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Abstract. We study a stochastic gradient algorithm for performing online a con-
strained binary logistic regression in the case of streaming or massive data.
Assuming that observed data are realizations of a random vector, these data
are standardized online in particular to avoid a numerical explosion or when
a shrinkage method such as LASSO is used. We prove the almost sure conver-
gence of a variable step-size constrained stochastic gradient process with aver-
aging when a varying number of new data is introduced at each step. Several
stochastic approximation processes with raw data or online standardized data
are compared on observed or simulated datasets. The best results are obtained
by processes with online standardized data.

1 Introduction
One type of method to analyse streaming or massive data is online learning which proceeds

in successive steps, the results of the analysis being updated at each step taking into account
a batch of new data. Recursive stochastic algorithms can be used for observations arriving
sequentially to estimate for example parameters of a linear regression model (Duarte et al.,
2018) or principal components of a factorial analysis (Monnez and Skiredj, 2018) or centres of
classes in non-hierarchical clustering (Cardot et al., 2012), whose estimations are updated by
each new arriving data batch. In this context, it is not necessary to store the data and, due to
the relative simplicity of the computation involved, much more data than with classic methods
can be taken into account during the same duration of time. For massive datasets, recursive
algorithms can be used by randomly drawing at each step a data batch from the dataset.

Why use online standardized data (each continuous variable is standardized with respect to
the estimations at the current step of its expectation and of its standard deviation computed on-
line) and a constrained process? First to avoid a numerical explosion as it is studied in Duarte
et al. (2018) in the case of sequential multidimensional linear regression. The experiments con-
ducted have shown better performance of processes with online standardized data compared to
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those with raw data. Second, when using a shrinkage method such as LASSO or ridge, we have
first to standardize the explanatory variables. In the case of a data stream, when the mathemat-
ical expectation and the variance of each variable are a priori unknown, these variables can be
standardized online and a process of the same type can be used but with a projection at each
step on the convex set defined by the constraint on the parameters of the regression function.
More generally this type of process can be used for any convex set, for example if it is imposed
that the parameters associated to the explanatory variables are positive. Third we can consider
the case where a logistic model with standardized explanatory variables is defined and where
explanatory variables have an expectation and a variance that may depend on time or on the
values of controlled variables according to a specific model; this assumes that we can estimate
online the expectation and the variance of these variables.

A suitable choice of step-size is often crucial for obtaining good performance of a stochas-
tic gradient process. If the step-size is too small, the convergence will be slower. Conversely,
if it is too large, a numerical explosion may occur during the first iterations. We use here
an averaged stochastic gradient process, with a piecewise constant step-size as suggested in
Bach (2014) in order that the step-size does not decrease too quickly and reduces the speed of
convergence.

2 Study of a stochastic gradient process
Suppose that data are realizations of a random vector (R1, ..., Rp, S) in Rp × {0, 1}.
Let A′ be the transpose of a matrix A. Let R be the random column vector

(
R1 ... Rp 1

)′
,

m =
(
E
[
R1
]
... E [Rp] 0

)′
, Rc = R −m, rc a realization of Rc, σk the standard deviation

of Rk, k = 1, ..., p, Γ the diagonal (p+ 1, p+ 1) matrix with diagonal elements 1
σ1 , ...,

1
σp , 1

(taking by convention σk = 1 for a discrete variable), Z = ΓRc, whose continuous compo-
nents are standardized, z = Γrc a realization of Z, θ =

(
θ1 ... θP θP+1

)′
a column vector of

real parameters.
Consider the logistic model with standardized covariates:

P (S = s | R = r) = f(s; z, θ) =

(
ez
′θ

1 + ez′θ

)s(
1

1 + ez′θ

)1−s

=
ez
′θs

1 + ez′θ
.

E [S | R] = h (Z ′θ) with h(u) = eu

1+eu = 1
1+e−u .

Define the loss function -ln f (s; z, x) = −z′xs+ ln
(

1 + ez
′x
)

. The cost function

F (x) = −E [ln f (S;Z, x)] = E
[
−Z ′xS + ln

(
1 + eZ

′x
)]

has θ for unique minimizer since F is a convex function with positive hessian. θ is the unique
solution of:

F ′(x) = E

[
−ZS +

ZeZ
′x

1 + eZ′x

]
= E [Z (h (Z ′x)− S)] = 0.

Let
(
(R1

n, ..., R
p
n, Sn), n > 1

)
be an i.i.d. sample of (R1, ..., Rp, S), for n > 1, Rn =(

R1
n ... R

p
n 1
)′

, for k = 1, ..., p, R
k

n the mean of the sample
(
Rk1 , ..., R

k
n

)
of Rk and

(
V kn
)2

=
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1
n

n∑
i=1

(
Rki −Rkn

)2
its variance, both recursively computed, Rn =

(
R1
n ... R

p
n 0
)′

and Γn the

diagonal (p+ 1, p+ 1) matrix with diagonal elements 1√
n
n−1V

1
n

, ..., 1√
n
n−1V

p
n
, 1.

Suppose that mn observations (Ri, Si) are taken into account at step n of the defined

process. Let µn =
n∑
i=1

mi, In = {µn−1 + 1, ..., µn}, R̂n = Rµn , Γ̂n = Γµn and for

j ∈ In, Z̃j = Γ̂n−1

(
Rj − R̂n−1

)
: for k = 1, ..., p, each component Rkj of Rj is pseudo-

standardized with respect to the empirical mean R̂kn−1 and to the empirical estimation of σk,√
n
n−1V

k
µn−1

.

Suppose that θ is constrained to belong to a convex subset K of Rp+1. Let Π be the
projection operator on K. Recursively define the stochastic approximation processes (Xn) of
the Robbins-Monro type (Robbins and Monro, 1951) and

(
Xn

)
in Rp+1:

Xn+1 = Π

Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

) , Xn+1 =
1

n+ 1

n+1∑
1

Xi.

Theorem 1 Suppose there is no affine relation between the components of R, the moments

of order 4 of R exist and an > 0,
∞∑
n=1

an =∞,
∞∑
n=1

an√
n
<∞,

∞∑
n=1

a2n <∞. Then (Xn) and(
Xn

)
converge to θ a.s.

The proof is in Lalloué et al. (2019b).

3 Experiments
Stochastic approximation processes were compared, including classic stochastic gradient

descent (SGD) with a variable step-size, averaged stochastic gradient descent (ASGD) with a
piecewise constant step-size with level sizes 50, 100 or 200, and the same processes but with
online standardization of the data (Section 2). For these 8 processes, 3 variants with 1, 10 or
100 new observations per step were tested. Therefore 24 processes are studied. For processes
with a variable step-size, we have defined an = c

(b+n)α , for those with a piecewise constant
step-size, an = c

(b+bnτ c)α
where b.c denotes the integer part and τ is the size of the levels. We

set α = 2/3, b = 1, c = 1. All processes were initialized with X1 = 0.
We used as "gold standard" the vector of coefficients θc obtained by classic logistic regres-

sion (using R’s glm function). Let θ̂n+1 be the estimated vector obtained by a tested process
after n iterations. The cosine of the angle between θc and θ̂n+1 was used as a convergence
criterion: cos(θc, θ̂n+1) = θc′θ̂n+1

‖θc‖‖θ̂n+1‖
.

The processes were tested on five datasets available on the Internet (Twonorm, Ringnorm,
Quantum, Adult, EEG) and the HOSPHF30D dataset derived from the EPHESUS study (Pitt
et al., 2003), all already used to test the performance of processes with online standardized data
in the case of online linear regression (Duarte et al., 2018). Twonorm and Ringnorm contain
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simulated data. Adult, EEG and HOSPHF30D contain observed data with outliers, variables
of different types and scales, unlike Quantum.

At each step of a process a data batch is randomly drawn from the dataset. All processes
were applied on all datasets for a fixed number of observations used and for a fixed process-
ing time (the cumulative time to compute the process updates, excluding operations such as
data sampling, data management, formatting and recording of results). As an example, for a
processing time of 60s (Figure 1) all tested processes using raw observed data, except Quan-
tum, had a numerical explosion. Abbreviations used in Figure 1 are: C for classic SGD or
A for ASGD, R for raw data or S for online standardized data, V for variable step-size or P
for piecewise constant step-size; for instance, AR1P50 is the averaged process with raw data,
1 observation per step, piecewise constant step-size with level size 50, CS1V is the classic
process with online standardized data, 1 observation per step and variable step-size.

FIG. 1 – Cosines for 1 minute of processing time

For each dataset and at each recording point (see below), processes were ranked from
the best (highest cosine) to the worst (lowest cosine). The mean rank over all datasets was
used to compare the processes at a given recorded point and globally. Over all datasets, the
processes with the best results after 60s are averaged processes with online standardization and
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piecewise constant step-sizes, the best one with levels of size 200 and 100 new observations
per step (AS100P200).

As in Duarte et al. (2018), the values of the criterion for each process were recorded every
N observations used fromN to 100×N , N being the number of observations in a dataset, and
every second of processing time from 1 to 120s. As an example, when studying the evolution
of the rankings with the processing time, two groups of processes appear clearly from the
beginning and remain during all the studied period. The group with the worst rankings (at
the top in Figure 2) contains all processes using raw data, all processes using only one new
observation at each step, and all "classic" processes. The group with the best rankings (at
the bottom in Figure 2) contains all averaged processes with online standardization, piecewise
constant step-sizes, and using 10 or 100 new observations per step, the best one with levels
of size 200 and 100 new observations per step. Other results can be found in Lalloué et al.
(2019b).
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FIG. 2 – Evolution with the processing time

Conclusion
We have studied an averaged constrained stochastic gradient algorithm for performing on-

line a constrained binary logistic regression. We have proposed to use an online standardization
of the data to avoid a numerical explosion, or when a shrinkage method (such as LASSO) is
used, or even when expectations or variances of explanatory variables change (varying with
time or depending on the values of controlled variables) and can be estimated online. We have
proposed to use a decreasing piecewise constant step-size in order that it does not decrease too
quickly and consequently reduces the speed of convergence of the process. We have made ex-
periments on observed and simulated datasets. The results confirm the validity of the choices
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made: online standardization of the data, averaged process and piecewise constant step-size.
This algorithm is used for scoring online heart failure (Lalloué et al., 2019a).
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Résumé
Nous étudions un algorithme de gradient stochastique pour réaliser une régression logis-

tique sous contraintes dans le cas de données massives ou en ligne. En supposant que les
données observées sont les réalisations d’un vecteur aléatoire, ces données sont standardisées
en ligne pour éviter une explosion numérique ou lorsqu’une méthode de pénalisation telle que
LASSO est utilisée. Nous démontrons la convergence presque sûre d’un processus de gra-
dient stochastique moyenné à pas variable lorsqu’un nombre variable de nouvelles données
sont introduites à chaque étape. Vingt-quatre processus d’approximation stochastique avec des
données brutes ou standardisées en ligne sont comparés sur des données réelles ou simulées.
Les meilleurs résultats sont obtenus pour des processus avec données standardisées.


