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ABSTRACT 16 

In radiating populations of Pseudomonas fluorescens SBW25, adaptive Wrinkly Spreader (WS) 17 

mutants are able to gain access to the air-liquid (A-L) interface of static liquid microcosms and 18 

achieve a significant competitive fitness advantage over other non-biofilm–forming competitors. 19 

Aerotaxis and flagella-based swimming allows SBW25 cells to move into the high-O2 region 20 

located at the top of the liquid column and maintain their position by countering the effects of 21 

random cell diffusion, convection and disturbance (i.e. physical displacement). However, wild-type 22 

cells showed significantly lower levels of enrichment in this region compared to the archetypal 23 

Wrinkly Spreader, indicating that WS cells employ an additional mechanism to transfer to the A-L 24 

interface where displacement is no longer an issue and a biofilm can develop at the top of the liquid 25 

column. Preliminary experiments suggest that this might be achieved through the expression of an 26 

as-yet unidentified surface active agent which is weakly associated with WS cells and alters liquid 27 

surface tension as determined by quantitative tensiometry. The effect of physical displacement on 28 

the colonization of the high-O2 region and A-L interface was reduced through addition of agar or 29 

polyethylene glycol to increase liquid viscosity, and under these conditions, WS competitive fitness 30 

was significantly reduced. These observations suggest that the ability to transfer to the A-L 31 

interface from the high–O2 region and remain there without further expenditure of energy (through 32 

for example, the deployment of flagella) is a key evolutionary innovation of the Wrinkly Spreader, 33 

as it allows subsequent biofilm development and significant population increase, thereby affording 34 

these adaptive mutants with a competitive fitness advantage over non-biofilm–forming competitors 35 

located within in the liquid column. 36 

 37 

INTRODUCTION 38 
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Adaptive radiation, a central element in evolution [1,2] can be investigated by experimental 39 

evolution studies using fast growing bacterial populations in continuous chemostats or serially-40 

transferred cultures, where abiotic and biotic factors are readily manipulated to alter selective 41 

pressures, and where simple mutations and phenotype changes (key innovations) lead to fitness 42 

advantages in adaptive lineages [3-6]. Although perhaps arcane, experimental evolution studies are 43 

relevant to medical and veterinary microbiology, agriculture, food and bio-technology, because 44 

populations radiate and communities undergo succession, and emerging adaptive lineages may have 45 

significantly-altered colonization, competitive, resistance or functional characteristics. 46 

One such experimental evolution system uses populations of Pseudomonas fluorescens SBW25 47 

(hereafter SBW25) [7,8] incubated statically in microcosms (small vials containing nutrient-rich 48 

liquid growth medium) where O2 availability is the growth-limiting resource [9,10]. In these, early 49 

wild-type colonists establish an O2 gradient dividing the liquid column into a shallow high-O2 (top) 50 

region immediately below the air-liquid (A-L) interface (the ‘Goldilocks zone’ where growth is 51 

optimal [11,12]) above a deeper low-O2 region where growth is limited [10]. It is important to 52 

distinguish between the A-L interface, a nanometer–deep molecular layer at the surface which is 53 

difficult to break [13], and the high-O2 region immediately below in which cells are able to move 54 

freely but are subject to random cell diffusion (Brownian motion), convection currents and 55 

disturbance (collectively referred to here as physical displacement). The Wrinkly Spreaders (WS), a 56 

class of adaptive mutants, are able to produce a robust and well-attached biofilm at the A-L 57 

interface [9,14] (sometimes referred to as a pellicle, but see [15]) with a competitive fitness 58 

advantage over the non-biofilm–forming ancestral (wild-type) SBW25 [12,16] (see Supplementary 59 

Figure S1 for images of WS biofilms and the high–O2 region in situ). Under some circumstances, 60 

wild-type SBW25 is also able to produce a fragile and poorly attached Viscous Mass (VM) biofilm 61 

at the A-L interface which nonetheless also provides a fitness advantage over non-biofilm–forming 62 

competitors [17]. 63 
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Mutations targeting diguanylate cyclases or their cognate repressors [18-22] leading to higher levels 64 

of c-di-GMP are responsible for the WS phenotype. The increase in c-di-GMP levels results in the 65 

over-expression of partially-acetylated cellulose, which is the main extracellular polysaccharide 66 

(EPS) matrix material, and poly-N-acetylglucosamine (PNAG) attachment factor which was 67 

originally thought to be a curli or pili-like fibre in early work [12,14,16,21,23,24]. Significantly, 68 

this and other bacterial experimental evolution studies have demonstrated that mutations affecting 69 

regulatory networks are capable of bringing about substantial shifts in phenotype with significant 70 

improvements in fitness, and that not all evolutionary innovation is the result of the acquisition of 71 

new function by gene duplication and divergence, de novo mutation of noncoding sequences or 72 

horizontal (lateral) gene transfer [25-27]. 73 

Although the underlying molecular biology and evolutionary ecology of the Wrinkly Spreader is 74 

well-understood, we have recently questioned why these adaptive mutants employ biofilm–75 

formation to colonise the A-L interface when O2-directed flagella-mediated swimming (i.e. 76 

aerotaxis [28]) should be sufficient to access the O2-rich region and maintain position by countering 77 

physical displacement. SBW25 is capable of swimming [24,29-34] and is chemotaxic [31], 78 

however, aerotaxis has not been reported formally although an aerotaxis sensor receptor is 79 

annotated in the genome [35]. WS mutants are not the only strains that benefits from accessing the 80 

top layer of liquid columns, as A-L interface biofilm–formation is commonplace among 81 

pseudomonads and other bacteria (e.g. [36-40]) suggesting that this ability provides substantial 82 

benefits in a range of environments where O2 gradients prevail. In particular, colonization of the 83 

surface microlayer of marine and freshwater habitats allows access to stratified organic compounds 84 

including lipids, polysaccharides and proteins [41-44]. Similar benefits are likely to be available in 85 

partially-saturated soil-pore networks and transient puddles on plants and other surfaces [45,46].  86 
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In this work, we demonstrate that although SBW25 is aerotaxic and swimming can overcome the 87 

effects of physical displacement in static microcosms, wild-type cells are not maintained effectively 88 

in the high-O2 region. In contrast, it appears that WS cells are able to transfer more efficiently from 89 

the high-O2 region and penetrate the A-L interface where they can remain in place without further 90 

energy expenditure. We then further demonstrate the value of this transfer in fitness terms by 91 

modifying the viscosity of the liquid column which reduces the impact of physical displacement 92 

and thus lowers the relative value of biofilm–formation by the Wrinkly Spreader. 93 

 94 

METHODS 95 

Bacteria and culture conditions 96 

The bacterial strains used in this study included wild-type Pseudomonas fluorescens SBW25 [7,8], 97 

the chemotaxic-deficient but swimming cheA- mutant (SBW25 cheA::aph [31]), the non-swimming 98 

flagella-deficient fleQ- mutant (SBW25 DfleQ [34]) and the archetypal biofilm–forming Wrinkly 99 

Spreader (WS; SBW25 wspF A901C [14,18]). A further 25 independent WS isolates were 100 

recovered from experimental microcosms in this work (see below). Bacteria were cultured at 20 °C 101 

in King’s B (KB) medium (20 g Proteose Peptone No. 3 (BD Biosciences, UK), 10 g glycerol, 5 g 102 

K2HPO4, 1.5 g MgSO4 per litre [47]) and M9 minimal salts [48] and maintained at -80 °C as 15 % 103 

(w/v) glycerol stocks. Standard KB plates contained 1.5 % (w/v) agar and soft-agar used for 104 

swimming and aerotaxis assays contained 0.1x normal levels of KB nutrients and 0.3% (w/v) agar. 105 

Over-night shaken cultures in KB were used as a source of inoculum for experiments and all assays 106 

were performed at 20°C. Culture densities were determined by optical density (OD600) 107 

measurements, and these and other absorbance (A) measurements were made using a Spectronic 108 

Helios Epsilon spectrophotometer (Thermo Fisher Scientific, UK) with 10 mm optical-path 109 

disposable plastic cuvettes. 110 
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Experimental microcosms 111 

Standard microcosms were 30 ml Universal glass vials containing 6 ml KB (producing a liquid 112 

column of ~12 mm) with 20 µM 2,2-dipyridyl (Sigma, UK) and 0.1 µM Tiron (1,2-113 

dihydroxybenzene-3,5-disulfonic acid) (Fisher Chemicals, UK) (KB-DP/T) to chelate iron and 114 

reduce unwanted VM biofilm–formation by wild-type SBW25 [17]. Microcosms were incubated 115 

with loose lids statically or with shaking at 150 rpm using a Stuart S150 orbital incubator (Bibby 116 

Scientific Ltd, UK). Methylene blue, which is decolourised under O2-depleted conditions, was 117 

added to 0.0005% (w/v) to visualise the high-O2 region [49]. Modified microcosms used to test the 118 

effects of increased viscosity contained a range of additives and after preliminary tests, low, 119 

medium and high concentrations (0.01%, 0.05% and 0.1% (w/v)) of agar (Technical No. 3, Oxoid, 120 

UK) and low, medium and high concentrations (1%, 2.5% and 5% (w/v)) of polyethylene glycol 121 

(PEG 10,000, Sigma) were used for further experiments. Microcosms were brought to a brief boil 122 

using a microwave oven to melt any gels and then equilibrated at 55 °C before inocula were added, 123 

gently mixed and allowed to cool before incubation. The toxic effect of low, medium and high 124 

concentrations of agar and PEG on growth in KB-DP/T was assessed in shaken microcosms. 125 

Replicate microcosms (n = 3) were inoculated with 10 µl aliquots of over-night SBW25 cultures 126 

and incubated for 24 h with shaking before growth was determined by OD600 measurements. 127 

Growth on PEG as the sole nutrient was measured in a similar way using shaken microcosms 128 

containing low, medium and high concentrations of PEG in M9 minimal salts. 129 

Aerotaxis 130 

The aerotaxic behaviour of wild-type SBW25 cells was visualised in soft-agar test tubes in which 131 

cells mid-way down the agar column could migrate towards the bottom or open-end of the test tube 132 

over 48 hr (see Supplementary Information S1 for further details). The behaviour of wild-type,  133 

fleQ- and WS cells near the A-L interface was also examined by microscopy. Samples of an over-134 

night culture were placed onto replica microscope slides (n = 5) and three sides of the coverslip 135 
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were sealed with Entellan (Merk, UK) to form a chamber. These were exposed to nitrogen gas at 20 136 

°C for 30 minutes and visualised using Leica DMR microscope and a Sony EXWAVE HD 3CCD 137 

colour camera. The slides were then left under normal O2 conditions (air) for a further 30 minutes to 138 

re-equilibrate and further images were taken. Cells numbers were determined within a standard 139 

polygon placed along the A-L interface in each pair of images, avoiding out-of-focus cells attached 140 

to the glass surfaces, and aerotaxis behaviour is reported as the O2 / N2 cell number ratio.  141 

Cell behaviours and biofilm assays 142 

Flagella-mediated swimming motility of wild-type, cheA-, fleQ- and WS cells were assessed at 20 143 

°C using soft-agar plates with replicate inoculations using over-night cultures (n = 8 – 16) [24]. KB 144 

medium and cell densities were determined by replicate (n = 5) weight and volume measurements 145 

of 50 ml KB and over-night wild-type cultures. Sedimentation of fleQ- cells was observed in 146 

microcosms inoculated with re-suspended cells obtained from over-night cultures after 24 h. 147 

Similarly, microcosms inoculated with wild-type cells at high concentrations were visually assessed 148 

for downward-moving plumes characteristic of bioconvection currents. Cell distributions and 149 

enrichment are reported as relative OD600 determined by measuring 1 ml aliquots taken from 150 

undisturbed or mixed replicate microcosms (n = 3 – 5) inoculated with 100 µl of over-night wild-151 

type, fleQ- and WS cultures and incubated for 1 – 24 h before sampling. In these assays it should be 152 

noted that the measured cell densities are the result of both cell migration and growth over the 153 

period of incubation and not simply due to motility. Sampling positions and reference 154 

measurements also varied depending on the difficulty of taking samples without disturbing the rest 155 

of the microcosm for each assay, and the cell distribution ratios are always reported such that higher 156 

values indicate greater enrichment of cells in the upper regions of the microcosm. The combined 157 

biofilm assay [37] was used to determine biofilm strength (grams), attachment levels (Crystal violet 158 
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staining, A570) and total microcosm growth (OD600 following vigorous mixing) of the independent 159 

WS isolates recovered from experimental microcosms in replicate microcosms (n = 8) after 3 days. 160 

Experimental evolution and competitive fitness 161 

The evolution of Wrinkly Spreaders from developing wild-type populations was determined over 6 162 

days using replicate standard and modified microcosms (n = 5) [50]. These were inoculated with 10 163 

µl aliquots of over-night shaken wild-type cultures and incubated statically for 1, 3 and 6 days 164 

before vigorous mixing and diluted samples spread on KB plates to determine total viable numbers 165 

and the proportion (%) of WS cells. Randomly-chosen independent WS isolates (one from each 166 

replicate microcosm, n = 25 in total) were recovered from the Day 3 plates for further analysis (Day 167 

3 is an arbitrary choice which originates from the isolation of the archetypal WS from a three day-168 

old population [14]). WS competitive fitness (W) was determined relative to wild-type cells in static 169 

and shaken microcosms [50]. Microcosms (n = 5) were inoculated with 60 µl aliquots of a 1:1 170 

mixture of over-night wild-type and WS cultures and incubated statically or with shaking for 3 days 171 

before assay. Competitive fitness was calculated as ln [final WS numbers / initial WS numbers] / ln 172 

[final wild-type numbers / initial wild-type numbers] where colony counts on KB plates were used 173 

to determine cell numbers per microcosm [51] (W > 1 indicates that the WS has an advantage 174 

compared to the wild-type). In such three day assays, WS competition is largely with wild-type 175 

cells and WS – WS competition limited [12,16]; W > 1 is expected in static microcosms and W ≤ 1 176 

in shaken microcosms where biofilms cannot form. 177 

Viscosity and liquid surface tension measurements 178 

The viscosity (mPa s) of standard KB-DP/T and modified media containing agar and PEG were 179 

determined at 20 °C using a DHR2 rheometer fitted with a 40 mm 1° cone and plate by the Centre 180 

for Industrial Rheology (Hampshire, UK). Briefly, following a 60 s equilibration, replicate (n = 3) 181 

samples were exposed to a shear rate down-sweep, from 1,000 s-1 to 1 s-1, logarithmically scaled 182 
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with 8 points per decade of shear rate, and shear applied for 30 s at each rate with viscosity 183 

calculated over the final 5 s of each step. Final viscosities for comparative purposes were 184 

determined for a shear rate of 100 s-1. The viscosity of KB-DP/T with low concentrations of agar 185 

and PEG were interpolated assuming a simple linear relationship. The liquid surface tension (ST) 186 

(mN m-1) of replicate re-suspended wild-type and WS cell samples, cultures and cell-free culture 187 

supernatants (n = 4) (from 18 h shaken cultures) was determined at 20 °C with a K100 Mk2 188 

tensiometer (Krüss, Germany) using an SV23 AI/PTFE conical sample vessel and platinum testing 189 

rod, following established methods [17,52]. Under the conditions used here, the ST of deionised 190 

water and sterile KB-DP/T was 73.1 ± 0.2 and 43.6 ± 1.6 mN m-1, respectively. 191 

Statistical analyses 192 

Experiments were undertaken with replicates (n) and means with standard errors (SE) are reported 193 

where appropriate. Data were investigated using JMP 12 statistical software (SAS Institute Inc., 194 

USA) and checked for quality before analysis. Means were compared by T-test and ANOVA 195 

models with post-hoc Tukey-Kramer HSD (a = 0.05) and Dunnett’s Method with a control (a = 196 

0.05) comparisons between means. Outlier analyses was undertaken by the inspection of residuals 197 

and the goodness-of-fit of Normal distributions fitted to the residuals examined by Shapiro-Wilk W 198 

tests. Where necessary, non-parametric Kruskall-Wallis (Rank Sums) tests and comparisons with a 199 

control using the Dunn Method for Joint Ranking were undertaken. A General linear modelling 200 

(GLM) approach was used to model biofilm strength, attachment and total growth as response 201 

variables with WS isolate, origin and experimental replicate as effects. However, in order to avoid 202 

singularity problems, it was necessary to nest isolate within origin (i.e. isolate[origin]) and the final 203 

models included isolate[origin], origin and replicate as effects. Outlier analyses was undertaken and 204 

residuals shown to be Normaly distributed (Shapiro-Wilk W, P  > 0.05). All models were robust 205 

(model summary statistics: r2 = 0.4 – 0.8; ANOVA, P < 0.05) and replicate was not significant in 206 

any model (P < 0.05). LSMeans Differences Tukey HSD tests were used to investigate differences 207 
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between means (a = 0.05). Means were further examined by Principal component analysis (PCA) 208 

with the Bartlett test used to confirm the significance of the two principle axes.  209 

 210 

RESULTS 211 

Aerotaxis allows partial localisation of cells to the high-O2 region 212 

The ability to migrate along an increasing O2 gradient is an essential behaviour which would allow 213 

wild-type SBW25 cells to access the high-O2 region of static microcosms. SBW25 is capable of 214 

flagella-mediated swimming [24,29-34], and our preliminary experiments demonstrated that wild-215 

type cells migrated towards the open end of soft-agar test tubes in a classic display of bacterial 216 

aerotaxis (Figure 1a). In order to confirm this behaviour, we quantified the distribution of wild-217 

type and WS cells in microscope slide chambers which were first first purged with N2 to remove O2 218 

and then allowed to re-equilibrate with air (Figure 1b & c). In these assays, we used the flagella-219 

deficient, non-motile fleQ- mutant cells as an aerotaxis-negative control (i.e. these cells cannot 220 

swim up an O2 gradient) which produced an O2 / N2 cell number ratio of 1.1 ± 0.1 that was not 221 

significantly greater than one (T-test, P = 0.33) as expected, having confirmed that fleQ- cells were 222 

non-motile using soft-agar swimming assays (see Supplementary Information S2 and Figure S2 223 

for further details). In comparison, relatively more wild-type and WS cells localised close to the A-224 

L interface at the edge of the chamber after re-equilibration with air which demonstrates that these 225 

cells are aerotaxic (Wild-type cells, 1.6 ± 0.1, WS cells, 1.4 ± 0.1 O2 / N2 cell number ratio; ratios 226 

are significantly different to one, T-tests, P > 0.05). Furthermore, as wild-type and WS cells showed 227 

a net movement towards to the A-L interface, these assays also demonstrate that under the 228 

conditions tested here cells using aerotaxis are able to overcome the effects of random cell diffusion 229 

which would otherwise result in the slow movement of cells away from the interface.  230 
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The relative strength of aerotaxis compared to random cell diffusion should be reflected in a 231 

diffusion (effective) coefficient for motile bacteria (DB) which is substantially greater than the 232 

corresponding diffusivity of a similarly-sized but inert sphere (DS). DB is given by [ µmax2 t ] / 3 233 

where µmax is the maximum swimming speed and t the mean time between tumbles or the duration 234 

of runs [53,54]. We calculated DB for SBW25 as 2,400 – 4,200 µm2 s-1 by taking t as 1.2 s and µmax 235 

as 77.6 – 102 µm s-1 determined by single-cell microscopy of swimmimg wild-type SBW25 cells 236 

[33]. We estimate DS as 2.9 – 38 x 10-8 µm2 s-1 using the mean SBW25 cell diameter of 0.9 µm and 237 

cell body length plus flagella of 11.5 µm from [33] as the spherical diameters (see Supplementary 238 

Information S3 for further details). As DB >>> DS as expected, we conclude that continuous 239 

aerotaxis would be sufficient to localise cells to the high-O2 region by countering the effects of 240 

random cell diffusion. 241 

In order to determine the significance of swimming motility to access the high-O2 region of static 242 

microcosms, we investigated the ability of cells to move from concentrated cell pellets placed at the 243 

bottom of microcosms into the liquid column, and from a random mixture in the liquid column up 244 

to the high-O2 region and A-L interface. We monitored cell distributions (relative OD600) over 24 h 245 

and under the conditions used here, O2 gradients develop within 3 h of inoculation [10] and these 246 

can be visualised using Methylene blue after 24 h (Supplementary Figure S1b). In a preliminary 247 

comparison, motile wild-type cells were found to rapidly access the liquid column from cell pellets 248 

within 12 h (Supplementary Figure S3), whereas no significant enrichment of the liquid column 249 

by non-aerotaxic fleQ- cells occurred after 24 h (Wild-type cells, 0.92 ± 0.04, cf. fleQ- cells, 0.16 ± 250 

0.01 Top / Bottom OD600 ratio; T-test, P < 0.0001). 251 

We then tested the ability of wild-type and WS cells to move from the liquid column up into the 252 

high-O2 region and A-L interface, again using fleQ- cells as an aerotaxis-negative control. After 253 

inoculating microcosms with cells, we vigorously mixed them to produce a uniform cell distribution 254 
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throughout the liquid column before incubation and sampling to determine cell distributions after 24 255 

h. In these assays, wild-type cells were significantly enriched in the top 2 mm of the liquid column 256 

(corresponding to the top 1 ml) after 24 h (TK-HSD, a = 0.05) (Figure 2), whereas fleQ- cells 257 

showed no enrichment in this region (TK-HSD, a = 0.05) but accumulated at the bottom where a 258 

light sedimentation was observed (our measurements confirmed that the density of wild-type cells 259 

was 1.3-fold greater than that of the growth medium; K-W, P = 0.01). In comparison, WS cells, also 260 

capable of swimming motility [24] (see Supplementary Information S2 and Figure S2 for further 261 

details), showed even greater levels of enrichment than wild-type cells (~1.5-fold higher; WS cells, 262 

1.78 ± 0.03 cf. Wild-type cells, 1.19 ± 0.04 Top / Mixed control OD600 ratio; T-test, P = 0.008) 263 

where the WS biofilm was included as part of the top 1 ml sample (Figure 2c). As FleQ is a 264 

transcriptional regulator of cellulose production in SBW25 [55], we do not use the fleQ- mutant in 265 

any further assays where pleitropic effects may confound our understanding of how WS cells 266 

associate with the A-L interface and form a biofilm.  267 

Bioconvection currents are known to transport bacterial cells, O2 and nutrients, etc. down from the 268 

high-O2 region of liquid columns and are thought to be generated by cycles of swimming and rest of 269 

aerotaxic bacteria which have cell densities greater than the bulk liquid [56]. We were not able to 270 

confirm the presence of bioconvection currents by visual observation, as has recently been reported 271 

for wild-type SBW25 using larger microcosms and a custom-made detection system [57]. 272 

Critically, we note that, if bioconvection currents exist under the conditions tested here, they do not 273 

prevent the localisation of cells to the high-O2 region (i.e. downward plumes are countered by the 274 

constant upward aerotaxis of displaced cells) though it might partially explain why enrichment 275 

levels in this region are not higher than observed (i.e. cells are constantly removed from the high–276 

O2 region by these currents). 277 
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These results clearly demonstrate that SBW25 cells can partially localise at the top of the liquid 278 

column in static microcosms through O2-directed flagella-mediated swimming, but aerotaxis alone 279 

cannot explain the higher levels of WS cell enrichment in the high–O2 region compared to wild-280 

type cells. This difference suggests that WS cells have an additional capability allowing a more 281 

successful or efficient colonization of this region and the A-L interface. 282 

Penetrating the A-L interface  283 

Organic molecules collecting at the A-L interface of a liquid column are expected to alter the A-L 284 

interfacial tension (more commonly referred to as surface tension, ST). Experiments investigating 285 

the association of bacterial cells to thin organic layers over-laying water have also demonstrated a 286 

decrease in ST [58] (interfacial storage G’ (elasticity) and loss modulus G” (viscosity) are similarly 287 

affected [59]). We therefore predict that, if WS cells were more capable of associating with the A-L 288 

interface than wild-type cells, then this should be manifested by a lower ST. A significant 289 

difference in ST was observed between wild-type and WS cultures (Wild-type culture, 32.9 ± 0.4 cf. 290 

WS culture, 31.0 ± 0.4 mN m-1; T-test, P = 0.02), but not between cell-free culture supernatants 291 

which would include secreted compounds (T-test, P = 0.18) or between vigorously washed and re-292 

suspended cells which would have lost weakly-associated surface material (T-test, P = 0.16) 293 

(Figure 3). Given the very small differences observed between mean measurements, we re-294 

analysed these data using a non-parametric approach which is less sensitive to small sample sizes 295 

and found the same outcomes (K-W; cultures, P = 0.03; supernatants, P = 0.14; cells, P = 0.29). 296 

We interpret these results to suggest that the Wrinkly Spreader may be producing a surface-active 297 

agent (SAA) that is not secreted into the supernatant but is weakly associated with the cell surface 298 

and is not produced by wild-type cells (SAAs can be simple amphipathic compounds or polymers 299 

and include surfactants,which show strong surface activity and significantly reduce ST [60]). We do 300 

not believe that this SAA is viscosin, a cyclic lipopeptide surfactant known to be produced by 301 
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SBW25 which when secreted into the supernatant reduces ST down to ~33 mN m-1 within 24 hr 302 

[17,61] (the equal ST of cell-free culture supernatants also demonstrates that wild-type and WS 303 

cultures produce the same levels of viscosin). Instead, we suggest that this is likely to be another 304 

SAA with a stronger activity which reduces the over-all ST of WS cultures to ~31.0 mN m-1 (the ST 305 

of a mixture of two SAAs which do not chemically interact is the ST of the SAA with the strongest 306 

activity, i.e. the lowest ST, assuming both are present at concentrations above their critical micelle 307 

concentrations) and that this SAA allows WS cells to associate with the A-L interface far more 308 

successfully than wild-type cells.  309 

Viscosity affects the localisation of cells at the A-L interface 310 

In order to establish an experimental system to investigate the impact of physical disturbance on 311 

cell localisation in the high–O2 region and colonization of the A-L interface, we established 312 

modified microcosms in which liquid viscosity had been increased. In these, both random cell 313 

diffusion and fluid flow will be reduced as they are affected by liquid viscosity [53,56,62]. We first 314 

tested the effect of adding agar, CMC, Ficol and PEG at various concentrations on wild-type cell 315 

distributions (see Supplementary Information S4 and Table S1 for further details). We chose 316 

agar, which increases viscosity by forming intermolecular networks (gels) [63], and PEG, which 317 

increases viscosity by intermolecular friction [64], for further experimentation and determined the 318 

viscosities of our modified microcosms by rheometry (Table 1). Our viscosity measurements are in 319 

agreement with other reports for agar and PEG, e.g. [65,66], and it is important to note that even at 320 

the highest concentrations of agar (0.1% w/v) and PEG (5% w/v) we chose, the modified KB 321 

medium still flowed like water and no gels or viscous solutions were formed. As some 322 

pseudomonads have been reported to utilise PEG as the sole carbon source [67-69], we tested this 323 

on wild-type SBW25 but saw no significant growth on PEG compared to the control (Dunnett’s, a 324 

= 0.05). However, we noted a minor toxic effect of PEG resulting in a 0.77-fold reduction in 325 
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relative growth at higher concentrations (Dunn method, P = 0.02), whereas agar had no significant 326 

effect (Dunn method, P = 1.0) (Table 1). 327 

By investigating cell distributions as before, we were able to confirm quantitatively that 0.05 – 0.1 328 

% (w/v) agar and 2.5 – 5 % (w/v) PEG significantly changed wild-type and WS cell distributions 329 

compared to standard microcosms after 24 h, with proportionally more cells localised at the top of 330 

the liquid column in the modified microcosms (TK-HSD, a = 0.05) (Figure 4) (we specifically note 331 

that at the concentrations of agar and PEG used here there was no visually discernible change in 332 

liquid viscosity compared to standard microcosms). In these assays a plateauing effect on wild-type 333 

cell distribution was seen when viscosity was between 3 – 7 mPa s-1, suggesting that the cells are 334 

responding to viscosity similarly, regardless of whether it is caused by inter-molecular gel 335 

formation (agar) or inter-molecular friction of monomers (PEG). WS cell distributions were ~4x 336 

higher than for the corresponding wild-type cell distributions which may reflect the increased 337 

populations Wrinkly Spreaders can achieve by biofilm–formation at the A-L interface (high PEG 338 

concentrations may also have a negative impact on WS cell distribtions though this was not 339 

significant in these assays, TK-HSD, a = 0.05). 340 

Increased liquid viscosity reduces the competitive advantage of biofilm–formation  341 

We predict that Wrinkly Spreader competitive fitness should be significantly reduced as liquid 342 

viscosity is increased, to the point where wild-type cells can localise at the A-L interface in static 343 

microcosms, as under these conditions, the WS loses the advantage that biofilm–formation provides 344 

over non-biofilm–forming competitors. A significant decrease in fitness from 1.45 ± 0.06 was 345 

observed in both agar and PEG microcosms (TK-HSD, a = 0.05) (Figure 5a), with fitness 346 

plateauing around one in high agar microcosms and dropping to 0.70 ± 0.04 for high PEG 347 

microcosms where the WS was at a distinct disadvantage. In contrast, in shaken microcosms where 348 

the WS cannot form a biofilm, no significant difference in fitness was found between standard and 349 
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agar microcosms, although fitness in high PEG microcosms was significantly reduced (WS fitness 350 

in standard microcosms, 0.81 ± 0.01; high agar, 0.78 ± 0.02; high PEG, 0.62 ± 0.01; Dunnett’s, a = 351 

0.05), perhaps reflecting the toxic effect of high levels of PEG. The effect of increasing viscosity on 352 

WS fitness is also mirrored in diversifying populations of wild-type SBW25, where the proportion 353 

of WS cells found after 3-days also decreases significantly (TK-HSD, a = 0.05) (Figure 5b). 354 

As we have previously found that Wrinkly Spreaders evolved from wild-type cells in standard 355 

microcosms or drip-feed glass-bead columns differed in terms of WS phenotype [70] (wrinkleality 356 

[12,71]), we also compared the biofilms produced in standard microcosms by a set of independent 357 

WS isolates, recovered from standard and modified microcosms, using the combined biofilm assay 358 

[37]. We found significant differences in relative strength, attachment levels and total growth 359 

between WS isolates (TK-HSD, a = 0.05) (Figure 6). Further analysis using a GLM approach 360 

found significant isolate[origin] and origin effects for each of these characteristics (ANOVA, P ≤ 361 

0.02) and PCA could differentiate isolates from standard, high agar and high PEG microcosms (see 362 

Supplementary Information Figure S4 for further details). This suggests that these microcosms 363 

were providing slightly different environments in which Wrinkly Spreaders are selected with subtly 364 

varying phenotypes.  365 

 366 

DISCUSSION 367 

Considerable growth advantages are available in the high-O2 region of static microcosms created by 368 

the ecosystem engineering of the early wild-type SBW25 colonists [10]. This region which includes 369 

the A-L interface and extends down into the liquid column for ~1mm [10] represents an ecological 370 

opportunity for adaptive lineages such as the Wrinkly Spreaders who can occupy the ‘Goldilocks 371 

zone’ of optimal growth [11-12] (see [72] for the first description of bacteria occupying a region of 372 
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optimal O2 concentration) through the development of a robust biofilm at the A-L interface. This 373 

biofilm strategy is an example of resource allocation trade-off [6,73,74] as energy not required for 374 

aerotaxis is diverted away from direct growth to produce the EPS biofilm matrix that will retain 375 

cells in the high-O2 region without constant swimming. However, as the biofilm matures greater 376 

benefits are realised as resident cells no longer have to expend energy in aerotaxis or further biofilm 377 

construction. The success of this strategy is confirmed by the competitive fitness advantage that the 378 

Wrinkly Spreaders have over non-biofilm–forming competitors [12] which will continue until 379 

growth is limited by depleted resources or when the biofilm sinks due to physical disturbance [12]. 380 

Additional confirmation of the success of the biofilm strategy is seen in the competitive fitness 381 

advantage of other A-L interface biofilms produced by SBW25 [17,19,21,22], B. subtilis NCIB3610 382 

and P. aeruginosa PA14 [75], and more generally by the frequency of A-L interface biofilm–383 

formation found amongst pseudomonads and other bacteria [36-40]). Nonetheless, we have been 384 

interested in understanding why biofilm–formation should be so successful at a physical level, 385 

when aerotaxis should be sufficient to gain access to the high-O2 region and remain in place by 386 

countering the effects of physical displacement.  387 

Our investigations have confirmed that wild-type SBW25 and the archetypal Wrinkly Spreader are 388 

aerotaxic as expected, although we note that this behaviour has been reported for very few 389 

pseudomonad strains (e.g. [76-80]) which are generally regarded as aerobic and motile [81] and 390 

aerotaxis homologues are annotated in many genomes [82]. We have also demonstrated that wild-391 

type and WS cells are capable of accessing the high–O2 region at the top of the liquid column of 392 

static microcosms, and the failure of fleQ- cells to do this confirms the importance of swimming in 393 

colonising the Goldilocks zone (motility is also important for the colonization of the A-L interface 394 

by NCIB3610 and PA14 [75]). SBW25 cells have one of the fastest swimming velocities yet 395 

reported for pseudomonads [33] and we calculate that short periods of swimming will easily 396 

overcome the effects of random cell diffusion when they are in the high–O2 region. The presence of 397 
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bioconvection currents [57] might appear to prevent the localisation of wild-type and WS cells and 398 

subsequent biofilm–formation, as cycles of aerotaxis and rest, initiates convection through 399 

instabilities and plume-formation which may transport cells far from the high–O2 region or lead to 400 

their sedimentation. Simulations show that currents appear only above a critical culture density has 401 

been reached [62] at which point we suggest that sufficient biofilm development has occurred to 402 

withstand any further significant displacement of cells or structure (similarly these do not disrupt 403 

the formation of A-L interface biofilms by NCIB3610 and PA14 [75]; we also note that evaporation 404 

and salt accumulation at the A-L interface is sufficient to generate convection patterns in bacterial 405 

cultures [83]).  406 

Our observations suggest that an aerotaxis-based strategy should be a plausible alternative to 407 

biofilm–formation as a means of colonising the A-L interface. However, the experimentally 408 

observed competitive fitness advantage of the Wrinkly Spreader (e.g. [14,21,50]) suggests that 409 

aerotaxis is not the optimal evolutionary solution and implies instead that biofilm–formation offers 410 

selective advantage, possibly by requiring a lower over-all energy expenditure by the growing 411 

population. Even when the cellulose biosynthesis genes are deleted, alternative A-L biofilm–412 

forming SBW25 mutants have been isolated with competitive fitness advantages over non-biofilm–413 

forming competitors [19,21,22]. We proposed that if biofilm–formation is the superior strategy 414 

because the main impediment to localisation in the high–O2 region is the impact of physical 415 

displacement, WS competitive fitness relative to a non-biofilm–forming competitor should decrease 416 

as liquid viscosity was increased as random cell diffusion and fluid flow are limited by viscosity 417 

[53,56,62]. A significant decrease in WS competitive fitness and evolution was found as expected 418 

using modified microcosms in which viscosity was up to 5.7-fold higher than in standard 419 

microcosms, but far lower than what would be required to produce a visually-obvious gel or viscous 420 

solution. We also note that agar and PEG produced additional subtle effects on WS evolution, as 421 

recovered isolates exhibited distinct biofilm characteristics, suggesting that some level of local 422 
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adaptation might be occurring, especially in the PEG microcosms, to reduce the impact of toxic 423 

intermediates or bottlenecks in PEG metabolism [84].  424 

The dry-looking top surface of WS biofilms [23] has long suggested to the authors that WS cells 425 

were capable of penetrating the A-L interface (rather like bacterial meta-neustons colonising the 426 

surface microlayers of marine and freshwater habitats [41,42]), with subsequent generations pushed 427 

up above the liquid layer, and older generations gradually pushed lower down into the liquid 428 

column (resulting in an ancestor’s inhibition effect [12,85]). Penetrating and crossing, or otherwise 429 

associating with the A-L interface requires mechanical energy [13], resulting in altered liquid 430 

surface tension (ST) and viscoelasticity [41,59]. This depends on bacterial surface charge and 431 

hydrophobic interactions that are also modified by cell surface features including 432 

lipopolysaccharide (LPS), other polymers and appendages, and changes to the A-L interface can in 433 

turn affect swimming behaviour through drag effects [86]. In some instances, the growth of bacteria 434 

in shaken cultures leads to an increase in ST due to the accumulation of polymers, proteinaceous 435 

material and cell debris but this can be overcome by the expression of strong surface-active agents 436 

(SAA) such as surfactants [13] which significantly reduce ST to a minimum of 23 mN m-1 437 

[52,86,87] (the ST of bacterial cells can also be inferred and is affected by growth conditions and 438 

physiological state [88]). 439 

Our comparison of the ST of wild-type and WS cultures, cell-free supernatants and washed cells 440 

suggest that Wrinkly Spreaders are expressing a SAA weakly associated with the cell surface, 441 

which allows better penetration of the A-L interface than for wild-type cells. Further work will be 442 

required to identify the SAA which could be cellulose [14,23] or PNAG [21] attachment factor, 443 

both of which are over-expressed by Wrinkly Spreaders but expressed at low levels by wild-type 444 

cells, or possible a completely new component not yet associated with the WS phenotype. Changes 445 

in the expression of cell surface features such as cellulose and LPS are known to affect WS relative 446 
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cell hydrophobicity and recruitment levels to the A-L interface [24]. Various types of cellulose 447 

fibres and derivatives are known to alter ST, e.g. [89-92], and in earlier work we demonstrated that 448 

that cellulose-expression by wild-type SBW25 could explain the reduction of ST from ~27 to 25 449 

mN m-1 [17], but we are not aware of any publications demonstrating the same for PNAG. 450 

However, an alternative explanation is that the Wrinkly Spreader expresses another SAA which is 451 

more tightly repressed in wild-type cells. We have previously suggested that a highly-hydrophobic 452 

amyloid fibre potentially expressed by fabA–F homologues (PFLU2701– 2696) is a likely candidate 453 

involved in attachment [12,93,94] which might also allow better penetration of the A-L interface. 454 

Amyloid fibres allow the gelation of polysaccharides and result in modified matrices with different 455 

viscoelastic properties [95] and these fibres need to penetrate the A-L interface in order to form a 456 

robust biofilm [96]. Such fibres might explain the difference seen between the dry-looking and 457 

robust WS biofilm and the wet-looking VM biofilm produced by wild-type SBW25 [17] which 458 

readily sinks when disturbed but nonetheless is still associated with the A-L interface [59].  459 

We have a long-term interest in understanding the underlying molecular biology and evolutionary 460 

ecology of the Wrinkly Spreader [12]. Our investigation of how wild-type and WS cells access and 461 

remain in the high-O2 region highlights the advantage biofilm-formation has over aerotaxis in 462 

overcoming displacement from this Goldilocks zone of optimal growth [11,12], and the difficulty in 463 

penetrating the A-L interface, which allows the development of substantially larger and more robust 464 

biofilms. Although biofilm-formation has been identified as the key innovation of the Wrinkly 465 

Spreader [14], we now raise the question of whether the key is really the ability to cross the A-L 466 

interface and avoid the energetic costs involved in maintaining position in the high-O2 region, rather 467 

than the subsequent population increase across the A-L interface in the developing biofilm. 468 

 469 
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FIGURE LEGENDS 744 

Figure 1.  Wild-type SBW25 and Wrinkly Spreader cells are aerotaxic. The O2-directed 745 

flagella-mediated swimming (i.e. aerotaxis) behaviour of wild-type cells can be 746 

visualised by monitoring cell migration in soft-agar (a). After 48 hr cells have moved 747 

towards the source of O2 (i.e. the open end of the test tube) (top arrow) following the O2 748 

gradient, rather than downwards to the sealed end of the test tube (tetrazolium violet has 749 

been added to help visualise live-cells; a lot of the initial inoculum remains at the mid-750 

point and probably represents dead cells). Aerotaxis behaviour can also be quantified by 751 

determining cell distributions along an A-L interface in a microscope chamber (b). 752 

Shown here are images of the same chamber under O2-depleted conditions and then 753 

after 30 min re-equilibration with normal O2 levels in which more wild-type cells are 754 

located near to the A-L interface. Cell distributions derived from microscope images 755 

can be used to quantify the aerotaxis behaviour of wild-type and WS cells compared to 756 

non-motile fleQ- cells which are not capable of aerotaxis ipso facto (c). Cell 757 

distributions were determined from paired images taken under O2-depleted conditions 758 

and then after 30 min re-equilibration with normal O2 levels and is shown as the O2 / N2 759 

cell number ratio. A ratio significantly greater than one (grey line) suggests that cells 760 

are aerotaxic. Means (black circles) ± SE are shown (replicates are indicated by white 761 

circles). Means not linked by the same letter are significantly different (TK-HSD, a = 762 

0.05). Wild-type and WS O2 / N2 cell number ratios are significantly different to one (T-763 

test, P > 0.05) but the fleQ- ratio is not (P = 0.33). 764 

 765 

Figure 2. Wrinkly Spreader cells show higher levels of enrichment in the O2-rich top layer of 766 

the liquid column than either wild-type or non-motile fleQ- cells. Localisation at the 767 
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top of the liquid column requires aerotaxis capable of overcoming random cell 768 

diffusion, microcurrents and physical disturbance, and cell sedimentation. Wild-type 769 

SBW25 cells are enriched at the top of the liquid column (a) compared to non-aerotaxic 770 

(and non-swimming) fleQ- mutant cells, which sediment at the bottom of the liquid 771 

column (b). In comparison, WS cells show even higher levels of enrichment at the top 772 

compared (c) to wild-type cells. Cell distributions were determined from OD600 773 

measurements of six 1 ml samples taken from the top down to the bottom of static 774 

microcosms 24 h after vigorous mixing to produce a uniform distribution of cells 775 

throughout the liquid column. Control measurements were taken from a separate set of 776 

mixed microcosms incubated for the same period but re-mixed before sampling. Cell 777 

distributions are shown as the cell distributions in the liquid column (sample at a 778 

particular depth / mixed control OD600 ratio). A ratio of one suggests cells are equally 779 

distributed throughout the liquid column. Means (black circles) ± SE are shown 780 

(replicates are indicated by white circles). Means not linked by the same letter are 781 

significantly different (TK-HSD, a = 0.05). Trend lines (dashed curves) are descriptive 782 

only. 783 

Figure 3 Wrinkly Spreader cultures have lower surface tensions than wild-type SBW25. 784 

Surface tension (ST, mM m-1) measurements can be used to investigate the association 785 

with and penetration of cells into and across the A-L interface through cell surface 786 

features including attached and loosely-associated polymers. Shown here is a 787 

comparison of ST measurements from cultures, cell-free culture supernatants and 788 

vigorously-washed and re-suspended wild-type and WS cells. Means (black circles) ± 789 

SE are shown (replicates are indicated by white circles). Means not linked by the same 790 

letter are significantly different (TK-HSD, a = 0.05). Further investigation showed a 791 
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significant difference (*) between mean wild-type and WS culture ST (T-test, P = 0.02) 792 

but not between washed cells (T-test, P = 0.18) or supernatants (T-test, P = 0.16). 793 

Figure 4. Cell localisation to the high-O2 region is sensitive to liquid viscosity. Random cell 794 

diffusion, bioconvection currents and physical disturbance (i.e. displacement) all affect 795 

the distribution of wild-type (circles) and WS (squares) cells in the liquid column of 796 

static microcosms. However, the relative impact of these factors can be reduced by 797 

increasing liquid viscosity, which results in more cells being localised to the high-O2 798 

region at the top of the liquid column. Standard microcosms (white) were modified by 799 

the addition of agar (grey) or PEG (black) to increase viscosity. Cell distributions were 800 

determined from OD600 measurements of samples taken from the bottom of static 801 

microcosms and after vigorous mixing and is shown as the cell distributions in the 802 

liquid column (mixed / bottom OD600 ratio). A ratio less than one suggests that fewer 803 

cells are at that depth compared to the mixed control. Means (large symbols) ± SE are 804 

shown (replicates are indicated by small symbols). Means not linked by the same letter 805 

are significantly different (TK-HSD, a = 0.05). Trend lines (dashed curves) are 806 

descriptive only. 807 

Figure 5. WS fitness is affected by viscosity. The competitive fitness (W) of the archetypal 808 

Wrinkly Spreader compared to the non-biofilm–forming wild-type SBW25 decreases 809 

with increasing liquid viscosity (a). A competitive fitness of one (grey line) indicates 810 

that the WS and wild-type have no advantage over one another; higher values indicate a 811 

WS advantage and lower values a wild-type advantage. This reduction is also reflected 812 

in the percentage of WS cells found in diversifying wild-type populations after 3 days 813 

(b). Standard microcosms (white circles) were modified by the addition of agar (grey 814 

circles) or PEG (black circles) to increase viscosity. Means (large symbols) ± SE are 815 



Page 34 of 35 

shown (replicates are indicated by small symbols). Means not linked by the same letter 816 

are significantly different (TK-HSD, a = 0.05). Data are jigged horizontally to avoid 817 

over-laps. Trend lines (dashed curves) are descriptive only. 818 

Figure 6. Wrinkly Spreaders evolved in modified microcosms have different biofilm 819 

characteristics. The combined biofilm assay was used to characterise the biofilms 820 

produced in standard microcosms by 25 independent Wrinkly Spreader isolates 821 

recovered from standard and modified microcosms containing low and high 822 

concentrations of agar and PEG. Shown are relative biofilm strengths measured using 823 

small galls balls (grams) (a), attachment levels measured by Crystal violet staining 824 

(A570) (b), and total microcosm growth (OD600) (c). The relative value of one (grey line) 825 

is the mean of all measurements (n = 125). Means (black circles) ± SE are shown (mean 826 

data from individual Wrinkly Spreader isolates are indicated by white circles). Means 827 

not linked by the same letter are significantly different (LSMeans Differences Tukey 828 

HSD, a = 0.05). 829 

 830 

TABLE 831 

Table 1. Viscosity and growth characteristics of microcosms with added agar and 832 

polyethylene glycol (PEG). 833 

 834 

 Concentration Viscosity Localisation 835 

Microcosm  (w/v %)  (mPa s) to the top Growth (OD600) 836 

 837 

Standard - 1.26 ± 0.02 a No 1.45 ± 0.05 (1.00) 838 

 839 

Low agar  0.01 1.56 †  No 1.25 ± 0.05 (0.86) 840 

Medium agar  0.05 2.74 ± 0.02 b  Yes 1.34 ± 0.04 (0.92) 841 
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High agar  0.1 7.13 ± 0.24 c  Yes 1.33 ± 0.02 (0.92) 842 

 843 

Low PEG 1 1.44 †  No 1.23 ± 0.07 (0.85)  844 

Medium PEG  2.5 1.71 ± 0.02 a  Yes 1.16 ± 0.06 (0.80)  845 

High PEG  5 2.75 ± 0.14 b  Yes 1.11 ± 0.06 (0.77) * 846 

 847 

Means ± SE are shown for measurements of viscosity and wild-type SBW25 growth. †, Viscosity 848 

for low concentrations were interpolated assuming a simple linear relationship. Visually-obvious 849 

agar gelling occurred at 0.3% (w/v) agar and PEG solutions of 20% (w/v) were very difficult to 850 

pour. Relative growth compared to standard microcosms is shown in parentheses. Viscosity means 851 

not linked by the same letter are significantly different (TK-HSD, a = 0.05). Growth means are not 852 

significantly different (Dunn method, P > 0.05) except where indicated (*) (P = 0.02). 853 

 854 
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Supplementary Information, Table, Figures and References 

Penetrating the air-liquid interface is the key to colonization 
and Wrinkly Spreader fitness 

Robyn Jerdan, Anna Kuśmierska, Marija Petric & Andrew J. Spiers 

Supplementary Information  

 

Supplementary Information S1. Aerotaxis in soft-agar test tubes. 

Test tubes containing soft-agar used to visualise the aerotaxic behaviour of wild-type SBW25 cells. 

Test tubes were first prepared by setting 5ml soft-agar at the base. A mixture of 500 µl washed 

cells from an over-night culture and 500 µl soft-agar containing 0.6% (w/v) agar (both equilibriated 

at 55 °C to prevent setting) was then added and allowed to set at 20 °C. Finally, a further 5 ml soft-

agar was added to the top and allowed to set. Ten microliters of 1 mg ml-1 tertrazolium violet was 

added to the cell mixture and 100 µl added to the top of the soft-agar column to track 

metabolically-active cells. The test tubes were incubated vertically with loose lids for 48 h before 

inspection. 

Supplementary Information S2. Swimming characteristics of strains. 

The flagella-mediated swimming motility of wild-type SBW25, the chemotaxic cheA- and flagella-

deficient fleQ- mutants have been investigated using soft-agar plate assays and microscopy [1-7], 

and microscopic observation used to confirm the motility of the Wrinkly Spreader [4] (SBW25 is 

also capable of twitching and swarming motility [5,7-9]). We have used soft-agar plate assays to 

confirm the swimming motility of the strains used in this work and observed significant differences 

in swimming diameters after 24 h (TK-HSD, a = 0.05) (Supplementary Information Figure S2). 

Further analysis showed a significant difference in motility between cheA- mutant cells capable of 

directionless movement and non-motile fleQ- mutant cells (T-test, P = 0.0001). We also note that 

archetypal WS is less than that of wild-type cells but more than the cheA- and fleQ- mutants (TK-

HSD, a = 0.05), suggesting that the expression of cellulose and attachment factor retards 

movement or increased c-di-GMP levels repress flagellum-based motility. 
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Supplementary Information S3. Diffusivity of non-motile SBW25 cells. 

The diffusivity of a non-motile cell is given by the Stokes-Einstein equation for diffusion of spherical 

particles through a liquid with a low Reynolds number, [ KB T ] / [ 3 p h ø ], where KB is the 

Boltzmann constant, T is temperature, h is the dynamic viscosity of the liquid and ø the diameter of 

the sphere (the Reynolds number is zero as the liquid in static microcosms is at rest). Using our 

measurements of h for KB (1.26 ± 0.02 mPa s) and a temperature of 20 °C, we estimate DS as 2.9 

– 38 x 10-8 µm2 s-1 using the mean SBW25 cell diameter of 0.9 µm and cell body length plus 

flagella of 11.5 µm from [6] as the spherical diameters. 

Supplementary Information S4. Effect of viscosity agents on SBW25. 

Modified microcosms used to visually assess the effects of increased viscosity contained a range 

of additives including agar (Technical No. 3, Oxoid, UK), carboxymethyl cellulose (CMC, Sigma), 

Ficol 70 (Sigma), and polyethylene glycol (PEG 10,000, Sigma). Microcosms were brought to a 

brief boil using a microwave oven to melt any gels and then equilibrated at 55 °C before inocula 

were added, gently mixed and allowed to cool to 20 °C for incubation.  

Modified microcosms were inoculated with over-night wild-type SBW25 cultures and growth and 

cell distributions assessed visually after 24 h (Supplementary Information Table S1). Clear signs of 

growth were observed in all microcosms, indicating that the brief exposure to 55°C was not lethal 

nor were the viscosity agents highly toxic.  

Supplementary Table S1 

 

Table S1. Effect of viscosity agents on the growth and distribution of Pf. SBW25 in static microcosms. 

Cause of viscosity Agent added Observations 

 None Good growth throughout the liquid column with no visually-obvious localisation at the A-L interface. 

Inter-molecular friction 0.3 – 20% Ficol Good growth throughout the liquid column at 0.6% or lower but localised at the A-L interface at 1.2% or above; 
poor growth at 20% with solutions becoming very viscous at 10%. 

 0.3 – 20% PEG Good growth throughout the liquid column at 2.5% or lower but localised at the A-L interface at 5% or above; poor 

growth at 20% with solutions becoming very viscous at 20%. 

Inter-molecular network 0.05 – 2% Agar Good growth throughout the liquid column at 0.05% or lower but localised at the A-L interface at 0.1% or above 
with gelling at 0.4%. 

 0.125 – 1% CMC Good growth throughout the liquid column at 0.25% or lower but localised at the A-L interface at 0.5% or above 
with gelling at 1 %. 

Observations of static microcosms inoculated with SBW25 were made after 24 hr. CMC, carboxymethyl cellulose; Ficol, Ficol 70; PEG, Polyethylene glycol 10,000; 
Concentrations are % (w/v). 
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Supplementary Figures S1 – S4 

 

 

 

Figure S1. Wrinkly Spreader colonises the A-L interface by biofilm–formation. The Wrinkly Spreader produces a 
visually-obvious, robust and well-attached biofilm at the A–L interface of static microcosms while under normal conditions 
wild-type cells grow throughout the liquid column without producing a biofilm (a) (left, Wild-type culture; right, WS 
culture). The metabolic activity of cells rapidly generates an O2 gradient down the liquid column leaving a shallow O2-rich 
region at the top. This region can be visualised using the O2-sensitive indicator Methylene blue which is blue/green in the 
presence of O2 but is decolourised under low–O2 conditions (b) (left, Sterile control; right, Wild-type culture). While 
biofilm–formation is a successful strategy allowing colonization of the A-L interface, increasing liquid viscosity allows 
wild-type cells to localise at the A-L interface without the need for biofilms (c) (left, standard microcosm; right, modified 
microcosm with agar). 
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Figure S2. Swimming characteristics of wild-type SBW25 and mutant strains. Soft-agar plates were used to assess 
flagella-mediated swimming motility (mm 24 h-1). The fleQ- mutant is unable to produce flagella and the mean diameter 
indicates the effect of random diffusion and growth from the point of inoculation. The cheA- mutant is capable of 
swimming motility but not chemotaxis, so the diameter indicates non-directed movement and growth out from the point of 
inoculation. In contrast, wild-type and WS cells are capable of chemotaxis–regulated swimming motility. Means (black 
circles) ± SE are shown (replicates are indicated by white circles). Means not linked by the same letter are significantly 
different (TK-HSD, a = 0.05). Further investigation showed a significant difference (*) between cheA- and fleQ- swimming 
motility (T-test, P = 0.0001).  
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Figure S3. Swimming allows cells to move into the liquid column. Wild-type SBW25 cells (grey squares) are able to 
migrate from cell pellets placed at the bottom of static microcosms to the top of the liquid column by flagella-mediated 
swimming within 12 h. In contrast, non-swimming fleQ- mutant cells (black squares) show no significant migration in the 
same period. Cell distributions were determined from OD600 measurements of samples taken from the top and bottom of 
static microcosms and is shown as the cell distributions in the liquid column (top / bottom OD600 ratio). A ratio of one 
suggests cells are equally distributed throughout the liquid column. Means (black symbols) ± SE are shown (replicates 
are indicated by white symbols). Means not linked by the same letter are significantly different (TK-HSD, a = 0.05) Trend 
lines (dashed curves) are descriptive only. 
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Figure S4. Wrinkly Spreaders isolated from modified microcosms have different biofilm characteristics. 
Investigation of the combined biofilm mean data (microcosm growth, biofilm strength and attachment levels measured in 
standard microcosms) examined by PCA could differentiate independent Wrinkly Spreader isolates recovered from 
standard (white squares), low agar (light green), high agar (dark green), low PEG (light blue) and high PEG (dark blue) 
microcosms using the first two principle axes (Bartlett tests, P = 0.002 and 0.007, respectively). The coloured ovals are 
suggestive of groupings only. The Eigen vectors for mean biofilm strength (g), attachment levels (A570) and total growth 
(OD600) are indicated in the top right corner. 
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