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Much human ingenuity has gone into finding the ultimate Before.
The current state of knowledge can be summarized thus:

In the beginning there was nothing, which exploded.

— Terry Pratchett, Lords and Ladies
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Abstract

Cosmic inflation is a hypothetical period in the early universe, where the expansion of space
accelerated. Inflation explains many properties of the observed universe, but its cause is not
known. Higgs inflation is a model where inflation is caused by the Higgs field of the Standard
Model of particle physics, coupled non-minimally to gravity. In this thesis, we study various
aspects of cosmology with Higgs inflation.

Inflation leaves marks on the cosmic microwave background radiation, and these marks can
be used to distinguish inflationary models from each other. We study hilltop Higgs inflation, a
model where quantum corrections produce a local maximum into the Higgs potential, and show
that there the predicted tensor-to-scalar ratio r � 1.2×10−3. This is smaller than the prediction
of tree-level Higgs inflation by a factor of four or more and can be probed by next-generation
microwave telescopes.

We also study reheating, the process where the universe transitions from inflation to radiation
domination with a thermal bath of relativistic Standard Model particles. We show that in
Higgs inflation, reheating is particularly efficient in the Palatini formulation of general relativity,
because there Higgs bosons are produced violently by a tachyonic instability. The duration of
reheating affects, for example, the predicted spectral index of the primordial perturbations.

Finally, we discuss the production of primordial black holes in Higgs inflation. We show
that large quantities of such black holes can be produced, but in order to satisfy observational
constraints on large scales, they must be so small that they would have evaporated by now by
Hawking radiation. However, if the evaporating black holes left behind Planck mass relics, these
could constitute part or all of the dark matter, the dominant, unknown matter component of
the universe.

Together, these studies show that even though the ingredients that go into Higgs inflation are
simple, they lead to a rich phenomenology and offer valuable insights into inflation, gravitational
degrees of freedom and the origin of dark matter.
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Chapter 1

Introduction

Cosmology is a science that studies the structure and evolution of the universe. In recent
decades, thanks to advances in observational methods, we have been able to probe the past of
the cosmos to unprecedented accuracy. Today, our best understanding of the early history of
the universe is the following.

At early times, the universe went through a period of accelerated expansion of space known
as cosmic inflation. During inflation, all energy was stored in a scalar field called the inflaton.
The universe was almost homogeneous and isotropic, except for small perturbations seeded by
quantum mechanical effects. When inflation ended, the process of reheating transferred the
energy into a hot plasma of relativistic particles of the Standard Model of particle physics (SM),
and the radiation-dominated era began.

As the universe continued to expand, its temperature decreased. Eventually, matter went
through the electroweak phase transition, where the Standard Model Higgs field acquired its
current vacuum expectation value, giving the other SM particles their masses as measured
today. Later, quarks were bound into hadrons in the QCD phase transition. When the universe
was a few minutes old, these hadrons formed light atomic nuclei, mainly hydrogen and helium,
in the Big Bang nucleosynthesis.

Throughout these early times, the universe was opaque to light: positively and negatively
charged particles filled the space, and any emitted photon was quickly reabsorbed. This changed
in recombination, where charged particles formed electrically neutral atoms. Afterwards, light
rays could pass through space freely, and even today we can detect this early light as the cosmic
microwave background (CMB) radiation, an afterglow that carries information on the early
conditions of the universe. The primordial perturbations generated during inflation can be seen
as anisotropies in this radiation, and they also seeded the formation of structure when they
started to grow later in the history of the universe.

By the time of recombination, radiation domination had ended and cold matter was the
prevailing energy component of the universe. However, most of it did not consist of atoms,
but of dark matter, a yet unknown form of energy that interacts with ordinary matter mainly
through gravitation. The presence of dark matter is seen in the CMB anisotropies and in the
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2 Introduction

formation and dynamics of galaxies and galaxy clusters. The exact nature of dark matter and
cosmic inflation are some of the outstanding mysteries of modern cosmology, together with other
conundrums such as baryogenesis, the process which produced more matter than antimatter in
the early universe, and the observed late-time acceleration of the expansion of space.

In this thesis, we study Higgs inflation, a particular solution to the problem of cosmic inflation.
In Higgs inflation, the Higgs field of the Standard Model of particle physics drives inflation.
When the Higgs field is coupled non-minimally to gravity, the model matches cosmological
observations well, and as models of inflation go, it is elegant: no new degrees of freedom beyond
the Standard Model need to be introduced to make inflation happen. Higgs inflation also provides
an intriguing link between the physics on the largest, cosmological scales, and the small-scale
particle physics studied by collider experiments.

The original scientific contributions of this thesis consist of three research papers. In the first
paper [1], we study hilltop Higgs inflation, a special case of Higgs inflation where the Higgs
potential has a local maximum. The topic of the second paper [2] is reheating in Higgs inflation,
in the Palatini formulation of general relativity. The third paper [3] deals with the formation of
primordial black holes in Higgs inflation; such black holes are a potential dark matter candidate.

The thesis is structured as follows. Chapter 2 is an introduction to cosmic inflation, with an
emphasis on the connection between cosmological observations and the inflaton potential. In
chapter 3, we study the Higgs field and its quantum-corrected potential, both with and without
the non-minimal coupling. Chapter 4 combines these ingredients into Higgs inflation, and we
compare hilltop Higgs inflation to other possible scenarios. In chapter 5, we discuss reheating in
Higgs inflation and the differences that arise there between the metric and Palatini formulations
of general relativity. Formation of primordial black holes in Higgs inflation, and their possible
role as dark matter, is the topic of chapter 6. Finally, the concluding remarks are presented in
chapter 7.

1.1 Notation

Throughout the thesis, we use the (−, +, +, +) convention for the metric tensor. We also use
natural units where the speed of light c, the reduced Planck constant �, and the mass scale of
gravitation M are set to one. Here M is the coupling multiplying the curvature scalar R in the
Einstein–Hilbert action:

SEH =
1
2

∫
d4x

√−gM2R , (1.1)

where g is the determinant of the metric gμν . The value of M is usually equal to the (physical,
measured) reduced Planck mass MPl ≈ 2.4 × 1018 GeV, but they differ slightly in the presence
of the non-minimal gravitational coupling ξ introduced in section 3.2. Then M2

Pl = M2 + ξv2,
where v is the Higgs vacuum expectation value, and ξv2 � M2.



Chapter 2

Cosmic inflation

Cosmic inflation is a hypothetical time period in the very early universe before the events of
the hot radiation-dominated era, where the expansion of space was accelerating. It explains
the spatial flatness and large-scale homogeneity of the observed universe, features that are
otherwise unexplained by the Big Bang model. Moreover, inflation explains the origin of the
perturbations from which cosmic structures such as galaxies and galaxy clusters emerge. In
inflationary models, these perturbations were originally quantum vacuum fluctuations that were
stretched and amplified to cosmic scales during inflation. Nowadays we see imprints of these
fluctuations in the CMB radiation and the large-scale structure of the universe and test models
of inflation by comparing their predictions to these observations.

In this chapter, we discuss cosmic inflation on a general level. We explain how a scalar field
can drive inflation, how perturbations of this field are calculated, and how these calculations
can be compared to CMB measurements.

2.1 Friedmann–Robertson–Walker model

In modern cosmology, the universe is described by general relativity, a theory which combines
space and time and matter using the language of differential geometry. Equations of motion for
the spacetime and matter are obtained by extremizing the action [4]

S =
1
2

∫
d4x

√−gR + Smat , (2.1)

where g is the determinant of the spacetime metric gμν , R is the curvature scalar, and Smat is
the action for the matter fields.

On large scales, the observed universe is close to homogeneous and isotropic. To model this
we restrict our attention to homogeneous and isotropic solutions of general relativity, which are
described by the Friedmann–Robertson–Walker (FRW) metric [4]:

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdφ2

)]
, (2.2)

3



4 Cosmic inflation

where t is the cosmic time, r, θ and φ are the radial and angular coordinates of space, a(t) is
the scalar factor that describes the expansion of space, and k is a curvature constant. Plugging
the metric (2.2) into action (2.1) and demanding that variations of S with respect to the metric
vanish, we get the Friedmann equations:

H2 =
ρ

3
− k

a2 ,
ä

a
= −1

6
(ρ + 3p) , (2.3)

where H ≡ ȧ
a is the Hubble parameter, and a dot denotes a derivative with respect to t. Due

to the symmetries, matter is described by an ideal fluid whose energy density ρ and pressure p

are defined in the stress-energy tensor

Tμν ≡ − 2√−g

δSmat
δgμν

= (ρ + p)uμuν + pgμν , (2.4)

where uμ = (1, 0, 0, 0) is the fluid’s 4-velocity. Given an equation of state for matter, that is, an
additional relationship between ρ, p and a, the time evolution of these quantities can be solved.

If the universe is filled with radiation and non-relativistic matter, it expands in a decelerating
manner: ä < 0. Going towards early times, a decreases and the energy density and temperature
increase, until an initial singularity is reached some 14 billion years ago. However, a model with
ä < 0 all the way through has certain shortcomings when applied to the observed universe.

2.1.1 Need for inflation

The first shortcoming of the basic model presented above is that measurements indicate that the
k-term in (2.3) is zero or vanishingly small compared to the energy density term, that is, space
is very close to Euclidean. Since no value of k is preferred by the theory, this can be seen as
fine-tuning. What’s worse, if k is non-zero, the ratio between the energy density and curvature
terms evolves as

d

dt

∣∣∣∣ k

a2ρ

∣∣∣∣ = − 6|k|
a4ρ2 ȧä , (2.5)

where we assumed ρ > 0. In an expanding universe, ȧ > 0, and in a universe dominated by
radiation and non-relativistic matter, ä < 0, so the contribution of the curvature term grows.
Even a small deviation from zero at early times could grow to a large value today, and to avoid
this, the early value of this term needs to be fine-tuned very close to zero. This is the flatness
problem.

Additionally, it is not clear why the universe would be homogeneous and isotropic from the
very beginning. Uniform temperature of the observed CMB radiation tells us that homogeneity
and isotropy apply already at an early time, and if the universe was always dominated by
radiation and non-relativistic matter, then there was no time for signals to propagate from one
patch of the CMB sky to another far-away patch between the Big Bang and recombination [5].
The cosmological particle horizon blocks the two patches from reaching a uniform temperature,
apart from fine-tuned initial conditions. This is the horizon problem.
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Both of these problems can be alleviated by postulating an era with ä > 0 in the very early
universe, called cosmic inflation [6–11]. During such an era, the ratio in (2.5) automatically
decreases to a small value, and inflation also changes the expansion history so that far-away
patches of the CMB sky are brought into causal contact with each other.

However, non-relativistic matter and radiation can’t cause inflation. Instead, we need some-
thing more exotic, such as a uniform scalar field.

2.2 Scalar field inflation

For a canonical scalar field φ(x), the action (2.1) becomes [4]

Sφ =
∫

d4x
√−g

[1
2

R − 1
2

gμν∂μφ∂νφ − V (φ)
]

, (2.6)

where V is the potential function of the field. In the homogeneous and isotropic case where
φ(x) = φ(t), and with k = 0, the Friedmann equations take the form

H2 =
1
3

[1
2

φ̇2 + V (φ)
]

,
ä

a
= −1

3

[
φ̇2 − V (φ)

]
, (2.7)

together with the scalar field equation of motion, which is not independent but can be derived
from these:

φ̈ + 3Hφ̇ + V ′(φ) = 0 . (2.8)

Using (2.7), we see that inflation happens when

V > φ̇2 ⇐⇒ εH ≡ φ̇2

2H2 < 1 , (2.9)

that is, when the field velocity is small compared to the potential height. A scalar field that
drives inflation in this manner is called the inflaton. A particularly simple and attractive special
case is slow-roll inflation (SR), which we will discuss next.

2.2.1 Slow-roll inflation

In slow-roll inflation, in addition to (2.9), we also have [5]

|φ̈| � 3H|φ̇| ⇐⇒ |ηH | � 1 , ηH ≡ − φ̈

Hφ̇
, (2.10)

in other words, the ‘friction term’ 3Hφ̇ in the field equation (2.8) dominates over the acceleration
term φ̈. The equations of motion become

3Hφ̇ ≈ −V ′ , 3H2 ≈ V . (2.11)

These are first order in time derivatives, and thus easier to solve than the full equations (2.7),
(2.8).
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We call εH and ηH the slow-roll parameters. They quantify the goodness of the slow-roll
approximation at any given moment. When they are small, φ is in slow-roll, and we can use
(2.11) to write them in terms of the potential and its derivatives:

εH ≈ εV , ηH ≈ ηV − εV ,

εV ≡ 1
2

(
V ′

V

)2
, ηV ≡ V ′′

V
.

(2.12)

A given potential V can support slow-roll only if these parameters are small in some region. Even
then, smallness of εV and ηV is not a sufficient condition for slow-roll inflation: one also needs
suitable initial conditions for the field velocity and Hubble parameter. However, for a potential
with a long region with εV , ηV < 1, slow-roll is an attractor solution of the full equations of
motion, that is, the inflaton ends up on the slow-roll trajectory from a broad range of initial
conditions [5]. This is one of the big selling points of slow-roll inflation. Rate of change of εV

and ηV can be quantified by defining higher-order slow-roll parameters [12]:

ζV ≡ V ′

V

V ′′′

V
, �V ≡

(
V ′

V

)2 V ′′′′

V
, . . . (2.13)

To achieve a long period of slow-roll inflation, these parameters must also be small in the slow-
roll region. Length of inflation is measured in e-folds N ; in one e-fold, the scale factor a grows
by a factor of Euler’s number e. When the inflaton field φ rolls from value φ1 to φ2, the number
of e-folds of inflation in slow-roll is, to leading SR order,

N ≈
∫ φ1

φ2

dφ√
2εV

. (2.14)

To understand slow-roll inflation, it is useful to consider an analogy from classical mechanics
with a skier sliding down a hill. The skier’s acceleration is given by a combination of two force
terms: a gravity term which depends on the slope of the hill, and a friction term that we assume
to be dominated by air resistance so that it increases with increasing velocity. If the skier starts
from rest, their velocity will first increase, but so does the air resistance. Eventually, gravity
and air resistance will balance each other out: the skier reaches terminal velocity, and their
acceleration drops to zero. The terminal velocity depends on the slope of the hill and may
change as the skier makes progress, but as long as the change in the slope is slow, the skier’s
velocity follows the changing terminal velocity.

In cosmic inflation, the inflaton field φ corresponds to the position of the skier, and the V ′

and 3H2φ̇ terms in the field equation (2.8) correspond to gravity and air resistance in the skier
analogy. Slow-roll holds when the skier has reached the terminal velocity. If the slope of the hill
is not too steep and does not change too rapidly—that is, if the potential slow-roll parameters
are small—then this happens sooner or later; the solution is an attractor. Slow-roll inflation
ends when the slope becomes too steep so that the terminal velocity grows quicker than the
skier’s speed.
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Slow-roll models of cosmic inflation are attractive because they can easily provide a long period
of inflation, but also because they predict a spectrum of scalar perturbations that matches the
observations well. These perturbations are the topic of the next section.

2.3 Perturbations

In the intro of this chapter, we mentioned that inflationary models predict the shape of initial
perturbations around the homogeneous and isotropic FRW background. This is done using
cosmological perturbation theory, where both the field φ and the metric gμν are expanded as
perturbative series around the FRW solutions; for a review, see [13]. It turns out that the
resulting scalar perturbations, responsible for the inhomogeneities in the CMB temperature,
can be described by one gauge-invariant quantity, the Sasaki-Mukhanov variable ν [14], whose
Fourier mode functions μk follow to linear order the equations of motion

μ′′
k +

(
k2 − z′′

z

)
μk = 0 , z ≡ a

φ̇

H
, (2.15)

where prime denotes time derivative with respect to the conformal time, dη = dt
a(t) . This variable

is then quantized, resulting in a free quantum field theory in a time-dependent background, where
the perturbation configuration is fully determined by the mode functions μk. The quantized
perturbations are taken to be initially in an adiabatic Bunch–Davies vacuum state [15], from
which they evolve according to the equation of motion (2.15). At later times, perturbation
field correlation functions give information on the statistical properties of the perturbations. At
linear order, this process produces Gaussian perturbations with variance |μk|2.

When calculating the perturbations of the CMB, a particularly useful quantity is the comoving
curvature perturbation R. It is an inherently geometric quantity that describes the curvature
of spacetime, but during inflation it is coupled to ν so that [16]

R =
ν

z
, (2.16)

and for Gaussian perturbations, its statistics are fully described by its power spectrum,

PR(k) ≡ k3

2π2

〈
|Rk|2

〉
=

k3

2π2
|μk|2

z2 . (2.17)

Under fairly general conditions, Fourier components Rk freeze to constant values when the scales
become super-Hubble, k � aH [17]. During inflation, the quantity aH increases, so a mode
with a fixed k starts from k � aH (sub-Hubble) in the adiabatic vacuum state, evolves until
it crosses the Hubble radius to super-Hubble scales, and freezes there. After inflation ends, aH

decreases, so at some point the mode re-enters the Hubble radius and starts to evolve again.
The strategy for solving the evolution of the perturbations is then as follows: during inflation,
we use quantum field theory to solve for the time evolution of μk until it crosses the Hubble
radius; then, we calculate the frozen value of PR(k) from (2.17) on the super-Hubble scales; and
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after inflation, we use the frozen PR(k) as a statistical initial condition for classical metric and
matter perturbations as the corresponding scales start to re-enter the Hubble radius.

In addition to the scalar perturbations, tensor perturbations hij are generated in inflation.
Their mode functions ψk follow equations of motion similar to (2.15), but with z = a [5],

ψ′′
k +

(
k2 − a′′

a

)
ψk = 0 . (2.18)

Tensor perturbations correspond to gravitational waves. They are created by similar quantum
effects as the scalar perturbations, but at linear order, they propagate through space unhindered,
without interactions with matter. The statistical properties of tensor perturbations are given
by their power spectrum

PT (k) ≡ k3

2π2

〈
hijhij

〉
=

8k3

2π2 |Ψk|2 , (2.19)

analogously to (2.17), where the factor eight comes from the number of polarization modes
and their normalization. The power spectrum is usually discussed in terms of the tensor-to-
scalar ratio, r ≡ PT

PR
. In principle, primordial gravitational waves can be observed in the CMB

polarization map as B-modes, but strong foreground effects make this challenging, and there is
no detection to this date [18, 19].

2.3.1 CMB observables

CMB observations give information on primordial perturbations at largest scales observable on
the sky, around the pivot scale k∗ = 0.05 Mpc−1. On these scales, CMB observations by the
Planck satellite combined with other cosmological data sets give [18]

As ≡ PR(k∗) = 2.1 × 10−9 (2.20)

for the scalar perturbation power spectrum and

ns ≡ 1 +
dPR(k)
d ln k

= 0.9625 ± 0.0048 ,

αs ≡ d2PR(k)
d(ln k)2 = 0.002 ± 0.010 , βs ≡ d3PR(k)

d(ln k)3 = 0.010 ± 0.013
(2.21)

for the spectral index ns and higher derivatives of PR(k), where the derivatives are evaluated
at k = k∗. Here ns is slightly below one, and values of the higher derivatives are consistent with
zero. Observations also give a bound

r ≡ PT (k∗)
PR(k∗)

< 0.079 (2.22)

for the tensor-to-scalar ratio.
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2.3.2 Perturbations from slow-roll inflation

Mode equation (2.15) can be solved in slow-roll inflation to give the frozen super-Hubble value
of PR(k) to a wanted order in the SR parameters. To leading order [5],

PR(k) ≈ V

24π2εV
, (2.23)

and the derivatives of PR(k) and the tensor-to-scalar ratio to leading slow-roll order are [20]

ns = 1 − 6εV + 2ηV , r = 16εV , αs = 16εV ηV − 24ε2
V − 2ζV ,

βs = −192ε3
V + 192ε2

V ηV − 32εV η2
V − 24εV ζV + 2ηV ζV + 2�V ,

(2.24)

where everything is evaluated at the time when the corresponding scale left the Hubble radius.
In typical models of inflation, the pivot scale k∗ = 0.05 Mpc−1 left the Hubble radius roughly

50 to 60 e-folds before the end of inflation [5]. Using (2.14), one can find the corresponding
field value, calculate the quantities (2.24) from the potential, and compare the model to the
CMB observations. Note that in such a calculation, it is assumed that the universe is already
isotropic, homogeneous and spatially flat at the Hubble exit of k∗, that is, some inflation has
already taken place. Generally speaking, slow-roll models can match the observations very well,
since by (2.24) they predict a ns value that is close to one, in accordance with the observations
(2.21). Current bounds on ns, r, αs and βs favour slow-roll models with concave and very flat
potentials [18].

2.4 What drives inflation?

Thus far, we have not specified the inflaton field or details of its potential. Over the years,
there have been numerous proposals for different fields and potentials, some motivated by ideas
like modified gravity, supersymmetry, or string theory, others studied for their interesting phe-
nomenology. Models of inflation with more than one field, or a more complicated action with,
for example, modified kinetic terms, have also been proposed. For reviews, see [5, 21]. Even
though the constraints from the CMB have helped rule out whole classes of models, many re-
main consistent with observations. How can we choose the right model, or at least the most
promising ones for further study?

One answer to this question is to choose models that are as minimal as possible, models that
involve only a few additional ingredients when compared to the standard models of particle
physics and cosmology. In this regard, perhaps the most interesting model is Higgs inflation,
where no new fields need to be added to the Standard Model of particle physics, as the Higgs
field of the SM is the inflaton. We will study this model in detail in chapter 3. Before that, we
take a look at the basic properties of the SM Higgs field in the next chapter.
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Chapter 3

The Higgs field

The Standard Model of particle physics describes the elementary particles of nature and their
interactions. It includes quarks and leptons which make up the known matter, gauge bosons
which mediate the interactions, and the Higgs field which gives masses to other particles. De-
spite its shortcomings—failure to explain phenomena like dark matter, neutrino oscillations, or
gravity—the success of this model is astounding, with theoretical calculations matching various
measurements to a high accuracy; for a review, see [22]. In July 2012, the European Organiza-
tion for Nuclear Research, CERN, announced the discovery of the Higgs boson—a manifestation
of the Higgs field—at the Large Hadron Collider, completing the experimental verification of
the Standard Model.

The Higgs field is interesting not only for collider experiments but also from the point of view
of cosmology. It is the only scalar field in the Standard Model, and hence it can, in principle,
drive cosmic inflation, as we will see in chapter 4. In this chapter, we discuss the dynamics of
the Higgs field. In particular, we calculate the quantum-corrected effective potential of the field
which dictates its time evolution, both in the standard case and in the presence of a non-minimal
coupling to gravity.

3.1 Standard Model Higgs sector

The Standard Model Lagrangian can be written in a compressed form as [23–25]

LSM = − ψ̄a /Dψa − 1
4

tr F μν
b Fb μν

− (DμΦ)†(DμΦ) − V (Φ)

− λi
eĒi

L · Φ eR − λij
d Q̄i

L · Φ dj
R − λij

u εabQ̄i
L a · Φ†

b uj
R + h.c. ,

(3.1)

where the first row describes the fermion fields ψa and the SU(3)C × SU(2)L × U(1)Y gauge
fields, the second row describes the Higgs doublet Φ with its kinetic and potential terms, and
the third row describes the Yukawa sector, couplings between the Higgs and fermions, with
fermions arranged into left-handed lepton and quark doublets Ei

L and Qi
L and right-handed

11
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charged leptons and up and down type quarks ei
R, di

R and ui
R. Here D is the covariant derivative

which for the Higgs doublet, in particular, reads

DμΦ = (∂μ − igAa
μτa − i

2
g′Bμ)Φ , (3.2)

where Aa
μ are the SU(2)L gauge fields, τa are their generator matrices, Bμ is the U(1)Y gauge

field, and g and g′ are the gauge couplings.
Let us explore the Higgs sector more carefully. The tree-level Higgs potential V (Φ) is

V (Φ) = μ2Φ†Φ + λ
(
Φ†Φ

)2
, (3.3)

where measurements indicate μ2 ≈ −(89 GeV)2 and λ ≈ 0.13 at the electroweak scale [21]. Since
μ2 is negative, the potential has minima not at zero, but at all Φ0 which satisfy

|Φ0| =

√
−μ2

2λ
, (3.4)

see figure 3.1. This leads to spontaneous symmetry breaking: one specific value of Φ0 is chosen
out of all that satisfy condition (3.4), and the SU(2)L gauge symmetry present in the Lagrangian
is broken by this choice of a physical vacuum state. However, we can use the gauge symmetry
to rotate the vacuum state to a convenient form. We choose

Φ0 =
1√
2

(
0
h0

)
, h0 =

√
−μ2

λ
, (3.5)

so that in full, Φ is

Φ =
1√
2

(
σ1 + iσ2

h + q + iσ3

)
, (3.6)

where q and σi are real valued fluctuations around the background value h and h = h0 for the
electroweak vacuum. Fluctuations σi couple to the gauge sector as described below, and q is the
Higgs boson. The Higgs potential gives interaction and mass terms for these fields: in particular,
the tree-level potential for h is

V (h) =
1
2

μ2h2 +
λ

4
h4 , (3.7)

and the masses for q and σi are

m2
h =

∂2V (Φ)
∂h2

∣∣∣∣
q=σi=0

= μ2 + 3λh2 , m2
σi

=
∂2V (Φ)

∂σ2
i

∣∣∣∣
q=σi=0

= μ2 + λh2 . (3.8)

In the gauge sector, the gauge subgroup SU(2)L × U(1)Y has four generators corresponding
to four gauge fields, but there is only one independent linear combination of the generators
which leaves the vacuum expectation value invariant in a gauge transformation. This generator
corresponds to the massless photon. The other generators correspond to the W ± and Z bosons
and give three broken symmetries with three would-be Goldstone bosons, the fields σi from
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Φi Φj

V (Φ)

Figure 3.1: Higgs potential (3.3) in terms of two components of the complex doublet Φ. This
‘Mexican hat’ potential has a continuous set of minima at a non-zero value of |Φ|.

(3.6). Higgs and gauge fields are coupled through the covariant derivatives (3.2) in the Higgs
kinetic term in (3.1). The term quadratic in h reads

Lh2 = −h2

8

(
g2Aa

μAa μ + g′2BμBμ − 2gg′A3
μBμ

)
, (3.9)

and in the W ± and Z basis this gives masses to the weak gauge bosons:

Lh2 =
1
2

m2
W

(
W +

μ W −μ + W −
μ W +μ

)
+

1
2

m2
ZZμZμ ,

m2
W = g2 h2

4
, m2

Z =
(
g2 + g′2

)h2

4
.

(3.10)

We also get terms linear in h:

Lh = −h

2

(
gA3

μ − g′Bμ

)
∂μσ1 + g

h

2

(
A2

μ∂μσ2 + A1
μ∂μσ3

)

= −g
h

2

(
W +

μ ∂μσ+ + W −
μ ∂μσ−

)
−

√
g2 + g′2 h

2
Zμ∂μσ1 , σ± ≡ − 1√

2
(σ2 ± iσ1) ,

(3.11)

which couple W ± and Z linearly to the would-be Goldstone bosons so that σi become the
longitudinal degrees of freedom for the now massive gauge bosons.

The Higgs expectation value also gives mass to fermions f through the Yukawa sector in (3.1):
we get mass terms of the form

Lmf
= −mf f̄LfR , mf =

yf√
2

h . (3.12)

Note that this designation of degrees of freedom works for any value of h, not only the one which
minimizes the potential. In what follows we will work with the Higgs field expanded around a
general and non-constant background value h, but the degrees of freedom for the perturbations
stay the same.
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3.1.1 Quantum-corrected effective potential

In Higgs inflation, the h field is taken to be the inflaton, and we would like to solve its evolution
far from the electroweak vacuum (3.5). At classical level, h follows the equation of motion (2.8)
with the tree-level potential (3.7). However, Φ is a quantum field, and quantum corrections to
the classical solution may be important for inflation. In this section, we show how the leading
corrections are calculated.

Let us start by considering a state where the Higgs doublet Φ has an arbitrary classical back-
ground value Φcl with quantum perturbations expanded around this background. By ‘arbitrary
classical background value’ we mean that Φcl does not need to satisfy the vacuum condition
(3.4), and that Φcl is a complex-valued vector, not an operator, and the expectation value of the
field operator is equal to Φcl. Analogously to (3.5), we rotate Φ so that always

〈
Φ̂

〉
= Φcl =

1√
2

(
0
h

)
, (3.13)

where h is a real-valued function of time. Operator Φ̂ can then be expressed as perturbations
around Φcl. The perturbations are taken to be in their vacuum state1.

The effect of quantum fluctuations on the evolution of h can be taken into account by calcu-
lating the effective action [26]:

Γ(h) = −
∫

d4x
√−g

[
Veff(h) +

1
2

Z(h)∇μh∇μh + higher derivative terms
]

. (3.14)

Here functions Veff , Z, and their counterparts for the higher derivative terms are obtained by
summing over one-particle irreducible Feynman diagrams of all the fields that are coupled to
the background field value: Higgs perturbations, fermions, and massive gauge bosons [25]. We
work at next-to-leading order and consider only the leading corrections to the classical action.
The value of Z can be effectively set to one by a field rescaling2. We neglect the terms with
higher-order derivatives—they are suppressed by higher powers of the couplings and are also
expected to be small when higher field derivatives are small, such as in the context of slow-
roll inflation discussed in section 2.2.1. The remaining non-trivial term, Veff , is the quantum-
corrected effective potential of the theory. To our next-to-leading order, it is

Veff = Vtree + V1−loop , (3.15)

where V1−loop is the one-loop correction to the tree-level potential (3.7). For the SM Higgs, in
1Technically, in the effective action formalism presented here, Φcl ≡ 〈vacout|Φ̂|vacin〉, where |vacin〉 and 〈vacout|

are the in and out vacuums for perturbations in the distant past and future and may be different in a time-
dependent background. However, we take Φcl to be a good approximation of an expectation value in the adiabatic
vacuum discussed in section 2.3. This seems reasonable during inflation, when the background changes slowly.

2This is the rescaling discussed in footnote 3.
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the MS renormalization scheme and Landau gauge, the correction is [27]

V1−loop =
m4

h

64π2

(
ln

m2
h

μ2 − 3
2

)
+

3m4
σ

64π2

(
ln

m2
σ

μ2 − 3
2

)

+
6m4

W

64π2

(
ln

m2
W

μ2 − 5
6

)
+

3m4
Z

64π2

(
ln

m2
Z

μ2 − 5
6

)

− 3m4
t

16π2

(
ln

m2
t

μ2 − 3
2

)
,

(3.16)

where μ is the renormalization scale which appears in regularization of the loop integrals. The
first two terms in (3.16) come from the Higgs and would-be Goldstone bosons with masses (3.8),
the third and fourth term come from the W and Z bosons with masses (3.10), and the last term
comes from the top quark with mass (see (3.12))

mt =
yth√

2
, (3.17)

where yt is the top Yukawa coupling. We neglect other fermions: they are much lighter than the
top quark, that is, their Yukawa couplings are much weaker, and their contribution to V1−loop

is negligible.
Potential (3.16) is calculated in Minkowski spacetime, but we take it to be a good leading

approximation also during inflation. To take into account leading quantum corrections in the
evolution of h and the scale factor a, it is then enough to substitute Smat = Γ(h) in the action
(2.1), or equivalently, to replace the tree-level potential by Veff in the Friedmann equations (2.7)
and the scalar field equation (2.8).

3.1.2 Running couplings

There is one important feature in our expression for Veff (3.16): it depends not only on the
couplings and the field value h, but also on an additional parameter μ, the renormalization
scale. To relate the theory to observations, we need values not only for the couplings but also
for μ. However, there is a scaling behaviour in quantum field theory which connects these
parameters to each other: physical observables, such as correlation functions or solutions of the
effective action, do not change in the scaling3 [25]

αi → αi + dαi , μ → μ + dμ , dαi = βi(αj)dt , dμ = etdt , (3.18)

where αi are couplings, t is a running parameter and βi are functions of the couplings that
tell how αi change. Solving t = ln μ we see that the couplings ‘run’ as we change μ, and this
renormalization group running is given by the beta functions:

dαi

d ln μ
= βi(αj) . (3.19)

3These must be accompanied by a field strength rescaling, but in the next-to-leading order this scaling works
similarly for all terms in the effective action and does not affect the equations of motion [28].
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The beta functions can be solved perturbatively from the theory; in the SM, to lowest order, we
have [27]

16π2βλ = −6y4
t +

3
8

(
2g4 +

[
g2 + g′2

]2
)

+ λ
(
12y2

t − 9g2 − 3g′2
)

,

16π2βyt = yt

(9
2

y2
t − 9

4
g2 − 17

12
g′2 − 8g2

s

)
,

16π2βg = −19
6

g3 , 16π2βg′ =
41
6

g′3 , 16π2βgs = −7g3
s ,

(3.20)

where gs is the strong gauge coupling. Initial conditions for the running are obtained by fixing
μ in the theory to a convenient value, usually close to the energy scale of experiments, and
deducing values of the couplings at this μ by matching theory predictions with measurement
results.

Physics stays unchanged under the renormalization group running. This is beneficial in per-
turbative calculations: we can run our parameters to values that make the perturbation series
converge as fast as possible. In particular, in our expression for the effective potential one-loop
correction (3.16), the magnitude of the logarithms may be large if μ is much smaller or larger
than the particle masses which are proportional to the background field value h. In this case, the
one-loop contribution becomes large, and we can’t expect the higher-order terms to stay small
either since they typically contain similar logarithmic terms to higher orders. Perturbativity
breaks down. However, we can save the situation by choosing, say, μ = mt, while also running
the couplings to the new scale. By setting μ to this h dependent value we make the logarithms
small and guarantee that expression (3.16) is a good next-to-leading order approximation for
Veff for all field values.

3.2 Non-minimal coupling to gravity

In the next chapter, we will see that in order to make Higgs inflation compatible with observa-
tions, we need to add one more ingredient to the model. This is a non-minimal coupling between
the Higgs and gravity, so that the action becomes

S =
∫

d4x
√−g

(1
2

R + ξRΦ†Φ + LSM

)
, (3.21)

where ξ is a new coupling parameter and LSM is the SM Lagrangian from (3.1). The h-
dependent part is

Sh =
∫

d4x
√−g

[1
2

(
1 + ξh2

)
R − 1

2
gμν∂μh∂νh − V (h)

]
. (3.22)

The new ξ-term is actually a natural extension of the model: it is the only possible local scalar
term of dimension four that can be added, and for a quantum field theory in curved spacetime, a
counterterm of this form must in any case be added to cancel divergences in perturbation theory
[15], and there is no a priori reason why the renormalized value of ξ should be zero. Indeed, we
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see that the new term only becomes important when h � 1/
√

ξ in natural units. This may be
true during Higgs inflation, but in today’s universe, the ξ-term is insignificant unless ξ is very
large. Experimentally, the tightest limits give ξ � 1015 [29, 30]. In successful Higgs inflation,
ξ typically takes values in the range 102 . . . 109, see chapter 4. Note that large ξ-values do not
spoil perturbativity since ξ is not an expansion parameter in perturbative calculations.

Action (3.22) with the non-minimal coupling term describes the model in what is called the
Jordan frame. To analyse the model further, it is convenient to make a Weyl transformation to
the Einstein frame, that is, to rescale the metric [31]:

gμν = (1 + ξh2)−1gEμν , (3.23)

where gEμν is a new metric in the new frame. This eliminates the non-minimal coupling term,
but since the metric also resides in R and in the kinetic term, the kinetic sector becomes non-
canonical. A canonical form is restored by defining a new scalar field χ by

dh

dχ
=

1 + ξh2√
1 + ξh2 + 6ξ2h2 . (3.24)

In terms of χ and gEμν , the action has the simple form

Sχ =
∫

d4x
√−gE

[1
2

RE − 1
2

gμν
E ∂μχ∂νχ − VE(χ)

]
, (3.25)

where RE is the curvature scalar calculated from gEμν . The gravity part of the action is now
in the standard Einstein–Hilbert form and the kinetic χ-term is canonical, so the standard
analysis of, say, SR inflation from chapter 2 is applicable. All ξ-dependence is transferred into
the potential VE :

VE(χ) =
V [h(χ)]

[1 + ξh2(χ)]2
≡ λ

4
F [h(χ)]4 , (3.26)

where

F (h) =
h√

1 + ξh2 ≈
⎧⎪⎨
⎪⎩

χ , h � 1/ξ

1√
ξ

(
1 − e−

√
2/3χ

)1/2
, h � 1/

√
ξ .

(3.27)

The potential is flat at h � 1/
√

ξ, see figure 3.2. We will see in chapter 4 that this property is
crucial for Higgs inflation.

The problem with the potential VE is that it is non-renormalizable, and thus it is not imme-
diately clear how to calculate quantum corrections here like we did in the ξ = 0 case in section
3.1.1. This is a manifestation of the non-renormalizability of gravity, present here because we
mixed the metric and Higgs degrees of freedom in the Weyl transformation. However, at large
field values, when the potential becomes flat, the model can be approximated by the chiral
Standard Model where the corrections can be calculated order by order. We discuss this in the
next section.
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χ

V (χ)

Figure 3.2: Higgs potential with a non-minimal coupling to gravity in the Einstein frame, in
terms of the canonical scalar field χ, see (3.26) and (3.27). The potential has an exponentially
flat plateau at large χ values.

3.2.1 Chiral Standard Model

At h � 1/
√

ξ, in the Einstein frame, the potential VE (3.26) becomes flat and its derivatives are
exponentially suppressed. Effectively, the Higgs boson decouples from the other particles, and
we are left with the chiral Standard Model, an effective field theory where the Higgs degree of
freedom has been integrated out of the SM [32, 33]. Even this model is not renormalizable, but
the number of new counterterms needed at each loop order is finite, so perturbative calculations
can be done consistently to any finite loop order. In particular, in the leading order that we are
interested in, no new couplings need to be introduced.

One-loop correction to the effective potential is now [32, 34]

VE 1−loop =
6m4

W

64π2

(
ln

m2
W

μ2 − 5
6

)
+

3m4
Z

64π2

(
ln

m2
Z

μ2 − 5
6

)

− 3m4
t

16π2

(
ln

m2
t

μ2 − 3
2

)
,

(3.28)

that is, the SM result (3.16) without the Higgs self-contributions. For masses, we use values
rescaled from (3.10) and (3.17) to the Einstein frame:

m2
W =

g2F 2

4
, m2

Z =
(
g2 + g′2)

F 2

4
, m2

t =
y2

t F 2

2
, (3.29)

where F is the χ-dependent function from (3.27). For the renormalization scale, we choose the
field-dependent value

μ = γF (χ) , (3.30)
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where γ is a constant of the same order as the couplings. This choice ensures that the logarithms
in (3.28) remain small, as discussed in section 3.1.2. The couplings are run to this scale using
the beta functions, which are slightly different for the chiral SM [32, 35]:

16π2βλ = −6y4
t +

3
8

[
2g4 + (g′2 + g2)2

]
+ λ

(
12y2

t − 6g2 − 3g′2
)

,

16π2βyt = yt

(
3y2

t − 3
2

g2 − 17
12

g′2 − 8g2
s

)
,

16π2βg = −13
4

g3 , 16π2βg′ =
27
4

g′3 , 16π2βgs = −7g3
s ,

16π2βξ = −ξ

(
3g2 +

3
2

g′2 − 6y2
t

)
.

(3.31)

Running of ξ and the λ-dependent term in βλ are often ignored in Higgs inflation, since they
cancel each other out in running of the ratio λ/ξ2 present in the tree-level potential [32], and
their effects are in any case sub-leading for small λ-values which are typical on large energy
scales.

Using the chiral SM as an effective field theory in the high energy regime h � λ/
√

ξ raises
certain questions. How do we know that no new physics arises between the electroweak and
inflationary scales? Such new physics could introduce new interaction terms for the Higgs and
spoil the model presented here. The assumption that no such corrections arise is an assumption
of simplicity: we choose to study the case where as little as possible is added to the known
SM physics. One may also postulate a shift symmetry in the field on large energy scales in the
Einstein frame which preserves the exponential flatness of the potential and excludes operators
that would spoil this [36]; in the Jordan frame, this corresponds to scale invariance at large
energies.

However, even with these assumptions, the physics on energy scales between the high energy
regime and the electroweak scale is not fully known, since there is a gap between the validity of
the known SM and the chiral SM approximation at 1/ξ � h � 1/

√
ξ [32, 36–40]. In practice,

this means that the running of the couplings is not known here, but the effects of this unknown
physics can be parametrized by jumps in the running couplings between the two regimes [38,39].

3.2.2 Caveats

Apart from the unknown physics at 1/ξ � h � 1/
√

ξ, there are also other caveats in our non-
minimally coupled model, discussed extensively in the literature. One caveat is related to the
choice of frames. Although physics is equivalent in the Jordan and Einstein frames at the classical
level, there remains some unclarity on whether this is true in the quantized theory [36,37,41–46].
If not, one might end up with a different quantum-corrected Einstein frame potential depending
on whether the quantum corrections are calculated before or after the transition from the Jordan
frame to the Einstein frame. In particular, a natural choice for the renormalization scale (3.30)
depends on the frame in which the quantum corrections are calculated [34].
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Above, we chose to calculate the corrections in the Einstein frame. This corresponds to pre-
scription I in the notation of [34]. This choice can be motivated as follows: In the Einstein frame,
the problem most resembles one we know how to solve—quantum field theory in a Minkowski
spacetime. The difficult-to-handle non-minimal coupling has been ‘hidden away’ into the poten-
tial, and the connection between the field to be quantized and the hard-to-quantize gravity is
minimal. Thus we expect that the leading quantum corrections are equivalent to those computed
in a Minkowski background with the Einstein frame potential, as discussed in section 3.1.1.

Another possible issue is perturbative unitarity in scattering processes, which by dimensional
arguments seems to be broken in Higgs inflation near the inflationary scale [47–49]. However,
a more careful analysis done in a field-dependent background shows that the typical scattering
energies are always below the unitarity cut-off scale [36, 50–52]. A crucial observation is that
there are many different energy scales present in the model—background energy density scale,
Hubble scale, field strength, renormalization scale, typical perturbation energy scale to name
just a few—that should not be confused with each other.

A third problem with Higgs inflation is the possible metastability of the electroweak vacuum
in the Standard Model. According to the latest measurements of the SM parameters, if the SM
(without a non-minimal coupling) is extrapolated to high energies, the Higgs effective potential
may develop a secondary minimum above the electroweak scale [53, 54]; in the worst-case sce-
nario, the Higgs self-coupling λ may run to a negative value and ruin inflation with the potential
(3.26). However, the introduction of new physics at the scale h ∼ 1/ξ discussed in the previous
section may save the situation by either interfering below the scale of the supposed secondary
vacuum or by allowing λ to jump back to a positive value. At intermediary scales, thermal
corrections may also raise the potential back to positive values during reheating [39]. Even if
this fails, the vacuum metastability is not yet certain—latest estimates support it at the level
of a few sigmas, with a large uncertainty coming from the inaccurate determination of the top
quark mass [55].

3.2.3 Palatini gravity

We next discuss an alternative formulation of our non-minimally coupled model by considering
the Palatini formulation of general relativity [56, 57], where the metric gμν and the spacetime
connection Γα

βγ which defines the Ricci tensor Rμν(Γ) are taken to be independent quantities.
Above, we followed the usual convention where the connection is taken to be of the Levi-Civita
form, that is, a function of the metric [4]:

Γα
βγ =

1
2

gαρ(gβρ,γ + gγρ,β − gβγ,ρ) . (3.32)

However, this is not a necessary assumption: instead, the metric and the connection may be
treated as independent variables, so that we get independent equations of motion from the
variation of S with respect to the connection. If the action is of the standard form (2.1), with
a connection-dependent Einstein–Hilbert part plus a connection independent matter part, then
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these new equations constrain the connection into the Levi-Civita form. However, if there is
mixing between the matter and the connection, as in our non-minimally coupled Higgs model,
Palatini formulation predicts different physics compared to the metric formulation [58].

In Higgs inflation, the difference manifests itself in the Weyl transformation (3.23). In Palatini
formulation, Rμν(Γ) is independent of gμν , so it remains unchanged in the transformation. As
a result, the needed field redefinition (3.24) is different in the Palatini case [58]:

dh

dχ
=

√
1 + ξh2 . (3.33)

Again, we end up with an action of the canonical form (3.25), but the potential VE changes.
This time the relationship between h and χ can be solved and inverted analytically, so that we
end up with the Einstein frame potential

VE(χ) =
λ

4
F 4(χ) , F (χ) ≡ 1√

ξ
tanh

(√
ξχ

)
. (3.34)

This differs from the metric version (3.26)–(3.27), but has similar qualitative features, namely,
it becomes exponentially flat for h � 1/

√
ξ. We again use the chiral SM to calculate the leading

quantum corrections, this time with F in the mass terms given by (3.34).
Palatini formulation has the benefit that there the Einstein–Hilbert action contains only first

derivatives of the quantities, while in the metric formulation second derivatives of the metric
appear. For this reason, in the metric case the York–Gibbons–Hawking boundary term needs to
be added to the action to produce the correct equations of motion [59, 60], but this term is not
needed in the Palatini formulation. There is also no experimental reason to exclude the Palatini
formulation since it predicts the same physics in today’s universe where the ξ-term in action
(3.21) is subdominant and the Palatini and metric predictions coincide. In the next chapter,
we will see how the Palatini formulation produces different inflationary predictions compared to
the metric formulation. This suggests the interesting possibility that inflationary physics may
be used to probe the fundamental degrees of freedom of gravity.
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Chapter 4

Higgs inflation

Since the Standard Model Higgs field is the only known fundamental scalar field, it is interesting
to ask whether it could drive cosmic inflation, and if so, what are the predicted CMB observables.
It turns out that the SM Higgs can indeed be the inflaton, but a non-minimal coupling to gravity
is needed to match the CMB measurements. Such a model was first considered in [31] and has
invoked a lot of interest since; for a review of later developments, see [61].

In this chapter, we first discuss the necessity of the non-minimal coupling ξ for successful
Higgs inflation. We then go through the model’s predictions for CMB observables both at tree
level and with quantum corrections.

4.1 Minimally coupled Higgs as inflaton?

Let us start with the SM Higgs coupled minimally to gravity, so that its tree-level potential
(3.7) is quartic at large field values. The SR parameters (2.12) read in terms of h, to lowest SR
order,

εV =
8
h2 , ηV =

12
h2 . (4.1)

We see that the potential supports SR inflation at h � 1. Using (2.14), h can be written in
terms of the number of e-folds of inflation left N . The curvature power spectrum (2.23) becomes

As =
2λN3

3π2 ⇒ λ =
3π2As

2N3 ∼ 10−13 , (4.2)

where in the last approximation we used N ≈ 50 and the observed value of As (2.20). The
required value of λ is much smaller than the SM value λ ∼ 0.1 at the electroweak scale. Moreover,
the spectral index and the tensor-to-scalar ratio in the slow-roll approximation (2.24) in terms
of N are

ns = 1 − 3
N

≈ 0.94 , r =
16
N

≈ 0.3 . (4.3)

Here ns is multiple sigmas away from the observed value (2.21), and r is much larger than the
experimental upper bound (2.22). We see that at tree level, with just a minimal coupling to
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gravity, the SM Higgs can’t be the inflaton. Even the quantum corrections described in section
3.1.1 cannot alleviate these problems [1, 62].

4.2 Tree-level non-minimal Higgs inflation

Introducing the non-minimal coupling ξ from section 3.2 changes things [31]. The inflationary
analysis is best done in the Einstein frame. Now the Einstein frame potential (3.26) supports
SR inflation on the plateau at h � 1/

√
ξ, and the leading slow-roll results are

ns = 1 − 2
N

, r =
12
N2 , αs = − 2

N2 , βs = − 4
N3 , As =

λN2

72π2ξ2 . (4.4)

With N ≈ 50 and the observed value of As (2.20), these imply

ns ≈ 0.96 , r ≈ 4.8 × 10−3 , αs ≈ −8 × 10−4 , βs ≈ −3.2 × 10−5 , ξ ≈ 800
√

λN . (4.5)

Spectral index ns matches the observed value in (2.21), while the values of r, αs, and βs are
consistent with the current observational bounds and may be regarded as predictions of the
model, to be confirmed or ruled out by future CMB surveys. The required value of ξ is large—
ξ ∼ 104 for λ ∼ 0.1—but for λ < 1, it is well within the observational limits mentioned in section
3.2.

4.3 Quantum-corrected non-minimal Higgs inflation

In the previous section, we saw that adding the non-minimal coupling ξ makes the SM Higgs a
viable inflaton candidate at tree level. To improve the analysis, we want to include the leading
quantum corrections discussed in section 3.2.1. The unknown physics on scales 1/ξ � h � 1/

√
ξ,

parametrized by unknown jumps of the couplings, introduces uncertainty into the analysis. For
a wide range of the jump values, the general shape of the exponentially flat Einstein frame
potential remains unchanged, and the tree-level predictions (4.4) still apply [28]. However, for
fine-tuned jumps, the quantum corrections may change the potential enough to change the
predictions and expand the space of allowed values for the CMB observables. The two simplest
of such cases are the critical point and hilltop scenarios, to be discussed in the next sections.
Predictions for CMB observables in these cases are collected into figure 4.2.

4.3.1 Monotonic potentials with a feature

If there is a feature in the potential in the inflationary region near or below the CMB scale, this
affects the CMB observables. A ‘feature’ here means that the first and second derivatives of the
potential take unusually small values at some point; in the extreme case of a critical point, they
vanish locally, see figure 4.1. Higgs inflation with such a feature has been considered in [38,39,63–
69]. Such potentials are highly sensitive to the details of the quantum corrections, produce a
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χ

V (χ)

χ

V (χ)

Figure 4.1: Einstein frame Higgs potentials with a feature. Left: a critical point potential where
the first and second derivatives of the potential vanish locally. Right: a hilltop potential with
a local maximum at the inflationary region. Compare these to the tree-level potential of figure
3.2. The features are exaggerated to make them easier to see by eye.

wide range of CMB predictions that differ from the tree-level ones, and admit smaller ξ-values.
In particular, in [65], the quantum corrections were calculated according to the description of
section 3.2.1, and a scan over all quantum-corrected monotonic potentials with features was
performed. Despite the wide range of allowed CMB values, the authors also found combinations
of CMB observables that can’t be reached with such potentials, see figure 4.2.

In addition to modifying the CMB observables, a strong feature can amplify the scalar pertur-
bations to values far exceeding the pivot scale amplitude (2.20) in other parts of the spectrum.
Later in the history of the universe, these perturbations may collapse into primordial black holes
and serve as dark matter. We will consider this scenario in chapter 6.

4.3.2 Hilltop inflation

In hilltop Higgs inflation, the quantum corrections generate a local maximum into the potential
above the CMB scale, on the otherwise flat plateau, see figure 4.1, and the field rolls slowly from
the hilltop towards the electroweak minimum. Hilltop inflation was first studied in [70]. For
Higgs inflation, this scenario was first considered in [28, 67], and the details were worked out in
[1], the first article of this thesis. The hilltop potential may be approximated analytically by
absorbing all quantum corrections into the effective running coupling λeff , so that

V =
λeff
4

F 4 , V ′ =
F 3F ′

4
(4λeff + βeff) , (4.6)

where F is defined in (3.27), and βeff gives the running of λeff according to (3.19), with renor-
malization scale given by (3.30). We see that there is a hilltop if 4λeff +βeff = 0 at some point in
the renormalization group running. The CMB predictions can be calculated by expanding the
potential to leading order in δ ≡ 1/(ξh2) and δ0 ≡ 1/(ξh2

0), where index 0 refers to the position
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Figure 4.2: Predictions of Higgs inflation with quantum corrections calculated by the method
presented in section 3.2.1. Shaded regions represent the allowed parameter space for the spec-
tral index ns and the tensor-to-scalar ratio r. The dashed lines give the one and two sigma
measurement results of Planck combined with other cosmological data sets [18]. The zigzag line
gives the tree-level predictions (4.4) for N = 50 . . . 60. Results for the monotonic potentials are
extrapolated from [65], figure 1; they should be compared to the hilltop results from [1], which
occupy an otherwise excluded region of the parameter space. In particular, for smaller r values
around r ∼ 10−4 . . . 10−3, hilltop potentials are more compatible with the Planck results than
the monotonic potentials.

of the hilltop. They form a raising curve in the (r, ns) plane with

ns < 1 − 2
N

, r <
3

N2 , (4.7)

where the maximum values are reached when the hilltop is pushed to infinitely large field values.
There ns agrees with the tree-level prediction (4.4), but, remarkably, r is always at least four
times smaller than in the tree-level case. This property is retained in the numerical analysis
with the full quantum-corrected potential described in section 3.2.1. Hilltop potentials open up
a section of the space of allowed CMB observables that can’t be reached at tree level or with
the features of the previous section, see figure 4.2.
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4.4 Palatini Higgs inflation

The above analysis can be repeated in a straightforward manner in the Palatini formulation of
section 3.2.3. Due to the different relations between χ and ξ, compare (3.27) and (3.34), the
results will be slightly different. At tree level [58],

ns = 1 − 2
N

, r =
2

ξN2 , αs = − 2
N2 , βs = − 4

N3 , As =
λN2

12π2ξ
, (4.8)

compare to (4.4). The condition for As gives ξ ≈ 3.8 × 106λN2, which is typically bigger than
in the metric case: for λ ∼ 0.1, we need ξ ∼ 109. In leading slow-roll order, predictions for ns,
αs, and βs are the same for both the metric and Palatini cases, but r is heavily suppressed by
the large ξ. Quantum corrections to the tree-level results have been worked out in [1, 67], and
in all cases, r is small enough to be undetectable in CMB experiments in the foreseeable future.
This is the main difference and discerning factor between the metric and Palatini Higgs inflation
scenarios.

4.5 Other extensions

There are many ways to extend the simple single field Higgs inflation scenario presented in this
chapter. One can, for example, add an R2 term into the gravity part of the action [71–73],
which modifies the results. The R2 term alone produces the Starobinsky inflation [74], whose
tree-level CMB predictions are equal to the tree-level Higgs case [75]. Both the tree-level Higgs
inflation and the Starobinsky inflation belong to a more general class of inflationary models
called α-attractors [76–78] with similar CMB predictions in terms of the number of e-folds N .
In the Palatini formulation, new terms containing the covariant derivative of the metric may
also be added to the action [79].

In the following chapters, we stick with the simple single-field Higgs inflation described here
and study its phenomenology further.
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Chapter 5

Reheating

After cosmic inflation ends, the universe must transition to the well-studied radiation-dominated
stage. The transition process is called reheating. During reheating, the inflaton field typically
oscillates around its vacuum value, and its interactions with the SM fields induce production
of SM particles. This drains energy from the inflaton condensate and transfers it to the parti-
cles, which eventually come to dominate the energy density, thermalize, and usher in the hot
radiation-dominated era.

In this chapter, we consider reheating in Higgs inflation. We go through the dominant reheat-
ing processes in the metric formulation of general relativity, and explain how they change in the
Palatini formulation.

5.1 The reheating process

During slow-roll inflation, the inflaton field rolls towards a minimum of the potential. To have
a graceful exit from inflation, the SR conditions (2.9) and (2.10) must be broken before the
minimum is reached, and inflation ends. The field value starts to oscillate around the minimum,
still following the field equation (2.8)

φ̈ + 3Hφ̇ + V ′(φ) = 0 . (5.1)

For example, for a quartic potential V (φ) = 1
2m2φ2, neglecting the friction term 3Hφ̇ caused by

expansion of space, the solution of (5.1) is a sinusoidally oscillating field with φ ∝ sin (mt).
The friction term decreases the oscillation amplitude. If left undisturbed, the oscillations

eventually die away, and the inflaton relaxes to its vacuum value, resulting in an empty universe.
However, in practice, the oscillation of the homogeneous inflaton field induces particle production
in both the inflaton and other fields, so that part of the energy density of the inflaton condensate
is transferred into a bath of particles.
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5.1.1 Particle production

There are two ways to produce particles during reheating. Originally, direct particle decay was
considered [80]: the homogeneous, oscillating inflaton field may be interpreted as a collection of
inflaton particles with zero momenta and coherent phases. These particles then decay perturba-
tively into particles of other fields that interact with the inflaton; decay rates can be calculated
by the usual quantum field theory methods.

In addition, there is another mechanism for particle production called preheating [81]. In
preheating, particles are produced non-perturbatively, through a time-dependent mass term that
originates from the oscillating inflaton condensate. As an example, let’s consider the production
of particles of a scalar field σ. The inflaton φ is coupled to σ through an interaction term
1
2σ2m2(φ), and the Fourier mode functions of σ follow the equations of motion

σ̈k + 3Hσ̇k + ω2
kσ2

k = 0 , ω2
k ≡ k2

a2 + m2(φ) , (5.2)

where we neglected all other interactions as perturbative corrections. If the mass factor m is
constant or changes slowly, then the solution of (5.2) for sub-Hubble scales is simply a linear
combination of two oscillating modes:

a3/2(t)σk(t) =
αk√

2ωk(t)
e−i

∫ t
ωk(t′) dt′

+
βk√

2ωk(t)
ei

∫ t
ωk(t′) dt′

(5.3)

with the normalization condition |αk|2 − |βk|2 = 1 [82]. For the adiabatic vacuum, αk = 1 and
βk = 0; if there are particles present, their number density is given by

nk = |βk|2 . (5.4)

As long as the mass changes slowly, (5.3) applies and nk stays constant. However, if it changes
quickly, the adiabaticity condition ∣∣∣∣∣ ω̇k

ω2
k

∣∣∣∣∣ � 1 (5.5)

is broken, the solution to (5.2) is more complicated, (5.3) does not apply, and the particle
concept becomes ill-defined. If adiabaticity is later restored, the new values of αk and βk may
differ from the original ones, that is, production or destruction of particles may take place during
the non-adiabatic period.

For a mass term produced by an oscillating inflaton field with m → 0 at the bottom of the
inflaton potential (say, m ∝ φn with a minimum at φ = 0), the adiabaticity condition (5.5)
applies for sub-Hubble modes at large field values, but is broken when the inflaton crosses the
minimum. Efficient particle production can take place there if the oscillations of the mass term
are properly ‘in sync’ with the natural oscillation frequency of the mode. The situation is
analogous to a driven oscillator where the mass term provides the driving force, and a proper
driving frequency amplifies the mode amplitude. This is called parametric resonance, and it
leads to the formation of resonance bands for certain k-values where particle production is most
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efficient [81–86]. When the expansion of space is taken into account, the redshift of momenta
moves the modes on and off the resonance bands resulting in stochastic effects [82]. Details of
this process must be worked out separately for each model to obtain the efficiency of particle
production through this channel.

In addition to parametric resonance, non-perturbative particle production can proceed through
tachyonic preheating [87, 88]. There the mass squared in (5.2) is negative, which results in the
exponential growth of certain mode functions and a rapid increase in the energy density of the
perturbations. This happens, for example, if the mass term of the inflaton field itself given by
m2 = V ′′(φ) is negative at some point during the inflaton oscillation. We will see in section
5.2.2 that tachyonic preheating can be highly efficient.

In practice, particle production during reheating is a combination of preheating and pertur-
bative decays. Preheating is typically more important in the early stages of particle production
(hence the name) and particle decays take over later.

5.2 Higgs reheating

In Higgs inflation with a non-minimal coupling to gravity, the above principles of inflaton oscil-
lation and particle production all come into play. Inflation ends when the SR conditions break
at h ∼ 1/

√
ξ, and after this, the Higgs field starts to oscillate around h = 0. The oscillating field

gives masses to fermions, massive gauge bosons and the Higgs boson itself through the potential
and mass terms (3.26) and (3.29), so these particles can be produced in preheating. In addition,
perturbative Higgs decays need to be considered. We next describe how reheating proceeds in
the metric formulation of the model [89–96], and then proceed to the Palatini formulation, which
was analyzed in the second article of this thesis [2].

5.2.1 Metric formulation: combined preheating

In the metric formulation, at 1/ξ � h � 1/
√

ξ, we get from (3.26)

VE(χ) ≈ 1
2

M2
χχ2 , M2

χ ≡
√

λ

3ξ2 , (5.6)

that is, the Einstein frame potential for the canonical field χ is approximately quadratic. The
field oscillates sinusoidally, but the oscillation amplitude decreases quickly due to the expansion
of space. The Higgs boson mass M2

χ is initially small compared to the masses of other particles,
so particle production through perturbative decay of the condensate is not possible. The mass
is also constant, so Higgs bosons are not produced in preheating, but other massive particles
can be. Direct fermion production is suppressed by Pauli blocking, but massive gauge bosons
W ± and Z are produced efficiently. However, the gauge bosons quickly decay into fermions
through perturbative channels. The result is combined preheating [89], where at each Higgs
field oscillation, W ± and Z bosons are produced at the zero crossing of χ, and they decay
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almost completely into fermions during the next semi-oscillation, until more gauge bosons are
produced at the next zero crossing. Effectively, energy is ‘pumped’ from the Higgs condensate
into fermions. Eventually, the Higgs oscillation amplitude decays and the gauge boson masses
decrease enough to suppress the decay, and gauge bosons start to accumulate through parametric
resonance. This quickly depletes the condensate and leads to a radiation-dominated universe
which thermalizes to a high temperature. The transition from inflation to radiation domination
takes a few e-folds.

There is potentially an additional particle production channel in the metric formulation of
Higgs inflation: the would-be Goldstone bosons, or equivalently, longitudinal gauge bosons, can
be produced violently near the zero crossing of χ due to a ‘spike’ in the internal metric of
the Higgs doublet in the Einstein frame [92–96]. This could lead to a quicker reheating than
the above described combined preheating process; however, the validity of this analysis was
questioned in [2], since the energy of the produced particles seems to exceed the cut-off scale
of the model. This spike is not present in the Palatini formulation [2]. In any case, successful
reheating, and a graceful exit from inflation to early radiation domination, is expected in the
metric formulation of Higgs inflation.

5.2.2 Palatini formulation: tachyonic preheating

Preheating in the Palatini formulation of Higgs inflation was studied in detail in the second article
of this thesis [2]. In the Palatini formulation, the Einstein frame potential is different from the
metric one, and this leads to drastic changes in the preheating phase. In particular, the oscillation
amplitude decays much slower in the Palatini formulation, so χ returns to the inflationary plateau
at h ∼ 1/

√
ξ after every semi-oscillation. We can understand this difference by comparing the

relations between χ and h in the two formulations. The energy of the oscillations, proportional
to the oscillation amplitude, is given by the Hubble parameter H in the Friedmann equations
(2.7). The change of H in terms of h may be written as

dH

dh
= − χ̇2

2ḣ
= −1

2

√
6H2 − 2VE [χ(h)]

dχ

dh
, (5.7)

where we used the Friedmann and scalar field equations (2.7) and (2.8). In both formulations,
inflation ends at h ∼ 1/

√
ξ, so the change of h from the end of inflation to the first zero crossing

is the same. Potential VE also has the same form in terms of h. However, dχ
dh in (5.7) is always

bigger in the metric formulation, compare (3.24) to (3.33), so in the metric formulation H

decreases much more before the first zero crossing. This explains why the oscillation amplitude
decays fast in the metric formulation, while it stays almost constant in the Palatini case.

This new background dynamic has a drastic effect on preheating: while the combined pre-
heating process mentioned above still works, the leading preheating channel is tachyonic Higgs
production. Near the plateau, the Higgs boson mass V ′′

E is negative, see figure 5.1, and since
the field returns there over and over again, this leads to explosive enhancement of the Higgs
perturbations, as discussed in section 5.1.1. As a result, the universe transitions from inflation
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to radiation domination very quickly, in less than one e-fold. We conclude that reheating in
Palatini Higgs inflation is practically instantaneous.

5.3 Observational significance

For an inflationary model to be successful, it is important to know that reheating works in the
model, that is, the universe can transition to radiation domination with a high enough tem-
perature for all well-known early-time phenomenology, such as primordial nucleosynthesis and
recombination. In addition, detailed knowledge of the reheating process is interesting because
it affects the CMB predictions of the model. Different durations of reheating translate into
different numbers of e-folds N needed between the Hubble exit of the CMB pivot scale and the
end of inflation, and this affects model predictions for observables like ns and r. In particular,
in Higgs inflation, the leading ns prediction (4.4) changes in terms of N as

dns =
2

N2 dN ∼ 10−3dN (5.8)

for N ∼ 50. We see that order one changes in N correspond to changes of order 10−3 in ns.
This is the accuracy of the current and future CMB observations (2.21). To get most out of
the observations, and to differentiate between different models such as the metric and Palatini
formulations of Higgs inflation or the extensions mentioned in section 4.5, predictions need
to be made with this accuracy, and for this we need higher-order corrections to the standard
calculation, including accurate knowledge on reheating dynamics and N .
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Figure 5.1: Preheating in Palatini Higgs inflation. Top: Einstein frame Higgs potential in the
Palatini formalism. Bottom: second derivative of the potential, that is, the mass squared of the
Higgs perturbations at a given background field value, with shaded tachyonic regions. During
preheating, the background field oscillates in the potential well. The dashed circles denote a
typical oscillation amplitude. During the oscillation, the background field repeatedly returns to
the tachyonic region, and this leads to violent amplification of the Higgs perturbations.



Chapter 6

Primordial black holes

Astrophysical black holes are dense objects formed from collapsing stars. However, black hole
formation is also possible through other processes, in particular in the high energy density
conditions of the early universe. Such primordial black holes (PBHs) may be formed, for exam-
ple, from strong inflationary perturbations. The study of PBHs is interesting since they could
constitute all or part of the dark matter, and it may be possible to detect them in upcoming
gravitational wave experiments.

In this chapter, we discuss the formation of PBHs from inflation. We show that the strong
perturbations needed can be obtained from a feature in the inflaton potential, and consider the
prospects of PBH dark matter in Higgs inflation.

6.1 PBH formation

As discussed in section 2.3, curvature perturbations on super-Hubble scales freeze to constant
values. Expansion of space is fast enough to resist gravitational collapse at these scales. However,
after inflation, the expansion rate starts to decrease and comoving scales begin to re-enter the
Hubble radius. Perturbations start to grow, and the densest regions may even collapse into
primordial black holes [97, 98].

Let us look at perturbation modes with wavenumber k that during inflation left the Hubble
radius ΔN e-folds after the CMB pivot scale k∗ (then ΔN � 50). When this scale re-enters the
Hubble radius after inflation, a PBH formed by it will contain roughly all matter in one Hubble
patch, so its mass is [3, 98]

MPBH = γ
4π

3
H−3ρ ≈ 2 × 1015 × e−2ΔN M� , (6.1)

where M� is the solar mass, γ is an efficiency factor, and in the last step we assumed a radiation-
dominated universe with γ ≈ 0.2 [98]. As time goes on, scales closer to k∗ start to enter
the Hubble radius, so ΔN decreases and the mass of the formed PBHs increases. All PBHs
compatible with cosmological observations form deep in the radiation-dominated era—PBHs
formed at later times would be heavier than the mass scale of galaxies.

35



36 Primordial black holes

To estimate the abundance of the PBHs, we can approximate their formation to follow Gaus-
sian statistics with a variance of order PR(k) [98–100]. PBHs are then formed for perturbations
that exceed a threshold value ζc, estimated by analytical and numerical calculations to be
ζc = 0.07 . . . 1.3 [98, 100–105]. The formed PBHs move at non-relativistic velocities, so their
combined energy density scales as a−3 as the universe expands, whereas the radiation energy
density scales as a−4. Thus the energy density fraction in the PBHs grows over time. Combining
all these factors, the PBH energy density fraction at the time of matter radiation equality can
be expressed as [3]

ΩPBH eq ∝ e
− ζ2

c
2PR(k) +ΔN

, (6.2)

where we neglected a prefactor that is insignificant compared to the exponent. Since ΔN � 50,
taking into account the estimates for ζc above, if we want PBHs to constitute a significant part
of the matter content of the universe, say ΩPBH eq = 0.1 . . . 0.5, we need at least PR(k) � 10−4.

The analysis leading to (6.2) contains many uncertainties. The exact value of ζc is one of
these; other issues include the correct choice of window function for the perturbations [106],
differences arising from a calculation scheme based on peaks theory [99, 100, 107, 108], the
effect of possible non-Gaussianities [109, 110] and quantum diffusion [110–115], and the need
to integrate over PBHs formed on different scales k. However, (6.2) may still be used as an
order-of-magnitude estimate: significant amounts of PBHs on some scale are formed only if the
super-Hubble curvature power spectrum reaches the value 10−4 there.

6.2 PBHs as dark matter

If a significant amount of PBHs is formed in the early universe, they could constitute all or part of
the dark matter [97,116]. However, black hole dark matter is severely restricted by observations
on gravitational lensing, gamma ray background, accretion and various other dynamical and
large-scale structure constraints [117–119], see figure 6.1. There are still two mass windows where
all dark matter could be in the form of PBHs: solar mass black holes with M = 25 . . . 100M�,
or lighter ones with M = 3.5 × 10−17 . . . 4 × 10−12M� = 7 × 1016 . . . 8 × 1021 g [119, 120].

There is one way to get around the constraints. Black holes slowly evaporate their energy
away through Hawking radiation [126], and PBHs with an initial mass below 1015 g would have
had enough time to disappear completely by now. However, it is possible that the evaporation
stops before all of the black hole’s mass has vanished, leaving behind light relics of, say, the
Planck mass [127–129]. If the initial mass of a PBH is less than 106 g, then it evaporates early
enough to not violate any observational constraints, and Planck mass relics from such PBHs
could constitute all of the dark matter [130–135].



6.2 PBHs as dark matter 37

−18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4
−3

−2.5

−2

−1.5

−1

−0.5

0

E
va

po
ra

tio
n HSC

EROS

P
lanck

log10
M

M�

lo
g 1

0
f P

B
H

Figure 6.1: Observational limits for PBH abundance if PBHs only form on one mass scale. The
image is adapted from figure 1 in [119], but we have ignored all subdominant and uncertain
limits, in particular in the low mass range [120–122]. Here M is the mass of the black holes, and
fPBH is the fraction of dark matter that consists of PBHs. Shaded regions are excluded by the
effects of black hole evaporation on the Big Bang nucleosynthesis and the extragalactic photon
background [117], the expected gravitational microlensing from the PBHs (from two different
experiments, HSC [123] and EROS [124]), and radiation from matter that is accreted around
PBHs and could change the Planck CMB observations [125]. There are two windows where
PBHs could still make up all or almost all of the dark matter: M = 3.5 × 10−17 . . . 4 × 10−12M�

and M = 25 . . . 100M�. At the time of writing, the literature on the constraints is evolving
rapidly, and the figure should be understood as a sketch only; this will not affect our conclusions
in section 6.3.1.
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6.3 PBH dark matter from inflation

The super-Hubble curvature perturbations that later collapse into black holes are formed during
inflation, so we can use the standard perturbation theory analysis of section 2.3 to analyse PBH
formation in a given inflationary model. Note that at the CMB pivot scale, PR(k∗) ≈ 2.1×10−9

(2.20), which is too small for abundant PBH formation. Also, according to (6.1), k∗ corresponds
to PBHs with mass 1015 M�, which are too heavy to constitute the observed dark matter. In
practice, dark matter PBHs must form on scales that exit the Hubble radius later than k∗, and
the power spectrum there must take the high value PR � 10−4 mentioned earlier.

In SR inflation discussed in section 2.2.1, a high PR value is achieved for small εV , see equation
(2.23), that is, in a flat region in the inflationary potential. However, an extended flat region in
the potential may lead to a too high number of e-folds of inflation between the Hubble exit of
the pivot scale k∗ and the end of inflation, as can be seen from (2.14). In practice, successful
PBH formation requires that εV is small only for a small field range and grows on either side,
corresponding to a (near-)critical point where ηV is also small or vanishing. PBHs are then
formed by a local feature in the potential that resembles those discussed in section 4.3.1 and
depicted on the left-hand side of figure 4.1. Such models were originally studied in [136–140],
and more recently in [105, 141–146] after the renewed interest in PBHs due to the detection of
gravitational waves from merging black holes by LIGO and Virgo [147].

Note that if εV becomes very small so that V ′ → 0, the field equation (2.8) approaches the
form

φ̈ + 3Hφ̇ = 0 . (6.3)

For this equation, the SR condition |ηH | < 1 (2.10) fails, and thus also the result (2.23) for
PR becomes unreliable [105, 143, 144, 146, 148]. Equation (6.3) describes ultra-slow-roll inflation
[113, 149–152], where the field velocity decreases exponentially:

φ̇ ∝ e−3Ht ∝ a−3 . (6.4)

For the perturbations, this leads to an exponential growth and an enhancement of PR(k) even
on super-Hubble scales [3, 150], since in the expression (2.17) for PR(k),

PR(k) =
k3

2π2
|μk|2

z2 , (6.5)

the factor z = a φ̇
H ∝ a−2 decreases rapidly. In other words, even though the SR approximation

may fail near a critical point, an enhancement of the power spectrum is expected there. However,
to calculate PR(k) outside of SR, the mode equations (2.15) need to be solved numerically on a
case-by-case basis.

6.3.1 Higgs inflation

PBH production in the non-minimally coupled Higgs inflation was first considered in [142], where
the authors found solutions that permitted the production of PBHs in the SR approximation, but
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they used an unrealistically strong phenomenological running of the non-minimal coupling ξ. In
[3], the third paper of this thesis, PBH production in Higgs inflation was studied in detail, with
the quantum-corrected potential introduced in section 3.2.1, by scanning over all appropriate
critical and near-critical point potentials and calculating the produced power spectra PR(k)
numerically.

It was found that PBHs can indeed be produced in large abundances by fine-tuning the model
parameters. Strongest PBH production occurs when the potential has a local minimum at the
PBH scale. The SR approximation breaks down before the field reaches the minimum, but
the field returns to SR inflation once it has passed the subsequent local potential maximum.
Perturbations are strongly enhanced in the intermediary region. Both the abundance and mass
of the formed PBHs can be tuned freely in the model.

However, there emerges a correlation between the PBH mass M and the spectral index ns at
k∗, see figure 6.2. In particular, to satisfy the observational constraints on ns (2.21), the mass
needs to be less than 106 g. As discussed in section 6.1, such light PBHs would have evaporated
completely by now—unless they leave behind Planck mass relics. If the relic hypothesis is
correct, then Higgs inflation can produce the correct abundance of dark matter in the form of
these relics.
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Figure 6.2: Correlation between the PBH mass M and the CMB spectral index ns in Higgs
inflation, adapted from figure 9 in [3]. The solid line gives the allowed (ns, M) values and the
dashed lines indicate the allowed PBH mass windows from figure 6.1. The ns region allowed
by Planck [18] is shaded and is not compatible with the PBH windows. However, PBHs with
initial masses M < 106 g evaporate early enough to evade the observational black hole limits,
are compatible with the CMB, and could leave behind Planck mass relics as dark matter.



Chapter 7

Conclusions and outlook

In this thesis, we have seen how the Standard Model Higgs field can drive inflation, and what
cosmological repercussions this may have. Despite its simplicity, Higgs inflation is a flexible
cosmological model, which can be extended and fine-tuned to produce a wide variety of scenarios
with different observational signatures.

In the papers included in this thesis, we have studied a few such scenarios. In hilltop Higgs
inflation, we found out that the predicted tensor-to-scalar ratio is r � 1.2×10−3, that is, smaller
by at least a factor of four compared to the tree-level prediction. In reheating, we saw that the
transition from inflation to radiation domination is much faster in the Palatini formulation of
general relativity compared to the usual metric one, and this affects the spectral index ns at the
level of 10−3, which is probed by future CMB experiments. This also shows that cosmological
observations concerning the early times of the universe have the power to distinguish between
different formulations of general relativity which may be indistinguishable in today’s universe.
We also saw that with sufficient fine-tuning, primordial black holes can be produced abundantly
in Higgs inflation, although their mass must be small to also match the CMB measurements.
Nevertheless, these black holes may constitute the dark matter if they leave behind Planck mass
relics as they evaporate. Remarkably, all this can be achieved without adding any new fields to
the standard model of particle physics.

All these studies would be of questionable value if they could not be compared to current or
future experimental data. Fortunately, observational cosmology is going strong. Results of the
Planck satellite [153] already constrain the CMB observables to a high degree, and other surveys
will provide even better data in the future. In particular, the BICEP and Keck Array aim to
detect or rule out the tensor-to-scalar ratio at the level of r ∼ 0.005 in the near future [154],
and the Simons Observatory [155] aims to push this down to r ∼ 0.003 [156]. At the same time,
the large-scale structure will be probed more accurately by the Euclid satellite [157, 158]. These
developments promise fruitful times ahead for the cosmology of the early universe.
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