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Abstract
The retina is a complex, multilayered tissue responsible for the perception of visual stimuli from

the environment. Contrary to mammals, the capacity for postnatal eye growth in fish and

amphibians, and to a lower extent in birds, is coordinated with a progenitor population residing

in the ciliary marginal zone (CMZ) at the retinal peripheral margin. However, little is known

about embryonic retinogenesis and postnatal retinal growth in squamates (lizards, snakes),

despite their exceptional array of ecologies and ocular morphologies. Here, we address this gap

by performing the first large-scale study assessing both ontogenetic and adult changes in the

stem/progenitor activity of the squamate peripheral retina. Our study reveals for the first time

that squamates exhibit a source of proliferating progenitors persisting post embryogenesis in a

newly identified retinociliary junction anteriorly adjacent to the retina. This region is strikingly

similar to the vertebrate CMZ by its peripheral location and pseudostratified nature, and shares

a common pattern of slow-cycling cells, spatial differentiation gradient, and response to postna-

tal ocular growth. Additionally, its proliferative activity varies considerably among squamate spe-

cies, in correlation with embryonic and postnatal differences in eye size and growth. Together

our data indicate that squamates possess a proliferative peripheral retina that acts as a source

of progenitors to compensate, at least in part, for postnatal ocular growth. Our findings also

highlight the remarkable variation in activity and location of vertebrate retinal progenitors, indi-

cating that the currently accepted scenario of reduced CMZ activity over the course of evolu-

tion is too simplistic.
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1 | INTRODUCTION

The eyes of vertebrates, despite possessing a similar overall appear-

ance, structure, and physiology, differ widely in architecture and scaling,

which is well related to environmental factors and life characteristics.

Within the eye, the neural retina is responsible for perception of visual

stimuli from the environment. It develops from the neural ectoderm

through early optic cup stages, and forms a complex multilayered tissue

lining the posterior inner surface of the eye. Adjacent to the neural

retina, another structure derived from the neural ectoderm, called the

ciliary body (CB), controls visual accommodation through mechanical

lens adjustment and secretes the aqueous humor of the vitreous body

(Forrester, Dick, McMenamin, Roberts, & Pearlman, 2016; Tortora &

Derrickson, 2012). Vision is a crucial sensory modality in most verte-

brates, and although visual performance of the eye also depends on

several cellular and biochemical aspects (Hughes, 1977; Walls, 1942),

eye size largely contributes to visual acuity and sensitivity (Caves,

Sutton, & Johnsen, 2017; Hughes, 1977; Kiltie, 2000; Land & Nilsson,
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2012; Walls, 1942). Consequently, various studies assessing the allome-

try and scaling of vertebrate eye size at different taxonomic levels have

correlated adult eye size with various parameters of behavioral ecology

such as locomotor behavior, habitat, light conditions, and daily activity

patterns (Hughes, 1977; Liu, Ding, Lei, Zhao, & Tang, 2012; Schmitz &

Higham, 2018; Werner, 1969; Werner & Seifan, 2006).

A series of complex developmental processes must be carefully

orchestrated for the vertebrate eye to form and function correctly. For

example, the growth of the retina, lens, and other ocular components

must be coordinated to ensure well-matched dimensions and ultimately

optimal visual performance. In vertebrates with lifelong ocular growth

such as teleost fish, sharks, and amphibians, a circumferential ring of

nonpigmented cells at the extreme periphery of the retina, the so-called

ciliary marginal zone (CMZ), cooperates with central retinal progenitor

cells to generate all cell types of the mature retina. The CMZ is

maintained throughout adulthood in these “lower” vertebrate groups,

thus producing new retinal neurons to accommodate for continuous

eye growth. Importantly, however, studies investigating the peripheral

retina in amniotes have suggested that both the presence and multi-

potency of CMZ cells have been diminished through the course of evo-

lution from fish to mammals (Kubota, Hokoc, Moshiri, McGuire, & Reh,

2002). Indeed, a proliferative CMZ was identified at the peripheral reti-

nal margin (RM) in postnatal birds and turtles, but with a more transient

(prominent during early postnatal development) and limited neurogenic

capacity primarily restricted to amacrine and bipolar cells (Dunlop et al.,

2004; Fischer & Reh, 2000; Kubota et al., 2002; Todd et al., 2016). In

adult mammals, while a few rare proliferating cells were observed in

marsupials such as the opossum in the CB epithelium and RM (Kubota

et al., 2002), it is commonly accepted that placental mammals do not

have any proliferating RM (Ahmad, Tang, & Pham, 2000; Kubota et al.,

2002). As a result, postnatal ocular growth in mammals is believed to

be coincident with passive stretching rather than addition of new neu-

rons at either the margin or the central region of the retina (Kuhrt et al.,

2012). Nonetheless, a proliferative proximal CMZ has been recently

identified during embryogenesis in mice (Bélanger, Robert, &

Cayouette, 2017; Marcucci et al., 2016), and dissociated cells from the

pigmented epithelium (PE) of CB in several eutherian mammals such as

rodents, rabbit, porcine, and human, have been shown to adopt some

stem cell-like properties in culture (Ahmad et al., 2000; Coles et al.,

2004; Fernández-Nogales, Murcia-Belmonte, Chen, & Herrera, 2019;

Tropepe et al., 2000). Furthermore, a proliferative nonpigmented CB

region immediately adjacent to the retina has been observed in adult

primates and genetically altered mouse lines in vivo (Fischer,

Hendrickson, & Reh, 2001; Kiyama et al., 2012; Martínez-Navarrete,

Angulo, Martín-Nieto, & Cuenca, 2008; Moshiri & Reh, 2004; Reh &

Fischer, 2006), thus indicating that the CB might also serve as a puta-

tive retinal stem cell zone.

Previous comparative studies are consistent with a gradual decrease

of the CMZ or proliferating peripheral retina in vertebrate evolution.

However, little is yet known about retinogenesis and morphogenesis of

retinal tissues in the squamate group of reptiles (i.e., lizards and snakes),

which occupies a key phylogenetic position within amniotes. In particular,

whereas the precise anatomy of the reptilian eye has been well described

over the past decades, only one recent study directly compared the activ-

ity of the peripheral retina in squamates, by using a limited taxon sampling

(two snakes and one lizard) at an uncertain adult stage (Todd et al., 2016).

Interestingly, the absence of proliferating CMZ or RM progenitors in

squamates reported in the latter study is in line with older scattered stud-

ies focusing on optic nerve regeneration in several adult lizard species

(Beazley, Tennant, Stewart, & Anstee, 1998; Casañas et al., 2011; Dunlop

et al., 2004). However, squamates represent the second most diversified

group of tetrapods, with more than 10,000 species, and are well known

to exhibit substantial variation in eye size and postnatal growth through-

out their lifespan (Hallmann & Griebeler, 2018; Shine & Charnovt, 1992).

In addition, this geographically widespread group displays an exceptional

array of lifestyles, ecologies, and morphological adaptations in eye and

visual system related to visual performance and activity pattern (Hall,

2008, 2009; Liu et al., 2012; Werner, 1969; Werner & Seifan, 2006),

strongly suggesting that interspecies and/or intraspecies variations in the

peripheral retina activity might exist throughout life, as already shown for

avians (Fischer & Reh, 2000; Kubota et al., 2002).

Here, we performed the first large-scale study assessing both onto-

genetic and adult changes in the stem/progenitor activity of the squa-

mate peripheral retina, using multiple lizard and snake species from

diverse families covering all major groups of squamates. Our findings

provide the first evidence of a proliferative peripheral retina that per-

sists into adult squamates, in a pseudostratified region at the

retinociliary junction (RCJ) between the retina and the CB. The RCJ

progenitors accumulate proliferation markers, express conserved retinal

progenitor, and differentiation markers that recapitulate developmental

gene expression, and respond to changes in overall body growth rate.

Importantly, we further show that the proliferative activity of the RCJ

is highly variable among squamate species, in correlation with postnatal

variations in ocular size and growth. Altogether, this set of new results

coherently and conclusively indicates that squamates possess a prolifer-

ative peripheral retina that acts as a source of progenitors to compen-

sate, at least in part, for postnatal ocular growth.

2 | MATERIALS AND METHODS

2.1 | Sample collection

All embryonic and postnatal stages of bearded dragons (Pogona

vitticeps), corn snakes (Pantherophis guttatus), and green anoles

(Anolis carolinensis) were obtained from our animal facility at the Uni-

versity of Helsinki. For embryonic stages, fertilized eggs were incu-

bated on a moistened vermiculite substrate at 29.5�C, and embryos

were removed at regular intervals after oviposition to obtain stages

covering the whole postovipositional period (about 60 days for

P. vitticeps and P. guttatus, 30 days for A. carolinensis). Embryos were

staged on the basis of their external morphology according to devel-

opmental tables available for lizards and snakes (Boback, Dichter, &

Mistry, 2012; Ollonen, Da Silva, Mahlow, & Di-Poï, 2018). Other

adult lizard and snake specimens (21 different species, see

Supporting Information) were obtained from private breeders. All

reptile captive breedings and experiments were approved by the

Laboratory Animal Centre (LAC) of the University of Helsinki and/or

the National Animal Experiment Board (ELLA) in Finland (license
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numbers ESLH-2007-07445/ym-23, ESAVI/7484/04.10.07/2016,

and ESAVI/13139/04.10.05/2017).

2.2 | Computed tomography-scanning and 3D
rendering

High-resolution computed tomography (CT)-scans of early embryonic

stages of P. vitticeps, A. carolinensis, and P. guttatus at the oviposition

stage were obtained from our previous works (Da Silva et al., 2018;

Ollonen et al., 2018), while late stages were newly produced at

the University of Helsinki or University of Kuopio imaging facilities in

Finland using Skyscan 1272 or 1172 microCT, respectively. To visual-

ize eye development, soft tissue of fixed embryos was first stained

with 0.6% phosphotungstic acid (PTA) in ethanol, as described before

(Metscher, 2009), before scanning using the following parameters:

voltage: 59–70 kV; current: 142–167 μA; voxel size: 3.5–10 μm. 3D

volume rendering and segmentation of eyes were done manually

using Advanced 3D Visualization and Volume Modeling, V5.5.0 (www.

fei.com/software/amira-3d-for-life-sciences/, RRID: SCR_007353).

2.3 | Eye and head length measurements

Data on head length (HL) and eye axial length (AL) were collected for

127 different squamate species covering all major lineages of squamates

(see Supporting Information). Postnatal data in Figure 1n were compiled

from both the published literature (Hall, 2008, 2009) and our own mea-

surements on dissected eyes and/or CT-scans (Supporting Information).

Data in Figure 2a covering both embryonic (53 specimens) and postnatal

(75 specimens) development of P. vitticeps, A. carolinensis, and P. gut-

tatus were all newly obtained in this study. HL and AL in new specimens

were measured anteriorly-posteriorly from tip of the snout to the poste-

rior end of the external auditory meatus (or posterior end of the brain-

case when absent in some lizard and snake species) and from the

anteriormost portion of the corneal/spectacle surface to the post-

eriormost portion of the eyeball, respectively, as described previously

(Hall, 2008, 2009). Measurements on CT-scans were performed with

Advanced 3D Visualization and Volume Modeling, V5.5.0 (www.fei.

com/software/amira-3d-for-life-sciences/, RRID: SCR_007353), by

aligning the 3D measurement tool in three orthogonal views within vol-

ume renderings of the total head.

2.4 | Statistical analyses

The relationship between AL and HL in the interspecies data was ana-

lyzed with phylogenetic generalized least squares (PGLS) comparative

methods in the R package “Caper” v1.0.1 (Orme et al., 2018), using

maximum likelihood estimation of parameters for regressions and the

most inclusive phylogenetic tree available for extant squamate species

(see Figure 1a and Tonini et al., 2016). The phylogenetic signal was esti-

mated as the value λ of the residuals, varying between 0 (phylogenetic

independence) and 1 (trait evolution under Brownian motion). For intra-

species data, ordinary least squares regressions were performed in

XLSTAT software (www.xlstat.com/en/, RRID: SCR_016299). The

regression slopes were initially tested for homogeneity, and then regu-

lar or phylogenetic analysis of covariance (ANCOVA) was used to

assess differences in slopes and/or intercepts between groups, devel-

opmental stages, and/or species.

2.5 | Pulse-chase labeling experiments

For pulse labeling, 5-bromo-20-deoxyuridine (BrdU) was administrated

twice daily (80 mg/kg body weight) for a period of 7 days by squirting

the solution into the mouth. Based on previous vertebrate studies,

this duration of pulse labeling is required to detect possible persistent,

slow-cycling retinal progenitors (Kiyama et al., 2012). Animals were

euthanized 1, 15, 29, 59, 76, or 113 days after pulse labeling. To mini-

mize differences in body weight increment over the entire course of

the experiments, animals were pair-fed the same amount of diet daily

starting 1 week prior to the initial pulse labeling.

2.6 | In situ hybridization and
immunohistochemistry

Eyes were dissected and opened nasally to allow for better penetration

during subsequent histological processing. Samples were fixed over-

night in 4% paraformaldehyde (PFA) at 4�C before dehydration

although a series of alcohol solutions (25, 50, 75, and 100%), paraffin

embedding, and sectioning at 7 μm. In situ hybridization (ISH) on paraf-

fin sections was performed as described previously (Gasse, Chiari,

Silvent, Davit-Béal, & Sire, 2015), with minor modifications. Shortly,

sections were first rehydrated, and pretreated with proteinase K

(Roche) at 37�C for 10 min; then acetylated with 0.25% acetic anhy-

dride in 0.1M triethanolamine buffer for 15 min at RT; and subse-

quently fixed with 4% PFA for 15 min at room temperature (RT).

Finally, sections were hybridized at 60–65�C with digoxigenin (DIG)-

labeled antisense riboprobes corresponding to P. vitticeps achaete-scute

family bHLH transcription factor 1 (Ascl1, 324 bp), atonal bHLH tran-

scription factor 7 (Atoh7, 447 bp), glial fibrillary acidic protein (Gfap,

1,030 bp), hes family bHLH transcription factor 1 (Hes1, 740 bp), hes

family bHLH transcription factor 5 (Hes5, 422 bp), neurogenic differen-

tiation 1 (Neurod1, 779 bp), neurogenic locus notch homolog protein 1

(Notch1, 903 bp), orthodenticle homeobox 2 (Otx2, 957 bp), paired box

6 (Pax6, 654 bp), retinal homeobox gene 1 (Rx1, 978 bp), or visual sys-

tem homeobox 2 (Vsx2, 1,273 bp). Corresponding sense riboprobes

were used as negative controls. After hybridization, sections were

washed and incubated overnight at 4�C with anti-DIG antibodies

(1:2,500, sheep polyclonal, Sigma-Aldrich, cat# 11093274910, RRID:

AB_2734716) conjugated with alkaline phosphatase. A staining solution

containing 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetra-

zolium was applied for 1–5 days to visualize hybridization. Finally, slides

were mounted using Dako Faramount aqueous medium (Agilent). IHC

fluorescent staining was performed as described previously (Di-Poï &

Milinkovitch, 2013), using heat-induced epitope retrieval (HIER) and

overnight incubation at 4�C with primary antibodies known to recog-

nize reptile and/or chicken epitopes: BrdU (1:300, rat monoclonal,

Abcam, cat# ab6326, RRID: AB_305426), calretinin (CR; 1:100, rabbit

polyclonal, Abcam, cat# ab702, RRID: AB_305702), doublecortin (DCX;

1:200, rabbit polyclonal, Cell Signaling Technology, cat# 4604, RRID:

AB_561007), glial fibrillary acidic protein (GFAP; 1:300, mouse mono-

clonal, LifeSpan, cat# LS-C88015-100, RRID: AB_1795608), neuronal-
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FIGURE 1 Variability in the proliferation pattern at the peripheral retina in squamates. (a) Simplified phylogeny of squamate families used in this

study, adapted from the most inclusive phylogenetic studies available for extant squamate species (Tonini, Beard, Ferreira, Jetz, & Pyron, 2016).
Major squamate groups are indicated with different symbols at the nodes: Gekkota (Δ), Scincoidea (□), Lacertoidea (◇), Anguimorpha ( ), Iguania
(○), Serpentes ( ). (b–m) Immunohistochemistry with PCNA proliferation marker (green) at the peripheral retina of selected representative
juvenile squamates (see indicated position in the phylogenetic tree): Gekko gecko (b), Chamaeleo calyptratus (c), Basiliscus vittatus (d), Pogona
vitticeps (e), Phelsuma grandis (f), Anolis carolinensis (g), Eublepharis macularius (h), Python regius (i), Lepidothyris fernandi (j), Pantherophis guttatus
(k), Takydromus sexlineatus (l), Chrysopelea ornata (m). Solid arrowheads delimitate the retinal margin (RM), and open arrowheads indicate the
boundary between the monolayered ciliary nonpigmented epithelium (NPE) and the retinociliary junction (RCJ). Dashed white lines outline the
pigmented epithelium. White asterisks indicate autofluorescent retinal photoreceptor cells. Cell nuclei are counterstained with DAPI (blue). Scale
bars, 100 μm. (n) Scatter plot showing the relationship between log-transformed eye axial length and log-transformed head length in 127 lizard
and snake species sampled in all major squamate groups (see legend). The dashed gray line represents the regression line estimated by PGLS for
all data points. The exact position of selected representative squamate species with different levels of proliferation at the RCJ (b–m) is indicated.
Color gradient reflects the average number of PCNA-positive proliferating cells counted per RCJ region (RCJ proliferation) in tested squamate
species, from light blue (no proliferation) to red (high proliferation). Nontested species are colored black [Color figure can be viewed at
wileyonlinelibrary.com]
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specific RNA-binding proteins HuC/D (HuC/D; 1:200, mouse monoclo-

nal, Thermo Fisher Scientific, cat# A-21271, RRID: AB_221448), prolif-

erating cell nuclear antigen (PCNA; 1:200, mouse monoclonal,

BioLegend, cat# 307901, RRID: AB_314691), SRY (sex determining

region Y)-box 2 (SOX2; 1:400, rabbit polyclonal, Abcam, cat# ab97959,

RRID: AB_2341193), and SRY-box 9 (SOX9; 1:400, rabbit polyclonal,

Millipore, cat# AB5535, RRID: AB_2239761). Last, incubation with

Alexa Fluor-conjugated secondary antibodies (Alexa Fluor-488: 1:500,

goat anti-rabbit IgG, Thermo Fisher Scientific, cat# A-11008, RRID:

AB_143165; Alexa Fluor-568: 1:500, goat anti-rabbit IgG, Thermo

FIGURE 2 Eye growth and developmental patterns of retinal cell proliferation in selected squamate models. (a) Scatter plot showing the increase

in eye axial length (reflecting eye size) over embryonic (open circles) and postnatal (closed circles) development in P. vitticeps (blue), P. guttatus
(green), and A. carolinensis (magenta). Head length rather than age was used as a proxy of developmental time because of considerable variations
in growth rate at postnatal stages in a given species (see main text). The postnatal period covers the first two-thirds of posthatchling lifetime in all
species. Colored lines represent species-specific regression lines for embryonic (dashed lines) or postnatal (solid lines) data points. (b–u) Change in
embryonic eye size and retinal cell proliferation in P. vitticeps (b–i), P. guttatus (j–q), and A. carolinensis (r–u), as assessed by 3D-volume rendering
and eye segmentation (green) of PTA-stained whole-embryos (b, j, r) or embryonic heads (i, q, u) as well as immunohistochemistry with PCNA
proliferation marker at the peripheral dorsal retina (c–h, k–p, s, t). Regular developmental stages (every 10 days) covering the entire
postoviposition embryonic period, from oviposition (b, c, j, k, r) to hatchling (i, q, u), are shown for each species. Solid arrowheads delimitate the
retinal peripheral margin (RM), and open arrowheads indicate the boundary between the monolayered ciliary epithelium (CE) and the retinociliary
junction (RCJ) at late embryonic stages. Scale bars, 100 μm (b, i, j, q, r, u) or 1 mm (c–h, k–p, s, t) [Color figure can be viewed at
wileyonlinelibrary.com]
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Fisher Scientific, cat# A-11011, RRID: AB_143157) was performed for

1 hr at RT, and slides were mounted with Fluoroshield mounting

medium (Sigma-Aldrich) containing 40,60-diamidino-2-phenylindole

(DAPI). For ISH-IHC double labelings, ISH was performed first followed

by IHC omitting the HIER step. Imaging of slides was done using a

Nikon Eclipse 90i fluorescence microscope. Fluorescence and bright

field images were acquired with Hamamatsu Flash4.0 and Nikon DS-Fi

U3 cameras, respectively, before processing in Adobe Photoshop CC

(www.adobe.com/products/photoshop.html, RRID: SCR_014199) using

linear levels adjustment.

2.7 | Quantification of proliferative activity in
the RCJ

The RCJ region between the monolayered ciliary epithelium and RM

was identified based on morphological and anatomical features,

including the pseudostratified columnar epithelia of the RCJ detect-

able by DAPI nuclear staining, and/or SOX9 immunohistochemistry

(IHC) (expression restricted to the RM, see main text). A minimum

number of four RCJs per species covering similar longitudinal section-

ing planes of the central region of the eye (as assessed by the pres-

ence of pupil, lens, optic nerve head, and fovea if possible/present)

were selected for quantification. As both the size and nuclei number

of the RCJ are highly variable among species in contrast to the overall

range of proliferating cell number, proliferative activity was quantified

based on the absolute rather than relative number of PCNA-

immunoreactive cell nuclei per RCJ. Central retina was used as a posi-

tive control tissue for PCNA IHC in species with nonproliferative RCJ.

3 | RESULTS

3.1 | Patterns of cell proliferation in the peripheral
retina of adult squamates

The retina of vertebrates such as fish and amphibians grows continuously

throughout life via the addition and integration of newly generated neu-

rons at the CMZ. This continuous retinal growth is coordinated with the

postnatal growth of the body and contributes to increase ocular size.

Squamate reptiles, similar to fish and amphibians, grow throughout their

lifespan and thus represent another important model to study post-

embryonic neurogenesis. Previous studies, however, have so far failed to

identify proliferating CMZ or RM progenitors in the few tested adult

squamates (Beazley et al., 1998; Casañas et al., 2011; Dunlop et al., 2004;

Todd et al., 2016). We first assessed the presence of a proliferating

peripheral retina in a larger and more representative panel of lizards and

snakes, including 24 different species covering all major groups of squa-

mates (Figure 1a): Gekkota (n = 4), Scincoidea (n = 3), Lacertoidea (n = 1),

Anguimorpha (n = 1), Iguania (n = 10), and Serpentes (n = 5). Strikingly, in

most specimens tested, immunohistochemical detection of proliferating

cell nuclear antigen (PCNA) proliferation marker clearly indicates cell pro-

liferation at the peripheral retina in a region immediately adjacent to the

multilayered retina (Figure 1b–m). However, comparative visual inspec-

tion of these proliferation patterns reveals marked differences among

squamate species in the overall number of proliferating cells, ranging from

high (Figure 1b–e) to low (Figure 1f–k) or even absence of detection

(Figure 1l,m). In addition, while some proliferating cells are evident in the

RM (Figure 1b–e), most of the proliferative activity extends anteriorly into

the nonpigmented epithelium (NPE) directly adjacent to the RM

(Figure 1b–k). Based on nuclei organization, this proliferating region,

which we refer to as the retinociliary junction or RCJ, appears as a pseu-

dostratified columnar epithelium contiguous with, but distinct from the

monolayered NPE of the CB. The RCJ region is of variable size, depending

on species, and is particularly pronounced in highly proliferative species

such as Chamaeleo calyptratus and P. vitticeps (Figure 1c,e).

In fish and amphibians, and to a lesser extent in avians, the prolifer-

ative RM persists into adulthood, thus contributing to the postnatal

increase in eye size. To first assess the overall variation in adult eye size

across squamates, we compiled published and newly obtained data on

both head length (HL) and eye axial length (AL) for 127 lizard and snake

species covering all major lineages (Supporting Information). HL was

preferred to body (snout-vent) length in our comparative studies

because of the elongated body plan in snakes and some lizard species.

As expected, our combined HL and AL data indicate substantial varia-

tion in adult eye size both in absolute and relative terms (Figure 1n),

and PGLS regression analysis reveals a significant hypoallometric corre-

lation between AL and HL in the whole squamate dataset (R2 = 0.66; p-

value = 0.0008). Considering the variation in relative eye size among

adult lineages, we next explored the potential correlations between rel-

ative eye size and proliferative activity at the peripheral retina. As

shown in Figure 1n, quantitative comparisons of the average number of

PCNA-positive cells at the RCJ in our sampled species (Supporting

Information) confirm our previously observed interspecies variation in

proliferative activity. In particular, snakes systematically show a rela-

tively low number of proliferating cells at the RCJ, whereas among liz-

ards substantial variation exists in proliferative activity—from high

levels in agamid species such as P. vitticeps (see also Figure 1e) to low

levels or even absence of detection in species such as Takydromus

sexlineatus (see also Figure 1l). In addition, all tested species with low

(<0.5 positive cells/RCJ) or high (>1.5 positive cells/RCJ) proliferative

RCJ exhibit AL lying below or above the regression line, respectively,

suggesting a positive correlation between RCJ proliferative activity and

relative eye size. This correlation was indeed confirmed using phyloge-

netic ANCOVA, which indicates that the relative AL in low-proliferating

species (<0.5 positive cells/RCJ) is significantly smaller than in other

species (p-value (slope) = 0.32; p-value (intercept) = 0.03). Altogether,

this multispecies comparison indicates for the first time that squamates,

including both lizards and snakes, exhibit postnatal cell proliferation at

the peripheral retina in a RCJ region between the retina and the

CB. Furthermore, the major interspecies variations in RCJ proliferative

activities correlate with relative eye size, suggesting the contribution of

RCJ to postnatal ocular growth in squamates.

3.2 | Comparative patterns of growth and retinal cell
proliferation in the developing eye

In most squamate taxa, like in fish, turtles, and most amphibians,

growth continues throughout life at a steadily decreasing rate

(Congdon, Gibbons, Brooks, Rollinson, & Tsaliagos, 2013; Dutta, 1994;

Hallmann & Griebeler, 2018; Shine & Charnovt, 1992). In this context,

6 EYMANN ET AL.

http://www.adobe.com/products/photoshop.html


the overall size and growth rate of the eye and its components, includ-

ing the retina, change throughout ontogeny to achieve optimal visual

perception. To assess ontogenetic changes in squamate eye develop-

ment, we compared embryonic and postnatal eye growth in three model

species showing different RCJ proliferative activities at adult stage (see

Figure 1n), including one high-proliferating lizard (P. vitticeps; Figure 1e),

one low-proliferating lizard (A. carolinensis; Figure 1g), and one low-

proliferating snake (P. guttatus; Figure 1k). Head length rather than age

was used as a proxy of developmental time in our analyses because of

considerable, nonage related intraspecies variations in growth rate at

postnatal stages (see Figure 4a); such variations in reptilian growth rate

have already been shown to be associated with differences in food avail-

ability, social factors, and thermoregulation time (Andrews, 1982). At the

earliest embryonic time point investigated (oviposition time, referred to

as 0 days postoviposition [dpo]), morphogenesis of the neural retina has

already started and both the optic cup and lens vesicle have already

formed in P. vitticeps (Figure 2b,c), P. guttatus (Figure 2j,k), and A. car-

olinensis (Figure 2r). Interestingly, however, P. vitticeps exhibit a signifi-

cantly higher relative embryonic growth rate of the eye compared to

other species (p-values (slopes) < 0.028), as revealed by pairwise compar-

isons of species-specific regressions using ANCOVA analysis (Figure 2a).

This increased embryonic growth leads to a more than 30-fold increase in

AL and ultimately to larger absolute eye size in P. vitticeps at hatching

(Figure 2a,i). Postnatally, the higher rate of relative eye growth is

maintained in P. vitticeps (ANCOVA: p-values (slopes) < 0.006), while P.

guttatus and A. carolinensis show relatively similar eye size relative to HL

throughout embryonic and postnatal periods (ANCOVA: p-values

(slopes) > 0.84; p-values (intercepts) > 0.47).

To investigate the potential role of the RCJ in lifelong ocular/retinal

growth in our selected models, we next inspected the proliferative

activity of the retina during postovipositional embryonic development

by IHC with PCNA. As shown for other vertebrate species, a wide-

spread proliferation throughout the optic cup is visible at early oviposi-

tion stages in squamates (0 dpo; Figure 2c,k). At later embryonic stages,

a gradient of neurogenesis appears, as proliferation ceases in the center

of the optic cup and becomes more confined toward the peripheral ret-

ina. While this general pattern applies to P. vitticeps (Figure 2d–h),

P. guttatus (Figure 2l–p), and A. carolinensis (Figure 2s,t), both the

amount and timing of proliferation differs between species. In

P. vitticeps, the first lamination can already be noticed in the central ret-

ina at 20 dpo (data not shown), while the retinal periphery remains

nonlaminated and highly proliferative at early embryonic stages

(Figure 2c–e). Over this period, no clear boundary between cells of the

presumptive developing CB and neural retina is apparent. At mid-

development (30 dpo), retinal lamination has proceeded to the periph-

ery, as evident from the plexiform layers now delimitating the posterior

part of the RM, and both the RM and a thin neuroblastic layer in the

presumptive inner nuclear layer (INL) are still highly proliferative

(Figure 2f). This remaining proliferative peripheral area will progres-

sively diminish over late embryonic stages and becomes confined to

the RM, the presumptive RCJ directly adjacent to the RM, and the CB

NPE (Figure 2f–h). Shortly before hatching, only a well-distinguishable

pseudostratified epithelium at the RCJ between the low-proliferative

RM and monolayered CB NPE remains highly proliferative (Figure 2h).

Interestingly, similar progressive lamination and proliferative restriction

at the peripheral retina also happen during embryogenesis in P. guttatus

and A. carolinensis. However, these processes appear much faster than

in P. vitticeps, and already at mid-embryonic development the periph-

eral retina displays noticeably fewer proliferating cells (Figure 2m–o,s,t).

Similarly, in contrast to P. vitticeps, the RCJ near hatchling time is

reduced in size and nonproliferative or low-proliferative (Figure 2p).

Altogether, our results indicate a progressive restriction of proliferation

toward the RM and then RCJ region over the course of embryogenesis,

suggesting that the proliferative RCJ observed in adult squamates

already emerges at late embryonic stages. In addition, the expanded

proliferation pattern observed in the developing peripheral retina of P.

vitticeps is coherent with the increased growth rate and relative eye size

of this species already starting from embryonic stages.

3.3 | Molecular characterization of the embryonic
peripheral retina

To further investigate embryonic retinal growth in squamates, and more

particularly the formation and patterning of the proliferative RM and

RCJ, we characterized at the molecular level the peripheral retina in P.

vitticeps at mid-embryonic development (30 dpo). At this stage, retinal

differentiation has proceeded to the periphery and the proliferative RM,

presumptive RCJ, and laminated retina are all apparent, thus allowing

investigation of expression patterns with defined spatial resolution.

Indeed, as already shown for the vertebrate CMZ, this spatial expression

gradient is presumed to reflect the temporal expression sequences of

stem/progenitor and differentiation markers with respect to retinal

development. We thus examined, with ISH and/or IHC, the expression

patterns of classical conservedmarkers of retinal development, including

stem/progenitor, proneural, and postmitotic neuronal differentiation

markers. Similar to retinal stem/progenitor cells in the developing retina

of other vertebrates (Fischer & Reh, 2000; Perron, Kanekar, Vetter, &

Harris, 1998; Raymond, Barthel, Bernardos, & Perkowski, 2006; Todd

et al., 2016), stem/progenitor markers such as Pax6, Vsx2, Rx1, and Hes1

(mRNA levels, Figure 3a–d) as well as SOX9 and SOX2 (protein levels,

Figure 3m,n) are all coexpressed at low levels in the RM, while their

expression becomes relatively higher and exclusive to particular layers

in the differentiated retina (Figure 3a–d,m,n). A similar expression pat-

tern was observed for the glial marker Gfap, which is restricted to a few

cells along the retinal edge of the RM (Figure 3e) and to presumptive

Müller glia cells in the central retina (data not shown). Importantly, the

observed specificity of the different tested markers to particular mature

retinal cell types and layers outside the RM is relatively well conserved

with previous reports in vertebrates, including reptiles (Romero-Alemán,

Monzón-Mayor, Santos, Lang, & Yanes, 2012; Simoniello et al., 2014;

Todd et al., 2016). In addition, despite a slight developmental delay at

the peripheral ventral retina, when compared to its dorsal counterpart,

similar spatial patterns of gene expression were observed in both

regions (Figure 3a–e). Remarkably, with the exception of SOX9 that

appears more restricted to the RM (Figure 3m), expression of all tested

stem/progenitor markers extends anteriorly to the RM toward the pre-

sumptive RCJ and NPE. In the latter regions, our double ISH-IHC

stainings confirm that the majority of proliferating PCNA-positive cells

coexpress stem/progenitor markers such as Hes1 and Pax6 (Figure 3q–

t), thus indicating the presence of an expanded proliferative zone with
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retinal progenitors. In the presumptive retinal INL, in contrast, progeni-

tor markers such as Hes1 are not detected in the layer of proliferating

neuroblasts. Consistent with a spatial gradient of differentiation at the

peripheral retina, proneural genes known to endow progenitors with a

neuronal fate, including Atoh7 and Ascl1, are mainly detected in the

posteriormost part of the proliferative RM (Figure 3f,g), and both genes

then stretch into the peripheral retina INL while tapering off toward the

central retina. A similar expression pattern is observed for Notch1, a

well-known inhibitor of proneural genes, and its downstream target

Hes5 (Figure 3h,i). Finally, key signaling factors involved in neuronal dif-

ferentiation and/or migration, including Neurod1, Otx2, and Reln (mRNA

levels, Figure 3j–l) as well as DCX and HuC/D (protein levels, Figure 3o,

p), are barely detected in the proliferating RM, except for a few cells

expressing early neuronal differentiation markers such as Neurod1 at the

posteriormost part of the RM, and their expression rather stretches

throughout the postmitotic laminated retina (Figure 3j–l). Altogether,

these expression profiles highlight an anteroposterior gradient in the

spatial ordering of genes at the peripheral retina, with stem/progenitor

markers being confined to the presumptive RCJ and RM and early dif-

ferentiating markers more posterior within or directly adjacent to the

RM at the onset of retinal lamination, confirming that the RCJ is gradu-

ally formed during embryonic development.

FIGURE 3 Expression pattern of conserved retinal markers in the peripheral retina of P. vitticeps embryos. (a–l) In situ hybridization showing the

expression of various markers of retinal development at both dorsal (dorsal) and ventral (ventral) regions of the peripheral retina in P. vitticeps
embryos at 30 dpo: Pax6 (a), Vsx2 (b), Rx1 (c), Hes1 (d), Gfap (e), Atoh7 (f ), Ascl1 (g), Notch1 (h), Hes5 (i), Neurod1 (j), Otx2 (k), and Reln (l). (m–p)
Immunohistochemistry with SOX9 (m), SOX2 (n), DCX (o), and HuC/D (p) retinal markers (green) at the peripheral dorsal retina in P. vitticeps
embryos at 30 dpo. Cell nuclei are counterstained with DAPI (blue). (q–t) In situ hybridization showing either the single expression of Hes1 (q) and
Pax6 (s) retinal markers (blue) or their codetection with PCNA proliferation marker (green) by immunohistochemistry (r, t) at the peripheral ventral
retina in P. vitticeps embryos at 40 dpo. Solid arrowheads delimitate the retinal peripheral margin. Scale bars, 100 μm [Color figure can be viewed
at wileyonlinelibrary.com]
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3.4 | Growth-dependent activity of the postnatal
peripheral retina in P. vitticeps

To determine if the identified proliferative RCJ could serve as a source

of retinal progenitors beyond embryonic stages, we next characterized

the activity and gene expression profiles of the postnatal peripheral

retina in P. vitticeps. Based on the species-dependent proliferation

patterns observed at the RCJ during both embryonic and adult stages,

we further hypothesized that this progenitor activity could be

FIGURE 4 Effect of body growth rate on peripheral retina activity in P. vitticeps lizards. (a) Variability in the percentage of total body weight

increment per week in newborn (0–3 months after hatchling) and juvenile (3–12 months) P. vitticeps. Data are shown as mean ± SEM, n = 10 per
group. (b) Dorsal views of representative slow-growing (bottom, body weight of about 80 g) and fast-growing (top, about 180 g) P. vitticeps males
at 2-years old. (c–l’) Immunohistochemistry (c–e’, i, i’, k–l’), double immunohistochemistry (j, j’), or in situ hybridization (f–h’) showing the
expression of various retinal progenitor (SOX9, SOX2, Pax6, Hes1, Rx1), proliferation (BrdU, PCNA), and/or differentiation (DCX, GFAP, HuC/D,
CR) markers at the peripheral dorsal retina in slow-growing (c, d, e, f, g, h, i, j, k, l) and fast-growing (c’, d’, e’, f’, g’, h’, i’, j’, k’, l’) juvenile P. vitticeps.
The names of retinal markers (color-coded according to the immunofluorescence signal for protein and BrdU detection) are shown on the top
right corner in each panel. Solid arrowheads delimitate the retinal peripheral margin, and open arrowheads indicate the boundary between the
monolayered ciliary epithelium and the RCJ. Scale bars, 100 mm [Color figure can be viewed at wileyonlinelibrary.com]
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influenced by the overall eye growth that accompany body size

increase at postnatal stages (Figures 1n and 2a). To test this hypothe-

sis, we took advantage of the individual variations in body growth rate

observed in P. vitticeps, particularly in newborn and juvenile animals

(0–12 months after hatchling, Figure 4a), which lead to considerable

differences in body weight and absolute eye size at similar adult age

(Figure 4b). Comparisons of the peripheral retina in slow-growing and

fast-growing juveniles, based on a cut-off of 10% body weight incre-

ment per week (Figure 4a), immediately reveal a large anteroposterior

expansion as well as an increase in the apical-basal thickness of the

pseudostratified RCJ in fast-growing animals (see, e.g., Figure 4c,c’).

Coherent with this finding, the absolute number of cells expressing

stem/progenitor markers is also markedly increased in this RCJ region

(Figure 4c–d’,f–i’). Likewise, BrdU-positive proliferating cells after

1 week of pulse labeling are more abundant in the RCJ of fast- versus

slow-growing animals (Figure 4e,e’). However, the spatial gradient of

gene expression observed during embryonic retinal development is

rather conserved between the two groups. Regardless of individual

growth rate, all progenitor markers but SOX2 are widely colocalized in

the RCJ and RM, while being virtually absent from the monolayered

CB NPE (Figure 4c–i’). These expression patterns are coherent with

our IHC with BrdU and PCNA proliferation markers, which also indi-

cates that proliferating cells are abundant in the RCJ and more

scattered along the entire length of the CB NPE (Figure 4e,e’,j,j’). In

addition, late postmitotic neuronal markers of amacrine and ganglion

cells such as HuC/D and CR are only detected in the differentiated

laminated retina (Figure 4k–l’), whereas early neuronal differentiation

markers such as DCX are expressed in a few proliferating cells at the

posteriormost part of the RM (Figure 4j,j’), thus indicating the genera-

tion of new neurons.

To further assess the localization and behavior of putative slow-

cycling, label-retaining stem/progenitor cells in the peripheral retina

of P. vitticeps, we next performed BrdU pulse-chase assays at different

postnatal stages (Figure 5). As predicted, immediately following the

BrdU-pulse (Day 1), proliferative cells colabeled with BrdU and PCNA

were found throughout the pseudostratified RCJ in juvenile animals,

but also in all tested adult stages covering the first two-thirds of post-

natal lifetime (Figure 5 and data not shown), suggesting the mainte-

nance of a proliferative RCJ throughout the lifespan. During the chase

period, while BrdU/PCNA-double positive cells still remain in the RCJ

up to Day 113, more diluted BrdU-labeled cells are found away from

the RCJ at the posterior edge of the RM and in the CB NPE (Days

29 and 76), indicating the presence of both cell division and bidirec-

tional migration into the CB and retina after BrdU uptake. Positive

cells become eventually undetectable in the laminated retina and CB,

likely as a result of BrdU dilution through cell divisions (Day 113),

suggesting that progenitors at the RM are differentiating and integrat-

ing rather slowly into the retina, as already observed in other verte-

brates (Fischer & Reh, 2000; Kiyama et al., 2012; Kubota et al., 2002;

Marcus, Delaney, & Easter, 1999). Finally, the persistence of

BrdU/PCNA-double positive cells in the RCJ after more than

16 weeks of chase (Day 113) clearly supports the presence of slow-

cycling cells in the most peripheral zone of the peripheral retina, as

similarly reported in the distal domain of the CMZ in other vertebrates

(Centanin, Hoeckendorf, & Wittbrodt, 2011; Raymond, Barthel,

Bernardos, & Perkowski, 2006; Wan et al., 2016; Xue & Harris, 2012).

Altogether, these results demonstrate the existence of slow-

cycling stem/progenitor cells at the RCJ as well as the maintenance

of a spatial gradient of neuronal differentiation, largely recapitulating

the dynamic gene expression pattern observed during embryonic

FIGURE 5 Identification and localization of putative slow-cycling stem cells in the peripheral retina of P. vitticeps. The top schematic drawing

depicts the experimental strategy and BrdU pulse-chase time points (black arrows). Retinal tissues were collected in adult (>2-years old, top left
panel) and/or juvenile (<1-year old, other panels) P. vitticeps at 1, 15, 29, 76, or 113 days after the first week of BrdU feeding, and sections from
the peripheral dorsal retina were processed for double immunohistochemistry against BrdU (green) and PCNA (red). Solid arrowheads delimitate
the retinal peripheral margin, and open arrowheads indicate the boundary between the monolayered ciliary epithelium and the RCJ. The
localization and number of yellow asterisks reflect the position and relative abundance of BrdU/PCNA double-positive cells, respectively, in the
ciliary epithelium, RCJ, and retinal margin. Only BrdU labeling is shown after 76 days of chase to better highlight the diluted BrdU-labeled cells
scattered outside the RCJ within both the ciliary body and the retina (green arrows). Cell nuclei are counterstained with DAPI (blue). Scale bars,
100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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development, in the postnatal peripheral retina of P. vitticeps. In

addition, our data strongly suggest that this stem/progenitor zone

constitutes a source for continued neurogenesis contributing to

postnatal retinal growth.

3.5 | Comparative characterization of the peripheral
retina in P. guttatus

In contrast to P. vitticeps, the RCJ in juvenile and adult snakes is

strongly reduced in both size and proliferative activity (see Figure 1).

Coherent with this, our molecular characterization of the RCJ in P.

guttatus indicates major differences in the expression patterns of

stem/progenitor and differentiation markers at both embryonic

(Figure 6a–d) and postnatal (Figure 6e–h) stages. In particular,

whereas SOX2 expression expands beyond the RM in a narrow pseu-

dostratified region reminiscent of a RCJ anteriorly adjacent to the RM

(Figure 6b,f), SOX9 is not detected in the latter region but rather

strictly delimitates the anterior border of the RM (Figure 6a,e). Similar

expression patterns were observed for early progenitor (Pax6,

Figure 6d,h) and differentiation (DCX, Figure 6c,g) markers, which are

highly expressed in the laminated retina but not detected at the RCJ

and/or RM. Therefore, the RCJ of mid-embryonic and juvenile P. gut-

tatus is characterized by the virtual absence of progenitor markers

such as SOX9 and Pax6. To further assess the proliferative activity of

the peripheral retina in snakes, a BrdU pulse-chase experiment similar

to that of P. vitticeps was performed in juvenile P. guttatus (Figure 6i).

Coherent with the low PCNA immunodetection in the RCJ or RM of

this particular species (Figure 1k), BrdU-positive cells are only

detected in both the PE and NPE of CB as well as in extraocular struc-

tures such as the spectacle (data not shown) immediately after the

BrdU-pulse (Figure 6i, Day 1). Similarly, no labeled cells were observed

in the RCJ or RM later during the chase period (Figure 6i, Days 29 and

59). These results confirm the low RCJ proliferation in P. guttatus at

both embryonic and postnatal stages, and are in line with the limited

postnatal growth and overall expression pattern of peripheral retina

markers in this species.

4 | DISCUSSION

Following its discovery in amphibians more than 50 years ago

(Hollyfield, 1968; Straznicky & Gaze, 1971), the presence of a CMZ

capable of mediating postnatal retinal growth has been under investi-

gation in a wide range of vertebrate species under various physiologi-

cal and pathological conditions. The general consensus arising from

these studies is a progressive reduction of the CMZ over the course

of vertebrate evolution from fish to mammals (Kubota et al., 2002).

However, one of the most specious groups of terrestrial vertebrates—

squamate reptiles—has remained largely unexplored except for a

recent comparative study investigating a few individuals from three

FIGURE 6 Expression pattern of retinal and proliferation markers in the peripheral retina of P. guttatus. (a–h) Immunohistochemistry (a–c, e–g) or
in situ hybridization (d, h) showing the expression of various retinal stem cell (SOX2, SOX9, Pax6) or differentiation (DCX) markers at the
peripheral dorsal retina in P. guttatus at both embryonic (12 dpo, a–c; 20 dpo, d) and juvenile (<1-year old; e–h) stages. The names of retinal
markers (color-coded according to the immunofluorescence signal for protein detection) are shown on the top right corner in each panel. Only the
retinal peripheral margin is delimited (solid arrowheads), as the RCJ is strongly reduced in snakes. (i) The top schematic drawing depicts the
experimental strategy and BrdU pulse-chase time points (black arrows). Retinal tissues were collected in newborn (<3-months old) P. guttatus
chased for 1, 29, or 59 days from the first week of BrdU feeding, and sections from the peripheral dorsal retina were processed for

immunohistochemistry with BrdU (green). Solid arrowheads delimitate the retinal peripheral margin, and the white asterisk indicates one BrdU-
positive cell in the ciliary epithelium (Day 1, left panel). Cell nuclei are counterstained with DAPI (blue). Scale bars, 100 μm [Color figure can be
viewed at wileyonlinelibrary.com]

EYMANN ET AL. 11

http://wileyonlinelibrary.com


FIGURE 7 Comparative localization of postnatal proliferation and putative retinal stem cells in the peripheral retina of different vertebrate classes.

Phylogenetic relationships of vertebrate lineages with schematic representations of their peripheral retina showing the neural retina (light gray
shading), pigmented epithelium (dark gray shading), ciliary body, and iris for some species. The variable localization of postnatal proliferating cells is
reflected by both the position and color of stars: ciliary marginal zone (CMZ or CMZ-like, blue), retinociliary junction (RCJ, magenta), and ciliary body
epithelium (CB, green). The postnatal maintenance of proliferating cells at the peripheral retina is shown by solid (persistent) or open (transient) stars,
while the relative abundance of postnatal proliferating cells is reflected by the number of stars. The well-established persistence of proliferating cells
(and putative retinal stem cells) in the most peripheral zone of the CMZ in adult sharks, ray-finned fishes, and amphibians is shown with solid blue
stars. A proliferating CMZ-like region has been identified in postnatal turtles and postnatal birds, although the proliferation pattern is age- and/or
species-dependent. In eutherian mammals (including rodents, rabbit, porcine, human), dissociated cells from the pigmented ciliary epithelium have
been shown to generate neurospheres, and a proliferative proximal CMZ that disappears at postnatal stages has been recently identified during
embryogenesis in mice. The nonpigmented ciliary epithelium of the chick CB also contains quiescent retinal stem cells that proliferate when
stimulated with growth factors. Similarly to the situation in lizards and snakes, a proliferative pseudostratified region immediately adjacent to the
retina has already been observed in several vertebrate classes, including marsupial mammals, eutherian mammals, and birds. Proliferation at the RCJ
is highly variable among lizard and snake species, as indicated by the different number of stars [Color figure can be viewed at wileyonlinelibrary.com]
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different species (Todd et al., 2016). Here, we demonstrate for the

first time that both lizards and snakes contain a source of postnatal

proliferating progenitors in a newly identified pseudostratified RCJ

region between the retina and the CB. Similarly to the CMZ situation

in other vertebrates (Centanin et al., 2011; Raymond, Barthel,

Bernardos, & Perkowski, 2006; Wan et al., 2016; Xue & Harris, 2012),

our data indicate that the squamate peripheral retina contains slow-

cycling cells at its extreme periphery, and accumulates proliferating

progenitors expressing conserved retinal progenitor/stem and differ-

entiation markers in a spatial order that recapitulates developmental

gene expression. On the one hand, the peripheral location of squa-

mate progenitors at the RCJ is in agreement with the overall decrease

or absence of proliferating cells at the amniote RM (Figure 7); on the

other hand, we show here that proliferating progenitors are

maintained throughout adulthood in squamates, in contrast to the

transient proliferation patterns observed in postnatal birds, mammals,

and most likely turtles (Bélanger et al., 2017; Dunlop et al., 2004;

Kubota et al., 2002; Marcucci et al., 2016; Reh & Fischer, 2006; Todd

et al., 2016). Although the persistence of a proliferative CMZ in turtles

is still unclear, it is expected to be age- and/or species-dependent, as

proliferating progenitors were not observed in all examined species

(Dunlop et al., 2004; Todd et al., 2016). Importantly, our large-scale

comparison further indicates that the postnatal proliferative activity

of the RCJ is highly variable among squamates, likely explaining the

lack of observations in the eyes of previously published lizard and

snake species (Casañas et al., 2011; Dunlop et al., 2004; Todd et al.,

2016). Indeed, our analyses confirm the overall reduction of RCJ activ-

ity in snakes and in lizard genera such as Anolis and Gallotia. This varia-

tion in adult progenitor activity at the peripheral retina has already

been noticed in other vertebrate classes such as avians, with quail

having a reduced CMZ compared to chicken, thus highlighting the

importance of sampling and species selection in comparative retinal

studies.

Similarly to the situation in lizards and snakes, other populations

of proliferating stem/progenitor cells anteriorly adjacent to the retina

have already been observed at the peripheral retina in several amniote

species (Figure 7). In particular, in vivo evidence exists in chicken

(Fischer & Reh, 2000), opossum (Kubota et al., 2002), and eutherian

mammals such as primates (Martínez-Navarrete et al., 2008;

Tkatchenko, Walsh, Tkatchenko, Gustincich, & Raviola, 2006) and

genetically altered mouse lines (Kiyama et al., 2012; Moshiri & Reh,

2004) for a proliferative pseudostratified NPE reminiscent of the

squamate RCJ (usually referred to as planoretinal junction or pars

plana component of the CB). Although this region in avian and mam-

malian species is only transient and not clearly defined yet at the

molecular level, including its neuroregenerative capacity, these obser-

vations still suggest evolutionary conservation of an epithelial

stem/progenitor cell population next to the neural retina in amniotes

(Figure 7). Consistent with this hypothesis, the adult ciliary epithelium

in avians and mammals, when stimulated with growth factors in vivo

(Abdouh & Bernier, 2006; Fischer & Reh, 2003), has been shown to

contain quiescent retinal stem/progenitor cells and to adopt a pseudo-

stratified configuration resembling the squamate RCJ. Similarly, early

embryonic retinal primordia of amphibians and mammals (Fernández-

Nogales et al., 2019; Hollyfield, 1968; Straznicky & Gaze, 1971),

including the embryonic proximal CMZ recently identified in mice

(Bélanger et al., 2017; Marcucci et al., 2016), show similarities with

the squamate RCJ at least in terms of proliferation pattern and pseud-

ostratification, suggesting that they might be equivalent structures

only maintained in squamates and in some mammals like primates (see

above) at postnatal stages.

Previous vertebrate studies have reported that the proliferative

activity of the CMZ, RM, and/or CB contributes to postnatal retinal

growth and correlates with increase in ocular size, thus ensuring opti-

mal visual perception. For example, both birds and mammals show

determinate growth and reach their final eye size relatively early in

their lifetime, coherent with a transient proliferative activity limited to

a few weeks after birth at the peripheral margin (Ahmad et al., 2000;

Fischer & Reh, 2000; Kubota et al., 2002). In contrast, the retina of

fish and amphibians grows continuously throughout life by continuous

addition of new cells at the peripheral margin, roughly matching the

overall growth of the animal. Similarly to fish and amphibians, and in

accord with the continuous growth of most squamates (Hallmann &

Griebeler, 2018), our data indicate the persistence of progenitor cells

at the RCJ throughout lifetime at least in the tested squamate species.

Moreover, the highly variable proliferation patterns observed at the

postnatal RCJ within or among lizard and snake species significantly

correlate with ocular size and growth rates. Altogether, this set of

results coherently indicates that squamates possess a proliferative

peripheral retina that acts as a source of proliferating progenitors con-

tributing, at least in part, to postnatal ocular growth. Furthermore, as

shown for mammals, birds, and fish, the relatively slow differentiation

and integration of progenitors into the squamate retina suggest that

alternative mechanisms such as passive retinal stretching might also

be involved in compensating for eye growth, a mechanism that might

itself be growth- and/or species-dependent. Besides postnatal ocular

growth, the maintenance of retinal progenitor cells in squamates

might also have potential implications for retinal regeneration and

repair. Indeed, persistent CMZ cells in fish and amphibians have been

shown to participate to the regeneration process after retinal injury

(Reh & Nagy, 1987; Stenkamp, Powers, Carney, & Cameron, 2001),

whereas mature Müller glia, the major type of support cell in the ret-

ina, have been identified as the cellular source of retinal regeneration

in birds and rodents (Fischer & Reh, 2000; Fischer et al., 2001; Karl

et al., 2008; Ooto et al., 2004). Future studies investigating the pro-

genitor potential of RCJ and Müller glia in the squamate retina after

injury remains a topic for future investigation.

In conclusion, our detailed large-scale analysis reveals for the first

time that squamates contain a variable source of postnatal proliferating

progenitors in a pseudostratified RCJ at the peripheral retina. Strikingly,

the RCJ shares with the CMZ a common pseudostratified nature, pat-

tern of slow-cycling cells and progenitor markers, and response to post-

natal ocular growth, suggesting that it might be a functionally

equivalent structure. Our new findings also highlight the remarkable

variation in activity and location of proliferative peripheral retina struc-

tures among and within vertebrate species, indicating that the currently

accepted general scenario of reduced CMZ activity across evolution is

too simplistic.
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