

SMART DC WALL OUTLET DESIGN WITH IMPROVED

LOAD VOLTAGE DETECTION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements of the Degree of Joint Bachelor of Science and

Master of Science in Electrical Engineering

by

Patrick Donovon Granieri

June 2019

ii

© 2019

Patrick Donovon Granieri

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Smart DC Wall Outlet Design

and Load Voltage Detection

AUTHOR: Patrick Donovon Granieri

DATE SUBMITTED: June 2019

COMMITTEE CHAIR: Taufik, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Tina Smilkstein, Ph.D.

Associate Professor of Electrical

Engineering

COMMITTEE MEMBER: Majid Poshtan, Ph.D.

Associate Professor of Electrical

Engineering

iv

ABSTRACT

Smart DC Wall Outlet Design with Improved Load Voltage Detection

Patrick Donovon Granieri

 A standard home in the United States has access to the 120V AC power grid for

use with home appliances. Many electronics used at home are powered by a DC power

supply, which loses energy in the conversion from AC power. The DC House project

avoids any conversion between AC and DC by storing energy in batteries as DC power

and supplying it directly to DC appliances. While AC systems feature a standardized

output voltage, no such standard exists for DC systems. The Smart DC Wall Outlet solves

this by automatically adjusting its output voltage to meet any required DC load voltage.

A hardware solution was developed using a microcontroller in tandem with a DC to DC

Buck converter to monitor trends in the output current and set the output voltage

accordingly. The Smart DC Wall Outlet features two 100W output channels that were

able to correctly identify the required output voltage of five out of seven test devices.

Results indicate that it is possible to generalize the turn on characteristics of DC devices,

but that other solutions may find more success.

v

ACKNOWLEDGMENTS

 I would like to thank my advisor Dr. Taufik for showing me the true utility of

power electronics. I would also like to thank my mother and my sister, Barbara and

Rebecca Granieri, along with the rest of my family for helping me through university and

encouraging me every step of the way. Last, but not least, I would like to thank my

friends for being my support when I was in need. Without these people, none of this

would have been possible.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1. The Need for a Variable DC Wall Outlet .. 3

2.2. DC to DC Voltage Converters ... 3

2.3. Previous Work ... 5

3. DESIGN REQUIREMENTS .. 8

3.1. General Design... 8

3.2. Electrical Specifications... 9

3.3. Physical Specifications .. 10

4. DESIGN AND SIMULATION RESULTS .. 13

4.1. Solution Statement ... 13

4.2. Primary and Secondary Buck Controller Selection ... 13

4.3. Microcontroller Selection .. 15

4.4. Inductor Sizing ... 16

4.5. Capacitor Sizing ... 18

4.6. Current Sense Resistor Sizing .. 20

4.7. Power Converter Simulation .. 20

vii

4.8. Schematic Design... 24

4.9. Test Device Selection .. 26

4.10. Data Analysis ... 27

4.11. Algorithm Development .. 31

5. HARDWARE CONSTRUCTION AND TESTING RESULTS 35

5.1. Bill of Materials ... 35

5.2. PCB Layout and Fabrication .. 37

5.3. Board Assembly ... 40

5.4. Microcontroller Programming ... 41

5.5. Board Testing Results .. 43

5.6. Algorithm Testing Results ... 47

6. CONCLUSION ... 51

BIBLIOGRAPHY ... 53

APPENDICES

A. Test Device Voltage Sweeps.. 56

B. Output Regulation .. 58

C. Microcontroller Code ... 60

viii

LIST OF TABLES

Table Page

1. Electrical Design Requirements .. 10

2. Physical Design Requirements ... 12

3. Test Device Selection ... 26

4. Efficiency Evaluation.. 46

5. Output Voltage Percent Error Evaluation ... 46

6. Output Voltage Ripple Evaluation .. 47

ix

LIST OF FIGURES

Figure Page

1. DC House Block Diagram .. 2

2. Buck Converter Topology... 4

3. Potentiometer Value vs. Output Voltage [9]... 7

4. Level 0 Block Diagram ... 8

5. Level 1 Block Diagram ... 9

6. NEMA Wall Outlet Standard (Inches) .. 11

7. Smart DC Wall Outlet Wiring Diagram ... 12

8. Example LTC3889 Circuit Schematic [13] .. 14

9. Example LT8619-5 Circuit Schematic [15] .. 15

10. LTC3892 Simulation Schematic ... 21

11. Simulated Output Voltage of 3V, Load Current of 250mA.. 22

12. Simulated Output Voltage of 3V, Load Current of 6A ... 22

13. Simulated Output Voltage of 36V, Load Current of 250mA...................................... 23

14. Simulated Output Voltage of 36V, Load Current of 2.78A .. 23

15. Smart DC Wall Outlet Schematic ... 25

16. 4.5 TV Moving Average and Derivative .. 28

17. 5V Radio Moving Average and Derivative .. 28

18. 5V Raspberry Pi Moving Average and Derivative ... 28

19. 5V Android Moving Average and Derivative .. 28

20. 5V Windows Phone Moving Average and Derivative ... 29

21. 12V Fans Moving Average and Derivative .. 29

x

22. 15V Speakers Moving Average and Derivative ... 29

23. Nominal Voltage Detection Algorithm Flowchart ... 32

24. Bill of Materials .. 36

25. PCB Layout - Top ... 38

26. PCB Layout - Bottom ... 39

27. Fully Assembled Smart DC Wall Outlet .. 41

28. Arduino Uno Finite State Machine ... 43

29. 5V TV Output Regulation ... 45

30. LTC3889 Efficiency Plot [13] .. 46

31. 5V Android Algorithm Success .. 47

32. 5V Radio Algorithm Failure ... 48

33. 5V Radio Experimental Current Draw ... 49

34. 12V Fans Algorithm Success .. 50

35. 15V Speakers Algorithm Failure .. 50

36. 4.5V TV Voltage Sweep ... 56

37. 5V Radio Voltage Sweep .. 56

38. 5V Raspberry Pi Voltage Sweep ... 56

39. 5V Android Phone Voltage Sweep ... 56

40. 5V Windows Phone Voltage Sweep ... 57

41. 12V Fans Voltage Sweep .. 57

42. 15V Speakers Voltage Sweep ... 57

43. 4.5V TV Output Regulation .. 58

44. 5V Radio Output Regulation .. 58

xi

45. 5V Raspberry Pi Output Regulation ... 58

46. 5V Android Phone Output Regulation .. 58

47. 5V Windows Phone Output Regulation .. 59

48. 12V Fans Output Regulation .. 59

49. 15V Speakers Output Regulation.. 59

1

1. INTRODUCTION

Electric power distribution became a necessity in the late 1870’s with the advent

of arc lamp street lighting systems [1], eventually leading to the rise of electric lighting,

climate control and other home appliances available to the modern American home. High

voltage alternating current (AC) systems were developed to distribute power to these arc

lamp street lights and low voltage direct current (DC) systems were developed to deliver

power to indoor incandescent lights. While both forms of power distribution are used in

different applications, AC systems were ultimately favored as the primary transmission

method due to the existence of the transformer. To reduce the power losses in the

transmission lines, power distribution systems try to minimize the amount of current

being transmitted through the inherent resistance of the transmission lines. By using

transformers, AC systems could step-up and step-down the transmission voltage as

needed to minimize the current being transmitted over long distances. DC systems had no

alternative to the transformer at the time, leading to a maximum transmission range of

less than two miles [2]. As a result, AC power distribution became the standard in the

United States and the rest of the world.

While AC systems are used to distribute power across long distances, many

devices in the home do not use AC to power their internal circuitry. Whether it be a

computer, a television, an LED light or a smartphone, these devices accept the AC

voltage from a wall socket and rectify it to a safe DC voltage that the device can use. This

rectification comes at a price, as there is always some power lost in the process.

Additionally, any device that uses a transformer in the rectification process will

2

continually draw power from the wall socket even when not in use. Some devices like

game consoles and cable boxes waste upwards of 20 watts when not in use [3]. By

distributing power with a DC system instead of AC, these inefficiencies could be

eliminated.

The DC House Project is a humanitarian effort that focuses on creating a small,

independent electrical grid that is entirely powered by DC [4]. All power for the system is

generated locally using renewable methods, including DC water turbines, DC wind

turbines and solar panels. The power is then stored on-site using batteries, preventing the

losses incurred by transmitting the power over long distances. Figure 1 presents a

simplified illustration of the DC House Project [5]. This system allows for people who

live in rural areas without easy access to a centralized power grid to generate their own

power independent of the state or utility companies. By removing the unnecessary

conversions from DC to AC, then AC back to DC, the system is made more efficient and

can run longer on a single battery charge.

Figure 1: DC House Block Diagram

3

2. BACKGROUND

2.1. The Need for a Variable DC Wall Outlet

 One of the aims of the DC House Project is to provide power to DC devices with

the same convenience as their AC alternatives. While AC powered devices operate with a

wide range of internal voltage levels, they all accept the same input voltage of 120Vrms

AC in the United States. AC devices benefit from a standardized wall outlet in every

country, but there exists no such standard for DC devices. Some DC devices operate

using dry cell batteries, accepting input voltages of 9V or in increments of 1.5V (e.g.,

1.5V, 3V, 4.5V, etc.). Others accept 12V from car batteries or even 5V from USB

chargers like those used by smartphones. As there is no standard for what voltage a DC

device should use as its input, the DC House must be able to accommodate all these input

voltages. Installing a separate wall socket for each input voltage would be inefficient, as

there are so many possible values that the number of sockets needed would be

impractical. A DC wall outlet with a variable voltage setting would be a much more

appropriate solution.

2.2. DC to DC Voltage Converters

 The primary reason that AC power distribution systems were favored over DC

systems was due to the existence of the transformer, allowing AC systems to easily

change their transmission voltage. DC power systems had no easy method of doing this

in the late 1800’s, but with the rise of transistors and integrated circuits alternatives have

emerged. Known as DC to DC converters, these systems accept a DC voltage as an input

4

and change it to another voltage with minimal power loss. There are multiple topologies

of DC to DC converters that allow for stepping up or stepping down an input voltage.

The DC House Project features a 48V power rail inside the house, so the wall socket

being designed in this paper will focus on an architecture that steps down the input

voltage as most loads require an input voltage less than 48V. The Buck converter is an

example of a DC to DC converter that transfers power from the input to the output while

decreasing the voltage level. The power stage of a Buck converter is shown in Figure 2.

Figure 2: Buck Converter Topology

 The Buck converter controls the voltage across the output by rapidly charging and

discharging the inductor. The voltage across an inductor is proportional to the change in

the current over time, as shown in Equation 2-1 [6].

𝑉 = 𝐿
𝑑𝑖

𝑑𝑡
 (2-1)

The switch, usually implemented as a MOSFET, is connected to a controller which

monitors the voltage at the output. When the switch is closed by the controller a voltage

is induced across the inductor, causing it to conduct more and more current. This current

must go through the capacitor and the parallel resistive load, causing the output voltage to

5

go up with the increasing current. When the switch is opened by the controller the input

source is disconnected from the circuit, causing the inductor to release the energy that it

collected while the switch was closed. The polarity of the voltage across the inductor

flips during this period, causing the current through the inductor and the voltage across

the output to steadily decrease. The controller uses a feedback network connected to the

output to determine when to close or open the switch as necessary to maintain a desired

voltage level.

 This is a simplistic model of a Buck converter that assumes ideal components are

being used. As a more robust model, a capacitor would be attached in parallel to the input

source. This would aid in maintaining the input voltage at a constant level, as the Buck

converter draws large transients of current from the input and the capacitor helps to filter

these out. Furthermore, the diode in use in this model will be a source of power loss when

conducting due to its ~0.7V forward voltage drop. This can be replaced with another

MOSFET that is synchronously turned on and off by the controller, as it is more power

efficient in high current applications.

2.3. Previous Work

 The Smart DC Wall Plug project began with the Senior Project of Michael

Detmers and Tyler Blauvelt [7]. Their design was based on a different DC to DC

converter topology (a Flyback Converter) and featured a single channel with a maximum

power output of 80W. The DC to DC converter allowed for four discrete output voltages

of 5V, 12V, 19V and 24V for different appliances. In order to select which output voltage

6

was desired the user needed to manually select a pin. This was undesirable, as selecting

the wrong pin on accident could destroy the load device and potentially harm the user.

 Edward Sibal continued work on the Smart DC Wall Plug with his proof of

concept thesis [8]. This research effort pushed for automating the wall outlet voltage

selection, removing the need for the user to select a voltage for the load device. This DC

to DC converter used a Buck topology and implemented a microcontroller with a digital

potentiometer to vary the output voltage. The voltage of the load device was determined

by increasing the output voltage until a spike in the current was detected, upon which the

final voltage was set. This method was able to turn on the load device in most cases, but

the determined voltage was likely to be significantly below the device’s nominal voltage.

This would result in higher current draw than normal, causing unnecessary power losses.

 Kevin Mendoza focused on improving the project by condensing all the

components onto one board and attempted to improve the voltage finding algorithm [9].

While still using the Buck converter, microcontroller and digital potentiometer setup, the

new algorithm focused on passing a current threshold at a reference voltage and setting

the voltage based on the amount of current being drawn. This method limited the output

voltage to only 3V, 6V and 12V, and required a user input to start the process. The

algorithm lacked flexibility and was only able to correctly determine the nominal voltage

for a small range of devices.

 The most recent improvement on the project was implemented by Richard Liu to

expand the output voltage range and make the output more accurate [10]. The output

range was significantly increased, allowing for output loads from 3V to 36V in discrete

steps. In the previous two implementations, the use of a digital potentiometer to adjust the

7

output voltage resulted in an inverse relationship between the two. This made the output

voltage quite sensitive to small steps in the resistance in the higher voltage ranges, as

seen in the upper left corner of Figure 3. To help make the output in the higher voltage

range more accurate, Liu added a separate current source that could compensate for the

lack of resolution. The algorithm for detecting the load’s nominal voltage was not

changed, and instead assumed that the output voltage had already been detected.

Figure 3: Potentiometer Value vs. Output Voltage [9]

 The goal for this thesis is to improve the algorithm for detecting the load’s

nominal voltage, along with investigating an easier method of changing the output

voltage. Potential DC loads will be grouped into different profiles based on their current

and voltage characteristics, allowing for an algorithm that can better predict the nominal

voltage. The digital potentiometer and current source will be removed from the feedback

network and the microcontroller will instead communicate directly with the Buck

controller to adjust the output as necessary.

8

3. DESIGN REQUIREMENTS

3.1. General Design

The Smart DC Wall Outlet functions as a multiple input, multiple output system.

It accepts the 48V line voltage from the DC House battery as an input, as well as the

voltage and current characteristics of the loads plugged into each channel of the outlet.

The system then outputs the calculated voltage level on the appropriate channel. A

simplified diagram of the system is shown in Figure 4.

Figure 4: Level 0 Block Diagram

A more detailed view of the system can be seen in Figure 5 with the power path indicated

by the bold arrows. Fuses are located at the 48V input to the system along with both the

outputs to protect the internal circuitry and any loads from a potential fault condition. The

Primary DC to DC Converter will accept the power from the 48V input and generate an

appropriate voltage on both output channels. To adjust for any errors in the output, the

Primary DC to DC Converter monitors the voltage and current in use by the loads. The

Secondary DC to DC Converter is a fixed output step-down converter that takes the 48V

9

input and produces a 5V source that can power the Microcontroller. The Microcontroller

communicates with the Primary DC to DC Converter to gather information about the

voltage and current needs of the loads. Using this information, it calculates the load’s

nominal voltage and commands the Primary DC to DC Converter to adjust each output

channel accordingly.

Figure 5: Level 1 Block Diagram

3.2. Electrical Specifications

 The electrical requirements of the Smart DC Wall Outlet are dictated by the DC

House specifications and the most common needs of available DC powered devices. The

DC House supplies a 48V power rail, so that will be used as the input to the smart outlet.

The output voltage range must be able to cover a wide range of devices, and studies were

done in previous iterations of the project to find a suitable range. Sibal [8] and Liu [10]

found that many DC devices were between 3V and 24V; to allow for some extra

flexibility, the output range of this project will be from 1V to 40V. The output power on

each channel will be set to 100W to accommodate the USB-C maximum of 5A at 20V

[11]. The maximum load current will be set to 6A to prevent unnecessarily wide trace

10

widths on the printed circuit board, and the minimum load current will be set to 0.25A to

maintain adequate efficiency and ensure proper operation of the Primary DC to DC

Converter. The target efficiency of the system will be 85% at full load, though this will

likely suffer under low current applications. The maximum output voltage ripple will be

set to 2.5%, and the voltage error will be within 2.5% of the nominal setting. This is to

protect load devices from overvoltage conditions. These electrical requirements are

shown in Table 1.

Table 1: Electrical Design Requirements

Category Requirement

Input Voltage 48V

Output Voltage Range Per Channel 1-40V

Output Current Range Per Channel 0.25-6A

Maximum Power Per Channel 100W

Efficiency at Full Load ≥ 85%

Output Voltage Ripple ≤ 2.5%

Steady State Voltage Error ≤ 2.5%

3.3. Physical Specifications

The Smart DC Wall Outlet project is designed to use the size and form factor of

the standard wall outlet in the United States. This is defined by the NEMA standard for a

duplex wall outlet, as shown in Figure 6 [12]. The maximum size of the final system is

set by the size of this faceplate, which has dimensions of 3.12” by 4.87”.

11

Figure 6: NEMA Wall Outlet Standard (Inches)

Additionally, the system must output power to the same plugs used by this system. In a

traditional AC configuration, one prong is used for the hot wire, one is use for the neutral

wire, and one is used for ground. DC systems only require a positive supply wire and a

ground wire, so the third prong is redundant. In this setup, the DC supply wire will be

wired to the hot prong, and the ground wire will be connected to both the neutral and the

ground prongs of the receptacle. This configuration is better illustrated in Figure 7 [10].

All physical requirements are listed in Table 2.

12

Figure 7: Smart DC Wall Outlet Wiring Diagram

Table 2: Physical Design Requirements

Category Requirement

Maximum

Width
3.12”

Maximum

Height
4.87”

Form

Factor

NEMA Duplex

Wall Outlet

13

4. DESIGN AND SIMULATION RESULTS

4.1. Solution Statement

The two primary functions of the Smart Wall Plug project are to detect the

optimal supply voltage for each load and to deliver that voltage efficiently. The output

voltage for both channels is provided by the hardware of the system, featuring two

individual Buck converter topologies as outlined in Figure 2 and a Buck controller

integrated circuit (IC) to manage them. The algorithm for detecting the nominal voltage

of the loads is implemented in software on a microcontroller. This microcontroller can

communicate with the Buck controller IC, allowing it to set the output voltages and

request the output current measurements for both channels.

4.2. Primary and Secondary Buck Controller Selection

The primary Buck controller is one of the most essential pieces of hardware in

this build, and its selection should be taken with great care. The input and output range of

the controller must at minimum accommodate the specifications listed in Table 1. In

addition, a digital communication interface is desired to reduce the total number of

components required on the board. The LTC3889 is a 60V Dual Output Step-Down

Controller that fits these requirements [13]. It features an input voltage range from 5V to

60V, and two independent output channels ranging from 0V to 40V with a 10mV

resolution. The controller uses a version of the Inter-Integrated Circuit (I2C) serial

communication protocol known as the Power Management Bus (PMBus), which allows a

microcontroller to digitally set target output voltages and monitor telemetry [14]. The

14

controller’s digital architecture aligns with one of this project’s main goals of reducing

the complexity involved in changing the output. An example application circuit can be

seen in Figure 8. This IC can use a switching frequency ranging from 85kHz to 500kHz,

where higher switching frequencies allow for smaller inductors and capacitors at the cost

of power efficiency. The smart DC wall outlet uses a switching frequency of

𝑓𝑜𝑠𝑐=300kHz to reduce the physical space needed by components while still maintaining

a respectable efficiency.

Figure 8: Example LTC3889 Circuit Schematic [13]

While the primary Buck controller manages the output voltage to the wall plug,

some components require their own low voltage power supply on the board.

Microcontrollers and status LEDs typically operate off a 5V supply, and the LTC3889

features an external power input that can use a 5V supply to increase the efficiency of its

internal LDO regulators. A prospective Buck regulator would need to accept a 48V input

15

voltage, output 5V, and be able to supply at least 250mA conservatively assuming

100mA for the microcontroller, 100mA for the LTC3889 and 50mA for three status

LEDs. The LT8619-5 is a 60V, 1.2A Synchronous Monolithic Buck Regulator with a

fixed output of 5V that meets these specifications [15]. Since this chip features internal

switching components fewer parts are needed to operate the IC, as can be seen in Figure

9. The LT8619-5 can use a switching frequency anywhere between 300kHz and 2.2MHz.

This chip was configured to use a switching frequency of 1.4MHz to minimize the size

needed by the inductors and capacitors, as the efficiency of this regulator is not as

important as the primary Buck converter.

Figure 9: Example LT8619-5 Circuit Schematic [15]

4.3. Microcontroller Selection

The microcontroller used in this project must be able to read and write to the

numerous digital ports on both the LTC3889 and the LT8619-5, along with controlling

three status LEDs. The LTC3889 requires two ports for use with the I2C-based PMBus

system, along with seven general purpose input/output (GPIO) pins. The LT8619-5

16

requires one GPIO pin to be monitored, and the three status LEDs will require one GPIO

pin each to turn them on and off individually. In total, the microcontroller will need 11

GPIO pins and two pins for use with I2C. The microcontroller must also feature a

relatively quick internal clock to process calculations on floating point numbers, enough

memory to store the load voltage detection algorithm, and fit within the physical

constraints listed in Table 2.

 The ATmega328P on the Arduino Uno board was chosen to be the

microcontroller for use in the smart DC wall outlet. The Uno features 20 GPIO pins, two

pins with dedicated hardware for processing I2C connections, 2KB of SRAM and 32KB

of Flash Memory [16]. The microcontroller uses a modest internal clock speed of 16MHz

for calculations, and its dimensions measure 2.7in by 2.1in. Beyond meeting these

requirements, the ease of use and financial cost were carefully considered. As this

microcontroller was purchased for a separate project, it was essentially free to use

compared to similar microcontrollers that cost more than $30. In addition, the Arduino

IDE provides a quick setup and rapid prototyping which can be invaluable when working

under a deadline.

4.4. Inductor Sizing

The primary energy storing device used in the Buck DC to DC converter is the

inductor. The smart DC wall outlet features two individual buck converters generating

the output voltages of the system, as well as a third Buck converter providing 5V as an

internal supply. A practical method for determining the critical inductance for each

inductor is by specifying a desired ripple current, ∆𝑖𝐿 [3]. From Figure 2, ∆𝑖𝐿 can be

17

calculated when the high side switch is conducting using Equation 2-1 for the voltage

across an inductor.

𝑑𝑖𝐿

𝑑𝑡
=

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿
 (4-1)

By using discrete time instead of continuous time for this calculation, the ripple current

can be related to the inductance, frequency of oscillation and duty cycle of the system.

𝑑𝑖𝐿

𝑑𝑡
≈

∆𝑖𝐿

∆𝑡𝑜𝑛
=

∆𝑖𝐿

𝑇∗𝐷
=

∆𝑖𝐿∗𝑓𝑜𝑠𝑐

𝐷
→ ∆𝑖𝐿 =

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿∗𝑓𝑜𝑠𝑐
∗ 𝐷 (4-2)

In Equation 4-2, T represents the period of oscillation for the switch, 𝑓𝑜𝑠𝑐 represents the

frequency of oscillation for the switch, and D represents the duty cycle percentage of the

switch during that period. As shown in [3], the steady-state duty cycle of a buck

converter can be related to the input and output voltage.

𝐷 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 (4-3)

This substitution gives us the final equation for calculating the ripple current in the

inductor of a Buck converter, which can be rearranged to calculate the critical inductance:

∆𝑖𝐿 =
𝑉𝑜𝑢𝑡∗(𝑉𝑖𝑛−𝑉𝑜𝑢𝑡)

𝑉𝑖𝑛∗𝐿∗𝑓𝑜𝑠𝑐
→ 𝐿 =

𝑉𝑜𝑢𝑡∗(𝑉𝑖𝑛−𝑉𝑜𝑢𝑡)

𝑉𝑖𝑛∗∆𝑖𝐿∗𝑓𝑜𝑠𝑐
 (4-4)

Using Equation 4-4, the worst-case condition for the primary Buck converter inductors is

calculated when the output voltage is 𝑉𝑜𝑢𝑡=24V, or half the input voltage of 𝑉𝑖𝑛=48V.

The maximum average current at this output voltage is 4.2A, as limited by the maximum

power specification of 100W per channel. For this calculation, the ripple current value is

taken to be 30% of the maximum output current, giving ∆𝑖𝐿=1.26A. Assuming a

switching frequency of 𝑓𝑜𝑠𝑐=300kHz, the critical inductance can be calculated as:

18

𝐿 =
24𝑉∗(48𝑉−24𝑉)

48𝑉∗1.26𝐴∗300𝑘𝐻𝑧
≈ 32𝜇𝐻 (4-5)

The datasheet for the LT8619-5 Buck controller suggests a different method for

calculating the inductor’s critical value [15], shown in Equation 4-6.

𝐿 = 2 ∗
𝑉𝑜𝑢𝑡+𝑉𝑆𝑊(𝐵𝑜𝑡)

𝑓𝑜𝑠𝑐
 (4-6)

The critical inductance for the secondary Buck converter is found in Equation 4-7 using

the bottom switch voltage drop value of 𝑉𝑆𝑊(𝐵𝑜𝑡)=0.264V, a frequency of oscillation of

𝑓𝑜𝑠𝑐=1.4MHz, and an output voltage of 𝑉𝑜𝑢𝑡=5V.

𝐿 = 2 ∗
5𝑉+0.264𝑉

1.4𝑀𝐻𝑧
≈ 7.5𝜇𝐻 (4-7)

When selecting inductors for this configuration, the inductance must be larger than the

critical values calculated in Equations 4-5 and 4-7, as well as being rated to handle the

maximum output current plus half of the ripple current. Two inductors with a saturation

current of 11A and an inductance of 33µH were selected for the primary Buck converter,

while an inductor with a saturation current of 1A and an inductance of 10µH was selected

for the secondary Buck converter.

4.5. Capacitor Sizing

The Buck converter suffers from AC signal components on the input and output

of the system, so capacitors are typically used to compensate and provide a more ideal

DC signal. The input supply faces current pulses with very fast rise and fall times, and the

input capacitor must be able to handle these large current spikes. The calculation for

determining the input capacitor RMS current rating comes from [13], as shown in

Equation 4-8.

19

𝐼𝑅𝑀𝑆 =
𝐼𝑚𝑎𝑥

𝑉𝑖𝑛
√𝑉𝑜𝑢𝑡 ∗ (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) (4-8)

The RMS current is maximized when the output is half of the input, occurring when

𝑉𝑜𝑢𝑡=24V on the primary Buck converter. Using the maximum average current of

𝐼𝑚𝑎𝑥=4.2A at this operating point, the RMS current rating of the input capacitor for the

primary Buck converter is 𝐼𝑅𝑀𝑆=2.1A. For the secondary Buck converter with a

maximum average output current of 𝐼𝑚𝑎𝑥=250mA, the RMS current rating needed is

𝐼𝑅𝑀𝑆=75mA. Typical input capacitance values range from 5µF to 1005µF, with multiple

capacitors added in parallel to meet the RMS current rating. For the primary Buck

converter, two parallel 22µF capacitors with RMS current ratings of 3A were selected.

For the secondary Buck converter, a 5µF capacitor with an RMS current rating of 250mA

was selected.

 The output capacitor of a Buck converter helps smooth the noise at the output of

the inductor and stores some energy to satisfy transient loads. The voltage ripple at the

output is primarily controlled by the equivalent series resistance (ESR) of this capacitor,

as shown in Equation 4-9 from [13].

∆𝑉𝑜𝑢𝑡 ≈ ∆𝑖𝐿 ∗ (𝐸𝑆𝑅 +
1

8∗𝑓𝑜𝑠𝑐∗𝐶
) (4-9)

An output ripple voltage of less than 2.5% for the primary Buck converter is desired with

the worst case occurring at an output value of 3V, creating an output voltage ripple of

∆𝑉𝑜𝑢𝑡 ≤75mV. The maximum ripple current occurs when the output voltage is half of the

input, with ∆𝑖𝐿=1.26A as previously calculated. The process of finding a capacitor that

satisfies this condition is iterative, but a set of three capacitors in parallel were chosen

with two electrolytic capacitors featuring an ESR of 28mΩ and capacitance of 220µF,

20

and one ceramic capacitor rated at 10µF with a negligible ESR. Similar calculations were

done for the secondary Buck converter, and a capacitor with an ESR of 30mΩ and

capacitance of 22µF was selected.

4.6. Current Sense Resistor Sizing

The current being drawn by the load of each output channel of the primary Buck

converter is calculated by measuring the voltage drop across a small resistor. The

LTC3889 has a 75mV maximum range on the differential input, so the peak current

going through the desired resistor should not generate a voltage larger than this. The

desired resistance value can be calculated using Equation 4-10.

𝑅𝑠𝑒𝑛𝑠𝑒 =
𝑉𝑠𝑒𝑛𝑠𝑒(𝑚𝑎𝑥)

𝐼𝑚𝑎𝑥+
∆𝑖𝐿

2

 (4-10)

Using 𝑉𝑠𝑒𝑛𝑠𝑒(𝑚𝑎𝑥)=75mV, a maximum output current of 𝐼𝑚𝑎𝑥=6A, and a ripple current of

∆𝑖𝐿=1.5A, the current sense resistors should be sized to 𝑅𝑠𝑒𝑛𝑠𝑒=10mΩ. Two current sense

resistors with a power rating of 1W and a resistance of 10mΩ were selected for use with

the primary Buck converter. The LT8619-5 monitors the output current internally, so no

current sense resistor is necessary for this subsystem.

4.7. Power Converter Simulation

Unfortunately, there is no SPICE model available for the LTC3889 IC due to its

digital interface, so no simulations could be performed using this IC. The component

values chosen can still be verified using simulation, so a simulation was constructed

using a different Buck controller. Specifically, the LTC3892 [17] was chosen as it was

used in Liu’s iteration of the smart DC wall outlet and met similar operating

21

requirements. The simulation was configured as similar as possible to the LTC3889,

using pulse skipping for increased efficiency and a switching frequency of 350kHz,

slightly higher than the specified 300kHz. The schematic used in the simulations is

shown in Figure 10.

Figure 10: LTC3892 Simulation Schematic

The converter was simulated at the minimum and maximum output voltages of 3V and

36V, each at the minimum and maximum load conditions. Figure 11 and Figure 12 show

the transient waveform from start-up to steady state of the 3V output at 0.25mA and 6A

respectively. Figure 13 and Figure 14 show similar plots with a 36V output at 0.25mA

and 2.78A respectively. All four plots show that the ripple voltage and steady state error

are within 2.5% of the nominal value, confirming that these component sizes are valid.

Since the output capacitance is so large it can take more than 4ms to reach high output

voltages, but a fast response time is not crucial so this can be tolerated.

22

Figure 11: Simulated Output Voltage of 3V, Load Current of 250mA

Figure 12: Simulated Output Voltage of 3V, Load Current of 6A

23

Figure 13: Simulated Output Voltage of 36V, Load Current of 250mA

Figure 14: Simulated Output Voltage of 36V, Load Current of 2.78A

24

4.8. Schematic Design

The schematic for the Smart DC Wall Outlet is shown in Figure 15. The two

output channels of the primary Buck converter are shown symmetrically configured on

the left and right of the LTC3889 IC. The secondary Buck converter is shown supplying

auxiliary power to the ICs and status LEDs. The header connections to and from the

board are shown with fuses, limiting the total current into the system to 5A and the total

current out of each channel to 8A. The Arduino Uno uses an internal logic level of 5V

while the LTC3889 uses an internal logic level of 3.3V, so the I2C level shifters were

included to allow the two devices to communicate directly. The status LEDs have been

configured to turn on when the Arduino Uno applies 5V at the gate of the MOSFETs.

25

Figure 15: Smart DC Wall Outlet Schematic

26

4.9. Test Device Selection

In order to develop a robust algorithm for detecting a load’s nominal voltage, a

wide range of DC devices must be studied. Devices that run on lithium ion batteries

behave differently than those that run on alkaline batteries or are powered by USB. By

gathering data from devices with different power sources, input voltages and load

currents, trends that are common between all of them will become apparent. The major

limiting factor for selecting devices to test was the financial cost, so most of the devices

selected were inexpensive or free to use. Additionally, these devices must be able to be

turned on just by applying an input voltage without any user interaction, so no devices

with power toggle buttons were accepted. The devices selected for testing are listed in

Table 3.

Table 3: Test Device Selection

Device Input Voltage Load Current Power Source

Portable TV 4.5V 450mA Alkaline Batteries

Radio 5V 250mA Lithium Ion Battery

Raspberry Pi PC 5V 300mA USB Cable

Android Phone 5V 450mA Lithium Ion Battery

Windows Phone 5V 475mA Lithium Ion Battery

Computer Fans 12V 125mA Power Adapter

Speakers 15V 70mA Power Adapter

27

4.10. Data Analysis

The turn-on characteristics of these devices were observed by sweeping the input

voltage and recording the current draw at each step. The voltage sweep begins at 1V, then

increases in steps of 0.1V until at least 1V after the nominal voltage. These raw voltage

sweeps can be found in Appendix A. In general, these devices tend to use very little

current at 1V, then feature a large spike in current around the voltage where the device

first turns on. Since these plots tend to be noisy, a moving average with a window size of

5 samples can be used on the data to provide a clearer indication of trends. Additionally,

since these plots feature large jumps in the rate at which the current is increasing per

voltage step near the turn on voltage, the derivative of these plots could provide some

additional information. The moving average and the derivative with respect to the current

over the voltage were calculated for each test device, shown in Figure 16 through Figure

22.

28

Figure 16: 4.5 TV Moving Average and Derivative Figure 17: 5V Radio Moving Average and Derivative

Figure 18: 5V Raspberry Pi Moving Average and Derivative Figure 19: 5V Android Moving Average and Derivative

29

Figure 20: 5V Windows Phone Moving Average and Derivative Figure 21: 12V Fans Moving Average and Derivative

Figure 22: 15V Speakers Moving Average and Derivative

30

 Analysis of these figures grants a few insights about the devices’ nominal voltage.

Primarily, the turn on voltage of every test device is directly indicated by the largest

positive increase in current per voltage step. This is most clearly illustrated by Figure 20.

The derivative of the current over voltage reaches its peak value at 4.7V, which is close

to the nominal voltage of 5V. For most of the devices tested, this maximum derivative

value is found just before the nominal voltage. The three devices that do not conform

exactly to this pattern are the 5V Radio, the 12V Fans and the 15V Speakers.

 The 5V Radio does feature a large step in the derivative value of the current over

voltage, but this value is held constant unlike the other devices. This is because the 5V

Radio does not draw a large jump in current at the turn on voltage, but instead begins

ramping up at a constant slope as seen in Figure 17.This is likely due to the simplistic

lithium ion battery charging circuit within the 5V Radio. The voltage at which the device

begins ramping up is close to the listed nominal voltage of the device, so this starting

point can be used to trivially determine the nominal voltage.

 The 12V Fans and the 15V Speakers both present a maximum derivative between

4V and 5V, but nominally require a voltage three times larger. The plots relating to the

12V Fans and 15V Speakers are shown in Figure 21 and Figure 22. Both devices function

if they are provided a 5V input voltage but may not perform optimally. The fans do not

spin as fast as they normally would, and the speakers produce a much quieter sound. One

characteristic differentiates the 12V Fans and the 15V Speakers from the other devices:

the current per voltage step steadily increases after the tun on voltage. With the other

devices being tested (except for the previously handled 5V Radio), the current draw after

31

the turn on voltage either stagnates or begins to decrease. Unfortunately, neither of these

devices exhibit any indication of what their nominal voltage might be. It is possible to

infer that the nominal voltage is much higher than the turn on voltage for these devices,

but just how much higher is left to speculation.

4.11. Algorithm Development

Using the turn on voltage characteristics previously identified, an algorithm can

be developed to estimate the nominal voltage of a load device. A flowchart outlining the

algorithm developed in MATLAB is shown in Figure 23. The process begins with

sweeping the input voltage from 1V to 3V, as nearly all DC devices can be assumed to

handle this voltage range. The algorithm attempts to find a large spike in the current draw

in this range to find the turn on voltage. If no spike is detected, the input voltage is

increased in 1V increments until one is detected. Once a peak in the current draw is

detected, the peak needs to be verified. With some devices, like the 15V speakers seen in

Figure 22, there is a small initial jump in current usage followed by a much larger

increase at the true turn on voltage. For all the devices tested, these false turn on voltage

indicators appear within 1V of the actual turn on voltage. By increasing the input voltage

1V beyond the detected peak value, the current draw peak can either be confirmed as the

true turn on voltage, or a new larger peak can be detected indicating that turn on voltage

is likely higher.

32

Figure 23: Nominal Voltage Detection Algorithm Flowchart

 While attempting to confirm the peak in the current draw rate, the algorithm

continues monitoring the maximum voltage being sent to the load device. Once the

output voltage surpasses 6V, the algorithm looks to see if the device could be a battery

charging device like the 5V radio. If the current draw rate remains constant from 5V to

6V and the peak has yet to be confirmed, a battery charging device has been detected and

the output is set to 5V. Otherwise, if the current draw rate is variable over this range, the

device is likely not a battery charging device and the algorithm continues trying to

confirm the peak current draw rate.

 Once the peak is confirmed, the algorithm attempts to set the output voltage. If the

peak value detected is below 2.4V, the output is set to 3V. Most 3V devices are powered

by alkaline batteries, which decrease their output voltage as they lose charge. These

battery voltages can drop to less than 2V total, which explains why a 3V device would

have a lower turn on voltage. Continuing, if the peak value detected is below 5V, the

33

algorithm looks to see if the device might need more power. As found in the previous

section, larger nominal voltage devices draw an increasing amount of current as the input

voltage goes up. This is detected by finding the median current draw rate of the device

from 5V to 6V. If the median value is positive, it indicates that overall the device is

drawing more current after its turn on voltage, implying a need for a larger input voltage.

If the median value is close to 0 or negative, the device does not require a larger input

voltage and the nominal voltage should be set close to the turn on voltage. The current

draw rate was specifically investigated from 5V to 6V as most of the devices tested

required 5V or less. This was primarily done for safety, as all the devices tested would be

able to handle being powered at 6V. Ideally, the current draw rate would be investigated

2 volts after the peak turn on voltage, not just from the 5V to 6V range. More testing

would need to be done to see if most devices could handle an input voltage two volts

higher than nominal.

 If the device under test was identified as needing a higher input voltage, the

voltage was set to 12V. As mentioned previously, there is currently no indicator for

exactly what voltage a device requires, so the output is estimated at being 12V. In this

case the two higher voltage devices being tested were able to be safely be powered by

12V, but further studies of DC devices would need to be conducted to identify a more

general metric for finding the nominal voltage of a high input voltage device. If the

device did not continue to draw an increasing amount of current after the turn on voltage,

the device was set to the closest output voltage of 5V. For all devices with a larger

detected turn on voltage, the output voltage was set to the next closest output voltage.

These output voltages include 6V, 9V, 12V, 15V, 18V, 21V, 24V and 36V. More output

34

voltages can be added in the future, but these appeared to be the most common levels

used commercially.

 This algorithm was implemented in MATLAB and was successfully able to

identify nominal voltages for the test devices. This algorithm will next be implemented

on the microcontroller to be tested on the devices in real time.

35

5. HARDWARE CONSTRUCTION AND TESTING RESULTS

5.1. Bill of Materials

The first step towards construction of the smart DC wall plug involved selecting

physical parts for each of the components shown in the circuit schematic from Figure 15.

All the components used in the smart DC wall outlet were purchased directly from Digi-

Key, except for the two Buck controllers which were obtained for free from Analog

Devices. The main limiting factors for selecting components were size and cost. The total

size of the board was limited by the physical dimensions listed in Table 2, requiring

components to be small enough to fit on the board. Since the construction of the board

was done by hand, the minimum package size for the resistors and capacitors was set to

16mm by 8mm to allow for easier manipulation. Other components such as the power

MOSFETs and inductors needed to be larger to handle the large amounts of current

passing through the system. With regards to cost, the cheapest possible components were

chosen provided they satisfied the maximum current and voltage ratings and were

reasonably sized. The finalized list of components chosen is shown in Figure 24.

36

Figure 24: Bill of Materials

37

5.2. PCB Layout and Fabrication

Once the components were selected, the footprints for each part had to be

generated. Most of the resistors and capacitors used the standardized 0603 package size,

which was readily available in the EAGLE footprint library. Most of the other

components required custom footprints which needed to be made from scratch.

Dimensions and tolerances for each of these parts were obtained from their respective

datasheets. After generating footprints for every component, the parts were laid out and

connected as shown in Figure 25 and Figure 26. The primary concerns for the board

layout were to minimize the length of the power path and to isolate the small signal

components from the power path. The power paths on the board are clearly illustrated in

in Figure 25 as the wider traces on the left half. These traces were made to be 2.54mm,

allowing a maximum temperature increase of 20°C as calculated from [18]. The power

path connecting the input header to the output headers includes the switching MOSFETs,

inductors, input and output capacitors, and the current sense resistors.

The remainder of the components were routed away from the noisy, high power

components. The Arduino Uno header was placed on the right half of the board, oriented

to allow the microcontroller to plug in from the bottom. Using the natural isolation that

the Arduino Uno provided, the LTC3889 and its supporting components were placed in

between the header pins. Not shown in Figure 25 and Figure 26 are two internal layers,

consisting of ground planes that spanned the width of the board and a signal layer used to

connect components to the 5V Buck regulator seen in the top right. Separate signal and

power ground planes were used to improve isolation between sections of the board.

38

Figure 25: PCB Layout - Top

39

 Figure 26: PCB Layout - Bottom

40

After the PCB layout process was completed, the board was ready for fabrication.

Oshpark was selected to print the board, as they offered a reasonable combination of cost

and time-to-ship for a four-layer board.

5.3. Board Assembly

Upon receipt of the board, it was inspected for any possible defects. Before

adding any components to the board, the surface mount component pads were lightly

tinned with solder to prepare for use with the heat gun. Construction began by soldering

the LTC3889 IC to the board, since this part controlled the rest of the board and needed

to work before anything else could. Followed by soldering on the microcontroller pin

headers, the I2C level shifters and a few configuration resistors, the Buck controller was

connected to the Arduino Uno. The Uno was able to talk to and receive information from

the LTC3889 using an I2C connection, so construction continued with the power path.

Next the input and output connectors were soldered on, followed by the current

limiting fuses. Only one channel of the power path was soldered to start with, consisting

of the power MOSFETs, the inductor, input and output capacitors, and the current

sensing resistor. Additionally, the capacitors were added to the boost and gate drive pins

of the LTC3889, along with the Schottky diode to assist in biasing the top N-channel

MOSFET. After the assembly of one channel was complete, the Arduino Uno

commanded the primary Buck controller to output a series of voltages on the output.

Once these were successfully observed, the second power channel was soldered on in a

similar fashion.

41

Finally, the auxiliary systems were attached, consisting of the 5V buck converter,

the microcontroller pull-up resistors, and the status LEDs. The Arduino Uno was able to

be powered by the board alone after these additions. After testing that the Uno could read

information from the input pins and signal the status LEDs, the board was officially

complete. The full assembly can be seen in Figure 27.

Figure 27: Fully Assembled Smart DC Wall Outlet

5.4. Microcontroller Programming

The algorithm developed in Section 4.11 was ported directly from MATLAB to C

for use with the Arduino Uno. Though few changes were made to the algorithm, the

Arduino Uno needed many new functions to interface with the LTC3889 properly. The

42

entirety of the code used on the Arduino Uno can be found in Appendix C. The most

basic additions include functions such as PMBUS_WRITE_WORD() or PMBUS_READ_BYTE(),

which use the PMBUS interface to send data to and from the LTC3889 IC. Higher level

functions include change_vout() and set_current_limit(), which use the PMBUS

functions to send the many commands needed to safely set a new output voltage or

current limit. Other functions that were present in MATLAB but not on the Arduino

platform had to be reproduced, such as moving_avg() and the ability to find the median

value of an array.

One significant change came in the form of a finite state machine in main(). The

three states used enumerate the different statuses of the load. State ‘0’ handles the

disconnected case, and the program waits here for 10 seconds before moving to state ‘1’.

The program searches for the nominal voltage of the load device in state ‘1’, as outlined

previously. If no device is detected, the program is sent back to state ‘0’. Otherwise, if a

device is found and the nominal voltage is determined, the output voltage is updated

accordingly and sent to state ‘2’. State ‘2’ maintains the current output voltage and

monitors the current being used by the load. Once the device is disconnected and the

output current goes to zero, the program is sent back to the disconnected state ‘0’. This

finite state machine is more clearly displayed in Figure 28.

43

Figure 28: Arduino Uno Finite State Machine

 While implementing the algorithm on the Arduino Uno, it was discovered that

there was not enough RAM available on the device. The algorithm uses large arrays of

floating-point numbers to gather data about the device, which use more than 2KB of

space in RAM alone. The Arduino Uno was replaced with an Arduino Mega, as it

contains 8KB of ram.

5.5. Board Testing Results

Before implementing the nominal voltage detection algorithm, the system was

tested supplying power to the test devices. Unfortunately, while testing the smart DC wall

outlet with the standard 48V input used by the DC House, a small pop was heard and the

board stopped working. After thorough analysis of the board, it was determined that one

of the diodes used in boosting the switching node voltage had failed. Likely due to an

overcurrent condition, a diode with a higher current rating was obtained and installed on

44

the board. Once the other failed components on the board were replaced, the system was

tested again but starting at a 24V DC supply instead of 48V.

Using this lower supply voltage, the system was recorded successfully powering

devices and detecting nominal voltages. Following the collection of the necessary figures

and data points, testing continued with the 48V supply. It showed promising results at

first, but after a few load devices had been connected a small pop was heard and the

board failed once more. It is unclear why the board failed but it is likely related to the

switching MOSFET gate drive subsystem where a short was located. This issue would

have been further investigated if more time and funding were available, but thankfully the

system was recorded operating from the lower supply voltage. All the following metrics

and figures were collected using this 24V supply.

First the output characteristics of the smart DC wall plug were verified against the

electrical design specifications from Table 1. As previously mentioned, the input supply

voltage used was 24V instead of 48V, but this was still high enough to supply power to

all the test devices. The efficiency, output voltage ripple and error were found for each

test device as shown in Appendix B. Figure 29 is copied below from Appendix B for

convenience. The output of the Buck converter suffers from 400mV peak to peak high

frequency noise at the switching frequency of 300kHz, likely due to resonance between

the inductors and capacitors in the power path. To reduce this effect in the future, a

capacitor with low ESR at the noise frequency could be added in parallel to the other

output capacitors [19]. Ignoring this high frequency noise, the largest output voltage

ripple stays below 25mV peak to peak, meeting the specification for every device tested.

The output voltage ripple evaluations are shown in Table 6.

45

Figure 29: 5V TV Output Regulation

 The efficiency and steady state voltage error were measured using the input power

supply, the oscilloscope and the current sensing resistor of primary buck converter in

tandem. The results of these measurements are listed in Table 4 and Table 5. Overall the

steady state voltage error is within limits, but the system efficiency is below the desired

85%. Without any load connected, the smart DC wall outlet consumes 20mA from the

24V supply, using almost half a watt just in standby. For load devices with low power

requirements, this extra half watt of power usage is significant in the efficiency

calculations. Figure 30 from the LTC3889 datasheet demonstrates how the efficiency of

the system significantly increases as the load current increases. Due to the wide output

current range, it is hard to find a buck converter that is efficient at low current conditions

while also being able to handle large currents.

46

Figure 30: LTC3889 Efficiency Plot [13]

Table 4: Efficiency Evaluation

Device Input

Voltage

Input

Current

Output

Voltage

Output

Current

Efficiency Target

Efficiency

4.5V TV 24V 0.12A 4.98V 0.44A 76.1% ≥85%

5V Android Phone 24V 0.12A 4.98V 0.45A 77.8% ≥85%

5V Windows Phone 24V 0.13A 4.98V 0.48A 76.6% ≥85%

5V Raspberry Pi 24V 0.09A 4.98V 0.35A 80.7% ≥85%

5V Radio 24V 0.07A 4.98V 0.23A 68.2% ≥85%

12V Fans 24V 0.10A 12.01V 0.15A 75.1% ≥85%

15V Speakers 24V 0.07A 15.00V 0.07A 62.5% ≥85%

Table 5: Output Voltage Percent Error Evaluation

Device Output Voltage Target Voltage Percent Error Target Error

4.5V TV 4.98V 5V 0.4% ≤2.5%

5V Android Phone 4.98V 5V 0.4% ≤2.5%

5V Windows Phone 4.98V 5V 0.4% ≤2.5%

5V Raspberry Pi 4.98V 5V 0.4% ≤2.5%

5V Radio 4.98V 5V 0.4% ≤2.5%

12V Fans 12.01V 12V 0.1% ≤2.5%

15V Speakers 15.00V 15V 0% ≤2.5%

47

Table 6: Output Voltage Ripple Evaluation

Device Output Voltage Output Voltage

Ripple

Output Voltage

Ripple Percent

Target Ripple

Percent

4.5V TV 4.98V 16.75mV 0.3% ≤2.5%

5V Android Phone 4.98V 10.50mV 0.2% ≤2.5%

5V Windows Phone 4.98V 10.00mV 0.2% ≤2.5%

5V Raspberry Pi 4.98V 14.50mV 0.3% ≤2.5%

5V Radio 4.98V 9.25mV 0.2% ≤2.5%

12V Fans 12.01V 21.75mV 0.2% ≤2.5%

15V Speakers 15.00V 15.00mV 0.1% ≤2.5%

5.6. Algorithm Testing Results

The nominal voltage detection algorithm was first tested with the 5V devices. The

algorithm successfully determined the nominal output voltage of the 4.5V TV, the 5V

Android Phone, the 5V Windows Phone and the 5V Raspberry Pi. A plot depicting the

algorithm successfully finding the nominal voltage during this process is shown in Figure

31.

Figure 31: 5V Android Algorithm Success

48

 The algorithm faced some issues when trying to discern the nominal voltage of

the 5V Radio. Figure 32 shows the algorithm sweeping the output voltage to just above

6V, then setting the output voltage to 6V rather than the desired 5V. This indicates that a

current peak was confirmed after 5V, rather than identifying that the current draw rate

remained constant after the turn on voltage. The experimental load current draw was

recorded from the smart DC wall outlet in Figure 33. This plot clearly shows that the

current draw did not remain constant as previously assumed and instead featured dips

around the 5V and 6V mark. These dips likely caused the algorithm to mistakenly

confirm the peak current draw rates.

Figure 32: 5V Radio Algorithm Failure

49

Figure 33: 5V Radio Experimental Current Draw

 Testing continued with the 12V Fans and the 15V Speakers. The algorithm is

shown correctly determining the output voltage of the 12V Fans in Figure 34. The 15V

speakers were mistakenly classified as a 5V device, as seen in Figure 35. After analyzing

the system’s current readings from the 15V Speaker, it was discovered that the algorithm

correctly identified the turn on voltage of the device as being below 5V but failed to

identify the slope after the turn on voltage as being positive. Since the 15V Speakers only

draw 70mA, the current draw rate calculated for the critical region was positive but failed

to pass the minimum threshold. The algorithm could be further tuned to use a smaller

threshold for this calculation, but this would make the system more susceptible to noise.

50

Figure 34: 12V Fans Algorithm Success

Figure 35: 15V Speakers Algorithm Failure

 In total, the nominal voltage detection algorithm was successfully able to classify

five out of the seven test devices. With further tuning this could likely be improved, but it

is hard to know if the algorithm would be able to generalize to other devices that have not

yet been tested. The turn on characteristics of DC devices vary significantly between

themselves, and it is difficult to design a process that handles every case.

51

6. CONCLUSION

The Smart DC Wall Outlet presented in thesis extracts power from the DC House

power supply and automatically converts it to an appropriate output DC voltage. This

project eliminates energy losses created by converting between AC and DC power

systems by supplying DC power directly to DC devices. The Smart DC Wall Outlet

features two output channels capable of providing 100W of power each, with a

theoretical output range from 1V to 40V. The power conversion efficiency of the system

features a minimum of 70% for low load currents around 250mA and increases

proportionally as the output current rises. Both the output voltage ripple and percent error

are less than 0.4% of the target value, surpassing the 2.5% design specification.

 The two primary improvements for this iteration of the Smart DC Wall Outlet are

the digital interface and the improved voltage finding algorithm. Previous designs for this

project utilized potentiometers and current sources to set the output voltage of the DC to

DC converter, leading to issues with accuracy and general system complexity. This

system uses an improved Buck controller, the LTC3889, to digitally monitor and manage

the output voltage of the system. Using this chip, a microcontroller can communicate

with the Buck controller directly to change the output as needed instead of manipulating

components in the feedback path.

 Earlier version of the nominal voltage detection algorithm set the output voltage

as either 3V, 6V or 12V depending only on the amount of current being drawn by the

load. The algorithm implemented in this iteration finds the turn on voltage of the device

by finding the voltage that creates the largest increase in current draw. Following this, it

observes the rate of current draw after the turn on voltage, and classifies the device as

52

being a high power or low power device. Using the turn on voltage and the power

classification, the output voltage is set appropriately to one of the following values: 3V,

5V, 6V, 9V, 12V, 15V, 18V, 21V, 24V and 36V. This was found to work with five out of

the seven devices tested, with the possibility to improve the results with further testing.

 The Smart DC Wall Outlet contains a few areas that could use further

improvement, with the worst area being the nominal voltage detection process. The

algorithm used in this project only works on devices that can be turned on by applying

power to the input and cannot be used on devices that implement a toggle button.

Additionally, the turn on characteristics of DC devices vary significantly, and it is near

impossible to design a ruleset that could handle every case. The ideal method for

detecting the output voltage would involve digitally communicating with the load device,

like how USB-C negotiates what voltage to supply. Alternatively, a reinforcement

learning network could be trained on a wide set of DC devices and used to predict what

output voltage would suit a load device best. Other minor improvements that could be

made involve shrinking the physical size of the system. The PCB used for this project

was sized to house a full Arduino Uno header, and this could be drastically reduced if

only the microcontroller IC was placed on the board. Finally, the efficiency of the system

could be further improved for small current loads, as this system was only able to achieve

70% efficiency when the target was 80%.

53

BIBLIOGRAPHY

[1] Edison Tech Center, "Arc Lamps," 2016. [Online]. Available:

http://edisontechcenter.org/ArcLamps.html. [Accessed 4 April 2018].

[2] C. L. Sulzberger, "Triumph of AC - from Pearl Street to Niagra," IEEE Power and

Energy Magazine, vol. 99, no. 3, pp. 64-67, 2003.

[3] Taufik, Introduction to Power Electronics, 2018, pp. 35-36.

[4] Taufik, "The DC House Project," 13 September 2010. [Online]. Available:

https://web.calpoly.edu/~taufik/dchouse/. [Accessed 4 April 2018].

[5] Taufik and M. Muscarella, "Development of DC house prototypes as demonstration

sites for an alternate solution to rural electrification," in 2016 6th International Annual

Engineering Seminar, 2016.

[6] C. K. Alexander and M. N. O. Sadiku, "6.4 Inductors," in Fundamentals of Electric

Circuits, New York, McGraw-Hill, 2013, p. 226.

[7] M. Detmers and T. Blauvelt, "Variable DC Voltage Wall Outlet for The DC House

Project," San Luis Obispo, 2011.

[8] E. Sibal, "Smart Wall Plug Design For The DC House Project," San Luis Obispo, 2012.

[9] K. Mendoza, "Smart Wall Outlet Design and Implementation for the DC House

Project," San Luis Obispo, 2014.

54

[10] R. Liu, "Smart DC/DC Wall Plug Design for the DC House Project," San Luis Obispo,

2017.

[11] D. Ngo, "USB Type-C and Thunderbolt 3: One port to connect them all," CNET, 26

October 2016. [Online]. Available: https://www.cnet.com/how-to/usb-type-c-

thunderbolt-3-one-cable-to-connect-them-all/. [Accessed 12 April 2019].

[12] NEMA, "Wiring Devices - Dimensional Specifications," 14 April 2016. [Online].

Available: https://www.nema.org/standards/pages/wiring-devices-dimensional-

specifications.aspx?key=67ri900e6rt5af. [Accessed 12 April 2019].

[13] Analog Devices, Inc., "LTC3889 Datasheet and Product Info," 2019. [Online].

Available: https://www.analog.com/en/products/ltc3889.html. [Accessed 2 June 2019].

[14] SMIF, Inc., "PMBus Power Management Defined," 28 March 2005. [Online].

Available: http://pmbus.org/Home. [Accessed 2 June 2019].

[15] Analog Devices, Inc., "LT8619-5 Datasheet and Product Overview," 2019. [Online].

Available: https://www.analog.com/en/products/lt8619.html. [Accessed 2 June 2019].

[16] Arduino, "Arduino - Board," 2019. [Online]. Available:

https://www.arduino.cc/en/reference/board. [Accessed 2 June 2019].

[17] Analog Devices, Inc., "LTC3892 Datasheet and Product Info," 2015. [Online].

Available: https://www.analog.com/en/products/ltc3892.html. [Accessed 4 June 2019].

55

[18] B. Suppanz, "Trace Width Calculator," 2018. [Online]. Available:

https://www.4pcb.com/trace-width-calculator.html. [Accessed 9 June 2019].

[19] Crane Aerospace & Electronics, "Measurement and Filtering of Output Noise of DC-

DC Converters," 2016. [Online]. Available:

http://www.interpoint.com/product_documents/DC_DC_Converters_Output_Noise.pdf.

[Accessed 10 June 2019].

56

A. Test Device Voltage Sweeps

 0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

C
u

rr
en

t
[A

]

DC Voltage [V]

5V Raspberry Pi

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

C
u

rr
en

t
[A

]

DC Voltage [V]

5V Android Phone

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

C
u

rr
en

t
[A

]

DC Voltage [V]

4.5V TV

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

C
u

rr
en

t
[A

]

DC Voltage [V]

5V Radio

Figure 36: 4.5V TV Voltage Sweep Figure 37: 5V Radio Voltage Sweep

Figure 38: 5V Raspberry Pi Voltage Sweep Figure 39: 5V Android Phone Voltage Sweep

57

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6

C
u

rr
en

t
[A

]

DC Voltage [V]

5V Windows Phone

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 3 5 7 9 11 13

C
u

rr
en

t
[A

]

DC Voltage [V]

12V Fans

0

0.02

0.04

0.06

0.08

1 3 5 7 9 11 13 15

C
u

rr
en

t
[A

]

DC Voltage [V]

15V Speakers

Figure 40: 5V Windows Phone Voltage Sweep
Figure 41: 12V Fans Voltage Sweep

Figure 42: 15V Speakers Voltage Sweep

58

B. Output Regulation

Figure 43: 4.5V TV Output Regulation Figure 44: 5V Radio Output Regulation

Figure 45: 5V Raspberry Pi Output Regulation Figure 46: 5V Android Phone Output Regulation

59

Figure 47: 5V Windows Phone Output Regulation Figure 48: 12V Fans Output Regulation

Figure 49: 15V Speakers Output Regulation

60

C. Microcontroller Code

#include <Wire.h>

const uint8_t SLAVE_ADDRESS = 0x5B;
const uint8_t MFR_COMMON = 0xEF;
const uint8_t MFR_BUSY_MASK = 0x70;

const uint8_t window_size = 5;

void setup() {
 Serial.begin(9600);

 Wire.begin();
 Wire.setClock(100000); //100kHz
}

void loop() {
 bool on = false;
 int state = 0;
 float voltage = 1.0;
 float new_voltage = 1.0;

 //regulate_output(5.0, voltage);

 while(1) {
 switch(state) {
 case 0:
 //No device connected. For now just wait 5 seconds before sweep attempts
 Serial.println(F("State 0: No device detected."));

 delay(10000); //5 seconds
 state = 1;
 break;

 case 1:
 //Device Connected. Find nominal voltage
 Serial.println(F("State 1: Finding Nominal Voltage"));

 voltage = find_nominal();

 if (voltage < 3.0) {
 //No device detected
 state = 0;
 } else {
 //Device detected
 state = 2;
 on = true;
 }
 break;

 case 2:
 //Nominal voltage set. Maintain until device disconnected
 Serial.println(F("State 2: Maintaining Output Voltage"));

 delay(5000); //5 seconds

 on = is_connected();

61

 if (!on) {
 //Revert to 1V,
 voltage = change_vout(1.0, voltage);
 state = 0;
 }

 break;
 }
 }
}

void regulate_output(float target, float previous) {
 //This function sets the output then continuously prints the current usage.
 float current_val = 0.0;

 change_vout(target, previous);

 while(true) {
 current_val = read_current();
 Serial.print(F("Current: "));
 Serial.print(current_val, 3);
 Serial.println(F("A"));
 delay(1000);
 }
}

float find_nominal() {
 //This is the voltage finding algorithm
 //Arr size set to 150 to reduce ram usage. Should be increased for high volt devices
 const int arr_size = 150;
 const float upper_limit = 12.1;

 int start = 0;
 int finish = 20;

 float voltage = 1.0;
 float mean = 0.0;
 float dev = 0.0;
 int peak_index = 0;
 bool peak_found = false;
 bool peak_confirmed = false;
 bool passed_6v = false;
 bool battery_case = false;

 //These arrays hold all of the mean current values and derivatives
 float mean_current[arr_size];
 float mean_current_diff[arr_size];
 float slope_check[10];

 Serial.println(F("Grabbing 1 to 3V"));

 //Get 1V-3V, calc mean and derivative
 voltage = get_current_range(voltage, start, finish, mean_current);
 get_diff(start, finish, mean_current, mean_current_diff);
 peak_index = get_max_index(mean_current_diff, finish);
 mean = get_mean(mean_current_diff, finish);

 while(!peak_found) {
 Serial.println(F("Checking if Peak Found"));

62

 //Peak found when value is > 180% of mean
 if ((mean_current_diff[peak_index] > 1.8 * mean) && (mean_current[peak_index] >=
0.02)) {

 Serial.print(F("Peak found: "));
 Serial.println(index_to_volt(peak_index), 2);

 peak_found = true;
 } else {
 Serial.println(F("Peak not found yet"));

 //Grab next voltage range while less than upper limit
 if (index_to_volt(finish + 10) <= upper_limit) {
 Serial.println(F("Finding New Range"));
 start = finish + 1;
 finish = finish + 10;

 voltage = get_current_range(voltage, start, finish, mean_current);
 Serial.println(F("Got range, calc diff"));
 get_diff(start, finish, mean_current, mean_current_diff);
 Serial.println(F("Got diff, getting peak"));
 peak_index = get_max_index(mean_current_diff, finish);
 Serial.println(F("Got peak, getting mean"));
 mean = get_mean(mean_current_diff, finish);
 Serial.println(F("Colleted new range"));
 } else {
 //Failure, hit upper limit
 Serial.println(F("Failure to find peak"));

 Serial.println(F("Mean Current: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current[k], 4);
 }

 change_vout(1.0, voltage);
 return 1.0;
 }
 }
 }

 Serial.println(F("Attempting to confirm peak"));
 while(!peak_confirmed && index_to_volt(finish) < upper_limit) {
 peak_confirmed = true;

 Serial.println(F("Checking if need to increase range"));

 if (peak_index + 10 > finish) {
 Serial.println(F("Increasing range"));
 //Does this pass 6V?
 if((peak_index + 10 > 50) && !passed_6v) {
 //Need to check for battery case
 start = finish + 1;
 finish = 50;
 passed_6v = true;
 } else {
 start = finish + 1;
 finish = peak_index + 10;
 }

63

 voltage = get_current_range(voltage, start, finish, mean_current);
 get_diff(start, finish, mean_current, mean_current_diff);
 }

 if ((passed_6v) && finish <= 50) {
 Serial.println(F("Checking if battery"));
 battery_case = true;

 for (int i = 41; i <= 50; i++) {
 dev = (abs(mean_current_diff[i] - mean_current_diff[peak_index]) /
mean_current_diff[peak_index]) * 100;

 if (dev > 15) {
 //Slope was not constant, std > 15%
 Serial.println(F("Not battery"));
 battery_case = false;
 break;
 }
 }

 if (battery_case) {
 Serial.println(F("Battery Confirmed!"));
 change_vout(5.0, voltage);
 return 5.0;
 }
 }

 if(finish - peak_index < 10) {
 //If battery checked on this iteration, wait til next iteration
 peak_confirmed = false;
 } else {
 Serial.println(F("Checking volt after peak"));
 //Try to confirm volt after peak
 for (int i = peak_index + 1; i <= finish; i++) {
 if (mean_current_diff[i] - mean_current_diff[peak_index] > -0.001) {
 peak_confirmed = false;
 peak_index = i;
 Serial.print(F("New peak found: "));
 Serial.println(index_to_volt(peak_index));
 break;
 }
 }
 }
 }

 if(!peak_confirmed) {
 Serial.println(F("Could not confirm peak in limits"));
 //Print debug info
 Serial.println(F("Mean Current: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current[k], 4);
 }

 Serial.println(F("Diff: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current_diff[k], 4);

64

 }
 change_vout(1.0, voltage);
 return 1.0;
 }

 if (index_to_volt(peak_index) < 2.4) {
 Serial.println(F("3V Device"));
 change_vout(3.0, voltage);
 return 3.0;
 } else if (index_to_volt(peak_index) <= 5.0) {
 Serial.println(F("Turn on less than 5V"));
 if (finish < 50) {
 //collect data up to 6V
 start = finish + 1;
 finish = 50;

 Serial.println(F("Extending current to 6V"));
 voltage = get_current_range(voltage, start, finish, mean_current);
 Serial.println(F("Calculating Diff"));
 get_diff(start, finish, mean_current, mean_current_diff);
 }

 Serial.println(F("Filling Slope Check"));
 //Check the slope from 5V to 6V
 for (int i = 41; i <= 50; i++) {
 slope_check[i%10] = mean_current_diff[i];
 }

 Serial.println(F("qsort"));
 qsort(slope_check, sizeof(slope_check) / sizeof(slope_check[0]),
sizeof(slope_check[0]), sort_float);

 Serial.print("Median: ");
 Serial.println(slope_check[5], 2);
 //median
 if(slope_check[5] >= 0.02) {
 Serial.println(F("12V Device"));
 if(upper_limit >= 12.0) {
 change_vout(12.0, voltage);
 return 12.0;
 } else {
 Serial.println(F("Failure, went above limit"));

 Serial.println(F("Mean Current: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current[k], 4);
 }

 Serial.println(F("Diff: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current_diff[k], 4);
 }

 change_vout(1.0, voltage);
 return 1.0;
 }

65

 } else {
 Serial.println(F("5V Device"));

 Serial.println(F("Mean Current: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current[k], 4);
 }

 Serial.println(F("Diff: "));
 for (int k = 0; k <= finish; k++) {
 Serial.print(index_to_volt(k), 2);
 Serial.print(F("V: "));
 Serial.println(mean_current_diff[k], 4);
 }

 change_vout(5.0, voltage);
 return 5.0;
 }
 } else if ((index_to_volt(peak_index) < 6) && 6 <= upper_limit) {
 Serial.println(F("6V Device"));
 change_vout(6.0, voltage);
 return 6.0;
 } else if ((index_to_volt(peak_index) < 9) && 9 <= upper_limit) {
 Serial.println(F("9V Device"));
 change_vout(9.0, voltage);
 return 9.0;
 } else if ((index_to_volt(peak_index) < 12) && 12 <= upper_limit) {
 Serial.println(F("12V Device"));
 change_vout(12.0, voltage);
 return 12.0;
 } else if ((index_to_volt(peak_index) < 15) && 15 <= upper_limit) {
 Serial.println(F("15V Device"));
 change_vout(15.0, voltage);
 return 15.0;
 } else {
 change_vout(1.0, voltage);
 return 1.0;
 }
}

int sort_float(const void *cmp1, const void *cmp2) {
 //Sorting function for qsort
 float a = *((float *)cmp1);
 float b = *((float *)cmp2);

 return a > b ? 1 : (a < b ? -1 : 0);
}

float get_mean(float arr[], int finish) {
 float sum = 0.0;

 for(int i = 0; i <= finish; i++) {
 sum += arr[i];
 }

 return sum / (finish + 1);
}

66

int get_max_index(float arr[], int finish) {
 float max_val = 0.0;
 int index = 0;

 for (int i = 0; i <= finish; i++) {
 if (arr[i] > max_val) {
 max_val = arr[i];
 index = i;
 }
 }

 return index;
}

void get_diff(int start, int finish, float current[], float current_diff[]){
 //Calculate discrete derivative
 if (start == 0) {
 current_diff[0] = 0;
 start = 1;
 }

 for (int i = start; i <= finish; i++) {
 current_diff[i] = (current[i] - current[i-1]) / 0.1;
 }
}

float get_current_range(float voltage, int start, int finish, float current[]) {
 //collect data over specified current range
 float new_voltage = index_to_volt(start);

 //If starting index is different that current voltage
 if (abs(new_voltage - voltage) > 0.01) {
 voltage = change_vout(new_voltage, voltage);
 }

 current[start] = read_current();

 //Grab the current from this range of voltages
 for (int i = start + 1; i <= finish; i++) {
 voltage = change_vout(index_to_volt(i), voltage);
 delay(1000); //500ms per voltage change
 current[i] = read_current();
 }
 //Get moving average
 moving_avg(start, finish, current);

 return voltage;
}

void moving_avg(int start, int finish, float current[]) {
 //Assumes that the window size is less than 10, the first call starts at 0 and all
further calls start > window_size;

 float current_buffer[window_size] = { };

 if(start == 0) {
 for(int i = 0; i < window_size; i++) {
 current_buffer[i] = current[i];
 current[i] = 0.0;

67

 for(int j = 0; j <= i; j++) {
 current[i] += current_buffer[j];
 }
 current[i] = current[i] / ((float) i + 1);
 }

 for(int i = window_size; i <= finish; i++) {
 current_buffer[i % window_size] = current[i];
 current[i] = 0.0;

 for(int j = 0; j < window_size; j++) {
 current[i] += current_buffer[j];
 }
 current[i] = current[i] / window_size;
 }
 } else {
 //fill current buffer first

 for(int i = 0; i < window_size - 1; i++) {
 current_buffer[i] = current[start - window_size + 1 + i];
 }

 for(int i = start; i <= finish; i++) {
 current_buffer[(i - start + window_size - 1) % window_size] = current[i];
 current[i] = 0.0;

 for(int j = 0; j < window_size; j++) {
 current[i] += current_buffer[j];
 }

 current[i] = current[i] / window_size;
 }
 }
}

float index_to_volt(int index) {
 return (index + 10) / 10.0;
}

bool is_connected() {
 float current = 0.0;

 current = read_current();

 return current >= 0.01;
}

void set_led(uint8_t input) {
 const int led0 = 8;
 const int led1 = 9;
 const int led2 = 10;

 const int LED0_MASK = 0x1;
 const int LED1_MASK = 0x2;
 const int LED2_MASK = 0x4;

 digitalWrite(led0, (input & LED0_MASK) > 0);
 digitalWrite(led1, (input & LED1_MASK) > 0);
 digitalWrite(led2, (input & LED2_MASK) > 0);
}

68

float read_current() {
 const uint8_t READ_IOUT = 0x8C;

 uint16_t current_L11 = 0;

 current_L11 = safe_read_word(READ_IOUT);

 return lin5_11ToFloat(current_L11);
}

float change_vout(float desired, float previous) {
 //Changes the output voltage, and the upper/lower limits
 //See LTC3889 datasheet for more information
 const uint8_t VOUT_OV_FAULT_LIMIT = 0x40;
 const uint8_t VOUT_OV_WARN_LIMIT = 0x42;
 const uint8_t VOUT_MARGIN_HIGH = 0x25;
 const uint8_t VOUT_COMMAND = 0x21;
 const uint8_t VOUT_MARGIN_LOW = 0x26;
 const uint8_t VOUT_UV_WARN_LIMIT = 0x43;
 const uint8_t VOUT_UV_FAULT_LIMIT = 0x44;

 uint16_t new_ov_fault = getLin16(desired + 0.5);
 uint16_t new_ov_warn = getLin16(desired + 0.375);
 uint16_t new_margin_high = getLin16(desired + 0.25);
 uint16_t new_vout = getLin16(desired);
 uint16_t new_margin_low = getLin16(desired - 0.25);
 uint16_t new_uv_warn = getLin16(desired - 0.375);
 uint16_t new_uv_fault = getLin16(desired - 0.5);

 set_current_limit(desired);

 Serial.print(F("Previous: "));
 Serial.print(previous);
 Serial.print(F(", Desired: "));
 Serial.println(desired);

 if(desired > previous) {
 //Change upper limits first, then lower
 safe_write_word(VOUT_OV_FAULT_LIMIT, new_ov_fault);
 safe_write_word(VOUT_OV_WARN_LIMIT, new_ov_warn);
 safe_write_word(VOUT_MARGIN_HIGH, new_margin_high);
 safe_write_word(VOUT_COMMAND, new_vout);
 safe_write_word(VOUT_MARGIN_LOW, new_margin_low);
 safe_write_word(VOUT_UV_WARN_LIMIT, new_uv_warn);
 safe_write_word(VOUT_UV_FAULT_LIMIT, new_uv_fault);
 } else {
 //Change lower limits first, then upper
 safe_write_word(VOUT_UV_FAULT_LIMIT, new_uv_fault);
 safe_write_word(VOUT_UV_WARN_LIMIT, new_uv_warn);
 safe_write_word(VOUT_MARGIN_LOW, new_margin_low);
 safe_write_word(VOUT_COMMAND, new_vout);
 safe_write_word(VOUT_MARGIN_HIGH, new_margin_high);
 safe_write_word(VOUT_OV_WARN_LIMIT, new_ov_warn);
 safe_write_word(VOUT_OV_FAULT_LIMIT, new_ov_fault);
 }

 return desired;
}

69

void set_current_limit(float voltage) {
 //Sets the current limit to be <6A and <100W
 const uint8_t IOUT_OC_FAULT_LIMIT = 0x46;
 const uint8_t IOUT_OC_WARN_LIMIT = 0x4A;

 uint16_t new_oc_warn = 0;
 uint16_t new_oc_fault = 0;

 if(voltage < 16.7) {
 new_oc_fault = getLin5_11(int8_t(-3), int16_t(600)); //set to 75mV (7.5A)
 new_oc_warn = getLin5_11(int8_t(-3), int16_t(480)); //set to 60mV (6.0A)
 } else {
 float fault_limit = (100.0 / voltage) + 1;
 float warn_limit = fault_limit * 0.8;

 int16_t fault_mantissa = round((fault_limit * 10) / pow(2, -3));
 int16_t warn_mantissa = round((warn_limit*10) / pow(2, -3));

 new_oc_fault = getLin5_11(int8_t(-3), fault_mantissa); //set to 75mV (7.5A)
 new_oc_warn = getLin5_11(int8_t(-3), warn_mantissa); //set to 60mV (6.0A)
 }

 safe_write_word(IOUT_OC_FAULT_LIMIT, new_oc_fault);
 safe_write_word(IOUT_OC_WARN_LIMIT, new_oc_warn);
}

void write_ee_prom() {
 //Run Once to Configure the behavior on startup
 const uint8_t PAGE = 0x00;
 const uint8_t MFR_PWM_MODE_LTC3889 = 0xD4;
 const uint8_t FREQUENCY_SWITCH = 0x33;
 const uint8_t MFR_RVIN = 0xF7;
 const uint8_t VIN_OV_FAULT_LIMIT = 0x55; //L11
 const uint8_t IOUT_CAL_GAIN = 0x38;
 const uint8_t OT_FAULT_RESPONSE = 0x50;
 const uint8_t UT_FAULT_RESPONSE = 0x54;
 const uint8_t CLEAR_FAULTS = 0x03;
 const uint8_t OPERATION = 0x01;
 const uint8_t STORE_USER_ALL = 0x15; //Send Byte
 const uint8_t MFR_RESET = 0xFD;

 uint8_t pwm_mode_setting = B11001000; //High Current Range, Servo Mode, 9V drive
voltage, Discontinuous operation
 uint16_t switch_freq = getLin5_11(int8_t(0), int16_t(300)); //300kHz
 uint16_t in_res = getLin5_11(int8_t(0), int16_t(2)); //0mR
 uint16_t out_res = getLin5_11(int8_t(0), int16_t(10)); //10mR
 uint16_t vin_fault_limit = getLin5_11(int8_t(0), int16_t(54)); //54V

 float voltage = 5.0;

 safe_write_byte(PAGE, uint8_t(0x00)); //Set channel to 0
 safe_write_byte(MFR_PWM_MODE_LTC3889, pwm_mode_setting); //Set operating mode
 safe_write_word(FREQUENCY_SWITCH, switch_freq); //Set switching frequency
 safe_write_word(MFR_RVIN, in_res); //Set input filter resistance
 safe_write_word(VIN_OV_FAULT_LIMIT, vin_fault_limit); //Set VIN faul limit
 safe_write_word(IOUT_CAL_GAIN, out_res); //Set current sense resistance
 safe_write_byte(OT_FAULT_RESPONSE, uint8_t(0)); //Set no response for OT event
 safe_write_byte(UT_FAULT_RESPONSE, uint8_t(0)); //Set no response for UT event

70

 voltage = change_vout(1.0, voltage);

 safe_send_byte(CLEAR_FAULTS); //Clear any faults
 delay(10);
 safe_write_byte(OPERATION, uint8_t(0x80)); //Set the device to begin output

 safe_send_byte(STORE_USER_ALL); //Save settings to EEPROM

 delay(1000);

 safe_send_byte(MFR_RESET);
}

float test_output(float new_voltage, float old_voltage) {
 const uint8_t PAGE = 0x00;
 const uint8_t MFR_PWM_MODE_LTC3889 = 0xD4;
 const uint8_t FREQUENCY_SWITCH = 0x33;
 const uint8_t MFR_RVIN = 0xF7;
 const uint8_t VIN_OV_FAULT_LIMIT = 0x55; //L11
 const uint8_t IOUT_CAL_GAIN = 0x38;
 const uint8_t OT_FAULT_RESPONSE = 0x50;
 const uint8_t UT_FAULT_RESPONSE = 0x54;
 const uint8_t CLEAR_FAULTS = 0x03;
 const uint8_t OPERATION = 0x01;
// const uint8_t MFR_RESET = 0xFD;

 //High Current Range, Servo Mode, 7.4V drive voltage, Discontinuous operation
 uint8_t pwm_mode_setting = B11000100;
 uint16_t switch_freq = getLin5_11(int8_t(0), int16_t(300)); //300kHz
 uint16_t in_res = getLin5_11(int8_t(0), int16_t(2)); //0mR
 uint16_t out_res = getLin5_11(int8_t(0), int16_t(10)); //10mR
 uint16_t vin_fault_limit = getLin5_11(int8_t(0), int16_t(54)); //54V

 safe_write_byte(PAGE, uint8_t(0x00)); //Set channel to 0
 safe_write_byte(MFR_PWM_MODE_LTC3889, pwm_mode_setting); //Set operating mode
 safe_write_word(FREQUENCY_SWITCH, switch_freq); //Set switching frequency
 safe_write_word(MFR_RVIN, in_res); //Set input filter resistance
 safe_write_word(VIN_OV_FAULT_LIMIT, vin_fault_limit); //Set VIN faul limit
 safe_write_word(IOUT_CAL_GAIN, out_res); //Set current sense resistance
 safe_write_byte(OT_FAULT_RESPONSE, uint8_t(0)); //Set no response for OT event
 safe_write_byte(UT_FAULT_RESPONSE, uint8_t(0)); //Set no response for UT event

 change_vout(new_voltage, old_voltage);

 safe_send_byte(CLEAR_FAULTS); //Clear any faults
 delay(1);
 safe_write_byte(OPERATION, uint8_t(0x80)); //Set the device to begin output

 return new_voltage;
}

uint8_t safe_read_byte(uint8_t command_byte) {
 uint8_t mfr_common_val = 0;
 uint8_t part_ready = 0;
 uint8_t retval = 0;

 do {
 mfr_common_val = PMBUS_READ_BYTE(MFR_COMMON);
 part_ready = (mfr_common_val & MFR_BUSY_MASK) == MFR_BUSY_MASK;
 } while (!part_ready);

71

 retval = PMBUS_READ_BYTE(command_byte);

 return retval;
}

uint16_t safe_read_word(uint8_t command_byte) {
 uint8_t mfr_common_val = 0;
 uint8_t part_ready = 0;
 uint16_t retval = 0;

 do {
 mfr_common_val = PMBUS_READ_BYTE(MFR_COMMON);
 part_ready = (mfr_common_val & MFR_BUSY_MASK) == MFR_BUSY_MASK;
 } while (!part_ready);

 retval = PMBUS_READ_WORD(command_byte);

 return retval;
}

uint8_t safe_write_byte(uint8_t command_byte, uint8_t data_byte) {
 uint8_t mfr_common_val = 0;
 uint8_t part_ready = 0;
 uint8_t retval = 0;

 do {
 mfr_common_val = PMBUS_READ_BYTE(MFR_COMMON);
 part_ready = (mfr_common_val & MFR_BUSY_MASK) == MFR_BUSY_MASK;
 } while (!part_ready);

 retval = PMBUS_WRITE_BYTE(command_byte, data_byte);

// if(retval == 0) {
// Serial.print(F("Successful Write Byte\n"));
// } else {
// Serial.print(F("Failed Write Byte\n"));
// }

 return retval;
}

uint8_t safe_write_word(uint8_t command_byte, uint16_t data_word) {
 uint8_t mfr_common_val = 0;
 uint8_t part_ready = 0;
 uint8_t retval = 0;

 do {
 mfr_common_val = PMBUS_READ_BYTE(MFR_COMMON);
 part_ready = (mfr_common_val & MFR_BUSY_MASK) == MFR_BUSY_MASK;
 } while (!part_ready);

 retval = PMBUS_WRITE_WORD(command_byte, data_word);

// if(retval == 0) {
// Serial.print(F("Successful Write Word\n"));
// } else {
// Serial.print(F("Failed Write Word\n"));
// }

72

 return retval;
}

uint8_t safe_send_byte(uint8_t command_byte) {
 uint8_t mfr_common_val = 0;
 uint8_t part_ready = 0;
 uint8_t retval = 0;

 do {
 mfr_common_val = PMBUS_READ_BYTE(MFR_COMMON);
 part_ready = (mfr_common_val & MFR_BUSY_MASK) == MFR_BUSY_MASK;
 } while (!part_ready);

 retval = PMBUS_SEND_BYTE(command_byte);

// if(retval == 0) {
// Serial.print(F("Successful Send Byte\n"));
// } else {
// Serial.print(F("Failed Send Byte\n"));
// }

 return retval;
}

uint8_t PMBUS_READ_BYTE(uint8_t command_byte) {
 uint8_t retval = 0;
 uint8_t errors = 0;

 Wire.beginTransmission(SLAVE_ADDRESS);
 Wire.write(command_byte);
 errors = Wire.endTransmission(false);

 //Request the byte
 Wire.requestFrom(SLAVE_ADDRESS, uint8_t(1));
 retval = Wire.read();

 return retval;
}

uint16_t PMBUS_READ_WORD(uint8_t command_byte) {
 uint8_t low = 0, high = 0, errors = 0;
 uint16_t retval = 0;

 Wire.beginTransmission(SLAVE_ADDRESS);
 Wire.write(command_byte);
 errors = Wire.endTransmission(false);

 Wire.requestFrom(SLAVE_ADDRESS, uint8_t(2));
 low = Wire.read();
 high = Wire.read();

 retval = (high << 8) | low; //combine the two

 return retval;
}

uint8_t PMBUS_WRITE_BYTE(uint8_t command_byte, uint8_t data_byte) {
 uint8_t stat = 0;

 Wire.beginTransmission(SLAVE_ADDRESS);

73

 Wire.write(command_byte);
 Wire.write(data_byte);
 stat = Wire.endTransmission();

 return stat;
}

uint8_t PMBUS_WRITE_WORD(uint8_t command_byte, uint16_t data_word) {
 uint8_t stat = 0;
 uint8_t high = 0;
 uint8_t low = 0;

 high = (data_word & uint16_t(0xFF00)) >> 8;
 low = (data_word & uint16_t(0x00FF));;

 //low byte, then high byte
 Wire.beginTransmission(SLAVE_ADDRESS);
 Wire.write(command_byte);
 Wire.write(low);
 Wire.write(high);
 stat = Wire.endTransmission();

 return stat;
}

uint8_t PMBUS_SEND_BYTE(uint8_t command_byte) {
 uint8_t stat = 0;

 Wire.beginTransmission(SLAVE_ADDRESS);
 Wire.write(command_byte);
 stat = Wire.endTransmission();

 return stat;
}

uint16_t getLin5_11(int8_t exponent, int16_t mantissa) {
 uint16_t retval = 0;

 retval |= (int16_t(exponent) << 11); //place signed exponent in top 5 bits
 retval |= (mantissa & 0x7FF); //place signed mantissa in bottom 11 bits

 return retval;
}

float lin5_11ToFloat(uint16_t data_word) {
 //https://embeddedartistry.com/blog/2018/7/5/linear11-the-easy-way
 typedef struct {
 int16_t mantissa : 11;
 int16_t exponent : 5;
 } linear11_t;

 typedef union {
 linear11_t linear;
 uint16_t raw;
 } linear11_val_t;

 float retval = 0.0;

 linear11_val_t val;

74

 val.raw = data_word;

 retval = val.linear.mantissa * (float) pow(2,val.linear.exponent);

 return retval;
}

uint16_t getLin16(float num) {
 uint16_t retval = 0;

 retval = round(num / pow(2, -10)); //Divide by 2^-10 to get the mantissa

 return retval;
}

float lin16toFloat(uint16_t mantissa) {
 float retval = 0.0;

 retval = mantissa * pow(2, -10); // multiply by 2^-10 to get the float

 return retval;
}

