friction	divided	by	the	penetration	resistance	

• Moment	magnitude	(Mw)	

Importantly	 many	 of	 these	 predictor	 variables	 are	 functions	 of	 each	 other	 and	 are	

correlated	which	will	become	an	issue	during	the	modeling	process	(Figure	25).		
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Figure	25	–	The	Correlation	Matrix	of	the	Database	Mean	Values.	The	diagonal	shows	an	estimated	
distribution	for	each	predictor	which	are	plotted	against	each	other	in	the	lower	triangle.	The	upper	

triangle	reports	their	correlations.	
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To	illustrate	the	spread	of	data,	we	first	focus	on	a	single	load	and	resistance	predictor	—	

CSR	and	qc,1.	The	database	includes	a	reasonably	wide	range	of	CSR	and	qc,1	mean	values	(Figure	

26).	In	both	cases,	the	data	are	left	skewed	and	have	a	moderately	high	coefficient	of	variation	

(Í
¦
~	0.5 − 0.7).	 	 Additionally,	 Figures	 27	 and	 28	 show	 that	 each	 event	 has	 a	 slightly	 different	

distribution	of	load	and	resistance	values.	There	is	a	noticeable	association	between	event	and	

CSR	due	to	certain	earthquakes	having	higher	moment	magnitudes	and	associated	higher	ground	

motions	 than	others.	Unlike	CSR	 there	 is	not	a	noticeable	association	between	event	and	qc,1.	

Finally,	Figure	29	shows	the	separability	between	instances	of	liquefaction	and	nonliquefaction	

for	the	three	predictor	variables	considered.	Although	here	is	no	clear	separation	between	the	

classes	liquefaction	is	generally	associated	with	lower	penetration	resistance	and	higher	CSR.	Rf	

does	not	show	any	clear	trends.	
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Figure	26	–	Histogram	and	Density	Approximation	of	the	Three	Predictor	Variables.	
Including	mean	value	and	standard	deviation.	The	dashed	lines	represent	the	2.5th,	50th	

(median),	and	97.5th	percentiles,	respectively.	
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Figure	28	–	Distribution	of	qc,1	by	Event.	The	usual	box-and-whiskers	plot	conventions	are	used.	
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3.1.3 Predictor	Variable	Selection	

Predictor	variable	selection	is	a	critical	step	in	any	model	development—too	few	and	the	

relationships	in	the	data	may	not	be	captured,	too	many	and	the	model	will	be	over	fit	(Kuhn	and	

Johnson,	 2013).	 In	 particular,	 including	 predictor	 variables	 that	 have	 little	 or	 no	 effect	 on	

predicted	outcomes	will	increase	model	uncertainty	and	make	the	model	more	difficult	both	to	

fit	and	interpret	(Kuhn	and	Johnson,	2013).	For	engineering	research,	the	utility	of	a	model	is	also	

important	–	utility	in	this	context	meaning	the	balance	between	a	model’s	predictive	ability	and	

how	useable	it	is	in	practice.	An	overly	complicated	model	may	be	confusing	or	require	too	much	

time	and	money	invested	in	software	or	training	for	practitioner’s	use.		

As	a	preliminary	tool,	we	used	a	stepwise	selection	process	to	determine	which	predictor	

variables	were	worth	including	based	upon	the	Akaike	Information	Criterion	(AIC).	AIC	is	a	metric	

for	making	relative	comparisons	about	model	utility	that	estimates	the	tradeoff	between	model	

goodness	of	fit	and	the	simplicity	of	the	model,	conceptually	the	tradeoff	between	under	and	over	

fitting	 (Burnham	 and	 Anderson,	 2004).	 	 A	 lower	 value	 for	 AIC	 is	 better.	 At	 each	 step	 in	 the	

algorithm,	the	predictor	variables	are	added	or	removed	one	by	one	from	the	model	and	the	AIC	

calculated.	The	model	with	the	lowest	AIC	is	selected	for	the	next	step	and	the	process	continues	

until	no	proposed	model	outperforms	the	current.			

This	stepwise	selection	process	is	performed	with	the	following	code:	

data	<-	read.csv("mosDATn.csv")	
initial	<-	glm(liq	~	GWT	+	sig_mean	+	amax_mean	+	rd_mean	+	CSR_mean	+	qc1_mean	+	
CSR_mean	+	rf_mean	+	mw_mean,	data	=	data,	family	=	"binomial")	
step(object	=	initial,	direction	=	"both"	)	
##	Start:		AIC=109.28	
##	liq	~	GWT	+	sig_mean	+	amax_mean	+	rd_mean	+	CSR_mean	+	qc1_mean	+		
##					CSR_mean	+	rf_mean	+	mw_mean	
##		
##													Df	Deviance				AIC	
##	-	amax_mean		1			91.328	107.33	
##	-	mw_mean				1			91.725	107.72	
##	-	GWT								1			92.397	108.40	
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##	-	rd_mean				1			92.990	108.99	
##	<none>											91.282	109.28	
##	-	sig_mean			1			93.471	109.47	
##	-	CSR_mean			1			96.593	112.59	
##	-	rf_mean				1		105.119	121.12	
##	-	qc1_mean			1		177.472	193.47	
##		
##	Step:		AIC=107.33	
##	liq	~	GWT	+	sig_mean	+	rd_mean	+	CSR_mean	+	qc1_mean	+	rf_mean	+		
##					mw_mean	
##		
##													Df	Deviance				AIC	
##	-	mw_mean				1			91.725	105.72	
##	-	GWT								1			93.012	107.01	
##	-	rd_mean				1			93.175	107.17	
##	<none>											91.328	107.33	
##	-	sig_mean			1			93.653	107.65	
##	+	amax_mean		1			91.282	109.28	
##	-	rf_mean				1		107.280	121.28	
##	-	CSR_mean			1		121.268	135.27	
##	-	qc1_mean			1		181.105	195.10	
##		
##	Step:		AIC=105.72	
##	liq	~	GWT	+	sig_mean	+	rd_mean	+	CSR_mean	+	qc1_mean	+	rf_mean	
##		
##													Df	Deviance				AIC	
##	-	GWT								1			93.151	105.15	
##	-	rd_mean				1			93.247	105.25	
##	-	sig_mean			1			93.671	105.67	
##	<none>											91.725	105.72	
##	+	mw_mean				1			91.328	107.33	
##	+	amax_mean		1			91.725	107.72	
##	-	rf_mean				1		107.888	119.89	
##	-	CSR_mean			1		122.210	134.21	
##	-	qc1_mean			1		181.952	193.95	
##		
##	Step:		AIC=105.15	
##	liq	~	sig_mean	+	rd_mean	+	CSR_mean	+	qc1_mean	+	rf_mean	
##		
##													Df	Deviance				AIC	
##	-	sig_mean			1			94.341	104.34	
##	-	rd_mean				1			94.447	104.45	
##	<none>											93.151	105.15	
##	+	GWT								1			91.725	105.72	
##	+	amax_mean		1			92.490	106.49	
##	+	mw_mean				1			93.012	107.01	
##	-	rf_mean				1		108.133	118.13	
##	-	CSR_mean			1		122.335	132.34	
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##	-	qc1_mean			1		184.774	194.77	
##		
##	Step:		AIC=104.34	
##	liq	~	rd_mean	+	CSR_mean	+	qc1_mean	+	rf_mean	
##		
##													Df	Deviance				AIC	
##	-	rd_mean				1			94.507	102.51	
##	<none>											94.341	104.34	
##	+	sig_mean			1			93.151	105.15	
##	+	amax_mean		1			93.601	105.60	
##	+	GWT								1			93.671	105.67	
##	+	mw_mean				1			94.337	106.34	
##	-	rf_mean				1		108.608	116.61	
##	-	CSR_mean			1		130.115	138.12	
##	-	qc1_mean			1		184.984	192.98	
##		
##	Step:		AIC=102.51	
##	liq	~	CSR_mean	+	qc1_mean	+	rf_mean	
##		
##													Df	Deviance				AIC	
##	<none>											94.507	102.51	
##	+	amax_mean		1			93.604	103.60	
##	+	GWT								1			93.684	103.68	
##	+	rd_mean				1			94.341	104.34	
##	+	sig_mean			1			94.447	104.45	
##	+	mw_mean				1			94.504	104.50	
##	-	rf_mean				1		108.995	115.00	
##	-	CSR_mean			1		133.367	139.37	
##	-	qc1_mean			1		186.074	192.07	
##		
##	Call:		glm(formula	=	liq	~	CSR_mean	+	qc1_mean	+	rf_mean,	family	=	"binomial",		
##					data	=	data)	
##		
##	Coefficients:	
##	(Intercept)					CSR_mean					qc1_mean						rf_mean			
##						3.6273						20.0723						-0.7533						-1.3836			
##		
##	Degrees	of	Freedom:	181	Total	(i.e.	Null);		178	Residual	
##	Null	Deviance:							199		
##	Residual	Deviance:	94.51					AIC:	102.5	
	

Based	upon	these	results	there	is	justification	for	considering	models	of	three	predictor	

variables:	qc,1,	CSR,	and	Rf.	Qualitatively,	these	predictor	variables	have	a	reasonable	coverage	of	

several	 main	 factors	 affecting	 liquefaction:	 in-situ	 density,	 amplitude	 and	 duration	 of	 cyclic	

shearing,	and	fines	content.		In	the	absence	of	laboratory	testing	Rf	serves	as	a	proxy	for	the	fines	
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content	because	more	cohesive	soils	will	tend	to	have	higher	values.	We	fit	all	models	first	with	

only	two	predictor	variables,	qc,1	and	CSR,	 then	 included	Rf	 to	assess	the	value	 it	added	to	the	

model.	For	brevity,	all	sample	code	that	follows	is	for	the	more	complicated	three	variable	case.	

It	is	relatively	simple	to	delete	code	pertaining	to	Rf	to	recover	the	two	variable	case.		

3.1.4 Predictor	Variable	Transformations	

As	 mentioned	 previously,	 model	 performance	 is	 improved	 by	 dealing	 with	

transformations	of	predictor	variables.	 In	this	area	previous	research	has	focused	on	satisfying	

certain	statistical	assumptions	such	as	normality	of	predictor	variables	or	 linear	 independence	

under	 the	 logit	 transformation	 (Lai	 et	 al.,	 2006).	 However,	 we	 instead	 searched	 for	

transformations	 that	 produced	 the	model	with	 the	 best	 predictive	 ability	 given	 a	 fixed	 set	 of	

predictors.	We	selected	 the	Box-Cox	 family	of	 transformations	because	of	 its	 flexibility	and	 its	

ability	to	capture	many	common	transformations	such	as	powers	and	logarithms.	Another	useful	

property	 is	 that	these	transformations	are	monotonic	so	 increases	or	decreases	 in	the	original	

variable	 also	 correspond	 to	 increases	 and	 decreases	 in	 the	 transformed	 variable.	 A	 Box-Cox	

transformation	of	a	predictor	variable	x,	indexed	by	the	parameter	𝜆,	is	defined	as	(after	Box	and	

Cox,	1964):	

𝑥# = 	
	ln 𝑥 				if	𝜆 = 0	
𝑥Ï − 1
𝜆

		if	𝜆 ≠ 0
	

We	used	a	simple	grid	search	method	to	determine	the	group	𝜆′𝑠	that	produced	the	best	

performing	model,	as	measured	by	5-fold	cross	validated	AUC.		Conceptually,	this	 introduces	a	

tuning	parameter	to	the	standard	maximum	likelihood	logistic	regression	that	allows	for	greater	

flexibility	in	the	shape	of	the	probability	contours.	Since	the	interaction	between	predictors	can	

potentially	be	different	for	two	and	three	variables	the	process	should	be	repeated	for	both	cases	

(only	one	of	which	is	shown	below).		
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The	code	below	performs	a	grid	search	for	all	possible	cases	of	Box-Cox	transformation	

indices	for	the	qc,1	,	CSR,	and	Rf.	At	each	grouping	of	possible	predictor	variable	transformations	

the	caret	package	is	used	to	perform	a	logistic	regression	and	compute	its	5	fold	cross	validated	

AUC	using	the	train	function.	The	train	function	takes	several	arguments.	The	first	is	the	model	

formula,	expressed	identically	to	the	glm	call	as	response	~	predictor	+	predictor	+	...	and	family	=	

“binomial”	 to	 indicate	that	we	have	binary	outcomes	for	our	response.	The	method	argument	

tells	train	that	we	want	to	use	a	generalized	linear	model.	The	trainControl	function	returns	a	list	

that	tells	the	train	function	that	our	validation	methods	are	5-fold	cross	validation	and	we	want	it	

to	report	the	two	class	summary	(which	includes	the	AUC).	

set.seed(5)	
options(warn=-1)		
fitControl	<-	trainControl(method	=	"cv",	
																											number	=	5,	
																											classProbs	=	T,	
																											summaryFunction	=	twoClassSummary)	
dtemp	<-	datan	
search_grid	<-	expand.grid(seq(-1,1,0.1)	,	seq(-1,1,0.1),	seq(-1,1,0.1)	)		
iter	<-	length(search_grid$Var1)	
results	<-	data.frame(matrix(ncol	=	8,	nrow	=	iter))	
names(results)	<-	c("b0",	"b1",	"b2",	"b3",	"AUC",	"l_CSR",	"l_qc1",	"l_rf")	
for	(i	in	1:iter){	
if	(search_grid[i,1]	==	0)	{	
		dtemp$CSR_mean	<-	log(datan$CSR_mean)	
}	else	{	
		dtemp$CSR_mean	<-	(datan$CSR_mean^(search_grid[i,1])-1)/(search_grid[i,1])	
}	
if	(search_grid[i,2]	==	0)	{	
		dtemp$qc1_mean	<-	log(datan$qc1_mean)	
}	else	{	
		dtemp$qc1_mean	<-	(datan$qc1_mean^search_grid[i,2]-1)/(search_grid[i,2])	
}	
if	(search_grid[i,3]	==	0)	{	
		dtemp$rf_mean	<-	log(datan$rf_mean)	
}	else	{	
		dtemp$rf_mean	<-	(datan$rf_mean^search_grid[i,3]-1)/(search_grid[i,3])	
}			
m	<-	train(liq	~	qc1_mean	+	CSR_mean	+	rf_mean,	data	=	dtemp,	family	=	"binomial",	
											method	=	"glm",	
											trControl	=	fitControl)	
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results[i,5]	<-	m$results$ROC	
results[i,1:4]	<-m$finalModel$coefficients	
results[i,6:8]	<-	search_grid[i,]		
}	
newres	<-	results[order(results$AUC),]	
write.csv(newres,	"transformations.csv")	
	

The	results	are	then	ranked	by	their	cross	validated	AUC	and	stored	in	a	.csv	file	for	later	

use.	We	found	the	optimal	Box-Cox	parameters	to	be	𝜆ÒÓÔ = 	−0.6	and	𝜆ÕÖ,{ = 	1.6	for	the	two	

variable	 case	 and	 𝜆ÒÓÔ = 	−0.6,	 𝜆ÕÖ,{ = 	1.0,	 and	 𝜆Ô× = 	0.2	 for	 the	 three	 variable	 case.	

Importantly,	 these	 transformations	 do	 not	 result	 from	 physical	 principles	 nor	 do	 they	 have	 a	

meaningful	physical	interpretation.	Rather,	they	are	a	result	of	how	a	logistic	regression	separates	

classes.	 A	 logistic	 regression	 is	 only	 capable	 of	 linear	 class	 boundaries,	 so	 this	 transformation	

tuning	procedure	can	be	thought	of	finding	the	transformed	predictor	variable	space	in	which	the	

liquefaction	 classes	 are	 most	 nearly	 linearly	 separable.	 	 As	 would	 be	 expected,	 these	

transformations	cause	an	appreciable	 increase	 in	model	predictive	ability.	Considering	the	two	

variable	case,	the	AUC	rises	from	0.664	to	0.710	when	applying	the	transformations.				

Because	only	the	mean	and	standard	deviation	of	the	predictor	variables	are	included	in	

the	 database,	 the	 transformed	 moments	 cannot	 be	 calculated	 directly	 for	 a	 nonlinear	

transformation	without	assuming	a	distributional	form	for	each	data	point.	Instead,	we	use	a	first	

order	 second	 moment	 (FOSM)	 approximation	 technique	 that	 calculates	 the	 moments	 of	 the	

Taylor	 series	 expansion	 of	 the	 transformation	 (See	 Moss	 2013	 for	 a	 detailed	 derivation).	

Specifically,	 for	 a	 random	 variable	 X	 (in	 our	 case	 a	 predictor	 variable	 measurement)	 with	

associated	 mean	 µ	 and	 variance	 σ2	 and	 differentiable	 transformation	 Y	 =	 g(x)	 the	 FOSM	

approximations	are	given	by	(after	Moss,	2013):	

𝜇4 	≅ 𝑔 𝜇\ 		

𝜎4E ≅ 	𝑔# 𝜇\ E𝜎\E	
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𝑑
𝑑𝑥

𝑥Ï − 1
𝜆

= 𝑥ÏPI	

For	a	qc,1	observation	transformed	to	qc,1,T	via	a	Box-Cos	parameter	𝜆	we	have:		

𝜇ÕÖ,{,Ú 	≅ 	
𝜇ÕÖ,{

Ï − 1
𝜆

		

𝜎ÕÖ,{,Ú
E ≅ 𝜇ÕÖ,{

ÏPI E
𝜎ÕÖ,{
E 	

Likewise,	for	a	CSR	observation	transformed	to	CSRT	we	have:	

		

𝜇ÒÓÔ,Û 	≅ 	
𝜇ÒÓÔÏ − 1

𝜆
	

𝜎ÒÓÔ,ÛE ≅ 	 𝜇ÒÓÔÏPI
E
𝜎ÒÓÔE 	

and	for	Rf:	

𝜇Ô×,Û 	≅ 	
𝜇Ô×

Ï − 1
𝜆

	

𝜎Ô×,Û
E ≅ 	 𝜇Ô×

ÏPI
E
𝜎Ô×
E 	

Next,	the	FOSM	approximations	of	the	mean	values	and	standard	deviations	are	

computed	in	R.	The	Box-Cox	transformation	and	its	derivative	are	written	as	functions	to	be	

easily	called	in	the	main	section	of	the	code	without	having	to	copy	and	paste	the	same	math	

over	and	over.	The	following	examples	are	shown	for	all	three	predictor	variables	but	the	code	

should	be	modified	as	necessary	for	the	two	variable	case.	

boxcox	<-	function(x,l){	
		if	(l	==	0)	{	
				return(log(x))	
		}	else	{	
				return((x^(l)-1)/l)	
		}	
}	
	
dboxcox	<-	function(x,l){	
		if	(l	==	0)	{	



73	

				return(1/x)	
		}	else	{	
				return(x^(l-1))	
		}	
}	
	
l_csr	<--0.6	
l_qc1	<-	1.0	
l_rf	<-	0.2	
dt1	<-	data.frame(datan$liq,		
																		boxcox(datan$CSR_mean,	l_csr),	
																		sqrt(dboxcox(datan$CSR_mean,	l_csr)*datan$CSR_sd^2),	
																		boxcox(datan$qc1_mean,	l_qc1),sqrt(dboxcox(datan$qc1_mean,	
l_qc1)*datan$qc1_sd^2),		
																		boxcox(datan$rf_mean,	l_rf),	
																		sqrt(dboxcox(datan$rf_mean,	l_rf)*datan$rf_sd^2),	
																		datan$event)	
names(dt1)	<-	names(datan)	
	
The	effects	of	these	transformations	are	shown	in	figure	30,	following.		
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Figure	30	–	Transformed	Distributions	of	qc,1,	CSR,	and	Rf.	The	Box-Cox	parameters	of	𝝀𝑪𝑺𝑹 =
	−𝟎. 𝟔,	𝝀𝒒𝒄,𝟏 = 	𝟏. 𝟎,	and	𝝀𝑹𝒇 = 	𝟎. 𝟐	for	the	three	variable	case	are	shown.	
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3.2 Model	development	-	Maximum	Likelihood	Fits	

This	 section	 details	 our	maximum	 likelihood	models	 and	 the	R	 code	used	 to	 estimate	

parameter	values.	It	covers	the	baseline	model,	using	case	weighting	and	up-sampling	to	account	

for	class	imbalance,	and	the	mixed	effects	model.		

3.2.1 Initial	Maximum	Likelihood	Model	

First,	we	use	the	glm	function	to	run	our	initial	maximum	likelihood	logistic	regression	on	

the	standard	dataset.	The	function	call	 includes	the	regression	formula	of	the	form	response	~	

predictor	+	predictor	+	...,	the	data	frame	where	the	data	are	stored,	and	family	of	generalized	

linear	model	to	be	used.	In	this	case,	family	=	“binomial”	tells	R	that	we	have	binary	outcomes	for	

our	responses.	R	defaults	to	the	logit	link	function	but	includes	others.	

m	<-	glm(liq	~	qc1_mean	+	CSR_mean	+	rf_mean,	data	=	dt1,	family	=	"binomial")	
	

This	stores	the	model	results	as	list,	m.	To	view	a	summary	of	model	output:	

summary(m)	
##		
##	Call:	
##	glm(formula	=	liq	~	qc1_mean	+	CSR_mean	+	rf_mean,	family	=	"binomial",		
##					data	=	dt1)	
##		
##	Deviance	Residuals:		
##						Min								1Q				Median								3Q							Max			
##	-1.87698		-0.32937			0.00867			0.36300			2.09253			
##		
##	Coefficients:	
##													Estimate	Std.	Error	z	value	Pr(>|z|)					
##	(Intercept)		10.7657					1.5519			6.937	4.00e-12	***	
##	qc1_mean					-0.8164					0.1187		-6.879	6.01e-12	***	
##	CSR_mean						2.0875					0.3146			6.636	3.23e-11	***	
##	rf_mean						-1.3206					0.3098		-4.263	2.02e-05	***	
##	---	
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	
##		
##	(Dispersion	parameter	for	binomial	family	taken	to	be	1)	
##		
##					Null	deviance:	385.39		on	277		degrees	of	freedom	
##	Residual	deviance:	167.71		on	274		degrees	of	freedom	
##	AIC:	175.71	
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##		
##	Number	of	Fisher	Scoring	iterations:	7	
	

This	output	includes	many	useful	diagnostics	and	frequentist	interpretations	of	results	in	

addition	to	coefficients	and	their	standard	errors.		

3.2.2 Dealing	with	Class	Imbalances	

For	this	study,	we	used	both	up-sampling	and	a	case	weighting	technique	to	compensate	

for	class	imbalances.	To	create	the	up-sampled	database	we	can	use	the	upSample	function	from	

the	caret	package.	The	arguments	passed	to	the	upSample	function	are	the	data	frame	separated	

into	the	data	and	the	class	labels.	It	returns	a	new	data	frame	with	the	minority	class	randomly	

compensated	to	achieve	balanced	yes	and	no	classes.	Because	the	data	frame	returned	adds	the	

class	 labels	 to	 the	 last	 column	 instead	 of	 the	 first,	 as	 with	 our	 original	 data,	 it	 is	 renamed	

accordingly.	

up_temp	<-	upSample(x	=	dt1[,-1],	y	=	dt1$liq)	
dt1	<-	up_temp	
names(dt1)[8]	<-	"liq"	
	

The	original	glm	code	can	be	called	again	to	repeat	the	maximum	likelihood	regression	on	

the	up-sampled	dataset.		

	

m	<-	glm(liq	~	qc1_mean	+	CSR_mean,	data=dt1,	family	=	"binomial")	
summary(m)	
##		
##	Call:	
##	glm(formula	=	liq	~	qc1_mean	+	CSR_mean,	family	=	"binomial",		
##					data	=	dt1)	
##		
##	Deviance	Residuals:		
##						Min								1Q				Median								3Q							Max			
##	-1.76848		-0.42780			0.01844			0.42693			2.13190			
##		
##	Coefficients:	
##													Estimate	Std.	Error	z	value	Pr(>|z|)					
##	(Intercept)		8.57773				1.18099			7.263	3.78e-13	***	
##	qc1_mean				-0.19575				0.02969		-6.592	4.33e-11	***	
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##	CSR_mean					1.86510				0.26459			7.049	1.80e-12	***	
##	---	
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	
##		
##	(Dispersion	parameter	for	binomial	family	taken	to	be	1)	
##		
##					Null	deviance:	385.39		on	277		degrees	of	freedom	
##	Residual	deviance:	178.03		on	275		degrees	of	freedom	
##	AIC:	184.03	
##		
##	Number	of	Fisher	Scoring	iterations:	7	

	

We	also	performed	the	regression	using	a	case	weighting	technique	using	stats4::mle().	

This	function	requires	a	user	defined	function	that	accepts	parameter	values	and	returns	the	value	

of	the	negative	log-likelihood	and	a	list	of	initial	parameter	values,	as	shown	in	the	code	following.	

For	 an	 input	 vector	 of	 parameters	𝜷	 the	 weighted	 log-likelihood	 is	 defined	 as	 follows	 for	 nl	

liquefied	cases	and	nnl	nonliquefied	cases.	The	probability	of	 liquefaction	for	the	ith	outcome	is	

calculated	 as	 normal.			

ln 𝑙 𝜷 = 	𝑤b ln 𝑃b,g + 𝑤mb ln	(1 − 𝑃b,j)
Lkh

jiI

Ln

giI

	

			

w_l	<-	1	
w_nl	<-	1.5	
logit.lf	<-	function(b0,	b1,	b2)	{		
		p_l	<-	1/(1+exp(-(b0+b1*dt1$qc1_mean+b2*dt1$CSR_mean)))	#probability	of	liquefaction	w/	
current	parameter	vector	
		(w_l*sum(log(p_l[dt1$liq	==	"Yes"]))+w_nl*sum(log(1-p_l[dt1$liq	==	"No"])))*-1	#negative	log-
likelihood	value	
}	
m2	<-	stats4::mle(logit.lf,	start	=	list(b0	=	1,	b1	=	-1,	b2	=	1))	
summary(m2)	
##	Maximum	likelihood	estimation	
##		
##	Call:	
##	stats4::mle(minuslogl	=	logit.lf,	start	=	list(b0	=	1,	b1	=	-1,		
##					b2	=	1))	
##		
##	Coefficients:	
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##						Estimate	Std.	Error	
##	b0		8.9423534	1.42391242	
##	b1	-0.1928976	0.03385079	
##	b2		1.7285881	0.31031766	
##		
##	-2	log	L:	118.4307	
	
The	coefficients	from	this	weighting	method	are	nearly	identical	to	the	upsampled	fit.	The	models	

also	have	a	similar	predictive	performance,	with	AUC	=	0.713	for	the	weighted	likelihood	and	AUC	

=	0.727	 for	 the	upsampled	model.	Notably,	 they	both	outperform	the	original	model’s	AUC	of	

0.710.	Because	the	performances	are	very	similar	and	the	upsampling	slightly	outperforms	the	

weighting	all	future	models	will			use	the	upsampled	dataset.		

3.2.3 Mixed	models	

Next,	we	want	to	build	our	mixed	modesl	using	the	glmer	function	from	the	lme4	package.	

The	first	model	only	allows	the	intercept	term	to	vary	by	event:	

m	<-	glmer(liq	~	qc1_mean	+	CSR_mean	+	rf_mean	+	(1|event),		
																		data=dt1,	family	=	"binomial",	
																		control	=	glmerControl(optimizer	=	"bobyqa"),	
																		nAGQ	=	20)	
	

The	formula	call	is	similar	to	the	glm	package,	but	include	the	predictor	(1|event)	which	

tells	 the	 function	 we	 want	 to	 include	 a	 random	 intercept	 by	 event.	 The	 options	 nAQG	 =	 20	

specifies	that	we	want	20	integration	points,	and	the	optimizer	=	"bobyqa"	specifies	a	non-default	

optimizer	that	tends	to	give	better	convergence.	Again	we	can	use	the	summary	function	to	see	

the	results	of	the	fit:	

summary(m)	
##	Generalized	linear	mixed	model	fit	by	maximum	likelihood	(Adaptive	
##			Gauss-Hermite	Quadrature,	nAGQ	=	20)	[glmerMod]	
##		Family:	binomial		(	logit	)	
##	Formula:	liq	~	qc1_mean	+	CSR_mean	+	rf_mean	+	(1	|	event)	
##				Data:	dt1	
##	Control:	glmerControl(optimizer	=	"bobyqa")	
##		
##						AIC						BIC			logLik	deviance	df.resid		
##				166.3				184.5				-78.2				156.3						273		
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##		
##	Scaled	residuals:		
##					Min						1Q		Median						3Q					Max		
##	-1.7745	-0.0973		0.0014		0.1573		3.7642		
##		
##	Random	effects:	
##		Groups	Name								Variance	Std.Dev.	
##		event		(Intercept)	4.418				2.102				
##	Number	of	obs:	278,	groups:		event,	18	
##		
##	Fixed	effects:	
##													Estimate	Std.	Error	z	value	Pr(>|z|)					
##	(Intercept)		15.2628					2.6124			5.842	5.14e-09	***	
##	qc1_mean					-1.0947					0.1911		-5.730	1.00e-08	***	
##	CSR_mean						2.9603					0.5131			5.769	7.97e-09	***	
##	rf_mean						-2.3947					0.5725		-4.183	2.88e-05	***	
##	---	
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	
##		
##	Correlation	of	Fixed	Effects:	
##										(Intr)	qc1_mn	CSR_mn	
##	qc1_mean	-0.889															
##	CSR_mean		0.934	-0.788								
##	rf_mean		-0.594		0.639	-0.515	
	

The	important	parts	of	this	output	are	the	standard	deviation	of	the	random	effect,	and	

the	 fixed	effects	 coefficients.	 It	 also	useful	 to	make	 sure	 that	 the	number	of	 groups	 reported	

matches	the	number	of	events	in	the	database.	If	they	don’t	match	something	is	likely	mislabeled	

in	the	data	frame.	

We	would	next	like	to	extend	our	mixed	model	to	allow	the	other	coefficients	to	vary	by	

event.		We	repeat	the	glmer	call	but	include	(0	+	predictor|event)	terms	in	the	formula	to	specify	

the	varying	slopes.	R	only	allows	a	single	Gaussian	quadrature	point	for	a	model	this	complex.		

m2	<-	glmer(liq	~	qc1_mean	+	CSR_mean	+	rf_mean	+	(1|event)	+	(0	+	CSR_mean|event)	+	(0	+	
qc1_mean|event)	+	(0	+	rf_mean|event),		
																		data=dt1,	family	=	"binomial",	
																		control	=	glmerControl(optimizer	=	"bobyqa"),	
																		nAGQ	=	1)	
##	singular	fit	
summary(m2)	
##	Generalized	linear	mixed	model	fit	by	maximum	likelihood	(Laplace	
##			Approximation)	[glmerMod]	
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##		Family:	binomial		(	logit	)	
##	Formula:		
##	liq	~	qc1_mean	+	CSR_mean	+	rf_mean	+	(1	|	event)	+	(0	+	CSR_mean	|			
##					event)	+	(0	+	qc1_mean	|	event)	+	(0	+	rf_mean	|	event)	
##				Data:	dt1	
##	Control:	glmerControl(optimizer	=	"bobyqa")	
##		
##						AIC						BIC			logLik	deviance	df.resid		
##				152.8				181.8				-68.4				136.8						270		
##		
##	Scaled	residuals:		
##						Min							1Q			Median							3Q						Max		
##	-2.22222	-0.06505		0.00022		0.13815		2.83313		
##		
##	Random	effects:	
##		Groups		Name								Variance	Std.Dev.	
##		event			(Intercept)		0.0000		0.0000			
##		event.1	CSR_mean					0.1545		0.3931			
##		event.2	qc1_mean					0.0000		0.0000			
##		event.3	rf_mean					17.0545		4.1297			
##	Number	of	obs:	278,	groups:		event,	18	
##		
##	Fixed	effects:	
##													Estimate	Std.	Error	z	value	Pr(>|z|)					
##	(Intercept)	14.07955				2.44644			5.755	8.66e-09	***	
##	qc1_mean				-0.34255				0.06248		-5.482	4.20e-08	***	
##	CSR_mean					2.91110				0.55293			5.265	1.40e-07	***	
##	rf_mean					-0.88171				1.38107		-0.638				0.523					
##	---	
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1	
##		
##	Correlation	of	Fixed	Effects:	
##										(Intr)	qc1_mn	CSR_mn	
##	qc1_mean	-0.885															
##	CSR_mean		0.929	-0.759								
##	rf_mean		-0.083		0.095	-0.040	
##	convergence	code:	0	
##	singular	fit	

	

We	have	now	run	into	a	common	problem	with	fitting	multilevel	models	with	maximum	

likelihood	methods.	The	events	with	a	low	number	of	data	points	simply	do	not	provide	enough	

information	to	allow	the	model	to	converge	(Gelman	and	Hill,	2007).	While	it	is	possible	we	could	
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use	some	computational	tricks	or	different	estimation	methods	to	get	a	solution	we	will	instead	

move	to	Bayesian	modeling.			

3.3 Model	Development	-	Introduction	to	Stan	

We	now	want	to	repeat	our	previous	regression	models	using	Bayesian	techniques.	There	

are	several	goals	behind	this.	In	our	final	model	we	want	to	explicitly	incorporate	measurement	

uncertainty	 from	 the	 predictor	 variables	with	 the	 goal	 of	 reducing	 overall	model	 uncertainty.	

Doing	 so	 in	 a	 Bayesian	 context	 avoid	 the	 simplifying	 assumptions	 required	 for	 a	 maximum	

likelihood	 solution.	 Additionally,	 a	 Bayesian	 analysis	 gives	 full	 probability	 distributions	 for	 the	

model	parameters.	These	can	be	used	for	the	fully	probabilistic	analysis	required	by	performance	

based	engineering.	Finally,	appropriate	prior	choices	can	be	used	to	ensure	the	model	is	physically	

well	behaved.	

A	brief	introduction	to	Stan,	the	Bayesian	inference	engine	used	in	this	study,	follows	to	

familiarize	the	reader	with	how	the	program	works.	

3.3.1 Stan	Overview	

This	section	is	written	to	provide	a	very	brief	overview	of	the	Stan	programming	language	

necessary	 to	 understand	 the	models	 that	 follow.	 Reading	 through	 the	 Stan	 user	manual	 and	

language	 reference	 (available	 on	 the	 website	 mc-stan.org)	 is	 highly	 recommended	 for	 users	

looking	to	write	their	own	code.	Stan	is	a	probabilistic	programming	language,	similar	to	BUGS	or	

JAGS,	 that	 allows	 a	 user	 to	 code	 a	 Bayesian	 model	 and	 produce	 draws	 from	 the	 posterior	

distribution	(Carpenter	et	al.,	2017).	As	addressed	in	the	summary	of	Hamiltonian	Monte	Carlo,	

Stan	actually	uses	the	logarithm	of	the	posterior	(referred	to	as	log	posterior).			

This	 inference	 in	 two	parts;	 first,	a	user	writes	 the	Stan	code	to	define	 the	model	and	

provides	 the	data	 from	R	or	another	 interface	which	are	compiled	 into	a	C++	 file	 for	 the	Stan	

backend.	These	both	fully	define	the	unnormalized	posterior	required	for	the	Metropolis-Hastings	
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algorithm.		Simply	put,	the	user	code	defines	a	very	complicated	function	that	takes	a	vector	of	

parameter	values	as	 inputs	and	 returns	 the	 scalar	 value	of	 the	 logarithm	of	 the	unnormalized	

posterior	 density	 at	 that	 point.	 Next,	 the	 backend	 of	 Stan	 then	 takes	 this	 user	 defined	 log-

posterior	 and	 runs	 its	 Hamiltonian	Monte	 Carlo	 sampler	 (the	 NUTS	 sampler)	 to	 simulate	 the	

posterior	distributions	of	the	parameters	of	interest.	It	returns	a	R	object	with	the	posterior	draws	

and	model	information.		

Stan	is	similar	to	C++	and	other	programming	languages	in	that	it	requires	every	variable	

used	to	have	a	declared	data	type.		It	supports	many	typical	types	such	as	integers,	reals,	vectors	

(which	defaults	to	column	vectors	unless	specified	otherwise),	matrices,	and	arrays.	 It	also	has	

special	constrained	classes	often	used	 in	statistics	such	as	correlation	and	covariance	matrices	

and	 Cholesky	 factors.	 Any	 of	 the	 basic	 data	 types	 can	 be	 declared	 with	 upper	 and	 lower	

constraints.	An	example	of	how	to	declare	constrained	integers,	reals,	and	a	vector	of	length	3	

follows.	

data	{	
int	<lower	=	1>	x;	
real	<upper	=	0>	y;	
vector	<lower	=	-1,	upper	=	1>[3]	z;	
	
}	
3.3.2 Descriptions	of	Different	Model	Blocks	

A	 Stan	 program	 is	written	 as	 a	 series	 of	 “blocks”,	 a	 set	 of	 statements	 surrounded	 by	

brackets	and	preceded	by	the	block	name.	Not	all	of	these	blocks	are	 included	or	necessary	 in	

every	Stan	program	–	in	fact	an	empty	string	is	technically	a	valid	Stan	program	but	will	raise	an	

error	from	the	compiler.	The	blocks	must	occur	in	the	same	order	as	listed	in	the	skeleton	below,	

and	variable	type	declarations	must	come	before	statements.			

functions	{	
//	...	function	declarations	and	definitions	...	
}	
data	{	
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//	...	declarations...	
	
}	
transformed	data	{	
///	...	declarations	...	statements	
}	
	
parameters	{	
//	...	declarations	...	
}	
transformed	parameters	{	
//	...	declarations	...	statements	
	
}	
	
model	{	
//	...	declarations	...	statements	
	
}	
generated	quantities	{	
//	...	declarations	...	statements	
}	
A	brief	description	of	the	blocks	that	appear	in	our	programs	follows.		

Data	

The	data	block	is	used	for	declaring	types	and	names	for	the	data	passed	to	Stan	from	R	

or	another	interface.	The	names	must	exactly	match	those	passed	to	Stan	but	the	order	does	not	

have	to	be	the	same.	In	this	block,	constraints	can	be	used	to	catch	model	bugs	–	passing	values	

outside	of	the	constraints	or	of	the	wrong	size/type	will	raise	an	error.	There	are	no	statements	

in	 this	 block.	 Instead	 the	 transformed	 data	 block,	 which	 follows,	 can	 be	 used	 for	 applying	

transformations	to	or	calculating	means/standard	deviations	from	data	passed	to	Stan.	However,	

this	is	often	more	easily	done	in	R	beforehand	and	passed	as	data	directly.		

Parameters	

The	variables	declared	in	the	parameters	block	are	those	that	Stan	will	return	samples	

for.	These	cannot	be	assigned	values,	so	there	are	again	no	statements	in	this	block.	Constraints	

can	also	be	applied	here	to	prevent	the	sampler	from	drawing	unrealistic	values,	such	as	requiring	
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variances	 to	 be	 positive	 or	 slopes	 to	 be	 only	 positive/negative.	 Technically,	 Stan	 actually	 will	

transform	constrained	variables	to	be	unconstrained	behind	the	scenes	but	this	is	typically	not	an	

issue	with	writing	code.	

Model	

In	the	model	block	a	user	specifies	the	priors	on	model	parameters	and	the	form	of	the	

likelihood	for	 the	data	required	to	define	the	posterior.	For	notational	convenience,	Stan	uses	

standard	statistical	sampling	notation.	For	example,	writing	𝑦	~	Normal(𝜇, 𝜎)	tells	Stan	that	that	

the	 variable	 y,	which	 can	be	either	 an	unknown	parameter	or	 known	data,	 is	 supposed	 to	be	

normally	 distributed	 with	 mean	 mu	 and	 standard	 deviation	 sigma.	 However,	 no	 sampling	 is	

actually	done	during	 this	 step.	Rather	 the	user	 is	 just	 adding	 terms	 to	build	 the	 log	posterior.	

Instead	of	using	sampling	statements,	the	user	can	also	add	terms	to	the	log	posterior	directly.		

A	 simple	model	 could	 be	 defined	 as	 follows.	We	may	wish	 to	model	 some	data	 y	 	 as	

normally	distributed	and	estimate	its	mean,	mu,	assuming	a	population	standard	deviation	of	1.	

We	may	also	have	some	prior	belief	that	the	mean	value	is	5,	give	or	take	0.5.	The	two	sampling	

statements	will	build	the	model:	

	

Prior:	

𝜇	~	Normal 5, 0.5 	

Data:	

𝑦	~	Normal(𝜇, 1)	

It	 is	 common	 to	write	 the	prior	 before	 the	 likelihood,	 but	 because	 the	 statements	 are	 simply	

adding	 terms	 to	 the	 log	 posterior	 and	 all	 variables	 are	 already	 declared	 the	 order	 could	 be	

reversed.	
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Stan	implicitly	places	uniform	priors	with	support	over	[-∞,	∞]	on	all	parameters	without	

a	defined	prior.	This	becomes	important	for	more	complicated	models	because	this	default	prior	

may	cause	 the	 sampler	 to	draw	unrealistically	high	or	 low	parameter	 values	and	 lead	 to	poor	

performance.	 In	more	complicated	models	weakly	 informative	priors	are	preferred	 to	uniform	

priors.	A	weakly	informative	prior	is	defined	as	one	that	ensures	the	model	behaves	properly,	i.e.	

it	converges	to	a	reasonable	answer,	while	contributing	minimal	information	to	the	final	outcome	

(Gelman	et	al.,	2008).		

The	 constraints	 declared	 in	 the	 parameters	 block	 supersede	 prior	 statements,	 so	

constraining	a	variable	to	be	positive	then	giving	it	a	Normal(0,1)	prior	will	give	it	an	“improper”	

half-normal	prior	that	has	the	same	shape	as	a	standard	normal	density	for	positive	values	but	is	

zero	for	negative	values.	This	prior	 is	 improper	 in	the	sense	that	 it	does	not	 integrate	to	1	but	

because	of	the	nature	of	its	sampling	algorithm	it	is	a	valid	prior	choice	in	Stan.				

3.3.3 General	Syntax	

With	a	few	exceptions,	the	syntax	for	mathematical	operation,	 logical	statements,	and	

control	 loops	(for,	 if/then,	while	etc.)	 is	very	similar	to	R.	The	Stan	reference	manual	describes	

these	in	detail	for	the	interested	reader.		A	semi	colon	is	required	after	every	line	of	code	and	//	

is	used	to	denote	comments.		

3.3.4 Performing	a	Standard	Linear	Regression	in	Stan		

The	following	section	explains	how	to	perform	a	standard	Bayesian	linear	regression	with	

a	single	predictor	variable.		This	aims	to	provide	an	illustrative	example	of	the	concepts	discussed	

above,	 describe	 how	 to	 interface	 with	 Stan	 from	 R,	 and	 discuss	 model	 diagnostics.	 A	 linear	

regression	assumes	that	the	nth	 response	 is	a	 linear	 function	of	a	slope	times	the	nth	predictor	

variable	value,	an	intercept,	and	an	error	term	expressed	as	follows:	

𝑦L = 𝛽H + 𝛽I ∗ 𝑥L + 𝜖L	
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The	 error	 terms	 are	 assumed	 to	 come	 from	 a	 normal	 distribution	 with	 population	 standard	

deviation	𝜎	and	mean	0.	Recall	from	earlier	that	regression	models	relate	the	mean	of	observed	

outcomes	to	a	function	of	predictor	variables	and	regression	parameters	and	the	responses	are	

assumed	to	come	from	some	distribution	with	a	constant	variance.	Thus,	our	 linear	regression	

can	be	equivalently	expressed	using	standard	normal	distribution	sampling	notation	as:		

𝑦L	~	Normal(𝛽H + 𝛽I ∗ 𝑥L, 𝜎)	

Importantly,	Stan	supports	vectorized	statements—	so	instead	of	 looping	over	the	n	outcomes	

and	predictor	variable	values	the	following	statement	is	equivalent	(and	faster):	

𝑦	~	Normal(𝛽H + 𝛽I ∗ 𝑥, 𝜎)	

The	 complete	 model	 is	 written	 for	 Stan	 as	 follows.	 First,	 we	 use	 R	 to	 simulate	 75	

observations	 of	 predictor	 variable	 x	 and	 outcome	 y	 that	 have	 a	 generally	 linear	 relationship	

(Figure	31).	We	can	use	the	lm	function	in	R	to	recover	the	slope	and	intercept.	

set.seed(5)	
n	<-	75	#number	of	data	points	
sigma	<-	5	#population	variance	
b0	<-	3	#regression	intercept	
b1	<-	5	#regression	slope	
x	<-	rnorm(n,	10,	5)	
y	<-	rnorm(n,	b0	+	b1*x,	sigma)	
plot(x,y)	

	

m	<-	lm(y	~	x)	
a	<-	summary(m)	
a$coefficients	
##													Estimate	Std.	Error			t	value					Pr(>|t|)	
##	(Intercept)	4.204265		1.3519345		3.109814	2.669695e-03	
##	x											4.889179		0.1215198	40.233604	1.429516e-51	
a$sigma	
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##	[1]	5.124816	
The	following	Stan	code	to	estimate	the	model	parameters	 is	written	 in	a	text	file	and	

saved	with	a	.stan	extension	in	the	current	working	directory.	

data	{	
		int	<lower	=	0>	N;	//number	of	data	points	
		vector[N]	y;	//outcomes	
		vector[N]	x;	//predictor	variable	values	
	
				}	
parameters	{	
		real	b0;	//intercept	
		real	b1;	//slope	
		real	<lower	=	0>	sigma;	//population	noise	
		}	
	
model	{	
		y	~	normal(b0	+	b1*x,	sigma);	
		}	
	

If	desired,	priors	would	be	placed	on	the	slope,	intercept,	or	population	noise	parameters	

in	the	model	block.		

Figure	31	–		Simulated	Data	for	the	Bayesian	Linear	Regression	Example.		
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The	next	 step	 is	 to	 convert	 the	data	 into	 a	named	 list	 to	pass	 to	 Stan.	A	 typical	 error	

checking	step	is	to	constrain	x	and	y	to	be	size	N,	so	if	erroneous	data	is	passed	to	the	program	it	

will	raise	a	flag.	

data	<-	list(x,y,	length(x))	
names(data)	<-	c("x","y",	"N")	
	

Next,	 we	 use	 the	 rstan	 interface	 to	 compile	 the	 stan	 program	 and	 run	 the	 sampling	

algorithm.	The	stan	argument	 takes	 the	 .stan	 file	name,	a	named	 list	of	data,	and	a	variety	of	

control	options.	The	chains	and	iter	options	specifies	that	we	want	to	run	4	Markov	chains	with	

1500	iterations	each.	By	default,	Stan	will	use	half	of	these	for	warming-up,	also	called	the	burn-

in	period,	in	which	it	fine-tunes	its	sampling	algorithm.	It	then	discards	the	warm	up	samples	and	

draws	the	final	half.	This	is	to	allow	the	sampler	to	settle	in	to	the	posterior	distribution.	There	

are	no	strict	guidelines	on	how	many	chains	to	run.	Multiple	are	preferred	to	a	single	one	because	

they	can	provide	a	check	on	convergence:	if	they	do	not	all	eventually	converge	to	the	same	space	

the	sampling	is	suspect.	Because	Stan	supports	parallel	processing	where	each	chain	is	run	on	a	

single	core,	a	reasonable	number	to	run	is	the	number	of	cores	available.	Running	more	chains	

also	 generates	more	 effectively	 independent	 samples.	 The	 user	 can	 also	 use	 a	 control	 =	 list()	

argument	 to	 directly	 specify	 certain	 algorithmic	 controls.	 This	 is	 usually	 unnecessary	 for	most	

simple	models.	 In	fact,	poor	performance	is	more	often	the	fault	of	a	poorly	coded	or	wrongly	

specified	model	rather	than	the	sampling	algorithm	itself.	

fit	<-	stan(	
		file	=	"linear_regression.stan",		#	Stan	program	name	
		data	=	data,				#	named	list	of	data	
		chains	=	4,													#	number	of	Markov	chains	
		iter	=	1500												#	total	number	of	iterations	per	chain	
		)	

This	call	to	stan	may	return	two	common	errors.	Divergent	transitions	after	warm-up	are	

the	most	 worrisome–	 they	 indicate	 numerical	 instabilities	 in	 the	 sampling	 algorithm	 and	 the	

model	 should	 be	 re-run.	 As	 the	 program	 will	 recommend,	 increasing	 adapt_delta	 above	 the	
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current	value	by	calling	control=list(adapt_delta	=	0.99),	for	example,	will	often	solve	the	problem	

at	 the	 expense	 of	 computational	 time.	 Samples	 hitting	 maximum	 tree	 depth	 is	 an	 efficiency	

concern	 rather	 than	 validity	 concern	 and	 can	 be	 fixed	 with	 a	 similar	 command	

control=list(max_treedepth	=	20),	for	example.	If	the	model	continues	to	perform	poorly	it	often	

indicates	 that	 it	 is	 poorly	 coded	 or	 requires	 a	 re-parametrization.	 The	 Stan	 user	 guide	 and	

discourse	forums	are	a	good	resource	if	this	is	encountered.		

Theoretically,	 a	 properly	 designed	MCMC	 simulation	 that	 is	 run	 “forever”	 will	 always	

converge	 to	 the	 posterior	 distribution	 of	 interest.	 However,	 since	 we	 have	 stopped	 before	

“forever”	it	is	critical	to	check	if	it	has	actually	converged.	The	shinystan	package	is	very	useful	for	

visualizing	 model	 results	 and	 performing	 diagnoses.	 The	 “explore”	 tab	 summarizes	 the	 basic	

distributional	summarizes	and	diagnostics	for	each	parameter	(Figure	32).	

launch_shinystan(fit)	
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The	 “diagnose”	 tab	 contains	 specific	metrics	 for	 the	No	U-Turn	 Sampler	 typically	 only	

relevant	 for	more	 complicated	models	 experiencing	 sampling	problems.	 The	 “estimate”	 tab	 is	

used	for	viewing	distributional	summary	statistics	and	simple	plots	for	the	posterior	draws.	The	

“explore”	tab,	usually	the	most	useful	for	preliminary	model	check,	has	all	the	diagnostics	we	look	

for	such	as	traceplots,	autocorrelation	plots,	and	R	̂	in	addition	to	distributional	summary	statistics	

and	plots.	Finally,	the	“explore”	tab	can	be	used	to	generate	scatterplots	comparing	the	different	

parameters.		

Providing	the	model	has	run	without	errors,	the	first	step	in	checking	convergence	should	

be	always	to	visually	inspect	the	trace	plots.	We	are	looking	for	the	plots	to	look	like	a	“fat,	hairy	

caterpillar”	that	more	or	less	stay	stationary	without	any	clear	trends	(Figure	33).		

Figure	32	–	The	Shinystan	Interface	for	Visualizing	Model	Results	and	MCMC	Diagnostics.		
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Trace	A	explores	the	full	parameter	space	but	because	its	values	stay	close	to	each	other	

it	has	high	autocorrelation	and	low	effectively	independent	sample	size.	Trace	C	has	much	lower	

autocorrelation	but	does	not	explore	 the	 full	parameter	space.	Trace	B	 is	what	a	good	MCMC	

result	should	look	like.	The	autocorrelation	plot	compares	how	correlation	the	draws	are	we	each	

other	as	the	iterations	progress.	It	should	quickly	drop	to	zero	and	hover	around	there.	If	it	doesn’t	

the	chain	is	producing	a	low	number	of	effectively	independent	samples,	also	indicated	by	a	trace	

plot	that	shows	clear	trends	(more	like	a	snake	than	a	caterpillar).	We	are	looking	to	have	as	many	

effectively	independent	samples	(neff)	as	possible	to	ensure	we	have	a	good	approximation	of	the	

Figure	33	–		Three	Possibilities	for	Typical	Traceplot	Results.	Reproduced	from	Kruschke,	2015.		
	

A	

B	

C	
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posterior	distribution.	Finally,	the	𝑅	statistic	should	be	1	or	near	1	(±	0.1	usually).	Figure	34	shows	

a	summary	of	a	MCMC	output	that	has	not	converged	to	the	target	distribution.		

Typically,	 any	 issues	with	 the	 above	 are	 resolved	 by	 simply	 increasing	 the	 number	 of	

iterations	per	chain.	While	there	are	theoretically	methods	of	determining	beforehand	how	long	

to	run	the	chains	for	it	is	easiest	to	start	with	a	small	number,	say	125,	of	iterations	and	increase	

them	until	diagnostic	criteria	are	met.	This	allows	errors	in	the	model	to	be	caught	early	on	and	

avoids	running	the	chains	for	excessively	long.		

Figure	34	–	The	Shinystan	“Explore”	Tab	for	a	Model	Parameter	That	Has	Not	Converged.	The	
autocorrelation	plot	shows	high	draw-to-draw	correlation	and	the	traceplot	shows	clear	trends	

and	does	not	explore	the	parameter	space.	The	𝑹ç 	value	is	also	well	above	1.				
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Now	that	we	are	satisfied	with	the	convergence	of	our	Markov	chains	(the	summary	for	

the	slope	parameter	is	shown	in	Figure	35),	we	can	store	all	draws	in	a	data	frame	or	a	.csv	file.		

The	 MCMC	 draws	 for	 this	 parameter	 have	 converged	 to	 the	 proper	 distribution	 as	

evidenced	by:	the	traceplot	showing	good	mixing,	low	autocorrelation,	and	an	R	̂	of	approximately	

1.	This	tab	also	includes	a	kernel	density	estimate	and	useful	summary	statistics	such	as	mean,	

standard	deviation,	median,	and	a	95%	credible	interval.	

draws	<-	as.data.frame(fit)	
write.csv(draws,	"linear_regression_results.csv")	

Figure	35	–	The	Shinystan	“Explore”	Tab	For	Our	Sample	Linear	Regression	Slope.		
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A	useful	way	of	reporting	this	Bayesian	analysis	would	be	distributional	summaries	of	the	

model	 coefficients.	 The	 plots	 show	 a	 histogram	 and	 density	 estimate	 with	 dashed	 lines	

representing	the	2.5th	and	97.5th	percentiles	to	visualize	a	95%	credible	interval.	

draws	<-	read.csv("linear_regression_results.csv")	
b0	<-	draws$b0	
hist(b0,	breaks	=	30,	freq	=	F,	main	=	paste("Mean	=	",	round(mean(b0),3),"SD	=	",	
round(sd(b0),3)),	xlab	=	"Intercept")	
lines(density(b0))	
abline(v	=	quantile(b0,	c(0.025,0.975)),	lty	=	2,	col	=	'black')	
draws	<-	read.csv("linear_regression_results.csv")	
b1	<-	draws$b1	
hist(b1,	breaks	=	30,	freq	=	F,	main	=	paste("Mean	=	",	round(mean(b1),3),"SD	=	",	
round(sd(b1),3)),	xlab	=	"Slope")	
lines(density(b1))	
abline(v	=	quantile(b1,	c(0.025,0.975)),	lty	=	2,	col	=	'black')	
draws	<-	read.csv("linear_regression_results.csv")	
sigma	<-	draws$sigma	
hist(sigma,	breaks	=	30,	freq	=	F,	main	=	paste("Mean	=	",	round(mean(sigma),3),"SD	=	",	
round(sd(sigma),3)),	xlab	=	"Sigma")	
lines(density(sigma))	
abline(v	=	quantile(sigma,	c(0.025,0.975)),	lty	=	2,	col	=	'black')	
	

We	can	also	plot	the	distribution	of	the	many	possible	regression	lines	using	the	posterior	

draws	of	the	regression	coefficients.	The	dashed	 line	 is	the	one	resulting	from	using	the	mean	

values	of	regression	coefficients	(Figure	36).	

plot(x,y)	
	
nlines	=	sample(1:length(b0),	length(b0))	
	
for	(l	in	nlines){	
		abline(b0[l],	b1[l],	col=rgb(0.25,0.25,0.25,0.01),	lwd=2)	
}	
abline(mean(b0),mean(b1),	lty	=	"dotted",	col	=	"black",lwd	=	2)	
	

As	 this	 example	 shows,	 for	 a	 simple	 case	 the	 frequentist	 or	maximum	 likelihood	 and	

Bayesian	solutions	should	be	very	close	to	each	other,	if	not	identical.	This	is	often	a	useful	check	

in	early	stages	to	ensure	the	Stan	model	is	coded	properly.	



95	

	

Figure	36	–	The	Posterior	Distributions	for	our	Linear	Regression	Example.	Showing	mean,	
standard	deviations,	and	95%	credible	intervals.	The	plot	at	the	bottom	shows	the	distribution	
for	the	regression	lines	shaded	by	probability	density,	with	the	mean	result	indicated	by	the	

dashed	line.		
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3.3.5 A	(Very	Brief)	Discussion	of	Prior	Choice	

Choosing	a	prior	distribution	on	all	model	parameters	is	required	for	any	Bayesian	

analysis.	It	is	often	the	most	highly	scrutinized,	as	most	of	the	criticisms	around	Bayesian	

analysis	deal	with	the	“subjectivity”	of	prior	choice.	We	would	like	to	highlight	a	few	responses	

to	this	argument.	First,	subjective	decisions	cannot	be	avoided	in	statistics.	Practitioners	

constantly	exercise	subjective	judgment	when	choosing	what	model	to	use,	what	data	to	include	

in	their	analysis,	and	the	implicit	assumptions	that	accompany	these	decisions	(Gelman	and	

Hennig,	2017).	Even	a	seemingly	innocuous	linear	regression	or	p-test	comes	with	a	host	of	

assumptions	about	the	underlying	population	and	experimental	process	(Gelman	and	Henig,	

2017).	In	the	words	of	Gelman	and	Hennig,	“it	is	a	mistake	to	consider	the	prior	distribution	as	

the	exclusive	gate	at	which	subjectivity	enters	a	statistical	procedure.”				However,	given	a	

“sufficient”	amount	of	data	the	resulting	posterior	distributions	will	dominated	entirely	by	the	

likelihood	and	its	associated	characteristics	(mean,	standard	deviation,	etc.)	will	not	change	

much	with	a	change	in	prior	(Kruschke,	2015).	Naturally,	what	constitutes	a	“sufficient”	amount	

of	data	is	dependent	on	the	questions	being	asked	and	the	models	used.		

Broadly,	a	prior	can	be	categorized	into	three	categories:	noninformative,	weakly	

informative,	and	deliberately	informative.	A	noninformative	prior	is	built	to	allow	inference	only	

from	the	data	itself,	without	any	outside	information	(Gelman,	2006).	Importantly,	depending	

on	the	of	the	model	a	uniform	prior	is	not	always	uninformative	(Gelman,	2006).	In	fact,	in	cases	

where	data	is	relatively	limited	such	a	prior	will	result	in	quite	misleading	posterior	inferences	–	

Gelman	et	al.,	2017	discusses	this	in	the	context	of	parent	attractiveness	influencing	the	sex	of	

their	children.	The	general	idea	is	that	the	posterior	is	not	wholly	dominated	by	the	data,	

choosing	a	seemingly	innocent	uniform	prior	actually	places	far	too	much	mass	on	unrealistic	(or	

impossible)	parameter	values	and	prevents	accurate	inference.	A	weakly	informative	prior,	on	
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the	other	hand,	contains	enough	information	to	limit	the	mode	to	“realistic”	parameter	values	

while	remaining	relatively	uninformative	over	this	range	(Gelman,	2006).	This	is	referred	to	as	a	

“regularizing”	effect.	For	hierarchal	models,	similar	to	the	one	we	develop,	such	a	prior	choice	is	

often	necessary	for	the	model	to	actually	identify	reasonable	posterior	distributions	for	

parameters	(Gelman	and	Hill,	2007).		Finally,	an	informative	prior	intentionally	influences	

parameter	values	and	is	often	based	upon	past	work	or	expert	consensus.	For	example,	Kuehn	

and	Abrahamson,	2017,	used	computer	simulation	of	ground	motions	and	existing	attenuation	

relationships	to	determine	an	appropriate	distribution	of	possible	regression	coefficients	to	

ensure	their	ground	motion	prediction	model	was	physically	well-behaved.	Informative	priors	

can	also	be	based	on	expert	consensus	or	the	physical	mechanisms	behind	the	data	being	

modeled.	We	believe	that	this	is	an	often	overlooked	benefit	of	Bayesian	analysis	–	it	offers	a	

consistent	mathematical	framework	for	explicitly	incorporating	engineering	judgement	and	past	

work	into	new	models.		

3.4 Bayesian	Models	

Now	it	is	time	to	fit	our	Bayesian	logistic	regressions.	For	models	that	follow,	convergence	

criteria	were	a	targeted	𝑅	of	1.0	±	0.1	and	qualitative	inspection	of	the	trace	and	autocorrelation	

plots	 to	 verify	 independent	 sampling	 of	 the	 entire	 parameter	 space.	 We	 used	 4	 chains	 and	

selected	an	appropriate	number	of	post-warmup	iterations,	which	varied	by	model	complexity,	

to	satisfy	convergence	criteria.	As	necessary	we	modified	 the	max_treedepth	and	adapt_delta	

values	to	ensure	sampling	stability	and	efficiency.		

3.4.1 Prior	Selection	

For	the	models	that	follow,	we	use	weakly	informative	normal	distributions	to	constrain	

the	scale	of	the	regression	coefficients.	First,	we	have	to	estimate	what	a	reasonable	scale	for	
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these	coefficients	will	be.	Recall	that	our	formula	for	calculating	liquefaction	probability	(for	two	

predictor	variables)	is:	

𝑞µ,I∗ = 	
𝑞µ,II.» − 1

1.6
	

and	

𝐶𝑆𝑅∗ = 	
𝐶𝑆𝑅PH..» − 1

−0.6
	

giving		

𝑃b =
1

1 + exp − 𝛽H +	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗
	

This	 also	 be	 expressed	 in	 terms	 of	 this	 on	 the	 log-odds,	where	 the	 odds	 are	 the	 ratio	 of	 the	

probability	for	and	against	an	outcome:	

𝛽H +	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗ = ln
𝑃b

1 − 𝑃b
	

This	formula	illustrates	the	natural	interpretation	of	logistic	regression	coefficients	–	that	a	one	

unit	increase	in	a	predictor	variable	results	in	an	increase	of	𝛽	in	the	log-odds.				

Table	1,	following,	shows	the	relationship	between	probability	of	occurrence,	odds,	and	log	odds	

for	a	few	levels	of	probability.	

Probability	 Odds	 Log-Odds	
0.01	 0	 -4.60	
0.1	 0.1	 -2.20	
0.5	 1	 0.00	

0.9	 9	 2.20	
0.95	 19	 2.94	
0.99	 99	 4.60	
0.999	 999	 6.91	
0.9999	 9999	 9.21	

	

Table	1	–	The	Relationship	Between	the	Probability	of	an	Outcome,	its	Odds,	and	its	Log-Odds.		
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Gelman	et	al.,	2008	comments	that	is	almost	never	seen	in	practical	applications	that	a	

typical	increase	in	a	predictor	variable	would	result	in	a	jump	from	1%	probability	99%	probability.	

From	the	table	above,	we	see	that	this	corresponds	to	an	increase	of	9.2	in	log-odds.	If	we	re-

scaled	all	predictor	variables	to	have	a	standard	deviation	of	0.5,	as	with	Gelman	et	al.,	2008,	we	

would	then	be	comfortable	assigning	low	prior	probabilities	to	coefficient	values	above	5.	While	

this	study	employs	different	transformations	that	do	not	necessarily	have	this	re-scaling	property,	

we	can	use	the	same	logic	to	determine	expected	scales	of	our	regression	coefficients.			

Considering	 qc,1
*	 a	 typical	 change	 could	 be	 the	 standard	 deviation	 of	 the	 transformed	

values	in	the	dataset:	18.4	(for	two	predictor	variables)	or	4.58	(for	three	predictor	variables.	We	

can	then	apply	the	logic	of	Gelman	et	al.,	that	an	increase	of	1	standard	deviation	should	at	most	

decrease	the	probability	of	liquefaction	from	99%	to	1%.	Holding	other	terms	constant,	we	can	

solve	for	the	𝛽I	that	would	result	in	this	limiting	case.		

𝛽H +	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗ = ln
0.99

1 − 0.99
= 4.60	

𝛽H +	𝛽I ∗ (𝑞µ,I∗ + 18.4) + 𝛽E ∗ 𝐶𝑆𝑅∗ = ln
0.01

1 − 0.01
= −4.60	

	
Subtracting	the	two	yields	

−𝛽I ∗ 18.4 = 9.2	
𝛽I = −0.5	

	
Repeating	this	process	with	a	standard	deviation	of	4.58	instead	gives	a	𝛽I = −2.01.	

Applying	 similar	 logic	 to	 CSR*	 a	 typical	 change	 could	be	 the	 standard	deviation	of	 the	

transformed	values	in	the	dataset:	1.253.	Holding	other	terms	constant,	we	can	solve	for	the	𝛽E	

that	would	 result	 in	 this	 limiting	case	 that	an	 increase	of	1	 standard	deviation	should	at	most	

increase	the	probability	of	liquefaction	from	1%	to	99%.	

𝛽H +	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ (𝐶𝑆𝑅∗ + 1.253) = ln
0.01

1 − 0.01
= −4.60	

𝛽H +	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗ = ln
0.99

1 − 0.99
= 4.60	
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Subtracting	the	two	yields	

−𝛽E ∗ 1.253 = −9.2	
𝛽E = 7.34	

	
Repeating	the	process	for	Rf	gives	𝛽· = −13.86.		

	 In	summary,	we	can	reasonably	expect	that	the	absolute	value	of	regression	should	then	

be	on	the	order	10.	Based	upon	this	reasoning,	we	default	to	a	Normal	(0,10)	prior	on	regression	

slopes	in	our	modeling	(Figure	37).		

The	distribution	is	relatively	uninformative	in	the	range	of	reasonable	values.	For	example,	the	

probability	of	the	coefficient	being	between	0	and	1	or	7	and	8	does	not	differ	too	much	(0.039	vs	

0.03)		but	there	is	only	a	probability	of	0.16		that	it	is	greater	than	10	in	absolute	value.	

	For	a	sensitivity	study,	we	also	run	the	models	with	prior	standard	deviations	of	25	and	

100	 to	examine	 the	 influence	of	 the	prior	distribution	on	 the	models’	 behavior.	 In	 the	 results	

section	we	discuss	how	the	different	prior	choices	affect	posterior	distribution	characteristics	and	

model	performance.	

Figure	37	–	Our	Default	Normal	Prior	Distribution,	with	Mean	0	and	Standard	Deviation	10.	
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For	the	intercept	parameters,	we	follow	the	recommendations	of	Gelman	et	al.,	2008	and	use	a	

slightly	more	diffuse	distribution	of	Normal(0,25).		

3.4.2 Standard	Logistic	Regression	

First,	we	convert	our	data	frame	into	a	list	usable	by	Stan.	These	variables	are	not	used	in	

all	models,	but	it	is	useful	to	have	them	all	included	initially	and	have	the	Stan	code	pick	out	the	

terms	it	needs.		

data	<-	as.list(dt1)	
data	<-	c(data,	length(dt1$liq),length(unique(dt1$event)))	
names(data)	<-	c("liq","CSR_obs",	"CSR_sd",	"qc1_obs","qc1_sd","rf_obs","rf_sd","event",	"N",	
"E")		
data$liq	<-	as.integer(dt1$liq	==	"Yes")	
data$event	<-	as.integer(data$event)	
	

Importantly,	the	liquefaction	and	event	labels	need	to	be	recoded	as	integers.	

Next,	 we	 can	 write	 the	 Stan	 model	 and	 store	 it	 under	 the	 name	 of	 our	 choosing	

(model.stan)	as	follows:	

data	{	
		int	<lower	=	1>	N;	//number	of	data	points	
		vector[N]	qc1_obs;	//observed	values	
		vector[N]	CSR_obs;	
		vector[N]	rf_obs;	
		int<lower=0,upper=1>	liq[N];	
				}	
					
parameters	{	
		real	b0;	
		real	<upper	=	0>	b1	;	
		real	<lower	=	0>	b2;	
		real	b3;	
}	
	
model	{	
						liq	~	bernoulli_logit(b0	+	b1	*	qc1_obs	+			
						b2*CSR_obs+b3*rf_obs);	
	
}	
	

and	call	it	using	the	rstan	interface	
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fit	<-	stan(	
		file	=	"model.stan",		#	Stan	program	name	
		data	=	data,				#	named	list	of	data	
		chains	=	4,													#	number	of	Markov	chains	
		iter	=	2500												#	total	number	of	iterations	per	chain	
		)	

The	code	in	this	model	 is	quite	similar	to	the	linear	regression	example.	The	values	for	

qc,1,	CSR,	and	Rf,	and	 their	corresponding	binary	coding	 for	 liquefaction	or	nonliquefaction	are	

declared	and	accessed	in	the	data	block.	The	constraints	on	the	liq	variable	serve	as	a	check	–	if	

the	program	sees	something	other	than	a	0	or	1	it	will	terminate	with	an	error.	In	the	parameters	

block	we	 specify	 the	 intercept	 (b0),	 and	 the	 slopes	 (b1,	 b2,	 and	 b3).	 To	 ensure	 the	model	 is	

consistent	with	physical	principles	of	liquefaction	we	constrain	the	CSR	slope	to	be	positive	and	

the	 qc,1	 slope	 to	 be	 negative.	 These	 choices	 reflect	 that	 it	 would	 be	 unrealistic	 for	 a	 lower	

penetration	resistance	or	a	higher	seismic	load	to	imply	a	lesser	probability	of	liquefaction.	Finally,	

the	 model	 block	 specifies	 the	 regression	 model.	 The	 bernouli_logit	 likelihood	 is	 the	 same	

likelihood	as	discussed	in	Chapter	2.	The	sampling	notation	for	this	model	is:	

Model	1	

Prior:	

𝛽H ∼ Normal 0,25 	

𝛽I ∼ Normal 0,10 , 𝛽I ≤ 	0	

𝛽E ∼ Normal 0,10 , 𝛽E ≥ 0	

𝛽· ∼ Normal(0,10)	

Data:	

𝑦	~	Bernouli_Logit(𝛽H + 𝛽I ∗ 	𝑞µ,I	 + 		𝛽E ∗ 𝐶𝑆𝑅	 + 	𝛽· ∗ 𝑅¶	)	

Because	 of	 the	 simplicity	 of	 this	model,	 its	 posteriors	 are	 almost	 identical	 to	 uniform	

priors	and	do	not	show	any	appreciable	change	between	the	sensitivity	study	priors.		
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3.4.3 Multilevel/Mixed	Effects	Logistic	Model	

Next,	we	want	to	build	our	full	mixed	model.	Recall	from	Chapter	2	that	a	mixed	effects	

or	multilevel	model	groups	data	and	allows	the	coefficients	to	vary	between	group	provided	they	

are	constrained	to	come	from	underlying	distributions	with	parameters	estimated	from	the	data.	

The	model	is	described	using	sampling	notation	as	follows	for	an	outcome	in	the	jth	event.		

Model	2	

Priors:	

𝛽H,j ∼ Normal 𝜇yz, 𝜎yz 	

𝛽I,j ∼ Normal 𝜇y{, 𝜎y{ 	

𝛽E,j ∼ Normal 𝜇yí, 𝜎yí 	

𝛽·,j ∼ Normal 𝜇yî, 𝜎yî 	

𝜇yz ∼ Normla 0,25 	

𝜇y{ ∼ Normal 0, 10 , 	𝜇y{ ≤ 0	

𝜇yí ∼ Normal 0, 10 , 	𝜇yí ≥ 0	

𝜇yî ∼ Normal 0,10 	

𝜎yz ∼ Normal 0,10 , 	𝜎yz ≥ 0	

𝜎y{ ∼ Normal 0,5 , 	𝜎y{ ≥ 0	

𝜎yí ∼ Normal 0,5 , 	𝜎yí ≥ 0	

𝜎yî ∼ Normal 0,5 , 	𝜎yî ≥ 0	

Data:	

𝑦,j~	Bernouli_Logit(𝛽H,j + 𝛽I,j ∗ 	𝑞µ,I	 + 		𝛽E,j ∗ 𝐶𝑆𝑅	 + 	𝛽·,j ∗ 𝑅¶	)	

This	 model	 estimates	 a	 set	 of	 parameters	 is	 for	 each	 event,	 with	 these	 parameters	

constrained	to	each	come	from	some	normal	population	with	mean	and	standard	deviation	also	

estimated	from	the	model.	The	priors	for	the	population	hyperparameters	are	selected	so	that	
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the	implicit	priors	on	the	individual	parameters	are	close	to	the	default	priors	of	Normal(0,10)	or	

Normal(0,25).	As	discussed	earlier,	because	of	the	complexity	of	the	model	a	prior	distribution	

with	some	sense	of	expected	scale	for	the	regression	coefficients	 is	required	for	 it	to	estimate	

reasonable	posterior	distributions	for	regression	coefficients.		

Furthermore,	hierarchal	models	have	a	tendency	to	produce	posteriors	with	geometries	

that	make	sampling	difficult	–	mostly	due	to	the	strong	local,	as	opposed	to	global	correlations	

introduced	by	the	hierarchal	structure.	This	complex	phenomenon	is	discussed	at	length	in	the	

paper	 by	 Betancourt	 and	 Girolami,	 2013.	 	 Fortunately,	 a	 rather	 simple	 parameterization	 will	

produce	much	simpler	posterior	geometries.	This	computation	trick	makes	use	of	the	following	

equivalency	 between	 the	 first	 “centered”	 parameterization	 and	 the	 second	 “non-centered”	

parameterization	(after	Betancourt	and	Girolami,	2013).	If	we	have	data	y	with	a	dependence	on	

a	parameter	𝜃	that	has	associated	hyperparameters	𝜇	and	𝜏:	

𝜃	~	N(𝜇, 𝜏)	

↔	

𝜃 = 𝜃∗ ∗ 𝜏 + 𝜇	

𝜃∗~	Normal 0,1 	

In	 the	 context	 of	 our	 hierarchal	 regression,	 we	 can	 code	 this	 as	 follows	 for	 by-event	

varying	coefficient	𝛽:	

𝛽~	Normal(𝜇y, 𝜎y)	

↔	

𝛽 = 𝛽∗ ∗ 𝜎y + 𝜇	y 	

𝛽∗~	Normal 0,1 	

	



105	

As	discussed	 in	 the	Betancourt	and	Girolami	paper,	because	of	how	the	HMC	sampler	

works	 this	 re-parameterization	drastically	 improves	computational	 speed	and	stability.	 	For	all	

models	 following	we	make	use	of	 the	 re-parameterization	 in	 the	 actual	 code,	 but	 for	 ease	of	

understanding	 when	 describing	 models	 in	 the	 text	 we	 will	 use	 the	 typical	 centered	

parameterization.	

The	Stan	code	to	estimate	the	mixed	model	coefficients	is	as	follows:	

data	{	
		int	<lower	=	1>	N;	//number	of	data	points	
		int	<lower	=	1>	E;	//number	of	events	
		int	<lower	=	1,	upper	=	E>		event[N];	//event	id	for	observations	
		real	qc1_obs[N];	//observed	values	
		real	CSR_obs[N];	
		real	rf_obs[N];	
		int<lower=0,upper=1>	liq[N];	
				}	
parameters	{	
		vector[E]	b0_raw;	//	event	level	parameters	
		vector[E]	b1_raw;	
		vector[E]	b2_raw;	
		vector[E]	b3_raw;	
		real	<lower	=	0>	sigma_b0;	//	hierarchal	standard	deviation	
		real	<lower	=	0>	sigma_b1;	
		real	<lower	=	0>	sigma_b2;	
		real	<lower	=	0>	sigma_b3;	
		real	mu_b0;	//	hierarchal	means	
		real	<upper	=	0>	mu_b1;	
		real	<lower	=	0>	mu_b2;	
		real	mu_b3;	
}	
transformed	parameters{	
		vector[E]	b0;	
		vector[E]	b1;	
		vector[E]	b2;	
		vector[E]	b3;	
		b0	=	mu_b0	+	sigma_b0	*	b0_raw;	
		b1	=	mu_b1	+	sigma_b1	*	b1_raw;	//	non-centered	parametrization	
		b2	=	mu_b2	+	sigma_b2	*	b2_raw;	
		b3	=	mu_b3	+	sigma_b3	*	b3_raw;	
}	
model	{	
						mu_b0	~	normal(0,25);	//	priors	for	coefficients	
						mu_b1	~	normal(0,10);	//	diffuse	normals	



106	

						mu_b2	~	normal(0,10);	
						mu_b3	~	normal(0,10);	
						sigma_b0	~	normal(0,10);	
						sigma_b1	~	normal(0,5);	
						sigma_b2	~	normal(0,5);	
						sigma_b3	~	normal(0,5);	
						b0_raw	~	normal(0,1);	
						b1_raw	~	normal(0,1);	
						b2_raw	~	normal(0,1);	
						b3_raw	~	normal(0,1);	
						for	(i	in	1:N)	{	
								liq[i]	~	bernoulli_logit(b0[event[i]]	+	b1[event[i]]*	qc1_obs[i]	+	b2[event[i]]	*	CSR_obs[i]	+	
b3[event[i]]	*	rf_obs[i]);	
						}	
}	

This	model	is	noticeably	more	complex	than	the	standard	regression.	The	data	used	by	

the	model	now	includes	an	event	ID	for	each	outcome,	used	to	index	into	the	appropriate	set	of	

regression	coefficients	for	that	event.	 In	addition	to	estimating	posterior	distributions	for	each	

event’s	 regression	 coefficients	 it	 also	 produces	 posterior	 draws	 for	 the	 population	mean	 and	

standard	deviation	of	these	coefficients.			

3.4.4 Measurement	Error	Model	

Next,	we	implement	our	measurement	error	model.	This	model	is	based	off	the	work	by	

Kuehn	and	Abrahamson,	2017	though	the	original	form	was	proposed	in	1993	by	Richardson	and	

Gilks.	The	measurement	error	model	treats	the	true	values	of	predictor	variables	as	parameters	

to	be	estimated	during	 the	modeling	process.	More	 formally,	 it	 introduces	another	hierarchal	

level	–	that	the	latent	true	values	are	assumed	to	come	from	a	normal	distribution	centered	at	

the	observed	mean	from	the	database	and	with	the	database	estimated	standard	deviation.		More	

formally,	 for	 a	 generic	 predictor	 variable	 x,	 (either	 qc,1,	 CSR,	 or	 Rf,),	 an	 observed	mean	 value	

𝑥�s®ÃðÊs°,	and	known	standard	deviation	𝜏\,		

Prior:	

𝑥´Êðs ∼ Normal(𝜇\, 𝜎\)	

Data:	
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𝑥£ñÃsÊ"s° ∼ 𝑁(𝑥´Êðs, 𝜏\)	

The	full	model	is	described	as	follows		

	

Model	3	

Priors:	

𝐶𝑆𝑅´Êðs~	Normal(𝜇ÒÓÔ, 𝜎ÒÓÔ)	

𝑞µ,I,´Êðs~	Normal(𝜇ÕÖ,{, 𝜎ÕÖ,{)	

𝑟¶,´Êðs~	Normal(𝜇Ê×, 𝜎Ê×)	

𝛽H ∼ Normal(0, 25)	

𝛽I ∼ Normal(0, 10)	

𝛽E ∼ Normal(0, 10)	

𝛽· ∼ Normal(0, 10)	

Data:	

𝐶𝑆𝑅£ñÃsÊ"s° ∼ Normal(𝐶𝑆𝑅´Êðs, 𝜏ÒÓÔ)	

𝑞µ,I,£ñÃsÊ"s° ∼ Normal(qó,I,ôõö÷	, 𝜏ÕÖ,{)	

𝑟¶,£ñÃsÊ"s° ∼ Normal(rø,ôõö÷, 𝜏Ê×)	

𝑦,~	Bernouli_Logit(𝛽H + 𝛽I ∗ 	𝑞µ,I,´Êðs	 + 		𝛽E ∗ 𝐶𝑆𝑅´Êðs 	+ 	𝛽· ∗ 𝑅¶,´Êðs	)	

This	model	is	implemented	in	Stan	with	the	code	below:		

data	{	
		int	<lower	=	1>	N;	//number	of	data	points	
		vector[N]	qc1_obs;	//observed	means	
		vector[N]	CSR_obs;	
		vector[N]	rf_obs;	
		vector[N]	qc1_sd;	//observed	measurement	noises	
		vector[N]	CSR_sd;	
		vector[N]	rf_sd;	
		int<lower=0,upper=1>	liq[N];	
				}	
	
parameters	{	
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		real	b0;	//	regression	parameters	
		real	<upper	=	0>	b1;	
		real	<lower	=	0>	b2;	
		real	b3;	
			
	
}	
model	{	
		qc1_true	~	normal(qc1_pmu,	qc1_psd);	//	hierarchal	priors	on	measured	value	
		CSR_true	~	normal(CSR_pmu,	CSR_psd);	
		rf_true	~	normal(rf_pmu,	rf_psd);	
		qc1_obs	~	normal(qc1_true,	qc1_sd);	//measurement	model	
		CSR_obs	~	normal(CSR_true,	CSR_sd);	
		rf_obs	~	normal(rf_true,	rf_sd);	
		b0	~	normal(0,25);	//	weakly	informative	priors	on	coefficients		
		b1	~	normal(0,10);	
		b2	~	normal(0,10);	
		b3	~	normal(0,10);	
		liq	~	bernoulli_logit(b0	+	b1*qc1_true	+	b2*CSR_true	+	b3*rf_true);	
		}	
}	

Again,	we	can	break	down	how	the	model	functions	block	by	block.	The	data	block	now	

reads	in	the	means	and	standard	deviations	for	three	predictor	variables.	The	parameters	block	

contains	 the	 standard	 regression	 coefficients	 but	 now	 also	 has	 the	 latent	 true	 values	 for	 all	

predictor	variables	to	be	estimated	by	the	model.	The	transformed	parameters	block	implements	

the	non-centered	parametrization.		

Finally,	the	model	block	first	places	hierarchal	normal	priors	on	all	true	values	to	prevent	

unrealistic	values	from	being	drawn	and	cofounding	estimation	of	the	regression	coefficients.	The	

model	 then	 uses	 the	 observed	 values	 and	 the	 observed	 standard	 deviations	 to	 estimate	

distributions	for	the	latent	true	values	to	be	used	in	the	regression	model.	The	model	coefficients	

are	given	diffuse	normal	priors	to	regularize.	

3.4.5 Measurement	Error	Mixed	Effects	Logistic	Regression	

Finally,	we	can	combine	the	above	measurement	error	and	hierarchal	formulations	for	

our	 final	model.	Again,	 the	 j	 subscript	 indicates	a	 regression	coefficient	associated	with	 the	 jth	

event.				
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Model	4	
Priors	

𝛽H,j ∼ Normal 𝜇yz, 𝜎yz 	

𝛽I,j ∼ Normal 𝜇y{, 𝜎y{ 	

𝛽E,j ∼ Normal 𝜇yí, 𝜎yí 	

𝛽·,j ∼ Normal 𝜇yî, 𝜎yî 	

𝜇yz ∼ Normla 0,25 	

𝜇y{ ∼ Normal 0, 10 , 	𝜇y{ ≤ 0	

𝜇yí ∼ Normal 0, 10 , 	𝜇yí ≥ 0	

𝜇yî ∼ Normal 0,10 	

𝜎yz ∼ Normal 0,10 , 	𝜎yz ≥ 0	

𝜎y{ ∼ Normal 0,5 , 	𝜎y{ ≥ 0	

𝜎yí ∼ Normal 0,5 , 	𝜎yí ≥ 0	

𝜎yî ∼ Normal 0,5 , 	𝜎yî ≥ 0	

𝐶𝑆𝑅´Êðs~	Normal(𝜇ÒÓÔ, 𝜎ÒÓÔ)	

𝑞µ,I,´Êðs~	Normal(𝜇ÕÖ,{, 𝜎ÕÖ,{)	

𝑟¶,´Êðs~	Normal(𝜇Ê×, 𝜎Ê×)	

Data:	

𝐶𝑆𝑅£ñÃsÊ"s° ∼ Normal(𝐶𝑆𝑅´Êðs, 𝜏ÒÓÔ)	

𝑞µ,I,£ñÃsÊ"s° ∼ Normal(qó,I,ôõö÷	, 𝜏ÕÖ,{)	

𝑟¶,£ñÃsÊ"s° ∼ Normal(rø,ôõö÷, 𝜏Ê×)	

𝑦,j~	Bernouli_Logit(𝛽H,j + 𝛽I,j ∗ 	𝑞µ,I,´Êðs	 + 		𝛽E,j ∗ 𝐶𝑆𝑅´Êðs 	+ 	𝛽·,j ∗ 𝑅¶,´Êðs	)	

The	code	for	this	model	is	included	below:	

data	{	
		int	<lower	=	1>	N;	//number	of	data	points	
		int	<lower	=	1>	E;	//number	of	events	
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		int	<lower	=	1,	upper	=	E>		event[N];	//event	id	for	observations	
		vector[N]	qc1_obs;	//observed	values	
		vector[N]	CSR_obs;	
		vector[N]	rf_obs;	
		vector[N]	qc1_sd;	//specified	measurement	noises	
		vector[N]	CSR_sd;	
		vector[N]	rf_sd;	
		int<lower=0,upper=1>	liq[N];	
				}	
	
parameters	{	
		vector[E]	b0_raw;	//group	level	parameters		
		vector[E]	b1_raw;	
		vector[E]	b2_raw;	
		vector[E]	b3_raw;	
		real	<lower	=	0>	sigma_b0;	//hierachal	standard	deviatons	
		real	<lower	=	0>	sigma_b1;	
		real	<lower	=	0>	sigma_b2;	
		real	<lower	=	0>	sigma_b3;	
		real	mu_b0;	//hierachal	means	
		real	<upper	=	0>	mu_b1;	
		real	<lower	=	0>	mu_b2;	
		real	mu_b3;	
		vector	<lower	=	-0.4,	upper	=	33>[N]	qc1_true;	//	unknown	true	value	
		vector	<lower	=	-7,	upper	=	-0.2>[N]	CSR_true;	
		vector	<lower	=	-3	,	upper	=	2	>[N]	rf_true;	
}	
transformed	parameters{	
		vector[E]	b0;	
		vector[E]	b1;	
		vector[E]	b2;	
		vector[E]	b3;	
		b0	=	mu_b0	+	sigma_b0	*	b0_raw;	
		b1	=	mu_b1	+	sigma_b1	*	b1_raw;	
		b2	=	mu_b2	+	sigma_b2	*	b2_raw;	
		b3	=	mu_b3	+	sigma_b3	*	b3_raw;	
}	
model	{	
						mu_b0	~	normal(0,10);	//priors	for	coefficents	
						mu_b1	~	normal(0,10);	//diffuse	normals	
						mu_b2	~	normal(0,10);	
						mu_b3	~	normal(0,10);	
						sigma_b0	~	normal(0,5);	
						sigma_b1	~	normal(0,5);	
						sigma_b2	~	normal(0,5);	
						sigma_b3	~	normal(0,5);	
						b0_raw	~	normal(0,1);	
						b1_raw	~	normal(0,1);	
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						b2_raw	~	normal(0,1);	
						b3_raw	~	normal(0,1);	
						qc1_true	~	normal(qc1_pmu,	qc1_psd);	//	prior	on	measured	value	
						CSR_true	~	normal(CSR_pmu,	CSR_psd);	
						rf_true	~	normal(rf_pmu,	rf_psd);	
						qc1_obs	~	normal(qc1_true,	qc1_sd);	//measurement	model	
						CSR_obs	~	normal(CSR_true,	CSR_sd);	
						rf_obs	~	normal(rf_true,	rf_sd);	
						for	(i	in	1:N)	{	
								liq[i]	~	bernoulli_logit(b0[event[i]]	+	b1[event[i]]*qc1_true[i]	+	b2[event[i]]*CSR_true[i]+	
b3[event[i]]*rf_true[i]);	
						}	
	
}	
3.4.6 Prior	Sensitivity	Study	

To	assess	the	impact	of	different	prior	scales	on	our	models,	we	repeated	each	run	with	

prior	standard	deviations	of	10,	25,	and	100.	The	results	section	discusses	the	impacts	of	these	

changes	 on	 the	 posterior	 distributions	 of	 the	 regression	 coefficients	 and	 the	 model’s	 overall	

predictive	performance	

3.5 Model	Validation	Framework	

To	develop	model	 validation	metrics,	we	ultimately	 chose	 to	use	a	 single	 training	and	

testing	set	consisting	of	select	case	histories	from	the	2011	New	Zealand	Canterbury	earthquake	

sequence	 (Green	et	al.,	 2014).	 Figure	38,	 following,	 shows	 the	 separability	between	 the	 three	

predictors	and	liquefaction	for	this	training	set.		
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The	range	of	qc,1	is	similar	to	the	original	database	but	both	CSR	and	RF	have	considerably	

less	 variability.	 For	 CSR	 this	 would	 be	 expected	 because	 the	 data	 is	 limited	 to	 two	 events.	

However,	 this	 focus	primarily	on	clean	 sands	which	 is	at	odds	with	 typical	New	Zealand	cases	

which	are	known	for	their	higher	fines	contents	which	may	have	an	impact	on	apparent	model	

performance.		

There	are	several	reasons	why	we	chose	a	single	testing	set	instead	of	cross	validation.	

First,	because	the	goal	of	this	study	is	to	assess	the	effects	of	modeling	choices	on	model	utility	

rather	than	provide	a	complete	new	model	we	wanted	a	completely	unbiased	evaluation	of	model	
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Figure	38	–	Class	Separability	Between	qc,1,	CSR,	and	Rf	for	the	New	Zealand	Testing	Set.	
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performance.	Additionally,	implementing	cross	validation	for	the	Bayesian	models	would	require	

custom	coding	a	train	method	to	interface	with	Stan.	With	the	measurement	error	models	taking	

five	to	ten	minutes	to	run	and	often	requiring	several	adjustments	per	run	to	sampling	controls	

implementing	cross	validation	for	these	was	not	worth	doing	for	the	scope	of	this	study.		

The	final	step	in	each	model	run	is	to	use	the	New	Zealand	testing	set	to	validate	model	

performance	using	ROC	charts.	We	used	 the	ROCR	package	 for	 this	 in	 the	code	 following,	but	

there	are	several	others	that	have	the	same	capability.	Before	running	the	code,	the	appropriate	

values	for	b0,	b1,	b2,	and	b3	should	be	stored	from	the	latest	model	run.	

predict_logit	<-	function(b0,b1,b2,b3,qc1,CSR,rf)	{	
				return(1/(1+exp(-(b0+b1*qc1+b2*CSR+b3*rf))))	
}	
l_csr	<--0.6	
l_qc1	<-	1.0	
l_rf	<-	0.2	
b0	<-	coef(m)[1]	
b1	<-	coef(m)[2]	
b2	<-	coef(m)[3]	
b3	<-	coef(m)[4]	
	
nz	<-	read.csv("nzevents.csv")	
p	<-	predict_logit(b0	=	b0,	b1	=	b1	,	b2	=	b2,	b3	=	b3,	qc1	=	boxcox(nz$qc1,l_qc1),	CSR	=	
boxcox(nz$CSR,l_csr),	rf	=	boxcox(nz$rf,	l_rf))	
pred	<-	prediction(p,	nz$Liq)		
rocc	<-	performance(pred,	measure	=	"tpr",	x.measure	=	"fpr")		
plot(rocc,	colorize	=	T)	
abline(a=0,	b=1,	lty=2,	lwd=2,	col="black")	#45	degree	line	represents	performance	of	a	'coin	flip'	
model	
abline(h	=	1,	lty	=	3,	lwd=2,	col="black")	
abline(v	=	0,	lty	=	3,	lwd=2,	col="black")	
auc.perf	<-	performance(pred,	measure	=	"auc")	
text(0.75,0.4,	"AUC	=	")	
text(0.75,0.3,labels	=	round(auc.perf@y.values[[1]],3))	
	

To	 create	 a	 ROC	 curve	 in	 the	 rocr	 package	 several	 functions	 need	 to	 be	 called.	 The	

prediction	function	takes	vectors	of	predicted	probabilities	and	true	class	labels.	The	performance	

function	takes	the	output	of	this	function	and	produces	the	performance	metrics,	in	our	case	true	

and	false	positive	rates.	We	then	plot	the	results	with	the	curve	colorize	according	to	the	current	
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threshold.	Finally,	we	again	call	the	performance	function	to	compute	the	AUC	and	add	it	to	the	

chart.		
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4 RESULTS		

The	following	chapter	presents	the	results	of	our	modeling	process.	The	first	section	

summarizes	each	model	run	and	predictive	performance.	The	second	section	gives	our	metrics	

for	model	uncertainty	and	discusses	how	the	models	perform	compared	to	each	other.	The	final	

section	discusses	the	effects	of	different	prior	choices	on	model	parameter	distributions	and	

predictive	performance.	

In	this	chapter	we	discuss	the	following	models:	

• Model	0	–	Maximum	likelihood	model	

• Model	1	–	Baseline	Bayesian	model		

• Model	2	–	Hierarchal	Bayesian	model		

• Model	3	–	Bayesian	measurement	error	model	

• Model	4	–	Combine	measurement	error	and	hierarchical	model		

We	will	refer	to	models	with	three	predictor	variable	with	a	-3	after	the	model	number.	For	

example,	model	2-3	refers	to	the	hierarchal	Bayesian	model	with	all	three	predictor	variables.		

4.1 Model	Summaries	

Recall	that	for	a	Bayesian	analysis	the	result	is	a	posterior	distribution.	In	our	case,	the	

posteriors	 of	 interest	 are	 those	 of	 the	 regression	 coefficients	 (𝛽H, 𝛽I, 𝛽E,	 and	 𝛽·).	 For	 the	

hierarchal	models	we	are	mainly	 interested	 in	 the	population	mean	values	 for	 the	coefficients	

(𝜇y)	which	will	have	their	own	posterior	distributions.	 	We	are	also	 interested	in	making	point	

estimates	of	probability.		We	can	do	this	by	fixing	regression	coefficients	to	their	mean	values	and	

using	the	following	equation	(assuming	two	predictor	variables):	

𝑃b =
1

1 + exp −(𝛽H + 	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗	)
	

where		
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𝑞µ,I∗ = 	
𝑞µ,II.» − 1

1.6
	

𝐶𝑆𝑅∗ = 	
𝐶𝑆𝑅PH..» − 1

−0.6
	

The	output	of	this	function	is	a	logistic	surface	that	lives	above	the	qc,1*,	CSR*	space.	To	visualize	

we	 can	 reverse	 the	 Box-Cox	 transformations	 and	 plot	 contours	 of	 probability.	 For	 the	 three	

variable	case,	the	equation	for	calculating	probability	of	liquefaction	becomes:	

𝑃b =
1

1 + exp −(𝛽H + 	𝛽I ∗ 𝑞µ,I∗ + 𝛽E ∗ 𝐶𝑆𝑅∗ + 𝛽· ∗ 𝑅¶∗))
	

where		

𝑞µ,I∗ = 	
𝑞µ,II.H − 1

1.0
	

𝐶𝑆𝑅∗ = 	
𝐶𝑆𝑅PH..» − 1

−0.6
	

𝑅¶∗ = 	
𝑅¶H.E − 1
0.2

	

To	visualize	the	three	variable	models,	we	can	fix	Rf	at	2.5th,	50th	(median)	and	97.5th	

percentile	values	and	plot	the	probability	contours	for	each	case	to	visualize	how	the	curves	

shift.		Finally,	the	model	summaries	also	include	the	ROC	curve	from	testing	the	model	on	the	

New	Zealand	training	set	and	its	AUC.	To	facilitate	model	comparison	we	present	all	the	

graphical	summaries	in	succession,	then	discuss	the	key	points	in	the	sections	following	(Figures	

39	through	51).	In	each	graphic,	the	histograms	summarize	the	posterior	distributions	for	the	

regression	intercept	and	the	two	slopes	showing	mean,	standard	deviation	and	the	2.5th,	50th	

(median),	and	95th	percentiles	indicated	by	dashed	lines.		The	scatterplot	shows	the	probability	

contours	resulting	from	the	mean	values	of	regression	coefficients.	These	mean	values	are	also	

used	to	generate	the	ROC	curve	and	evaluate	model	predictive	performance.		For	three	variable	
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models,	the	left	is	for	the	full	three	variable	model	and	the	curve	on	the	right	is	for	Rf	fixed	at	its	

median	value.	

	

	 	

Parameter	 Estimate	 Standard	Error	

Intercept	(𝛽H)	 9.32	 1.63	

qc,1	Slope	(𝛽I)	 -0.19	 0.038	

CSR	Slope	(𝛽E)	 1.72	 0.350	

Table	2	–	Model	0	(Maximum	Likelihood	Coefficient	Estimates).	

Figure	39	-	Contours	of	5,	20,	50,	80,	and	95%	Liquefaction	Triggering	Probability.	Closed	and	
open	circles	are	liquefied	and	nonliquefied	case	histories,	respectively,	from	the	Moss	et	al.,	2006	
database.	Closed	and	open	triangles	are	liquefied	and	nonliquefied	case	histories,	respectively,	

from	the	Green	et	al.,	2011	validation	database.	

0.2

0.4

0.6

0 5 10 15 20 25

qc,1(MPa)

C
SR



118	

	

Mean =  9.377 SD =  1.267

Intercept

D
en
si
ty

0 5 10 15

0.
00

0.
20

Mean =  −0.212 SD =  0.031

qc,1 Slope

D
en
si
ty

−0.40 −0.30 −0.20 −0.10

0
4

8

Mean =  2.021 SD =  0.28

CSR Slope

D
en

si
ty

0.0 1.0 2.0 3.0

0.
0

1.
0

0.2

0.4

0.6

0 5 10 15 20 25

qc,1(MPa)

C
S
R

PL	=	 5%	
20%	

50%	
80%	

95%	
Tr

ue
 P

os
iti

ve
 R

at
e 

False Positive 

Figure	40	–	Model	1	Summary.			

Model	1	–	Baseline	Bayesian	
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Figure	41	–	Model	2	Summary.	The	distributions	shown	are	for	the	population	mean	value	
parameters	estimated	from	the	hierarchal	model.	
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Figure	42–	Model	3	Summary.		
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Figure	43	–	Model	4	Summary.	Similar	to	Model	2,	the	distributions	shown	are	for	the	
population	mean	value	parameters	estimated	from	the	hierarchal	model.	
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Figure	44	–	Model	1-3	Summary.		
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Figure	45	–	Graphical	Triggering	Curves	for	Model	1-3.	The	contours	of	probability	plotted	
are	95%,	80%,	50%,	20%	and	5%,	left	to	right.		

Model	1-3	–Baseline	three	variable	model	
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Figure	46	–	Posterior	Distributions	and	Predictive	Performance	for	Model	2-3.		
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Figure	47	–	Graphical	Triggering	Curves	for	Model	2-3.		

Model	2-3	–Hierarchal	three	variable	model	
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Figure	48	–	Posterior	Distributions	and	Predictive	Performance	for	Model	3-3.		
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Figure	49	–	Graphical	Triggering	Curves	for	Model	3-3.	

Model	3-3	–Measurement	error	three	variable	
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Figure	50	–	Posterior	Distributions	and	Predictive	Performance	for	Model	4-3.		
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Figure	51	–	Graphical	Triggering	Curves	for	Model	4-3.		

Model	4-3	–	Combined	three	variable	
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4.2 Discussion	of	Model	Summaries	

Model	2	has	a	slightly	higher	AUC	and	coefficient	standard	deviations	than	the	baseline	

case.	Compared	to	the	baseline	curves	plotted	in	light	gray	the	spread	of	the	probability	contours	

has	decreased	similar	to	Model	3.	However,	for	Model	3	because	the	shift	is	relatively	small	the	

AUC	 does	 not	 increase	 compared	 to	 baseline	 and	 is	 slightly	 less	 than	Model	 2.	 The	 standard	

deviations	of	the	regression	coefficients	for	Model	3	are	slightly	larger	than	the	baseline	model	

but	smaller	 than	Model	2.	Finally,	compared	to	all	 the	previous	models	Model	4	has	 the	most	

“squishing”	of	the	probability	contours	and	a	tie	for	the	highest	AUC.	But,	it	also	has	the	largest	

standard	deviation	for	model	parameters	thus	far.		

When	including	3	predictor	variables	predictive	performance	decreased	appreciably.	For	

Model	1-3,	both	the	full	model	and	fixing	Rf	to	its	median	value	have	a	noticeably	less	AUC	than	

any	of	the	two	predictor	variable	models,	though	fixing	Rf	outperforms	the	full	model.	Its	posterior	

standard	deviations	are	comparable	to	the	2	predictor	case.	Visually,	as	Rf	increases	the	curves	

shift	to	the	left	indicating	a	generally	lower	probability	of	liquefaction	–	consistent	with	the	belief	

that	 increased	 fines	 content	 will	 suppress	 liquefaction	 triggering.	 Model	 2-3	 has	 posterior	

standard	deviations	larger	than	Model	1-3	and	its	predictive	performance	is	worse	than	any	of	the	

two	variable	models.	However,	its	AUC	is	higher	than	model	1-3.	Similar	to	the	two	variable	case	

its	probability	curves	have	shrunk	closer	together	relative	to	the	three	variable	baseline	The	trend	

of	increasing	parameter	posterior	uncertainty	continues	with	Models	3-3	and	4-3.	They	also	have	

worse	predictive	performance	than	the	baseline	3	variable	case,	although	Model	4-3	has		a	higher	

AUC	than	3-3.	Both	of	these	models	exhibit	dramatic	shrinkage	of	their	contours	of	probability,	

indicating	 low	apparent	model	 uncertainty.	However,	 because	 their	 predictive	performance	 is	

generally	poor	these	models	are	“over	confident”,	in	a	sense.			
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4.3 Defining	and	Assessing	Model	Uncertainty	

To	 assess	 model	 uncertainty,	 we	 first	 consider	 what	 we	 will	 refer	 to	 as	 a	 model’s	

“apparent	uncertainty”.	 For	 a	point	 estimate	of	 liquefaction	 triggering	 the	uncertainty	of	 that	

assessment	 is	directly	 related	 to	 its	predicted	probability.	As	 touched	upon	 in	 the	background	

section,	 a	 binary	 outcome	 that	 occurs	 with	 probability	 p	 has	 variance	 𝑝 1 − 𝑝 	 or	 standard	

deviation	 𝑝 1 − 𝑝 .	 This	 formula	 expresses	 that	 we	 are	 more	 confident	 about	 an	 event’s	

occurrence	 the	higher	probability	we	assign	 to	 it	or	vice	versa.	Graphically	 this	appears	as	 the	

probability	curves	shifting	closer	together	–	which	indicates	more	space	being	assigned	very	high	

or	 very	 low	probabilities.	 To	assign	a	numerical	 value	 to	 this,	we	 can	also	define	a	𝜎³H	 as	 the	

median	computed	standard	deviation	of	an	evenly	spaced	grid	of	qc,1,	CSR	pairs	across	the	domain	

covered	by	the	database.	This	metric	summarizes	how	confident	the	models	point	estimates	of	

probability	are,	on	average.			

However,	we	are	also	 interested	 in	a	probabilistic	 interpretation	of	model	uncertainty.	

Because	the	results	of	each	model	run	are	posterior	distributions	of	the	model	coefficients	we	can	

treat	 the	 equation	 for	 probability	 of	 liquefaction	 as	 a	 function	 of	 random	 variables	 and	 use	

simulation	to	approximate	a	predictive	distribution	for	probability	of	liquefaction,	given	a	CSR	and	

qc,1	input	(Figures	52	and	54).	This	distribution	will	also	have	a	standard	deviation	associated	with	

it,	which	we	will	refer	to	as	the	“posterior	predictive”	uncertainty.	Again,	we	can	define	a	𝜎³H	as	

the	median	computed	standard	deviation	of	 the	simulated	posteriors	corresponding	 to	evenly	

spaced	grid	of	qc,1,	CSR	pairs	across	the	domain	covered	by	the	database.	Additionally,	we	plot	a	

sampling	 of	 the	 probable	median	 curves	 for	 each	model	 to	 visualize	 the	 posterior	 predictive	

uncertainty	(Figure	53	and	55).		The	mean	trend	is	shown	in	black	and	the	sample	lines	are	drawn	

in	grey,	shaded	corresponding	to	their	probability	density.	
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In	these	examples	qc,1	=	10	MPa	and	CSR	=	0.3.	These	values	were	deliberately	chosen	because	

they	lie	in	the	intermediate	region	where	there	is	noticeable	mixing	between	liquefied	and	

nonliquefied	case	histories.	Models	1	and	3	have	very	similar	predictive	distributions,	while	

models	2	and	4	have	a	much	wider	spread	of	possible	probabilities.	This	corresponds	roughly	

with	the	standard	deviations	of	their	coefficient	posterior	distributions	–	Model	1	had	the	

tightest,	followed	by	3	then	2	then	4.			
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Figure	52	–		Sample	Posterior	Predictive	Distributions	for	Models	1	-	4,	Left	to	Right	
Top	to	Bottom.		
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Figure	53	–	Visualizing	the	Posterior	Uncertainty	of	the	50%	Probability	Contour	Location.	
Models	1	through	4	are	shown	left	to	right,	top	to	bottom.	Models	1	and	3	have	a	similar	

spread	while	the	hierarchal	models	(2	and	4)	are	more	diffuse.	
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In	these	examples	qc,1	=	10	MPa	,	CSR	=	0.3,	and	Rf	=	0.705%	as	before.	The	standard	deviations	

of	these	predictions	are	noticeably	larger	than	the	two	variable	case	as	a	result	of	the	higher	

posterior	standard	deviations	associated	with	the	regression	coefficients.	However,	they	still	

follow	the	general	trend	of	standard	deviation	increasing	1	to	3	to	2	to	4.			
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Figure	54	–	Sample	Posterior	Predictive	Distributions	for	Models	1-3	Through	4-3,	
Left	to	Right	Top	to	Bottom.		
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Figure	55	–	Visualizing	the	Posterior	Uncertainty	of	the	50%	Probability	Contour	
Location	for	the	Three	Variable	Case.		
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Models	1-3	through	4-3	are	shown	left	to	right,	top	to	bottom.	The	mean	trend	is	shown	in	black	

and	the	sample	lines	are	drawn	in	grey,	shaded	corresponding	to	the	probability	density.	The	

spread	of	the	curves	follows	similar	trends	to	the	two	variable	case.	The	odd	shape	is	likely	due	

to	the	how	diffuse	the	posteriors	for	this	model	are,	allowing	for	curves	that	do	not	follow	the	

same	trend.	

	 	

Model	 Apparent	𝜎³H	
%	Difference	
from	baseline	

Posterior	
Predictive	𝜎³H	

%	Difference	
from	baseline	

1	 1.14E-02	 --	 3.67E-04	 ---	
1-3	 3.71E-02	 --	 2.68E-03	 ---	
1-3*	 3.13E-02	 --	 2.22E-03	 ---	
2	 2.97E-03	 -117%	 2.26E-03	 144%	
2-3	 3.01E-03	 -170%	 1.75E-04	 -176%	
2-3*	 2.63E-03	 -169%	 1.08E-02	 132%	

3	 3.83E-03	 -99%	 1.42E-04	 -89%	

3-3	 1.17E-04	 -199%	 3.61E-02	 172%	

3-3*	 8.00E-05	 -199%	 1.52E-04	 -174%	

4	 1.10E-03	 -165%	 7.01E-03	 180%	
4-3	 1.63E-06	 -200%	 4.63E-02	 178%	
4-3*	 1.19E-06	 -200%	 2.76E-02	 170%	

Table	3	–	Numerical	Summaries	of	Model	Uncertainty.	The	models	denoted	x-3*	are	the	
results	for	the	three	variable	case	with	Rf	fixed	at	its	median	value.	The	two	and	three	variable	
are	only	compared	to	their	own	baselines	i.e.	model	2-3*	is	compared	to	1-3*	not	1-3	or	1.	
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4.4 Overall	Discussion	of	Model	Performance		

When	considering	all	the	models	three	major	trends	are	apparent:	

• Two	predictor	variables	always	outperform	three	predictor	variables	

• The	measurement	error	and	hierarchal	models	have	appreciably	less	apparent	

uncertainty	than	the	baseline	models	

• This	added	complexity	often	comes	at	the	cost	of	less	certain	coefficient	posterior	

distributions	and	increased	predictive	uncertainty.	

The	following	sections	will	discuss	these	trends	in	further	detail.		

4.4.1 Comparing	Three	and	Two	Predictor	Variables	

The	lower	than	expected	predictive	performance	of	the	three	variable	models	can	be	

interpreted	in	several	ways.	Because	The	New	Zealand	testing	set	is	mostly	clean	sand	cases	it	is	

possible	that	adding	Rf	to	the	model	does	not	generalize	well	to	soils	with	low	apparent	fines	

content.	Or,	it	can	simply	be	that	Rf	as	a	predictor	variable	does	not	generalize	well	to	new	data,	

period.	

Additionally,	Rf	and	qc,1	are	correlated	because	Rf	is	a	function	of	tip	resistance	and	

because	Rf	is	an	input	to	the	equation	for	the	qc,1	normalization	exponent	(Figure	56).		When	

predictor	variables	are	correlated	the	posterior	will	have	a	high	spread	because	many	logistic	

surfaces	can	fit	the	data	(Kruschke,	2015).	This	may	contribute	to	these	models’	poor	

performance	because	the	resulting	posteriors	may	be	too	diffuse	for	the	model	to	identify	

model	coefficients.		
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These	results	illustrate	the	importance	of	distinguishing	between	model	fit	to	the	

training	data	and	its	actual	predictive	performance.	The	AIC	based	selection	indicated	that	there	

is	statistical	utility	in	including	Rf	as	a	predictor	variable,	but	this	metric	is	based	off	the	model	fit	

to	the	training	data.	When	actually	considering	the	model’s	predictive	performance	on	a	testing	

set	the	two	variable	cases	consistently	outperform	the	variable	cases.	However,	it	is	possible	

that	a	testing	set	that	includes	a	wider	spread	of	Rf	values	will	show	improved	predictive	

performance.	

4.4.2 Apparent	Model	Uncertainty	

The	hierarchal,	measurement	error,	and	combined	models	all	had	lower	apparent	

uncertainties	than	the	baseline	case.	This	is	supported	by	values	of	percent	difference	in	

apparent	𝜎³H	on	the	order	of	100	to	200%	between	the	baseline	and	following	models.	The	

R
f* 

qc,1
* 

Figure	56–	Scatterplot	Showing	Correlation	of	Transformed	qc,1	and	Rf	
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“squishing”	of	the	probability	curves	in	the	previous	summary	figures	illustrate	this	reduction	in	

uncertainty.	In	general,	the	hierarchal	model	had	a	lower	uncertainty	than	the	measurement	

error	model	and	the	combined	model	outperformed	them	both.	This	trend	was	more	

pronounced	in	the	three	variable	case.	The	three	variable	measurement	error	and	combined	

models	produced	strikingly	low	apparent	model	uncertainties	(both	numerically	and	graphically)	

but	fall	into	the	trap	of	being	overly	certain.	That	is,	despite	having	low	model	uncertainty	they	

perform	poorly	when	making	predictions	on	new	data.			

4.4.3 	Model	Posterior	Predictive	Uncertainty	

In	general,	the	hierarchal	models	(2,	4,	2-3,	and	4-3)	had	larger	posterior	standard	

deviations	than	the	fully	pooled	cases	(models	1,	3,	1-3,	and	3-3).	This	is	consistent	with	the	

notion	that	hierarchal	models	account	in	some	way	for	event-to-event	variability	in	the	

coefficients	while	the	pooled	models	ignore	it	entirely.	As	a	result,	their	sample	posterior	

predictive	distributions	have	larger	standard	deviations	and	their	probable	median	contours	

have	a	higher	spread.	A	result	of	this	is	that	the	distributions	for	the	median	line	spread	out	in	

areas	with	fewer	data	points	(the	upper	right	of	the	scatter	plot)	and	illustrate	greater	posterior	

predictive	uncertainty	in	these	regions	as	would	be	expected.		This	trend	is	generally	considered	

one	of	the	benefits	of	hierarchal	models	–	they	avoid	underestimating	the	uncertainty	

associated	with	out	of	sample	predictions	(Gelman	and	Hill,	2007).		

For	the	two	variable	case,	the	measurement	error	model	and	baseline	models	had	

similar	variability	in	their	coefficient	posterior	distributions.	One	would	expect	with	more	data	

the	scale	of	these	standard	deviations	would	become	nearly	identical.	On	the	other	hand,	in	the	

three	variable	case	the	posterior	uncertainties	grow	rapidly	as	complexity	is	added	to	the	model.	

This	can	be	partially	explained	by	the	correlation	between	Rf	and	qc,1	--	correlated	predictors	

leads	to	more	diffuse	posteriors	as	discussed	in	the	previous	section.	However,	for	models	3-3	
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and	4-3	it	appears	that	the	some	or	all	posterior	standard	deviations	are	highly	influenced	by	the	

prior	standard	deviations.	This	inference	is	based	on	the	rule	of	thumb	proposed	by	the	Stan	

development	team	that	a	posterior	is	“influenced”	by	a	default	prior	if	its	standard	deviation	is	

greater	than	10%	of	the	prior’s	(Gelman,	2019).	That	is,	the	data	is	not	strong	enough	to	

constrain	the	posterior	predictive	uncertainty	for	these	parameters.		This	effect	is	particularly	

noticeable	for	the	intercept	though	present	in	all	parameters.		

However,	as	evidenced	by	the	reduction	in	apparent	model	uncertainty	discussed	

previously	these	models	show	useful	mean	trends	and	can	be	useful	for	fully	probabilistic	

inference	with	tighter	priors	or	more	data.	This	is	evidenced	by	the	work	of	Kuehn	and	

Abrahamson,	who	were	able	to	use	numerical	techniques	to	justify	tighter	priors	on	regression	

coefficients	and	also	had	access	to	a	much	larger	dataset.			It	is	also	important	to	note	that	

almost	no	relevant	work	to	date	(e.g	Robertson	and	Wride,	1998,	Moss	et	al.,	2006,	Boulanger	

and	Idriss,	2016)	has	acknowledged	the	impact	of	parameter	uncertainty	on	forward	prediction	

of	liquefaction.	However,	doing	so	will	be	necessary	for	a	performance	based	approach	to	

liquefaction	assessment.		

4.4.4 A	Brief	Discussion	on	the	Dangers	of	Overfitting	

Figure	57,	below,	shows	the	predictive	performance	Model	4-2	but	this	time	using	the	

original	training	set	for	testing.		
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This	approach,	unfortunately	taken	by	most	of	the	previous	work	in	the	field,	dramatically	

overestimates	the	model’s	predictive	ability.		This	is	further	compounded	with	practitioners	

often	having	to	rely	on	self-reported	validation	metrics	when	deciding	which	is	a	better	model	to	

use.			

4.5 Prior	Sensitivity	Study	

To	further	assess	the	influence	of	prior	choice	we	performed	a	sensitivity	study	on	our	

models.	The	default	priors,	used	for	the	results	reported	above,	is	Normal	(0,25)	on	the	intercept	

parameter	and	Normal	(0,10)	on	the	slope	parameters.	We	then	further	increased	the	standard	

deviation	 on	 these	 priors	 to	 25	 and	 100	 (for	 both)	 and	 recorded	 the	 change	 in	 posterior	

distributions	and	model	predictive	performance.	The	tables	following	report	posterior	means	and	

standard	deviations	and	AUC	using	the	3	different	priors.	We	found	for	the	2	variable	models	the	

Figure	57	–		Model	4’s	Predictive	Performance.	This	time	it	is	assessed	only	using	the	training	
set.	The	dramatic	increase	in	apparent	performance	illustrates	the	optimistic,	and	possible	

dangerous,	bias	in	this	approach.		
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posterior	distributions	of	model	coefficients	changed	only	slightly	and	AUC	remained	almost	the	

same	–	 though	 the	 slight	 increases	 in	 standard	deviations	will	 necessarily	 affect	 the	posterior	

predictive	uncertainty.	The	three	variable	baseline	model	also	exhibited	this	behavior.	However,	

for	models	2-3,	3-3,	and	4-3	we	observed	noticeable	prior	sensitivity	as	evidenced	by	an	 large	

increase	in	posteriors	standard	deviations	(and	a	shift	of	mean	values).	This	was	accompanied	by	

a	drop	in	predictive	accuracy,	indicating	that	the	larger	priors	are	too	diffuse	to	allow	for	good	

estimation	of	model	parameters.			

	

Table	4	--	Model	1-3	Prior	Sensitivity	Results	

Parameter	 Default	Prior	 Prior	SD	=	100	

𝛽H	 11.09	(1.59)	 11.42	(1.63)	

𝛽I	 -0.89	(0.13)	 -0.91	(0.13)	

𝛽E	 2.01	(0.31)	 2.07	(0.32)	

𝛽·	 -1.42	(0.32)	 -1.43	(0.32)	

AUC	 0.642	 0.642	
	
	
	

Table	5	--	Model	2	Prior	Sensitivity	Results	

	
Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝜇yz		 12.03	(1.94)	 12.16	(2.00)	 12.21	(1.99)	

𝜇y{		 -0.27	(0.06)	 -0.27	(0.06	 -0.27	(0.06)	

𝜇yí		 2.66	(0.46)	 2.69	(0.48)	 2.70	(0.47)	

𝜎yz 	 0.94	(0.75)	 0.96	(0.79)	 1.00	(0.80)	

𝜎y{ 	 0.08	(0.05)	 0.05	(0.31)	 0.08	(0.06)	

𝜎yí 	 0.31	(0.24)	 0.31	(0.24)	 0.31	(0.24)	

AUC	 0.716	 0.713	 0.716	
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Table	6	--	Model	2-3	Prior	Sensitivity	Results	

	
Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝜇yz		 22.31	(4.03)	 23.07	(4.43)	 26.31	(9.60)	

𝜇y{		 -1.57	(0.32)	 -1.63	(0.35)	 -1.83	(0.68)	

𝜇yí		 4.07	(0.78)	 4.15	(0.85)	 4.61	(1.38)	

𝜇yî		 -1.92	(1.97)	 -1.93	(2.34)	 -2.24	(3.33)	

𝜎yz 	 1.89	(1.58)	 2.06	(1.72)	 3.34	(4.71)	

𝜎y{ 	 0.27	(0.24)	 0.30	(0.28)	 0.48	(0.67)	

𝜎yí 	 0.51	(0.37)	 0.54	(0.43)	 0.79	(1.49)	

𝜎yî 	 5.18	(2.04)	 6.48	(2.93)	 8.11	(4.78)	

AUC	 0.654	 0.654	 0.650	
	

	
Table	7	--	Model	3	Prior	Sensitivity	Results	

	
Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝛽H	 11.79	(2.00)	 12.14	(2.11)	 12.36	(2.31)	

𝛽I	 -0.26	(0.05)	 -0.27	(0.05)	 -0.28	(0.5)	

𝛽E	 2.54	(0.44)	 2.62	(0.46)	 2.66	(0.50)	

AUC	 0.710	 0.710	 0.710	
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Table	8	--	Model	3-3	Prior	Sensitivity	Results	

	
Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝛽H	 29.69	(10.78)	 33.13	(13.25)	 165.13	(73.24)	

𝛽I	 -2.44	(0.92)	 -2.73	(1.13)	 -13.96	(6.26)	

𝛽E	 5.39	(1.93)	 6.00	(2.36)	 29.45	(13.08)	

𝛽·	 -4.35	(1.69)	 -4.87	(2.07)	 -24.62	(11.43)	
AUC	 0.639	 0.639	 0.631	

	
	

Table	9	--	Model	4	Prior	Sensitivity	Results	

	

Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝜇yz		 14.60	(2.99)	 14.67	(2.93)	 14.87	(3.14)	

𝜇y{		 -0.32	(0.08)	 -0.32	(0.08)	 -032	(0.08)	

𝜇yí		 3.25	(0.69)	 3.27	(0.67)	 3.31	(0.73)	

𝜎yz 	 1.15	(0.91)	 1.15	(0.96)	 1.16	(0.92)	

𝜎y{ 	 0.08	(0.06)	 0.07	(0.06)	 0.08	(0.06)	

𝜎yí 	 0.35	(0.27)	 0.35	(0.28)	 0.35	(28)	

AUC	 0.716	 0.716	 0.716	
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Table	10	--	Model	4-3	Prior	Sensitivity	Results	

	

Parameter	 Default	Prior	 Prior	SD	=	25	 Prior	SD	=	100	

𝜇yz		 49.55	(12.75)	 59.23	(14.90)	 211.15	(58.79)	

𝜇y{		 -3.61	(1.11)	 -4.29	(1.29)	 -15.36	(5.04)	

𝜇yí		 9.13	(2.53)	 10.87	(3.02)	 38.83	(11.71)	

𝜇yî		 -6.07	(3.83)	 -7.02	(5.48)	 -26.44	(17.88)	

𝜎yz 	 3.61	(2.93)	 4.02	(3.24)	 12.90	(9.99)	

𝜎y{ 	 0.98	(0.74)	 1.22	(0.96)	 4.37	(3.32)	

𝜎yí 	 1.39	(1.04)	 1.81	(1.31)	 6.46	(4.73)	

𝜎yî 	 7.28	(3.15)	 12.13	(5.22)	 34.89	(14.63)	

AUC	 0.649	 0.648	 0.641	
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5 CONCLUSION	AND	RECCOMENDATIONS	

The	 following	 chapter	 presents	 a	 summary	 of	 our	 research	 and	 recommendations	 for	

future	work.		

	
5.1 Study	Summary	

This	 study	 built	 a	 predictive	 modeling	 workflow	 for	 developing	 empirical	 models	 for	

liquefaction	triggering	potential.	While	we	only	considered	CPT	data	the	process	would	be	similar,	

if	not	identical,	for	other	in-situ	tests.	Using	the	database	from	Moss	et	al.,	2006	we	first	selected	

the	predictor	variables	that	had	a	strong	enough	statistical	association	with	liquefaction	outcomes	

to	be	considered	in	the	modeling	process.	These	were	qc,1,	CSR,	and	Rf.	We	then	selected	Box	–	

Cox	transformations	of	these	variables	that	produced	the	highest	cross-validated	AUC	for	both	

the	two	and	three	variable	models.	In	the	modeling	process,	we	considered	four	main	models	–	a	

baseline	 simple	 logistic	 regression,	 a	 hierarchal	 (or	mixed/random	 effects)	model,	 a	 Bayesian	

measurement	error	model,	and	a	combination	of	the	last	two.	The	performance	of	these	models	

was	assessed	using	a	testing	set	of	New	Zealand	case	histories	and	report	as	ROC	curves.	

	The	goals	of	this	study	were	two-fold.	First,	we	wanted	to	develop	transparent	model	

validation	strategies	to	be	used	when	examining	the	effects	of	the	modeling	choices	discussed	

above.	 Secondly,	 we	 wanted	 to	 reduce	 model	 uncertainty,	 while	 maintaining	 (or	 improving)	

predictive	 capability.	 For	 the	 purpose	 of	 this	 study,	 we	 divide	 model	 uncertainty	 into	 two	

components.	 The	 apparent	 model	 uncertainty	 referrers	 how	 high	 or	 low	 of	 a	 probability	 is	

assigned	to	predictions	in	general	(fixing	regression	coefficients	to	their	mean	values).	 	A	more	

“confident”	model	will	consistently	assign	higher	or	 lower	probabilities,	 i.e.	classifying	a	yes	as	

90%	instead	of	60%,	than	a	 less	“confident	one”.	Graphically,	 this	 is	seen	as	the	spread	of	the	

contours	of	probability.		We	also	considered	a	fully	probabilistic	posterior	predicative	uncertainty.	

This	was	defined	as	the	standard	deviation	of	probability	of	 liquefaction	from	a	fixed	predictor	
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variable	pair	arising	from	using	the	full	posterior	distributions	of	model	coefficients	and	treating	

the	equation	for	liquefaction	potential	as	a	function	of	random	variables.					

We	found	that	the	all	cases	of	the	measurement	error	model,	hierarchal,	and	combination	

models	 reduced	 apparent	model	 uncertainty	 based	 upon	 the	 graphical	 behavior	 of	 triggering	

curves	 and	 median	 apparent	 uncertainty	 values.	 In	 this	 context,	 the	 hierarchal	 models	

outperformed	 the	 stand	 alone	 measurement	 error	 models	 and	 the	 combinations	 of	 the	 two	

performed	 the	best.	 For	 the	 two	predictor	 variable	models,	 predictive	performance	 remained	

constant	relative	to	the	baseline	or	improved.	In	contrast,	all	the	three	predictor	variable	models	

performed	worse	than	the	two	variable	baseline.	This	indicates	that,	at	least	in	the	context	of	our	

training	and	testing	sets,	models	incorporating	Rf	as	a	predictor	variable	do	not	generalize	well	to	

new	data.	Additionally,	predictive	performance	dropped	with	model	complexity	illustrating	what	

we	call	an	“over	confidence”	effect	–	a	model	that	has	 low	apparent	uncertainty	but	performs	

poorly	on	new	data.		

Posterior	predictive	uncertainty	was	noticeably	higher	for	the	hierarchal	models	and	for	

all	three	variable	cases.	For	the	hierarchal	models	this	is	not	necessarily	a	problem	–	accounting	

for	 the	possible	 group	 level	 variability	 in	 regression	 coefficients	will	 naturally	produce	a	more	

variable	posterior	distribution.	However,	for	three	variable	models	the	high	standard	deviations	

of	the	regression	coefficients	indicate	that	the	data	is	insufficiently	to	adequately	estimate	them	

to	an	acceptable	level	of	uncertainty	for	fully	probabilistic	inference.	This	can	likely	be	remedied	

with	more	data	points	(such	as	the	NGL	database)	or	with	more	informative	priors	determined	

from	expert	consensus	or	laboratory	testing.		
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5.2 Recommendations	For	Future	Work	

• Most	of	the	posterior	uncertainty	can	be	eliminated	with	more	data.	Thus,	we	

recommend	that	new	models	be	built	using	the	NGL	database	when	it	is	released.	These	

will	be	inherently	be	more	useful	for	the	state	of	practice	than	those	built	on	limited	and	

outdated	data.	

• Future	work	should	take	a	principled	approach	to	predictor	variable	selection	and	

processing,	similar	to	the	methods	described	in	this	paper.	To	minimize	posterior	

uncertainty,	correlation	in	the	selected	variables	should	be	avoided.	We	believe	it	is	

worth	investigating	predictors	that	haven’t	be	seen	in	previous	models	but	show	strong	

statistical	association	with	liquefaction	outcomes	(e.g.	Kayen	and	Mitchell,	1997)	

• Use	informative	priors	to	constrain	regression	coefficients	when	data	is	insufficient	to	

estimate	them	to	acceptable	levels	of	uncertainty.	This	can	be	based	on	laboratory	or	

field	testing,	or	numerical	modeling	similar	to	the	work	of	Kuehn	and	Abrahamson.	

Additionally,	principled	elicitation	of	expert	consensus	can	also	be	used	to	build	prior	

distributions.				

• The	logistic	model	can	be	extended	by	allowing	the	log-odds	of	liquefaction	to	be	a	

nonlinear	function	of	predictor	variables.	Similar	to	how	we	selected	our	

transformations,	future	modelers	can	optimization	strategies	to	determine	the	best	

performing	functional	form	of	predictors.			

• The	Bayesian	measurement	error	model	is	not	limited	to	logistic	regression,	nor	is	

logistic	regression	the	only	means	of	building	a	probabilistic	model.	Because	of	how	

common	logistic	regression	is	in	practice	we	recommend	that	it	be	used	a	baseline	and	

compared	to	more	complex	functional	forms.	However,	it	is	important	to	consider	the	
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utility	of	models	in	general	practice.	A	highly	complicated,	more	accurate	model	that	is	

used	incorrectly	will	be	less	useful	than	a	less	accurate,	but	less	prone	to	user	error	one.		

• The	final	models	should	be	cross-validated	to	report	relatively	unbiased	metrics	of	

performance			
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