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“What is there in this world that truly makes living worthwhile? 

 Death thought about it. 
- CATS, he said eventually. - CATS ARE NICE.” 

-From Sourcery by Terry Pratchett 
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ABSTRACT
Very-high resolution ultrasound (VHRU, 25-55MHz) is a recently developed method 

for non-invasive assessment of vascular structures. With its increased ultrasound 

frequency, the method allows for noninvasive examination of the vascular wall in 

vivo with an axial resolution in the range of tens of micrometers. These 

characteristics make it a feasible method to determine vascular dimensions of 

superficial arteries and arteries in the pediatric population. This novel method has 

hitherto been validated for the assessment of arterial and venous wall layer thickness 

in children and young adults, but the opportunity to use border detection software 

to improve measurement characteristics, to assess vascular structures in preterm 

and term neonates, to assess intimal changes related with arterial aging, and to 

explore the clinical utility of the method in the assessment of inflammatory vascular 

disorders has not yet been investigated.  

The aim of this thesis was the following: 1. Broaden the toolbox for VHRU image 

analysis, that is, to study the application of a semi-automatic border detection 

software to improve measurement characteristics of the arterial wall layers, 2. To 

assess accuracy, precision and feasibility of the VHRU method in assessing superficial 

arterial wall layers in preterm and term neonates, 3. To validate the VHRU method 

to assess age-related intimal thickening of the arterial wall, and 4. To determine the 

potential to implement the method as a noninvasive tool in the bedside diagnosis of 

giant-cell arteritis of the temporal artery in the outpatient clinic. 

This Thesis shows that there is no significant difference in the technical precision or 

bias of arterial wall layer dimension measurements using a semi-automated border 

detection software compared to electronical calipers, but time of analysis is 

significantly shorter using the automated border detection software (71.5 ± 16.6s vs 

156.6 ± 37.2s, p<0.001), and the software can, therefore, be used for the automation 

of arterial wall layer dimension measurements.  

VHRU is feasible, accurate and precise in the measurement of arterial layer thickness 

(intima-media and intima-media-adventitia thickness) of proximal conduit arteries, 

such as carotid, brachial and femoral, in preterm and term neonates, whereas 
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conventional high-resolution ultrasound (HRU, <15 MHz) was limited by its resolution 

for this purpose. The resolution of VHRU is insufficient in the assessment of more 

peripheral conduit arteries such as the radial artery. The penetrance depth of VHRU 

is insufficient to assess the aorta. 

VHRU is feasible and able to detect a thickened intimal layer, seen as a four-line 

pattern of the arterial far wall in the ultrasound image, in superficial peripheral 

muscular conduit arteries with intima thickness >0.06mm. Measurements leading-

to-leading edge of the intimal layer are accurate compared with histological 

thickness (mean difference 0.007mm, 95% limits of agreement -0.042mm-0.057mm) 

and precise (coefficients of variation: intra-observer 15.7%, inter-observer 19.9%). 

The prevalence of intimal thickening increases with age. The validated method could 

potentially be used to monitor vascular health in the aging population. 

VHRU is feasible, accurate and precise in assessing histological transmural 

inflammation related intimal thickening in patients with giant-cell arteritis of the 

temporal artery. The method was however not useful in patients with inflammation 

limited to the adventitia or without inflammation on histology. VHRU derived intima 

thickness >0.3mm is more specific and clinically more useful in the detection of 

transmural inflammation compared with the halo-Doppler sign obtained with 

conventional HRU (receiver operating characteristic, ROC area under curve 0.99, 

CI95% 0.97-1.00 vs. 0.75, CI95% 0.54-0.96, p=0.026). Intimal thickening is detectable 

for a longer period after start of glucocorticoid treatment compared with the halo-

sign obtained with HRU. 

In conclusion, very-high resolution ultrasound is an emerging method for the 

assessment of superficial vascular wall layer structures. The harmless and non-

invasive method can detect near-microscopical changes in the vascular wall in human 

subjects from the newborn stage to old age. Very-high resolution ultrasound has a 

clinical potential in the non-invasive assessment of vascular health and disease 

related pathology. 
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INTRODUCTION
 

The development of ultrasonography has provided the possibility to non-invasively 

and without harm assess tissue structure and motion in vivo. Gradual equipment 

improvement of medical high-resolution ultrasound (HRU; 8-15 MHz) over time 

provided the opportunity to use ultrasound in the assessment of vascular structures 

in different populations.  

In 1986 Pignoli et.al described in their landmark study how to reliably determine 

vascular wall dimensions using B-mode ultrasonography.(1,2) By comparing 

histologic slides of the carotid artery with images taken using B-mode ultrasound of 

the same artery, they were able to demonstrate a double-line pattern in the 

ultrasound image of the elastic artery far wall. The first line was attributed to the 

ultrasound wave reflection at the blood to tunica intima -interphase, and the second 

reflection observed at the tunica media to tunica adventitia –interphase, with the 

distance between the interphases corresponding to the combined intima-media 

thickness (IMT).(3) 

Sonographic measurements of the carotid intima-media thickness (CIMT) has since 

been adapted as a surrogate marker for subclinical early atherosclerosis and risk 

stratification of cardiovascular disease events including coronary artery disease, 

stroke, and peripheral artery disease in research settings.(4,5) The utility of CIMT-

measurements for risk stratification in clinical settings has recently been disputed, 

and it has, as a consequence, been removed from the latest clinical guidelines.(6,7) 

In 2010 Sarkola et al. described the use of very-high resolution ultrasound (VHRU; 

25-55 MHz) for the analysis of the vascular wall layers in smaller muscular conduit 

arteries. The ultrasound frequency related improved resolution allowed arteries to 

be examined in more detail. A triple line pattern in the ultrasound image was 

described with the separate and simultaneous quantification of the far wall 

combined intima-media (IMT) and adventitia (AT) thickness. The measured thickness 

of the first reflection grossly overestimated the thin healthy intima layer thickness 

(IT) in animal specimens.(6) The increased resolution provided the opportunity to 
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image superficial muscular arteries IMT and AT not only in adults and adolescents, 

but in small children as well.(8) 

This thesis further develops the VHRU method. It implements new tools for image 

analysis, evaluates the use of VHRU to assess the arterial wall structure in preterm 

and term neonatal populations, assesses the clinical utility of VHRU in bedside 

outpatient giant cell arteritis diagnosis, and further validates the method for the 

quantification of IT in the aging adult population. 

  



14 
 

1. LITERATURE REVIEW
1.1 PRINCIPLES OF ULTRASOUND IMAGING
Ultrasonography is based on the reflection of acoustic waves moving in tissue. 

Piezoelectric elements in the transducer converts electrical energy to pressure 

waves.(9) As the sound wave propagates in the tissue, it will interact with the tissue 

creating reflections that are recorded and processed.(10) 

The acoustic impedance of tissue is the resistance of the tissue imposed on the 

propagating ultrasound beam. It is related to the density of the tissue influencing 

ultrasound propagation speed. The differences in impedance between different soft 

tissues is minute, whereas the acoustic impedance of bone is more than four times 

higher than that of soft tissue, and the acoustic impedance of air is immensely low 

resulting in diminished ultrasound reflections. 

 As the ultrasound beam reaches an interface of tissue with an increase in acoustic 

impedance, part of the acoustic wave will be reflected. The amount of reflected 

sound is directly related to the difference in acoustic impedance. Consequently, most 

of the ultrasound beam will be reflected at the border between soft tissue and bone. 

Both bone and air will thus limit imaging beyond the border. 

Brightness mode (B-mode) ultrasound is based on the ultrasound waves reflected 

and detected by the transducer.(11) In B-mode imaging, differences in the intensity 

and transmission time of the reflected wave are translated into a 8 bit grey-scale 

image.  

In optimal situations the tissue border is smooth and perpendicular to the ultrasound 

wave. In these occasions part of the wave will be reflected to the transducer and the 

rest will travel further through the tissue, i.e. specular reflection (Figure 1a). In the 

ultrasound image, the leading edge, defined as the surface of the bright reflection 

zone closer to the transducer, corresponds the true anatomical spatial tissue border. 

The leading edge is followed by a reflection trail ending in a trailing edge of the bright 

reflection zone. The thickness of the reflective trail, that is the distance between the 

leading and trailing edge, is independent of the thickness of the reflective tissue and 

is mainly related to ultrasound frequency and gain settings.  
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If the reflective interface is not completely smooth, part of the ultrasound beam will 

be scattered away from the transducer, reducing the intensity of the returning 

ultrasound wave, i.e. diffuse reflection (Figure 1b). If the ultrasound beam hits a 

surface with an angle that is not perpendicular to the soundwave, the reflection will 

divert away from the transducer, i.e. refracted, reducing image quality (Figure 1c). 

The ultrasound beam will further interact with small structures causing the 

ultrasound beam to scatter in all directions (Figure 1d). 

 

Figure 1. Different kinds of ultrasound reflection: a) specular reflection, b) diffuse 
reflection, c) refraction, and d) scattering. 

 

Image resolution and imaging depth are important factors to consider when imaging 

vascular structures, and both are related with ultrasound frequency.(12) Whereas 

the resolution increases with frequency, the imaging depth or the penetrance is 

reduced. The main categories of resolution are the following (Figure 2a):  
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1. Temporal resolution, the smallest time interval at which two different events can 

be separately distinguished. A high temporal resolution is important when measuring 

movement of e.g. the arterial wall or the heart. The temporal resolution is related to 

the transmission time, and therefore the imaging depth, and the number of scan 

lines.  

2. Axial resolution is the ability to spatially distinguish two points in the depth of the 

image. The axial resolution is of great importance when assessing different layers of 

the vascular wall with ultrasound. It corresponds directly to the wavelength and, 

thus, the frequency of the transducer as follows:  

   

Where d is the axial resolution, and λ is the wavelength. The wavelength is related to 

the propagation speed in tissue (c, on average 1540m/s in soft tissue) and the 

frequency, f, as follows: 

 

And the axial resolution

 

Higher frequencies then provide a smaller pixel size in the axial direction and 

improved resolution (Figure 3a).(13) 

3. Lateral resolution is the ability to distinguish two points in the plane of the 

transducer. The lateral resolution is dependent on the beam width, that is related to 

width of the apparatus, the wavelength, and the depth. The lateral resolution varies 

across the image and is highest at the focal point after which it diminishes. 

4. Out-of-plane resolution or slice thickness resolution is the ability to distinguish the 

plane from surrounding areas, i.e. the thickness of the field of view. The out-of-plane 

resolution is usually similar to the lateral resolution and is important when imaging 

small arterial structures bordering the resolution limit (Figure 2b).(14) 
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Figure 2. Schematic images a) of different spatial resolutions of ultrasound, and b) 
how the different resolutions affect imaging of vascular structures in the transverse 
plane. The axial resolution determines if two independent layers can be separately 
viewed, whereas insufficient out-of-plane resolution may distort the image leading to 
inexact measurements. 

 

Imaging depth, the penetrance, of ultrasound is influenced by the output intensity of 

the ultrasound beam and the attenuation of ultrasound in tissue. Attenuation is the 

rate at which the ultrasound beam weakens when passing through tissue. When the 

sound wave propagates in the tissue, part of the energy from the wave will be 

absorbed by the tissue and converted to heat, part will be reflected at tissue 

interfaces and part will be diverged away from the transducer.(9)  

The gradual absorption of energy increases for shorter wavelengths and higher 

ultrasound frequencies. As the output intensity is relatively constant between 

devices, the penetrance depth is mainly related to tissue density and inversely 

related to ultrasound frequency.(15) The penetrance depth in soft tissue of typical 

ultrasound systems can be calculated as approximately: 

 or  

Where Dmax is the maximal penetrance distance of the ultrasound system, λ is the 

wavelength, c is the propagation speed in tissue, and f is the frequency of the 

transducer (Figure 3b).(13,16) 
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Figure 3. The relationship of a) ultrasound transducer frequency and axial resolution 
and b) ultrasound transducer frequency and penetrance for high-resolution 
ultrasound (HRU) and very-high resolution ultrasound (VHRU). 
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The choice of transducer is, thus, a balance between penetrance and resolution.(17) 

The frequency should be low enough to allow sufficient penetrance, but high enough 

to optimize image resolution. In a clinical setting, the frequency range of ultrasound 

is typically 2-20 MHz, with the lower frequencies mainly used for scanning of deeper 

targets such as organs in the abdominal cavity.(11) Smaller and superficial structures 

including blood vessels require a higher frequency to be appropriately assessed in 

the near field. Still, the highest frequencies currently applied in a clinical setting (15-

20MHz) are limited by the axial resolution when imaging peripheral smaller muscular 

conduit arteries and arteries in small children.(18) 

1.2 ARTERIAL AGING
The large and medium sized arteries are divided into categories of elastic and 

muscular arteries differing by size and histology. The elastic arteries are the arteries 

most proximal to the heart, such as the aorta, subclavian, carotid and iliac arteries. 

The muscular conduit arteries are smaller and distal to the elastic arteries. Most of 

the further named arteries, such as the brachial, femoral and radial arteries are 

muscular arteries.(19) 

The arterial wall of large and medium sized arteries is divided into three layers: the 

intima, the media, and the adventitia, each separated by two elastic laminae (Figure 

4a and 4b).(20,21) The intima consists of a layer of endothelial cells supported by a 

layer of elastic tissue (internal elastic lamina, IEL). In healthy arteries, the intimal 

thickness is very thin, often difficult to quantify and measuring 10-30 μm on 

histological sections. 

The media is the thickest layer of the arterial wall with a thickness ranging from 600-

1000 μm for the aorta and 50-150 μm for smaller muscular arteries, such as the radial 

and coronary arteries.(8,22) In elastic arteries the media consist of smooth muscle 

cells and circumferential elastic fibers, whereas the media of muscular arteries 

consists predominantly of smooth muscle cells.(20)  

The outermost elastic layer of the media is called the external elastic lamina (EEL), 

underneath which lies the adventitia. The structure of the adventitia varies between 
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arteries and locations and consist generally of an inner compact and an outer loose 

layer of elastic fibers and connective tissue.(23) 

Arterial aging starts during childhood.(24-30) Throughout life the arterial wall will be 

exposed to shear stress, oxidative stress and inflammation leading to endothelial 

dysfunction and remodeling of the arteria wall. There will be increased amounts of 

collagenous fibers and a reduction in smooth muscle cells and elastic fibers, with 

fragmentation of the elastic laminae resulting in increased arterial stiffness.(31-37)  

Smooth muscle cells will further migrate to the intimal layer causing diffuse intimal 

thickening (Figure 4c).(38-41) Diffuse intimal thickening is seen as an adaptive 

physiological process in vascular ageing and not considered part of the atherogenic 

process.(42) Evidence, however, suggest that there’s a link between cardiovascular 

morbidity and diffuse intimal thickening, and that intimal thickening is more 

abundant in atherosclerosis prone regions.(43,44) One suggested mechanism is that 

diffuse thickening of the intima damages the endothelium increasing its permeability 

for lipids. It will, thus, allow for lipid accumulation in the vascular wall. A lipid-driven 

inflammation will further lead to plaque formation and calcification (Figure 4d).(45-

49)  
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Figure 4. Histology of a) and b) a temporal artery without evident intimal thickening 
or remodeling of the vascular wall, c) a temporal artery with diffuse intimal 
thickening, and d) a temporal artery with diffuse intimal thickening and focal 
calcification of the vascular wall. AT – adventitia; CAL – Calcification; IEL – Internal 
Elastic Laminae; IT – Intima; MT – Media. 
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1.3 ASSESSMENT OF THE ARTERIAL WALL USING ULTRASOUND
As the ultrasound waves travel through the vascular wall it will cause a reflection at 

the interface of two mediums of different acoustic impedance. The leading edge 

corresponds to the true tissue border, whereas the trailing-edge reflects scatter in 

tissue related to transducer frequency and gain setting.  

The acoustic impedance changes with the histological layers of the arterial wall and 

will thus cause echogenic reflections at the borders with intermediate echolucent 

regions. If the resolution is sufficient, there will be four reflective regions in the 

arterial wall, whereas insufficient resolution will cause fusion of the regions in the 

ultrasound image.  

The first reflection appears at the lumen-intima interface as the acoustic impedance 

increases from blood to intima wall tissue (Z1). The second reflective region is at the 

internal elastic lamina between the intima and the media as elastin has a higher 

acoustic impedance than the surrounding layers (Z3). The third reflection is similarly 

at the external elastic lamina between the media and the adventitia (Z5). The last 

reflection appears at the edge between the adventitia and the perivascular tissue 

(Z7).(3,50,51) The intermediate zones Z2, Z4, and Z6 are variably echolucent regions 

without ultrasound reflection. Arterial wall layer thickness measurements with 

ultrasound are based on the distance between different reflective zones. These 

seven echo zones of the arterial wall (Z1-7) are schematically presented in Figure 5 

and will be referred to throughout this thesis.  
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Figure 5. Schematic image of the different reflective zones and their histological 
counterparts of the arterial wall. Z1- Zone 1, reflection at the border of the vascular 
lumen and the intima; Z2 – Zone 2, echolucent intima zone; Z3 – Zone 3, reflection 
from the internal elastic lamina; Z4 – Zone 4, echolucent media zone; Z5 – Zone 5, 
reflection from the external elastic lamina; Z6 – Zone 6, echolucent adventitia zone; 
Z7 – Zone 7, reflection from the adventitia and vascular wall border. Note that the 
histological borders correlate with the leading edge of the reflection. AT – Adventitia 
thickness; EEL – External elastic lamina; IEL – Internal elastic lamina; IT – Intima 
thickness; LD – Lumen diameter; MT – Media thickness. 

 

In 1986 Pignoli et al. first published their research on carotid artery ultrasound and 

described the double line pattern seen in the carotid artery far wall. It was shown to 

correspond to the intima-media thickness (IMT) of the artery (Figure 6). (1,2) The 

results were further confirmed by multiple independent groups stressing the 

importance of measurements performed at the far wall (rather than the near wall) 

and using the leading-to-leading edge technique. (52-54)  
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Figure 6. Schematic and ultrasound images of a carotid artery using a 25MHz 
transducer. Note how the intima and adventitia are not distinguishable and the echo 
zones Z1-3 and Z5-7 are fused.  IMT – Intima-media thickness; LD – Lumen dimension. 
Modified from Sundholm et.al. 2019 (III). 

 

Carotid artery intima-media thickness (CIMT) has since then been confirmed as an 

independent predictor of cardiovascular disease including stroke and is widely used 

as a surrogate marker for cardiovascular disease in research settings.(55-62) The 

relevance of CIMT measurements in clinical settings has lately been disputed, as the 

evidence of added prognostic values is contradictory. Some studies suggest that 

there is no evident increase in prognostic value compared to traditional risk scores, 

e.g. the Framingham score.(63,64) As a result CIMT measurements are no longer 

recommended  in the latest clinical guidelines.(6,7)  

The limitations of the methods are suggested to be related to a non-pathological age 

related increase in CIMT, whether measurements are done in the common or 

internal carotid areas, inclusions of plaques, and inevitable technical variation in the 

measurement.(65,66) 

These limitations increase the need for rigid and standardized measurement 

protocols and minimization of technical variance e.g. using automated measurement 

systems and comparing measurements with references for age.(66-68) 
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1.4 VERY-HIGH RESOLUTION ULTRASOUND
The use of very-high resolution ultrasound (VHRU, 25-55MHz) has during the last 

decade been adopted in the assessment of vascular morphology in vivo.(18,69) It was 

primarily developed for preclinical use and mainly to investigate anatomy and 

pathology of organs in small mammals.(70,71) The higher frequencies of this method 

allow the visualization of the vascular wall structure in almost microscopical detail 

(axial resolution 0.015-0.033mm), and limited mainly by its penetrance (as seen in 

Figure 3), allowing imaging of superficial peripheral conduit arteries and vascular 

imaging in small children.(8,18) 

VHRU derived measurements of peripheral artery IMT has been shown to be 

applicable in different populations and study settings, and has been suggested as a 

surrogate marker for cardiovascular disease similar to CIMT.(72-77) VHRU has 

further been shown to be beneficial when assessing vascular wall damage as a 

sequalae to intravascular and surgical interventions and as an aid for vascular access 

and cannulation.(78-82)  

Different non-invasive ultrasound derived estimations of the adventitia thickness 

(AT) of the carotid artery has previously been attempted using HRU. The total arterial 

wall thickness was defined by Hodges et. al. as the distance from the far wall arterial 

lumen to the trailing edge of the echogenic zone surrounding the IMT (Z5-7) showing 

great repeatability but without histological verification.(83) Skilton et al. introduced 

the concept of extra media thickness. They measured the distance from the leading 

edge of the echogenic zone at the lumen - far wall interface of the jugular vein to the 

trailing edge of the adventitia to media transition area (EEL) of the common carotid 

near wall. The extra media thickness method was reported to reflect carotid artery 

AT, but inevitably included perivascular tissue. The method was introduced without 

histological verification.(84,85) Since then a handful of studies have assessed the 

relation of extra media thickness with cardiovascular disease.(86-88) These methods 

are, however, limited by lack of proper validation. 

Early in vitro validation of the VHRU method on animal arterial specimen showed a 

distinct triple line pattern in muscular arteries with the method reported as an 
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extension to the traditional double-line pattern method originally validated for the 

carotid artery IMT assessment (Figure 7a). Leading-to-leading edge measurements 

of the separated Z5-Z7 in the triple line ultrasound image corresponded to the 

histological AT. A similar pattern was, however, not seen in elastic arteries, and this 

was speculated to be related to differences in the composition of the adventitia in 

the different artery types. (18)  

The increased resolution of VHRU frequencies and experiences of intima layer 

assessments using intravascular ultrasound (IVUS) also generated an interest of 

applying non-invasive VHRU for the assessment of superficial conduit artery IT. In 

2001 Rodriguez-Macias et.al. reported on a method assessing IT measuring the 

leading-to-trailing edge distance of the first echogenic zone of the artery far wall with 

a 25MHz transducer. The authors concluded that the ultrasound-derived IT 

overestimated the histological IT.(89) The VHRU-IT method was later in 2007 

validated by Osika et al with 55 MHz, using silicone phantoms and mesenteric 

arteries with evident intimal thickening (100-400μm), but without histological 

validation in the peripheral muscular conduit artery IT range (<100 μm).(69) Since 

then the leading-to-trailing edge method has been further evaluated, and its use as 

a surrogate marker for cardiovascular disease has been assessed in multiple 

studies.(90-99) The interpretation of these results is difficult due to the controversial 

validation of the method based on a leading-to-trailing edge principle.  

The leading-to-trailing edge method has been disputed, as the accuracy of the trailing 

edge border is influenced by ultrasound scatter, and the thickness of the ultrasound 

reflection is independent of the thickness of the structure generating the reflection. 

(3,68)  Sarkola et.al. compared VHRU measurements of IT obtained with the leading-

to-trailing edge method, as suggested by Osika et al (70), with histology IT in healthy 

animal arterial specimens. They found that the VHRU derived IT grossly 

overestimated histological IT and showed no correlation with histological IT. They 

concluded that the variability observed in the VHRU IT measurement of the healthy 

artery using the Osika method is due to technical variability in the VHRU leading-to 

trailing edge measurement (i.e. background noise), and that the healthy artery IT is 
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below the axial resolution limit and, thus, beyond the resolution of VHRU 

frequencies.(18)  

Vatanen et.al. recently described a distinct four-line pattern of the arterial far wall 

obtained with VHRU among long-term child cancer survivors that was related with 

radiotherapy in early childhood. The four-line pattern allowed IT measurements 

leading-to-leading edge within the near blood intima region, and this was interpreted 

to represent diffuse intimal thickening allowing ultrasound quantification of IT. 

However, their measurements were reported without histological verification 

(Figure 7b).(100) 
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Figure 7. Schematic and ultrasound images (55MHz) of radial arteries with a) no 
intimal thickening, showing the triple-line pattern, note how the intima is beyond the 
axial resolution and zones Z1-3 are fused, and b) intimal thickening seen as a four-
line pattern with seven distinct echo zones (Z1-Z7). The scale bar represents 1mm.  LD 
– Lumen dimension IT – Intima thickness; IMT – Intima-media thickness; MT – Media 
thickness; AT – Adventitia thickness. Modified from Sundholm et.al. 2019 (III).  
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1.5 BORDER DETECTION SOFTWARE
Measurements of arterial wall dimensions using manual electronical calipers (EC) are 

time consuming and prone to technical variation due to interobserver variability in 

image interpretation.(68,101) The development of semi-automated and later fully 

automated border detections software were initiated to address these 

issues.(3,102,103)  

There are now multiple software available that use different algorithms to identify 

the borders of the lumen and the vascular wall, either with the aid of human 

supervision or fully automated.(102-109) The commercially available systems are 

developed for HRU systems and do not currently support measurements of intima or 

adventitia thickness. The software is limited mainly to CIMT and plaque identification 

and have not been validated for analysis of VHRU images. 

The main benefits of border detection software include less interobserver 

dependence and variability over time avoiding measurement drift. The semi-

automated systems still slightly outperform the fully automated 

systems(101,110,111), and their use are recommended by current 

guidelines.(7,67,112) The software currently available are, however, validated for 

IMT and plaque measurements only. 

1.6 ULTRASOUND DIAGNOSTICS OF GCA

1.6.1 GIANT CELL ARTERITIS OF THE TEMPORAL ARTERY

Giant cell arteritis (GCA) is an inflammatory vasculopathy affecting predominantly 

medium and large size vessels that has a well-defined adventitial vasa vasorum.(113-

115) It is the most common primary vasculitis with a global incidence of 10/100 000 

and an even higher incidence in northern Europe (20/100 000).(116-119) The peak 

incidence is between ages 70 and 80 years, and the disease is rarely seen among 

individuals younger than 50 years old. 65-75% of affected individuals are women, and 

there is a 50% comorbidity with polymyalgia rheumatica.(119-121) 

The inflammation in GCA is to be derived from activation of dendritic cells in the vasa 

vasorum around the vascular wall.(122,123) The activated dendritic cells infiltrate 
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the vascular wall recruiting CD4+ T-cells and macrophages causing 

inflammation.(124) There is an increased matrix metalloproteinase activation and 

smooth muscle cell migration to the intima causing destruction of the elastic laminae 

and intimal hyperplasia.(125-127) The intimal hyperplasia can cause lumen occlusion 

and ischemic complications distal to the inflammation. Visual loss is the most feared 

ischemic complication seen in around 15% of untreated patients.(128,129) 

The golden standard for GCA diagnosis is biopsy of the temporal artery showing 

marked inflammation of the vascular wall.(130-132) The biopsy is, however, not 

flawless. The inflammation may be segmental causing false-negatives. The sensitivity 

ranges from 32-90%, with reduced sensitivity in patients with predominantly extra-

cranial large vessel vasculitis and/or prolonged glucocorticoid treatment.(133-140) 

Biopsy of the temporal artery is further an expensive and invasive  procedure and, 

even though complications are scarce, it is not risk free. Furthermore, it is not 

applicable for follow-up assessments.(141-143) 

1.6.2 THE HALO-SIGN IN HIGH-RESOLUTION ULTRASOUND

In 1997 Schmidt et al. described a hypodense perivascular halo sign in the temporal 

artery of patients with GCA using colour Doppler HRU (Figure 8).(144) The halo-sign 

was described to represent the oedematous and thickened vascular wall. Thus, grew 

the interest to refine this non-invasive tool for GCA diagnostics.(145-158)  

The halo-sign was shown to be specific and sensitive in the setting of transmural 

inflammation, with a sensitivity of 68-75% and a specificity of 83-91% for an 

unilateral halo sign and a specificity of 100% for a bilateral halo sign with slight 

reduction in sensitivity (46%), confirmed by meta-analyses.(159-163) 

A major drawback of the method is significant loss of sensitivity after only 2-4 days 

glucocorticoid treatment.(164) A further limitation is the operator dependency and 

subjectivity of the interpretation leading to variable results. There has been a call for 

standardization of imaging protocols to refine the diagnostic process.(165,166) For 

instance, cut-off values for diagnosis have been reported to reduce the rate of false 

positives.(157,167,168).  
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Figure 8. The perivascular halo-sign diagnostic for giant-cell arteritis as seen with a 
15MHz transducer. DA – Colour Doppler representing the blood flow of the lumen; HA 
– a dark halo surrounding the lumen, representing an oedematous, thickened 
vascular wall. Modified from Sundholm et.al. 2019 (IV). 

 

The method is robust and the halo sign has been included in the latest EULAR 

recommendations for diagnostic criteria of GCA as an alternative to temporal artery 

biopsy.(169-172) So far only a handful of studies has assessed the utility of VHRU for 

the assessment of temporal artery morphology in GCA in small samples and without 

diagnostic utility assessment, or comparison to HRU. (173-176) 
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2. OBJECTIVES
 

I. To assess the feasibility of a semi-automatic border detection software on 
very-high resolution ultrasound images and explore benefits regarding 
analysis time and precision compared with manual electronic calipers. 
 

II. To study the feasibility, accuracy and precision of non-invasive very-high 
resolution ultrasound to assess arterial wall morphology in preterm and 
term neonates in vivo, and to compare the method with conventional 
high-resolution ultrasound. 
 

III. To validate the very-high resolution ultrasound derived four-line pattern, 
in comparison to histology, as a method to quantify arterial intima 
thickness non-invasively in vivo. 
 

IV. To study the clinical diagnostic utility of very-high resolution ultrasound 
in comparison with conventional high-resolution ultrasound in the 
assessment of temporal artery manifestations of giant cell arteritis. 
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3. METHODS
3.1 RESEARCH SETTING AND STUDY DESIGN
This study was carried out at the Children’s Hospital, Helsinki University Hospital, 

between 2011 and 2018. All studies are prospectively recruited cross-sectional 

studies.   

3.2 ETHICS
The local research ethics board approved the study and written informed consent 

was obtained from patients and from parents of minors. Permission to use the Vevo 

770 equipment (Visualsonics, Toronto) for studies on human subjects was obtained 

from the Finnish National Supervisory Authority for Welfare and Health, Valvira. 

3.3 STUDY POPULATIONS

3.3.1 STUDY I

The study population of study I consisted of 10 healthy subjects of both sexes, 

including both adults and children (age range 5-56 years). The population was 

investigated at two occasions two weeks apart between December 2011 and January 

2012. Exclusion criteria were previously diagnosed cardiovascular disease and 

previous surgical or intravascular interventions to carotid, brachial, radial, femoral or 

posterior tibial arteries assessed in the study.  

3.3.2 STUDY II

The study population consisted of 25 neonates of different gestational ages (range 

from 33+0 to 41+5 weeks) and weights (range from 1570 to 4950 gram) recruited 

between November 2011 and January 2014 within 3 days of delivery at the Women's 

Hospital, Helsinki University Hospital. Subjects with cardiac or extra cardiac 

malformations, or medication affecting the cardiovascular system during the 

antenatal or postnatal periods were excluded. 

3.3.3 STUDY III AND IV

 For study III and IV we recruited 74 (study III) and 78 patients (study IV) with 

suspected giant cell arteritis (ages 40-86 years) referred to the unit of Vascular 
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Surgery at Helsinki University Hospital for biopsy of the temporal artery between 

August 2015 and May 2018.  

Study III and IV excluded subjects with failed biopsy (N=3). Study III further excluded 

all patients with any sign of inflammation on temporal artery biopsy (N=20), biopsies 

sectioned diagonally precluding reliable assessment of vascular dimensions on 

histology (N=8), and patients missing vascular VHRU images of sufficient resolution 

due to equipment breakdown (N=6), with 37 subjects included in the final analysis.  

Study III further included a convenience sample (N=380) recruited in other previous 

or current ongoing longitudinal research projects consisting of 1. young healthy 

children and adolescents (age 0-18 yrs., n=139 (8)), 2. teenagers with type 1 diabetes 

(age 13-16 yrs., n=39, unpublished), 3. healthy males (age 20-46 yrs., n=24, 

unpublished), and 4. a sample of  women with obesity and or gestational diabetes 

(age 28-51 yrs., n=178, unpublished). 

3.4 ULTRASOUND EQUIPMENT AND IMAGE ANALYSIS SOFTWARE

3.4.1 VERY-HIGH RESOLUTION ULTRASOUND SYSTEMS (VHRU)

Very-high resolution images were obtained using Vevo 770 (VisualSonics, Toronto, 

Canada, 2005) for study I-II and for the first 41 subjects of study III-IV, and using Vevo 

MD (VisualSonics, Toronto, Canada, 2016) for the remaining subjects in study III-IV. 

The technical details of the VHRU devices and their transducers are shown in Table 

1. 

3.4.2 CONVENTIONAL HIGH-RESOLUTION ULTRASOUND (HRU)

Conventional HRU systems in this study were GE Vivid 7 (GE Healthcare, Chicago, IL, 

USA, 2001) equipped with 7 MHz and 12MHz transducers (study II), and for study IV, 

GE LOGIQ e (GE Healthcare, Chicago, IL, USA, 2015) equipped with a 18MHz vascular 

transducer for the first 41 subjects and the Vevo MD equipped with a 15MHz 

transducer for the rest. 
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Table 1. Very-high resolution ultrasound systems and the transducers used in this 
study. From the supplemental material of Sundholm et.al. 2019 (III), used with 
permission from Elsevier 

 

3.4.3 IMAGING PROTOCOL

All images were obtained at rest in supine position. Care was taken not to compress 

the artery and the highest frequency allowing visibility of the far wall was used. 

Images were recorded perpendicular to the vascular wall, with gain settings and focal 

depth adjusted to reduce scatter, and to optimize image quality.  

Images of the carotid artery for measurements of vascular dimension were 

processed according to guidelines(4) 1 cm proximal to the bulb (study I-III) and the 

arteries were further screened for plaques throughout the bulb and bifurcation as 

Ultrasound System Vevo 770 Vevo MD 

Release Year 2005 2016 

Transducer type Single Mechanical Multiple electrical 

Image post-processing None Despeckling filter 

Multi-focus No Yes 

Transducers RMV710B UHF22 

Centre transmit 25MHz 15MHz 

Frequency range 12-38MHz 10-22MHz 

Axial Resolution 70μm 100μm 

Penetrance 22.5mm 38.4mm 

Transducers RMV712 UHF48 

Centre transmit 35MHz 30MHz 

Frequency range 17-53MHz 20-46MHz 

Axial Resolution 50μm 50μm 

Penetrance 13.0mm 23.5mm 

Transducers RMV708 UHF70 

Centre transmit 55MHz 50MHz 

Frequency range 22-83MHz 29-71MHz 

Axial Resolution 30μm 30μm 

Penetrance 8.0mm 10.0mm 
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far as visibility allowed (study III).  The radial artery was imaged 1 cm proximal to the 

palma manus (study I and III), the brachial artery 2 cm proximal to the cubital skin 

fold (study I-III), the femoral artery at the inguinal skin fold (study I-II) and the 

posterior tibial artery at the level of the medial malleolus (study I). The temporal 

artery was screened from the zygoma arch distally throughout the common temporal 

artery (study III-IV), as well as the parietal and frontal branches after bifurcation. 

Images were stored as moving video clips and later analyzed offline. 

3.4.4 IMAGE ANALYSIS SOFTWARE

VHRU images were analyzed using manual electronic calipers using vendor software 

Vevo 3.0.0 (Vevo 770) and VevoLab 2.0.0 (Vevo MD) (Study I-IV), and dimensions 

calculated as a mean of three measurements. In study I we further used a semi-

automated border detection software (AMS, Arterial Measurement System (103) 

gustav@alumni.chalmers.se). GE Vivid 7 images were analyzed in AMS using 

electronic calipers, and GE LOGIQ e images using ImageJ 1.51J8 (National Institutes 

of Health, USA,(177)). 

3.4.5 IMAGE ANALYSIS PROTOCOL

Vascular dimensions were measured from the far wall in end-diastole using the 

leading-to-leading edge method. Lumen diameter (LD) was defined as distance from 

the leading edge of the near wall intima-lumen interphase to the far wall leading 

edge of intimal-lumen interphase (Z1). Intima-thickness (IT) was measured from 

leading edge of Z1 to the leading edge of Z3. Intima-media thickness (IMT) was 

measured from leading edge of Z1 to leading edge of Z5. Intima-media-adventitia 

thickness (IMAT) was measured from leading edge of Z1 to leading edge of Z7. (Figure 

5 & 9.) Adventitia thickness was calculated as the difference between IMAT and IMT. 

Image quality was subjectively graded into high or low quality according to visibility 

of the far wall in the ultrasound clip.  
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Figure 9. Schematic images showing how leading-to-leading edge measurements of 
the far wall were performed, and corresponding dimensions in a) arteries with 
double-line pattern, b) arteries with triple-line pattern, and c) arteries with four-line 
pattern. Echo zones are defined in Figure 5 IT – Intima thickness; Intima-media 
thickness; MT – Media thickness; AT – Adventitia thickness; LD – Lumen dimension. 

 

Carotid arteries were evaluated for plaques (study III) according to the Mannheim 

consensus, defining a plaque as a focal thickening of IMT fulfilling one of the following 

criteria 1. IMT>1.5mm, 2. IMT increase of 0.5mm, or 3. >50% compared to the 

surrounding IMT. (67) 

The perivascular Halo-sign in patients with suspected GCA was evaluated both 

subjectively and measured as a ratio of the perivascular halo area to Doppler lumen 

area as follows: HRU-HDR = Halo-area/doppler-area (Figure 10.) 
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Figure 10. Calculations of halo-doppler ratio from conventional high-resolution 
images. HDR – Halo-doppler ratio; HA – Halo-area; DA – Doppler area. Modified 
from Sundholm et.al. 2019 (IV). 

 

Intra-observer agreement was assessed by independently repeated analyses of the 

ultrasound clips performed by the primary investigator. For inter-observer 

agreement, the images were independently analysed by a second investigator. For 

test-retest variability (reproducibility), images of the same subject from two different 

imaging sessions were measured by the primary investigator (study I-II).  

Measurement of Vevo images using AMS required extraction of a single image 

converted to lossless TIFF-format prior to analysis. Measurements were done in a 1-

2cm wide region of interest automatically traced by the software. Manual correction 

of the traced borders was done only when deemed necessary by the operator. 

Analysis time was assessed for 20 individual clips using both electronical calipers and 

AMS (Study I). 
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3.4 HISTOLOGICAL PROCESSING
Biopsy of the temporal artery was done as routine diagnostics at Helsinki University 

Hospital Department of Vascular Surgery. The biopsy was fixed in formalin and cut in 

transverse sections (multiple levels) and stained with haematoxylin and eosin (H&E) 

and Verhoff’s elastic stain (VEG).(178) Uncertain cases where further stained using 

T-lymphocyte CD3+ immunohistochemical stain.(179)  

Biopsies were evaluated for vascular pathology at a certified pathology unit of the 

Helsinki University Hospital (HUSLAB).  Histological assessments of vascular 

dimension were evaluated using optic microscopy (Nikon Eclipse 80i & Digital Sight 

DS-5M, Tokyo, Japan) photographed at 10x zoom, and vascular dimensions 

measured offline in ImageJ 1.51J8 using electronic calipers. Measures were 

calculated as the mean of 10 measurements to avoid focal variations in the vascular 

wall, with IT, IMT, and AT measured separately.  

3.5 DIAGNOSTICS OF GIANT CELL ARTERITIS 
Giant-cell arteritis diagnosis was determined on histological and clinical basis. The 

biopsy was deemed negative if there was no inflammation on histology (Figure 11a), 

or only mild inflammation limited to the perivascular area and/or the vasa vasorum 

as the significance of perivascular inflammation is controversial.(180)  A biopsy with 

inflammation limited to the adventitia (ILA, Figure 11b) or transmural inflammation 

(TMI, Figure 11c and d)  were defined as positive and diagnostic for GCA. Subjects 

with a negative biopsy were evaluated by an expert rheumatologist and final 

diagnosis was assessed on the basis of clinical findings, laboratory results, response 

to treatment, evidence of large vessel vasculitis on positron emission tomography 

(PET-CT) or magnetic resonance imaging (MRI), and a differential diagnostic work-up 

during a 6 month follow up from biopsy procedure. (181-189) 
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Figure 11. Histology of Verhoff’s elastic stain (A) of a temporal artery without 
inflammation (“No GCA” and “Clinical GCA without inflammation” groups). Histology 
of haematoxylin and eosin stain (B) of a temporal artery with minor inflammation 
limited to the adventitial layer (ILA). Note the streak of inflammatory cells throughout 
the media-adventitia border. Verhoff’s elastic stain (C) and haematoxylin and eosin 
stain (D) of a temporal artery with transmural inflammation (TMI). AT – Adventitia; 
IT – Intima; L – Lumen; MT – Media. From Sundholm et.al. 2019 (IV). 
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3.6 DATA ANALYSIS
Results are reported as mean with SD for continuous normally distributed variables, 

median and range for non-normally distributed continuous variables, and 

proportions for categorial variables. Shapiro-Wilk test was used to test normality.  

Group comparisons were done using Student’s T-test for continuous variables. 

Multiple groups were compared using ANOVA for normally distributed variables with 

post-hoc Bonferroni, Kruskal-Wallis for non-normally distributed continuous 

variables with post-hoc Dunn-Bonferroni, and Fisher-Freeman-Halton for categorial 

variables with post-hoc independent Fisher comparisons including Bonferroni 

adjusted levels of significance.  

Agreement was quantified by calculating the mean difference, 95% limits of 

agreement (LOA), coefficient of variation (CV), and intraclass correlation coefficients 

(ICC), and further visualized using Bland-Altman plots.(190)  

Multiple linear and logistic regression models were used to assess the relationship 

between scalar respectively dichotomous variables, and multiple explanatory 

variables.  

Diagnostic performance was assessed using receiver operator characteristics-curves 

(ROC) and methods were compared using a paired test of equality for area under 

curve (AUC).(191) Cut-off values for different parameters were evaluated using 

sensitivity-specificity charts optimizing positive likelihood ratio (LHR+), and results 

reported using sensitivity, specificity, LHR+ and negative likelihood ratio (LHR-) 

For all analyses a p-value of <0.05 was deemed statistically significant. Data analysis 

was performed using SPSS (IBM, NY, USA, study I-IV) and Stata MP (Stata corp., TX, 

USA, study III-IV).  
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4. RESULTS & DISCUSSION
4.1 STUDY I, AUTOMATED BORDER DETECTION SOFTWARE
One benefit of the semi-automated system was the shorter analysis time for a single 

image, with a reading time of 71.5 ± 16.6s for the semi-automated system (AMS) and 

156.6 ± 37.2s for electronic calipers (EC) (p<0.001).  

Intra- and interobserver as well as test-retest variabilities were similar for AMS and 

EC with no evident bias (Table 2-4, Figure 12). This is partly in disagreement with 

previous studies comparing manual measurements with semi-automated systems, 

where a systematic underestimation of IMT has been reported with semi-automated 

systems compared to manual caliper measurements, but with an improved technical 

measurement reliability.(192-195) This disagreement could be explained by a 

resolution mismatch with AMS primarily developed for lower resolution ultrasound 

images. Furthermore, the AMS software does not fully support VHRU image 

processing, which leads to increased manual interference.(103) This may have 

influenced measurement time as our analysis time for AMS was longer than 

previously reported for conventional ultrasound image processing.(108,196-198) 

 The lack of image preprocessing may also have influenced our results. We did not 

normalize image gray-scale or use despeckling filters which has been recommended 

by some to improve the border detection for automated systems.(199,200)  

In a multiple linear regression model (R2 = 0.171) the operator technical variability 

(CV%) was mainly predicted by 1. dimension size with increased relative variability 

for smaller dimension measurements (logarithmic relationship; 

R2 = 0.125, β = −4.800, p < 0.001), 2. image quality (R2 = 0.015, B = −2.446, p < 0.001), 

and 3. repeat imaging (test-retest) (R2 = 0.025, B = 2.669, p < 0.001). There was no 

statistically significant effect of observer (inter-observer) or software (R2 = 0.002, 

p = 0.169, and R2 = 0.000, p = 0.450 respectively). Whereas dimension size has 

previously been shown to be related to increased relative variability, we did not find 

any earlier reports investigating the effect of image quality.(201)  

We concluded that AMS as a semi-automated border detection software performs 

equally well compared to electronic calipers with significant shorter analysis time.  
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The main limitations of the study were the small sample size and inclusion of only 

healthy subjects with an age span not including infants or patients with marked 

cardiovascular disease. This precluded comparison of results between different age 

groups and effect of cardiovascular disease.  Also, the assessment was performed 

with one software only. We did, however, include both children and adults, assessed 

the utility of AMS in multiple arterial locations, and included both elastic and 

muscular arteries in our study.  

 

Figure 12. Bland–Altman plots on semi-automated border detection software- (AMS) 
and electronic caliper-derived (EC) derived intra (A–C), inter (D–F), and test-retest (G–
I) agreements for lumen dimension (LD), intima-media thickness (IMT) and adventitia 
thickness (AT) measurements. Mean difference and 95% limits of agreement are 
displayed with lines for both systems. From Sundholm et.al. 2014 (I), with permission 
from Elsevier. 
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4.2 STUDY II, FEASIBILITY, ACCURACY AND PRECISION OF VHRU IN 
NEONATES
The more superficial location of arteries in neonates, compared to adults, allows the 

use of higher frequencies for vascular imaging in the near field. We found that the 

carotid and femoral artery far wall was visible using a 35MHz transducer in all 

subjects, and the brachial artery visible in all using a 55MHz transducer. The femoral 

artery was visible using a 55MHz transducer in all neonates with a body weight less 

than 2200g, in some with a body weight of 2200-3600g and in none with a body 

weight above 3600g. Vascular wall dimensions were below the resolution of the 

55MHz transducer in 20/50 brachial arteries and 14/50 femoral arteries. The 

abdominal aorta (depth 40-65mm) was unreachable with VHRU transducers 

(maximum penetrance 23mm) in all subjects.  

Results for intra-observer, inter-observer, and test-retest agreements are presented 

in Tables 5-7, with no bias and good agreement for all measured arterial dimension. 

There were only minute differences between inter-observer and test-retest 

agreements compared to intra-tester agreements. This suggested very limited 

operator dependency and technical variance overall influencing reproducibility of the 

measurements.(202) The technical variability was higher for smaller dimensions with 

measurements performed at a level bordering the axial resolution limit of the 

transducer. Overall, these results were similar to the results of study I.  

In a head-to-head comparison between CIMT measurements obtained using 

conventional HRU 12MHz and VHRU 35MHz transducers, the conventional 12MHz 

transducer was shown to grossly overestimate CIMT measurements among 

neonates. Our results for CIMT using VHRU (mean 0.17mm) were significantly lower 

than previously reported HRU-derived values (range 0.23-0.37 mm) and beyond the 

calculated axial resolution limit of > 0.25 mm for conventional HRU frequencies.(203-

206) We did not find any histological data on CIMT in this age group, but histologically 

measured IMT in infants has been reported as 0.40-0.50mm in the aorta and 0.05-

0.15mm in the coronary arteries.(21,24,39,207,208)  
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The results show that the axial resolution of conventional HRU frequencies is 

insufficient to measure CIMT in infants. VHRU, however, allow the non-invasive 

measurement of vascular wall layer dimensions of the carotid artery and proximal 

muscular arteries in neonates, whilst more distal arteries are too small precluding 

assessment with VHRU. The wall of the aorta is too deeply located to be visualized 

using VHRU, but the aortic IMT can be measured with the higher frequencies of the 

HRU-spectrum (10-20MHz) as previously reported.  

The main limitations of the study were the small sample size and lack of histological 

verification of vascular dimensions. We did however include neonates of different 

gestational ages and body-sizes and assessed multiple arteries using different 

transducer frequencies allowing us to assess the feasibility of VHRU in the neonatal 

age group over all. 
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Artery Dimension N Mean 

[mm] 

ΔMean (LOA 95%) 

[mm] 

CV% 

CCA (35 MHz) LD 38 2.619 0.000 (−0.107,0.107) 2.1 

IMT 40 0.158 −0.016 (−0.066, 0.035) 16.1 

BA (55 MHz) LD 40 1.445 −0.003 (−0.058, 0.052) 1.9 

IMT 24 0.062 −0.004 (−0.034, 0.026) 24.8 

IMAT 39 0.141 −0.013 (−0.064, 0.038) 18.5 

AT 25 0.085 −0.004 (−0.038, 0.031) 20.5 

FA (35–55 MHz) LD 37 1.794 −0.002 (−0.056, 0.053) 1.5 

IMT 37 0.068 −0.003 (−0.021, 0.014) 13.1 

IMAT 40 0.161 −0.013 (−0.066, 0.040) 16.8 

AT 32 0.092 0.004 (−0.042, 0.050) 25.6 

Table 5. Intra-observer variation for different neonatal arterial dimensions obtained 
with VHRU. ΔMean - mean difference; LOA 95% - 95% limits of agreement; CV% - 
coefficient of variation; CCA – common carotid artery ; BA – brachial Artery; FA – 
femoral artery; LD - lumen diameter; IMT - intima-media thickness; IMAT - intima-
media-adventitia thickness; AT - adventitia thickness. From Sundholm et.al. 2015 (II), 
used with permission from Elsevier.  
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Artery Dimension N Mean 

[mm] 

ΔMean (LOA 95%) 

[mm] 

CV% 

CCA (35 MHz) LD 38 2.556 0.065 (−0.053, 0.184) 2.4 

IMT 38 0.165 −0.012 (−0.054, 0.029) 12.8 

BA (55 MHz) LD 40 1.432 0.035 (−0.049, 0.118) 3.0 

IMT 24 0.062 −0.001 (−0.026, 0.025) 21.1 

IMAT 40 0.141 −0.000 (−0.039, 0.039) 14.3 

AT 25 0.087 0.003 (−0.028, 0.034) 18.1 

FA (35–55 MHz) LD 39 1.772 0.045 (−0.052, 0.142) 2.8 

IMT 36 0.066 −0.002 (−0.022, 0.017) 15.4 

IMAT 38 0.160 0.002 (−0.025, 0.029) 8.8 

AT 31 0.091 −0.002 (−0.040, 0.036) 21.2 

Table 6. Inter-observer variation for different neonatal arterial dimensions obtained 
with VHRU. ΔMean - mean difference; LOA 95% - 95% limits of agreement; CV% - 
coefficient of variation; CCA, common carotid artery; BA - brachial artery; FA - 
femoral artery; LD - lumen diameter; IMT - intima-media thickness; IMAT - intima-
media-adventitia thickness; AT - adventitia thickness. From Sundholm et.al. 2015 (II), 
used with permission from Elsevier. 
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Artery Dimension N Mean 

[mm] 

ΔMean (LOA 95%) 

[mm] 

CV% 

CCA (35 MHz) LD 10 2.671 0.103 (−0.352, 0.146) 4.8 

IMT 10 0.146 0.003 (−0.030, 0.036) 11.7 

BA (55 MHz) LD 10 1.417 0.076 (−0.145, 0.297) 8.0 

IMT 5 0.056 −0.004 (−0.022, 0.014) 16.0 

IMAT 10 0.113 −0.004 (−0.036, 0.028) 14.6 

AT 5 0.072 0.000 (−0.046, 0.046) 32.6 

FA (35–55 MHz) LD 10 1.769 0.002 (−0.190, 0.194) 5.6 

IMT 6 0.058 −0.002 (−0.09, 0.006) 7.1 

IMAT 10 0.144 0.003 (−0.028, 0.034) 10.9 

AT 6 0.087 −0.007 (−0.022, 0.036) 17.4 

Table 7. Test-retest variation for different neonatal arterial dimensions obtained with 
VHRU. ΔMean - mean difference; LOA 95% - 95% limits of agreement; CV% - 
coefficient of variation; CCA; BA – brachial artery; FA - femoral artery; LD - lumen 
diameter; IMT - intima-media thickness; IMAT - intima-media-adventitia thickness; 
AT - adventitia thickness. From Sundholm et.al. 2015 (II), used with permission from 
Elsevier. 
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4.3 VALIDATION OF ULTRASOUND ARTERIAL INTIMA THICKNESS 
MEASUREMENT  
Validation of VHRU IT and the four-line pattern 

The distinct four-line pattern in muscular artery VHRU was consistent with intimal 

thickening in histology (Figure 13a and b). A separation of the first echogenic zone 

(Z1-Z3) allowed the leading-to-leading edge measurement of the intima thickness.  

 

Figure 13. Schematic, 55MHz VHRU-derived image, and corresponding histology of 
temporal arteries with evident intimal thickening. Leading edge borders are shown. 
IT – Intima; MT – Media; AT – Adventitia; IEL – Internal elastic laminae. Modified from 
Sundholm et.al. 2019 (III). 
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Arterial layer thickness measurements of the first region (Z1-Z3) agreed well with 

histological IT and showed good intra- and inter-observer agreements. (Table 8-10). 

The four-line pattern was detected in 28/29 patients with histological IT>0.06mm 

and in none with thinner intima (sensitivity of 96.3%, CI95%: 81.0-99.9% and a 

specificity of 100%, CI95%: 66.3-100%). We did not find any significant difference in 

accuracy between the two ultrasound systems used (Vevo770 vs. VevoMD, ICC 0.867, 

CI95% 0.603-0.955 and 0.971 CI95% 0.901-0.992, respectively), with a trend for 

reduced accuracy for images of lower quality (CV% 12.8 vs. 23.6 p=0.098). 

Table 8. Comparison of histology and VHRU measurements of intima and intima-
media thickness. SD -standard deviation; LOA – 95% limits of agreement; CV% - 
coefficient of variation (%); CI95% – 95% confidence interval; ΔMean – mean 
difference; IT – Intima thickness; IMT – Intima-media thickness. From Sundholm et.al. 
2019 (III), used with permission from Elsevier. 

 

 

Intra-observer 
  

N 
  

Mean 
[mm]  

SD 
[mm] 

ΔMean 
[mm]  

LOA 95% 
  

CV% 
  

IT  25 0.140 0.047 -0.011 -0.053; 0.032 15.7 

IMT  31 0.246 0.090 -0.006 -0.085; 0.071 16.1 

Table 9. Intra--observer agreements for VHRU-derived intima and intima-media 
thicknesses. SD – standard deviation; LOA95% - 95% limits of agreement; CV% - 
Coefficient of variation (%); CI95% – 95% confidence interval; IT- Intima thickness; 
IMT – Intima-media thickness. From Sundholm et.al. 2019 (III), used with permission 
from Elsevier. 

  

  Histology VHRU    

 N  

Mean 
[mm] 

SD 
[mm] 

Mean 
[mm] 

SD 
[mm] 

ΔMean 
[mm] LOA 95%  CV%  

IT 28 0.125 0.045 0.132 0.050 0.007 -0.042;0.057 19.7 

IMT 37 0.255 0.097 0.243 0.086 -0.012 -0.086;0.064 15.1 
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Inter-observer 

 
 

N 

 
 

Mean 

[mm]  

SD 

[mm] 

ΔMean 

[mm]  

LOA 95% 

 
 

CV% 

 
 

IT  25 0.136 0.044 0.012 -0.040;0.065 19.9 

IMT  31 0.240 0.085 0.025 -0.075;0.125 21.2 

Table 10. Inter-observer agreements for VHRU-derived intima and intima-media 
thicknesses. SD – standard deviation; LOA95% - 95% limits of agreement; CV% - 
Coefficient of variation (%); CI95% – 95% confidence interval; IT- Intima thickness; 
IMT – Intima-media thickness. From Sundholm et.al. 2019 (III), used with permission 
from Elsevier. 

 

Measurements leading-to-trailing edge of the first echogenic zone (Z1-Z3) in subjects 

without a visible four-line pattern was not associated with histological IT (Figures 14 

and 15). This is in line with previous validation attempts in arteries with healthy thin 

IT.(18,89) Leading-to-trailing edge measurements of IT in arteries with thickened IT, 

however, correlates well with histological IT, but systematically overestimates the 

dimension, an issue not seen with the leading-to-leading edge method.(69)  

 

Figure 14. Bland-Altmant plots comparing very-high resolution ultrasound (VHRU) 
intima layer thickness (IT) with histology IT using the leading-to-trailing edge 
measurement technique in the assessment of the VHRU image. a) Leading-to-trailing 
edge VHRU measurement of blood-intima interface (fused zones 1-3) in arteries with 
histological IT less than 0.06 mm. b) Leading-to-trailing edge VHRU measurement of 
the visible IT (zones 1-3 separated in image, measurement from leading-edge of zone 
1 to trailing edge of zone 3) in arteries with histological IT 0.06 mm or more. Note the 
systematic bias in leading-to-trailing edge VHRU IT measurement in comparison to 
histological IT in both settings. From the supplemental material of Sundholm et.al. 
2019 (III), used with permission from Elsevier. 



55 
 

 

Figure 15. Schematic image of how measures using the leading-to-trailing edge 
method induces bias in a) vessels with a thickened intima (separated zones 1-3). and 
b) vessels with a thin intima (fused zones 1-3). Note how the bias is equal to Z3 in case 
a). whereas the bias is influenced by the histological intima artery layer thickness (IT) 
in b) as Z1-Z3 remains constant and non-related with histological IT variance. From 
the supplemental material of Sundholm et.al. 2019 (III) used with permission from 
Elsevier. 

 

We conclude that VHRU-derived measurements of intima-thickness is accurate and 

reliable in arteries with an intimal thickness of >0.06mm corresponding to 5px with 

the 55MHz transducer. We further showed that the four-line pattern is increasing 

with age with 76% of the subjects aged 40 to 86 years showing a four-line pattern in 

the temporal artery and 68% in the radial artery in vivo using the highest 50-55 MHz 

ultrasound frequency. The four-line pattern was not visible in most carotid and 

brachial arteries, likely related to the lower 30-35 MHz ultrasound frequencies used 

for these anatomical locations for imaging depth reasons. We further preliminarily 

show that arterial IT in our sample is related to cardiovascular risk factors (Table 11). 
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These results suggest that the VHRU-derived vascular IT could be used to monitor 

vascular health and potentially as a non-invasive surrogate marker of cardiovascular 

disease in the aging population. 

Table 11. Linear regression model assessing effects of age and cardiovascular risk 
factors on histological intima thickness in the GCA sample (n=37). From the 
supplemental material of Sundholm et.al. 2019 (III), used with permission from 
Elsevier. 

 

The study was limited by histological verification of temporal arteries only. The study 

setting did, however, allow the direct comparison of in vivo VHRU measurements 

with histology in subjects with a wide range of vascular aging, spanning from a thin 

intima below axial resolution to pathological intimal thickening bordering early 

plaque formation. We further assessed vascular morphology using VHRU in multiple 

arteries and verified the presence of the four-line pattern in radial arteries to a similar 

extent as in temporal arteries. 

  

Dependent variable Adjusted R2 Model p-value 

Intima thickness [μm] 0.404 <0.001 

Independent variables Beta p-value 

Constant -36.6 0.464 

Age [years] 1.7 0.038 

Hypertension [yes=1 no=0] 42.2 0.020 

Diabetes [yes=1 no=0] 34.2 0.044 

Hypercholesterolemia [yes=1 no=0] -26.7 0.141 

Smoking [10 pack years] 6.8 0.069 
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4.4 DIAGNOSTIC UTILITY OF VHRU IN GIANT-CELL ARTERITIS
VHRU-derived intima thickness measurements and HRU-derived Halo-Doppler ratio 

(HDR) in the transmural inflammation GCA group differed significantly from GCA 

negative subjects and from clinical GCA patients with no or limited inflammation on 

histology, and without histological arterial wall layer thickening. (Table 12)   

Specificity and sensitivity charts provided optimal diagnostic cut-off values for TMI 

>0.30mm for IT and 2.0 for HDR, yielding  sensitivity 90.9%, CI95% 58.7-99.8%; 

specificity 100%, CI95% 91.1-100.0%; LHR+ N/A; LHR- 0.1 for IT and sensitivity 55.6%, 

CI95% 21.2-86.3%; specificity 93.5%, CI95% 77.9-99.1%; LHR+ 8.6, LHR- 0.5 for HDR, 

compared to the non-GCA group. 

To assess diagnostic utility, the coded images were analysed by a second expert 

observer blinded to patient characteristics and biopsy results. Inter-observer 

agreements for diagnostic cut-off values were high (Cohen’s Kappa: 0.873 for 

IT>0.3mm and 0.811 for HDR>2.0). ROC analysis showed good diagnostic utility for 

both IT measurements and HDR (AUC: VHRU-IT 0.99, CI95% 0.97-1.00; HRU-HDR 

0.75, CI95% 0.54-0.96, p=0.026), with VHRU-derived IT outperforming HDR.  

The diagnostic utility of HDR was found to be limited in subjects who had received 

glucocorticoid treatment for more than 5 days (Figure 16a). This is in line with 

previously published data.(164) In contrast, VHRU derived IT did not seem to be 

impacted by glucocorticoid treatment response to the same extent, and IT remained 

thickened for up to 37 day after treatment initiation (Figure 16b). The vascular wall 

of subjects with shorter duration of glucocorticoid treatment was fairly echolucent, 

making dimension borders challenging to distinguish (Figure 17). The results suggest 

that VHRU could be beneficial in GCA patient follow-up during glucocorticoid 

treatment in the outpatient setting.  
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Study group 

Non-GCA 

N = 40 

GCA, Biopsy 

negative 

N = 15 

GCA, 

Inflammation 

limited to 

adventitia (ILA) 

N = 9 

GCA, transmural 

inflammation 

(TMI) 

N = 11 p-value 

HRU; N 31 9 7 9  

Halo 5 (16%) 1 (11%) 2 (29%) 5 (56%) 0.083 

HDR 1.4 (1.0-2.8) 1.4 (1.2-1.9) 1.4 (1.0-4.2) 2.4 (1.5-9.3) a 0.007 

HDR > 2.0 2 (6%) 0 (0%) 2 (29%) 5 (56%)a 0.003 

VHRU; N  40 15 9 11  

Measurable IT; N 31 9 9 11  

Mean IT [mm] 0.12 (0.06-0.23) 0.09 (0.06-0.14) 0.14 (0.06-0.22) 0.28 (0.06-0.53) <0.001 

Max IT [mm] 0.16 (0.06-0.28) 0.11 (0.08-0.28) 0.16 (0.08-0.25) 0.40 (0.06-0.70) a <0.001 

Max IT > 0.30mm 0 (0%) 0 (0%) 0 (0%) 10 (91%)a <0.001 

IMT; N 40 15 9 11  

IMT [mm] 0.22 (0.08-0.42) 0.22 (0.09-0.29) 0.23 (0.17-0.28) 0.55 (0.22-0.834) a <0.001 

Max IMT [mm] 0.27 (0.09-0.49) 0.26 (0.10-0.43) 0.28 (0.18-0.55) 0.69 (0.31-1.10) <0.001 

Histology; N 37 12 9 11 
 

IT [mm] 0.11 (0.01-0.24) 0.09 (0.02-0.18) 0.14 (0.08-0.19) 0.38 (0.04-0.90) a <0.001 

MT [mm] 0.16 (0.05-0.36) 0.16 (0.08-0.25) 0.17 (0.11-0.34) 0.20 (0.11-0.41) 0.442 

IMT [mm] 0.28 (0.07-0.49) 0.24 (0.10-0.41) 0.27 (0.24-0.50) 0.62 (0.15-1.31) a <0.001 

AT [mm] 0.06 (0.02-0.12) 0.06 (0.03-0.08) 0.07 (0.05-0.14) 0.14 (0.05-0.23) a <0.001 

Table 12. Halo-Doppler ratio and vascular dimensions obtained with VHRU and 
histology. Results are presented as median (range) or N (%). P-values represent 
results for group comparisons with the Fisher-Freeman-Halton exact test (post-hoc: 
independent Fisher exact test with Bonferroni adjusted significance levels) and the 
Kruskal-Wallis tests (post-hoc: Dunn-Bonferroni). Note that IT was not measurable in 
VHRU imaged in subjects with IT<0.06mm. a – differs significantly from all other 
groups in post-hoc analysis at level p<0.05; IT – intima thickness; MT – media 
thickness; IMT – intima-media thickness; AT – adventitia thickness; VHRU – very-high 
resolution ultrasound; HRU – high resolution ultrasound; HDR – Halo-Doppler Ratio. 
From Sundholm et al. 2019 (IV).  
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Figure 16 a) Conventional ultrasound derived Halo-Doppler ratio versus 
glucocorticoid-treatment duration prior to imaging in the transmural inflammation 
(TMI) group. b) VHRU intima thickness versus glucocorticoid-treatment duration prior 
to imaging in TMI group. Note that the intimal thickness exceeds the diagnostic cut-
off 0.3mm from 5 days of corticosteroid treatment, whereas the prevalence of the 
halo-sign cut-off >2.0 diminishes. HDR – Halo-Doppler ratio; HRU – Highresolution 
ultrasound; VHRU – Very-high resolution ultrasound. Modified from Sundholm et.al. 
2019 (IV). 

 

 

 

Figure 17. Very-high resolution ultrasound image (50MHz) of a temporal artery with 
transmural inflammation after only 2 days of glucocorticoid treatment. Note the thick 
and dark vascular wall making the layer borders challenging to distinguish. IT – intima 
thickness; MT – media thickness. Modified from Sundholm et.al. 2019 (IV). 
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Neither HDR or VHRU-IT showed any diagnostic utility in groups with limited or no 

inflammation on histology and a thin histological IT. This is in line with previous 

findings showing decreased diagnostic utility of the halo sign in this patient 

group.(153) The increased resolution of VHRU did not add further diagnostic value 

to these subjects. 

The main limitation of this study is the evident delay in ultrasound assessment, with 

imaging performed, in many cases, following several days of glucocorticoid 

treatment. This most likely affected the diagnostic utility of the halo-sign, reducing 

comparability with previous studies, but allowed a direct comparison of VHRU 

images and histology.  
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5. CONCLUSIONS
 

I. The use of a semi-automatic border detection software is, feasible, 

accurate and precise for very-high resolution ultrasound image analysis of 

arterial intima-media thickness and adventitia thickness, with reduced 

analysis time compared to electronic calipers. 

 

II. The arterial wall layer thickness in infants is below the axial resolution, 

and thus unmeasurable, using conventional high-resolution ultrasound 

frequencies. The increased resolution of very-high resolution ultrasound 

allows accurate and precise non-invasive measurements of the carotid 

intima-media thickness, in addition to brachial and femoral arterial 

intima-media thickness and adventitia thickness in neonates in vivo.  

 

III. The identification of a distinct four-line pattern with very-high resolution 

ultrasound imaging of the arterial far wall allows the non-invasive 

quantification of intima layer thickness in superficial arteries of the aging 

population. The finding is consistent with changes in the intima occurring 

with arterial aging. 

 

IV. Very-high resolution ultrasound derived measurements of temporal 

artery intima layer thickness allows the non-invasive real time diagnosis 

of transmural inflammation related intimal thickening of the temporal 

artery in patient with suspected giant cell arteritis. The very-high 

resolution ultrasound detected vascular wall thickening was evident in 

most patients with transmural inflammation, and this diagnostic marker 

is more sensitive than the conventional high-resolution ultrasound 

derived Halo-Doppler-ratio in patients with prolonged glucocorticoid 

treatment. Neither the VHRU-method nor the Halo-Doppler ratio showed 

diagnostic utility in patients with no inflammation or inflammation limited 

to the adventitia on histology. 
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6. PERSPECTIVES AND FUTURE RESEARCH TOPICS
 

This thesis presents very-high resolution ultrasound as a tool to investigate vascular 

morphology and pathology in vivo. We show that the increased resolution allows for 

assessment of vascular structure in almost microscopical detail. This provides the 

opportunity for a new field of different research topics.  

Most previous studies assessing distal vascular morphology in different age groups 

are based on post-mortem data, and thus limited sample sizes. This emerging 

method allows for investigation and follow-up of larger populations. It is now 

possible to non-invasively assess factors related with vascular morphology, 

pathology, and changes in vascular structures with aging. This is an interesting new 

field of research that could give us further knowledge on vascular health and 

diseases.  

Carotid intima-media thickness has been used as a surrogate marker for 

cardiovascular risk for three decades. The method isn’t flawless, and the utility is 

limited in a clinical setting.(7) The increased resolution of very-high resolution 

ultrasound provides more detailed information of the vascular wall than the 

established high-resolution ultrasound method, and the increased resolution could 

also improve measurement accuracy and reduce absolute measurement errors. 

Future research topics could address not only peripheral conduit artery intima-media 

thickness, but also intima thickness in relation to cardiovascular risk.  

The non-invasive nature and versatility of conventional ultrasound has established 

its role as a diagnostic tool in peripheral artery disease.(209) The method is, however, 

limited when studying the smallest arteries due to limited resolution. Further 

research could assess the utility of VHRU when assessing severity of peripheral artery 

disease.  

Our results indicate that, compared with HRU, VHRU used as a diagnostic tool to 

assess suspected giant cell arteritis of the temporal artery could be more sensitive 

for patients with several days of ongoing glucocorticoid treatment. Current 

guidelines state that imaging should be performed prior to or during the first days of 
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treatment.(172) Further studies should compare VHRU and HRU methods in a 

pretreatment setting. Another interesting topic would be to assess the utility of 

VHRU as method to non-invasively and prospectively monitor changes in the vascular 

wall in response to treatment. 
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7. YHTEENVETO (FINNISH SUMMARY)
 

Kajoamaton korkeataajuusultraääni (VHRU, very-high resolution ultrasound, 25-

55MHz) on 2000-luvulla kehitetty ultraäänimenetelmä valtimonseinämän 

kuvantamiseen. Korkeammilla ultraäänitaajuuksilla kuvan erottelukyky on parempi, 

lähes mikroskooppitasoa, mutta kuvausalue on rajoittunut lähellä anturia oleviin 

rakenteisiin. Menetelmä soveltuu erinomaisesti aikuisten pinnallisten valtimoiden ja 

lasten pienten valtimoiden valtimoseinämän kajoamattomaan kuvantamiseen.  

Tässä väitöskirjassa arvioidaan puoliautomaattisen analyysiohjelman käyttöä 

valtimoseinämän eri kerrosten mittaamisessa. Lisäksi kirjassa selvitetään 

menetelmän soveltuvuutta vastasyntyneiden lasten valtimoseinämän arvioinnissa, 

menetelmän käyttöä valtimon sisäkalvon (tunica intima) paksuuden mittauksessa 

ikääntyneillä, sekä menetelmän hyötyjä jättisoluarteriitin diagnostiikassa.  

Tutkimme puoliautomaattisen ohjelman (AMS, arterial measurement systems) 

käyttöä kymmenen henkilön eri verisuonista otettujen kuvien arvioinnissa 

vertailemalla analyysiaikaa ja mittauksien luotettavuutta käsin tehtyihin 

yksittäismittauksiin. Emme löytäneet eroa menetelmien luotettavuudessa, mutta 

puoliautomaattisen menetelmän analyysiaika oli merkittävästi lyhyempi. Mittausten 

suhteellinen tekninen vaihtelu liittyi lähinnä kuvanlaatuun ja mitattavaan 

etäisyyteen. 

Vertasimme kymmenestä vastasyntyneestä VHRU-menetelmällä ja tavallisella 

ultraäänellä otettuja kuvia. VHRU-menetelmä pystyi luotettavasti ja tarkasti 

mittaamaan suurten ja keskisuurten valtimoiden seinämän kerrospaksuudet, mutta 

tavallisen ultraäänen erottelukyky ei ollut riittävä. VHRU-menetelmän erottelukyky 

ei ollut riittävä pienempien ääreisvaltimoiden, esimerkiksi värttinävaltimon, 

seinämän kerrosten arvioinnissa.  

VHRU-menetelmällä tutkittiin 78 ikääntynyttä potilasta, jotka oli lähetetty 

ohimovaltimon koepalan ottoon jättisoluarteriittiepäilyn takia. Niiden potilaiden 

joukossa, joilla ei ollut tulehdusmuutoksia suonen seinämässä (biopsia-negatiiviset), 

76 %:lla oli histologisesti paksuuntunut valtimon sisäkalvo (tunica intima), joka oli 
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tarkasti ja luotettavasti mitattavissa VHRU-menetelmällä. Jättisoluarteriittipotilailla 

ohimovaltimon seinämä oli histologiassa selkeästi paksuntunut. VHRU-menetelmällä 

mitattu yli 0.3 mm:n valtimon sisäkalvo oli tarkka ja herkkä mittari jättisoluarteriitille, 

ja se oli todettavissa 10/11 potilaalla.   

Kajoamaton korkeataajuusultraääni on uusi menetelmä, jolla pinnallisten 

valtimoiden seinämän kerrosten paksuudet voidaan tarkasti ja luotettavasti mitata. 

Puoliautomaattisella ohjelmalla valtimoseinämän kerroksen paksuuden mittaamista 

voidaan nopeuttaa. Menetelmän parempi erottelukyky mahdollistaa pienten 

vastasyntyneiden valtimoseinämän kuvantamisen ja ikääntyvien valtimon sisäkalvon 

(tunica intima) paksuuden mittaamisen. Ohimovaltimon jättisoluarteriitissa 

suonenseinämä turpoaa tulehduksen seurauksena ja tämä näkyy VHRU-kuvissa 

paksuuntuneena sisäkalvona (tunica intima). Menetelmä voisi tulevaisuudessa 

soveltua kliiniseen käyttöön pinnallisten verisuonisairauksien tutkimuksessa ja 

diagnostiikassa.   
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8. SAMMANFATTNING (SWEDISH SUMMARY)
 

Icke-invasivt högresolutionsultraljud (VHRU, very-high resolution ultrasound) är en 

ny under 2000-talet utvecklad metod för undersökning av kärlväggen. Den höga 

ultraljudsfrekvensen ger en bättre, nästan mikroskopisk, resolution i ultraljudsbilden, 

men den lämpar sig endast för avbildning av närliggande strukturer. Med metoden 

kan den ytliga artärväggens olika skikt och små barns artärer avbildas. I den här 

avhandlingen utreder vi möjligheten att i ultraljudsbilden mäta artärväggens 

skikttjocklek med hjälp av en halvautomatisk metod. Vi utreder dessutom 

möjligheten att undersöka artärväggen hos nyfödda barn, att mäta artärväggens 

innersta lagrets (tunica intima) tjocklek hos den åldrande populationen, samt utreder 

nyttan av VHRU vid diagnostik av misstänkt jättecellsarterit.  

Vi tillämpade ett halvautomatiskt analysprogram (AMS, arterial measurement 

systems) på VHRU-bilder tagna från ytliga artärer från tio personer och jämförde 

analystiden samt pålitligheten (precisionen) av de halvautomatiska mätningarna 

med enskilda manuella mätningar. Pålitligheten var jämförbar men analystiden var 

signifikant kortare. Pålitligheten var främst relaterad till bildkvaliteten och det 

uppmätta avståndet. 

Vi jämförde bilder av ytliga muskulära artärer hos tio nyfödda barn och prematurer 

tagna med både VHRU-metoden och konventionellt ultraljud. VHRU-metoden kunde 

noggrant och pålitligt mäta artväggens skikttjocklek i stora och medelstora artärer 

medan det konventionella ultraljudets resolution var otillräckligt. VHRU-metodens 

resolution var otillräcklig för bedömning av artärväggens skikttjocklek i mindre och 

mera perifera kärl så som i strålbensartären.      

Vi undersökte tinningartären med VHRU-metoden hos 78 äldre patienter 

remitterade för biopsi av tinningartären på grund av misstänkt jättecellsarterit. Bland 

patienter utan histologiskt påvisbar inflammation i artärväggen (negativ biopsi) 

konstaterades ett åldersrelaterat förtjockat inre skikt (tunica intima) hos 76% som 

noggrant och pålitligt kunde mätas i ultraljudsbilden. Ett förtjockat inre skikt (tunica 
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intima), mer än 0,3 mm i ultraljudsbilden, var ett specifikt och sensitivt fynd för 

jättecellsarteriten, och kunde konstateras hos 10/11 patienter.    

Sammanfattningsvis är högresolutionsultraljud en ny metod för icke-invasiv 

undersökning av ytliga artärers kärlvägg. Tillämpningen av ett halvautomatiskt 

program i bildanalysen var pålitligt och försnabbade analysprocessen. Metodens 

höga resolution möjliggör avbildning av den ytliga artväggen hos nyfödda samt en 

mätning av ett förtjockat inre skikt (tunica intima) i artärväggen i den åldrande 

populationen. Jättecellsarterit av tinningartären ger upphov till en uppsvullen 

kärlvägg och det kraftigt förtjockade inre skiktet (tunica intima) kan icke-invasivt 

mätas med VHRU vid misstänkt jättecellsarterit. Metoden kan i framtiden få en viktig 

roll inom den kliniska diagnostiken av ytlig vaskulärpatologi och i studier av vaskulärt 

åldrande. 
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