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Abstract12

In this study we determine whether auroral westward currents can be characterised by13

low dimensional chaotic attractors through the use of the complexity-entropy method-14

ology developed by Rosso, Larrondo, Martin, Plastino, and Fuentes (2007) and based15

on the permutation entropy developed by Bandt and Pompe (2002). Our results indi-16

cate that geomagnetic auroral indices are indistinguishable from stochastic processes from17

timescales ranging from a few minutes to 10 hours and for embedded dimensions d <18

8. Our results are inconsistent with earlier studies of (Baker, Klimas, McPherron, & Büchner,19

1990; Pavlos et al., 1992; D. Roberts, Baker, Klimas, & Bargatze, 1991; D. A. Roberts,20

1991; Vassiliadis, Sharma, & Papadopoulos, 1991; Vassiliadis, Sharma, Eastman, & Pa-21

padopoulos, 1990) indicating that auroral geomagnetic indices could be reduced to low-22

dimensional systems with chaotic dynamics.23

1 Introduction24

The discovery fifty years ago that fully developed turbulence could in principle be25

the result of only three instabilities (Ruelle & Takens, 1971), rather than an infinite num-26

ber Landau (1944), together with the experimental confirmation by Gollub and Swin-27

ney (1975) that universal behavior described by a few parameters could be observed in28

a fluid system, has lead to what some authors described as a ”chaos revolution” (Love-29

joy & Schertzer, 1998). The realisation that nonlinear systems with a very large num-30

ber of degree of freedoms could be described by low-dimensional dynamical systems nat-31

urally found a promising niche in a wide range of space plasma research, and especially32

in space weather studies, in order to alleviate the computational cost of modelling the33

Earth’s magnetosphere. Following the development of empirical techniques for detect-34

ing deterministic chaos by Grassberger and Procaccia (1983), a plethora of studies (Baker35

et al., 1990; Pavlos et al., 1992; D. Roberts et al., 1991; D. A. Roberts, 1991; Vassiliadis36

et al., 1991; Vassiliadis et al., 1990) using geomagnetic indices argued that the Earth’s37

magnetospheric dynamics could be reduced to a low-dimensional dynamical systems. How-38

ever, it was first shown by Osborne and Provenzale (1989) for a general case, and later39

by Prichard and Price (1992) and Shan, Hansen, Goertz, and Smith (1991) for space weather40

studies, that the empirical technique could not differentiate between coloured noise and41

deterministic chaos in geomagnetic time series, due to long autocorrelation times inher-42

ent to the former.43
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Nonetheless, the ideas provided by deterministic chaos were extended to nonlinear stochas-44

tic systems by the use of self-organized critical (SOC) models, that is cellular automata45

defined by a certain class of discontinuous rules and appropriate boundary conditions46

(Lovejoy & Schertzer, 1998). SOC systems were shown to evolve spontaneously to crit-47

ical states describable by a low-dimensional dynamical systems (Chang, 1992). Conse-48

quently, Balasis et al. (2006); Consolini and Marcucci (1997); Dobias and Wanliss (2009);49

Klimas et al. (2000); Klimas, Vassiliadis, Baker, and Roberts (1996); A. Pulkkinen, Kli-50

mas, Vassiliadis, and Uritsky (2006); Uritsky, Pudovkin, and Steen (2001); Uritsky, Kli-51

mas, and Vassiliadis (2006); Uritsky and Pudovkin (1998); Valdivia, Klimas, Vassiliadis,52

Uritsky, and Takalo (2003); Wanliss, Anh, Yu, and Watson (2005); Wanliss and Dobias53

(2007) extended these ideas to magnetospheric systems, demonstrating that nonlinear54

stochastic models were a better representation than low-dimensional chaotic attractors.55

The emergence of dynamical correlations and non-Markovian features during intense ge-56

omagnetic storms, analogous to the emergence of long-range coherence in out-of-equilibrium57

systems, implied a reduction in the number of degrees of freedom of the system and in-58

herent nonlinearities (Consolini & De Michelis, 2014).59

In this study, we contribute to the decades old discussions on the properties of geomag-60

netic processes by using permutation entropy, a measure developed by Bandt and Pompe61

(2002), to quantify complexity in measured time series. Whereas common measures of62

complexity, such as the Kolmogorov-Sinai entropy, or the Shannon entropy, ignore tem-63

poral order of the values in the time series, entropy measures of ordinal patterns preserve64

information of temporal order and provides for an alternative measure of complexity (Riedl,65

Muller, & Wessel, 2013). Permutation entropy has now been tested across several sci-66

entific disciplines, and is now being used to characterise processes in laboratory and geo-67

physical plasma experiments (Consolini & De Michelis, 2014; Maggs & Morales, 2013;68

Weck, Schaffner, Brown, & Wicks, 2015).69

For example, using the complexity-entropy measure developed by Rosso et al. (2007),70

Weck et al. (2015) demonstrate that solar wind turbulent fluctuations are stochastic, rather71

than chaotic. In the context of geomagnetic activity, it is of primary interest to deter-72

mine whether, and under which time scales, geomagnetic currents demonstrate signa-73

tures of low-dimensional dynamical systems, if any. Using the methodology developed74

by Rosso et al. (2007), we hereafter revisit the question as to whether auroral geomag-75

netic indices can be characterised as a low-dimensional chaotic attractor, and use for the76
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first time the Jensen-Shannon complexity on auroral geomagnetic indices. In section 277

we describe the dataset and the complexity-entropy plane used for distinguishing between78

stochastic and chaotic time series. In section 3 we present the results. In section 4 and79

5 we discuss our findings, their relation to previous studies, and trace out a plan for fu-80

ture studies.81

2 Methodology82

2.1 Datasets83

The data are obtained from the OMNI database (http://omniweb.gsfc.nasa.gov), which84

provides estimates of solar wind parameters at the bow shock nose (Farris & Russell, 1994)85

by propagating observations performed by several spacecraft further upstream (King &86

Papitashvili, 2005) as well as measures of geomagnetic activity. We focus primarily on87

the AL index which is notoriously difficult to predict Newell, Sotirelis, Liou, Meng, and88

Rich (2007), presumably because of inherent nonlinearities in its dynamics.89

AL provides an estimate of the maximum westward electrojet intensity using 12 mag-90

netometer stations around the northern auroral region (Berthelier & Menvielle, 1993).91

Outside of substorm intervals, AL can be thought of as a measure of convection, while92

during substorms the largest deviations in the horizontal component typically originate93

from the substorm current wedge. By nature, AL is therefore highly asymmetric and peaks94

at low values, reflecting quiet time convection effects and heavy tails associated with sub-95

storms occurrences (Newell et al., 2007; Tanskanen, Pulkkinen, Koskinen, & Slavin, 2002).96

2.2 Permutation Entropy97

Permutation entropy was proposed by Bandt and Pompe (2002) as a complexity98

measure for arbitrary timeseries, that is, stationary or non-stationary, deterministic or99

stochastic, periodical or noisy. However, it should be pointed that a weak form of sta-100

tionary assumption is required, i.e., for s < d, the probability for xt < xt+s should101

not depend on t (Rosso et al., 2013). The Bandt-Pompe permutation entropy is com-102

puted on the basis of a probability distribution quantifying the rate of occurrence of am-103

plitude orderings in a time signal T (t) ≡ {xt; t = 1, ..., N} measured at N evenly spaced104

discrete points. Computation of the probability is done for an embedding space of di-105

mension d, which translates in determining patterns of length d in the order in which106

–4–©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Space Physics

they appear in the timeseries (For readers not familiar with the idea of an embedding107

dimension and delay we recommend the book by (Ott, 2002, Section 3.8)). The d−values108

are called d-tuples. For instance, for d = 3, a number of d!= 6 possible sequences are109

possible, i.e. (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). For a signal with N el-110

ements, the relative frequency of each of the possible sequences are computed for three111

successive values of the time series. The number of successive values for embedding di-112

mension d and signal of N elements consists in 1 ≤ n ≤ N−d+1 distinct d-tuples or-113

dered as tj , tj+1...tj+d−1. Similarly, for the embedding dimension chosen in our analy-114

sis, i.e. d = 6, a signal with N = 10000 elements has 1 ≤ n ≤ N − d + 1 = 9995 dis-115

tinct d-tuples tj , tj+1...tj+5, or ordinal patterns. Within each d-tuplet, an ordering of116

the amplitude is obtained as a function of the d! possible permutations, e.g. 720 permu-117

tations for d = 6. The permutation entropy is then computed for a particular signal118

by computing the frequency of occurrence of each possible permutations of the ampli-119

tude ordering. For a set of probabilities P , of dimension d! and probability of occurrence120

pj ≥ 0; j = 1, 2...d!, the permutation entropy is defined in terms of the Shannon en-121

tropy, S, as122

S(P ) = −

d!
∑

j=1

pj log(pj). (1)

In the following we use the normalized Shannon entropy, H , defined as123

H(P ) = S(P )/ log(d!) = S(P )/Pe, (2)

and the Shannon entropy per symbol, hn, defined as124

hn(P ) =
S(P )

d− 1
. (3)

The denominator in the equation of H(P ) is the maximum Shannon entropy obtained125

when all states have equal probabilities, i.e. pj = 1/d!; ∀j and this maximum proba-126

bility is here denoted as Pe. The fundamental underlying idea behind the Bandt-Pompe127

permutation entropy is that some ordinal patterns may be forbidden, whereas others may128

be favoured, making the information content less random than in stochastic systems. In129

theory, one might therefore be able to differentiate stochastic and deterministic fluctu-130

ations through the use of the permutation entropy.131

However, as with all mathematical tools, one has to be aware of the advantages and lim-132

itations. In terms of advantages, the permutation entropy incorporates temporal order133

and is computationally very fast (Riedl et al., 2013). Additionally it is invariant under134
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any monotonic transformation of the timeseries, e.g. scaling the data has no effect on135

the resulting distribution of permutation patterns. A consequence of the latter property136

is that the permutation entropy does not preserve information of the amplitude in the137

ordinal patterns. But more importantly, finite timeseries constrain the choice of the em-138

bedding dimension d. Since the number of possible amplitude permutations increases rapidly139

as d!, the value of d must be chosen such that N ≫ d!, i.e. the number of points in our140

time series must be sufficiently large for us to sample the relative distribution of each141

d! permutations. In our case, we use d = 6 for timeseries with N = 43200 points, cor-142

responding to 30 days of 1 minute sampling. The maximum embedded delay corresponds143

to τ = 600 minutes, and the minimum number of segments corresponds to N − (d −144

1)τ > 40000 (Applying our analysis to delays ranging from days to months none of the145

conclusions presented hereafter were modified. However it was not possible to test the146

methodology for timescales ranging from years to solar cycle periods due to data gaps).147

Hence, we use more than 40000 segments to distinguish the frequency of d! = 720 pat-148

terns. Consequently, for a given collection of d−tuplets, the size in time of the structures,149

or patterns, investigated is d∆t, where ∆t is the sampling time. In order to study struc-150

tures with size d∆t ≥ 10 it is often not practically possible to increase the embedding151

dimension beyond d = 7 since 8! = 40320 and one must keep in mind the requirement152

that N ≫ d!. In case of auroral indices, setting an embedding dimension of 8 would153

require a timeseries of length N > 4 · 106, and corresponding to 280 days of 1 minute154

sampled data. Large structures can nonetheless still be investigated by adding an ad-155

ditional parameter τ to sub-sample the timeseries. In the sub-sampled signal the inter-156

val between successive data point is dτ rather ∆t. This technique naturally reduces the157

Nyquist frequency and the number of points to N/τ , but preserves the total time of the158

signal (Maggs & Morales, 2013; Weck et al., 2015). For an embedding dimension d >159

2 and embedded delay τ , a timeseries with N points contains N − (d − 1)τ segments160

upon which the d! permutations are computed. Once again, one needs to be very care-161

ful in selecting a sufficiently large number of points to make sure that all possible per-162

mutations can be accounted for. If one only has 1000 segments available to sample the163

relative occurrence of 720 permutations, it is highly unlikely that even if the timeseries164

is stochastic, that all possible permutations would be appropriately sampled. One might165

therefore conclude, incorrectly, that some patterns are forbidden, and that the result-166

ing entropy might be indicative of a deterministic timeseries. The timeseries length must167
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be sufficiently large in order for all permutation patterns to be measured and thereby168

confirm the deterministic properties of the timeseries. This last constraint is particularly169

important when studying coloured noise with very long autocorrelation times. The per-170

mutation entropy analysis can be rendered useless if N is not sufficiently large and one171

is therefore forced to seek alternative approaches to differentiate stochastic from deter-172

ministic fluctuations.173

2.3 Jensen-Shannon Complexity174

A solution to supersede this last limitation of the permutation entropy and a means to175

distinguish between long correlated noise and deterministic timeseries, was outlined by176

Rosso et al. (2007). Using Shannon’s formulation of entropy for ordinal patterns and the177

Jensen-Shannon complexity as a measure of statistical complexity, Rosso et al. (2007)178

have shown that despite common properties (wide-band power spectrum, irregular be-179

havior of measured signals) it is after all possible to distinguish between stochastic and180

chaotic signals from their location in terms of an entropy-complexity plane. Hence, Rosso181

et al. (2007) combine the complexity measure of Bandt and Pompe and the Jensen-Shannon182

complexity, here defined as183

CS
J = D(P )×H(P ) = −2

S(P+Pe

2
)− 1

2
S(P )− 1

2
S(Pe)

d!+1

d!
log(d! + 1)− 2 log(2d!) + log(d!)

H(P ). (4)

This complexity measure is the product of the normalised Shannon entropy, H(P ), and184

the Jensen divergence,185

D(P ) = S

(

P + Pe

2

)

−
1

2
S(P )−

1

2
S(Pe), (5)

hence the Jensen-Shannon denomination. The argument in the denominator serves as186

normalisation constant for the Jensen divergence. The divergence can be interpreted as187

the distance between our distribution of ordinal patterns and the distribution that max-188

imises the Shannon distribution, i.e. Pe defined above. It is easy to see that it takes the189

value of zero when P = Pe, that is, when all ordinal patterns are equally likely the Jensen-190

Shannon complexity is zero. Built from the square of the Shannon entropy, it has a parabolic191

shape when plotted against the permutation entropy, but more crucially, the Jensen-Shannon192

complexity can hold multiple values for a fixed Shannon entropy. It is this particular prop-193

erty that allows one to distinguish stochastic noise with long auto-correlation times to194

deterministic and chaotic fluctuations. Thus, a fixed entropy value maps into a range195

of Jensen-Shannon complexity values and one can differentiate between regimes that are196
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highly deterministic or highly stochastic and everything in-between. For more details on197

the permutation entropy and Jensen-Shannon complexity we refer to the reviews of Riedl198

et al. (2013) and Zanin, Zunino, Rosso, and Papo (2012).199

3 Results200

3.1 Choice of chaotic and stochastic timeseries201

In this study we benchmark our results for geomagnetic indices with the Lorenz chaotic202

attractor (Ott, 2002) :203

Ẋ = a(Y −X); Ẏ = X(c− Z)− Y ; Ż = XY − bZ, (6)

and fractional Brown motion (fBm) with Hurst exponent hu ∈ [0.01, 1] (Mandelbrot204

& Van Ness, 1968). We note that the choice of the Lorenz attractor rather than other205

well-known chaotic dynamical systems has no effect on our results. The reader can find206

a longer list of chaotic maps plotted in the complexity-entropy plane in reports by Rosso207

et al. (2007) and Maggs and Morales (2013) showing a clear demarcation between stochas-208

tic and chaotic timeseries. The parameters for the Lorenz attractor are a = 10, b = 8/3, c =209

28. Figure 1 top two panels show the timeseries for AL in black, and δAL = ALj+1−210

ALj in magenta for four months time interval.Time series for the Lorenz strange attrac-211

tor used for this study are shown as blue traces in Figure 1 and an example for the fBm212

with Hurst exponent hu = 0.8 is shown on the bottom right panel of Figure 1 in red.213

The fBm is stochastic but can nonetheless be structured and contains trends (either per-214

sistent or anti-persistent), and is used as the boundary delimiting stochastic and chaotic215

timeseries.216

3.2 Permutation entropy analysis217

In Figure 2, we plot the permutation entropy per symbol, hn, for a stochastic, a chaotic218

and the AL time series as a function of embedded delay τ and embedded dimension 3 ≤219

d ≤ 7. Fractional Brownian motion with Hurst exponent of 0.75 is on the top panel.220

As with very other stochastic timeseries the permutation entropy is approximately con-221

stant across various τ and d. The small increase in the entropy is due to the fact tfhat222

our choice of stochastic process has long auto-correlation times. Thus, for very long time223

delays, patterns become marginally more decorrelated.224
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In contrast, the centre panel for the chaotic Lorenz attractor shows a minimum permu-225

tation entropy for τ = 1. The permutation entropy then increases linearly with τ , un-226

til for sufficiently large delay of τ > 15 the patterns become decorrelated. We also no-227

tice from the Lorenz attractor panel that for τ < 10 the curves for d = 7 and d = 6228

overlap. Hence, embedded dimension d = 6 is sufficient to track all the possible per-229

mutations for the Lorenz attractor. Or, put differently, increasing the embedded dimen-230

sion to d > 6 does not provide more information about the complexity of the timeseries.231

Increasing the embedding dimension increases the range of patterns that are sampled232

in the timeseries. If one is analyzing a dynamical system with embedding dimension of233

6 or 7 with a parameter d = 3 − 4, one will miss some of the possible permutations.234

Thus, the result plotted for the Lorenz attractor is not surprising, since according to the235

well-known Takens’ theorem (Ott, 2002), the embedded dimension must scale as d =236

2dS+1 where dS is the dimension of the strange attractor, which is well-known to be237

between 2.03 and 2.06.238

It is clear that the profile for AL, in the bottom panel, resembles the stochastic fractional239

Brownian motion with persistent increments. However, the absence of overlap for the240

various curves, as seen for the Lorenz attractor, does not necessarily imply that AL is241

stochastic. Instead, it could indicate that a higher embedded dimension, i.e. d > 7, is242

needed to samples all the patterns (Rosso et al., 2013). However, it is not always pos-243

sible to pick d > 7, and we resort to the methodology of Rosso et al. (2007) to deter-244

mine possible differences between AL and stochastic fluctuations.245

3.3 Jensen-Shannon complexity plane246

Before making use of the complexity-entropy plane, we first present the Jensen-Shannon247

complexity measure for AL as a function of embedded dimension and delay. The results248

are shown in Figure 3. The Jensen-Shannon complexity is computed against the embed-249

ded delay τ on the abscissa for all twelve months of the year 2010. The colour represents250

the embedding dimension ranging between 3 and 6 with the same legend as in Figure251

2. Note that the complexity decreases for growing embedded delay. Hence, ordinal pat-252

terns are more correlated on small timescales (τ < 1 hour), and become decorrelated253

for τ > 200 − 240 minutes. Since the embedding dimension of AL is high, the com-254

plexity curves for d = 6 and d = 5 highlights local maximum and minimum that are255

missed by the d = 4 and d = 3 curve. For all months except May, June, July and Novem-256
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ber, we notice an enhancement in the complexity for 14 < τ < 40 and d = 6 after the257

initial monotonic decrease in complexity. A local maximum in complexity is particularly258

pronounced for the months of August and September. This indication of the presence259

of correlational structures with timescales ranging between 10 and 40 minutes is not a260

new result (Osmane, Dimmock, Naderpour, Pulkkinen, & Nykyri, 2015) and will be dis-261

cussed in the next section.262

In Figure 4, we plot the complexity-entropy plane for d = 6, with minimum and max-263

imum complexity-entropy curves in blue. The complexity-entropy points for fBm are plot-264

ted in red circles for τ = 1 and Hurst exponents ranging between 0.01 and 1 by steps265

of 0.01. The points for fBm indicate a limit between stochastic and structured timeseries.266

The complexity-entropy values for the chaotic attractor are computed and plotted in blue267

triangles for the variable X , for d = 6 and τ = [1−10]. The complexity-values for the268

Lorentz attractor (cyan squares) have the smallest entropy for τ = 1 and the largest269

for τ = 60. We clearly see from Figure 4 that the complexity-entropy values for the Lorenz270

chaotic orbits skim the maximum curve, that is for large entropies, the orbits of a chaotic271

attractor have large complexity values.272

Similarly, we plot on the same figure the complexity-entropy curve for both AL (black273

stars) and δAL =diff(AL) (magenta dots) for d = 6 and time delay values ranging be-274

tween τ = 4 and τ = 600 minutes by increments of 2 minutes. The lowest entropy val-275

ues for AL and δAL are computed for τ = 4, while the larger entropy values are for276

large τ > 500. Figure 4 indicates that complexity-entropy values of AL overlap the fBm277

values for all sub-sampling parameters τ . As we increase τ , the entropy for AL increases,278

and the time-series becomes indistinguishable from fractional Brownian motion with anti-279

persistent increments, i.e., with Hurst exponents less than 0.5.280

It is natural to ask if the observed characterisation of AL structures ranging between a281

few minutes to several hours is shared by other auroral current indices. In Figures 5 and282

6, we show the dependence of the Jensen-Shannon complexity for all 12 months of 2010283

for AE and AU respectively. The range of parameters d, τ and the legend are the same284

as in Figure 3. Once again the complexity value is relatively small for both indices. It285

peaks at low τ and decays for large τ values. Similarly to AL, we note that AE also ex-286

periences a local maximum in complexity values for embedded delay ranging between287

τ ≃ 10 and τ ≃ 50, albeit more pronounced and for different months (with the most288
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obvious month being April). The complexity for AU on the other hand experiences lo-289

cal maximum for embedded delay ranging between τ ≃ 30 and τ ≃ 200 minutes, with290

the notable exception of June, July and November where the complexity monotonically291

decreases until τ ≃ 200 and plateau at very low values thereafter. In Figure 7 we have292

reproduced the complexity-entropy plane for AL (blue stars) and fBm (red dots) and293

complemented it with values for AE (black circles) and AU (magenta lozenges) across294

the month of August 2010. Similarly as for AL, AU and AE are highly stochastic across295

timescales ranging between a few minutes to 10 hours. We note that the same conclu-296

sion are equally valid for any other set of months (not shown).297

4 Discussion and Conclusion298

Using the permutation entropy developed by Bandt and Pompe (2002) and the complexity-299

entropy plane methodology developed by Rosso et al. (2007) we have demonstrated that300

geomagnetic indices have larger complexity (structures) and lower entropy (uncertainty)301

on small timescales of τ < 10 than on timescales of τ > 10 minutes. Nonetheless, au-302

roral geomagnetic indices are indistinguishable from stochastic processes, overlapping303

with fractional Brownian processes on timescales ranging between a few minutes to 10304

hours. Our results are therefore inconsistent with earlier studies of (Baker et al., 1990;305

Pavlos et al., 1992; D. Roberts et al., 1991; D. A. Roberts, 1991; Vassiliadis et al., 1991;306

Vassiliadis et al., 1990) indicating that low-dimensional dynamical systems with chaotic307

properties might arise in geomagnetic current patterns.308

In a similar study, Consolini and De Michelis (2014) also use permutation entropy as a309

measure of complexity to study the statistical properties of SYM-H timeseries spanning310

the period of January 2000 to December 2004. In their study, Consolini and De Miche-311

lis (2014) showed that permutation entropy computed on moving time windows was ca-312

pable of capturing the rapid and local dynamical changes of SYM−H . During storms,313

intermittency and the non-stationary nature of the fluctuations of SYM−H was shown314

to correlate with lower permutation entropy and higher complexity during quiet times.315

This result is consistent with Figures 4 and 7 showing that for lower τ values, structures316

in auroral currents have higher complexity and lower entropy.317

Following the work of Balasis et al. (2006); Consolini, De Marco, and De Michelis (2013)318

and Osmane et al. (2015), our study also provides additional means to characterise large-319
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scale and small-scale fluctuations originating in different physical processes. In a statis-320

tical study covering 17 years of OMNI data, (Osmane et al., 2015) showed that prob-321

ability distribution functions of AL responded in a nontrivial yet coherent fashion to var-322

ious solar wind properties and ULF fluctuation amplitudes. For strongly southward IMF,323

the AL distribution was characterised by a decrease of the skewness, a shift of the peak324

from −30 nT to −200 nT and a broadening of the distribution core. During northward325

IMF, the distribution in AL was instead characterised by a large reduction in the stan-326

dard deviation and weight in the tail. Despite the different responses of the distribution327

function of AL for northward and southward IMF, the non-Gaussian changes were all328

occurring on timescales ranging between 10 and 40 minutes, similarly to the larger com-329

plexity structures observed in AL and AE on comparable timescales(i.e. comparable τ330

values), and associated with intermittent fluctuations. In Osmane et al. (2015), the au-331

thors argued that the non-Gaussian properties in the PDF of AL occurring on timescales332

of the order of τ ∼ 10− 20 minutes could be driven in part by viscous processes (Ax-333

ford & Hines, 1961), such as Kelvin-Helmholtz instability (Nykyri & Otto, 2001) and ki-334

netic Alfven waves (Johnson & Cheng, 1997, 2001).335

Whereas the mapping of auroral indices into the complexity-entropy plane was done in-336

dependently of solar wind properties, follow-up studies could combine the methodology337

described in (Osmane et al., 2015), and the one presented here to distinguish coherent338

geomagnetic responses to upstream solar wind conditions from internal magnetospheric339

dynamic processes. Future studies will be extended to other geomagnetic indices and fo-340

cus particularly on different solar wind driving conditions that might explain the enhance-341

ment in complexity on small timescales of τ < 40 minutes. Of particular interest, de-342

lineating storms in terms of solar wind conditions and statistics might indicate the con-343

tribution of magnetospheric dynamics in the triggering of storm activity and the nature344

of the nonlinear driving on timescales of minutes where viscous processes take place (Ax-345

ford & Hines, 1961; Chaston et al., 2007; Freeman, Warren, & Maguire, 1968; Hasegawa346

et al., 2004, 2006; Johnson & Cheng, 1997, 2001; Lee, Johnson, & Ma, 1994; Nykyri &347

Otto, 2001; Nykyri et al., 2006), to hours where geomagnetic storms unfold (T. Pulkki-348

nen, 2007).349

Finally, it should be kept in mind that auroral geomagnetic indices do not necessarily350

account for the detailed spatial variations of the magnetic field. For instance, as the au-351

roral electrojet expands in large storms, high latitude observatories at which AE is de-352

–12–©2018 American Geophysical Union. All rights reserved.
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rived experience lower magnetic field variations. Additionally, auroral geomagnetic in-353

dices cannot capture the complexity of the wider magnetospheric system since they are354

constructed as a multi-dimensional mapping of several observatories and reduced to a355

single proxy parameter. In the case of AL, it serves as a proxy for the energy transmit-356

ted into the ionosphere. We can therefore not exclude the possibility that spatial and/or357

temporal variations associated with various magnetospheric processes could be modelled358

in terms of a deterministic set of equations, albeit one that is not as low-dimensional as359

previous authors suggested. Rather, our analysis provides an answer to a much narrower360

question: Can we model fluctuations in auroral geomagnetic indices as low-dimensional361

chaotic attractors, and consequently reduce a system a priori composed of a very large362

number degrees of freedom to one with a few degrees of freedom? Though our answer363

is undoubtedly in the negative, our analysis does not preclude the existence of a high-364

dimensional chaotic systems or one based on self-organised critical models (Sharma et365

al, 2016).366
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Figure 1. Top two panels show AL and δAL = ALi+1 − ALi time series for an interval of four

months spanning 01-01-2009 to 30-04-2009. The panels with blue traces show time series for the

Lorenz attractor with parameters a = 10, b = 8/3, c = 28. The bottom panel shows an example of

fractional Brownian motion with Hurst exponent hu = 0.8.
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Figure 2. Permutation entropy as a function embedded delay τ and parametrised for embed-

ding dimension 3 ≤ d ≤ 7 for fractional Brownian motion with Hurst exponent H = 0.75 (top

panel), the Lorenz attractor (center panel) and AL (bottom panel).
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Figure 3. Jensen-Shannon Complexity versus embedded delay τ for all 12 months of 2010 of

AL values. The legend for the colour is the same as in Figure 2. The embedded delay τ has units

of minutes and the dashed vertical line indicate the 60 minute and 240 minute marks.

Figure 4. Complexity-entropy plane for AL (black dots), δAL (magenta dots), the Lorentz

strange attractor (cyan squares), and fractional Brownian motion (red dash) on the left panel

with a zoom in the low complexity high entropy part on the right panel. The blue curves repre-

sent the minimum and maximum entropy-complexity curve for an embedded parameter d = 6.

The permutation entropy and Jensen-Shannon complexity values for AL and δAL are computed

for 4 ≤ τ ≤ 600 minutes. The complexity-values for AL reside along those for fractional-Brownian

motion of Hurst exponents less than 0.5.
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Figure 5. Jensen-Shannon Complexity versus embedded delay τ for all 12 months of 2010 of

AE values. The legend for the colour is the same as in Figure 2.
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Figure 6. Jensen-Shannon Complexity versus embedded delay τ for all 12 months of 2010 of

AU values. The legend for the colour is the same as in Figure 2.
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Figure 7. Complexity-Entropy plane for AL (blue stars), AU (magenta lozenge), AE (black

circles) and fractional Brownian motion (red dots) and d = 6. The lowest entropy values are

computed for τ = 4 minute, while the larger entropy values are for τ = 600 min.The complexity-

values for all three auroral geomagnetic indices reside along those for fractional-Brownian motion

with Hurst exponents less than one half.
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Figure 6.
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Figure 7a.
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Figure 7b.
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