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Abstract

This paper investigates the proof theory of the Quantified Argument Cal-
culus (Quarc) as developed and systematically studied by Hanoch Ben-
Yami [3], [4]. Ben-Yami makes use of natural deduction (Suppes-Lemmon-
style), we, however, have chosen a sequent calculus presentation, which
allows for the proofs of a multitude of significant meta-theoretic results
with minor modifications to the Gentzen’s original framework, i.e. LK.
As will be made clear in course of the paper LK-Quarc will enjoy cut
elimination and its corollaries (including subformula property and thus
consistency).

1 Introduction

This paper investigates the proof theory of the Quantified Argument Calculus
(Quarc) as developed and systematically studied by Hanoch Ben-Yami [3], [4].
Ben-Yami makes use of natural deduction (Suppes-Lemmon-style), we, however,
have chosen a sequent calculus presentation, which allows for the proofs of a
multitude of significant meta-theoretic results with minor modifications to the
Gentzen’s original framework, i.e. LK. LK, although it has been developed in
the 1930ies serves still (as a basis) for proof theoretic investigations [1], [6], [15].

Quarc is a system of quantified logic which does away with variables and
unrestricted predicates, but nonetheless achieves results similar to the Predicate
Calculus by employing quantifiers applied directly to predicates which appear as
arguments of other predicates (hence the name Quantified Argument Calculus),
along with anaphors and operators that attach directly to predicates. It is in
this respect arguably closer to natural language.1 A goal of this paper is to
show how and to what extent some of these results are achieved. Given that
this is an interesting but not widely known system, we will present it here in
considerable detail before proceeding with the proof-theoretic analysis of it. The

∗This paper was finalized in part due to the support of the Academy of Finland, research
project no. 1308664.
†This work was supported by the Marie-Sklodowska-Curie Innovative Training Network

DIAPHORA.
1We thank an anonymous referee for pointing this out.

1

DOI:10.1017/S1755020318000114

This is a manuscript accepted for publication in The Review of Symbolic Logic. Changes 
are likely to be introduced during the production process. 

https://doi.org/10.1017/S1755020318000114
Downloaded from https://www.cambridge.org/core. CEU Library, on 12 Jul 2019 at 12:34:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/228181176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S1755020318000114
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


reason to use sequent calculus in this analysis is to provide a constructive proof of
consistency, but first and foremost to prove an important, useful and interesting
result of a cut elimination theorem and its corollaries. We are likewise able to
straightforwardly extend the system with the identity, which does not appear
in [3].

The way the research on Quarc is conducted here is as follows: we observe
first that Ben-Yami’s Quarc is a rather rich system. In our analysis we split up
Quarc into three distinct sub-systems, namely (1) LK-QuarcB , (2) LK-Quarc2,
(3) LK-Quarc3, and finally, LK-Quarc - which is Ben-Yami’s (full) Quarc. LK-
QuarcB does not contain either the rules for identity or instantiation. LK-
Quarc2 is an extension of LK-QuarcB with identity, and LK-Quarc3 an extension
of LK-QuarcB with the rule for instantiation. Finally, LK-Quarc is obtained
by combining LK-Quarc2 and LK-Quarc3. As will be made clear in course of
the paper LK-Quarc will enjoy cut elimination and its corollaries (including
subformula property and thus consistency which is not proven in [3], although
it follows almost immediately from the soundness proof present there).

Let us note that the quantifiers in Quarc do have particular import, a fact
that is expressed semantically by the condition of non-emptiness of (unary)
predicates. This is in contrast to first-order predicate logic, where, as it is well
known, (unary) predicates can be empty. On the level of theorems we make
distinctions on the strength of particular import. On the basic level, i.e. LK-
QuarcB , this is expressed by the following formulas (the notation of Quarc and
its language will be explained in some detail in section 2 of this paper): (1)
(∀S)P → ((∃S)S → (∃S)P ) – example: if all men are mortal, then if there are
men, then some men are mortal; and (2) (∀S)P → (aS → aP ), e.g. if all men
are mortal, then if Socrates is a man, then Socrates is mortal. The strong version
of particular import, that is, (3) (∀S)P → (∃S)P is a theorem of LK-Quarc3.
Clearly, (∃S)S, which can be read as “there are S”, is a theorem of Quarc3 as
well. However, this is not to be conflated with the existential construction “S
exist”, as noted by Ben-Yami in [3] and discussed in more detail in [4]. Following
that, the quantifier ∃ is referred to as particular quantifier in this paper.

Focusing for the moment on formula (2), there is a striking similarity with
quantification in free logic [10], [11] and its most distinct axiom: ∀xA→ (E!a→
A[a/x]). Of course, in free logic (as in first-order logic), predicates can be empty,
but still there is a structural parallel. As a matter of fact, this parallel will be
exploited in the corresponding formulations of the sequent rules related to the
quantifiers; more on this similarity is said below (p.11) of this paper.

A note on some of the other special symbols – Quarc introduces additional
logical symbols and operations of Anaphora, Reorder and Negative Predication.
Anaphora fulfills a role roughly similar, but broader, than that of the variables
in Predicate calculus and is crucial in determining which parts of the formula a
quantified argument governs. Reorder is an operation that replaces predicates
with those which contain arguments in different order. Reordered predicates
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are interchangeable with identity-permutation ones in the basic case, but not in
the quantified case, and are used to determine mutual governance in a multiply
quantified formula. Negative Predication is an operation that switches between
sentential negation (e.g. ¬(a)S, it is not the case that a is S) and predication
negation (e.g. (a)¬S, a isn’t S). Again, these two uses of negation are inter-
changeable in the basic, but not the quantified case (compare: ¬(∃S)P , it is
not the case that some S are P and (∃S)¬P , some S aren’t P), and are there-
fore used to determine the mutual scope of negations and quantifiers. Most of
the proofs in this paper will focus on the quantifiers and the related additional
special symbols, as those are the primary novelty of Quarc.

Plan of the paper: In section 2 we present QuarcB , consisting of its language,
truth-value assignments and derivation rules (natural deduction - following Ben-
Yami) with appropriate modifications for the purposes of this paper. Section 3
sets out with the sequent calculus formulation of QuarcB . Section 4 proves the
deductive equivalence of the two formulations of QuarcB . The central section of
this paper, 5, prove the cut elimination theorem and its corollaries (subformula
property and consistency) for LK-QuarcB . Section 6 expands LK-QuarcB with
the rules for identity, proves again deductive equivalence, cut elimination and its
corollaries and furthermore conservativity over LK-QuarcB . Section 7 extends
LK-QuarcB with a rule of instantiation and once again proves all the results
from above for LK-Quarc3.

2 QuarcB

The system presented here will be QuarcB , which differs from the full Quarc in
containing no rules for identity and instantiation.

2.1 Vocabulary

Definition 1 (Vocabulary of QuarcB) QuarcB contains the following symbols:

1. Predicates: P,Q,R, ..., denumerably many and with a fixed arity.

2. Reordered predicates: For every n-ary (n > 1) predicate R, reordered
predicates Rπ, where π is any permutation of 1, ..., n except identity per-
mutation.

3. Singular arguments (SA’s): a, b, c, ...

4. Anaphors: α, β, γ, ...

5. Sentential operators: ¬,∨,∧,→.

6. Quantifiers: ∀,∃.

7. Numerals used as indices, comma, parentheses.
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2.2 Formula

A note on notation - we use a (metalinguistic) notation A [ϕ] to describe a
formula A which contains the strings of symbols ϕ, and A [ψ/ϕ] to describe a
formula A where the string of symbols ϕ is substituted by a string of symbols
ψ.

Definition 2 (Formula) The following rules specify all the ways in which for-
mulas can be generated.

1. (Basic formula) If P is an n-ary predicate and t1, ..., tn SA’s, then (t1, ..., tn)P
is a formula, called a basic formula.

2. (Reorder) If P is a reordered n-ary predicate (n > 1) and t1, ..., tn SA’s,
then (t1, ..., tn)P is a formula. Note that reordered predicates are a sep-
arate class of symbols of the language, and so no formula containing a
reordered predicate is basic.

3. (Negative predication) If P is an n-ary predicate or a reordered n-ary
predicate and t1, ..., tn SA’s, then (t1, ..., tn)¬P is a formula.

4. (Sentential operators) If A andB are formulas, so are ¬(A), (A)∧(B), (A)∨
(B), (A)→ (B). The parentheses surrounding formulas are called senten-
tial parentheses.

5. (Anaphora) If A is a formula containing, from left to right, t1, ..., tn (n > 1)
occurrences of SA t, none of which is a source of any anaphora, and A
does not contain α, then A [tα/t1, α/t2, ..., α/tn] is a formula. We call tα
the source of the anaphora α.

6. (Quantification) If P is a unary predicate, then ∀P and ∃P are quantified
arguments (QA’s). If A is a formula containing an occurrence of an SA
t, and substituting a QA qP for t will result in qP governing A, then
A [qP/t] is a formula.

Obviously, to make sense of the last entry, we also need to define gover-
nance:

7. (Governance) An occurrence qP of a QA governs a formula A just in case
qP is the leftmost QA in A and A does not contain any other string of
symbols (B) in which the parentheses are a pair of sentential parentheses,
such that B contains qP and all the anaphors of all the QA’s in B.

Closer inspection of the rules shows that some of these can be applied in
multiple orders. Namely, applications of the anaphora rule can be transposed
with one or more applications of the quantifier, sentential operator, or anaphora
rules. Whenever such a situation occurs, as a matter of convention, anaphora
rules are applied first. Among the anaphora rules, first applied is that which has
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then rightmost argument as its source. Given that every anaphor has a single
source, and no two anaphors have the same source, this convention produces a
unique order of applications of formula-generation rules.

Definition 3 (Terminal Symbol) The symbol introduced, for any formula, by
the last application of a formula-generation rule is called a terminal symbol of
that formula.

2.3 Truth-Value Assignments

We now define the truth-value assignments for formulas of Quarc. The semantics
given in [3] are substitutional, and, even though Quarc is not essentially substi-
tutional (a model-theoretic approach was used for a similar system in [12]), we
will not alter it, given that no result in this paper hinges on the distinction.

Definition 4 (Truth-Value Assignments) For any truth-value assignment A,
the following holds:

1. (Basic formula) Every basic formula is assigned the truth-value of true or
false, but not both.

2. (Reorder) Let P be an n-ary predicate and π = π1, ..., πn a permutation of
1, ..., n. Then, the truth-value assigned to (tπ1, ..., tπn)Pπ is that assigned
to (t1, ..., tn)P .

3. (Sentential operators) Let A and B be formulas. Then, ¬(A) is true just
in case A is false. Etc.

4. (Negative predication) Let P be an n-ary predicate and t1, ..., tn SA’s.
The truth value of (t1, ..., tn)¬P is that of ¬(t1, ..., tn)P .

5. (Anaphora) If A is a formula containing, from left to right, occurrences
t1, ..., tn of SA t, none of which is the source of any anaphors, and A does
not contain α, then the truth-value of A [tα/t1, α/t2, ..., α/tn] is that of A.

6. (Quantification) Let A [∀P ] (A [∃P ]) be formula A governed by the QA ∀P
(∃P ). If for every (some) SA t for which (t)P is true A [t/∀P ] (A [t/∃P ])
is true, then A is true, and false otherwise.

In addition to these, one of the rules needed for full Quarc is that of
instantiation:

7. (Instantiation) For any unary predicate P there is an SA t such that (t)P
is true.
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2.4 Derivation Rules

The rules presented here are taken from [3]. We only present the rules specific to
Quarc; the rules for propositional connectives are standard and will be omitted.
We begin by a definition of a proof, due to [5]:

Definition 5 (Proof) A proof is a list of lines of the form 〈L, (i), A,R〉, where
L is a (possibly empty) sequence of formulas, (i) the line number, A a formula
and R a justification, an element of the set of the derivation rules.

Definition 6 (Derivation Rules) The following are the derivation rules of QuarcB :

1. (Premise)

i (i) A Premise

2. (Propositional Calculus) We allow the usual derivation rules of the Propo-
sitional Calculus, with the constraint that for each rule, the principal for-
mulas be formulas of Quarc. E.g. one cannot obtain (α)P from (tα)S ∧
(α)P by ∧E.

3. (Sentence to Predication Negation, SP)

L (i) ¬(t1, ..., tn)P
L (j) (t1, ..., tn)¬P SP, i

4. (Predication to Sentence Negation, PS)

L (i) (t1, ..., tn)¬P
L (j) ¬(t1, ..., tn)P PS, i

5. (Reorder, R) Where π and ρ are any permutation of 1, . . . , n including the
identity permutation,

L (i) (tπ1, ..., tπn)Pπ

L (j) (tρ1, ..., tρn)P ρ R, i

6. (Anaphora Introduction, AI) Where t1, ..., tn are n, n > 1, occurrences of
the same singular argument t, none of t1, ..., tn is a source of an anaphor,
and α does not occur in A,

L (i) A [t1, ..., tn]
L (j) A [tα/t1, α/t2..., α/tn] AI, i

7. (Anaphora Elimination, AE) Where same provisions as in AI apply,

L (i) A [tα/t1, α/t2..., α/tn]
L (j) A [t1, ..., tn] AE, i
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8. (Universal Introduction, UI) Where A [∀P ] is governed by the quantified
argument ∀P , and the singular argument t does not occur in any of the
premises listed in L apart from (i), nor in A [∀P ],

i (i) (t)P Premise
L∗ (j) A [t/∀P ]

L− {i} (k) A [∀P ] UI, i, j

9. (Universal Elimination, UE) Where A [∀P ] is governed by the quantified
argument ∀P as above,

L1 (i) A [∀P ]
L2 (j) (t)P

L1 ∪ L2 (k) A [t/∀P ] UE, i, j

10. (Particular Introduction, PI) Where A [∃P ] is governed by the quantified
argument ∃P ,

L1 (i) A [t/∃P ]
L2 (j) (t)P

L1 ∪ L2 (k) A [∃P ] PI, i, j

11. (Particular Elimination, PE) Where A [∃P ] is governed by the quantified
argument ∃P , and the singular argument t does not occur anywhere in
L1 ∪ L2 − {j, k}, A [∃P ] or B,

L1 (i) A [∃P ]
j (j) (t)P Premise
k (k) A [t/∃P ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B PE, i, j, k, l

Note that PE is a rule of QuarcB , but not full Quarc, which uses the rule of
Instantiation. This rule resembles PE but is defined for either quantifier.
Let q be either ∃ or ∀:

12. (Instantiation, Ins) Where same provisions apply, mutatis mutandis, as in
PE,

L1 (i) A [qP ]
j (j) (t)P Premise
k (k) A [t/qP ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l
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Consequently, the following is a theorem of full Quarc, but not (as we will
see) QuarcB :

Theorem 1 (Particular Import in Quarc): (∀M)P ` (∃M)P

Proof.

1 (1) (∀M)P Premise
2 (2) (a)M Premise
3 (3) (a)P Premise

2,3 (4) (∃M)P PI, 2, 3
1 (5) (∃M)P Ins, 1, 2, 3, 4

2.4.1 Examples

In this section we provide several examples of the uses of (full) Quarc, namely
to prove the syllogism Barbara and several instances of the DeMorgan laws.

Example 1 Syllogism Barbara

(∀M)P, (∀S)M ` (∀S)P

Proof.

1 (1) (∀M)P Premise
2 (2) (∀S)M Premise
3 (3) (a)S Premise

2,3 (4) (a)M UE, 2, 3
1,2,3 (5) (a)P UE, 1, 4

1,2 (6) (∀S)P UI, 3, 5

Example 2 DeMorgan Laws

(∃M)P ` ¬(∀M)¬P

Proof.

1 (1) (∃M)P Premise
2 (2) (∀M)¬P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

2,3 (5) (a)¬P UE, 2, 3
2,3 (6) ¬(a)P PS, 5
3,4 (7) ¬(∀M)¬P ¬I, 2, 4, 6

1 (8) ¬(∀M)¬P PE, 1, 3, 4, 7
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¬(∀M)¬P ` (∃M)P

Proof.

1 (1) ¬(∀M)¬P Premise
2 (2) ¬(∃M)P Premise
3 (3) (a)M Premise
4 (4) (a)P Premise

3,4 (5) (∃M)P PI, 3, 4
2,3 (6) ¬(a)P ¬I, 4, 2, 5
2,3 (7) (a)¬P SP, 6

2 (8) (∀M)¬P UI, 3, 7
1 (9) ¬¬(∃M)P ¬I, 2, 1, 8
1 (10) (∃M)P ¬E, 9

3 LK-QuarcB

We now move to the presentation of the sequent-calculus version of QuarcB ,
called LK-QuarcB . LK-QuarcB is an adaptation of the system LK from [7].
The system presented here consists of sequents of the form Γ ⇒ ∆, where Γ
and ∆ are sequences of formulas, connected into derivations via derivation rules.
These rules take one or more (usually two), sequents, called the upper sequent(s)
and produce a single sequent, called the lower sequent. A single application of
a derivation rule will be referred to as an inference.

Derivation rules are divided into five types: (i) axioms, (ii) structural, (iii)
propositional, (iv) quantification and (v) special. Axioms are the initial sequents
of a derivation. Structural rules concern the addition, removal or transposition
of formulas in a sequent. Propositional rules concern the addition or removal of
propositional (truth-functional) connectives from the lower sequent of an infer-
ence, quantification rules do he same for quantifiers, and special for reordered
predicates, anaphora and negative predication. Finally, the Cut rule, although
a structural rule, is listed separately, as it will be a rule we will eliminate in
subsequent sections.

Every rule of LK-QuarcB , with the exception of Cut operates either on the
left (marked by L before the relevant symbol), or the right (R) side of the arrow
in the lower sequent. As we will see later, LK-Quarc2 and LK-Quarc3 will offer
further exceptions to this convention.

The sequent which is not an upper sequent of an inference is called an endse-
quent of a derivation it belongs to. A derivation can have only one endsequent,
as will be obvious from the structure of the derivation rules. We now proceed
to define them.

Definition 7 (LK-QuarcB) The following are the rules of LK-QuarcB . In all
but the Cut rule, the formula occurring in the lower sequent of a rule other than
Γ and ∆ is called the principal formula of that rule.

9
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3.1 Axioms

An axiom is a sequent of the form (t1, ..., tn)P =⇒ (t1, ..., tn)P , where t1, ..., tn
are singular arguments and P is a n-ary predicate. Axioms are also called initial
sequents, given that they are not a lower sequent of any inference.

3.2 Structural

We next define the structural rules. As stated previously, these rules govern
the addition (weakening, W ), removal (contraction, C ), and transposition (ex-
change, P) of formulas in the lower sequent.

1. Γ =⇒ ∆ (LW )
A,Γ =⇒ ∆

Γ =⇒ ∆ (RW )
Γ =⇒ ∆, A

2. A,A,Γ =⇒ ∆
(LC)

A,Γ =⇒ ∆

Γ =⇒ ∆, A,A
(RC)

Γ =⇒ ∆, A

3. Γ′, A,B,Γ =⇒ ∆
(LP )

Γ′, B,A,Γ =⇒ ∆

Γ =⇒ ∆, A,B,∆′
(RP )

Γ =⇒ ∆, B,A,∆′

3.3 Propositional

The rules in this section do not introduce anything unfamiliar to those ac-
quainted with standard LK. Therefore, in a number of subsequent section seg-
ments concerning these rules will be omitted or presented only schematically.

1. Γ =⇒ ∆, A
(L¬)¬A,Γ =⇒ ∆

A,Γ =⇒ ∆
(R¬)

Γ =⇒ ∆,¬A

2. A,Γ =⇒ ∆
(L∧)*

A ∧B,Γ =⇒ ∆

Γ =⇒ ∆, A Γ =⇒ ∆, B
(R∧)

Γ =⇒ ∆, A ∧B

3. A,Γ =⇒ ∆ B,Γ =⇒ ∆
(L∨)

A ∨B,Γ =⇒ ∆

Γ =⇒ ∆, A
(R∨)*

Γ =⇒ ∆, A ∨B

10
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4. B,Γ =⇒ ∆ Γ =⇒ ∆, A
(L→)

A→ B,Γ =⇒ ∆

A,Γ =⇒ ∆, B
(R→)

Γ =⇒ ∆, A→ B

* - the rules L∧ and R∨ can also, respectively, produce the formula B ∧A
and B ∨A.

3.4 Quantification

The primary novelty of Quarc is in its treatment of Quantified Arguments.
Therefore, the rules in this section will constitute (along with the Cut rule) the
primary focus of this paper.

1. A [a/∀M ] ,Γ =⇒ ∆ Γ =⇒ ∆, aM
(L∀)

A [∀M ] ,Γ =⇒ ∆

aM,Γ =⇒ ∆, A [a/∀M ]
(R∀)*

Γ =⇒ ∆, A [∀M ]

2. aM,A [a/∃M ] ,Γ =⇒ ∆
(L∃)*

A [∃M ] ,Γ =⇒ ∆

Γ =⇒ ∆, aM Γ =⇒ ∆, A [a/∃M ]
(R∃)

Γ =⇒ ∆, A [∃M ]

* - the Singular Argument a does not occur anywhere in Γ, ∆, A [∀M ] or
A [∃M ].

Note here that the rules of universal quantification bear a structural similarity
to free logic [8]. In free logic (regardless of which version of it we consider in
this context) one of its characteristic axioms is E!a ∧ A[a] → ∃xA[x] in some
Hilbert-style axiomatization. E.g. [2] formulates the rules for the introduction
of the existential quantifiers for some Gentzen (sequent) system as follows (we
use here a slightly simpler syntax):

Γ, E!a,A[a]⇒ ∆
(L∃), a does not occur below the inference line

Γ,∃xA[x]⇒ ∆

Γ⇒ ∆, E!a Γ⇒ ∆, A[a]
(R∃)

Γ⇒ ∆,∃xA[x]

Assuming that the premise of (L∃) is derivable, then so is: (1) Γ, E!a∧A[a]⇒ ∆;
likewise if both premises of (R∃) are derivable, then so is: (2) Γ ⇒ ∆, E!a ∧
A[a]. On the other hand, these rules express syntactically that the existential
quantifier has (in this case) existential import. This is made clearer by the
fact that the following sequent is derivable in (positive and negative) free logic:
E!a ∧ A[a] ⇒ ∃xA[x]. From a proof-theoretic semantics position this might
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be seen as a disadvantage, since there is implicitly conjunction introduction
involved.

However, one of the main aims of this paper is to establish the cut elimination
theorem for (several variants of) Quarc, and the authors are not aware of any
paper in the tradition of free logic that formulates the rules for (L∃) and (R∃) in
a way more truthful to proof theoretic semantics; i.e. such that the formulations
of both rules do not tacitly rely on conjunction introduction (on both sides) but
in such a way that the crucial sequent E!a ∧ A[a] ⇒ ∃xA[x] is still derivable.
This could in fact stimulate another paper that addresses this is issue.

3.5 Special

This section introduces further rules (in addition to those for quantification)
specific to Quarc, those for anaphora, reorder and negative predication. Here
R is an n-ary predicate, Rπ is a reordered n-ary predicate and P is either an
n-ary predicate, or a reordered n-ary predicate.

1.
A [...a1...an...] ,Γ =⇒ ∆

(LA)
A [...aα/a1...α/an...] ,Γ =⇒ ∆

Γ =⇒ ∆, A [...a1...an...]
(RA)

Γ =⇒ ∆, A [...aα/a1...α/an...]

2. (t1, ..., tn)R,Γ =⇒ ∆
(LRd)

(tπ1, ..., tπn)Rπ,Γ =⇒ ∆

Γ =⇒ ∆, (t1, ..., tn)R
(RRd)

Γ =⇒ ∆, (tπ1, ..., tπn)Rπ

3. ¬(t1, ..., tn)P,Γ =⇒ ∆
(LNP )

(t1, ..., tn)¬P,Γ =⇒ ∆

Γ =⇒ ∆,¬(t1, ..., tn)P
(RNP )

Γ =⇒ ∆, (t1, ..., tn)¬P

3.6 Cut

Finally, we have the Cut rule. The formula A in the schema below is called the
cut formula of the application of the rule.

1.
Γ⇒ Θ, A A,Π⇒ ∆

Γ,Π⇒ Θ,∆

3.7 Axiom Generalization

Before proceeding, let us demonstrate a simple and useful lemma - that the ax-
iom rule, which has been defined only for the basic sentences, can be generalized
for any formula A.

Lemma 1 All sequents of the form A⇒ A is derivable in LK-QuarcB .

12

https://doi.org/10.1017/S1755020318000114
Downloaded from https://www.cambridge.org/core. CEU Library, on 12 Jul 2019 at 12:34:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1755020318000114
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Proof. By induction on the terminal symbol of A.

Basic step. Every initial sequent is derivable.

Inductive step. Here we will only examine, as an illustration, the example of
the universal quantifier.

1. Universal Quantifier

(ind. hyp.)
A [a/∀M ]⇒ A [a/∀M ]

(LW )
aM,A [a/∀M ]⇒ A [a/∀M ]

(LP )
A [a/∀M ] , aM ⇒ A [a/∀M ]

aM ⇒ aM (RW )
aM ⇒ aM,A [a/∀M ]

(RP )
aM ⇒ A [a/∀M ] , aM

(L∀)
aM,A [∀M ]⇒ A [a/∀M ]

(R∀)
A [∀M ]⇒ A [∀M ]

Where a is some singular argument such that A [∀M ] does not contain it.

4 Deductive Equivalence

In this section we will demonstrate the deductive equivalence of LK-QuarcB
and QuarcB . Note that we will make full use of the Cut rule (even though the
Cut Elimination Theorem will later guarantee that for each derivation presented
here, there is a cut-free derivation).

Before proceeding, a note on the structure of this section may perhaps be
helpful. Theorem 2 is demonstrated by proving two auxiliary lemmas, Lemma
2 and Lemma 3, each corresponding to one direction of the biconditional in
Theorem 2. The proof of basic step of Lemma 3 is Lemma 1 and the inductive
step of Lemma 3 for the Universal Elimination requires the (trivial) Lemma 4.

Theorem 2 LK-QuarcB and QuarcB are deductively equivalent. Namely, ev-
ery endsequent of any derivation of LK-QuarcB is derivable in QuarcB , and for
any line (i) of any proof in QuarcB there exists a corresponding sequent in LK-
QuarcB which can be derived from trivial lemmas and sequents corresponding
to the lines of a proof (i) is derived from in QuarcB .

Obviously, what needs to be explained first is what the correspondence be-
tween the lines of a proof and sequents is. To do that, we define the standard
translation:

Definition 8 (Standard Translation) Standard translation of a sequent Γ⇒ ∆
of LK-Quarc, where Γ = {γ1, ..., γn} and ∆ = {δ1, ..., δm} is the derivation in
Quarc γ1 ∧ ... ∧ γn ` δ1 ∨ ... ∨ δm. Conversely, standard translation of a line of
a proof in Quarc 〈Γ, (i), δ, R〉 is the sequent Γ⇒ δ.

The proof of the theorem proceeds through proof of two lemmas, one going
from the LK-QuarcB to QuarcB , and the other in the opposite direction.
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4.1 From LK-Quarc to Quarc

The proof in this direction goes by the following lemma:

Lemma 2 Every endsequent Γ⇒ ∆ of some derivation in LK-QuarcB is, given
standard translation, derivable in QuarcB .

Proof. By induction on applications of rules of LK-QuarcB .

Basic step. Every initial sequent is derivable in QuarcB . Follows trivially
from the Premise rule of Quarc.

Inductive step. Henceforth, we outline the important steps.

1. (L∀) Assume that in QuarcB (i) A [a/∀M ] ∧ Γ ` ∆ and (ii) Γ ` ∆ ∨ aM .
Now assume (1) A [∀M ] ∧ Γ. We need derive ∆.

1 (1) A [∀M ] ∧ Γ Premise
1 (2) A [∀M ] ∧E, 1
1 (3) Γ ∧E, 1
1 (4) ∆ ∨ aM by (ii)
5 (5) ∆ Premise
6 (6) aM Premise

1,6 (7) A [a/∀M ] UE, 2, 6
1,6 (8) A [a/∀M ] ∧ Γ ∧I, 7, 3
1,6 (9) ∆ by (i)

1 (10) ∆ ∨E, 4, 5, 5, 6, 9

2. (R∀) Assume that in QuarcB (i) aM ∧ Γ ` ∆ ∨ A [a/∀M ] and (ii) a does
not appear anywhere in Γ, ∆ or A [∀M ]. Now assume (1) Γ. We need to
derive ∆ ∨A [∀M ].

1 (1) Γ Premise
2 (2) aM Premise

1,2 (3) aM ∧ Γ ∧I, 1, 2
1,2 (4) ∆ ∨A [a/∀M ] by (i)

(5) ∆ ∨ ¬∆ Prop.
6 (6) ∆ Premise
6 (7) ∆ ∨A [∀M ] ∨I, 6
8 (8) ¬∆ Premise

1,2,8 (9) A [a/∀M ] Prop. 4, 8
1,8 (10) A [∀M ] UI, 2, 9, given (ii)
1,8 (11) ∆ ∨A [∀M ] ∨I, 10

1 (12) ∆ ∨A [∀M ] ∨E, 5, 6, 7, 8, 11
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3. (LA) Assume (i) A [...a1...an...]∧Γ ` ∆ and assume (1) A [aα/a1...α/an]∧
Γ. We need to derive ∆.

1 (1) A [aα/a1...α/an...] ∧ Γ Premise
1 (2) A [aα/a1...α/an...] ∧E, 1
1 (3) A [...a1...an...] AE, 2
1 (4) Γ ∧E, 1
1 (5) A [a1...an...] ∧ Γ ∧I, 3, 4
1 (6) ∆ by (i)

Obviously, this is straightforward.

4. Similarly for other Special rules.

This concludes the proof of Lemma 2. We now turn to the proof of the
other Lemma.

4.2 From Quarc to LK-Quarc

In this direction the proof relies on the following lemma:

Lemma 3 For any line (i) of any proof in QuarcB there exists a corresponding
sequent in LK-QuarcB which can be derived from trivial lemmas and sequents
corresponding to the lines of a proof (i) is derived from in QuarcB .

Before proceeding with the proof, perhaps a slight clarification of this lemma
is in order. Keep in mind that every step of a proof in Quarc is derived from
previous step or steps (or none for Premise and Identity Introduction) via the
application of a certain rule. What this lemma does is construct a segment of a
derivation in LK-QuarcB (not a full derivation because it does not necessarily
have an initial sequent in all of its topmost places) that begins with the (standard
translation of) steps the application of the rule of QuarcB relies on, and ends
with the (standard translation of) step that the rule produces.

Since any proof in Quarc consist of a finite number of steps each produced
by a rule, by “stacking” the segments of the derivation one after the other (one
segment for each step, according to the rule used in that step), we produce a
derivation for which the endsequent is the standard translation of the conclusion
of the proof in QuarcB . We now proceed with the proof of the lemma.

Proof. By induction on the applications of the rules of derivation of QuarcB .

Basic step. Since we are dealing with QuarcB , which does not include the
identity rules, a proof can only begin with an application of a Premise rule. For
any application of the Premise rule, the corresponding sequent is A⇒ A. That
such a sequent exists is shown by Lemma 1.

Inductive step.
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1. (¬I) The rule for the Negation Introduction has the following form:

k (k) A Premise
L1 (m) B
L2 (n) ¬B

L1*, L2* (i) ¬A ¬I, k, m, n

Here Ln* stands for the sequence of formulas Ln with all the occurences
of k omitted.

The corresponding segment of a derivation in LK-QuarcB is as follows
(part separated out for legibility):

(Lemma 1)
B ⇒ B (L¬)
B,¬B ⇒

(L∧)
B ∧ ¬B,¬B ⇒

(LP )¬B,B ∧ ¬B ⇒
(L∧)

B ∧ ¬B,B ∧ ¬B ⇒
(LC)

B ∧ ¬B ⇒

We now use this part in the top right and provide the rest of the segment:

(k) A⇒ A

(m) L1 ⇒ B (n) L2 ⇒ ¬B
(R∧)

L1, L2 ⇒ B ∧ ¬B B ∧ ¬B ⇒
(Cut)

L1, L2 ⇒
(maybe LW )

L1, L2, A⇒
(maybe some LC)

L1∗, L2∗, A⇒
(Cut)

L1∗, L2∗, A⇒
(R¬)

(i) L1∗, L2∗ ⇒ ¬A

Obviously, here we could do without the sequent corresponding to the
step (k) and the application of Cut it is a part of, but we use all the steps
that are listed in the justification of the application of the rule in Quarc,
regardless of whether they are premises or not.

These derivations are schematic. For instance, the inference between the
sequents L1, L2 ⇒ and L1, L2, A⇒may require a use of the left weakening
rule (LW ) in case neither L1 nor L2 contain A. If they do, this step can be
omitted. Similarly, if either L1 or L2 contain A, one or more applications
of the left contraction (LC) rule may be required to obtain the sequent
L1∗, L2∗, A ⇒. Again, in case neither L1 nor L2 contain A these steps
can be omitted.

2. Similarly for other propositional rules.

3. (UE) The rule for the Universal Elimination has the following form:
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L1 (k) A [∀M ]
L2 (m) aM

L1, L2 (i) A [a/∀M ] UE, k, m

Before proceeding with the corresponding segment of a derivation, we need
to prove the following (easy) lemma:

Lemma 4 The sequent A [∀M ] , aM ⇒ A [a/∀M ] is derivable in LK-
QuarcB .

Proof.

(Lemma 1)
A [a/∀M ]⇒ A [a/∀M ]

(LW )
aM,A [a/∀M ]⇒ A [a/∀M ]

(LP )
A [a/∀M ] , aM ⇒ A [a/∀M ]

aM ⇒ aM (RW )
aM ⇒ aM,A [a/∀M ]

(RP )
aM ⇒ A [a/∀M ] , aM

(L∀)
A [∀M ] , aM ⇒ A [a/∀M ]

The corresponding segment of a derivation in LK-QuarcB for the rule UE
is as follows:

(k)L1 ⇒ A [∀M ]

(m)L2 ⇒ aM
(Lemma 4)

A [∀M ] , aM ⇒ A [a/∀M ]
(Cut)

L2, A [∀M ]⇒ A [a/∀M ]
(Cut)

L1, L2 ⇒ A [a/∀M ]

4. (UI) The rule for the Universal Introduction has the following form:

k (k) aM Premise
L1 (m) A [a/∀M ]

L1* (i) A [∀M ] UI, k, m

Here L1* stands for the sequence of formulas L1 with all the occurrences
of k omitted. By rule, L1 contains no occurrences of the SA a apart from
that in k, and therefore L1* contains no occurrences of a.

The corresponding segment of a derivation in LK-QuarcB for the rule UI
is as follows:

(k)aM ⇒ aM

(m)L1 ⇒ A [a/∀M ]
(LW )

aM,L1 ⇒ A [a/∀M ]
(maybe LC)

aM,L1∗ ⇒ A [a/∀M ]
(Cut)

aM,L1∗ ⇒ A [a/∀M ]
(R∀)

L1∗ ⇒ A [∀M ]
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Since L1* contains no occurrences of a, this is an appropriate use of the
rule R∀.

5. (PI) The rule for the Particular Introduction has the following form:

L1 (k) A [a/∃M ]
L2 (m) (a)M

L1, L2 (i) A [∃M ] PI, i, j

The corresponding segment of a derivation in LK-QuarcB for the rule PI
is as follows:

(m)L2 ⇒ aM
(some LW )

L1, L2 ⇒ aM

(k)L1 ⇒ A [a/∃M ]
(some LW , LP )

L1, L2 ⇒ A [a/∃M ]
(R∃)

(i)L1, L2 ⇒ A [∃M ]

6. (PE) The rule for the Particular Elimination has the following form:

L1 (k) A [∃M ]
j (l) (a)M Premise
k (m) A [a/∃M ] Premise
L2 (n) B

L1, L2 − {j, k} (i) B PE, k, l, m, n

The singular argument a occurs nowhere in L1, A [∃M ] or B, and nowhere
in L2 except j or k.

The corresponding segment of a derivation in LK-QuarcB for the rule PE
is as follows (broken into two parts for legibility):

(l)aM ⇒ aM

(m)A [a/∃M ]⇒ A [a/∃M ]

(n)L2 ⇒ B
(some LW , LC)

A [a/∃M ] , aM,L2∗ ⇒ B
(Cut)

A [a/∃M ] , aM,L2∗ ⇒ B
(LP )

aM,A [a/∃M ] , L2∗ ⇒ B
(Cut)

aM,A [a/∃M ] , L2∗ ⇒ B
(L∃)

A [∃M ] , L2∗ ⇒ B

where L2∗ stands for the sequence of formulas L2 with all instances of
aM and A [a/∃M ] removed. Since L2∗ and B contain no instances of SA
a, this is an appropriate use of the rule L∃. Now, having obtained the
sequent A [∃M ] , L2∗ ⇒ B, we combine it with the step (k) and obtain the
desired sequent:

(k)L1 ⇒ A [∃M ] A [∃M ] , L2∗ ⇒ B
(Cut)

(i)L1, L2∗ ⇒ B
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7. The derivations of sequents corresponding to the special symbols of Quarc
are trivial and will be omitted here

This concludes the proof of Lemma 3 and thus of Theorem 2.

5 Cut Elimination Theorem

We finally arrive at the central section of this paper, the demonstration of
the Cut elimination theorem for LK-QuarcB . This, in turn, will allow us to
arrive at the subformula property for our system and motivate some further
considerations in the following sections.

5.1 Preliminaries

The proof presented in this section is an adaptation of Gentzen’s original cut
elimination proof from [7]. It is a double induction on the grade and rank of
the cut formula.

5.1.1 Cut and Mix

Since LK-QuarcB contains the contraction rules, there might be multiple in-
stances of the cut formula occurring. In order to be able to cut on all of those,
let us also define the mix rule:

Definition 9 (Mix rule)

Γ⇒ Θ Π⇒ ∆
Γ,Π∗ ⇒ Θ∗,∆

Where some formula M , called the mix formula occurs at least once in Π and
Θ, and Π∗ and Θ∗ are obtained by removing all instances of M from Π and Θ,
respectively.

Definition 10 (LK − Quarc†) LK − Quarc† is a sequent calculus obtained
from LK-Quarc by replacing the cut rule by the mix rule.

Lemma 5 For any sequent S, S is provable in LK − Quarc† just in case it is
provable in LK-Quarc.

Proof. By showing Cut is derivable in LK −Quarc†

Γ⇒ Θ, A A,Π⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some LW , RW )

Γ,Π⇒ Θ,∆
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and conversely that Mix is derivable in LK-Quarc.

Γ⇒ Θ (some RP , RC)
Γ⇒ Θ∗, A

Π⇒ ∆ (some LP , LC)
A,Π∗ ⇒ ∆

(Cut)
Γ,Π∗ ⇒ Θ∗,∆

Since LK-QuarcB contains all the rules used, this lemma will hold for it. We
will call LK-Quarc†B the sequent calculus obtained by substituting the mix rule
for the cut rule in LK-QuarcB .

5.1.2 Grade and Rank

Definition 11 (Grade, γ) Let A, B and C be formulas, R an n-ary predicate,
P an n-ary predicate or a reordered n-ary predicate, t1, ..., tn SA’s and π1, ..., πn
some permutation of 1, ..., n except identity permutation. Then, the grade γ(A)
of the formula A is:

1. γ(A) = 0 if A is basic.

2. γ(A) = 1 if A is (tπ1, ..., tπn)Rπ.

3. γ(A) = γ((t1, ..., tn)P ) + 1 if A is (t1, ..., tn)¬P .

4. γ(A) = γ(B) + 1 if A is ¬B.

5. γ(A) = γ(B) + γ(C) + 1 if A is B ∧ C, B ∨ C or B → C.

6. γ(A) = γ(B [t/∀P ]) + 1 if A is B [∀P ].

7. γ(A) = γ(B [t/∃P ]) + 1 if A is B [∃P ].

8. γ(A) = γ(B [..., t1, ..., tn, ...]) + 1 if A is B [..., tα/t1, ..., α/tn].

The order of application of the rule for anaphora can sometimes be transposed
with the application of the rules for sentential operators, quantifiers, or another
anaphora. It can be shown by induction that all of those transpositions assign
the same grade to a formula. For a similar proof, see [5].

Definition 12 (Rank, ρ) Rank of a derivation is the sum of the left and right
rank of a mix formula. Left rank (right rank) is the maximal number of se-
quents in a branch, starting from the upper left (right) sequent of the mix rule,
such that each sequent of the branch contains the mix formula in the succedent
(antecedent).
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5.1.3 Re-designating the Proper Singular Arguments

Before proceeding to the cut elimination theorem, we shall prove an auxiliary
lemma. Again, this is due to [7].

Definition 13 Call the Singular Argument a occurring in the Definition 6 of
the rules R∀ and L∃ the proper singular argument of the respective rules. To
re-designate the proper singular arguments, we alter a derivation according to
the following procedure. First, for every occurrence of a rule R∀ or L∃ above
which no other occurrence of these rules is present (to have a unique procedure
we can start with the leftmost and move right), we replace their proper singular
argument in all the sequents above the lower sequent of the occurrence of the
rule with a singular argument that has so far not occurred anywhere in the
derivation. Second, we apply the same procedure to all the occurrences of the
rules R∀ or L∃ which are such that the procedure has already been applied to
any other occurrence of said rules in all the sequents above their lower sequents.

We need to prove the following auxiliary lemma:

Lemma 6 If In is an initial sequent or a correct inference which contains a
singular argument a, which is not the proper singular argument of In, and if
the singular argument b is likewise not the proper singular argument of In, then
In’, obtained from In by uniformly substituting b for a is an initial sequent or
a correct inference.

Proof. By induction on the rules of LK-QuarcB .

Next we prove the following lemma:

Lemma 7 If we re-designate the proper singular arguments of a correct deriva-
tion, it will yield a correct derivation, namely of the same grade and rank, of
the same endsequent.

That the two derivations end in the same endsequent is obvious from the
definition of the re-designation procedure. We now need to show this is a correct
derivation of a said sequent.

Proof. By induction on the steps of the re-designation procedure. For every
occurrence of a rule R∀ or L∃, every sequent above its lower sequent is derived
correctly, by Lemma 6 and inductive hypothesis. Moreover, replacing the proper
singular argument of a correct application of R∀ or L∃ with a singular argument
that occurs nowhere above its lower sequent will likewise produce a correct
instance of R∀ or L∃.
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5.2 Cut Elimination

We want to show the following:

Theorem 3 (Cut Elimination) For any sequent S, if S is provable in LK-
QuarcB , then it is provable in LK-QuarcB without using the cut rule.

Given Lemma 5, it will suffice to show:

Lemma 8 For any sequent S, if S is provable in LK-Quarc†B , then it is provable

in LK-Quarc†B without using the mix rule.

Proof. By induction on grade and rank.

5.2.1 ρ = 2

Obviously, the lowest rank of an application of a mix rule is 2. So, suppose
ρ(M) = 2. We will omit all the familiar cases and focus on the symbols of
Quarc.

Special

We start with the special symbols of LK-QuarcB as those have the lowest
grade.

1. Reorder:

Γ =⇒ Θ, (t1, ..., tn)R

Γ =⇒ Θ, (tπ1, ..., tπn)Rπ
(t1, ..., tn)R,Π =⇒ ∆

(tπ1, ..., tπn)Rπ,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ =⇒ Θ, (t1, ..., tn)R (t1, ..., tn)R,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

Since the mix formula is of a lower grade, by inductive hypothesis, it can
be eliminated.
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2. Anaphora:

Γ =⇒ Θ, A [...a1...an...]

Γ =⇒ Θ, A [...aα/a1...α/an...]

A [...a1...an...] ,Π =⇒ ∆

A [...aα/a1...α/an...] ,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ =⇒ Θ, A [...a1...an...] A [...a1...an...] ,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

Again, since the mix formula is of a lower grade, by inductive hypothesis,
it can be eliminated.

3. Negative Predication:

Γ =⇒ Θ,¬(t1, ..., tn)P

Γ =⇒ Θ, (t1, ..., tn)¬P
¬(t1, ..., tn)P,Π =⇒ ∆

(t1, ..., tn)¬P,Π =⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Γ =⇒ Θ,¬(t1, ..., tn)P ¬(t1, ..., tn)P,Π =⇒ ∆
(Mix)

Γ,Π∗ ⇒ Θ∗,∆
(some RW , RP , LW , LP )

Γ,Π⇒ Θ,∆

This mix formula can be eliminated according to the procedure for nega-
tion below.

Propositional

Cut elimination theorem for the propositional symbols is a familiar result and
will be omitted here, apart from negation, which is required to finalize the cut
elimination for negative predication above:

A,Γ⇒ Θ

Γ⇒ Θ,¬A
Π⇒ ∆, A

¬A,Π⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆
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This can be transformed into:

Π⇒ ∆, A A,Γ⇒ Θ
(Mix)

Π,Γ∗ ⇒ ∆∗,Θ
(some LW , LP , RW , RP )

Π,Γ⇒ ∆,Θ

Since the mix formula A is of lesser grade than ¬A, by inductive hypothesis,
it can be eliminated.

Quantification - Universal

Let the terminal symbol of the mix formula be a universal quantifier:

aM,Γ⇒ Θ, A [a/∀M ]

Γ⇒ Θ, A [∀M ]

A [b/∀M ] ,Π⇒ ∆ Π⇒ ∆, bM

A [∀M ] ,Π⇒ ∆
(Mix)

Γ,Π⇒ Θ,∆

This can be transformed into:

Π⇒ ∆, bM bM,Γ⇒ Θ, A [b/∀M ]
(Mix)

Π,Γ∗ ⇒ ∆∗,Θ, A [b/∀M ]
(some RW , RP , LW , LP )

Π,Γ⇒ ∆,Θ, A [b/∀M ] A [b/∀M ] ,Π⇒ ∆
(Mix)

Π,Γ,Π∗ ⇒ ∆∗,Θ∗,∆
(some LC, LP , RW , RC, LP )

Π,Γ⇒ Θ,∆

The change from the the sequent aM,Γ ⇒ Θ, A [a/∀M ] to the sequent
bM,Γ⇒ Θ, A [b/∀M ] in the transformation above is justified by Lemma 7.

5.2.2 ρ > 2

Again, the majority of cases here are familiar results, and we focus on LK-
QuarcB . The only part that is not a familiar result here is L∀ and R∃, which
fall under the case of two-sequent rules. In the former case, the derivation runs
as follows:

1. (L∀)

Γ⇒ Θ

A [a/∀M ] ,Π⇒ ∆ Π⇒ ∆, aM

A [∀M ] ,Π⇒ ∆
(Mix)

Γ,Π∗, A [∀M ]⇒ Θ∗,∆

This is transformed into:
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Γ⇒ Θ A [a/∀M ] ,Π⇒ ∆
(Mix)

Γ,Π∗, A [a/∀M ]⇒ Θ∗,∆

Γ⇒ Θ Π⇒ ∆, aM
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, aM

Γ,Π∗, A [∀M ]⇒ Θ∗,∆

As each instance of a mix rule has rank lowered by 1, so by the inductive
hypothesis both can be eliminated. We now proceed to examine the case
of R∃.

2. (R∃)

Γ⇒ Θ

Π⇒ ∆, aM Π⇒ ∆, A [a/∃M ]

Π⇒ ∆, A [a/∃M ]
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, A [∃M ]

This is transformed into:

Γ⇒ Θ Π⇒ ∆, aM
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, aM

Γ⇒ Θ Π⇒ ∆, A [a/∃M ]
(Mix)

Γ,Π∗ ⇒ Θ∗,∆, A [a/∃M ]

Γ,Π∗ ⇒ Θ∗,∆, A [∃M ]

Again, the rank of each instance of a mix rule has been lowered by 1, and
by the inductive hypothesis both can be eliminated.

Similarly if the left rank is greater than 1 or if both are greater. This
concludes the proof of the Cut elimination theorem.

5.3 Subformula Property

In this section we demonstrate that LK-QuarcB possesses the subformula prop-
erty. Important to note here is that no formula containing a reordered predicate
is basic (it is an operation on predicates of a basic formula – compare with the
definition of the grade of a formula).

Definition 14 (Subformula)

1. Every formula is a subformula of itself.

2. The formula (t1, ..., tn)R is a subformula of (tπ1, ..., tπn)Rπ.

3. The formula ¬(t1, ..., tn)P is a subformula of (t1, ..., tn)¬P .2

2It might not be readily obvious why the formula on the left is the subformula of the one
on the right in parts 2 and 3. To clarify this, let us first note that Quarc uses predicates
in ways one does not encounter in the Predicate Calculus - primarily by using predicates in
Quantified arguments, but also by employing Reorder and Negative Predication. First order
logic does not contain different types of predicates nor modes of predication, so naturally these
will stand apart.

In this case, the formulas on the right result from applications of operations to a predicate -
it is either predicated negatively, or substituted for a reordered one. The underlying intuition
here is of a syntactic operation being applied to its parts to produce the resulting formula.
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4. Every formulaA andB mentioned in the antecedent of the rules for genera-
tion of a formula in Definition 2 is a subformula of that formula. Moreover,
any formula tM is likewise the subformula of the formula A [qM ].

5. If a formula A is a subformula of any subformula of B, then it is a sub-
formula of B.

Theorem 4 (Subformula property) Any formula appearing in any cut-free proof
of LK-Quarc

B
, is a subformula of some formula in its endsequent.

Proof. We only need to show that the subformula property holds for all rules
of LK-QuarcB , except cut, which can be eliminated. Since this is a familiar
result for the propositional and structural rules, what remains to be shown is
that it holds for the quantification and special rules of LK-Quarc

B
.

Observing the rules for the universal quantifier:

A [t/∀M ] ,Γ =⇒ ∆ Γ =⇒ ∆, tM
(L∀)

A [∀M ] ,Γ =⇒ ∆

tM,Γ =⇒ ∆, A [t/∀M ]
(R∀)*

Γ =⇒ ∆, A [∀M ]

We can see that any formula of Γ and ∆ will be a subformula of some formula
of Γ and ∆ in the lower sequent, namely itself. Moreover, tM and A [t/∀M ] are
both subformulas of A [∀M ]. Therefore, the subformula property holds for this
derivation. The proof for the particular quantifier proceeds in the same manner,
and is straightforward for the special symbols of Quarc.

5.3.1 Consistency

Given the definition of consistency,

Definition 15 (Consistency) A sequent calculus is consistent just in case the
sequent · · · ⇒ · · · is not derivable.

An important corollary from Theorem 4 immediately follows:

Corollary 1 LK-QuarcB is consistent.

To see this, one need only observe that no formula is a subformula of an
empty sequent.

6 Identity

In this section we expand LK-QuarcB into LK-Quarc2 by adding the two identity
rules. Identity, =, is a binary predicate, albeit with an infix notation, and
obeys all the stipulations from Definitions 1 and 2. Most notably, any formula
containing only it and singular arguments is basic.
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Moreover, Definition 4 is extended by the stipulations that

8. Every formula of the form a = a is true.

9. If a = b is true and the formula A [b1, . . . , bn] is a basic formula contain-
ing the instances b1, . . . , bn of an SA b, then A [a/b1, . . . , a/bn] is true if
A [b1, . . . , bn] is true.

6.1 Identity Rules

We now give the rules for identity. They are defined only for basic formulas
(containing only singular arguments), but it can be shown inductively they
generalize to any formula, following the format in which they are introduced
in [5], which itself meshes seamlessly with the treatment of identity in [13].

Identity Introduction, =I
(k) a = a =I

Identity Elimination, =E

Let A [b] be a basic formula containing occurrences b1, ..., bn of a singular
argument b (A might also contain further occurrences of b).

L1 (k) A [b]
L2 (m) a = b

L1, L2 (n) A [a/b1, ..., a/bn]

To expand LK-QuarcB into LK-Quarc2 we add the following rules:

a = a,Γ⇒ ∆
(=1)

Γ⇒ ∆

A [b] , a = b, A [a/b] ,Γ⇒ ∆
(=2)

a = b, A [a/b] ,Γ⇒ ∆

where A is a basic formula and A [a/b] is a formula produced by substituting
any number of occurrences of the singular argument b by a. These rules are
adjusted from those presented in [13], and chosen for technical reasons (allowing
straightforward cut-elimination procedure).

Before proceeding, let us prove a simple and useful lemma.

Lemma 9
a = b,Γ⇒ ∆

b = a,Γ⇒ ∆

Proof.
a = b,Γ⇒ ∆

(some LW , LP )
a = b, b = a, b = b,Γ⇒ ∆

(=2)
b = a, b = b,Γ⇒ ∆

(LP )
b = b, b = a,Γ⇒ ∆

(=1)
b = a,Γ⇒ ∆
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6.1.1 Generalization of Identity Rules

As mentioned, the rules in LK-Quarc2, just like in Quarc, are defined only for
the basic formulas. We will now show that these rules generalize to any formula.

Theorem 5 (Identity Generalization)
For any formula S of Quarc,

S [b] , a = b, S [a/b] ,Γ⇒ ∆

a = b, S [a/b] ,Γ⇒ ∆

Proof. By induction on the terminal symbol of S. Basic step is trivial,
so we proceed to the inductive step, and only examine the interesting step of
the universal quantifier. In the following section A need not stand for a basic
formula.

Let S beA [∀M ]. Assume (i) that the sequentA [∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ⇒
∆ is derivable. From (i) it follows that the sequents (ii) A [c/∀M ] [b] , a =
b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ and (iii) a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′, cM are deriv-
able. We need to show the sequent a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ is derivable.
The derivation proceeds as follows, broken into parts for legibility:

A [c/∀M ] [b]⇒ A [c/∀M ] [b]
(some LW , LP )

A [c/∀M ] [b] , a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b]
(Ind. Hyp.)

a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b]

We now proceed by using this sequent as the upper left sequent of the fol-
lowing cut, also utilizing (ii):

a = b, A [c/∀M ] [a/b]⇒ A [c/∀M ] [b] (ii) A [c/∀M ] [b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(Cut)

a = b, A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(LP , LC)

A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′

Next, we use this sequent as the upper left sequent of L∀, also utilizing (iii):

A [c/∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′ (iii) a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′, cM
(L∀)

A [∀M ] [a/b] , a = b, A [∀M ] [a/b] ,Γ′ ⇒ ∆′
(LP , LC)

a = b, A [∀M ] [a/b] ,Γ⇒ ∆

This concludes the proof of the Theorem 5.

6.2 Deductive Equivalence

The proof of deductive equivalence proceeds with the expansion of the proof of
Theorem 2 with the appropriate steps for the identity rules.
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6.2.1 LK-Quarc to Quarc

1. (=1) Assume that in Quarc2 (i) a = a ∧ Γ ` ∆. Now assume (1) Γ. We
need to derive ∆.

1 (1) Γ Premise
(2) a = a =I

1 (3) a = a ∧ Γ ∧I, 1, 2
1 (4) ∆ by (i)

2. (=2) Assume that in Quarc2 (i) A [b] ∧ a = b ∧ A [a/b] ∧ Γ ` ∆. Now
assume (1) a = b ∧A [a/b] ∧ Γ. We need to derive ∆.

1 (1) a = b ∧A [a/b] ∧ Γ Premise
1 (2) a = b ∧E, 1
1 (3) A [a/b] ∧E, 1
1 (4) A [b] =E, 2, 3
1 (5) A [b] ∧ a = b ∧A [a/b] ∧ Γ ∧I, 1, 4
1 (6) ∆ by (i)

6.2.2 Quarc to LK-Quarc

1. Since in Quarc a = a is introduced without relying on any previous steps,
and given Definition 8, we need to show that the sequent ⇒ a = a (with
the left hand side empty) is derivable in LK-Quarc2. This is simple –
since a = a ⇒ a = a is an initial sequent, the segment of a derivation
corresponding to the rule =I is as follows:

a = a⇒ a = a (=1)⇒ a = a

2. The segment of a derivation corresponding to the rule =E is as follows:

(k) L1 ⇒ A [b]

(m) L2 ⇒ a = b

A [a/b]⇒ A [a/b]
(LW , LP )

A [a/b] , b = a,A [b]⇒ A [a/b]
(=2)

b = a,A [b]⇒ A [a/b]
(Lemma 9)

a = b, A [b]⇒ A [a/b]
(Cut)

L2, A [b]⇒ A [a/b]
(LP )

A [b] , L2 ⇒ A [a/b]
(Cut)

L1, L2 ⇒ A [a/b]

This concludes the proof of deductive equivalence of LK-Quarc2 and Quarc2.

6.3 Cut Elimination

We prove the Cut elimination theorem for LK-Quarc2:

Theorem 6 For any sequent S, if S is provable in LK-Quarc2, then it is prov-
able in LK-Quarc2 without using the cut rule.
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Proof. By expanding the proof for LK-QuarcB . Clearly, in both rules for
identity all the formulas appearing in the lower sequent also appear in the upper
sequent. Therefore, we only need to expand the proof for ρ > 2.

6.3.1 The Rule (=1)

The rule =1 fits into the general proof for one-sequent derivations in the case
ρ > 2 (if ρ = 2 then =1 cannot be the last rule before the mix). Let only the
right rank be greater than 1. So, the application of the mix rule will be:

Γ⇒ Θ

a = a,Π⇒ ∆
(=1)

Π⇒ ∆ (Mix)
Γ,Π∗ ⇒ Θ∗,∆

If the mix formula is in Γ, then this transforms into a derivation with Mix
eliminated altogether:

a = a,Π⇒ ∆
(=1)

Π⇒ ∆ (some LW , RW )
Γ,Π⇒ ∆,Θ∗

(some LP , LC)
Γ,Π∗ ⇒ ∆,Θ∗

(some RP )
Γ,Π∗ ⇒ Θ∗,∆

If the mix formula is not in Γ, then this transforms into :

Γ⇒ Θ a = a,Π⇒ ∆
(Mix)

Γ, a = a,Π∗ ⇒ Θ∗,∆
(some LP )

a = a,Π∗,Γ⇒ Θ∗,∆
(=1)

Π∗,Γ⇒ Θ∗,∆
(some LP )

Γ,Π∗ ⇒ Θ∗,∆

Since the right rank was reduced by 1, while the left remains the same, the
rank of the resulting mix rule is one less and, by inductive hypothesis, it can
be eliminated. Similarly when the left rank, and both left and right rank, are
greater than 1.

We need to examine the rule =2 more closely, since it has two principal
formulas, which also occur as the side formulas, and either of which could be
the mix formula.

6.3.2 The Rule (=2)

The case that needs to be examined here is when either a = b or A [a/b] is the
mix formula. Assume it is a = b. The application of the mix rule then looks as
follows:

Γ⇒ Θ

A [b] , a = b, A [a/b] ,Π⇒ ∆
(=2)

a = b, A [a/b] ,Π⇒ ∆
(Mix)

Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆
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If the mix formula a = b is in Γ, the derivation is transformed as follows:

A [b] , a = b, A [a/b] ,Π⇒ ∆
(=2)

a = b, A [a/b] ,Π⇒ ∆
(some LP )

a = b,Π, A [a/b]⇒ ∆
(some LC)

a = b,Π∗, A [a/b]⇒ ∆
(some LW )

Γ, a = b,Π∗, A [a/b]⇒ ∆
(some LC)

Γ,Π∗, A [a/b]⇒ ∆
(some LP , RW , RP )

Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆

Now suppose a = b is not in Γ. Since a = b is a basic formula, and by assumption
the left rank is 1, the sequent Γ ⇒ Θ is obtained by RW from Γ ⇒ Θ∗. The
derivation is then transformed as follows:

Γ⇒ Θ∗ (some LW , LP , RW )
Γ, A [a/b] ,Π∗ ⇒ Θ∗,∆

Since A [a/b] is likewise a basic formula, the same considerations will apply
there. The remainder of the proof runs in parallel. This concludes the proof of
the Theorem 6.

6.4 Subformula Property

Here we can adopt a slightly weaker definition of subformula property, due
to [13]:

Theorem 7 Any formula appearing in any cut-free proof of LK-Quarc
2

is a
subformula of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 4 with the cases for
=1 and =2. However, these only remove basic formulas. Therefore, Theorem 7
holds.

Now, using this we can show consistency:

Corollary 2 LK-Quarc2 is consistent.

Proof. From Theorem 7, by noting that basic formulas can only disappear
from the left side of a sequent. Therefore, the empty sequent is not derivable.

6.5 Conservativity

Theorem 8 LK-Quarc2 is conservative expansion of LK-QuarcB . Namely, if
Γ⇒ ∆ is derivable in LK-Quarc2, and Γ and ∆ contain no identity, then Γ⇒ ∆
is derivable in LK-QuarcB .
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Proof. Assume Γ ⇒ ∆ is derivable in LK-Quarc2, and consider a cut-free
derivation of Γ⇒ ∆. Moreover, assume Γ and ∆ contain no identity. By weak
subformula property, it follows that

Corollary 3 Any formula in the derivation of Γ⇒ ∆ that contains identity is
a basic formula.

Moreover, it follows that

Corollary 4 No formula containing identity occurs on the right side of any
sequent in the derivation.

Furthermore, given that the rule =2 can never reduce the number of formulas
containing identity below 1, and that the rule =1 can only reduce the number
of such formulas below 1 if they are of the form a = a, it follows that

Corollary 5 Any identity formula in the derivation of Γ ⇒ ∆ is of the form
a = a.

Take a (cut-free) derivation of Γ⇒ ∆. It is then transformed in two step.

First step. Any occurence of the rule =2, given Corollary 5, is of the form:

A [a] , a = a,A [a/a] ,Γ′ ⇒ ∆′
(=2)

a = a,A [a/a] ,Γ′ ⇒ ∆′

Since A [a] and A [a/a] are the same formula, this is transformed into

A [a] , a = a,A [a/a] ,Γ′ ⇒ ∆′
(LC)

a = a,A [a/a] ,Γ′ ⇒ ∆′

Second step. Any occurrence of the rule LC, where a = a is the principal
formula,

a = a, a = a,Γ⇒ ∆
(LC)

a = a,Γ⇒ ∆

Is transformed into an occurrence of the rule =1:

a = a, a = a,Γ⇒ ∆
(=1)

a = a,Γ⇒ ∆

Observation 1 Obviously, both these transformations yield correct deriva-
tions. After completing both, the rule =2 does not occur, and the formula
a = a is the principal formula of either the rule =1 or LW (since by Corollary
4 it cannot occur in an initial sequent).

We now proceed to prove the above theorem by proving the following lemma:

Lemma 10 Any occurence of the formula a = a in the derivation of Γ ⇒ ∆
can be eliminated.
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Proof. Given Observation 1, every formula of the form a = a will form a
chain of sequents, such that the first sequent of the chain is the lower sequent
of a LW rule with a = a as a principal formula, and the last sequent of the
chain the upper sequent of a =1 rule with a = a as a principal formula. Let the
length of such a chain be the number of sequents in the chain.

We only need to show that such a chain ending with the topmost leftmost
occurrence of =1 can be eliminated. The proof is by induction on the length of
the chain.

Basic step. The shortest chain has length 1, and is of the following form:

Γ′ ⇒ ∆′ (LW )
a = a,Γ′ ⇒ ∆′

(=1)
Γ′ ⇒ ∆′

This is transformed into the derivation of the upper sequent Γ′ ⇒ ∆′, which
by Corollary 4 does not contain the formula a = a.

Inductive step. Let the end of a chain be (where Inf is any derivation rule)

a = a,Γ′′ ⇒ ∆′′
(Inf)

a = a,Γ′ ⇒ ∆′
(=1)

Γ′ ⇒ ∆′

Since a = a is not principal in Inf, this can be transformed into

a = a,Γ′′ ⇒ ∆′′
(=1)

Γ′′ ⇒ ∆′′ (Inf)
Γ′ ⇒ ∆′

Where the length of the chain is reduced by one. Similarly for the two-sequent
rules. This concludes the proof of Lemma 10.

By Corollary 5 and Lemma 10 if follows that the derivation transformed in this
manner contains no identity. Moreover, it contains no rule =2 (Observation 1)
nor =1 (Lemma 10). Therefore, it is a derivation of LK-QuarcB . This concludes
the proof of Theorem 8.

7 Particular Import in LK-QuarcB

Having proven the Cut elimination theorem, we now proceed to use it in further
considerations. The first application will be to demonstrate that particular
import is not derivable in LK-QuarcB and therefore, given deductive equivalence
result of Theorem 2, it is likewise not derivable in QuarcB .

As we have seen in a simplified version in Example 2 in Section 2, DeMorgan
laws hold in QuarcB (and consequently in Quarc as well).

But, we will demonstrate that
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Theorem 9 The sequent ∀MP ⇒ ¬∀M¬P , and therefore particular import,
is not derivable in LK-QuarcB .

Proof. Suppose there is a cut-free proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB .
Then, there is also a cut-free proof of ∀M¬P,∀MP ⇒. This sequent may un-
dergo any number of applications of LW , LC and LP , resulting in a sequent
(∀M ∼ P )1, . . . , (∀M ∼ P )n ⇒, where ∼ in each of the formulas 1, . . . , n stands
either for negation or an empty string of symbols. Assume that the rules in the
proof are applied in the following order: the left structural rules are applied be-
low any application of L∀, and all applications of L∀ are below any application
of RW .

By observing the rule L∀ we can see that the top right sequent just above
the topmost application of L∀ will be⇒ (aM)1, . . . , (aM)n. Above this sequent
RW can be applied n − 1 times, resulting in a top right sequent of the proof
being ⇒ aM .

It is clear that any other order of application of rules will result in the same
top right sequent - every lower application of L∀ on a formula ∀M ∼ P will
result in an additional aM in the right sequent, and no application of RW on it
will reduce the number of formulas aM in it below one. But, ⇒ aM is not an
initial sequent (and neither is any other sequent of the same branch). Therefore,
there is no cut-free proof of ∀M¬P,∀MP ⇒ in LK-QuarcB , and so no cut-free
proof of ∀MP ⇒ ¬∀M¬P . Given the cut elimination theorem, this means there
is no proof of ∀MP ⇒ ¬∀M¬P in LK-QuarcB .

This concludes the proof of Theorem 9. This is the last obstacle to expanding
LK-QuarcB into a sequent calculus deductively equivalent with full Quarc. In
the following subsection, we will see how to expand LK-QuarcB with a rule that
will give the resulting system equivalence with Quarc which includes Instantia-
tion (Quarc3).

7.1 Instantiation Rule

To expand LK-QuarcB into LK-Quarc3, we add the rule for Instantiation:

tM,Γ⇒ ∆
(Ins)*

Γ⇒ ∆

* - where neither Γ nor ∆ contain the singular argument t.

This rule allows for the derivation of a particular sentence from a correspond-
ing sentence governed by the universal quantified argument:
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Theorem 10 A [∀S]⇒ A [∃S/∀S]

Proof.

aS ⇒ aS (LW )
A [∀S] , aS ⇒ aS

(LP )
aS,A [∀S]⇒ aS

(Lemma 4)
A [∀S] , aS ⇒ A [a/∀S]

(RP )
aS,A [∀S]⇒ A [a/∀S]

(R∃)
aS,A [∀S]⇒ A [∃S/∀S]

(Ins)
A [∀S]⇒ A [∃S/∀S]

Moreover, it allows for the derivation of a theorem

Theorem 11 ⇒ (∃S)S

Proof.

aS ⇒ aS aS ⇒ aS
aS ⇒ (∃S)S

(Ins)
⇒ (∃S)S

However, this rule will not allow the derivation of the problematic sequent
’⇒ aM ’ from the proof of Theorem 9, since the following is not a permissible
application of this rule:

aM ⇒ aM *(Ins)⇒ aM

So, this sequent calculus is, at least prima facie, powerful enough, without
being too powerful. We now formalize this result.

7.2 Deductive Equivalence

Theorem 12 Quarc3 and LK-Quarc3 are deductively equivalent.

Proof. In addition to the proof of Lemma 2, we need to show that

5. (Ins) Assume (i) tS ∧ Γ ` ∆ and (ii) Γ and ∆ do not contain t. Now
assume (1) Γ. We need to derive ∆.
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1 (1) Γ Premise
2 (2) (t)S Premise

(3) (∀S)S UI, 2, 2
4 (4) (t)S Premise
5 (5) (t)S Premise

1,4 (6) (t)S ∧ Γ ∧I, 1, 4
1,4 (7) ∆ by (i)

1 (8) ∆ Ins, 3, 4, 5, 7 given (ii)

In addition to the proof of Lemma 3 we need to construct a corresponding
segment of a derivation for the Instantiation rule of Quarc3.

8. (Ins) The Instantiation rule has the following form:

L1 (i) A [qP ]
j (j) (t)P Premise
k (k) A [t/qP ] Premise
L2 (l) B

L1 ∪ L2 − {j, k} (m) B Ins, i, j, k, l

where L1, B and A [qP ] do not contain the singular argument t, and in
L2 the only occurrences of t are in (j) and (k).
Since we have already demonstrated Lemma 3 for the particular quantifier,
we need to concern ourselves only with the cases where q stands for the
universal quantifier ∀. The corresponding segment of that derivation is as
follows (let L2∗ be the list L2 with (j) and (k) omitted - it thus contains
no singular argument t):

(i) L1 ⇒ A [∀P ]

(Lemma 4)
A [∀P ] , tP ⇒ A [t/∀P ] (l) A [t/∀P ] , tP, L2∗ ⇒ B

(Cut)
A [∀P ] , tP, tP, L2∗ ⇒ B

(LC)
A [∀P ] , tP, L2∗ ⇒ B

(Cut)
L1, tP, L2∗ ⇒ B

(LP )
tP, L1, L2∗ ⇒ B

(Ins)
L1, L2∗ ⇒ B

Since neither L1, L2∗ nor B contain the singular argument t, this is an
appropriate use of the Ins rule of LK-Quarc3. Of course, for this segment
to have the appropriate form of using all the steps listed in the justification
in Quarc, the segment above the application of Lemma 4 should have the
following form:
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(j) tP ⇒ tP

(Lemma 4)
A [∀P ] , tP ⇒ A [t/∀P ]

(LP )
tP,A [∀P ]⇒ A [t/∀P ]

(Cut)
tP,A [∀P ]⇒ A [t/∀P ] (k) A [t/∀P ]⇒ A [t/∀P ]

(Cut)
tP,A [∀P ]⇒ A [t/∀P ]

(LP )
A [∀P ] , tP ⇒ A [t/∀P ]

However, since steps (j) and (k) are always premises, the above segment
will suffice on its own.

7.3 Cut Elimination

Here we need to check only the cases where ρ > 2. Let the right rank be greater
than 1. So, the application of the mix rule will be:

Γ⇒ Θ

tM,Π⇒ ∆
(Ins)

Π⇒ ∆ (Mix)
Γ,Π∗ ⇒ Θ∗,∆

(suppose the mix formula A is not in Γ). Then this transforms into:

Γ⇒ Θ tM,Π⇒ ∆
(Mix)

Γ, tM,Π∗ ⇒ Θ∗,∆
(some LP )

tM,Π∗,Γ⇒ Θ∗,∆
(Ins)

Π∗,Γ⇒ Θ∗,∆
(some LP )

Γ,Π∗ ⇒ Θ∗,∆

Since the right rank was reduced by 1, while the left remains the same, the
rank of the resulting mix rule is one less and, by inductive hypothesis, it can be
eliminated. Similarly when the left rank is greater than 1.

7.4 Subformula Property

The reasoning here runs in parallel to Theorem 7:

Theorem 13 Any formula appearing in any cut-free proof of LK-Quarc3 is a
subformula of some formula in its endsequent or a basic formula.

Proof. We only need to expand the proof of Theorem 4 with the case for Ins.
However, it only removes basic formulas. Therefore, Theorem 13 holds.

And consistency follows:

Corollary 6 LK-Quarc3 is consistent.

Proof. Same as Corollary 2.
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7.5 Conservativity of LK-Quarc over LK-Quarc3

Given the cut elimination property and the subformula property of LK-Quarc3,
it follows that

Theorem 14 LK-Quarc is a conservative expansion of LK-Quarc3. Namely, if
Γ⇒ ∆ is derivable in LK-Quarc, and Γ and ∆ contain no identity, then Γ⇒ ∆
is derivable in LK-Quarc3.

Proof. Same as Theorem 8.

From this it follows as a corollary that (note that Quarc3 is in fact Ben-Yami’s
original system from [3]):

Corollary 7 Quarc3 is complete. Namely, if Γ � ∆ in Quarc3 then Γ ` ∆ in
Quarc3.

Proof. Assume Γ � ∆ in Quarc3. Therefore Γ and ∆ do not contain identity.
Given that, and since Quarc3 and Quarc assign the same values to all formulas
not containing identity, it follows that also Γ � ∆ in Quarc. Since Quarc
is complete, it follows that Γ ` ∆ in Quarc. Given Deductive equivalence
(Theorem 4), Γ ⇒ ∆ in LK-Quarc. Now, given Theorem 14 (and since Γ and
∆ do not contain identity), Γ ⇒ ∆ in LK-Quarc3. Finally, given Deductive
equivalence (Theorem 4), Γ ` ∆ in Quarc3.

Therefore, using the analysis of this paper, we are also able to demonstrate
completeness of Ben-Yami’s original system from the completeness of the system
with identity from [5].

8 Concluding remarks

In this paper we have provided a concise proof-theoretic study of Quarc within
LK-systems. An obvious next step would naturally be completeness which fol-
lows from the deductive equivalences [5]. Moreover, there is also a more direct
way of establishing this important theorem, by adopting a proof of completeness
that is typical for sequent calculus [14], [6].

Possible topics for further research include an interpolation theorem for the
various LK-Quarc systems; thereby we could also examine Beth’s definabil-
ity theorem. On a more philosophical side Quarc enriched by modalities - as
suggested by [3] - and correspondingly with its expansion of expressive power,
provides ample opportunity for exploration.
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