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ABSTRACT

Simulating Epidemics and Interventions on High Resolution Social Networks

Christopher E. Siu

Mathematical models of disease spreading are a key factor of ensuring that we are

prepared to deal with the next epidemic. They allow us to predict how an infection

will spread throughout a population, thereby allowing us to make intelligent choices

when attempting to contain the disease. Whether due to a lack of empirical data, a

lack of computational power, a lack of biological understanding, or some combination

thereof, traditional models must make sweeping assumptions about the behavior of a

population during an epidemic.

In this thesis, we implement granular epidemic simulations using a rich social network

constructed from real-world interactions. We develop computational models for three

diseases, and we use these simulations to demonstrate the effects of twelve potential

intervention strategies, both before and during a hypothetical epidemic. We show how

representing a population as a temporal graph and applying existing graph metrics

can lead to more effective interventions.
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Chapter 1

INTRODUCTION

“Epidemich…a sicknesse common vnto all people, or to the moste part of them.”

— Thomas Lodge, A Treatise of the Plague, 1603

From the Greek “επιδηµιος” via the French “épidémique”, the word “epidemic” was

first used in the English language in 1603, and it has come to describe a disease which

has quickly infected an unusually high number of people within some well-defined

population (OED Online, n.d.). Epidemics may further be termed “pandemics” to

distinguish those diseases which have spread on a continental or global scale, and

epidemics may be contrasted with “epizootics”, which affect animals.

Epidemiology, then, is the study of diseases that infect people, including the bio-

logical and social mechanisms involved in their outbreak, transmission, containment,

and, hopefully, eventual eradication. Of that last goal, to date, only one disease that

affects humans has been eradicated: a naturally occurring case of smallpox has not

been reported since October of 1977, the conclusion of almost two hundred years of

work immunizing the general population (Fenner, Henderson, Arita, Jezek, & Ladnyi,

1988). This required a dedicated program on the part of the World Health Organiza-

tion, involving mass vaccinations, health surveilance, and targeted interventions on

continental scales over more than a decade.

Should we ever be confronted with another smallpox-esque disease, computer models

will be crucial to effective coordination and utilization of our limited resources, a

logistical problem which, in many respects, we are not currently prepared for (Gates,

2015). Developing models to simulate and predict the spread of diseases could allow
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us to contain outbreaks before they become epidemics, and, failing that, to determine

the appropriate methods of intervention. Mathematical approaches for studying dis-

eases have existed for just about as long — slightly longer, in fact — as the vaccination

processes that can prevent them (Dietz & Heesterbeek, 2002). However, because of

the complexity of the involved social and biological mechanisms, traditional math-

ematical models must make a handful of key unrealistic assumptions. They cannot

account for the transmission of disease on an individual, per-person scale.

In this thesis, we implement granular epidemic simulations using a rich social network

constructed from real-world interactions. We use these simulations to demonstrate the

effects of various intervention strategies, both prior to and during a hypothetical out-

break. Specifically, we represent the population as a temporal graph and investigate

the possibility that existing graph metrics can inform more effective interventions. In

Chapter 2, we give a brief historical background to the separate disciplines of epi-

demic modeling and graph theory, and we introduce the dataset on which we build our

simulations. In Chapter 3, we desribe similar approaches which have become more

common recently, as both computing power and relevant data have become more

available. Then, in Chapter 4 and Chapter 5, we build and run computational mod-

els for simulating three different diseases and twelve different intervention strategies.

The results of these simulations are discussed in Chapter 6. Finally, we summarize

our findings and enumerate potential followup work in Chapter 7.

2



Chapter 2

BACKGROUND

2.1 Epidemiological Models

Use of mathematical models to characterize the spread of disease and explore potential

treatments dates to around 1766, when Daniel Bernoulli developed a simplistic model

to investigate the feasibility of inoculation against smallpox (Dietz & Heesterbeek,

2002), inoculation being the primitive precursor to vaccination. He reasoned that

the population could be divided into two groups: those who had not yet contracted

the disease, and were therefore susceptible, and those who had already survived the

disease, and were therefore immune. In Bernoulli’s model, surviving smallpox moves

an individual from the susceptible group to the immune group; death removes an

individual from their current group.

By combining a differential equation describing the rates at which these two groups

grew and shrank with the crude empirical estimates of the day, Bernoulli estimated

that the median age could be more than doubled, increased roughly from 11.5 to 25.5

years, if smallpox were eliminated as a cause of death. Life expectancy at birth would

increase from 26 years and 7 months to 29 years and 9 months. It is, unfortunately,

difficult to validate these estimates. Smallpox would not be eradicated in Europe until

nearly two hundred years later (Fenner et al., 1988), by which time other factors —

notably, childhood mortality rates — had drastically changed.

3



Susceptible Immune
s(a)λ(a)

µ(a) + [1− s(a)]λ(a) µ(a)

Figure 1: Compartments of Bernoulli’s Model. Here, a is age, λ(a) is probabil-
ity of infection, s(a) is that of survival, and µ(a) is that of death by other causes. (Di-
etz & Heesterbeek, 2002)

2.2 Compartmental Models

In the modern nomenclature, Bernoulli’s work employs a simple compartmental model:

a model that divides the population into “compartments”, depending on how the dis-

ease has already affected or might potentially affect them. The movement of an indi-

vidual between compartments is governed by a simple, typically probabilistic, state

machine. Namely, Bernoulli’s model has “Susceptible” and “Immune” compartments,

reproduced in Figure 1.

Kermack and McKendrick in 1927 took a similar approach (Kermack & McKendrick,

1927), but they introduced a series of intermediate compartments for those indi-

viduals currently at various stages of infection at a given time. They labeled their

individuals’ states as either “Unaffected”, “Ill”, or “Removed”. As with Bernoulli’s

model, removal can mean recovery or death; neither Bernoulli’s nor Kermack and

McKendrick’s models include the possibility of the susceptible population’s growing

through birth.

4



2.2.1 Susceptible-Infected-Recovered

These historical models are most similar to the modern Susceptible-Infected-Recovered,

or SIR, model, which has direct analogs to their compartments. In this model, every

individual is either at risk of contracting the disease, currently infected and capable

of transmitting the infection, or immune (whether by recovery or by death).

2.2.2 Susceptible-Infected-Susceptible

Depending on the particular disease that we are interested in modeling, the Susceptible-

Immune compartments may be too simplistic, and the Susceptible-Infected-Recovered

compartments, outright inaccurate. Surviving influenza, for example, does not make

an individual immune to alternative strains and future mutations of the virus (Kram-

mer et al., 2018). If we were interested in simulating influenza on time scales long

enough for this to matter (and if we made the questionably realistic assumption that

all strains could be simulated as the same disease), we might apply the Susceptible-

Infected-Susceptible model (SIS), in which individuals are once again at risk after

having recovered.

Susceptible
Exposed

Infected
Recovered

Figure 2: The SEIR Model. This example population is divided into Susceptible,
Exposed, Infected, and Recovered compartments.
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2.2.3 SIRS, SEIR, MSIR, and Other Models

There are, unsurprisingly, a plethora of variations on the basic compartmental mod-

els, depending the disease and desired granularity of the particular application. The

previously mentioned influenza outbreaks, whose strains can change from year to

year, also tend to occur in seasonal patterns (Krammer et al., 2018), so a model

that allows for a temporary period of effective immunity may be more appropriate.

Malaria has a non-trivial incubation time (Phillips et al., 2017), so a model should

allow for the possibility that an individual has been infected but does not yet exhibit

any symptoms. Infants inherit about nine months of immunity to measles from their

mother (Rota et al., 2016), so a model may need to include this initial period. Mod-

els such as Susceptible-Infected-Recovered-Susceptible (SIRS), Susceptible-Exposed-

Infected-Recovered (SEIR), and Maternal-Susceptible-Infected-Recovered (MSIR) at-

tempt to account for these situations, respectively. An example of the SEIR model is

depicted in Figure 2.

2.3 Full Mixing Simulations

Having developed the necessary compartments and associated differential equations,

the afore-mentioned Kermack and McKendrick applied their SIR-esque mathematical

model to bubonic plague, for which they had empirical data from a relatively recent

outbreak in then-Bombay. Upon this application, they immediately identified the

key assumption that must be made by all traditional epidemic models: “We are,

in fact, assuming…that the uninfected population was uniformly susceptible…that

all susceptible rats in the island had an equal chance of being infected…[and] that

the condition approximated to one of contact infection.” (Kermack & McKendrick,

1927) That is to say, these full mixing models assume that every individual has an

6



equal chance of coming into contact with any other member of the population, and,

thus, an equal chance of contracting the disease via that contact (itself an unrealistic

assumption in the case of the bubonic plague, which spreads via fleas that live on

rats (McEvedy, 1988)). Kermack and McKendrick therefore conclude that “None of

these conditions are strictly fulfilled and consequently the numerical equation can

only be a very rough approximation.”

Nevertheless, traditional epidemic modeling continues to use the same general ap-

proach. Given a sequence of compartments describing the possible states and transi-

tions of infected individuals, they simulate the spread of disease by using differential

equations to describe the movements of individuals between compartments. To some

extent, these systems of equations can be extended to approximate the interactions

of individuals (Murray, Stanley, & Brown, 1986). In effect, impersonal though it

may seem, we may think of individuals in different states as a mix of different fluid

chemicals in a reaction-diffusion system. In this application, the “chemical reactions”

are the transmission of disease from contagious individuals to susceptible individuals,

while “diffusion” describes the random movement of those individuals throughout the

population.

2.4 Epidemiological Metrics

Numerous metrics exist for characterizing the virulence of a disease. In this thesis,

we make use of two basic concepts.

7



2.4.1 Basic Reproduction Number

The basic reproduction number R0 is the number of individuals we can expect a single

contagious host to infect over the duration of their infectious period, assuming that

every other individual is susceptible. In order for the disease to spread, R0 must be

strictly greater than 1. The specific number will vary from disease to disease, and can

be estimated from empirical data from past outbreaks. A higher basic reproduction

number implies a more virulent disease. Since we know how many unique contacts

the average individual makes in one day in our dataset, and we know how many days

such an individual remains infectious, the basic reproduction number is all we need

to estimate the probability of transmission per contact.

2.4.2 Epidemic and Herd Immunity Thresholds

By definition, if an individual is immune to a disease, they will not contract the

disease. Thus, generally speaking, if an individual is immune to a disease, they

are incapable of spreading it. Therefore, as the fraction of the population that is

immunized rises, the spreading of the disease is impeded, as there are fewer contacts

by which it can be transmitted. If enough of the population is immune, an infectious

individual may not have enough opportunities to spread the disease to the entire

susceptible population, a phenomenon known as “herd immunity”.

The epidemic threshold βc is the fraction of individuals that must be susceptible in

order for a disease to persist. Below this threshold, the disease can be expected

to die out before spreading beyond its local susceptible population. Alternatively,

(1 − βc) is the herd immunity threshold, the fraction of individuals that must be

immunized in order to prevent a widespread outbreak. In simplistic models, it is

possible to predict these thresholds using the basic reproduction number, R0. These

8



Figure 3: Drawing of The Seven Bridges of Königsberg. Euler’s illustration
of the Seven Bridges labels the landmasses as A, B, C, and D. (Euler, 1741)

predictions, however, assume a full mixing model, and are therefore not applicable to

our simulations.

2.5 Graphs

Perhaps by coincidence, at almost the same time Daniel Bernoulli was modeling dis-

eases with compartments, Leonhard Euler was considering the bridges that connected

an island in the Pregel River with then-Königsberg, Prussia. To solve the problem

that has become known as the Seven Bridges of Königsberg, Euler developed what

he called the “geometry of position” (Euler, 1741).

A graph G = (V,E) comprises a set of vertices, V , and a set of edges, E. By

convention, the number of vertices is denoted |V | = n, and that of edges, |E| = m.

Two vertices u and v may be connected by an edge e = (u, v). One important and

fundamental characteristic of a vertex is the number of edges to which it is connected,

the degree of that vertex. In some situations, an edge may connect a vertex back to

itself, and there is no requirement that any two vertices must be connected. If there

is a sequence of edges that leads from a vertex u to a vertex v, we say that there is

9



A

C

B

D

Figure 4: Graph of the Seven Bridges of Königsberg. The landmasses and
bridges in Figure 3 are represented by this graph.

a path between u and v and that they are in the same connected component. Graphs

allow the modeling of any arbitrary collection of entities and their relationships. In

the case of the Seven Bridges of Königsberg, the vertices represent landmasses and

the edges represent the bridges that connect them, as drawn in Figure 3 and Figure 4.

In representing the Seven Bridges as a graph, Euler abstracted away geometrical

and geographical details of the problem that had no impact on its resolution, leaving

behind only the underlying structure of edges and vertices. There are, in graph theory,

certain special structures; in this thesis, we will encounter two: a clique is a subgraph

in which every vertex is connected by an edge to every other vertex, and a star is a

subgraph in which one vertex is connected to every other vertex. Examples of both

can be found in Figure 5.

One potential application of graphs is to represent social interactions: vertices will

represent people, and edges will represent some form of interaction, such as making

a phone call, shaking hands, or eating a meal together. Such a graph would be called

a social network. If we have such a network for our population, we can simulate

the spread of a disease without resorting to full mixing: by spreading the disease

exclusively across edges, we can simulate the individual transmission events from in-

fectious individuals to susceptible individuals. An example of how we might augment

the compartmental model of Figure 2 with a social network is shown in Figure 6.

10



v0

v1

v2

v3

v4

v5

v6

v7 v8

Figure 5: Cliques and Stars. Here (among others), {v0, v1, v2, v3} form a clique
and {v2, v4, v5, v6, v7, v8} form a star.

2.6 The Copenhagen Network Study

The Copenhagen Network Study was conducted in two distinct iterations between

2012 and 2013, with the aim of creating a “high resolution” social network that was

not owned by a private company or a government and could therefore be provided to

researchers (Stopczynski et al., 2014). Rather than simple binary social interactions,

the Copenhagen dataset includes the locations, face-to-face contacts, phone calls, text

messages, Facebook interactions, genders, personality traits, and self-assessed mental

health of about a thousand undergraduate students at the Technical University of

Denmark (located about twenty minutes’ drive north of central Copenhagen).

Not all of this data is relevant to disease spreading. The details of our preprocess-

Susceptible
Exposed

Infected
Recovered

Figure 6: The SEIR Model Applied to a Social Network. The example pop-
ulation and compartments from Figure 2 could be augmented with a social network.
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Figure 7: Selected Interactions in the Copenhagen Network Study. Blue
edges indicate less frequent interactions, red, more frequent, and vertex size scales
with degree (Stopczynski et al., 2014).

ing and subsequent graph representation of the dataset are described in Chapter 4.

Specifically, we focus only on the face-to-face contact data. We were provided the

interactions of about seven hundred individuals, over one month, reported every five

minutes. A selection of those interactions is illustrated by Figure 7. The detail of

this contact data gives us the opportunity to simulate transmission of disease with

far more granularity, precision, and realism than would be possible in a full mixing

model.

We highlight the number of interactions over time in the Copenhagen dataset, plot-

ted in Figure 8. We find that not only do individuals make plenty of contact with

each other (peaking at almost 1800 interactions within the span of five minutes on

the third Monday), but their interactions also occur with a distinctive, immediately

recognizable pattern. Every day, the most interactions occur around midday, and

there are significantly more on what we infer to be weekdays compared to weekends.

Additionally, there is a wide variety to the total number of unique contacts each

individual makes over the entire month, as shown in Figure 9. For instance, there are

ten individuals who never come into face-to-face contact with more than one other,

and there is one who interacts with more than five hundred. The average individual

makes 229.86 unique contacts (sample standard deviation: 110.32, median: 236.50).
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These characteristics of the Copenhagen dataset further reinforce the idea that full

mixing simulations do not suffice: when modeling an infection, it is not a realistic

assumption that every individual makes contact with every other. Perhaps we could

justify approximating Figure 9 with a normal distribution, but we certainly cannot

assume that these contacts are made at all times, neither can we assume that the

individuals involved move randomly throughout the population.
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Figure 8: Interactions by Time in the Copenhagen Dataset. Preprocessed
as described in Chapter 4.
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Figure 9: Numbers of Unique Interactions in the Copenhagen Dataset.
Preprocessed as described in Chapter 4.
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Chapter 3

RELATED WORKS

As this thesis is concerned with epidemic spreading in social networks that incorporate

a richer level of detail, its related works fall broadly into two categories: those that

explore epidemics on graphs and those that develop more detailed epidemic models.

3.1 Disease Spreading on Graphs

Although they employed neither a sophisticated epidemiological model nor a particu-

larly detailed network, Kephart and White were, in 1991, among the first to propose

modeling the spread of a virus using a graph (Kephart & White, 1991). Working

to adapt existing mathematical models of infections, they argue that the traditional

methods are not quite precise enough when dealing with computer viruses. Un-

like their biological counterparts, which, in many cases, can be transmitted via the

surrounding environment, computer viruses must generally spread across an active

connection between two individual members of the population. It is unreasonable

to assume that a computer will routinely interact with every other computer on the

network. Compared to the assumptions made by a full mixing model when simulating

a biological disease, it is even more unrealistic to assume that an infected computer

is equally likely to infect any other computer on the network.

Modeling networked computers as vertices in a directed graph, Kephart and White

apply an SIS model, assuming that every computer either is infected and capable of

spreading the infection or is susceptible to being infected. Assigning to each edge

a probability of spreading the virus, they run simulations on randomly generated
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graphs. These simulations allow them to confirm that concepts in traditional epi-

demiology can also be applicable to network security: for instance, they show that

a perfect defense against malware is not strictly necessary, provided individual infec-

tions are detected and corrected quickly enough.

Though their work is groundbreaking, Kephart and White acknowledge that it is

overly simplistic and that, at the time, they lacked a sufficient basis of real-world

data. They concede that the SIS model represents an extreme situation in which

users take no precautions after their computers have been infected for the first time.

Their simulations do not consider how the structure of the network might change

over time: they do not account for the possibility that a user might disconnect their

computer from the network upon discovering the infection.

3.2 Disease Spreading with Mobility Patterns

The incorporation of individual movements, such as we might find in high resolution

social networks, is not exclusive to models based on graphs. Granell and Mucha

argue that the traditional reaction-diffusion system for modeling the movements of

individuals is inadequate when considering diseases that affect humans (Granell &

Mucha, 2018). Humans are habitual; they do not diffuse uniformly or randomly.

Granell and Mucha partition the population based on individuals’ locations at dis-

crete time steps, differentiating between residences and common spaces and between

daytime and nighttime behavior. Their model attempts to account for patterns of

movement. This allows them to identify the optimal amount of mobility in the pres-

ence of a burgeoning infection: where uninfected individuals move around enough to

minimize exposure, yet infected individuals stay stationary enough to avoid assisting

the spread of the infection. Their probabilistic model is not applied to graphs; it
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is verified with a variety of Monte Carlo simulations of situations not based on any

particular real-world data.

Similarly, Gemmetto, Barrat, and Cattuto used temporal information to refine a con-

ventional epidemic simulation (Gemmetto, Barrat, & Cattuto, 2014). They, however,

derived their data from a real-world high resolution contact network obtained from

sensors worn by children at a primary school in Lyon, France. Although their work

is not explicitly posed as a graph-based problem, their model did separately and in-

dividually compute the results of every contact between children as it simulated the

spread of an influenza-like disease using SEIR.

Since theirs is a real-world dataset, Gemmetto et al. investigate typical real-world

attempts to combat the spread of infections in this situation. Their model allows

them to simulate the effects of varying levels of school closure, from canceling just one

class to canceling all classes in a grade to closing the entire school temporarily. They

are able to show that canceling just one class (the class containing the infected child)

can drastically reduce the spread of an infection, and may actually be preferable to

closing the entire school — not only do the children in other classes remain productive

in school, but they are shielded from any infections spreading through the general

community.

One acknowledged limitation of the dataset used by Gemmetto et al. is its specificity

and scope; it includes fewer than three hundred people over just two days. Short-term

patterns must be extrapolated and long-term results, especially concerning interac-

tions with the enclosing community, must be approximated. The generality of their

conclusions has yet to be thoroughly explored.
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3.3 Disease Spreading on Graphs with Mobility Patterns

Combining both mobility data and graph-based simulation, the work of Frías-Martínez,

Williamson, and Frías-Martínez more closely resembles that of this thesis: they con-

structed and infected a temporal social network of an entire city in Mexico (Frías-

Martínez, Williamson, & Frías-Martínez, 2011). Their location data was collected

from cell towers, so it is not nearly as precise as the wearable sensor data employed

by Gemmetto et al. or the data collected in the Copenhagen Network Study, but

Frías-Martínez et al. specifically chose a time and place that had been affected by the

2009 H1N1 swine flu pandemic. Their agent-based social network model simulates

infections using compartmental SEIR while considering interactions and mobility pat-

terns on an individual basis.

By including these real-world mobility patterns in their network, Frías-Martínez et

al. could tweak the simulated movements of their population, allowing them to ret-

rospectively analyze the effectiveness of the Mexican government’s response to the

outbreak. They were able to tentatively show that closing schools within the first

week, then prohibiting all non-essential movements within the following week delayed

the exponential spread of infections by forty hours and reduced the overall number

of cases by 10%.

Though they had a different goal, Stopcyznski, Pentland, and Lehmann also infected

a high resolution social network — the Copenhagen network (Stopczynski, Pentland,

& Lehmann, 2018) (Stopcyznski and Lehmann being two of the researchers behind

the Copenhagen Network Study). They considered two networks formed from the

same dataset: one including only interactions between individuals that came within

/1 meter of each other, and one that also included any interactions within /10 me-

ters. Since the long-range network is naturally a superset of the short-range network,
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they then randomly sampled long-range interactions to ensure that both networks

contained the same number of edges.

By applying an infection with a simple SIR model to these two networks, Stopcyznski

et al. are able to emphasize their structural differences (perhaps unsurprisingly, they

find that their epidemic is more difficult to contain if it is allowed to spread through

long-range interactions). This model is neither based on nor intended to simulate

any real-world disease; it was developed only to highlight the differences between the

short- and long-range networks.

3.4 Span-Cores in Temporal Networks

Finally, while it is neither exclusively applicable to the task of simulating epidemics

nor to the concept of high resolution social networks, the theoretical work of Gal-

imberti, Barrat, Bonchi, Cattuto, and Gullo is of tangential interest to this thesis.

They introduce the concept of a “span-core”, essentially, a k-core for graphs that

change over the course of discrete time steps (Galimberti, Barrat, Bonchi, Cattuto,

& Gullo, 2018). The Copenhagen dataset is such a network, and we employ k-cores

in Section 4.4.3.

Given a graph G, a k-core is a maximal subgraph of G within which every vertex

has degree at least k. The collection of all k-cores, the core decomposition of G,

can provide valuable insight into finding and approximating the densest regions of a

graph. In a conventional, static graph, a graph that does not change over time, any

k-core is itself a subgraph of some (k − 1)-core for k ≥ 1. This fact can be exploited in

the computation of the core decomposition, which can be done in linear time (Matula

& Beck, 1983). However, if the graph can change over time, this assumption no longer

holds.
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Galimberti et al. introduce the span-core, terminology they use to indicate a (k,∆)-

core, where ∆ is an interval of time steps. As we might intuitively expect, a (k,∆)-core

is a maximal subgraph within which every vertex is, over the lifetime of the interval ∆,

connected to at least k other vertices. As a simple example of a potential application,

they show how span cores can be used to characterize patterns of interaction between

school children. They use span cores to differentiate between students at a primary

school in Lyon (the same as studied by Gemmetto et al.) and those at a high school

in Marseilles.
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Chapter 4

IMPLEMENTATION

4.1 Preprocessing

Four week’s worth of the Bluetooth-based face-to-face data collected by the Copen-

hagen Network Study (Stopczynski et al., 2014) was provided to us in CSV form, an

example of which is shown in Table 1. Each Bluetooth scan was given as a quadruple

of a timestamp, a “User A ID” (the scanner), a “User B ID” (the scannee), and a Re-

ceived Signal Strength Indicator (RSSI). Scans are reported at discrete intervals, and

timestamps are integers representing the number of seconds since the start the study.

Since scans were reported every five minutes, timestamps begin at 0 and increment

by 300. A User B ID of “−1” indicates that User A reported scanning no Bluetooth

devices at that time, while a User B ID of “−2” indicates that User A scanned a

device that was not part of the study.

While every user ID in the raw Bluetooth data is a natural number, they are not

contiguous. We first rename and rearrange user IDs to effectively “defragment” the

assigned user IDs, according to the order in which they first appear in the raw data.

This allows user IDs to correspond directly to indices in the vertex sequences employed

by the iGraph library (The iGraph Core Team, 2015). We also prune every user who

never makes contact with any other user over all four weeks of the study. Presumably,

these users are left over from portions of the Copenhagen Network Study to which

we do not have access — we find it generally unrealistic for a student to be isolated

from their peers for an entire month. These isolated vertices have no effect on the

outcomes of our simulations, as they can neither contract nor spread any disease.
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4.2 Graph Representation

We model the scans of each timestamp as individual undirected, weighted graphs

using the iGraph library for Python (The iGraph Core Team, 2015). These individual

graphs can collectively be treated as snapshots of a network that changes over time.

In each graph Gi = (Vi, Ei), vertices represent users; there is an edge between vertex

u and vertex v of weight w if user u scanned user v or vice versa with RSSI w at

timestamp ti. For each vertex v, we further record of the number of external devices

scanned by user v.

We always assume that if user u has come face-to-face with user v, then user v must

have come face-to-face with user u. In some rare situations, the raw data contains

both a scan of user u by user v and a scan by user v by user u at time ti. In these

cases, we add only one edge between users u and v, weighting that edge with the

higher (closer to zero, indicating a stronger signal) RSSI of the two scans.

Finally, we observe that not every user is present in a scan in every timestamp. This

could simply be because their phone had no power at that time. For the purposes of

our simulation, we add vertices to the network once their corresponding users appear

in a scan, but we never remove them. Users that have appeared before yet fail to

appear in any scan in a later timestamp will be persisted as isolated vertices — since

we are interested in simulating the spread of a disease, we need to keep track of users’

states with respect to the infection at all times, regardless of whether or not they

successfully report their scanning status. One snapshot that results from parsing the

data in Table 1 is shown in Figure 10.

While we chose to represent the RSSI values of individual scans as the weights of

edges in our network, in practice, none of our simulations will use this information.
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Figure 10: Graph Snapshot of One Timestamp. The snapshot produced by
data at time t1 = 300 in Table 1. Note that v1 is presumed to persist from time
t0 = 0, although it is missing from the raw Bluetooth data. Note also that v2 is
unique in that it has scanned an external device at this time.

Recovering physical characteristics of interactions (distance between users, for exam-

ple) would require that we have specific details of the scanning devices. Since we do

not have these details, we assume that face-to-face interaction is binary. The same

is true of the number of external devices scanned: while we had initially hoped that

these scans could be interpreted as contacts with individuals who did not participate

in the study, there is not necessarily any correlation between external devices scanned

and number of face-to-face interactions. “External devices” includes wireless mice,

for example, not just other phones (Sapieżyński, n.d.). So, although this information

is represented in our graph as attributes of each vertex, none of our simulations make

use of it.

Thus, the only meaningful feature of individual interactions is whether or not they

occurred at all; the only meaningful characteristic of the network is the structure of

each snapshot. It is important to note that the vertices and their edges need not

exclusively form little cliques within the network: if user a scans user b, and user b

scans user c, that does not imply that user a must have scanned user c. This could

mean that, within the five minute interval represented by each timestamp, user b

came into contact with users a and c separately. It could also mean that the three
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users formed a line when they came into contact with each other, such that user b

was close enough to scan both users a and c, but those users were not close enough

to scan each other.

4.3 Simulation Architecture

We developed a modular system that allows the definition of compartmental models in

Python. Each model is defined within a Python module and implements, at minimum,

three functions: one to initialize new vertices when they are first added to the network,

one to log information about the current state of the model, and one that simulates

the spread of disease for a single timestep.

This architecture allows us easily develop and swap out variations of models for

different diseases and different amounts of simulation complexity. For any time ti,

the individual model modules are given full access to the iGraph vertices of both

the Gi and Gi+1 snapshots, so they may adjust the attributes contained within as

necessary — the times at which individuals enter each compartment, for instance, are

stored as attributes of their corresponding vertices.

4.3.1 The Flu Model

We first validated our simulation architecture by developing an intentionally simplistic

compartmental model for influenza. Influenza, commonly known as the “flu”, is

an infection caused by viruses belonging to one of four families: Influenzavirus A,

Influenzavirus B, Influenzavirus C, and Influenzavirus D (Krammer et al., 2018). Of

these, Influenzavirus A is perhaps the most widely known; in particular, its subtype

H1N1 was responsible for the 1918 Spanish flu and 2009 swine flu pandemics. The
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1918 outbreak is estimated to have killed 50 million people worldwide (Johnson &

Mueller, 2002), easily more than twice the total casualties of World War I, which

ended that same year (Gilbert, 1994). The flu is typically transmitted by airborne

particles released by a nearby infected individual’s coughing or sneezing.

While flu vaccines exist, the rapid mutation of the flu families of viruses prevents

humans from developing any long-term immunity; roughly every year, they must

reacquire (whether by vaccination or by recovery from infection) immunity to new

strains of the virus (Krammer et al., 2018). Since our dataset only covers a month

of interactions, our simulations do not run long enough for this lack of long-term

immunity to have any effect. Therefore, we chose to simulate the flu with a simple

SIR model: unless otherwise specified, individuals begin the simulation susceptible to

infection. If infected, they immediately become infected and infectious for between 5

and 8 days, after which they are considered to be completely recovered.

In the case of the 1918 Spanish flu, the basic reproduction number has been es-

timated as R0 ∈ [2, 3] (Mills, Robins, & Lipsitch, 2004). On the first Monday of

the Copenhagen Network study, individuals made contact with an average of 28.18

other participants. We thus estimate the transmission probability per contact as

β = 2.5
28.18×6

= 0.015. This is a crude estimate at best. Notably, an individual in the

Copenhagen dataset does not necessarily make equal or singular amounts of contact

with those 28.18 others. We reiterate that this simulation is only intended to validate

our software architecture and establish that epidemic outbreaks are possible in the

network. The interventions which we will apply in Section 4.4 are not based on such

rough estimates.

After each discrete timestep — recall that our contact data was reported in five

minute intervals — we consider the previous state of each individual separately. If

an individual was previously in the susceptible state, they remain susceptible in the
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next by default, though they may be infected later in the simulation of this timestep.

Whenever an individual is infected, they are moved to the infected state in the next

snapshot and assigned a random infectious period between 5 and 8 days. If an indi-

vidual was previously in the infected state, and their infectious time has expired in

the intervening five minutes, then they are moved to the recovered state. If, however,

an infected individual is scheduled to remain infectious, we explore all of its neighbors

in the previous snapshot, infecting any susceptible neighbors with probability 0.015.

Finally, recovered individuals remain in the recovered state; as previously noted, our

simulation would not run long enough for them to realistically move back into the

susceptible state.

All of these model parameters are uniformly applied to every individual in the pop-

ulation, an assumption that is also true of our forthcoming measles and norovirus

models. For example, we do not attempt to simulate other pre-existing conditions

that could exacerbate a flu infection. We do not have enough demographic informa-

tion to simulate otherwise. That being said, real-world populations similar to that

of the Copenhagen Network Study should, in fact, be composed primarily of healthy

individuals around the same age.

4.3.2 The Measles Model

Having validated the architecture of our simulation through the development of an

influenza model, the main focus of this thesis concerns measles and interventions for

measles-like diseases. A highly contagious disease which likely evolved from the same

viral ancestor as the recently eradicated rinderpest, measles was once responsible for

more than 2 million deaths annually (Rota et al., 2016). Nine out of ten susceptible

individuals who come into contact with an infectious individual will contract the dis-

ease (CDC (Centers for Disease Control and Prevention), n.d.-e), which can continue
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to spread effectively even when less than 10% of the population is at risk — in other

words, its herd immunity threshold is at least 90% (Rota et al., 2016).

Once it infects its host, the measles virus incubates for 10–12 days (CDC (Centers

for Disease Control and Prevention), n.d.-e). Prodrome, an initial period of milder

symptoms, then lasts 2–4 days, followed by a rash that lasts 5–6 days, and the host

will be contagious for up to 4 days before and after the rash appears. All told,

an infectious individual will spend up to 14 days infecting up to 90% of those they

meet. Thus, it is not surprising that measles has been targeted by the World Health

Organization for elimination, though their 2015 global target for reduction in cases

was not met (Rota et al., 2016).

We model measles using an SEIR compartmental model. Individuals begin in the

susceptible state. Once infected, according to the timeline enumerated above, they

are in the exposed state for between 10 and 12 days, then move to the infected state

for 7 to 14 days. Individuals are only capable of transmitting the disease while in

the infected state, which they do so at a rate per contact of β = 0.90 (CDC (Centers

for Disease Control and Prevention), n.d.-e). As with influenza, those infected with

measles eventually move to the recovered state, after which they are no longer at

risk of being infected. While measles carries a non-zero chance of death or other

complications (Rota et al., 2016), we chose not to simulate any of these alternative

outcomes.

One factor that makes measles so contagious is its ability to linger in airborne droplets

for hours (Rota et al., 2016). It is possible for a susceptible individual to contract the

disease without ever coming into contact with an infected individual, simply by their

occupying the same room within a few hours of each other. Because of the distinct

lack of location data in the Copenhagen network dataset, we chose not to simulate

this method of infection. As we will show in Section 6.1.2, the disease is more than
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capable of spreading rapidly by face-to-face transmission alone. We also note that

this possibility would not be simulatable with traditional full-mixing models, either.

4.3.3 The Norovirus Model

To demonstrate the flexibility of our architecture beyond simple compartments and

face-to-face contact events, we implemented a model to simulate the spread of norovirus,

the most common foodborne disease in the United States (CDC (Centers for Disease

Control and Prevention), n.d.-d). Because norovirus is easily spread by contaminated

food, by vomiting, and by toilet flushing, we believe that some amount of location-

based information is essential to a realistic simulation model. In lieu of any such

empirical data provided to us from the Copenhagen Network Study, we implemented

a compartmental model that also conservatively identifies clusters of individuals in

close contact with one another.

Ideally, we would be able to take the entire month’s worth of snapshots, compute the

connected components of each, and attempt to track patterns of how vertices enter

and exit components. This would allow us to estimate exactly when a cluster formed,

and it could allow us to smooth over any potential hiccups in the reported data — if

an individual remained in a cluster consistently but lost phone power for ten minutes

during that time, for instance.

Unfortunately, such a computation would be prohibitively expensive, and the extrac-

tion of locations and mobility patterns from anonymized contact data is beyond the

scope of this thesis. Rather, our norovirus model only considers snapshots within

predetermined intervals. Vertices are considered to be within a cluster if and only

if they are within the same connected component for every snapshot in the interval.

Once the last snapshot is processed and clusters have been determined, we can simu-
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Figure 11: Cluster Detection over Four Snapshots. Note that v6 is never
considered, as it cannot be in any non-trivial cluster.

late the spread of norovirus among the individuals of a cluster with some alternative

probability of transmission. Assuming our clustering interval is relatively short, on

the order of hours, any individuals newly infected by this method would not have

time to themselves spread the infection, so we do not need to retroactively explore

their interactions with individuals outside the cluster. Importantly, this allows our

model to identify clusters in a streaming fashion. At any given timestep, it need only

consider the next snapshot and the existing clusters that it has computed up through

the previous snapshot: if a vertex v belonged to cluster C at time ti, and v belongs

to component A at time ti+1, then v belongs to cluster C ∩ A at time ti+1.

For instance, consider the contact data over four snapshots visualized in Figure 11.

At time t1, no previous snapshots have been considered, so the computed clusters are

equal to the snapshot’s connected components: v0, v1, and v2 form one cluster, while

v3, v4, and v5 form another. At time t2, the entire snapshot is connected, thus, when

each vertex’s existing cluster is intersected with its current component, none of the

clusters are changed. At time t3, v3 appears in a different component from v4 and
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v5, so their cluster is split in two. Note that the choice to color v3’s cluster orange

while v4 and v5’s remains olive green is entirely arbitrary, and there is no significance

within our model to which vertices “remain” in an existing cluster and which are

“split off”. Finally, at time t4, the lack of an edge between v5 and v4 splits the former

off into an fourth cluster. Note that although an edge between v3 and v4 appears at

time t4, those vertices are not placed in the same cluster; they have been irrevocably

separated into different clusters at time t3. Also note that v6 is not placed into any

cluster at all, although it always appears in the same connected component as v5.

Since it does not appear in the initial snapshot, it cannot possibly appear in the same

connected component as any other vertex in all snapshots. It cannot appear in any

meaningful cluster, so, for the purposes of our model, it can be ignored.

Similar to influenza, immunity to norovirus is not permanent, but lasts long enough

that individuals cannot be infected more than once within the time span of our simu-

lations. We therefore simulate norovirus using an SEIR compartmental model, just as

we did measles. Recent work based on reported outbreaks in Japan has estimated the

basic reproduction number of norovirus to be R0 ∈ [1.11, 4.15] (Matsuyama, Miura,

& Nishiura, 2017). Adopting the same crude estimation as we did for influenza, this

gives our model a transmission probability per contact of β = 2.63
28.18×2

= 0.047. While

it may be possible for individuals to continue spreading the disease at some lower rate

once recovered (CDC (Centers for Disease Control and Prevention), n.d.-d), we did

not model this possibility. Individuals remain in the exposed state for 0.5 to 2 days,

and in the infected state for 1 to 3 days.

That basic number only applies to airborne transmission. As previously noted,

norovirus is spread especially well in shared restrooms and by contaminated food.

To account for these possibilities, our model first identifies clusters of individuals be-

tween 12:00 midnight and 4:00am, between 11:00am and 12:00 noon, between 12:00
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noon and 1:00pm, and between 1:00pm and 2:00pm. We assume that these individu-

als either share a dormitory or a meal with each other. Within each of these groups,

every infected individual has the opportunity to spread the infection to everyone else

in the cluster. This differs from the normal simulated mode of transmission in two

ways: firstly, this potentially gives infected individuals far more influence over those

nearby. Consider, for example, the clusters given by the four snapshots in Figure 11.

Suppose that, in this situation, individual v1 was infected. Since v1 appears in the

same cluster as v0 and v2, it would have a chance to infect both of those individu-

als. Notice, however, that v1 never makes direct face-to-face contact with v2. In the

standard simulation, the infection would not be able to spread to v2 within the time

span of these four snapshots. In the standard simulation, v1 could potentially infect

v0, but v0 would not become contagious quickly enough to then infect v2.

Additionally, we can apply an alternative probability of transmission to the con-

tact events assumed to have taken place within a cluster. In a food service sce-

nario, a single infectious employee who continued to work while symptomatic but

took reasonable precautions (wearing gloves and frequently washing or disinfecting

hands) was estimated to infect 167.4 customers over 2000 servings, where 80% of

the population was susceptible (Duret et al., 2017). Assuming that no customer was

served twice, this gives an increased transmission probability per cluster contact of

βcluster =
167.4

0.8×2000
= 0.1046.

4.4 Interventions

Having experimented with immunizing volunteers against smallpox by injecting them

with material from cowpox lesions, Edward Jenner published the procedure he termed

“vaccination” in 1798 (Riedel, 2005). The World Health Organization began an in-
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tensified effort to contain the disease in 1966, the last naturally occurring case was

reported in Somalia in 1977, and smallpox was declared eradicated in 1980 (Fenner

et al., 1988). The primary plan was a mass vaccination campaign with a goal of

immunizing 80% of the global population. Additionally, the WHO established an

extensive surveillance program to preempt outbreaks: whenever a case was reported,

the infected person would be isolated and their household and close contacts would be

vaccinated, a strategy termed “ring vaccination”. This sort of targeted intervention

could not be simulated in a full mixing model, which does not distinguish between

the individual members of each compartment and their interactions.

Compared to traditional full mixing, our graph-based models give us far more control

over the granularity of the simulation. They allow us to explore the transmission

of a disease on an individual, per-contact basis. They also allow us to implement

more sophisticated simulations based on the structure of the network, as we did with

norovirus. And, as a result of their more fine-grained simulation, graph-based models

also enable additional opportunities to explore interventions: strategies for preventing

or containing an epidemic.

Using our measles model, we tested five major intervention strategies: four for pre-

vention, based on vaccination, and one for containment, through quarantine. Further

variations on these strategies ultimately result in twelve simulated interventions. We

chose to test interventions using the measles model for three reasons: firstly, measles is

highly contagious, so interventions should have a more pronounced effect in a shorter

amount of time — if an individual escapes infection, that is more likely to be a result

of the intervention than a result of random transmission chance. Secondly, while

the measles virus is highly contagious, the measles vaccine is equally highly effective.

Properly administered in two doses, the vaccine is 97% effective (CDC (Centers for

Disease Control and Prevention), n.d.-c), so we avoid more complex scenarios where
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we must account for ineffective vaccinations. Finally, at the time of this writing,

measles outbreaks in the United States have recently risen drastically (CDC (Centers

for Disease Control and Prevention), n.d.-b), so interventions that target measles are

of greater immediate relevance. A summary of interventions is given in Table 2.

4.4.1 Uniform Vaccination

Our baseline intervention is vaccination with uniform probability. Whenever a indi-

vidual first appears in Copenhagen Network Study — whenever a new vertex is added

to the network — that individual has a chance of gaining complete immunity to the

disease. Effectively, individuals start in the recovered state instead of in the suscep-

tible state with some probability p. We simulated varying amounts of vaccination,

from p = 0.05 to p = 0.95 in increments of 0.05.

4.4.2 Vaccination by Degree Distribution

Considering our lack of demographic information, vaccination with uniform proba-

bility is likely the most realistic preventative intervention we can employ. However,

we imagine a scenario where there are a limited number of vaccines. Perhaps the

vaccine is costly to manufacture, difficult to administer, or experimental in nature.

Perhaps we are not dealing with measles proper, but with a new disease that spreads

similarly to measles. In these situations, rather than randomly selecting individuals

to vaccinate, we would like to vaccinate those that have the greatest effect on the

spread of the infection.

Once an individual is vaccinated, they can neither contract nor spread the disease.

In our graph-based models, the disease is spread along edges, thus, vaccinating an

individual is analogous to removing all of the edges incident to their corresponding
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Figure 12: Example Degree Distribution. This graph has degree distribution
(0, 1, 2, 2, 2, 1)

vertex. Alternatively, vaccinating an individual effectively removes their vertex from

the network: the individual is simply no longer capable of affecting the spread of

the infection. If we are to contain an infection by removing a limited number of

vertices, and the infection spreads along edges, then our ultimate goal is to remove

vertices in order to disconnect the network into multiple connected components. If we

can split the network into multiple connected components, any infection that begins

in one component will not be able to spread to the others. Given this goal, if we

have a limited number of vaccinations, one possible approach is to vaccinate those

individuals who make the most contact with other individuals.

The degree distribution of a graph is simply the numbers of vertices having each of

the possible degrees. For example, the graph in Figure 12 has degree distribution

(0, 1, 2, 2, 2, 1), because there are zero vertices with degree 0, one vertex with degree

1, two vertices with degree 2, two vertices with degree 3, two vertices with degree 4,

and one vertex with degree 5. Alternatively, we could express the degree distribution

as a sequence of bins of vertices: (∅, {v6}, {v3, v5}, {v1, v4}, {v2, v7}, {v0}).

Supposing that higher degree vertices would contribute to a faster or wider spread

of the infection were they to be infected, and supposing that those vertices are re-
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Figure 13: Example Flattened Graph. Flattening the four snapshots in Figure
11 produces this graph.

sponsible for connecting more components together, we simulated the vaccination of

limited numbers of individuals, prioritizing those of highest degree. Effectively, this

is simply sorting the vertices in ascending order by degree and vaccinating the last λ

corresponding individuals. For some values of λ, this will be close if not identical to

vaccinating the individuals in the k highest bins of the degree distribution.

The network representing the Copenhagen Network Study, however, is not a single

graph; it is composed of numerous graph snapshots. Before we can compute the

degree distribution, we must decide how many snapshots to “flatten” into a single

graph. Given a sequence of snapshots, the flattened graph contains an edge between

vertices u and v if and only if there is an edge between u and v in at least one of the

snapshots. The result of flattening the four snapshots in Figure 11 is shown in Figure

13.

One option is to simply flatten the entire network, combining the entire month’s worth

of snapshots into a single graph. We can think of this as providing those in charge of

administering vaccinations with advance knowledge of every individual’s movements

for the next month. While this would give us the most information about the degrees

of vertices, it is likely unrealistic. Therefore, we tested two additional variations on

this intervention strategy: first, using the network flattened over the first week of the

study, second, over just the first Monday.
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Figure 14: Example k-Cores. This graph’s highest k-core does not include its
highest degree vertices.

In all three cases, we simulated varying numbers of vaccinations in increments of

10. There are, for instance, 659 unique individuals seen in the first week of the

Copenhagen Network Study. We therefore simulated administering λ vaccinations,

where λ ∈ {10, 20, 30, . . . , 650}, and the vaccinations were given to the λ vertices of

highest degree based on the flattened graph of the first week.

4.4.3 Vaccination by k-Cores

With the same reasoning that motivated vaccination by degree, we next investigated

vaccination informed by k-cores. A k -core is a maximal subgraph such that every

vertex has degree at least k. A graph’s cores thus form a hierarchy of vertices, as any

vertex that appears in a core must also appear in any cores for lower values of k. Note

that a vertex with degree k is not necessarily contained in — and, moreover, does not

imply the existence of — the graph’s k-core. Additionally, the highest degree vertices

are not always found in the highest core. In Figure 14, for example, the highest degree

vertices are v3, v4, and v5, all of which have degree 5. There is, however, no 5-core.

The highest core is the 2-core, which contains vertices v0, v1, and v2.
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Vertices belonging to higher k-cores roughly correspond to vertices in denser regions

of the network, thus, we consider the possibility that these individuals have a greater

effect on the spread of an infection. As we did with the degree distribution, we first

considered three methods of flattening the network: flattening the entire month’s

snapshots, flattening the first week, and flattening the first Monday. For each flat-

tened graph, we computed every k-core. Given each set of k-cores, we then simulated

limited numbers of vaccinations, and vaccinations were given to the individuals that

appeared in the highest cores.

4.4.4 Vaccination by Density Decomposition

Similar to k-cores, the density decomposition partitions the vertices of a graph based

on the density of their subgraphs, producing “rings” of vertices (Borradaile, Migler, &

Wilfong, 2018). Compared to the highest core, the highest ring better approximates

the densest subgraph. It can be shown that if the highest ring in the density decompo-

sition is Rk, then the density of the densest subgraph is in the range (k− 1, k], where

density is the ratio of edges to vertices. Furthermore, every vertex in the densest

subgraph must be in the highest ring.

The downside to the density decomposition is its computational complexity. Finding

the density decomposition involves first finding an “egalitarian orientation”. Finding

that orientation has a running time of O(|E|2), which is the lower bound on the

running time of the decomposition. The k-cores of a graph, in contrast, can easily

be found all at once with a simple, greedy, pruning algorithm in linear, O(|V |+ |E|)

time (Matula & Beck, 1983).

As we did with k-cores, we suppose that the vertices in the highest rings, being in

the densest regions of the network, represent individuals who are best positioned
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to propagate the infection. The density decomposition was separately computed

for the network flattened over the first Monday, over the first week, and over the

entire month. For each decomposition, we simulated vaccinating a limited number of

individuals drawn from the highest rings.

4.4.5 Quarantining

The interventions we have considered thus far all revolve around vaccination. They

all rely on the concept of inducing immunity to a disease before coming into contact

with an infectious individual. If an individual has already been infected, an alternative

method of preventing an epidemic is to quarantine that individual: to isolate them so

that they cannot spread the infection to others. Effectively, this involves augmenting

our SEIR measles model to produce an SEIQR model, where individuals enter a

quarantined state between the infected and recovered states. Such a compartmental

model has previously been used to explore the impact of isolation on seasonal patterns

of infections (Feng & Thieme, 1995).

In the case of measles, during the prodrome period, individuals are already contagious,

but their externally perceivable symptoms are largely cold-like: a fever, coughing, a

runny nose, and pink eye (CDC (Centers for Disease Control and Prevention), n.d.-e).

Only after a rash appears is it obvious that measles is the cause. Therefore, we keep

individuals in the infected state for 2–4 days before moving them into the quarantined

state. During that time, they are still capable of spreading the infection. We assume

a perfect quarantine with which those affected are completely compliant: there is no

chance that individuals will ignore the quarantine and remain in the infected state,

and, once quarantined, there is no chance that an individual could inadvertently

transmit the infection. We also make no attempt to proactively quarantine others

who might have recently made contact with a newly quarantined individual.
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4.5 Summary of Simulations

We developed baseline models to simulate three different diseases on the Copenhagen

network: an influenza model, to verify that an epidemic simulation was possible, a

measles model, to serve as a basis for exploring interventions, and a norovirus model,

to demonstrate that our models are capable of handling more complex transmission

events than simple face-to-face contacts. Using our measles model, we then developed

twelve variations of intervention strategies: ten preventative and two responsive.
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timestamp user_a user_b rssi

0 0 1 -90

0 2 -1 0

300 0 3 -85

300 2 3 -80

300 2 -2 -70

300 3 2 -60

300 4 3 -90

Table 1: Example Format of Bluetooth Data.
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Table 2: Summary of Simulated Interventions
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Chapter 5

METHODOLOGY

In all simulations, one individual was randomly chosen from the first snapshot to be

the “seed” (not to be confused with the seed of the random number generator) of

the infection. Though it may not be realistic, for the purposes of our simulations,

participants of the Copenhagen network study are assumed to make negligible contact

with the outside world, and we do not simulate any chance of infection via such

external contacts. In order to allow ample time for infections to run their course, the

dataset, preprocessed as described in Section 4.1, was looped twice, creating eight

weeks of individual contact events. A summary of scenarios simulated is shown in

Table 3.

5.1 Baseline Models

Each model — SIR influenza, SEIR measles, and SEIR norovirus — was first simu-

lated without any interventions. For each baseline model, 30 seeds (in both senses of

the word: we tested different seeds of infection; to keep them consistent across trials,

we set the seed of the random number generator) were tried, and for each seed, 5

simulations were run. Thus, in total, 150 simulations were run for each model, 450

overall.

At each timestep of each simulation, we logged the number of individuals in each

compartment as well as the total number of affected individuals. Throughout this

thesis, we refer to an affected individual as one that has contracted the disease at

some point in the past: one who is or has been in the infected state, in the case of
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the influenza model, or one who is or has been in the exposed or infected states, in

the cases of the measles and norovirus models.

5.2 Models with Interventions

As noted in Section 4.4, all of our interventions were tested based on the measles

model. For uniform vaccination, we simulated varying values of the vaccination prob-

ability p from p = 0.05 to p = 0.95, in increments of 0.05. For each value of p, we

tested 10 different seeds for the initializing random number generator, and for each

seed, we ran 5 simulations — while the random number generator is seeded when

determining which individuals are initially vaccinated or infected, it is not when de-

termining transmission of infection. In total, 950 simulations were run for the uniform

vaccination scenario.

For the degree-, core-, and ring-based vaccination scenarios, we vaccinated λ indi-

viduals whose vertices were among those with the highest degree, core, or ring. The

values of λ were varied in increments of 10 up to the total number of vertices in the

corresponding flattened graphs. In the event of a tie between vertices, vaccinations

were distributed randomly. For example, suppose that there were 20 vertices in the

highest ring, ring Rk, and 30 vertices in Rk−1. If n = 30, we would vaccinate the 20

vertices in ring Rk along with 10 vertices randomly selected from Rk−1. If we then

incremented to n = 40, we would vaccinate the same 20 vertices in ring Rk, and we

would make a new random selection of 20 vertices from Rk−1.

As noted in Section 4.2, not every individual appears in every snapshot. There are

numerous individuals who do not make their first appearance until after the first

snapshot. In all of the vaccination scenarios, newly introduced individuals may be

vaccinated according to the parameters of the intervention, regardless of when they
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first appeared in the dataset. That is to say, in the uniform vaccination simulations,

every individual is vaccinated with some probability p once they make their first

appearance, even if that is not in the first snapshot. Likewise, in the degree-, core-,

and ring-based simulations, selected individuals were vaccinated once they made their

first appearance, even if that was not in the first snapshot. Additionally, because

some individuals first appear in later snapshots, it is possible that the λ vertices of

highest degree, core, or ring encompass all of the vertices in the first snapshot. In

this situation — which is also theoretically possible with uniform vaccination, though

highly improbable — it is not possible to seed the infection during the first timestep,

so we continue attempting to infect individuals as they make their first appearances

until we find a valid seed.

Specifically, there are 612 individuals who appear during the first Monday, 659 during

the first week, and 692 over the entire month. For each value of λ, we ran 5 simula-

tions. Thus, the 61 varying values of λ for the first Monday, 65 for the first week, and

69 for the first month collectively mandate 2925 simulations for the degree-, core-,

and ring-based scenarios.

Finally, in the quarantine scenario, we simulated two approximations of real-world

situations. Firstly, we tested quarantine with no other interventions. Secondly, we

tested quarantine with a uniform vaccination probability of p = 0.90. Of the proba-

bilities we had already previously tested, this best matches the percentage of children

who received the measles vaccination in the United States as of 2017 (CDC (Centers

for Disease Control and Prevention), n.d.-a). In both cases, as with the baseline

simulations, 30 different infection seeds were tried, with 5 simulations per seed. We

therefore ran 300 simulations of quarantine scenarios.
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Scenario Varying Parameters Total Simulations

Baseline Influenza 30 seeds 150

Baseline Measles 30 seeds 150

Baseline Norovirus 30 seeds 150

Uniform Vaccination
19 values of p

950
10 seeds

61 values of λ (Monday) 305

Vaccination

by Degree
65 values of λ (week) 325

69 values of λ (month) 345

61 values of λ (Monday) 305

Vaccination

by k-Core
65 values of λ (week) 325

69 values of λ (month) 345

61 values of λ (Monday) 305

Vaccination

by Ring
65 values of λ (week) 325

69 values of λ (month) 345

Quarantine
2 values of p

300
30 seeds

total 4625

Table 3: Summary of Simulated Scenarios
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Chapter 6

RESULTS

6.1 Baseline Scenarios

We begin by infecting the Copenhagen network using our three basic models. This

serves to confirm that our models are functional, to establish that an epidemic out-

break is possible, and to provide a baseline against which to compare the efficacy of

our eventual attempted interventions.

6.1.1 Influenza

We first consider a single baseline influenza scenario, illustrated by Figure 15. Here,

we have randomly selected a single seed for the infection, then run five simulations

based on that starting situation. In other words, while the randomly chosen seed was

held constant in all five simulations, the individual transmission events were not.

The complete results of simulating influenza without any interventions are plotted in

Figure 16 and Figure 17. We find that, despite the very low probability of transmission

per contact (β = 0.015), the disease experiences the rapid growth indicative of an

epidemic, managing to affect almost every individual in the population: the curve

does not quite reach 692. In the majority of our simulations, the outbreak occurs

within the first week. There were, however, two situations in which the randomly

chosen seed was not favorably positioned (with respect to the virus): in these cases,

the outbreak was delayed for about a week, as the number of individuals in the dataset

increases over the first week.
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Figure 15: Affected Individuals in a Baseline Influenza Scenario. Five in-
fluenza simulations used the same initial seed of the infection. Note the logarithmic
scale for time to better illustrate the individual curves.

These effects are reflected in the plot of infected individuals, Figure 17. In most

simulations, the number of currently infected individuals reaches its peak by the

beginning of the second week, but there are two where the curve is shifted to the

right by one week. We also note the difference in the general shape of the curves

to the left and to the right of the peak: because we simulate transmission of disease

through individual contact events that occur with some daily pattern, the increasing

portion of the curve is noticeably stepped. However, once an individual is infected,

we roll a die with regards to when they will recover, and this randomness smooths

out the decreasing portion of the curve.

Finally, we note that these plots are likely not (and were not intended to be) entirely

representative of a real-world influenza epidemic. In particular, these outbreaks are

accelerated by the simplicity of our SIR influenza model. In this model, as soon as

individual is infected, they move directly from the susceptible state to the infected

47



0

100

200

300

400

500

600

700

0 7 14 21 28 35 42 49 56

N
um

be
r 

of
 A

ffe
ct

ed
 In

di
vi

du
al

s

Time (days)

Figure 16: Affected Individuals in Baseline Influenza Scenarios. Each curve
is an average of five simulations with the same infection seed and no interventions;
the pointwise median of thirty curves is shown in black.
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Figure 17: Infected Individuals in Baseline Influenza Scenarios. Each curve
is an average of five simulations with the same infection seed and no interventions;
the pointwise median of thirty curves is shown in black.
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state; they are immediately capable of passing on the infection. Thus, the plotted

curves begin to show unencumbered, exponential growth within the first couple of

days.

6.1.2 Measles

In contrast to the immediate dispersal of influenza, the measles virus spreads with

a more complex pattern, as shown in Figure 18. Because the measles model uses

the additional exposed state, and exposed individuals cannot transmit the disease,

the outbreak initially appears to slow after infecting about a hundred individuals —

certainly, it spreads more slowly than our influenza simulations. In reality, however,

these are just the individuals that the original seed is capable of directly infecting.

The outbreak is initially limited by the number of individuals with whom that seed

makes direct contact. The incubation period of measles is between 10 and 12 days, so

by day 12, the initial batch of exposed individuals start transitioning into the infected

state, and only then can the epidemic truly spread.

This behavior is more evident in Figure 19, where we plot the number of exposed

individuals in blue alongside that of infected individuals in red. Up until about day

10, the initial seed is the only individual capable of spreading the disease, and the

distinctive stepped shape of the exposed curves reflects that seed’s daily movement

patterns. Notably, the infection spreads more slowly on days 7 and 8, which are

weekends. Much more rapid growth of the exposed curves begins around day 12, at

the same time we begin to see growth of the infected curves.

As we saw with influenza, there are a couple of cases where the initial seed is in a

sparser region of the network. This does nothing to prevent an outbreak; it only delays

it by a few days. We also observe that measles infects practically the entire population,
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Figure 18: Affected Individuals in Baseline Measles Scenarios. Each curve
is an average of five simulations with the same infection seed and no interventions;
the pointwise median of thirty curves is shown in black.

as previously shown in Figure 18, but the peaks of the exposed and infected curves in

Figure 19 do not get nearly so high. This is because the affected individuals are split

between the exposed and infected states; they are never all in the same compartment

at the same time. For the sake of completeness and later comparison, the sizes of all

compartments for five individual simulations are presented in Figure 20.

6.1.3 Norovirus

Rounding out our baseline scenarios, the results of our norovirus simulations are

summarized by Figure 21 and Figure 22. The norovirus model represents something

of a middle ground between the influenza and measles models: it is generally much less

virulent than measles, but its ability to infect clusters, as described in Section 4.3.3,

allows it to spread faster than the flu. As with measles, individuals in the norovirus
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Figure 19: Exposed and Infected Individuals in Baseline Measles Scenarios.
Each curve is an average of five simulations with the same seed and no interventions;
the median of thirty curves is shown in black.
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Figure 20: SEIR Compartments in a Baseline Measles Scenario. Five
measles simulations used the same infection seed. Note the initial increase in sus-
ceptible individuals as they enter the Copenhagen network.
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Figure 21: Affected Individuals in Baseline Norovirus Scenarios. Each curve
is an average of five simulations with the same infection seed; the pointwise median
of thirty curves is shown in black.
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Figure 22: Exposed and Infected Individuals in Baseline Norovirus Sce-
narios. Each curve is an average of five simulations with the same seed; the median
of thirty curves is shown in black.
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model must pass through an exposed state before they can spread the disease, but

that period is short enough for exponential growth to begin within a couple days, in

similar fashion to the overly-simplistic flu simulation. Individuals also spend relatively

little time in the infected state; the end result is that the exposed and susceptible

curves of norovirus simulations rise and fall in rapid, overlapping spikes. Individuals

quickly become exposed, transition to the infected state, infect others, and recover.

As shown in Figure 22, the numbers of individuals in each compartment never reach

the heights they do in flu or measles simulations, but as shown in Figure 21, the

outbreak still affects the majority of the population.

6.2 Uniform Vaccination

In the uniform vaccination scenarios, individuals are placed in the recovered state

instead of the susceptible state with some probability p upon their first appearance

in the dataset. One selected example is shown in Figure 23. In this simulation, we

set p = 0.90. Of the vaccination probabilities we tested, this most closely matches

the vaccinated percentage of the population in the United States as of 2017 (CDC

(Centers for Disease Control and Prevention), n.d.-a). The total number of individuals

who have been affected by the disease is plotted in black. Though dramatically

subdued compared to the baseline curve in Figure 20, this curve exhibits a period of

faster-than-linear growth, and it flattens out as it approaches the maximum number

of susceptible individuals, indicating that almost every susceptible individual has

already been infected.

This general result is true of the other uniform vaccination interventions, summarized

in Figure 24, which plots the number of affected individuals for each simulated vacci-

nation probability. As enumerated in Table 3, we simulated 19 different probabilities.
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Figure 23: SEIR Compartments in a Uniform Vaccination Scenario.
Five uniform vaccination simulations used the same initial seed, where p = 0.90.
maxt{|St|} = 73; mint{|St|} = 5; maxt{|At|} = 74.

For each probability, we tested 10 different infection seeds, and for each seed, we ran

5 simulations. Thus, each curve in Figure 24 represents the median of 10 averages of

5 simulations each. As illustrated by the shapes of the curves, increasing the proba-

bility of vaccination neither alters nor delays the general pattern of the outbreak, it

merely places a cap on the number of individuals that can eventually be infected.

This effect is reinforced by Figure 25. Here, we summarize the total number of af-

fected individuals for each vaccination probability. Each box encapsulates the 50

simulations run for a single vaccination probability, and the dashed line indicates the

expected number of individuals who would still be susceptible (i.e., (1 − p) × 692).

In uniform vaccination scenarios, essentially, everyone who could have been infected

was eventually infected. This agrees with existing estimates that measles outbreaks

can continue to occur even when <10% of the population is susceptible (Rota et al.,

2016). We further infer that, due to the densely connected nature of the Copen-
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hagen network, the herd immunity threshold (typically estimated between 89% and

94% (Rota et al., 2016)) appears to be higher than 95% in our simulations.

The only noticeable outlier occurs at p = 0.75: in this simulation, by random chance,

we happened to vaccinate every individual immediately surrounding the one who

would eventually be chosen as the seed of the infection, so the infection was never

able to spread. This inadvertent targeted ring vaccination is, of course, the exception,

not the trend.

6.3 Targeted Vaccination

We now imagine a hypothetical scenario in which we have a limited number of vaccines

to distribute in preparation for an epidemic. In such a situation, we would like to

try to target individuals for immunization in a more intelligent manner than uniform

random vaccination.

6.3.1 Vaccination by Degree

We first simulated prioritizing individuals by the degrees of their vertices: in other

words, those who made more unique contacts would receive the vaccine first. The

results of this intervention are given by Figure 26. As detailed in Section 4.4.2, we

tested three ways of computing the degree of each vertex in this network that changes

over time. The simulation in the top-left of Figure 26 computes the degree based on

the first Monday; in the top-right, based on the first week; in the center, based on

the entire month.

We observe that vaccination by degree using just the first Monday’s data does not

appear to make a difference compared to the uniform vaccination of Figure 24. This
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Figure 26: Affected Individuals when Vaccinated by Degree. Each curve is
the median of five differently seeded simulations with λ vaccinations. Clockwise from
top left: degrees computed from one Monday, from one week, and from one month.

makes intuitive sense: drawing from just the first Monday, there is simply not enough

data about the contact patterns of vertices to make an intelligent decision regarding

whom to vaccinate. Once we consider the data from the first week, we start to see

some improvement at higher numbers of vaccinations. Starting at about λ = 500

vaccinations by highest degree, the outbreak has been delayed until the beginning

of the fourth week. Our third simulation is, admittedly, not so pragmatic, since it

requires knowing all the contacts each individual will make over a month. But if we

happen to have that information, and we vaccinate according to highest degree, we
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find that around λ = 540, the disease no longer infects the majority of susceptible

individuals (540 vaccinated, thus, 152 susceptible, and a median of only 28 infected).

In other words, the herd immunity threshold has been lowered to around 80% — a

remarkable improvement over uniform vaccination.

6.3.2 Vaccination by k-Core

Our second targeted vaccination strategy involves the use of k-cores. As with vac-

cination by degree, we simulated administering a limited number of vaccinations,

prioritizing individuals whose vertices were in higher cores, and we computed those

cores based on the first Monday, the first week, and the entire month. These results

are shown in Figure 27.

Disappointingly, we find that vaccination by k-core does not appear to perform any

better than uniform random vaccination. In retrospect, however, this makes sense:

higher k-cores identify subgraphs that are clique-like, whereas higher degrees identify

the centers of subgraphs that are star-like. In a social network, we find it believable

that there are more stars than cliques. Moreover, k-cores identify denser regions of

a graph; they approximately identify clusters of vertices. In a targeted vaccination

scenario, we do not necessarily want to vaccinate the clusters of individuals themselves

— we want to vaccinate the individuals who connect those clusters to each other.

6.3.3 Vaccination by Ring

Finally, we turn our attention to the density decomposition; we prioritize the vacci-

nation of individuals whose vertices appear in higher rings, in the same manner as we

did with degrees and k-cores. These simulations are plotted in Figure 28, and they

show that vaccination by ring has similar effects to vaccination by degree. Given only
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Figure 27: Affected Individuals when Vaccinated by k-Core. Each curve is
the median of five differently seeded simulations with λ vaccinations. Clockwise from
top left: k-cores computed from one Monday, from one week, and from one month.

the first Monday’s contact data, we see no improvement over uniform vaccination.

Given the first week’s data, we can’t prevent the outbreak, but we can certainly delay

it. And given the entire month’s data, the disease fails to become an epidemic around

λ = 550 (142 susceptible, median of 26 infected), once again suggesting that the herd

immunity threshold has been lowered to about 80%.

However, while vaccination by ring produces similar results to vaccination by degree,

it takes more computational resources to orchestrate. The degree of every vertex in
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Figure 28: Affected Individuals when Vaccinated by Ring. Each curve is the
median of five differently seeded simulations with λ vaccinations. Clockwise from top
left: rings computed from one Monday, from one week, and from one month.

a graph can be computed in linear time with a streaming model; it can be computed

as the graph is being parsed from the contact data. The density decomposition of the

graph first requires that the entire graph be loaded into memory, and then its running

time scales quadratically with the number of edges — of which there are very many,

per Figure 8.
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6.4 Quarantine Scenarios

Our final intervention introduces quarantining of infected individuals. As described in

Section 4.4.5, we assume a perfect quarantine with which individuals are completely

compliant, and we do not attempt to proactively quarantine anyone who has not yet

exhibited the distinctive measles rash. Specifically, we introduce the quarantine state

to two previous scenarios.

The results of enforcing a quarantine within the baseline measles scenario are shown

in Figure 29. Because the initial seed will be quarantined as soon as they exhibit a

rash, there is a 2–4 day window at the beginning of the simulation when they must

infect others, else the infection can never spread. Once the initial seed infects their

contacts, there is a clearly visible period of about 10 days when nothing happens.

This is because the initial seed has moved to the quarantined state, and those they

infected are still in the exposed state. As we saw with the baseline simulations in

Figure 18, rapid growth is delayed at least until the first batch of exposed individuals

becomes infectious. Those in that first batch are likewise limited to a 2–4 day window

before their own quarantine begins — depending on how successfully they spread the

disease, there may still be a significant number of uninfected individuals until after

the second or third round of infections. Ultimately, in the majority of our simulations,

a quarantine alone did not reduce the total number of individuals infected; it only

changed the pattern by which that number was reached.

We then combined the quarantine strategy with a uniform vaccination probability of

p = 0.90, which, of all our models, we felt would be a plausible setup and response

to a measles outbreak. These results are plotted in Figure 30, and they are much

more varied (sample standard deviation of final affected totals: s = 17.4). With a

vaccination probability of p = 0.90, we expect that about 69 individuals would be
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susceptible. The combination of a shorter infectious period with fewer susceptible

targets means that at least three, often four “generations” of individuals had to be

successively exposed before an outbreak approached its final total. Note the extended

axis for time in Figure 30: we looped the Copenhagen dataset three times rather than

two for these simulations to give the infection more time to propagate. We conclude

that in a real-world scenario, a simple responsive quarantine is not adequate to contain

an outbreak within such a densely connected local population, but it could delay the

epidemic so that a more appropriate intervention could be attempted.
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Figure 29: Affected Individuals in Quarantine Scenarios. Each curve is an
average of five simulations with the same infection seed; the pointwise median of thirty
curves is shown in black. The dashed line is the baseline median from Figure 18.
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Figure 30: Affected Individuals in Vaccination-Quarantine Scenarios. Each
curve is an average of five simulations with the same seed, where p = 0.90; the median
of thirty curves is shown in black. The dashed line is the median from Figure 24.
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Chapter 7

CONCLUSION

7.1 Future Work

7.1.1 Ineffective Vaccinations

In our intervention strategies, we attempted to contain measles, for which there exists

a vaccine that is 97% effective (CDC (Centers for Disease Control and Prevention),

n.d.-c). This is not the case for all diseases. As of 2017, for example, there was no vac-

cine for malaria, and the best candidate had between 26% and 40% efficacy (Phillips

et al., 2017). Just as we applied existing graph metrics to target individuals in the

event of limited vaccinations, similar approaches could be applied when simulating

experimental vaccines that may not be so effective (though malaria itself does not

spread through face-to-face contact, so it would not be realistic to simulate that

particular disease with the Copenhagen dataset).

7.1.2 Additional Community Detection Algorithms

When developing our norovirus model, we incorporated a crude streaming algorithm

to detect clusters of individuals. In a sense, our targeted vaccination strategies did

the same thing, just with a different goal: to vaccinate key clusters rather than infect

them. Our approaches are certainly not the only ways to detect clusters or other

community structures. The iGraph library upon which our simulations are built,

for example, already implements a number of community detection algorithms (The

iGraph Core Team, 2015). We believe there is plenty of potential in applying such
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algorithms, both to increase the realism of simulations and to increase the efficacy of

interventions.

7.1.3 Combinations of Interventions

In our simulations, we found that neither a perfect quarantine nor extensive uniform

vaccinations alone could contain an epidemic. However, combined, they can at least

delay its spread, providing the opportunity to orchestrate an appropriate response.

The natural next step is to explore other combinations of interventions. In particu-

lar, our quarantine policies were rather conservative. A more aggressive quarantine

combined with targeted vaccinations should prove more effective.

7.1.4 Simultaneous Infections

Our epidemic simulations each employ a single compartmental model for a single

disease. In the real world, it’s possible for multiple outbreaks to occur simultaneously,

and this may necessitate a change in interventions. In the case of measles, we could

attempt to proactively treat individuals as soon as they display any symptoms, rather

than waiting for the rash to appear. However, measles begins with a few cold- or flu-

like symptoms (Rota et al., 2016) — what happens if an influenza outbreak occurs at

the same time? If we are not careful, we might place both individuals infected with

measles and individuals infected with the flu but susceptible to measles in the same

hospital wing, for instance. Simultaneous infections should be simulatable with a few

tweaks to our models.
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7.1.5 External Contacts and Deaths

There are some individuals in the Copenhagen dataset who do not appear in the

first snapshot, and so the number of individuals increases over roughly the first week,

as seen in Figure 20. For the most part, however, our network does not grow. Real

populations are, of course, typically not so isolated. Even if they are, their sizes could

still change through the deaths of individuals. Our simulations are not so long for

births to matter, but external contacts and deaths could be incorporated.

7.2 Summary of Contributions

To rectify the imprecision of existing techniques for mathematically modeling epi-

demics, we have simulated disease spreading on a high resolution social network, using

a real-world dataset that captures individual human interactions with extremely fine

granularity. Using these simulations, we implemented twelve strategies for intervening

and either preventing or containing an infection. We showed that, by representing the

network as a graph, we could apply existing graph metrics to inform more intelligent

interventions. Notably, we showed that targeted vaccination based on the degree

distribution or the density decomposition of the network could delay or prevent a

measles-like epidemic using fewer vaccinations than existing estimates, which must

assume a random distribution.
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