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ABBREVIATIONS 
 
ABL   Abelson murine leukemia viral oncogene homolog 
ALL   Acute lymphoblastic leukemia 
AML   Acute myeloid leukemia 
AUC   Area under the curve 
BAD  BCL2 associated agonist of cell death 
BAX  BCL2 associated X 
BCL-2   B-cell lymphoma-2 
BCL-XL  B-cell lymphoma-extra large 
BCR   Breakpoint cluster region 
BH-3  Bcl-2 homology domain 3 
BM   Bone marrow 
CCLE   Cancer Cell Line Encyclopedia  
CPM   Counts per million 
CR   Complete remission 
DNA   Deoxyribonucleic acid 
DNMT3A  DNA methyltransferase 3A 
DMSO   Dimethylsulfoxide 
DSRT   Drug sensitivity and resistance testing 
DSS   Drug sensitivity score 
ELN   European Leukemia Net 
FDA   Food and Drug Administration 
FHRB  The Finnish Hematology Registry and Biobank  
FLT3   Fms-like tyrosine kinase 3  
HOX  Homeobox 
HSCT   Hematopoietic stem cell transplantation 
IC50   Half-maximal inhibitory concentration 
IDH  Isocitrate dehydrogenase 
ITD   Internal tandem duplication 
NGS   Next-generation sequencing 
NRAS  Neuroblastoma RAS viral oncogene homolog 
NPM1   Nucleophosmin gene 1 
MAPK  Mitogen-activated protein kinase 
MCL-1             BCL2 family apoptosis regulator (myeloid cell leukemia sequence 1) 
NCI  National Cancer Institute 
PA   Poly-A enrichment 
PCR   Polymerase chain reaction 
RD   Ribo-depletion  
RNA   Ribonucleic acid 
RT-qPCR Reverse transcriptase quantitative polymerase chain reaction 
TCGA  The Cancer Genome Atlas 
TMM  Trimmed mean of M-values 
WT  Wild type 
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2 ABSTRACT 
 
This thesis is comprised of three studies demonstrating the application of 
different statistical and bioinformatic approaches to address distinct 
challenges of implementing precision medicine strategies for 
hematological malignancies. The approaches focus on the analysis of next-
generation sequencing data, including both genomic and transcriptomics, 
to deconvolute disease biology and underlying mechanisms of drug 
sensitivities and resistance. The outcomes of the studies have clinical 
implications for advancing current diagnosis and treatment paradigms in 
patients with hematological diseases. 
 
Study I, RNA sequencing has not been widely adopted in a clinical 
diagnostic setting due to continuous development and lack of 
standardization. Here, the aim was to evaluate the efficiency of two 
different RNA-seq library preparation protocols applied to cells collected 
from acute myeloid leukemia (AML) and acute lymphoblastic leukemia 
(ALL) patients. The poly-A-tailed mRNA selection (PA) and ribo-
depletion (RD) based RNA-seq library preparation protocols were 
compared and evaluated for detection of gene fusions, variant calling and 
gene expression profiling. Overall, both protocols produced broadly 
consistent results and similar outcomes. However, the PA protocol was 
more efficient in quantifying expression of leukemia marker genes and 
drug targets. It also provided higher sensitivity and specificity for 
expression-based classification of leukemia. In contrast, the RD protocol 
was more suitable for gene fusion detection and captured a greater number 
of transcripts. Importantly, high technical variations were observed in 
samples from two leukemia patient cases suggesting further development 
of strategies for transcriptomic quantification and data analysis.   
 
Study II, the BCL-2 inhibitor venetoclax is an approved and effective agent 
in combination with hypomethylating agents or low dose cytarabine for 
AML patients, unfit for intensive induction chemotherapy. However, a 
limited number of patients responding to venetoclax and development of 
resistance to the treatment presents a challenge for using the drug to benefit 
the majority of the AML patients. The aim was to investigate genomic and 
transcriptomic biomarkers for venetoclax sensitivity and enable 
identification of the patients who are most responsive to venetoclax 
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treatment. We found that venetoclax sensitive samples are enriched 
with WT1 and IDH1/IDH2 mutations. Intriguingly, HOX family genes, 
including HOXB9, HOXA5, HOXB3, HOXB4, were found to be 
significantly overexpressed in venetoclax sensitive patients. Thus, these 
HOX-cluster genes expression biomarkers can be explored in a clinical trial 
setting to stratify AML patients responding to venetoclax based therapies.  
 
Study III, venetoclax treatment does not benefit all AML patients that 
demands identifying biomarkers to exclude the patients from venetoclax 
based therapies. The aim was to investigate transcriptomic biomarkers 
for ex vivo venetoclax resistance in AML patients. The correlation of ex 
vivo venetoclax response with gene expression profiles using a machine 
learning approach revealed significant overexpression of S100 family 
genes, S100A8 and S100A9. Moreover, high expression of S100A9 was 
found to be associated with birabresib (BET inhibitor) sensitivity. The 
overexpression of S100A8 and S100A9 could potentially be used to detect 
and monitor venetoclax resistance. The combination of BCL-2 and BET 
inhibitors may sensitize AML cells to venetoclax upon BET inhibition and 
block leukemic cell survival. 
  
Taken together, we demonstrated the utility of transcriptomics and 
bioinformatics data analysis strategies for precision medicine in leukemia. 
The evaluation of RNA-seq library preparation protocols and identification 
of gene expression biomarkers for drug responses were investigated in 
patients with hematological malignancies.  
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3 INTRODUCTION 
 
The molecular understanding of cancer has introduced novel approaches 
for routine clinical practice in diagnosis, prognosis, and treatment decisions 
making.  The Human Genome Project resulted in the complete mapping of 
the human genome in 2003. Since then, the technological innovations, 
increasing speed and reducing the cost of next-generation sequencing 
(NGS) has facilitated an in-depth investigation of the molecular basis of 
cancer. It has also catalyzed the invention of newer technologies and 
computational tools that have transformed the cancer genomic research. 
Multiple types of cancer patients were sequenced in The Cancer Genome 
Atlas Program (TCGA) and the International Cancer Genome Consortium 
(ICGC) projects. The emerging genomic and transcriptomic information 
has facilitated biomarker discovery for disease monitoring, risk prediction 
and developing treatment modalities. The recent developments in cancer 
genomic and transcriptomic fields have built a platform for precision 
medicine.    
 
The core components of current precision medicine include multi-omics 
studies, large-scale cohort trials, and big data integration. Standardization 
of sequencing protocols and the quality of data are key challenges to 
overcome in order to incorporate NGS-based tools for precision medicine. 
With a lack of standardized data processing, the outcomes of sequencing 
studies have been of low reliability. Therefore, establishing robust and 
standard protocols for clinical use are very crucial to implement precision 
medicine. Especially for RNA-sequencing (RNA-seq), subsequent data 
analysis pipelines must deliver accurate information with reproducible and 
robust performance. Moreover, establishment and standardization of 
methods for assessing reproducibility, accuracy and precision in a variety 
of clinically relevant conditions are needed to facilitate the adoption of 
RNA-seq data in the clinical laboratory. 
 
Current precision medicine synonymizes genomics medicine to match the 
right drug to the right patient at the right time and dose. Although several 
breakthrough therapies have been discovered for cancer patients with 
specific genetic lesions, most cancer patients lack targeted therapies. 
Hence, to make precision medicine successful and applicable for cancer 
patients’ treatment, it is essential to incorporate additional tools. Functional 
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precision medicine offers an alternative solution by measuring signals from 
cancer cells upon therapeutic perturbation. Moreover, combining genomic 
profiling with functional testing provides promising precision medicine 
approaches not only to obtain a panoramic view of cancer cells but also to 
discover effective therapies to individual patients. This powerful approach 
helps to identify molecular denominators of drug sensitivity and resistance 
to stratify patients who are most likely to respond to the therapies. Utilizing 
modern statistical, bioinformatics and machine learning methods, play a 
crucial role in identifying robust genomic and transcriptomic biomarkers 
for drug responses. Therefore, it is crucial to combine multiple technologies 
and analytical tools to extract clinically relevant information from the 
complex biology of cancer cells.  
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4 REVIEW OF THE LITERATURE  
 
4.1 Precision medicine in cancer 
 
According to the president’s council of advisors on science and technology 
the USA, precision medicine is defined as: “the tailoring of medical 
treatment to the individual characteristics of each patient to classify 
individuals into subpopulations that differ in their susceptibility to a 
particular disease or their response to a specific treatment. Preventative or 
therapeutic interventions can then be focused on those who will benefit, 
sparing expense and side effects for those who will not”1. Precision 
medicine is an approach to stratify patients in order to improve diagnosis 
and treatment by integrating clinical and molecular information to 
understand the biological basis of human disease2,3 as shown in Figure 1. 
It also considers the environmental exposures and additional traits of an 
individual and their lifestyle to create a tailor-made treatment4,5. As the 
definition suggests, the power of precision medicine lies in its ability to; i) 
optimize and improve health care by applying an innovative approach to 
disease prevention and treatment that takes into account individual 
differences in genetic make-up, environments, and lifestyles ii) help 
understand/discover mechanisms underlying the disease iii) provide 
relevant tools to better understand the complex mechanisms or disease 
condition to clinicians iv) predict which treatments will be most 
effective6,7.  
 
4.1.1 Overview of precision medicine 
 
The term personalized medicine was re-coined as precision medicine after 
2013 to recognize the shifting goals of modern medicine concerning the 
continuous development of technologies8,9. Personalized medicine refers to 
an approach for patients that considers their genetic make-up but with 
attention to their preferences, beliefs, attitudes, knowledge and social 
context, whereas precision medicine describes a systems model for health 
care delivery that relies heavily on data, analytics and information8. In 
2011, the USA National Research Council (NRC) expressed concern with 
the term “personalized medicine” as it may be misunderstood to mean that 
completely individualized treatments are available for each unique patient. 
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The report defines precision medicine as “the tailoring of medical treatment 
to the individual characteristics of each patient.” The report added, “it does 
not literally mean the creation of drugs or medical devices that are unique 
to a patient, but rather the ability to classify individuals into subpopulations 
that differ in their susceptibility to a particular disease, in the biology and/or 
prognosis of those diseases they may develop, or in their response to a 
specific treatment.”1 
 

Figure 1. An example of precision medicine workflow in patients with 
hematological malignancies: Technologies implemented for patient stratification 
and therapy recommendation.  
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4.1.2 Genomic precision medicine 
 
The ultimate goal of genomic precision medicine for cancer is to identify 
somatic genetic alterations (point mutations, amplifications, translocations) 
and match them with effective the treatments. The tyrosine kinase inhibitor 
imatinib was the first example of genomic precision medicine to treat 
chronic myeloid leukemia (CML) patients the carrying BCR-ABL1 fusion 
gene10. Imatinib helped to improve the overall survival rates of CML 
patients to 90% over five years and 88% over eight years11. Another 
example is trastuzumab which is approved for treatment of breast cancer 
patients with amplification or overexpression of human epidermal growth 
factor receptor 2 (HER2). Compared to chemotherapy alone, the addition 
of trastuzumab to chemotherapy significantly slowed the disease 
progression (i.e., median, 4.6 vs. 7.4 months), prolonged survival time (i.e., 
median, 20.3 vs. 25.1 months), and reduced the risk of death by 20%12. 
Gefitinib13,14 was approved for epidermal growth factor receptor (EGFR) 
mutant non-small-cell lung cancers and crizotinib was approved for 
patients with EML4-ALK fusion gene15,16. Furthermore, vemurafenib and 
dabrafenib were approved for advanced-stage BRAF V600E mutant 
melanoma17. 
 
Recent genomic precision medicine studies conducted on different cancer 
types with a heavy focus on NGS of tumor samples18-26. As an example, 
Lagana et al. demonstrated a unique approach where genomic and 
transcriptomic features were integrated of 64 multiple myeloma patients 
to generate treatment recommendations27. In this study, patients were 
assigned therapies based on both gene expression and somatic mutation 
findings. For acute myeloid leukemia (AML), the FMS like tyrosine 
kinase 3 (FLT3) inhibitor midostaurin was approved for the treatment of 
patients with a FLT3 mutation28,29. Ivosidenib and enasidenib were 
approved for relapsed or refractory AML patients with isocitrate 
dehydrogenase 1 and 2 (IDH1/2) mutations, respectively30,31. Although 
genomic precision medicine approaches have been accepted in the clinic 
for treatment decision making, the response rates have remained 
modest25,32. 
    
Recently, large-scale genomic precision medicine approaches were 
systematically applied for individual solid tumor patients in clinical trial 
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settings. In the systematics analysis, molecular profiling was performed 
for recurrent metastatic cancer patients to guide clinical treatment 
decision making. Within the TARGET study, therapy with experimental 
targeted treatments was guided by sequencing results from circulating 
tumor DNA and genomic DNA33. In the I-PREDICT study, drug 
combinations were designed based on DNA sequencing34. Interestingly, 
RNA-seq was coupled with DNA sequencing from tumor and adjacent 
tissues to select targeted therapies in combination with immunotherapies 
in the WINTHER trial35.  
 
4.1.3 Functional precision medicine  
 
Precision medicine field has been considered synonymous to genomics 
medicine. Most cancer patients lack benefits from genomic data-driven 
precision treatment strategies in terms of long-lasting remission or 
lengthened survival. Hence, it is essential to broaden the scope of precision 
medicine by exploring functional characteristics besides genomics and 
transcriptomics32. Investigating functional features could help to identify 
additional targetable vulnerabilities and effective therapies matched to 
patient-specific phenotypes. A recent study demonstrated a workflow of a 
drug testing assay for clinical referral in solid tumors and hematological 
malignancies36. The development of protocols to grow primary tumor cells 
for drug testing was optimized towards precision medicine implications to 
identify patient-specific effective drugs in lung cancer patients37. In a 
clinical trial with 769 patients, drug testing identified effective drug 
treatments and combinations for metastatic and primary tumors38. To 
accelerate precision medicine efforts for solid tumor patients, similar 
methods have been developed for culturing primary solid tumor cells by 
academic research groups39,40 and pharma industry41.  
 
Snijder et al. utilized ex vivo imaging of drug responses to recommend 
drugs for clinical treatment in patients with hematological malignancies42. 
Survival benefit with selected therapeutics was reported using drug testing 
on primary cells over standard regimen for AML patients where non-
targeted chemo drugs were used for clinical translation43. The analyses of 
large-scale data leading to a systematic exploration of targeted drug 
vulnerabilities associated with molecular subsets of AML patients can help 
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establish precision medicine practice44. Also, there are emerging public 
datasets that can facilitate precision medicine efforts. Iorio et al. provided 
genomic and functional data from 1,001 molecularly annotated human 
cancer cell lines from 29 tissues. The study generated a large dataset 
including somatic mutations, copy number alterations, DNA methylation, 
gene expression and correlated with sensitivity to 265 drugs45. Genetic 
perturbation screens (CRIPSR/siRNA) have been used to identify novel 
cancer therapeutic targets as well as biomarkers using data integration 
efforts in pan-cancer cell lines46,47. Recently, the Beat AML program 
provided ex vivo drug responses data (122 inhibitors) from 562 AML 
patients with paired whole exome-seq and RNA-seq data on bulk cells 48. 
Thus, functional precision medicine approaches may lead to better 
treatment outcomes but can be further improved by integrating molecular 
profiling with functional assays for clinical response prediction.  
 
4.2 Tools for precision oncology  
 
The increasing sequencing speed, analysis, accuracy, and affordability of 
NGS has helped spur the advent of precision oncology49,50. Tools 
facilitating precision medicine include transcriptomics, genomics and 
functional assays. The implications of genomic and transcriptomic 
sequencing of tumor specimens have been applied to improve the diagnosis 
and treatment of cancer patients, as shown in Figure 2. Advancements in 
high-throughput drug testing technology made functional profiling, as one 
of the emerging tools of precision medicine. The integrative analysis 
includes multi-dimensional data layers and application of machine learning 
algorithms, which has the potential to improve the clinical management of 
cancer patients. 
 
4.2.1 RNA-sequencing  
 
RNA sequencing (RNA-seq) detects expression changes by capturing 
quantitative gene expression patterns and describes the underlying 
phenotypes in great detail. Compared with microarray-based transcriptome 
profiling, RNA-seq covers a wider dynamic range and avoids certain 
technical limitations, for example, varying probe performance and cross-
hybridization51. The primary outcomes of cancer transcriptomics can be 
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broadly classified as genetic and functional readouts. The functional 
phenotypes that can be interrogated through transcriptome profiling are 
very broad and include quantitative estimates of expression levels and the 
detection of transcript isoforms, chimeric RNAs and RNA-editing sites. 
Similarly, the genotypes that can be interrogated by RNA sequencing 
include structural variants (e.g., gene fusions), copy number variants 
(CNVs) (e.g., amplifications) and somatic mutations (e.g., single 
nucleotide variants (SNVs)). 

Figure 2. Bioinformatic workflow. Integrative clinical next-generation 
sequencing and its applications for precision oncology.  
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Advances in experimental and computational tools have dynamically 
revolutionized transcriptome profiling over the past four decades52,53. 
Using RNA-seq, it has now become possible to sequence and quantifies the 
gene expression patterns at a single cell level48,54. These transcriptomes 
provide an opportunity to dissect the complexity and heterogeneity of 
tumors and to discover new biomarkers or therapeutic approaches for 
translational and precision medicine strategies55,56. For example, the RNA-
seq technique has been particularly insightful in understanding the drug 
sensitivity and resistance patterns of malignant cells in AML and 
classifying the disease48,57. It has enabled identification of a wide variety 
of clinically relevant predictive expression biomarkers58-60, fusion-genes 
including structural variants and amplifications61-64, as well as alternative 
splicing events65,66 in different cancer types. The high coverage of RNA-
seq allows detecting SNPs and somatic mutation in the genes with average 
to high expression levels67,68. However, the highest sensitivity and 
specificity to detect genomic alterations can be achieved by combining both 
genomic and transcriptomic sequencing69.  
 
RNA-seq includes a sequence of related methodologies70.  Typical RNA-
seq experiment involves sample processing, library preparation, 
sequencing and downstream computational data analysis71. The first step is 
the disruption of cells and isolation of RNA molecules. The protocols have 
been adapted for a wide range of materials, including body fluids (e.g., 
blood, bone marrow biopsies), solid tissues and cell cultures.  The second 
step is library preparation (mRNA selection). The third step is RNA 
fragmentation, cDNA synthesis and addition of sequencing adaptors and 
the final step is sequencing itself. The sequencing of the RNA-seq libraries 
are commonly performed using Illumina sequencers that utilize sequencing 
by synthesis chemistry72. 
 
Although ribosomal RNA (rRNA) is the most abundant (>80% of total 
RNA) RNA molecules in a cell73, it has limited potential for clinical 
applications. Hence, depleting rRNA is an essential step to save sequencing 
bandwidth70,71. A number of rRNA removal (depletion) methods exist 
based on i) hybridization74-76 followed by depleting the bound targets using 
immobilized streptavidin; ii) duplex digestion77 involving heat-denaturing 
followed by re-annealing and removal of rRNA using duplex-specific 
nucleases; iii) pseudo-random or not-so-random priming78, relying on a 
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collection of short, computationally selected oligonucleotides, called 'not-
so-random' primers.  
 
Standard approaches for RNA-seq library preparation include either 
enrichment of polyadenylated (PA) RNA transcripts using oligo (dT) 
primers or rRNA depletion through hybridization followed by magnetic 
bead separation. However, the PA enrichment and RD method each have 
unique advantages and limitations, respectively. The PA enrichment 
method is currently the most popular protocol in cancer transcriptomics79. 
However, this approach requires intact RNA to avoid technical biases and 
artifacts. Protocols that utilize ribodepletion80 or hybridization are therefore 
more suitable for clinical use, where RNA material is limited or obtained 
from frozen or variable quality tissue. Over the past decade, many 
comparative studies between PA and RD methods have been 
performed81-87 but mostly using non-clinical samples. This challenge 
emphasizes the need for systematic comparison of library preparation 
protocols for cancer patient transcriptomic studies in a precision medicine 
setting. Our comparative analysis provides recommendations for the 
application of RNA-seq in clinical or pre-clinical settings with a limited 
number of samples.  
 
4.2.2  Whole exome-sequencing 
 
Whole exome sequencing (WES) also referred to as exome sequencing, 
analyzes the coding region of the genome and offers a comprehensive 
genomic profile of aberrations in protein-coding genes. The Encyclopedia 
of DNA Elements (ENCODE) project in 2012 reported that human exons 
of protein-coding genes cover 2.94% of the genome88. The latest version of 
the human reference genome “GRCh38” has a complete set of protein-
coding regions and constitutes 3.09% (over 90 million nucleotides)89. On 
a larger scale, whole-genome sequencing (WGS) provides the most 
comprehensive view of the entire human genome90 that is 3 billion bases 
for a single human sample sequenced. WGS also provides a better 
resolution of structural variations and CNVs compared to WES. 
 
The overall goal of WES is to measure inter-personal variability in genomic 
DNA by comparing an individual’s DNA sequence to the reference human 
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genome. The approach is useful for both clinical as well as research 
applications since it covers actionable areas of the genome. It determines 
the variations in the exonic regions to help identify various cancer-
associated mutations91. With the improvement in sequencing technologies 
and standardization of data analysis pipelines, the WES has been employed 
for real-time clinical applications92,93.  
 
4.2.3 Functional assays 
 
In addition to sequencing technologies, functional assays hold promise to 
advance current precision medicine approaches. One approach gaining 
popularity is high-throughput drug testing, which accesses the impact of 
drugs on cell viability, cell differentiation, or other cellular phenotypes. 
High-throughput drug testing allows testing of thousands of drugs at 
multiple doses and has been broadly implemented to identify cancer 
effective drugs based on response to the tested drugs94. Early systematic 
high-throughput drug testing has used established human cancer cells lines 
to identify potential targeted drugs for further clinical development. A 
National Cancer Institute (NCI) study, screened FDA approved drugs with 
60 human cancer cell lines (NCI60) generated a widely used dataset 
resource95. Later in 2012, Barretina et al. at the Broad Institute96 and Garnet 
et al. at the Sanger institute97 published studies on high-throughput drug 
testing of 1000 human cell lines covering major cancer types. The ex vivo 
drug testing approach was extended to primary patient material, including 
relapsed and refractory AML patients to facilitate therapy selection for 
individual patient cases48,98. A similar approach was adapted for chronic 
lymphocytic leukemia (CLL) patients to identify potential targeted drugs 
and associated patterns of molecular features by Dietrich et al.99. Tzelepis 
et al. applied a genome-wide CRISPR screening platform and reported that 
inhibition of KAT2A gene leads to differentiation and apoptosis of human 
AML cells100. Also, drug testing analysis using flow cytometry to 
distinguish the drug response based on different cell populations has been 
demostrated101. A novel BH3 mimetic assay was reported to predict 
chemotherapy resistance in leukemia patients and was promoted to advance 
current functional precision medicine efforts102.  
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4.3  Bioinformatic approaches for precision medicine  
 
In recent years, high-throughput technologies have been used to generate a 
vast amount of multi-omics and functional data. Previously, the main focus 
was on the analysis of a single layer of data type including gene expression, 
somatic mutations, CNVs and DNA methylation, independently. Since the 
molecular complexity and heterogeneity of cancer exists at all levels, 
integrative bioinformatic analyses of multiple layers of data simultaneously 
offer an effective and robust strategy to achieve a better understanding of 
pathogenic mechanisms. The data-driven analyses of multi-omics data in 
addition to data from functional assays can result in more profound insights 
into cellular functionality.  
 
4.3.1 Transcriptomics data analysis  
 
The primary and fundamental goal of transcriptomics data analysis is to 
identify genes with significantly altered expression level changes between 
given conditions. For example, frequent comparisons include drug-
sensitive versus drug-resistant or mutation-negative (wild type) versus 
mutation-positive. More complicated experimental designs include extra 
experimental factors to account for covariates (such as experimental batch, 
age, gender, library preparation methods, disease etc). The standard RNA-
seq work-flow includes i) experimental design based on the biological 
question and determination of the appropriate sample size for sequencing; 
ii) obtaining the sequence data, which include sample collection and 
processing, RNA-extraction, library preparation and sequencing; iii) 
preprocessing the data, which includes performing quality control, adapter 
trimming, and alignment; iv) analyzing data, which involves normalizing 
the read counts, identifying differentially expressed genes, identifying 
fusion genes, visualizing the results, correlate with phenotype if data 
available, and validate outcomes. The commonly used tools used for pre-
processing the RNA-seq data are explained in Table 1.  
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Tools Descriptions Ref 
Quality control 
FastQC Rapid assessment of sequence data Andrews 
RNA-SeQC Read mapping summary statistic, coverage  DeLuca (2012)103 
RSeQC Read distribution over genome, read depth Wang (2012)104 
PRINSEQ Summary statistics, trim adaptor sequences  
Trimmomatic Performs trimming for Illumina platforms Bolger (2014)105 
Cutadapt Removes adapter sequences Martin (2011)106 
Alignment 
TopHat v2 Candidate exon pairing, implanted bowtie Kim (2013)107 
Subread Seed-and-vot  Lioa (2013)108 
STAR Maximal mappable prefix Dobline (2013)109 
HISAT2 Spliced alignment program Kim (2015)110 
Read counting 
featureCounts Gene-level quantification Lioa (2014)111 
htseq-count Gene-level quantification Anders (2015)112 
Rcount Reads aligning with multiple locations Schmid (2015)113  
Differential gene expression 
edgeR Negative binomial distribution Robinson 

(2010)114  
DEseq2 Negative binomial distribution Love (2014)115 
Fusion genes detection 
EricScript Recalibrates junction reference Benelli (2012)116 
SOAPfuse Can detect low fusion over coverage Jia (2013)117 
FusionCatcher Detects both known and novel fusions  Nicorici (2014)118 

Table 1: Tools for RNA-seq data analysis. 
 
4.3.2 Machine learning approaches for data integration 
 
Application of machine learning tools in genomics has massively increased 
in recent years and proved to be very valuable in providing novel 
insights119,120. For example, machine learning can be used to identify the 
location of transcription start sites, promoters, splice sites, or enhancer sites 
in the genome119. In the past, single-layer analysis has been extensively 
conducted at different levels, including mRNA, microRNA, CNV, DNA 
methylation and somatic mutations were analyzed independently121,122. As 
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the molecular complexity of disease etiology exists many different levels, 
integrative analysis approaches offer an efficient way to join forces across 
multi-level omics data. Since the diverse layers of patient-derived “big 
data” are being generated, new bioinformatic approaches need to be 
developed to integrate multi-dimensional data123. High-throughput ex vivo 
drug sensitivity testing read-outs have the potential to become one of the 
significant components of precision oncology. The machine learning 
approaches have been proven to be enormously useful in predicting drug 
responses by integrating multi-omics data124. The resultant molecular 
denominator for ex vivo drug responses could assist clinicians to make 
decisions on patient treatment, including the selection of the most effective 
therapies. Machine learning is a data-driven field that involves applying 
algorithms and building models with the ability to ‘learn’ to make accurate 
predictions with experience. Machine learning methods can primarily be 
categorized into supervised learning or unsupervised learning. Supervised 
learning requires known examples or established patterns to train the 
models, which is then used to predict the respective labels. In contrast, 
unsupervised learning is concerned with finding patterns or clusters 
without any prior knowledge125,126.  
 
Several drug sensitivity prediction algorithms have been proposed to 
characterize the relationship between gene expression profiles and drug 
responses96,127-132. Liu et al. applied linear regression models to identify 
gene expressions, co-expressions, and co-expression modules associated 
with drug sensitivity in CCLE (Cancer Cell Line Encyclopedia) data by 
considering relevant confounding factors such as age, sex, batch, cancer 
and tissue types133. Masica et al. developed a novel approach named 
multivariate organization of combinatorial alterations (MOCA), combining 
many genomic alterations into biomarkers of drug response. Outcomes of 
the MOCA approach suggested that multi-gene features correlation with 
drug response substantially better compared to individual genes134.  
 
Over the last decade, many machine learning models have been used for 
the big data integration and drug response prediction, including linear 
regression, elastic net regression, support vector machines, neural networks 
and random forest as reviewed by Azuaje135. Emad et al. proposed a gene 
prioritization method called Prioritization of Genes Enhanced with 
Network Information (ProGENI) to rank genes that are closely related to a 
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phenotype136. With the ranked genes, the authors employed a kernel 
support vector machine (SVM) for drug sensitivity prediction and reported 
that ProGENI–identified genes can better predict drug response compared 
to genes identified by other widely used prioritization methods such as 
Pearson correlation and elastic net regression136. A collaborative effort 
between the NCI and the Dialogue on Reverse Engineering Assessment 
and Methods (DREAM) project, performed a comparison of 44 different 
drug response prediction methods and found that Bayesian multitask 
multiple kernel learning exhibited the best predictive performance59. Also, 
gene expression was found to have more predictive power in drug response 
prediction compared to other features such as mutations or CNVs59,136.  
 
Lee et al. developed the MERGE (mutation, expression hubs, known 
regulators, genomic CNV, and methylation)137 algorithm, which integrates 
multi-omic data to identify statistically correlated gene markers of drug 
sensitivity in AML. MERGE learns the weight of each unique driver 
features to successfully predict known drug sensitivity using a wide variety 
of input data including mutations, CNVs, and DNA methylation, gene 
expression and regulatory annotations. The MERGE model was able to 
identify an association between high FLT3 expression and sensitivity to 
FLT3 inhibitors midostaurin, ponatinib, sunitinib, and tandutinib137. Aben 
et al. implemented elastic net regression models and developed TANDEM 
method. The method is a two-stage approach where the first stage explains 
drug response using upstream features (mutations, CNVs, methylation and 
cancer type) and the second stage explains the remainder using downstream 
features (gene expression, pathways). Jang et al. applied elastic net 
regression and found it to be one of the best-performing modeling strategies 
for drug response prediction in the CCLE and GDSC (Genomics of Drug 
Sensitivity in Cancer) cancer cell line datasets138. Likewise, Ding et al. 
applied elastic net regression combining genomic data for drug sensitivity 
prediction through deep learning in the CCLE and GDSC datasets139. The 
broad applications of machine learning have tremendously advanced the 
goals of precision cancer medicine. Importantly, standardization of the 
methods and uniform data analysis strategies across various biological 
modalities can yield more advantages in the future. Moreover, the 
increasing scale of data obtained from cancer patients will sharpen machine 
learning tools in terms of improved efficiency and robust outcomes. 
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4.4 BCL-2 inhibition in AML 
 
4.4.1 Acute myeloid leukemia  
 
Acute myeloid leukemia (AML) is a heterogeneous malignancy of the 
hematopoietic system, characterized by massive proliferation and 
accumulation of undifferentiated leukemic blasts140,141. Even though the 
occurrence of AML is relatively rare (1.2% of all cancers) compared to 
other systemic cancer types, the five-year survival rate of AML patients is 
poor as recorded in cancer registry data from the Surveillance, 
Epidemiology and End Results Program (SEER) database. According to 
the SEER database, AML occurrence and mortality rates are higher in 
elderly patients compared to children as the median age at diagnosis is 67 
years. Although almost 70% of adults with AML achieve a complete 
remission with conventional chemotherapy, the long-term survival rate has 
remained only 30%142. Another challenge for successful AML treatment is 
the complexity and molecular heterogeneity of the disease143 (Figure 3). 
 
Extensive efforts to characterize AML genome has deconvoluted the 
recurrence and interaction patterns of mutations144,145. Investigating 
epigenetic events has provided insights in DNA methylation patterns in 
AML146 . Sequencing of 200 de novo adult AML patients revealed major 
genomic and epigenomic drivers of the disease147. The aberrantly regulated 
gene expression signatures have been reported in molecular subtypes of 
AML. For example, unique gene expression signatures and regulatory 
networks were identified in mutation subtypes of AML148,149. 
Papaemmanuil et al. demonstrated the utility of combining cytogenetics 
and molecular taxonomy as prognosis schema in AML patient cases121. 
Furthermore, the cytogenetics and mutation information was used to design 
the European Leukemia Net (ELN) 2017 classification system by a panel 
of international experts150. Additionally, clonal heterogeneity studies have 
revealed the complexity of the disease progression and emphasize the need 
for strategies to target this progressive disease efficiently 151-153. 
Furthermore, potential targeted drugs were identified for specific molecular 
features from genomics, transcriptomics154,155, and methylation profiling99 
in leukemia patients.   
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Conventional treatment options for AML patients include chemotherapy 
and subsequent allogeneic hematopoietic stem cell transplantation (allo-
HSCT). The primary goal of chemotherapy is to eradicate the leukemic 
blasts cells or to induce differentiation of immature leukocytes in some 
instances. The widely used induction (first line of therapy) treatment 
regimen, which massively kills the majority of leukemic blasts, consists of 
cytarabine (nucleoside analog) in combination with daunorubicin, 
idarubicin or mitoxantrone (anthracyclines, also known as topoisomerase 
inhibitors). The induction regimen is followed by a consolidation regimen 
to eradicate the remaining leukemic blasts, where the selection of drugs 
may vary from patient to patient. Allo-HSCT is performed to replenish 
healthy hematopoietic progenitors in patients achieving complete 
remission. In the case of acute promyelocytic leukemia (APL) patients, 
carrying PML-RARA gene fusion, tretinoin treatment is cornerstone 
therapy. The tretinoin treatment leads to differentiation of leukemic blasts 
into mature and functional leukocyte cells. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Mutation and cytogenetic landscape of acute myeloid leukemia. 
Adapted from Chen and Chen et al., Nature Genetics, 2013143. 
 
The conventional chemotherapy regimens are not suitable for unfit elderly 
AML patients. Therefore, the treatment options were confined to 
hypomethylating agents decitabine and azacytidine for the patients until 
recently. FDA approval of the combination of the BCL-2 inhibitor 
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venetoclax and a hypomethylating agent or low dose cytarabine has 
revolutionized treatment for the elderly AML patients. The treatment has 
improved median overall survival from 11.3 to 17.5 months in AML 
patients with a median age of 75 years of age and older, was reported in a 
clinical trial156. Similarly, recent FDA approvals of other targeted agents 
have made new treatment options available for patients with specific 
molecular lesions. Approval of FLT3 inhibitors midostaurin and gilteritinib 
for AML patients with activating FLT3 mutations including internal 
tandem duplication (FLT3-ITD) or point mutation of the tyrosine kinase 
domain (FLT3-TKD) at diagnosis bring new treatment options for 30% of 
the AML population. Two IDH inhibitors, ivosidenib and enasidenib, were 
approved for AML patients carrying IDH1 and IDH2 mutations, 
respectively for relapsed/refractory AML patients. Smoothened inhibitor 
glasdegib targeting the hedgehog pathway was also approved for the 
treatment of AML patients. Furthermore, the CD33 antibody gestuzumab 
ozogamicin was approved for CD33 expressing AML patients. Approval 
of targeted drugs has dramatically changed the treatment paradigm for the 
mutation-specific subgroup of AML patients. However, limited response 
rates with targeted drugs in mutation stratified patient populations demands 
the development of advanced strategies and robust biomarkers to identify 
patients most likely to respond. 
 
4.4.2 Apoptosis 
 
Apoptosis blockade is one of the hallmarks of the cancer157. Apoptosis is 
known as programmed cell death, was reported for the first time in 
mammalian tissue by Kerr et al. in 1970s158. In this cellular process, the 
cell receives death signal results in cell disintegration into small apoptotic 
bodies that are eventually phagocytosed by white blood cells159. Apoptosis 
pathway is characterized by two distinct mechanisms (intrinsic and 
extrinsic) depending on the source of death signals. In the case of the 
extrinsic pathway, the death signal bind to cell surface receptors, including 
Fas cell surface death receptor (FAS), Tumor necrosis factor receptor 
(TNFR), and TNF Receptor Superfamily Member 25 (WSL) and activate 
downstream caspase cascade. The activated caspase 8 cleaves and activates 
BH3 protein BID to induce intrinsic pathway160. On the contrary, the 
intrinsic pathway occurs in mitochondria upon cellular damage and is 
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activated through B-cell lymphoma 2 (BCL-2) family proteins. The 
proteins regulate outer membrane permeabilization (MOMP) of 
cytochrome c and SMAC proteins to the cytosol, thereby activating 
downstream caspases and leading to apoptosis161.  
 
After unrevealing the crucial role of BCL-2 family members in regulating 
apoptosis, many studies have unfolded important roles of distinct pro-and 
anti-apoptotic BCL-2 family proteins 162-165. The anti-apoptotic BCl-2 
family proteins include BCL-2, BCL-XL, BCL-W, MCL-1 and BFL-1 and 
carry four BH-domains. The pro-apoptotic proteins were divided into two 
categories based on protein structure BH domains carrying proteins and 
BH3 only proteins. BAK, BAX and BOK proteins contain three to four BH 
domains whereas BAD, BIK, BIM, PUMA, NOXA, HRK and BMF 
proteins contain BH3 domain166-173. The interaction between anti-apoptotic 
and pro-apoptotic proteins occurs through binding of the BH3 domain of 
pro-apoptotic proteins to BH1, BH2 and BH3 domains of anti-apoptotic 
proteins. Upon activation, BAK and BAX oligomerize on the 
mitochondrial outer membrane to form pores and cause MOMP and 
cytochrome c release in the cytosol for progression of apoptosis166,167,174. 
Therefore, BCL-2 family members and especially BH3 related proteins 
have become an exciting target for therapy development. 
 
4.4.3 Venetoclax as effective BCL-2 inhibitor  
 
Several drugs have been developed to target BCL-2 and induce apoptosis 
in leukemic blast cells that dependent on BCL-2 for survival175. BCL-2 
inhibitors are BCL-2 homology domain 3 (BH3) like small molecules, also 
known as BH3 mimetics. These drugs bind to anti-apoptotic molecules, 
including BCL-2, BCL-XL and BCL-W and BCL2-A1. BH3 mimetic drug 
navitoclax (ABT-263) binds with a strong affinity to BCL-2 and BCL-XL 
and with weaker affinity to MCL-1 and BCL2-A1176. The target binding 
affinity of navitoclax with BCL-2 and BCL-XL is <1nM. Despite the 
promising pharmacokinetic properties, the navitoclax treatment produced 
severe thrombocytopenia due to survival dependence of thrombocytes on 
BCL-XL177. The next BH3 mimetic in the drug development pipeline was 
venetoclax (ABT-199)178. Venetoclax was approved for CLL patients in 
April 2016. In the case of AML, the clinical trials resulted in a remarkable 
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response in elderly AML patients in combination with hypomethylating 
agents156. The venetoclax in combination with azacitidine or decitabine or 
low-dose cytarabine received FDA approval for elderly patients diagnosed 
with AML in November 2018. Venetoclax has a strong and selective 
binding affinity for BCL-2 (Figure 4) and had no impact on platelet 
survival178. However, it has been challenging to select AML patients for 
venetoclax treatment and monitor treatment response in the clinic. 
  

Figure 4. Venetoclax mode of action. a) the balance between anti-apoptotic and 
pro-apoptotic proteins in healthy cells. b) BCL-2 inhibitor prohibits binding of 
pro-apoptotic proteins BAK and BAX to anti-apoptotic BCL2 on BH3 domain to 
promote apoptosis. c) Activated pro-apoptotic proteins trigger permeabilization of 
mitochondrial membrane to releases cytochrome c to execute the final step of 
apoptosis.179 Abbreviation: MOMP: mitochondrial outer membrane 
permeabilization. Adopted from Konopleva et al. Cancer Discovery, 2016180 with 
permission from AACR. 
 
4.4.4 Biomarkers for venetoclax response 
 
Genetic biomarkers for venetoclax sensitivity and resistance have been 
reported in solid tumors and hematological malignancies. As an apparent 
biological correlate, BCL-2 gene overexpression was reported to be 
associated with venetoclax sensitivity in small cell lung cancer181. Chyla et 
al. reported that IDH1, IDH2 and SRSF2 mutations correlate with clinical 
response to venetoclax in AML patients182. 
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Due to the lack of stability of the genetic and gene expression biomarkers 
for venetoclax responses, Konopleva M. and Letai A. have developed a 
functional assay known as BH3 mimetic assay. The assay measures the 
apoptotic potential of the cells to determine the corresponding response to 
BH3 mimetic venetoclax. The assay was reported as a robust biomarker 
which can be implemented in the clinic to predict venetoclax sensitivity by 
Pan et al. 102. Later, Konopleva et al. reported phase II clinical trial results 
of venetoclax monotherapy in 32 AML patients. The BH3 profiling assay 
results were consistent with clinical response in the patients. The 800 mg 
clinical dosage of venetoclax was well tolerated in AML patients without 
causing any severe side effects180. The functional BH3 mimetic assay can 
be a promising biomarker for venetoclax response. However, current 
molecular profiling dependent clinical practices need robust genomic and 
transcriptomic biomarkers for predicting sensitivity and resistance to 
venetoclax. 
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5 AIMS OF THE STUDY 
 
This thesis addresses the challenge of utilizing transcriptomics information 
from leukemia patients to aid precision medicine strategies. The specific 
aims of this study were: 
 
• To evaluate the advantages and limitations of two mainstream RNA-

seq library preparation methods for optimal selection (Study I) 
 

• To identify gene expression biomarkers for BCL2 inhibitor venetoclax 
sensitivity in AML patients (Study II) 
 

• To identify biomarkers and therapeutic strategies to counteract BCL-2 
inhibitor venetoclax resistance in AML patients (Study III) 
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6 MATERIALS AND METHODS 
 
6.1 Patient material  
 
Bone marrow (BM) aspirates or peripheral blood samples were collected 
from AML patients. Skin biopsies were also collected (non-malignant cells 
for germline genomic information) from AML patients. All samples were 
collected with the approval of Helsinki University Hospital Ethics 
Committee (permit numbers 239/13/03/00/2010, 303/13/03/01/2011, 
Helsinki University Hospital Ethics Committee) and after signed informed 
consent in accordance with the Declaration of Helsinki. All of the AML 
patients included in studies I-III were venetoclax treatment naïve. 
Mononuclear cells (MNCs) were isolated by Ficoll-Paque PREMIUM 
density gradient separation (GE Healthcare). MNCs were further used for 
drug sensitivity and resistance testing (DSRT) and extraction of nucleic 
acids (DNA and RNA). 
 
6.2 RNA-sequencing  
 
Total RNA (2.5-5 µg) was extracted from BM MNCs using the miRNeasy 
kit (Qiagen). The Qubit fluorometer (Thermo Fisher) was used for RNA 
quantification and RNA quality was measured using Bioanalyzer with 
RNA nanochips (Agilent). Next, RNA-seq libraries were prepared using 
Dynabeads® mRNA Purification Kit (Thermo Fisher) and using the Ribo-
ZeroTM rRNA Removal Kit (Epicentre) as per the manufacturer’s 
instructions. The RNA was further reverse transcribed to double-stranded 
cDNA (SuperScript™ Double-Stranded cDNA Synthesis Kit, Thermo 
Fisher). RNA sequencing libraries were prepared with Illumina compatible 
Epicentre Nextera™ Technology and ScriptSeq v2™ Complete kit 
(Illumina). RNA sequencing libraries were purified with SPRI beads 
(Agencourt AMPure XP) and library QC was evaluated on high sensitivity 
chips using the Agilent Bioanalyzer (Agilent Technologies). Paired-end 
sequencing with 100 bp read length was performed using HiSeq 2000 
(Illumina). 
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6.3 Exome-sequencing 
 
Genomic DNA was isolated from both BM MNCs and skin biopsies from 
AML patients using the DNeasy Blood & Tissue Kit (Qiagen). 3 µg of 
DNA was used for the sequencing. Exome capture was performed with the 
Nimblegen SeqCap EZ v2 capture Kit (Roche NimbleGen, Madison, WI, 
USA) and sequencing was done on HiSeq1500, 2000 or 2500 
instruments98. Data preprocessing (QC, alignment) and somatic mutation 
calling were done as described previously183. 
 
6.4 Ex vivo drug sensitivity and resistance testing (DSRT) 
 
The drug sensitivity and resistance testing (DSRT) was performed in a 
high-throughput setting with five-point doses of each drug as described 
previously98. The drugs were dispensed in nanoliter volumes to 384 well 
plates using Echo 500 and Echo 550 acoustic liquid dispensing system 
(Labcyte). The freshly isolated MNCs from healthy donors and AML 
patients were resuspended in mononuclear cell medium. The cells 
suspension was dispensed in pre-drugged plates using Multidrop (Thermo 
Scientific) and incubated for 72 hours at 37° C. The cell viability was 
measured as a surrogate of ATP production by live cells in terms of 
luminescence using Cell Titre Glow® reagent (Promega). Benzonthenium 
chloride as positive and dimethyl sulphoxide as negative control were 
added to multiple wells in every plate. To read the plates PHERAstar FS 
plate reader (BMG LABTECH) was used. The controls were used to 
calculate percent inhibition for each of five doses of a given drug. These 
values were used to fit four-parameter non-linear regression curves and to 
calculate half inhibitory concentration (IC50). The curve fitting criteria and 
IC50 values were used to calculate drug sensitivity scores (DSS), which is 
a modified area under the curve. The cancer-specific drug responses as 
selective DSS were calculated by subtracting responses from healthy 
controls as described previously184.  
 
6.5 RNA-sequencing data analysis 
 
RNA sequencing data were pre-preprocessed as described previously185. 
Briefly, Trimmomatic105 was used to correct reads for low quality, Illumina 
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adapters, and short read-length. Filtered paired-end reads were aligned to 
the human genome (GRCh38) using STAR aligner109 with the guidance of 
EnsEMBL v82 gene models using 2-pass per-sample parameters were used 
with the overhang on each side of the splice junctions set to 99. The 
alignments were sorted and PCR duplicates were marked using Picard, 
feature counts were computed using SubRead108 and converted to 
expression estimates using Trimmed Mean of M-values (TMM) 
normalization186. Fusioncatcher118 tool was used to call fusion genes using 
RNA-seq fastq files. In study II, to find out the differentially expressed 
genes between venetoclax sensitive and resistant groups, DESeq2115 
package was used. In study III, we applied a linear regression model187, 
assuming that gene expression is affected by confounding factors including 
age, gender, sequencing batch, RNA extraction method and RNA-
sequencing library preparation protocols. To find the relationship between 
gene expression change and drug sensitivity, we corrected the confounding 
factors in the linear regression model. Genes at false discovery rate (FDR) 
< 0.05 were considered significant. 
 
6.6 Pathway and network analysis 
 
Pathway analysis was performed using QIAGEN’s Ingenuity® Pathway 
Analysis (www.qiagen.com/ingenuity). The method was applied to genes 
with ≥ 2-fold change in expression. Z-scores > abs (2) was considered as 
significant. In addition to IPA, the Gorilla188 web-server was used to 
identify enriched terms across all three-gene ontologies. In study III, 
network analysis was performed for negatively associated genes (n=349) 
with venetoclax response using the Enrichr189,190 tool. Outputs from KEGG 
2016 and Reactome 2016 cell signaling pathway databases were considered 
for further analysis. GeneMANIA191 was used for visualizing a sub-cluster 
of 29 genes associated with venetoclax resistance. 
 
6.7 Quantitative reverse transcription-PCR (RT-qPCR) 

For the RT-qPCR validation experiments, RNA was isolated either from 
AML patients and from cells lines. The Qubit fluorometer was used for the 
RNA quantification. The SuperScript III Reverse Transcriptase (Thermo 
Fisher) was used for the cDNA synthesis. The reaction was run on the 
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CFX96 Real-Time System instrument (Bio-rad) using 10ng cDNA from 
each sample, including the iQ SYBR Green SuperMix (Bio-Rad, Hercules, 
CA, USA). Data were analyzed by applying ΔΔCt method using reference 
genes.   

6.8 Statistical analyses 
 
R version 3.3.3 was used for all the statistical analyses and for generating 
plots. Pearson’s correlation coefficient assessed statistical dependence 
between two variables. The Mann Whitney U test was used for analyzing 
differences between drug responses. Two-sided P-values below 0.05 and 
false discovery rate (FDR) below 0.05 were considered statistically 
significant. The Wilcoxon signed-rank test was applied to find significant 
differences in drug response between wild type and mutated AML patient 
samples for a given mutation. 
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7 RESULTS 

Detailed results from published articles are presented in their original 
communications and briefly summarized here. 
 
7.1 Impact of RNA-seq protocols (Publication I) 
 
We compared two major library preparation protocols, poly-A enrichment 
(PA) and ribo-depletion (RD) used for clinically relevant molecular 
features. The protocols applied to the total RNA isolated from mononuclear 
cells from the bone marrow of leukemia patients. Eight libraries were 
generated from two AML and two acute lymphoblastic leukemia (ALL) 
patient samples, including experimental replicates and technical replicate 
from the same total RNA sample (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5. A systematic overview of the experimental design. Total RNA was 
isolated from mononuclear cells and used for RNA-seq library preparation. 
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We evaluated the utility of two mainstream protocols to detect clinically 
relevant molecular characteristics and assessed their effects on based on 
different analyses including;   

i. Read mapping; the PA protocol provided a higher number of exon 
mapping reads (75.2-76.9%) than the RD libraries (52.0-72.6%). 
Reads mapping to intronic regions were higher in RD (33.8%) than 
in PA (21%) (Figure 6a). 

ii. Expression of protein-coding and non-coding RNAs; the RD protocol 
detected 20.8 to 26.3% more features altogether compared to PA 
libraries. The list of genes includes both protein-coding and non-
coding (processed pseudogene, lincRNA, snRNA, antisense and 
miRNA) RNAs. In the case of protein-coding genes, 1380 of them 
were, discordantly called between the matched PA and RD libraries. 
The PA protocol overlooked 55 histone genes and on the contrary, 
many cancer-related genes e.g., TGF-β1, BCL3, BRD4 were 
overlooked by RD protocol. 

iii. rRNA removal efficiency; the PA libraries had higher rRNA mapping 
read rates than RD libraries (1.8% vs. 0.6%) (Figure 6b). 

iv. The hierarchical clustering of highly variable genes depicted the 
groups driven by disease biology instead of protocols/technical 
variation (Figure 6c). 

v. Differential gene expression; to find out the impact of library 
preparation protocol on differential gene expression, an independent 
RT-qPCR experiment was performed. The expression analysis of 
randomly selected five oncogenes (POLR1B, TUBB, SRM, TGFB1, 
NABP1) revealed that the PA protocol captured target mRNAs more 
efficiently than the RD protocol. The PA protocol captures target 
mRNA to a greater extent compared to RD protocol. STAT3, NABP1 
and TET2 were depleted significantly in the PA enriched library and 
NRAS, STAT3, TET2, EMD, SRM, TGFB1, ZFP36L2 showed a 
significant difference between the RD library and total RNA. 

vi. Fusion gene detection; FusionCatcher118 tool was applied to the 
evaluation of the efficiency of PA and RD protocols in detecting 
fusion genes. The clinically relevant fusions with well-known roles 
in leukemia diagnosis and prognosis. For example, BCR-ABL1 in-
frame fusion gene that was supported by 184 and 188 spanning pair-
end reads in PA and RD.  
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Figure 6. a) The percentage of reads mapped to intragenic, intronic and exonic 
regions, read mapping rates are on Y-axis. b) Y-axis on the left represents number 
of rRNA reads and Y-axis on the right represents rRNA mapping rates. c) The 
first heatmap represent the disease and library specific variations, the second 
heatmap represents the technical variation. For the hierarchical clustering genes 
(log2 RPKM >2 and CV >20) were selected using Euclidean distance and 
complete linkage. 
 
Overall, both protocols produced similar results with consistent outcomes. 
We found that RD protocols capture whole transcriptome information, 
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detects a higher number of ncRNA features (snRNA, processed 
pseudogene, lincRNA, miRNA). Also, it had higher alignment and gene 
coverage efficiency, depleted some protein-coding mRNA and MT genes 
and removed rRNA effectively. On the other hand, PA protocol captured 
more protein-coding regions, closely represented gene expression values 
with total RNA, depleted histone mRNA and lost targeted RNAs of interest 
if lack poly-A tails, efficient in differential gene expression analysis.  
 
7.2 Biomarkers for venetoclax response (Publication II and III) 
 
To identify genomic and transcriptomic biomarkers associated with 
venetoclax sensitivity and resistance, DSRT was performed with 
mononuclear cells isolated from the bone marrow of AML patients. Also, 
WES (n=42) and RNA-seq (n=35) was performed with same MNCs.  
 

 
Figure 7.  Waterfall plot illustrates the selective venetoclax response profile in 50 
samples from AML patients and eight healthy controls (green). The sDSS 
represents leukemia-selective responses compared to healthy controls, where high 
sDSS represents strong sensitivity. Each sample is annotated for the disease type 
and presence of key AML somatic mutations.    
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In study II, Venetoclax produced heterogeneous response across AML 
patient samples (Figure 7). The differential gene expression analysis was 
performed using RNA-seq read counts data. The analysis was applied 
between samples that were highly resistant (n=4) and highly sensitive (n=3) 
to venetoclax response (Figure 8a). The analysis resulted in 322 significant 
differentially expressed genes (FDR <0.05). Out of 322 genes, 41 of them 
were overexpressed in the sensitive group (Figure 8b) and 281 genes were 
overexpressed in the resistant group. The genes were further analyzed for 
their biological function and class. The analysis revealed several HOX 
family genes with significantly higher expression in venetoclax-sensitive 
compared to resistant samples. Furthermore, we also confirmed the 
overexpression of the HOX family genes using RT-qPCR in AML patient 
samples. Moreover, IDH1/2 and WT1 mutations were found to be enriched 
in venetoclax sensitive patient samples compared to resistant samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. a) Multi-dimensional scaling plot exhibits differences between the 
expression profiles of three venetoclax sensitive and four venetoclax resistant 
samples in two dimensions. b) 41 significantly with false discovery rate (FDR < 
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0.05) overexpressed (>log 2-fold) genes in the sensitive group as compared to the 
resistant group.   
 
In study III, we aimed to identify gene expression biomarkers for 
venetoclax resistance. Availabilityof a larger sample set, especially gene 
expression data, allowed to apply machine learning analysis. The analysis 
was performed between gene expression and venetoclax responses. 
 

Figure 9. Volcano plot highlighting differentially expressed genes in venetoclax 
sensitive and resistance samples, respectively. The linear regression analysis was 
performed between venetoclax response (sDSS) and protein-coding genes 
(n=19,220) by correcting for the possible technical covariates (e.g., gender, RNA-
seq library preparation method, RNA extraction kits). The S100 genes were 
further validated at expression (RT-qPCR) and protein (Western blot) level in 
venetoclax resistant AML patient samples.  
 
The analysis resulted in 601 significantly associated genes (FDR < 0.05). 
Of these genes, 252 were positively and 349 negatively associated with 
venetoclax response. The positively associated genes included five HOX 
family genes, namely HOXB5, HOXB6, HOXB7, HOXB8 and HOXB9, 
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confirming findings from study II58. In contrast, amongst the most 
significantly associated genes were three S100 family genes, namely 
S100A6, S100A8, and S100A9 (FDR < 0.05). Taken together, HOX and 
S100 family genes were overexpressed in venetoclax sensitive and 
resistance AML samples, respectively (Figure 9). 
 
Furthermore, we aimed to identify possible drugs that effectively target 
venetoclax resistant patient samples. The expression of S100A8 and 
S100A9 genes was correlated with response to 349 approved drugs and 
emerging investigational chemical compounds. The analysis resulted in a 
positive correlation between S100A9 gene and BET inhibitor birabresib. 
Considering that birabresib re-sensitizes AML cell to venetoclax, the 
combination of birabresib and venetoclax was tested. Intriguingly, we 
found strong synergy between birabresib and venetoclax in S100A8/A9 
overexpressing, venetoclax resistant AML patient samples and cell lines. 
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8 DISCUSSION 
 
Evolution of technologies to study gene expression has opened new 
avenues to understand disease biology and identify biomarkers to monitor 
therapy responses. The increased sensitivity and specificity of technologies 
measuring gene expression changes now reveal the subtle changes in 
transcriptomes and disease mechanisms at unprecedented precision. 
Several sophisticated methods and protocols are emerging to quantify gene 
expression patterns. Therefore, it is essential to evaluate and compare each 
method and protocol for optimal selection of the method suitable for 
clinical application under the modern-day precision medicine setting.  
 
It is widely accepted and biologically meaningful to study gene expression 
signatures at transcriptome level compared to studying expression changes 
in individual genes to understand the changes upon treatment better. This 
speculation is supported by the fact that genes coordinate and function in 
networks rather than individually. For example, genes belonging to the 
same family can co-operatively activate or deactivate certain cellular 
processes. Thus, detecting gene expression changes can lead to the 
identification of novel biomarkers for diagnosis, prognosis and drug 
response. Notably, the biomarkers for drug responses are most useful to 
monitor therapeutic effect and development of drug resistance in patients 
receiving molecularly guided treatments. Identifying disease biomarkers 
and associated gene expression changes not only provides insights on drug 
responses but may also help to understand the mechanism of resistance 
development, enabling us to build strategies to avoid the development of 
resistance. Despite the extensive efforts to discover biomarkers, the gene 
expression biomarkers used in routine clinical practice are negligible. This 
indicates the need to implement powerful bioinformatics and statistical 
approaches to investigate robust biomarkers for drug responses 
systematically. 
 
Study I – RNA-seq library preparation protocol comparison 
 
Library preparation is one of the most critical steps of RNA-seq analysis. 
The selection of library preparation protocol is known to affect downstream 
analysis and can hinder the interpretation of RNA-seq findings71,85,87. Also, 
inconsistencies between RNA-seq data generated from different library 
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preparation protocols have been reported in many studies86,192. So far, the 
performance of RNA-seq library preparation protocols has mostly been 
reported from non-clinical samples82,86,87.  To find out the impact of library 
preparation protocols on leukemia patients, we applied two mainstream 
library preparation protocols. We systematically compared the 
performance of the protocols to detect clinically relevant gene expression 
changes. We also conducted independent RT-qPCR experiments and 
analyzed which protocol produced mRNA expression estimates more 
similar to those observed in total RNA. The small number of patient cases 
is a limitation of our study towards getting statistically significant 
conclusions e.g., differential gene expression and pathway analysis.  
 
The PA libraries provided a higher fraction of exome mapping reads and 
lower number of intronic reads compared to RD libraries. The intronic 
reads originated from immature, mostly non-spliced transcripts193. 
Immature transcripts are pre-mRNAs meaning that the RNA polymerase 
has not yet attached to the 3′ end of the gene. Recently, it was shown that 
in case of the RD protocol, intronic reads come primarily from the 
immature transcripts such as nuclear RNAs194,195. A small portion of 
intronic reads in case of PA protocol might represent background 
oligo(dT) priming of adenines in primary transcripts, rather than true 
polyadenylated transcripts195. Wetterbom et al. have also suggested that 
mRNA purification by PA protocol was not completely efficient196. 
Since the PA protocol covered more exonic regions than the RD protocol, 
it positively affects differential expression analysis197. Hence, the PA 
protocol is the preferred method to identify differentially expressed 
genes between two or more conditions. However, a higher fraction of 
intergenic and intronic reads gives information on pre-mRNA dynamics 
and novel transcripts198. 
 
In our study, many protein-coding and non-polyadenylated genes that were 
missed by the PA protocol were detected by RD protocol. In accordance 
with a previous study there gene included histone genes85. While RD 
protocols captured more coding and non-coding transcripts, many known 
oncogenes were missed, including TGF-β1, BCL3 and BRD4, reported to 
be associated with leukemia development199-201. PA protocol can be better 
suited for characterization of leukemia transcriptomes. However, the 
results of the study I were acquired from a small number of patient cases 



 
 
 

42 

and therefore, the conclusion is drawn here needs to be interpreted with 
caution. 
 
Finally, which RNA-seq protocol should one select? The choice of the 
optimal RNA-seq protocol will strongly depend on the quality and quantity 
of input material202,203. In general, if the input RNA is intact and extracted 
from fresh biopsies for examples bone marrow or peripheral blood, most 
protocols will produce high-quality RNA-seq data. However, in most cases, 
the PA protocol is recommended as they will provide the best 
interoperability. Moreover, PA outperforms RD in many clinically relevant 
assessments, including gene expression analysis, classification of leukemia 
patients, quantification of leukemic marker genes, and variant analysis. If 
RNA integrity is compromised or PA protocol is not possible and the main 
experimental focus is on non-coding transcripts, then the RD protocol is 
recommended. Thus, the objectives of the study should guide the selection 
of the RNA-seq library protocol. 
 
Study II and III - Biomarkers for sensitivity and resistance to BCL-2 
inhibitor venetoclax 
 
In study II, we sought to identify gene expression biomarkers for BCL-2 
inhibitor venetoclax response in AML patients. The differential gene 
expression analysis between venetoclax sensitive and resistant samples 
revealed HOX family gene overexpression in venetoclax sensitive 
samples58. Homeobox (HOX) are evolutionarily conserved genes encodes 
for transcription factors. These factors are known to play a fundamental 
role in embryonic development, including cell differentiation204-206. Early 
hematopoietic progenitor cells highly express HOX genes during 
hematopoietic maturation but the expression levels eventually halt in 
differentiated cells207. The known upstream deregulators of HOX gene 
overexpression are fusions involving HOX genes (NUP98-HOX) and MLL 
rearrangements208, often found in leukemia patients. The survival of 
undifferentiated leukemic stem cells was shown to be dependent on BCL-
2209. The deregulation of HOX gene expression was found to be restricted 
in progenitor cells210. Venetoclax treatment can effectively target the 
leukemic stem/progenitor cell population considering HOX gene 
deregulation and BCL-2 dependence found in this cell population. This is 
in consistence with our finding revealing that HOX gene overexpression is 
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associates positively with venetoclax sensitivity, representing BCL-2 
dependence in AML patients. Hence, HOX gene expression can be 
developed as a biomarker for selecting AML patients for effective 
venetoclax therapy outcomes with further testing under clinical settings. 
  
In study III, we investigated possible gene expression markers associated 
with ex vivo resistance to BCL-2 inhibitor venetoclax. We applied a 
machine learning approach, since a large data-set of RNA-seq from AML 
patient was available. We observed that S100 family genes were associated 
with venetoclax resistance. S100 family genes encode for 21 calcium-
binding proteins described to play crucial roles in cell proliferation, 
differentiation and inflammation211,212. S100 protein family are the largest 
group of calcium-binding proteins and the S100 name was given based on 
the fact that solubility of S100 proteins occurs in a 100% saturated 
ammonium sulfate solution at pH 7213. We observed that S100A8 and 
S100A9 genes were significantly associated with venetoclax resistance 
amongst other family members. Expression of S100A8 was reported to be 
a poor prognostic factor as well as to be associated with chemo-
resistance214. Similarly, mitochondrial priming for apoptosis predicts 
response to cytotoxic chemotherapy215. The interaction analysis using 
GeneMania webtool showed co-expression patterns between S100A8/A9 
and BCL-2 gene family gene BCL2A1. This may indicate that co-
overexpression of BCL-2 and S100 family genes confer resistance to 
venetoclax in AML cells. However, the exact mechanism of interaction 
between these genes needs further mechanistic investigation. 
 
BET family inhibitor mivebresib (ABBV-075) was reported to modulate 
the apoptosis and synergize with venetoclax efficacy in AML cell lines, 
patient cells and mouse xenograft model216,217. A phase I clinical trial 
(NCT02391480) has been set to test a combination of venetoclax and 
mivebresib in patients with solid tumors and AML. In this study, we 
observed that birabresib (OTX-015) mediated BET inhibition reduced 
protein levels of BCL-XL and BCL-2 protein levels in cell lines 
overexpressing S100A8 and S100A9. This finding is in line with the 
published study suggesting that BET inhibitor treatment downregulates the 
expression of anti-apoptotic proteins BCL-XL, BCL-2 and MCL-1217. 
Furthermore, we observed that birabresib treatment led to upregulation of 
pro-apoptotic protein BIM in AML patient samples. Moreover, 
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upregulation of BIM has been shown upon JQ1 and mivebresib treatment 
in AML cell lines and other cancers217-220. Thus, with further investigations, 
the S100 gene expression pattern could potentially be used to identify 
patients that would benefit from a combination of BET and BCL-2 
inhibitors. 
 
Moreover, mutation patterns were also investigated in venetoclax sensitive 
and resistant AML patient samples. IDH1/2 mutations were found to be 
enriched in samples with high ex vivo sensitivity to venetoclax in study II. 
The IDH mutations related to BCL-2 dependence was also reported by 
other studies221,222, which were designed to target IDH1 and IDH2 mutated 
AML patients with BCL-2 inhibitors. Isocitrate dehydrogenase (IDH) 1 and 
2 enzymes, upon mutation, produce oncometabolite 2-HG that 
subsequently causes hyper-methylation of several downstream genes223-225, 
including HOX gene expression regulation and impaired metabolism that 
may lead to BCL-2 dependence221. Thus, IDH1 and IDH2 mutation may 
become biomarkers for venetoclax sensitivity with further investigation. 
 
Taken together, this thesis aimed to utilize gene expression information for 
advanced precision medicine outcomes in patients with hematological 
malignancies. In study I, the contemporary mainstream library preparation 
protocols, ribo-depletion and polyA enrichment used for RNA-seq, were 
compared in order to select an optimal protocol that suffices the goal of the 
experiment, especially in patients with acute leukemias. In study II, we 
applied bioinformatics approaches to identify IDH1/2 mutation and HOX 
family gene expression correlated with ex vivo sensitivity to BCL-2 
inhibitor venetoclax in AML patients. In study III, statistical and machine 
learning methods were implemented to identify S100A8/A9 gene 
expression biomarkers for ex vivo resistance to venetoclax in AML 
patients. In summary, this thesis addresses the challenges of utilizing gene 
expression information to stratify patients based on biomarkers to promote 
precision medicine practice in hematological malignancies. 
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9 FUTURE PERSPECTIVES 
 
The precision medicine field has been advancing with the development of 
new technologies and these advancements continue to improve overall 
patient outcomes. Also, the declining cost of sequencing and rapidly 
growing computational resources for big data analysis enables better 
implementation of these techniques for real-time diagnosis and treatment 
decision making in the clinic. Moreover, where current clinical practices 
are limited to sequencing efforts, an adaptation of more sophisticated 
analyses, including circulating tumor DNA sequencing, immuno-profiling, 
functional assays to predict and monitor treatment responses and cancer 
progression. In the future, it will be possible to collect complete molecular 
profiling data from the same time points to explore various angles of 
complex disease information. Emerging deep learning and artificial 
intelligence models have been bringing forth cutting-edge tools to combine 
data from multiple biological sources to deconvolute information on 
molecular profiles, survival prognosis, drug dose selection and phenotypes 
of cancer cells. 
 
The transcriptomic studies have primarily contributed to increased 
understanding of functional relationship and gene regulation aspects of 
cancer cells, thereby bridging the gap between genotype and phenotype. 
Current application of bulk RNA-sequencing has enabled us to discover 
therapeutic fusion genes (e.g., BCR-ABL), epigenetic deregulation pattern 
in molecular subsets, gene expression patterns associated with drug 
responses and prognosis. It has been demonstrated that gene expression 
signatures can efficiently proximate the cellular processes compared to 
single genes. However, application of single-cell RNA-seq can capture 
heterogeneity at molecular, functional and phenotype levels to underpin the 
detailed but comprehensive information. The clinical utility of single-cell 
sequencing to aid therapy selection or monitor treatment response needs 
well-designed strategies to utilize the potential of the information from the 
data. Translating cancer genome and transcriptome for patients will require 
continued multi-disciplinary collaboration between oncologists, 
pathologists, basic scientists, and computational biologists. Routine 
molecular profiling of cancer patients for basic genomics research, tumor 
sequencing in the clinic, and big data sharing networks would be essential 
to enable precision cancer medicine in practice. 
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