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In clinical trials with oncolytic adenoviruses, there has 
been no mortality associated with treatment vectors. 
Likewise, in the Advanced Therapy Access Program 
(ATAP), where 290 patients were treated with 10 differ-
ent viruses, no vector-related mortality was observed. 
However, as the patient population who received ade-
novirus treatments in ATAP represented heavily pre-
treated patients, often with very advanced disease, some 
patients died relatively soon after receiving their virus 
treatment mandating autopsy to investigate cause of 
death. Eleven such autopsies were performed and con-
firmed disease progression as the cause of death in each 
case. The regulatory requirement for investigating the 
safety of advanced therapy medical products presented 
a unique opportunity to study tissue samples collected 
as a routine part of the autopsies. Oncolytic adenoviral 
DNA was recovered in a wide range of tissues, includ-
ing injected and noninjected tumors and various nor-
mal tissues, demonstrating the ability of the vector to 
disseminate through the vascular route. Furthermore, 
we recovered and cultured viable virus from samples of 
noninjected brain metastases of an intravenously treated 
patient, confirming that oncolytic adenovirus can reach 
tumors through the intravascular route. Data presented 
here give mechanistic insight into mode of action and 
biodistribution of oncolytic adenoviruses in cancer 
patients.

Received 28 January 2015; accepted 30 June 2015; advance online  
publication 18 August 2015. doi:10.1038/mt.2015.125

INTRODUCTION
Oncolytic viruses are emerging as a treatment option for can-

cer with two positive phase 3 trials now completed, one with an 

adenovirus and another with a herpes virus.1,2 Overall, the safety 

of many types of oncolytic viruses including adenoviruses has 

been demonstrated in a range of trials and evidence of efficacy 

is mounting.3–9 In particular, virus vectors armed with immuno-

stimulatory molecules are showing great promise in the field.5,10–13 

However, knowledge on the spread and action of the viruses after 

administration relies mainly on studies in rodents. And while 

adenovirus biodistribution and kinetics in rodents are thor-

oughly characterized, these are unlikely to represent the situa-

tion in human patients very well, as rodents are not natural hosts 

of human adenoviruses. Thus far, the available data of oncolytic 

adenovirus spread and functionality in human subjects consists 

of detecting virus in body fluids such as blood, ascites, urine, and 

saliva6,9,14 and a few individual reports on tumor biopsies taken 

from patients after treatments.15–17

In this patient series, we describe unique human data gath-

ered from autopsies of cancer patients who died as a result of 

disease progression after they had received oncolytic adenovirus 

treatments in the Advanced Therapy Access Program (ATAP). 

According to pathologists’ reports, no mortality was attributable 

to virus treatment, which is in accord with published oncolytic 

adenovirus trials. Out of 290 treated patients, 11 autopsies (3.8%) 

were performed to study the cause of death, which was cancer 

progression in all cases. We felt it was of importance to document 

these cases in intricate clinical and biological detail. Moreover, tis-

sue samples routinely collected in autopsies and stored in pathol-

ogy archives would allow us to increase our understanding on 

biodistribution and mechanism of action of oncolytic adenovi-

ruses. Biodistribution patterns in normal tissues were studied as 

well as the ability of the virus to transduce distant tumor sites. 

We also gathered evidence demonstrating the functionality of the 

virus in noninjected tumor tissues.

RESULTS
Oncolytic adenoviral DNA is present in a wide range 
of normal and neoplastic tissues following virus 
injections into tumors, body cavities, and vasculature
All day 0 serum samples were negative for oncolytic adenovirus 

DNA. On day 1 or during the first week after treatment, a burst of 

viral copies was frequently observed in the serum with eventual 
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Figure 1  Oncolytic adenovirus DNA is recovered from a wide range of injected and noninjected neoplastic and normal tissues. (a-j) DNA was 
extracted from paraffin embedded tissue samples collected in autopsies and qPCR was performed with primers and probes detecting genetic modi-
fications of the used oncolytic viruses (black bars) and wild-type E1A region (open bars) and normalized with the β-actin housekeeping gene. (k) All 
samples containing normal or metastatic brain tissue. (n), histologically normal tissue; Ln, lymph nodes. *Tissue with tumor/metastasis, not injected 
directly; **injected tumor/metastasis tissue. n = 1–15 samples per tissue, expressed as mean + standard error of mean for tissues with multiple samples.
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disappearance within a variable time (Table 2). For most patients, 

a clear increase was seen between day 1 and a subsequent sampling 

time, suggesting viral replication.18–20 In patients who received 

multiple treatment rounds, nonfirst treatments were generally 

also accompanied by bursts of viral copies in serum. All serum 

samples were negative for wild-type adenovirus E1A.

In a pulmonary adenocarcinoma patient (K2) treated with 

an intravenous bolus and direct virus injections into cutaneous 

metastases on the scalp, oncolytic adenovirus DNA was detected 

in the brain parenchyma and also in noninjected lung and kidney 

metastases (Figure  1a). In another patient with a widely meta-

static lung adenocarcinoma (K211), oncolytic adenovirus DNA 

was detected in all autopsy tissue specimens except the  tumor-free 

lung tissue and metastasis-bearing myocardium (Figure  1b). 

Highest virus copy numbers were recovered from a sample of 

the tumor-free brain (frontal cortex). In addition, large amounts 

of virus genomes were found in lung tumor samples. Wild-type 

adenoviral DNA was recovered from lung tumor tissue, histologi-

cally normal adrenal gland, brain, and kidney. In a mesothelioma 

patient (M208) treated twice with Ad5/3-D24-GM-CSF, only one 

sample of brain (cerebral cortex) without metastasis had measur-

able, low quantities of oncolytic adenoviral DNA (Figure 1c).

In a pancreatic adenocarcinoma patient (H339), treated with 

intraperitoneal and intravascular injections, oncolytic adeno-

virus DNA was detected in both the pancreatic tumor speci-

mens and several normal tissues (lung, liver, brain, and adrenal 

gland) (Figure  1d). Copy numbers recovered from the pancre-

atic tumor samples were generally low, and five out of the eight 

examined tumor specimens were negative for adenoviral DNA. 

Wild-type adenovirus DNA was recovered in minimal quantities 

in one histologically normal kidney sample. Another pancreatic 

adenocarcinoma patient (H409) had experienced worsening of 

his general condition already prior to the second virus treatment 

and died two days after the second treatment, due to cancer pro-

gression as confirmed by the autopsy. Serum copy numbers had 

remained quite low during the entire treatment period (Table 2). 

Nevertheless, oncolytic adenoviral DNA was recovered from all 

examined tissues (Figure 1e), with moderate copy numbers in the 

injected pancreatic tumor tissue and liver metastases, and highest 

copy numbers in tumor-free pancreatic tissue. Wild-type adeno-

virus DNA was recovered from neoplastic and tumor-free pan-

creatic tissue and the testes. A third pancreatic adenocarcinoma 

patient (H388) had twice received treatment with Ad5/3-hTERT-

CD40L, by intratumoral injections to liver metastases and also an 

intravenous bolus. Oncolytic adenovirus DNA was detected in 

 tumor-free samples of myocardium and lung as well as a sample 

from a noninjected lung metastasis (Figure 1f).

A lobular breast carcinoma patient who died 81 days after 

her last virus treatment (R34), had shown a notable increase in 

circulating virus amounts during the first week post-treatment, 

followed by a decrease and eventual disappearance of virus in 

the serum (Table 2). Tissue samples from lungs, kidneys, heart, 

and liver were negative for presence of adenoviral DNA (data not 

shown).

A young patient with a metastatic neuroblastoma (N60), who 

had been treated with Ad5/3-Cox2L-D24 intravenously due to 

the lack of injectable tumors, showed a remarkably high onco-

lytic virus titer in the serum on day 1 post-treatment (Table 2). 

Oncolytic adenovirus DNA was detected in all tissue specimens 

obtained from the autopsy, i.e., a metastasis-free liver specimen as 

Figure 2 Frequency of positive findings and amount of viral DNA decrease with time from treatment to autopsy. (a,b) Percentage of analyzed 
samples that were positive/negative for oncolytic adenovirus DNA. (a) All samples (n = 153) and (b) samples with tumor or metastasis (n = 106). (c,d) 
Percentage of analyzed samples that were positive/negative for wild-type adenovirus E1A DNA. (c) All samples (n = 132) and (d) samples with tumor 
or metastasis (n = 94). (e) Time from latest viral treatment and percentage of samples collected in autopsy, which were positive for oncolytic adeno-
viral DNA (n = 3–29 sample blocks analyzed per patient). (f) Time from latest viral treatment and average oncolytic adenovirus DNA copy number 
normalized for β-actin housekeeping gene in all analyzed samples. r: Pearson coefficient for correlation with time; P: significance level of correlation.
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well as tumor metastases in the bone marrow and brain metasta-

ses, with highest copy numbers present in the latter (Figure 1g). 

Wild-type adenovirus DNA was not recovered from the tissue 

specimens.

A patient with a widely metastatic small intestine carcinoma 

(C200) was treated with intratumoral injections into multiple 

tumor sites. Oncolytic adenovirus DNA was detected in all inves-

tigated tissues except one sample containing tissue from the 

metastasis-free kidney and a duodenal metastasis (Figure  1h). 

The highest copy numbers were recovered from a paraffin block 

containing samples of lung and skin metastases. In addition, 

wild-type adenoviral E1A was detected in two paraffin blocks 

containing lung and skin metastases and lung metastasis and 

metastasis-free liver specimens, respectively.

Nasopharyngeal carcinoma patient N163 was treated with 

virus injections into the primary tumor, cervical lymph node 

metastases and intravenously. Oncolytic adenovirus DNA was 

detected in low copy numbers in metastatic tissue samples from 

the spleen and kidney (Figure 1i).

A young patient with a pelvic rhabdomyosarcoma (S404), 

treated with intratumoral injections to the pelvic tumor and 

intravenously, exhibited viral DNA in the serum, with a notable 

increase in viral copy numbers during the first week after treat-

ment (Table  2). Oncolytic adenoviral DNA was recovered in 

all examined tissue sample blocks, except one sample of liver 

with metastasis (Figure 1j). Highest copy numbers were recov-

ered in a sample block that contained tissue from normal brain 

parenchyma and—confusingly—tumor tissue from an unknown 

location.

Transduction of brain tissue was observed frequently
Transduction of brain tissues with oncolytic adenoviruses injected 

elsewhere was of special interest as it is a safety concern. Oncolytic 

adenovirus activity in a tissue with cancer may cause inflamma-

tory swelling and edema.21–24 In the brain, this could be harmful as 

the brain is confined inside the inflexible skull. Two patients in this 

series had tumor metastases in the brain (patients K2 and N60). In 

both cases, the patients were treated with Ad5/3-Cox2L-D24 and 

oncolytic adenoviral DNA was recovered from brain parenchyma 

containing cancer cells (Figure 1k). In the case of patient N60, we 

were also able to recover viable virus from two cryo-preserved tis-

sue samples through standard commercial virus culture methods. 

Importantly, even though patient N60 died of progression of the 

brain metastases, there were no unusual signs of inflammation in 

the tissue as determined by a neuropathological examination per-

formed at a different hospital and independently from personnel 

responsible for cancer treatment.

Brain tissue samples from seven other patients with no evi-

dence of brain metastases were also examined. For one patient 

(S404), the brain sample had been embedded together with a 

sample from a separate tumor from an unknown site, and this 

paraffin block had moderately high copy numbers of oncolytic 

adenovirus. For two patients (H388 and N163), the brain sample 

was negative for adenoviral DNA. The other four patients all had 

detectable numbers of oncolytic adenovirus copies in the normal 

brain tissue (Figure 1k), and in one out of these patients (K211) 

we also detected wild-type Ad E1A in the brain sample.

Oncolytic adenoviral DNA can be recovered from 
injected and noninjected tumors
In summary, 67 (44%) out of the 153 tissue samples col-

lected from autopsies tested positive for oncolytic adenoviral 

DNA. A  comparison of normal (n  =  47) and neoplastic tis-

sues (n = 106) showed a significant difference: 36% of samples 

that contained neoplastic tissue were positive for oncolytic 

Ad DNA, whereas 62% of samples from normal tissues were 

positive for oncolytic Ad DNA (P  <  0.005) (Figure  2a). Out 

of the 106 neoplastic tissue samples, 42 samples were from 

tumor tissues that had been injected (it should be noted that 

exact correlation of the injection site and autopsy sampling site 

was not always possible) and 64 from noninjected tumor sites. 

Interestingly, of these, 45% of injected and 30% of noninjected 

tumor samples were positive for oncolytic Ad DNA (P = 0.15, 

nonsignificant) (Figure 2b).

Table 2 Viral copy numbers and GM-CSF concentration in patient serum samples during treatment periods

Patient

GM-CSF 
armed 

virus(es)

Virus titer in serum (VP/ml)  
(days from the first treatment)

GM-CSF concentration in serum (pg/ml) 
(days from the first treatment)

0 1 2-7 8-14 21 22 28 29
32-
49 ≥50 0 1  2-7

14-
21 

22-
32 49 50

K2 No 0 0 123 0 0.4 7.4 15.3 18.1

M208a Yes 125 162 115 0

H339 Yes 0 136 580 0 0  4.2

H388a No 0 0 313 0

H409b Yes 0 62 0 0 0 72 0.5 4.5  0.3 0.4 0.3  0.5

R34a No 0 130 4820 65 30 0 8.6 1.2  8.3  2.9 7.5 10.0

N60 No 0 1.27 × 107 4.1 9.7

N163b Yes 149 5.8 5.0  8.2

S404b Yes 0 305 3377 0 40 0 0

GM-CSF, granulocyte macrophage-colony stimulating factor.
Patients treated with GM-CSF armed virus(es) are indicated. No data from serum samples available for patients C200 and K211.
aPatients M208 and H388 had received a second virus treatment 21 days and patient R34 49 days after the first treatment. bPatients H409, N163, and S404 received 
a second treatment 21, 27, and 28 days after the first treatment and a third treatment 49, 62, and 56 days after the first treatment, respectively.
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Twenty-two (17%) of tissue samples, but none of the serum sam-

ples, were positive for wild-type E1A. Wild-type adenoviral E1A was 

detected in 15% of samples with neoplastic tissue and 21% of nor-

mal tissue samples (P = 0.45, nonsignificant) (Figure 2c). Out of the 

neoplastic tissues, 13 (33%) injected samples and 1 (2%) noninjected 

sample were positive for wild-type Ad E1A (P < 0.001) (Figure 2d).

Adenoviral copy numbers in tissues decrease with 
time
As the post-treatment survival time of the patients was variable, 

the autopsy tissue specimens reflect a variable time span after 

treatment. Also, types of metastatic tumor and treatment routes 

were variable, which renders the direct comparison of the cases 

difficult. Nevertheless, we observed inverse correlations between 

the time from latest virus treatment and both the percentage of 

tissue samples positive for oncolytic adenovirus DNA (Pearson 

coefficient −0.801, P  <  0.01) (Figure  2e) and the mean virus 

copy numbers detected in the tissues (Pearson coefficient −0.650, 

P < 0.05) (Figure 2f). In particular, after 1 month post-treatment, 

there is a notable decrease both in the frequency of virus positive 

tissues and the mean virus copy numbers in tissues.

Human tissues positive for viral DNA do not express 
detectable amounts of viral hexon
We attempted to do immunohistochemical staining for adenoviral 

E1A with commercially available antibodies, but were unable to 

establish a protocol which would work on paraffin-embedded tis-

sues (data not shown). Therefore, we established an immunohisto-

chemical staining for adenoviral hexon, the major capsid protein of 

the virus (Supplementary Figure S1). In none of the investigated 

tissues (from patients K2, N60, N163, K211, H339, H388, S404, 

H409) was there evidence of adenoviral hexon antigen expression 

(data not shown). In addition, the lung sample from patient S404 

had been routinely analyzed by the respective pathology depart-

ment at the time of autopsy for the presence of adenoviral antigen, 

also with negative results. These data are compatible with low sen-

sitivity of the assay in the context of human cancer patients.

GM-CSF
Six patients had received treatment with viruses armed with human 

granulocyte macrophage-colony stimulating factor (GM-CSF) 

(Table  1). Serum samples were available for the determination 

of GM-CSF levels for three of these patients (N163, H339, H409, 

Table 2). For comparison, GM-CSF levels were analyzed in serum 

samples of three patients (K2, R34, N60) that had not been treated 

with GM-CSF encoding viruses (Table 2). Interestingly, in patients 

treated with unarmed virus, the mean pretreatment GM-CSF con-

centration was 4.36 pg/ml and  post-treatment 8.92 pg/ml (P = 0.21), 

while it was 2.09 and 2.61 pg/ml respectively (P = 0.80) in patients 

treated with GM-CSF armed viruses. As there were no significant 

differences in serum GM-CSF concentrations, there was no conclu-

sive  evidence of GM-CSF expression. However, if there was expres-

sion, it appears to have been restricted to tumor site, which is in line 

with previous preclinical observations and human data.1,17,18,20,25

For patients N60, H339 and H409 cryo-preserved tissues sam-

ples from the autopsies were available. Patient N60 was treated with 

Ad5-Cox2L-D24, which has no transgene. The patient had 4.13 

pg/ml GM-CSF in the serum prior to treatment, and 9.65 pg/ml at 

day 1 post-treatment (Table 2). The tissue sample from the tumor-

free liver had no measurable GM-CSF content, and the one from 

the brain metastasis contained only trace amounts (0.02 pg/ml) 

(Figure 3a).

For patient H339, treated with Ad5/3-E2F-D24-GMCSF, 

serum samples from day 0 and 1 had no detectable GM-CSF, but 

on day 6 post-treatment, 4.23 pg/ml of GM-CSF was detected in 

the serum (Table 2). In most normal tissue samples (6 out of 8), 

GM-CSF was not detected, whereas small amounts were found 

in most (8 out of 11) examined primary tumor or metastases 

samples (0.02–1.8 pg/ml) (Figure 3b).

Patient H409 received three cycles of treatment with 

 Ad5-D24-GMCSF. On day 1 post-treatment, the GM-CSF level was 

4.55 pg/ml and on other measurement days (0, 20, and 21), the level 

was approximately 0.5 pg/ml (Table 2). GM-CSF was detected also 

in all tissue samples, at levels between 1.5 and 6 pg/ml (Figure 3c). 

This patient had received her latest treatment only 2 days prior to 

her death and virus DNA had also been detected in all organs. Since 

autopsy tissues will have contain some blood it cannot be excluded 

that virus and/or GMCSF detected in autopsy were actually present 

in the blood and not in the tissues.

Viable virus can be recovered from non-injected 
metastases
For patient H388, virus culture had been performed by an inde-

pendent pathology department as part of the autopsy work-up, 

Figure 3 Human granulocyte macrophage-colony stimulating factor (GM-CSF) levels in cryo-preserved autopsy tissue samples. Human 
GM-CSF levels were measured from available cryo-preserved tissue samples collected at autopsies of patients A) N60, B) H339 and C) H409.
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from samples taken from the liver and the colon, both with meta-

static lesions. These cultures were negative.

Virus cultures were performed by a commercial laboratory 

from all available cryo-preserved tissue samples (patients N60, 

H339 and H409). Cultures from patients H339 and H409 were 

negative, both from tumor-free and neoplastic tissues. For patient 

N60, virus cultures from the histologically tumor-free liver sam-

ple and a sample of the bone marrow with neoplastic cells were 

negative. Interestingly, viable adenovirus was recovered from two 

of the three brain metastasis samples. The cultures were then sub-

jected to quantitative polymerase chain reaction (qPCR) analy-

sis and they were found to contain both the treatment virus and 

 wild-type adenovirus E1A DNA. Both samples were also strongly 

positive with both Cox2L and fiber knob 3 primers, which con-

firmed that the intravenously administered Ad5/3-Cox2L-D24 

virus was present in the tissue.

DISCUSSION
Predicting when the life of advanced cancer patients ends is clini-

cally demanding because many patients are in relatively good 

health even a few days before and thus the date of death can only 

be known afterwards.26,27 Heavy treatment of patients who are 

about to die of disease progression should be avoided, but because 

of the often unpredictable course of the disease it is not rare for 

cancer patients to receive anti-cancer agents within their last 

weeks of life.28,29 Similarly in ATAP, a small proportion of patients 

died within days to weeks of their latest virus treatments. Overall 

3.8% of ATAP patients were autopsied. In less than half of these 

the death had occurred within 4 weeks of latest virus treatment. 

We felt that it was important to gather and publish the unique data 

that was obtained from the autopsies of these patients in order 

to broaden our understanding of these novel therapeutics. In all 

cases, the cause of death was determined as disease progression by 

the independent pathologist performing the autopsy.

Oncolytic adenoviral DNA was discovered in a wide vari-

ety of tissues including injected and non-injected sites. At this 

point, it is unclear if virus DNA present in non-injected organs 

originates from the initial virus dosing or from progeny virions 

escaping from injected tumors postreplication. It is also possible 

that the virus detected in tissue samples was in fact trapped in 

blood vessels rather than in tissue parenchyma. However, with 

the possible exception of H409, this seems unlikely as with most 

patients it was observed that viral DNA had already disappeared 

from the serum, while we recovered it at high titers from tissue 

samples. Alternatively the virus might have bound to red blood 

cells in blood. With our detection method, discordance between 

serum samples and blood clots, which include the red blood cells, 

has been shown to occur only in 11% of cases.19 Therefore, while 

this might occasionally occur, perhaps in tissues that had very 

low viral titers and where the time from disappearance of virus 

from serum to time of autopsy was not very long, it is unlikely 

to account for majority of the data. Unfortunately, we were not 

able to determine which cell types the viral DNA was residing: 

tumor cells, parenchymal tissue or for example tissue macro-

phages. This aspect would be most interesting to study further, 

if suitable tissue samples could be obtained. For example immu-

nohistochemistry for adenoviral proteins could be performed or 

electron microscopy. These aspects could be incorporated in trial 

protocols including an autopsy plan.

In addition to metastases in internal organs, oncolytic virus 

DNA was recovered also from brain metastases of an intrave-

nously treated patient. Thus, this data set provides evidence that 

oncolytic adenovirus can indeed spread to noninjected neoplastic 

tissues through the intravascular route. Moreover, as fully repli-

cation competent, infectious and viable virus was cultured from 

the brain metastases of N60, this is evidence of virus replication 

in a human tumor treated through the intravenous route. One 

could speculate if replication competent virus could remain from 

the initial injection, without actual de novo replication, but this 

seems unlikely since virus would have had to remain dormant but 

infectious for 6 days while it is known that adenovirus loses its 

infectiveness by shedding its capsid upon entering cells.30 Thus, 

it is more likely that the recovered functional virus had indeed 

replicated in tumor cells.

In addition to brain metastases, oncolytic adenoviral DNA was 

recovered from four of the six examined tumor-free brains. All 

four patients had been treated with 5/3 chimeric viruses. The two 

patients, where we did not detect virus in the brain, had received 

treatment with Ad5/3-HTERT-CD40L (patient H388) and a serial 

treatment of (i) Ad5/3-D24-GMCSF, (ii)  Ad5-D24-RGD-GMCSF, 

and (iii) Ad5-D24-GMCSF (patient N163). Therefore, while they 

had also received a 5/3 chimeric viruses, in the first case, the 

virus construct otherwise was quite different and in the second 

the chimeric virus had been administered more than 100 days 

prior to autopsy. These data are compatible with a hypothesis 

that 24 bp deleted 5/3 chimeric adenoviruses might be more neu-

rotropic than Ad5 backboned viruses but since we did not have 

brain samples from patients that had not been treated with Ad5/3 

viruses, this remains speculation. Importantly, there were only 

few neurological adverse reactions in treated patients in this series 

(Supplementary Table S1), and the same is true for previously 

reported patients,17,18,20,25,31–34 indicating that brain transduction 

with oncolytic adenovirus seems safe.

Quantitative PCR does not indicate viable viruses, or virus 

replication, it merely detects genomes. It is critical to keep in mind 

that the selectivity of the oncolytic adenoviruses used here occurs 

postentry and prereplication, meaning that it is expected to recover 

virus DNA in normal cells. With this in mind, it becomes logical 

that virus genomes were often found in normal tissues at higher 

copy numbers than in tumors. In the latter, oncolytic viruses are 

able to replicate, lysing the cell, releasing the virus from the tissue. 

If the cells allowing replication die, releasing the virus progeny, 

they cannot harbor virus and thus will not result in qPCR sig-

nals. In contrast, transduced normal tissues will have virus DNA, 

before being disposed of by DNA damage repair mechanisms and 

the innate immunity.35,36 As qPCR analyses were performed on 

multiple different tissue types, it is possible that the intrinsic prop-

erties of the tissues can affect the qPCR reaction and its specificity 

and sensitivity. Therefore direct quantitative comparisons of viral 

titers in different tissues may not be reliable. Instead, the qPCR 

data should be considered qualitative.

We analyzed samples also from one patient whose autopsy was 

conducted at a notably later time point after the virus treatment, 

over 80 days later. In this case, no adenoviral DNA was recovered 
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in any of the samples, suggesting eventual clearance of the virus. 

Indeed, there was a trend of inverse correlation with time from 

latest virus treatment to death and mean or median viral copy 

numbers or the percentage of positive findings in the analyzed 

samples.

Surprisingly, wild-type adenoviral DNA (wild-type E1A) was 

recovered in some of the tissue samples, but none of the serum 

samples. In accord with the serum findings here, also in our pre-

vious data, wild-type adenoviral DNA has not been recovered 

in any serum samples.17,18,20,25,31–34,37 qPCR for wild-type E1A was 

positive in a total of 22 analyzed sample blocks (16%). For these 

tissues, all except one had also been positive for the modified E1A 

gene, with at least 25-fold higher copy numbers, indicating the 

presence of higher amounts of the oncolytic virus. Interestingly, 

wild-type E1A DNA (and oncolytic virus DNA) was encountered 

also in typing of the viable replication competent virus cultured 

from the noninjected brain metastases.

It is not clear what these results mean. One, although unlikely, 

alternative is mutation of the modified E1A region back to the 

wild type. Adenovirus is a stable double-stranded DNA virus 

and to our knowledge mutation of a “delta 24” type E1A back to 

 wild-type E1A has not been reported, nor is it easy to come up 

with a mechanism for it unless wild-type virus would be present 

in the same cell. Even in this scenario, the presence of GM-CSF 

would select against this mutation since the transgene renders 

the virus more immunogenic. Thus, we believe that the finding of 

wild-type E1A in tumors may represent activation of latent earlier 

natural adenovirus infection. Adenoviruses have been proposed 

to exhibit considerable persistence and latency following an acute 

natural infection.38–41 We have seen previously that treatment 

with an Ad3 vector can boost serum levels of Ad5 DNA, indicat-

ing reactivation of oncolytic virus from previous treatments.37 

Therefore we believe that the observations of wild-type adenovi-

rus DNA may represent a similar phenomenon, resulting of reac-

tivation of wild-type Ad replication following treatment with an 

oncolytic virus.

Alternatively, the detection of wild-type E1A could indi-

cate concurrent wild-type adenovirus infection. Since wild-type 

E1A was not seen in blood, tumors may be preferred locations 

for  wild-type adenovirus DNA because of their immune privi-

leged nature. Yet another explanation could relate to adenovirus 

sequences reported present in human tumors and also normal 

cells and tissues, with unclear implications.39–41 Human adeno-

virus can transform rodent cells at least in vitro, because E1A is 

expressed in the absence of productive replication, but this seems 

unlikely to occur in human tissues where the virus can replicate 

and where antiadenoviral immunity is generated.42

Keeping in mind that qPCR does not differentiate between 

adenoviral sequence integrated into human genomes and epi-

somal virus genomes, and that there is always the possibility of 

some technical issue, the data should be interpreted cautiously. 

However, we feel our finding is potentially important and war-

rants further investigation, and should certainly be kept in mind 

when interpreting qPCR data in adenoviral gene therapy trials.

In our virus constructs, GM-CSF transgene expression is 

linked to activation of the viral E3 promoter and thus mostly asso-

ciated with virus replication.17,18,20,34,43 We have shown previously 

in animal models that virally produced human GM-CSF, or other 

transgenes under the same promoter, do not leak significantly 

from the tumor site to the vasculature18,44 In previously published 

patient data from ATAP, there have not been significant elevations 

in serum GM-CSF levels of patients treated with GM-CSF encod-

ing adenoviruses.17,18,20,25 Likewise, in this series, serum GM-CSF 

levels did not exhibit major peaks, although in a few patients there 

was a slight elevation during the week after treatment, compat-

ible with the maximum of virus replication. Overall, GM-CSF 

viruses did not result in significantly higher GMCSF concentra-

tions than seen in patients treated with viruses lacking GM-CSF 

arming. Therefore, there was no conclusive evidence of GM-CSF 

expression. However, if there was expression, it appears to have 

been restricted to the tumor site, as reported previously.17,18,20,25 

This is an important safety aspect as the useful effects of trans-

genic GMCSF would be predicted to occur in the tumor microen-

vironment, while adverse effects could result from systemic levels 

capable of recruitment of myeloid suppressor cells.13

GM-CSF measurements from cryo-preserved samples can 

be considered indicative of functionality of the virus in tissues, 

although admittedly it is not possible to assess if the detected 

GM-CSF is endogenous or virally produced. Unlike for serum 

samples, GM-CSF concentrations in tissues of patients H339 

and H409, treated with GM-CSF encoding viruses, were higher 

than of patient N60, treated with Ad5/3-Cox2L-D24, lacking any 

transgene. Also, for patients H339 and H409, there was a trend 

of higher GM-CSF concentrations and more frequently positive 

samples in neoplastic tissues samples compared to normal tissues, 

a result which is compatible with tumor-associated replication 

and transgene expression, again in line with animal data.18,44

While viral DNA was detected in many samples, none of these 

were found to express adenoviral hexon antigen, when the tis-

sues were examined by immunohistology (IH). These results may 

reflect the short time window between hexon expression and cell 

destruction, mediated by either oncolysis or killing by immune 

cells, or both. However, IH has a relatively low sensitivity com-

pared to PCR, and the amount of hexon antigen within the human 

tissue samples may be below detection level. When comparing 

the IH results from the infected cell pellet (analyzed at 48 hours) 

and an injected tumor in a mouse (analyzed at 72 hours), a major 

quantitative difference is already obvious, within the number of 

positive cells and the staining intensity, indicating a substantially 

lower amount of virus in the tumor (Supplementary Figure S1). 

In contrast to high-dose “synchronized” infection necessarily 

utilized in the hexon staining optimization assay (when samples 

were analyzed 24 hours after infection), the natural serendipitous 

and opportunistic progression of infection in human tumors may 

result in much lower amounts of hexon at any given time point. 

As autopsy was not performed immediately after virus injection, 

the highest synchronized hexon expression peak may have been 

at an earlier time point. The time window between hexon expres-

sion and cell death might also be small, especially in the scenario 

of pre-existing or induced antiadenoviral immunity, which would 

be expected to enhance clearance of infected cells. These aspects 

may indicate limited utility of hexon detection in the context of 

oncolytic adenoviruses in humans, and indeed we are unaware of 

examples where the assay would have been positive. Alternatively, 
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immunohistochemical staining for adenoviral E1A protein could 

be a potentially valuable tool in future work if staining protocols 

for adenoviruses with the 24 bp deletion in the E1A region in 

human tissues are successfully established.

In summary, analysis of autopsy specimens from patients who 

had been treated with oncolytic adenoviruses, and later died due 

to tumor progression, indicated systemic spread of the injected 

virus to many organs and noninjected tumors. Our data suggest 

that oncolytic adenoviruses are able to disseminate through the 

vascular route from injected tumors following replication and 

lysis and/or following intravenous injection. Importantly, this 

sets the stage for intravenous delivery of oncolytic adenovirus in 

human trials. Also, it provides mechanism of action data, support-

ing preclinical hamster data, which has shown vascular dissemi-

nation to distant tumors following injection into local tumors.45 

A  particularly interesting finding was the transduction of brain 

tissue through the vascular route. As patients with brain metas-

tases represent the most difficult clinical situation in oncology, 

it could be of clinical relevance that oncolytic adenoviruses are 

able to transduce the central nervous system through the vascular 

route, without major neurological symptoms.

MATERIALS AND METHODS
Oncolytic virus treatments. The viruses used for treatment were produced 

on a nontranscomplementing cell line (human lung adenocarcinoma epi-

thelial cell line A549), to avoid risk of recombination back to a  wild-type 

E1A. Virus production was done by Oncos Therapeutics (Helsinki, 

Finland), and regulated by the Finnish medical authority FIMEA accord-

ing to the guidelines detailed below. Viral preps were screened for purity 

and quality including absence of wild-type contamination.

Oncolytic adenovirus treatments were given in the context of an 

ATAP.46,47 Patients had signed a written informed consent form and 

treatments were administered according to the Declaration of Helsinki 

and Good Clinical Practice. ATAP is in compliance with EU and 

Finnish regulations and the program is under regulation of the Finnish 

Medical Agency as determined by EU/1394/2007. Data for this study 

were collected and analyzed retrospectively, with positive statements 

from the Helsinki University Central Hospital ethics committee (Dnro 

313/13/03/02/2012) and the Finnish National Supervisory Authority 

for Welfare and Health (Dnro 2797/06.01.03.01/2013). While ATAP 

was an individualized approach, generally only patients with solid 

tumors refractory to conventional therapies and progressive thereafter, 

WHO performance score ≤3, no other severe disease and no major 

organ function deficiencies or organ transplants, HIV or other major 

immunosuppression, were eligible to receive treatments.16–18,20,25,31–33,37,45 

Patient characteristics are provided in Table 1.

Patients (n  =  11) received their virus treatments by  ultrasound-

guided intratumoral injection, usually combined with an intravenous 

bolus. Patients with peritoneal and pleural involvement received 

part of the virus dose as an injection into the respective body cavity. 

Treatments were given at Docrates Hospital as single treatments or in a 

series of three treatment cycles approximately 3 weeks apart. The virus 

vectors, Ad5/3-Cox2L-D24, Ad5-D24-RGD, Ad5-D24-RGD-GMCSF, 

ICOVIR-7, Ad5-D24-GMCSF, Ad5/3-D24-GMCSF,  Ad5/3-E2F-D24-

GMCSF and Ad5/3-hTERT-CD40L, and the treatment protocols have 

been published previously.17,18,20,25,31–34 Treatments are detailed in Table 1. 

Adverse reactions were monitored for 28 days and recorded according to 

Common Terminology Criteria for Adverse Events v3.0, and are listed in 

Supplementary Table S1. Patient monitoring included routine laboratory 

tests. Blood cell counts at baseline and during adenoviral treatments are 

shown in Supplementary Table S2.

Neutralizing antibody titering against the used adenoviral vectors was 

done as described earlier.34 Depending on the virus that the patients had 

received in treatment, different replication-deficient adenoviruses were 

used for titration to ensure identical match of virus capsid: Ad5luc1 for 

Ad5-D24-GM-CSF, Ad5/3luc1 for Ad5/3-D24-GM-CSF and Ad5lucRGD 

for Ad5-RGD-D24 and Ad5-RGD-D24-GM-CSF. The neutralizing 

antibody titer was determined as reciprocal of the lowest degree of 

dilution that blocked gene transfer >80%. For patients with available 

samples, neutralizing antibody titers at baseline and during adenoviral 

treatments are shown in Supplementary Table S3.

Autopsies. According to Finnish law and medical custom, the need for 

autopsy was determined by the patient’s attending physician at the place of 

death, and this decision was independent from decisions relating to can-

cer treatment. Autopsies were performed at University Hospital pathology 

departments or at The Department of Forensic Medicine at the Hjelt Institute 

(University of Helsinki and National Institute for Health and Welfare). 

Formalin-fixed tissue samples were prepared by the pathologists as part of 

the autopsy. In some cases, tissue samples from different organs had been 

placed together in one paraffin block, as part of their routine protocols. Also, 

while for most cases, one sample per tissue was collected, in others, several 

samples (n = 2–15) from the same organ, especially tumors, were sampled 

from multiple sites. In three cases, cryo-preserved tissue samples snap frozen 

immediately after collection and stored in −80 °C, were available as well.

DNA analysis. DNA was extracted from formalin-fixed and paraffin 

wax embedded tissue samples, archived as a routine part of the autopsy, 

using the QIAamp DNA FFPE Tissue kit (Qiagen, Helsinki, Finland). 

Quantitative real-time PCR (qPCR) was performed with primers and probe 

for the adenoviral E1A gene with the 24 bp deletion that renders the virus 

tumor-selective (forward primer: 5′-TCCGGTTTCTATGCCAAACCT-3′; 
reverse primer: 5′-TCCTCCGGTGATAATGACAAGA-3′ and probe: 

5′FAM-TGATCGATCCACCCAGTGA-3′MGBNFQ). In addition, a probe  

complementary to a sequence included in the wild-type E1A region was 

used to test the samples for the presence of wild-type adenovirus (probe: 

5′VIC-TACCTGCCACGAGGCT-3′MGBNFQ). For one patient, who 

had been treated with Ad5/3-hTERT-CD40L, an oncolytic virus with-

out a 24 bp deletion in E1A, PCR amplification was based on primers 

and probe targeting the E3 region flanking the CD40L transgene (for-

ward primer 5′-CCGAGCTCAGCTACTCCATC-3′, reverse primer 

5′-GCAAAAAGTGCTGACCCAAT-3′ and probe  5′FAM-CCTGCCGGG 

AACGTACGATG-3′MGBNFQ). Human β-actin primers and probe (for-

ward primer 5′- TCACCCACACTGTGCCCATCT -3′, reverse primer 

5′- GTGAGGATCTTCATGAGGTAGTCAGTC -3′ and probe 5′FAM- 

ATGCCCTCCCCCATGCCATCCTGCGT-3′) served as internal control 

and to normalize viral DNA copies per amount of genomic DNA.

The quantitative real-time PCR conditions for each 25 μl reaction were: 

2× LightCycler480 Probes Master Mix (Roche, Mannheim, Germany), 800 

nmol/l of each forward and reverse primer, 200 nmol/l of each probe, and 

250 ng of extracted DNA. PCR reactions were carried out in a LightCycler 

(Roche) with the following cycling conditions: 10 minutes at 95 °C, 50 

cycles of 10 seconds at 95 °C, 30 seconds at 62 °C, 20 seconds at 72 °C, and 

10 minutes at 40 °C. TaqMan exogenous internal positive control reagents 

(Applied Biosystems, Espoo, Finland)  were used in the same PCR runs in 

order to test each sample for the presence of PCR inhibitors. Samples were 

run in duplicates (β-actin) or triplicates (adenoviral genes).

Regression standard curves for E1A copies were generated using 

adenoviral plasmid DNA serially diluted from 1 × 109 copies to 1 copy. 

The standard curve for wild-type E1A was generated similarly, from  E1A-

wild-type plasmid (GeneArt Life Technologies, Germany). The standard 

curve for human β-actin was established with known amounts (800–

0.08 ng) of DNA extracted from cultured cells. Cycle threshold values 

were plotted on the standard curves to determine the actual DNA copy 

number and the number of adenoviral copies per ng genomic DNA was 

subsequently calculated.
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For serum samples, DNA extraction and real-time PCR were 

performed as previously described.34 The viral loads in fluids were 

calculated using a regression standard curve based on serial dilutions of 

pAd5-D24-GMCSF plasmid DNA (1 × 109 to 1 × 10) in normal human 

serum from healthy donors. Positive samples were confirmed by  real-

time PCR using LightCycler480 SYBR Green I Master mix (Roche) and 

primers specific for sequences for adenovirus, GM-CSF, Cox2L, RGD, 

and adenovirus fiber knob 3.18,20,33,34

Each reaction was assessed for the lower limit of reliable detection 

and only results above that threshold were considered positive. The limit 

of quantification for the E1A reaction was at CP 38.495, as assessed by 

spiking serum samples with increasing adenovirus titers, corresponding 

to 29.85 viral DNA copies per 25 μl reaction volume and 500 viral particles 

per ml of serum. For CP values higher than this, titers were extrapolated 

using a standard curve. The limit of detection for the 24 bp deleted E1A 

was at CP 42.11, corresponding to 2.89 viral DNA copies per reaction 

volume. The limit of detection for the wild-type E1A reaction was at CP 

40.00 corresponding to 13.2 adenoviral DNA copies per 25 μl reaction 

volume.

Adenoviral hexon staining. Immunohistology was performed using a 

monoclonal mouse anti-human adenovirus hexon (ATCC strain VR847 

clone BO 25, Acris Antibodies GmbH, Herford, Germany) and the 

peroxidase anti-peroxidase method as previously described.48 Briefly, 

 formalin-fixed, paraffin-embedded tissue sections (3–5 μm) were pre-

treated with bacterial protease for antigen retrieval and then incubated 

with the primary antibody (1:100 in Tris-buffered saline Tween) at 4 °C 

overnight, followed by rat anti-mouse IgG and mouse peroxidase anti-per-

oxidase (Jackson Immuno Research, Suffolk, UK), and 3,3’-diaminobenzi-

din to visualize the reaction.

Formalin-fixed and routinely paraffin wax embedded A549 human 

lung adenocarcinoma cell pellets, collected 48 hours after they had been 

infected with Ad5-D24E349 at 100 and 1,000 VP per cell, were used as 

positive controls and an uninfected cell pellet as a negative control. 

Furthermore, one young male nude/NMRI mice was obtained from 

Harlan (Indianapolis, IN) and human fibrosarcoma HT-1080 cells (5 × 106 

cells/tumor) were injected subcutaneously at four different sites on the 

back of the mouse. When tumors reached the size of approximately 

5 mm diameter, Ad5/3-D24-GMCSF virus diluted in saline was injected 

intratumorally (1 × 109 VP/tumor). Three days postinfection tumors 

were collected and routinely formalin-fixed and paraffin wax embedded. 

This tumor served as an in situ positive control, with sections incubated 

with Tris-buffered saline Tween without the primary antibody serving 

as additional negative controls. The animal protocol was reviewed and 

approved by the Experimental Animal Committee of the University of 

Helsinki and the Provincial Government of Southern Finland.

Virus culture and GM-CSF measurements. Routine diagnostic virus 

culture was performed on the cryo-preserved tissue samples at an 

independent commercial laboratory (HUSLAB, Helsinki, Finland). 

Positive samples were confirmed by real-time PCR for the E1A 

gene as described above and by using LightCycler480 SYBR Green 

I Master mix (Roche) and primers specific for adenovirus 3 fiber  

(forward primer: 5′-AGCGTATCCATTTGTCCTTCC-3′, reverse 

primer: 5′-GGTTATGAGGGTTGCCTGAGT-3′) and COX2L-promoter 

sequences (forward primer, 5′-CACGTCCAGGAACTCCTCAG-3′ and 

reverse primer 5′-CGGCCATTTCTTCGGTAATA-3′).

For measuring the level of human GM-CSF, cryo-preserved tissue 

samples were minced with a scalpel and 50 mg incubated with 5 μl of 

protease inhibitor (P8340, Sigma-Aldrich, Helsinki, Finland) and 500 μl of 

digestion mixture consisting of RPMI 1640 medium with 10 mmol/l HEPES 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer and 1.6 mmol/l 

phenylmethylsulfonyl fluoride (Sigma-Aldrich), 40 μg/ml gentamycin 

(Amresco, Solon, OH), 100 μg/ml bovine serum albumin (Sigma-Aldrich) 

and 100 μg/ml Zwittergent 3–12 (Merck4Biosciences, Darmstadt, Germany). 

After incubation for 90 minutes at 37 °C under continuous agitation the 

digestates were subjected to 30 seconds of sonication and centrifuged at 

2,000g for 10 minutes at 4 °C. Supernatants were collected and stored at −80 °C  

until used in the FACSArray. GM-CSF concentrations in tissue digestation 

supernatants and serum samples were measured using the Cytometrin Bead 

Array Soluble Protein Master Buffer Kit and Cytometrin Bead Array Human 

GM-CSF Flex set (Becton Dickinson) according to the manufacturer’s 

instructions and the LSRFortessa cell analyzer (Becton Dickinson).

Statistics. Statistical correlations were analyzed with PASW Statistics 18.0 

Software, using the Fisher’s exact test and two-tailed test for Pearson’s cor-

relation coefficient.
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