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Abstract 

Core-shell nanoparticles represent a class of materials that exhibit a variety of 

properties. By rationally tuning the cores and the shells in such nanoparticles (NPs), 

a range of materials with tailorable properties can be produced which are of interest 

for a wide variety of applications. Herein, experimental and theoretical approaches 

have been combined to show the structural transformation of NPs resulting to the 

formation of either NiFexCy encapsulated in ultra-thin graphene layer (NiFe@UTG) or 

Ni3C/FexCy@FeOx NPs with the universal one-step pulse laser ablation in liquid 

(PLAL) method. Analysis suggests that carbon in Ni3C is the source for the carbon 

shell formation, whereas the final carbon-shell thickness in the NPs originates from 

the difference between Ni3C and FexCy phases stability at room temperature. The 

ternary Ni-Fe-C phase diagram calculations reveal the competition between carbon 

solubility in the studied metals (Ni and Fe) and their tendency toward oxidation as 

the key properties to produce controlled core-shell NP materials. As an application 

example, the electrocatalytic hydrogen evolution current on the different NPs is 

measured. The electrochemical analysis of the NPs reveals that NiFe@UTG has the 

best performance amongst the NPs in this study in both alkaline and acidic media.  

 

 

 

Keywords: Core-shell nanoparticles, Carbon-shell formation, Metal-carbide, Pulse 

laser ablation in liquid, Nickel-iron-carbon ternary phase diagram, Hydrogen 

evolution reaction. 
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1 Introduction 

 

One focus in nanotechnology is to combine materials properties to generate 

nanomaterials with new multifunctional properties. This can be achieved, for 

example, by combining two or more metal components into an alloy or core-shell 

structures.[1,2] Recently, 3d transition metals and their alloys encapsulated in 

carbon-based materials (metalcarbide@C) have emerged as promising candidates 

for different applications such as energy storage [3–8] The fundamental basis of this 

strategy relies on the electronic modification of graphitic shell by a metallic core. 

Another prominent advantage of this strategy relies on providing a protective 

graphitic shell for the core, which significantly improves the durability of the NPs in 

harsh conditions.[9,10] Since electron transfer and adsorption of the reacting species 

is affected by the work function of the metallic core and the thickness of the shell, it 

is predicted that the feasibility of such materials for any applications can be 

optimized by tuning the physicochemical properties of the metallic core and the 

number of graphitic layers. Thus, the optimization of these unique materials through 

structural and electronic modulation enables the most advantageous promotion of 

the usage of such materials.   

Recent density functional theory (DFT) calculations [6,11,12] have shown that 

charge transfer occurs from the metal cores most efficiently to a single layer carbon 

shell. These studies demonstrate that the number of graphene layers exhibits a 

significant impact on the electronic structure of the metal@C nanostructures. 

However, in experimental studies, the prepared metal@C nanoparticles (NPs) entail 

a range of carbon shell thicknesses; yet it is technically challenging to make a thin 
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carbon layer on metal NPs surface. This suggests that effective synthetic protocols 

should be developed so that these theoretical insights can be directly compared with 

the experimental data and more importantly, to unravel the origin of the mechanism.  

Here we show that by controlling NPs synthesis parameters during pulsed laser 

ablation in liquid (PLAL) method, an optimal and reproducible metal-

carbide@graphene structure can be achieved. In this context, nickel-iron nanoalloys 

through a one-step and facile PLAL method are encapsulated in ultrathin graphene 

spheres (NiFe@UTG) and further examined as electrocatalysts for the hydrogen 

evolution reaction (HER) in both acidic and alkaline media. This study provides a 

detailed description of the geometric and electronic structure of all samples using 

different structural analysis and theoretical considerations.

 

2 Results and discussion 

 

2.1 Synthesis and characterization  

2.1.1 NiFe alloy NPs encapsulated in the ultra­thin graphene layer  
 

The NiFe@UTG was synthesized via the PLAL method describes in our previous 

study [13].  Briefly, nickel-iron alloy NPs encapsulated in an ultra-thin graphene shell 

(NiFe@UTG) were obtained from a laser ablation process of a Ni80Fe20 alloy target 

picosecond laser (ps-laser) in acetone. Fig. S1 represents the synthesis procedure 

and economical aspects are briefly discussed in Supporting Information 

High-resolution transmission electron microscopy (HRTEM; Fig. 1) images show that 

the NiFe@UTG samples consist of bimetallic metal nanoparticles (NPs) that are 
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completely encapsulated by graphene shells. The NiFe@UTG NPs have the 

average size distribution of 12.5 nm (see the statistical analysis in Fig. S2). Energy-

dispersive X-ray (EDX) maps on the single-particle show that Ni and Fe atoms are 

distributed homogeneously (Fig. 1c), which is also supported by the line scan shown 

in Fig. S3. Both imaging methods suggest the presence of an alloy structure in the 

NiFe NPs. In addition, inductively coupled plasma optical emission spectroscopy 

(ICP-OES) shows the mass ratio of Ni80Fe20 for the NiFe@UTG sample (Fig. S3). 

According to the statistical analysis of almost 100 NPs by HRTEM (Fig. 1c), the 

graphene shells on the NiFe NPs are very thin, and most of the graphene shells 

(>90%) consist of only one or two layers. 

 

Fig. 1 (a) HRTEM images of NiFe@UTG (Ni80Fe20), showing the graphene shell and encapsulated 

metal nanoparticles with different sizes. The inset indicates the full encapsulation of an individual 

nanoparticle (arrows demonstrate the graphene layer).  (b) EDX maps for NiFe@UTG for Ni (blue),  

Fe (brown) and pink color indicates regions where both Ni and Fe are detected. (c) Statistical analysis 
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of the number of layers in the graphene shells encapsulating the metal nanoparticles in NiFe@UTG. 

XPS spectrum of NiFe@UTG. (d) High-resolution Fe 2p spectrum. (e) Ni 2p spectrum. 

Chemical states of the NiFe@UTG (Ni80Fe20) NPs were measured by X-ray 

photoelectron spectroscopy (XPS), Fig. S4. In the high-resolution C1s the peaks to  

sp2 -hybridization (C-C bond, ~284.5 eV) is observed, and the sample produced a 

small peak corresponding to carboxylates (O-C=O) at 288.5 eV (Figure S4a). In the 

Ni 2p and Fe 2p spectra, clear peaks at 707 eV and 853 eV related to metallic Fe 

and Ni in Fig. 1d and 1e, respectively, suggest that both Fe and Ni maintain their 

metallic state. Furthermore, oxidized Ni and Fe species are also detected at 855.6 

eV and 710.5 eV, respectively, and these are attributed to major carbide and 

parasite oxide phase as discussed below in the context of the XRD, Raman and XAS 

measurements. This indicates that NiFe NPs are entirely encapsulated within the 

graphene shell, which prevents the further oxidation of the metallic phase in NPs 

when exposed to air and oxidizing environmental.  

Generally in PLAL, the interaction of the laser-formed NiFe clusters with oxidizing 

medium induces the formation of mixed metal oxide and metallic NPs.[13] Reactive 

oxygen species can be formed in the plasma during laser ablation, and this reactive 

species can oxidize the particles.[14,15] In this study, the ablation is carried out in 

acetone, which has a high amount of bonded oxygen (C:O ratio 3:1) as well as 

dissolved oxygen (solubility of oxygen in acetone 45cm3/L).[16] Thus the presence of 

Fe2+/3+ species (Fig.1d) and Ni2+ (Fig. 1e) can be related to the interaction of iron and 

nickel with carbon or oxygen and further analysis are needed to find out the 

structure. The latter can originate from residually dissolved atmospheric or bonded 

oxygen in acetone or oxygen from H2O impurities.[15,17] Carbon is from solvent 

decomposition as discussed below. In any case, these XPS results are consistent 
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with previous observations of metal cluster formation during the PLAL 

process.[18,19]  

 

2.1.2 The intrinsic role of laser parameters, solvent and metal­core compositions in the 

formation of ultra­thin graphene shell in metal@C NPs produced via PLAL 

 

In order to use PLAL as an universal and efficient method for substituting precious 

metal electrocatalysts with non-precious metal@C structures in energy applications, 

it is essential to elucidate the role of each compound during the synthesis procedure. 

Due to the chemical reactions between the metal vapour and the liquid surroundings 

during the NPs formation process, different oxidation or carbonization states can be 

achieved by PLAL.[20,21] Hence, by choosing the correct synthesis parameters, 

PLAL can be a promising method that enables the generation of a variety of 

nanomaterials for specific applications.  

 

2.1.2.1 Role of laser parameters and solvent on the formation of ultra­thin graphene shells 

 

To illuminate the possible influence of the laser pulse duration on the structure of the 

final NPs and graphitic carbon thickness, Ni80Fe20 alloy was also ablated in acetone 

solution with a nanosecond laser (ns-laser). Fig. 2 shows the comparison between 

Ni80Fe20 produced with a picosecond laser (ps-laser) and that of produced with the 

ns-laser. As Fig. 2b reveals NPs created with ns-laser are encapsulated in a thick 

layer of graphene compared to that of ps-laser ablation, where only a thin graphitic 

layer is formed (NiFe@UTG NPs). This behaviour is probably due to the pulse 
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duration that influences the electron cooling time and, consequently, on the heat 

effect on the surface of the metal target as well as surrounding liquid.[22] Due to the 

shorter pulses in case of the ps-laser ablation, thermal ablation processes, such as 

the solvent decomposition, are less likely compared to ablation processes with ns-

pulses. Therefore, the slower cooling rate of ns-pulses affects the formation of a 

thicker graphite shell.  

To further explore the full potential of PLAL in producing metal@C NPs, the role of 

the solvent structure on the thickness of the graphene shell in the NPs was also 

investigated by using toluene and ethanol instead of acetone. Furthermore, water 

was used to reveal the dependency of the NPs structure on an inorganic solvent 

(Fig. 2e). These liquids have been chosen due to their different macroscopic liquid

properties and their common use within the PLAL community. Pronounced NiFe 

encapsulated in carbon shell (NiFe@C) structures are observed in all the studied 

organic solvents. However, the structure and morphology of the NPs clearly differ. 

Fig. 2 c-e shows HRTEM images of NPs synthesized in toluene, ethanol and water.  
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Fig. 2 HRTEM images of NPs produced from Ni80Fe20 (a) with ps-laser in acetone and (b) with ns-

laser in acetone, as well as (c-e) with ps-laser in toluene, ethanol and water, from left to right. 

 

When working with organic solvents, their degradation is expected during 

PLAL.[15,23,24] Thus, it is expected that a carbon-shell formation is favoured over 

solvent integration within the particles. In the case of toluene, irradiating the solvent 

itself already leads to the formation of a graphene matrix [25], which can also be 

observed in the presence of nanoparticles.[26] This is due to the significant amount 

of carbon atoms present within the toluene molecule, resulting in their release by 

solvent pyrolysis during the ablation process. Based on the amount of carbon atoms 

within the solvents it is expected that the carbon shell formed on the NPs will be 

thicker for acetone than for ethanol. However, as can be seen in Fig. 2 a and d, this 

is not clearly observable. This deviation from the expectation can partly be ascribed 

to the different NP sizes obtained and thus, to different shell thickness to core size 

ratios. From literature it is known that the choice of solvent used during PLAL has a 

significant influence on the particle size distribution [27,28]. Additionally, the solvents 
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exhibit different chemical activities with the target atoms, both depending on the 

choice of solvent and target, resulting in different carbon shell thicknesses and 

different amounts of integrated carbides [29,30]. In the case of NPs produced in 

water, having a low contrast at the TEM image indicates oxidized nanoparticles as 

already previously observed [31,32] for Ni and Fe NPs in aqueous solution. 

 

 

2.1.2.2 The critical role of metal­core composition on the formation of ultra­thin graphene shells 

 

To understand the role of the metal core in the formation an ultra-thin graphene shell 

in metal@C materials, laser ablation was conducted for a set of metal compositions 

Ni, Ni80Fe20, Ni50Fe50, Ni36Fe64 and Fe in acetone (see Section 2.1.2.1 for selection 

of laser parameters and proper solvents). EDX revealed that the atomic 

compositions of NPs are close to that of the target materials (Fig. S5). Interestingly, 

NPs show pronounced structural differences and size with the different elemental 

compositions (Fig. S5-S7 and Table 2). According to HRTEM images, NPs produced 

from Fe foil have a pronounced Fe@FeOx structure. Preferential oxidation of Fe in 

NiFe is described in literature both for bulk and NiFe NPs [33,34]. In very recent work 

[35], the influence of different metals during laser ablation in acetone has been 

studied. It has been found that in the case of more inert noble metals, such as Pt, Au 

and Pd, mainly elemental NPs are obtained. In contrast, some non-noble metals, 

such as Ti, Mo and Ni, form metal carbide cores whereas other, such as Mn or Fe, 

tend to form mixtures of metal and metal oxides. In the same work, the tendency to 

form carbides has been explained by d-orbital-vacancies and subsequently higher 

binding energy of carbon to the d orbital. The formation of oxides and the 
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carbonization takes place in the gas phase (cavitation bubble), while the creation of 

a graphitic shell has been hypothesized to happen in the liquid phase triggered by 

laser-irradiation metal-catalyzed graphitization. Similar observation is also done in 

the present work. It has also been shown by DFT calculation that the intermetallic 

Ni3Fe is a stable phase in the standard Fe–Ni diagram, while Fe segregation at the 

surface of the Fe-rich NiFe alloys is expected.[36] Therefore, certain segregation can 

be expected to occur for Fe-rich alloy compositions. In the next section (2.2), 

different characterizations and phase diagram calculations have been carried out to 

further elucidate the possible origin of the phase segregations and structural 

differences in the NPs.  
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Fig. 3 HRTEM images of NPs synthesized from (a) Fe, (b) Ni34Fe64, (c) Ni50Fe50 and (d) Ni foils with a 

ps-laser in acetone. 

 

 

2.2 Structural characterization of NPs produce in acetone with ps­laser  

 

In this section, four precise and detailed structural NP analyses have been 

performed to clarify the origin of the different structures within the NPs independence 

of the metal core compositions. Finding the source of elemental segregation is the 

key parameter, which leads to the formation of NPs with different core-shell 

structures (Fig. 3). 

 

2.2.1 XRD and RAMAN characterizations 

 

It is expected that metal carbides play an important role in the formation of the 

graphene-shell around the NPs.[35,37] To elucidate the existence and the type of 

carbides in the samples, their phase compositions were studied by X-ray diffraction 

(XRD). The analysis was carried out using information from the International Center 

for Diffraction Data (ICDD) database and simulations using the program FullProf.[38]  

First, the XRD patterns (Fig. 4a and S8) appear similar for all the samples, despite 

their nominal composition. A closer look reveals the major differences existing and 

the changes occurring along with the varying Ni-Fe ratio, as explained in more 

detailed below. The end members, Ni and Fe NPs, were analysed to understand the 

phase evolution within the series and to identify the carbides and other main phases. 
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Ni50Fe50 and Ni36Fe64 samples have very similar phase composition (Fig. S8), and 

therefore, only the former is included in the main manuscript (Fig. 4a). The Ni sample 

turns out to be a mixture of two different forms of Ni carbides; a hexagonal 

(rhombohedric) phase, noted as h-Ni3C, and a cubic phase, c-Ni3C (Fig. 4a, bottom). 

The same phase composition for Ni NPs has been reported in a previous study [39], 

in which the cubic phase is reported to be an intermediate carbide phase in the 

formation of the more typical h-Ni3C. No hexagonal or cubic metallic Ni is present 

based on their lattice mismatch. When Fe is introduced to the system (Ni80Fe20, 

Ni50Fe50), the main components change to the well-known cubic alloy, NixFey [40], h-

Ni3C (Ni80Fe20) and Fe7C3 (Ni50Fe50). (Note that the lattice parameters of the cubic 

Fe-Ni cannot be mistaken to c-Ni3C due to the adequately smaller unit cell of the 

latter). Also a slight shift in the lattice size of the NixFey alloy NPs is observe along an 

increasing amount of Fe as expected. The fitted lattice parameters of the raw data 

suggest compositions very close to the expected stoichiometry for the alloy phases 

(e.g. Ni74Fe26 for Ni80Fe20 (NiFe@UTG) as interpolated from the database values). In 

addition to the main components, some parasite phases begin to appear, which are 

best indexed as metal oxides (NiO and Fe3O4/-Fe2O3). The oxides can especially 

explain some of the minor reflections, but unfortunately, most of their distinct peaks 

are superimposed with carbides and NixFey alloy. Albeit also the Ni/Fe carbides have 

overlapping main reflections, they can be distinguished from each other from an 

additional shoulder that appears on the right side of the Fe7C3 main peak. This is 

distinctively seen the first time in the Ni50Fe50 sample but not excluded in Ni80Fe20. 

Therefore, we must assign these samples to contain both the metal carbides. Finally, 

the Fe sample is composed mainly of the Fe7C3 and a Fe phase that has a small 

amount of dissolved carbon in the iron lattice; the structure of this (Fe, C) phase is 
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very similar to that of Ni-Fe alloy but differs from the typical -Fe. Yet few reflections 

remain unidentified despite our intensive efforts.  

As a summary, XRD clearly confirms the presence of metal carbides in significant 

amounts in the NPs. The presence of oxides is defined with less certainty and to a 

much lesser extent but still well supported. Moreover, the amount of h-Ni3C appears 

to decrease along with increasing Fe content in the measurement series, whereas 

the amount of FexCy goes to the opposite direction. It is worth mentioning that XPS 

analysis for the sample under study, Ni80Fe20 (NiFe@UTG) also show oxidized 

metals (Fig. 1 d and e) to which both carbides and oxides can contribute, as also 

reported previously [41–44]. 

Raman spectroscopy is also utilized to reveal each surface phase present in NPs 

with different ratios (Fig.4b). Raman analysis is a well-known method to investigate 

the graphitic carbon in the materials and often reveals minority phases not 

detectable by XRD. Fig. 4b shows that Raman spectra for all the NPs comprise the 

dominant Raman modes of the defect-induced D mode at 1300–1360 cm-1 and the 

graphitic mode (G mode) at around 1600 cm-1. Here, the ID/IG is the intensity ratio of 

the D band to the G band. The peak intensity ratios of ID/IG are calculated to be 

14.74, 1.63, 2.05, 0.96 and 0.72 for the Fe, Ni36Fe64, Ni5Fe5, Ni80Fe20 (NiFe@UTG) 

and Ni samples, respectively. These values of ID/IG show increase of the graphitic 

carbon share as a function of increasing Ni ratio in the metal-core. These results are 

in a good agreement with other characterizations indicating the crucial role of the Ni 

to Fe ratio in producing an ultra-thin graphene layer.  

Raman spectroscopy further supports the presence of Fe-oxides in the NPs. Raman 

features at the low-frequency region for the NPs prepared with Fe-target (Fig. 3a) 
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agrees well with hematite structure. [45,46] The Ni50Fe50 and Ni36Fe64 samples have 

similar Raman spectra at the low-frequency region (Fig. 4b) that display the most 

strong peak in this region at ~690 cm‾1 and two weaker peaks at  572 and  461 

cm‾1. The strongest peak at ~690 cm‾1 is attributed to maghemite (-Fe2O3) since 

only this phase of iron oxide shows its most pronounce Raman peak at this position 

[47], and for the small-sized maghemite NPs, this is almost the only observable 

Raman band.[47]  

 

 

Fig. 4 (a) Measured (red) and simulated (black) XRD patterns with the obtained compositions and (b) 

Raman spectra for Fe, Ni36Fe64, Ni50Fe50, Ni80Fe20 (NiFe@UTG) and Ni.  
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Based on these XRD and Raman analyses, Fe favors formation of more amorphous 

carbon layers. Hence, the presence of Ni3C plays a predominant role in the 

formation of graphite layers, as also suggested by other studies.[37,48] 

 

 

2.2.2  X­ray absorption near edge structure (XANES) at the Fe K­edge.  
 

Next, X-ray absorption spectroscopy (XAS) analysis is implemented (Fig. 5 and Fig. 

6) to investigate the local structures and chemical states of Fe and Ni in the 

synthesized NPs. [49] The Fe K-edge normalized XANES spectra of the NPs 

compared with standards are shown in Fig. 5a and 5c. Fig. 5a inset 2 shows that the 

absorption edges of the NPs are located in between the metallic reference Fe foil 

and that of the powder oxidized Fe standards (i.e. Fe2O3 and Fe3O4). The oxidation 

states are further investigated by plotting the energy shifts in the half-height of the 

absorption edge against the formal iron oxidation state of the standard samples (i.e. 

+0 for Fe foil, +2.67 for Fe3O4 and +3 for Fe2O3). As a result, a linear function is 

derived and used to qualitatively asses the average oxidation state of Fe in the NP 

samples. The results of this estimation are shown in Table S1 and Fig. 5b and 

suggest that all the samples contain metallic and oxidized Fe. This is well in 

agreement with XRD observations of the presence of NixFey alloy and major Fe 

carbide and parasitic oxide phases in the bimetallic NPs. Likewise, for the end 

member monometallic Fe NPs these observed intermediate oxidation states support 

the XRD and Raman findings of coexistence of metallic Fe and Fe carbides and 

oxides.  
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Furthermore, as it can be seen in both Fig. 5a and 5c, inset 1, there is a lack of 

sharpness in the pre-edge absorption feature of the NPs, which could indicate either 

metallic iron, iron carbide, or coexistence of both. [50,51] In addition, as seen in the 

inset 3 in Fig. 5a and 5c, a partial change of the edge crest peaks of the NPs is also 

observed (i.e. the crest peaks are higher than those in the standard Fe foil and lower 

than those from the oxides standards), which is another indication of the presence of 

iron carbide in these samples .[48] On the other hand, the XANES derivative spectra 

in Fig. 5d confirms the presence of not only metallic iron in the NPs (i.e. Fe0 in the 

Fig. 5d) but also other oxidized species such as Fe2+ and Fe3+, which further 

indicates the existence of Fe carbides, nitrides or oxides.[50] For the studied NPs, 

due to the nature of the synthesis process, the presence of nitrides is discarded. As 

can be seen from the inset in Fig. 5d, all the NPs have spectral signals with two 

distinctive peaks at ~ 7112 eV and ~ 7124 eV, related mostly to metallic iron and 

oxidized species, respectively. In Fig. 5d can also be observed that the Fe NPs have 

the lower metallic contribution and the highest oxidized contribution of all. On the 

contrary, in the NiFe alloy NPs, with increasing Ni content, the Fe metallic 

component increases while  the oxidized Fe component decreases. It is worth 

mentioning that the Ni80Fe20 (NiFe@UTG) NPs shows the highest metallic Fe 

contribution and the lowest oxidized Fe contribution amongst the NiFe NPs.  

Taking into consideration the energy position and overall spectral shape of the 

standard iron carbide (Fe3C) shown in Fig. 5d, it is difficult to confirm the definitive 

existence of Fe3C in the studied NPs. More detailed studies involving the EXAFS 

region are necessary to verify its presence [35,48,50,51]. However, based on the 

previously described observations in XANES measurements, and also on the 

synthesis procedure, the formation of different iron carbide compound is possible. 
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Hence, phase diagram calculation (Section 2.2.3) has been carried out to give a 

better insight into the eventual creation of carbides in the samples.  
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Fig. 5 Normalized XANES spectra at the Fe K-edge of the NPs in comparison to (a & c) the bulk 

oxide powder standards, the Fe foil, and (c) the Fe3C standard.  The inset 1, 2 and 3 correspond to an 

enlarged pre-edge, half-height of the absorption edge, and edge crest maxima regions, respectively. 

(b) The plot of the Fe average oxidation state vs energy shifts in the half-height of the absorption 

edge in Fig. (a). (d) Normalized first derivate XANES spectra of the NPs in comparison to the bulk 

oxide powder and the Fe3C standards. The inset shows the normalized first derivative XANES spectra 

of different Fe species, i.e. Fe 0 (Fe Foil), Fe 2+, Fe 3+ (Std. Fe2O3), and Fe 2+, Fe 3+ (Std. Fe3O4).  

 

X­ray absorption near edge structure (XANES) at the Ni K­edge. The Ni K-edge normalized 

XANES spectra of both the standards and synthesized nanoparticles are shown in 

Fig. 6a. Unlike the Fe K-edge XANES spectra, in general, the overall spectral shape 

derived from the NPs are all quite close and similar to that of the Ni foil, which 

indicates the primary metallic character of Ni in all of the samples. [50] Upon more 

careful observation of the NPs spectra (Fig. 6a), the NP samples can be 

differentiated into two groups showing similar absorption features. The first group 

involves the Ni NPs and Ni80Fe20 (NiFe@UTG), whereas the Ni36Fe64 and Ni50Fe50 

NPs comprise the second group. The similarity of the structure of the latter ones is 

already noted in the context of XRD analysis as discussed above. This association 

serves as a first indication that indeed, atoms in each sample in these two groups 

share a similar local structure. This is also observed in the XANES analysis of the Fe 

K-edge. These results are in good agreement with the HRTEM images (Fig. 3). 

According to recently reported results, [52] comparing the position and height of the 

peaks in the normalized first derivate spectra of the NPs (Fig. 6b) can reveal the 

presence of Ni3C. Furthermore, the highest peak appears at ~ 8343 eV for materials 

containing Ni3C, while for materials with metallic Ni (i.e. FCC – Ni samples) it 
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appears at ~ 8333 eV.[52] In this respect, the NPs studied here have the highest 

peak close to 8343 eV, which indicates the presence of Ni3C in the NPs. 

Furthermore, taking into consideration the differences between the peak heights 

shown in Table 1, there is a correlation between Ni content in the NPs, their peak 

height difference and their structure. If it is considered that both the Ni and Ni80Fe20 

(NiFe@UTG) NPs share a similar local structure, it can be concluded that the higher 

the Ni content, the larger the height difference. Similarly, this behaviour is repeated 

in the case of the Ni36Fe64 and Ni50Fe50 NPs, where the latter also exhibit a larger 

height difference in comparison to the lower Ni content sample (Table 1). It can be 

concluded that once the NPs share a similar local structure, Ni-rich NPs contain 

more Ni3C.  

 

 

 

Fig. 6 (a) Normalized XANES spectra at the Ni K-edge of the NP samples in comparison to Ni3C and 

Ni oxide standards. The insets 1 and 2 correspond to the half-height of the absorption edge and edge 

crest maxima regions, respectively. (b) Normalized first derivate XANES spectra at the Ni K-edge of 

the NP samples. The dashed lines mark the energy positions at 8333 eV and 8343 eV respectively. 

The * marks the peak with the greatest height magnitude for each of the samples. There is no * mark 

for the Ni foil since the peak difference is too low, i.e. ~ 0.004. The Std. Ni3C (I), and the NiO standard



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 
 

are extracted from Ref. [53] The Std. Ni3C (II), is extracted from the Ref. [54] Ni oxide standards are 

obtained from the online XAFS Database.[55]  

 

 

 

 

 

 

 

 

 

Table 1. Energy positions and heights of the maxima peaks in the normalized first 
derivate XANES spectra at the Ni K-edge. 

 
First Derivative Peak heights 

 

 
 

Samples 

Energy 
Position 1ST 

Max. Peak (eV) 

Height  
(ab. units) 

Energy 
Position 2nd 

Max. Peak 
(eV) 

Height 
 (ab. units) 

Height 
Difference 
(ab. units) 

Ni Foil (Sta.) 8333 0.0709 8344 0.0746 0.0037 

Ni NPs 8332 0.0572 8344 0.0881 0.0309 

Ni80Fe20  NPs 
(NiFe@UTG) 

 
8332 0.0600 8344 0.0730 0.0130 

Ni50Fe50 NPs 8333 0.0555 8343 0.0781 0.0226 

Ni36Fe64 NPs 8332 0.0540 8344 0.0682 0.0142 
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2.2.3  Ternary and binary phase diagram calculations  
 

The metastable Ni-Fe-C ternary phase diagram at atmospheric pressure and 

different temperatures from 1500°C up to 500°C is calculated (Fig. 7 a-f) to elucidate 

the phase segregation in NPs formation during the PLAL synthesis. For a better 

insight into the ternary phase diagrams of the Ni-Fe-C system, the binary phase 

diagrams of Fe-C and Ni-C systems (Fig. 8) are also calculated. 
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Fig. 7 Metastable ternary phase diagrams of Ni-Fe-C system at atmospheric pressure (in the absence 

of graphite). 

 

The Fe-C binary subsystem in Fig. 7a shows the formation of cementite (red circle) 

which is stable from room temperature to the decomposition point (≈1150 °C) while 

dissolves some Ni and forms a continuous FCC_A1 solution phase. This phase is 

also shown in the ternary phase diagram at various temperatures, e.g. at 1150 °C, 

indicating that cementite (Fe3C) precipitates as primary phase instead of elemental 

graphite (red circle in Fig. 7b and 7c) forms.  

On the other hand, the Ni-C binary subsystem (Fig. 8b) has a similar carbide (red 

circle), but it does not dissolve iron.[56] This carbide is only stable in a small 

temperature range in atmospheric pressure and decomposes to diamond-like carbon 

and metallic Ni (indicated in Fig. 7f).  
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Fig. 8  Binary phase diagram for (a) Fe-C system and (b) Ni-C system. (― stable phase assemblage; 

--- metastable assemblage in the absence of graphite). (c) Metastable solubility of carbon in solid 

NiFe alloys (FCC_A1) at 1000-1200 °C in the absence of graphite in the system. (d) The solubility of 

graphite in molten Fe-Ni alloys at 1500-3500 °C. 

 

 

To further elucidate the origin of the graphitic-shell in the NPs, the solubility of 

carbon in solid iron-nickel alloys (FCC_A1) and solubility of graphite in the liquid Ni-

Fe are also calculated and depicted in Fig. 8c and Fig. 8d, respectively. The upper 
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temperature for the phase equilibria of condensed NiFe alloys is considered to be 

around the boiling points of pure Ni and Fe (3000 °C in atmospheric pressure [57]). 

As it is seen in both Fig. 8c and Fig. 8d, the solubility of pure carbon and graphite in 

the solid iron-nickel alloys (FCC_A1) and liquid NiFe alloys, respectively, decreases 

at high temperatures along with increasing Ni concentration in the alloy. Therefore, it 

is clear that firstly Ni3C forms and later decomposes to diamond-structured carbon 

as the primary phase, which is also shown in the Ni-Fe-C ternary phase diagrams 

(Fig. 7f) and is in a good agreement with previous reports. [35,37] 

 

Based on the observation in phase diagram calculations, a definite conclusion can 

be made about the possible origin of the ratio-dependent differences of the NP 

structures (Schematic 1). The ternary phase diagram of Ni-Fe-C system at 

equilibrium temperature (Fig. 7f) shows that all the NP are in the same phase 

domain (indicated by green dots) although the above analysis shows indisputable 

structural differences. This phenomenon can be described as follows: the NPs 

structures are not stable when they reach room temperature since the cooling rate is 

rapid during the PLAL synthesis method (1010 K/s [58]). It is shown within the Fe-C 

binary phase diagram (Fig. 8a) that Fe3C is formed at equilibrium temperature 

(1150°C) and since the cooling rate of Fe3C[59] is slow, its structure is preserved at 

room temperature and does not decompose to Fe and diamond-like carbon (in 

contrary to Ni3C). Therefore, in Fe-rich NPs, it is assumed that FexCy with some 

dissolved Ni is formed as the core. Moreover, as Fig. 8c shows, by increasing the Ni 

content, the carbon solubility decreases in the Ni-rich NPs. Therefore, the Fe-rich 

NPs contain FexCy precipitates forming instead of carbon exsolution. 
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On the other hand, as Fe is more reactive toward oxidation than Ni [22,60] in Fe-rich 

NPs, a FeOx-shell is observed which is formed later, during the second phase 

formation (after NPs formation). In Ni-rich samples, more Ni3C is formed because of 

higher carbon solubility in Ni. Also, Ni3C is not stable up to room temperature, as 

seen in the Ni-C binary phase diagram (Fig. 8b). Thus, during the cooling process, 

Ni3C is decomposed to Ni and graphene and some dissolved Fe. This is also 

observed within the ternary phase diagrams of Ni-Fe-C from high temperature 

(1200°C) to equilibrium temperature (500°C), where the carbon solubility in the metal 

alloy phase domain next to the Ni-Fe binary line is reduced to less than 1 at%. 

Hence, in such conditions in the NPs Fe oxidation and carbon solubility are 

competing processes[18] and the saturation is not reached leading to the formation 

of a FexCy/Ni3C-core and Fe-oxide shell for Fe-rich samples. Also, the Fe-oxide has 

a porous structure, compared to other oxides such as NiOx,[60] and oxygen 

penetrates it faster, allowing the formation of a thick layer of FeOx-shell even at low 

temperatures. Hence, in the case of NiFe@UTG (Ni80Fe20), no Fe segregation is 

expected from the alloy and solubility of carbon is very low, so no oxidation but the 

formation of the graphene shell is observed. These findings are also observed in the 

XANES and XRD measurements, as discussed above. Schematic 1 depicts the 

possible mechanisms and parameters that influence the core-shell NPs formations. 

Table 2 presents a detailed structural comparison of the NPs with the different Ni/Fe 

ratios. 
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Schematic 1. The proposed thermodynamic mechanism of NiFe@UTG and metal@FexO core-shell 

nanoparticles formation. 
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Table 2. The different NPs structure with different metal target composition in 

ace

ton

e 

with 

ps-

las

er. 

 

 

3 Electrochemical analysis 

To investigate the effect of the different core-shell structures and metal-carbide cores 

on the NPs’ catalytic activity, electrochemical HER tests were performed as an 

example application. A typical three-electrode setup was adopted to evaluate the 

HER performance of the synthesized NPs in 0.5 M H2SO4 and 0.1M NaOH media. 

All catalysts were deposited on a glassy carbon electrode with a similar loading of 

~0.2 mg cm-2 (details in SI). Fig. 9a and 9b show typical polarization curves of the 

NiFe alloy NPs with different metal ratios and the pure metal NPs in acid and alkaline 

media, respectively. Among them, NiFe@UTG shows the best catalytic activity 

toward HER with an onset potential of 110 mV vs RHE and ŋHER,10=300 mV within 

the acid and with an onset potential of 120 mV vs RHE and ŋHER,10=400 mV vs RHE 

within the alkaline. However, the catalytic activity of the NPs produced with different 

 

Metal targets 

 

 

Core composition 

(XRD) 

 

Shell composition 

(Raman) 

Ni Ni Graphene layer ( 10 nm) 

Fe FexCy α-Fe2O3 

Ni36Fe64 Ni3C/FexCy γ-Fe2O3 

Ni50Fe50 Ni3C/FexCy γ-Fe2O3 

Ni80Fe20 (NiFe@UTG) NiFe alloy Graphene layer (1-3 

layers) 
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metal compositions reveals an interesting trend in both the media: 

Ni  Ni34Fe64  Ni50Fe50  Fe  Ni80Fe20 (NiFe@UTG). The electrochemical behaviour 

of the material in this study is attributed to the unique core-shell structure of the NPs 

indicating the crucial role of the NP structure that should be taken into account for 

designing efficient electrocatalysts.  

The activity of the metal@C structure is primarily attributed to an interfacial charge 

transfer from the metal core to the carbon shell that manipulates the electronic 

interactions between the NP surface and reacting species. Therefore, the activity of 

such materials varies with the structures and morphologies of the metal core 

(elemental composition, etc.) and carbon shell (layer thickness, etc.). In this view, the

Ni80Fe20 and Ni NPs with similar metal@C structures show quite different catalytic 

activity. Moreover, our results for the NPs with the same metal-core (Ni80Fe20) but 

different carbon-shell thickness (NPs in different organic solutions as well as those 

synthesized with ns-laser, Fig. S9) further indicate the vital role of carbon shell 

thickness in the production of an efficient electrocatalyst.   

Furthermore, when comparing the HER activity of the Ni50Fe50 and Fe NPs in Fig. 9, 

a clear difference between their current densities is observed. However, the onset 

potential is the same for both the NPs. This indicates that different cores significantly 

affect the properties of their metal-oxide (shell) in the core-shell catalyst systems. 

Based on these results, FexCy-core enhances more the catalytic activity compared to 

Ni3C-core of the FeOx-shell. Also, the intrinsic properties of oxides in terms of 

surface morphology and conductivity may play an essential role in the activity in such 

core-shell NPs. These results show the vital role of the core as a modifier of catalyst 

properties for enhancing the shell activity.  
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Tafel plots based on polarization curves in Fig. 9 are acquired to calculate the 

electrochemical kinetic parameters of Tafel slope for commercial Pt/C and 

NiFe@UTG (Ni80Fe20), as shown in Fig. S10. The difference Tafel slopes suggest 

that the HER mechanism differs for Pt/C reference and the core-shell NPs. The Tafel 

slope of 48 mV/decade for NiFe@UTG in acidic media compared to Tafel slopes of 

32 mV/decade for Pt/C showed that this material catalyzes the HER through a 

Volmer–Heyrovsky mechanism [7,61–63]. 

As for the durability, in the case of NiFe@UTG, almost similar electrochemical 

behaviour can be observed after 1,000 HER cycles (Fig. S11). This indicates that the 

NPs are fully encapsulated within the graphitic carbon layers leading to their high 

durability/stability. To further show the structural stability of the NPs, HRTEM images

were taken after durability measurements (Fig. S12), which show NPs preserving 

their structure even after the long-term measurement. 
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Fig. 9 HER polarization curves of Fe, Ni36Fe64, Ni50Fe50, Ni80Fe20 (NiFe@UTG) and Ni samples 

(produced in acetone with ps-laser) in comparision to commercial Pt/C catalyst analyzed in (a) 0.5 M 

H2SO4 and (b) in 0.1 M KOH. All measurements carried out at a scan rate of 10 mV s−1. 

 

 

 

4 Conclusion 

 

In summary, we have developed a facile and universal protocol to synthesize ultra-

thin graphene encapsulated 3d transition metals, such as Fe, Ni and their alloys with 

a tunable structure via one step PLAL. Our results indicate that the metal-core 

composition, the choice of solvent for the ablation process and the laser pulse 

duration have vital effects on the final NP structure and more importantly on the 

graphene shell thickness and thus on their corresponding catalytic activities. Ternary 

phase diagram calculations for the Ni-Fe-C system and XANES results for a set of 

metal compositions (Ni, Ni80Fe20, Ni50Fe50, Ni36Fe64 and Fe) suggested that the 

Ni80Fe20 alloy is the most promising candidate in terms of the metal ratio between Ni 

and Fe to construct metal NPs encapsulated within an ultra-thin graphene layer. This 

is attributed to Ni80Fe20 ability to offer a proper balance between carbon solubility and 

metal oxidation during the synthesis procedure. This level of structural details 

provides unprecedented insight into the phases present in the carbon-containing 

core-shell NPs and their evolution. This work serves as a benchmark for the 

characterization of core-shell NPs by the abovementioned characterization methods. 

This study provides a universal insight into the field of efficient carbide NP synthesis 
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also for other transferable synthesis methods, such as arc discharge, spark, 

chemical vapour depositions (CVD) and metal-organic framework (MOFs). 
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