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Abstract

In this paper, we obtain a (p, ¢)-extension of Srivastava’s triple hypergeometric func-
tion Hp(-), by using the extended Beta function B, 4(x,y) introduced by Choi et al.
[Honam Math. J., 36 (2011) 357-385]. We give some of the main properties of this
extended function, which include several integral representations involving Exton’s hy-
pergeometric function, the Mellin transform, a differential formula, recursion formulas
and a bounded inequality. In addition, a new integral representation of the extended
Srivastava triple hypergeometric function involving Laguerre polynomials is obtained.
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1. Introduction and Preliminaries

In the present paper, we employ the following notations:
N := {172, }, Nyp:=NU {0}7 Za =7 U {0}7

where the symbols N and Z denote the set of integer and natural numbers; as usual, the
symbols R and C denote the set of real and complex numbers, respectively.

In the available literature, the hypergeometric series and its generalizations appear in
various branches of mathematics associated with applications. A large number of triple
hypergeometric functions have been introduced and investigated. The work of Srivastava
and Karlsson [23, Chapter 3] provides a table of 205 distinct triple hypergeometric functions.
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Srivastava introduced the triple hypergeometric functions H 4, Hg and H¢ of the second
order in [20, 21]. It is known that Ho and Hp are generalizations of Appell’s hypergeometric
functions F; and F5, while H 4 is the generalization of both F} and F5.

In the present study, we confine our attention to Srivastava’s triple hypergeometric
function Hp given by [23, p. 43, 1.5(11) to 1.5(13)] (see also [20] and [22, p. 68])

m ,n Jk

i (bl)erk(b?)m—I—n(b )n+k$ Yz

HB(bl,b2,b3;01,62,03;$,y, Z) = (Cl)m(CQ)n(CS)k m! nl k!

m,n,k=0

o0

— Z (b14b2)2m+4n+k(b3)ntr B(b1+m~+k,ba+m+n) =™ y» Sk )
(e1)m(c2)n(cs)k B(by,b2) mlnl K :

m,n,k=0

Here (A),, denotes the Pochhammer symbol (or the shifted factorial, since (1), = n!) defined
by

(Mn = T'(\) AA+1)...A+n—-1), (neN, AeC)

and B(a, ) denotes the classical Beta function defined by [15, (5.12.1)]

(A +n) :{ 1 (n=0, A e C\{0})

/O L1 — 0fldt (R(a) > 0.R(5) > 0)
B(a, B) = NIT(E) (1.2)
Tlatp)’ ((a, B) € C\Zy).

The convergence region for Srivastava’s triple hypergeometric series Hp(-) is given in [12,
p.243] as |z| < a, |y| < B, |z| < 7, where «, 3, v satisfy the relation a+ 3+~ +2v/afy = 1.

A different type of triple hypergeometric function is Exton’s function X4(-), which is
defined by (see [11] and [23, p. 84, Entry (45a)])

> (b1)2m+n+kz(b2)n+k ™ yn Zk
Xy(b1,b9;¢1,00,c3;2,9y, 2) := — 1.3
4( 1,92,€1,€2,C3 Yy ) m7§:0 (Cl)m(CQ)n(C?))k m| n| k" ( )

The convergence region for this series is 2v/[z] + (v/Jy] + /[2])? < 1. We shall also find it
convenient to introduce two additional parameters r, s into Hp(-) in the form

Hg78)(b17 b27 b37 C1,C2,C3;T,Y, Z) =

i b1+b2 Yomanik(b3)nix B(bi+r+m+k,by+s+m+n) ﬁgzj (1.4)

e c1)m(c2)n(c3)k B(by,b2) m! n! k!’

which reduces to (1.1) when r = s = 0.

Extension and generalizations of hypergeometric series have appeared in the following
research papers [1, 4, 9, 10, 13, 17]. In 1997, Chaudhry et al. [2, Eq. (1.7)] gave a p-extension
of the Beta function B(z,y) given by

t1—1)

B(z,y;p) = /01 " 11— )y exp { } dt, (R(p) > 0) (1.5)
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and they proved that this extension has connections with the Macdonald and Whittaker
functions, and the error function. Also, Chaudhry et al. [3] extended the Gauss hypergeo-
metric series o F(-) and its integral representations. Recently, Choi et al. [9] have given a
further extension of the extended Beta function B(z,y;p) by adding one more parameter g,
which we denote and define by

1

Bra(ey) = [ 7110 exp (—p - q) dt, (1.6)
where R(p) > 0, R(q) > 0. When p = ¢ this function reduces to B(zx,y;p). Also, Choi et al.
[9] studied an extension of the Gauss hypergeometric function and its integral representation
based on the extended Beta function (1.6). The Appell hypergeometric function Fj(-),
defined by

(le] <1, Jyl < 1),

> (02)m(b3)nB(by +m +n,c; — by) a™ y"
Rty by = 3 Al i) S

n,m=0

has been extended by replacing the numerator Beta function (of the same arguments) with
that in (1.5) by Ozarslan and Ozergin [16] and with that in (1.6) by Parmar and Pogany
[18].

Motivated by some of the above-mentioned extensions of special functions, many authors
have studied integral representations of the Hp(-) function; see [5, 6, 7, 8]. Our aim in this
paper is to introduce a (p, q)-extension of Srivastava’s triple hypergeometric function Hp(-)
in (1.1), which we denote by Hpp4(-), based on the extended Beta function in (1.6). We
then systematically investigate some properties of this extended function, namely the Mellin
transform, a differential formula, recursion formulas and a bounded inequality satisfied by
this function. It is hoped that this extension will find application in various branches of
applied mathematics and mathematical physics. Similar extensions of the other Srivastava
triple hypergeometric functions are under investigation.

The plan of this paper as follows. The extended Srivastava hypergeometric function
Hppq(-) is defined in Section 2 and some integral representations are presented involving
Exton’s function X4 and the Laguerre polynomials. The main properties of Hp ;, 4(-) namely,
its Mellin transform, a differential formula, a bounded inequality and recursion formulas are
established in Sections 3-6. Some concluding remarks are made in Section 7.

2. The (p,q)—extended Srivastava triple hypergeometric function Hp ) ,(-)

Srivastava introduced the triple hypergeometric function Hpg(-), together with its integral
representations, in [20] and [22]. Here we consider the following (p, ¢)-extension of this
function, which we denote by Hp,4(-), based on the extended Beta function B, ,(x,y)
defined in (1.6). This is given by

HB,FvQ(bh b2’ b37 C1,C2,C3;2,Y, Z)

_ i (b14b2)2m 01k (03)n 1k Bp.g(br+m+k, by+m+n) z™ y" 2* (2.1)

(c1)m(c2)n(cs)k B(by, b2) m! n! k!’

m,n,k=0
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where the parameters by, bg,b3 € C and ¢y, c2,c2 € C\Z,. The region of convergence is
|z| < a, ly] < B, |2| < v, where a + 8 + v + 2y/aBy = 1. This definition clearly reduces to
the original classical function in (1.1) when p = ¢ = 0.

Several integral representations for Hp, 4(-) involving Exton’s triple hypergeometric
function in (1.3) can be given. We have

Theorem 1. Fach of the following integral representations of the extended Srivastava triple
hypergeometric function Hp pq4(-) holds for R(p) > 0, R(q) > 0 and min{R(b1), R(b2)} > 0:

L(by+b2) [ 41 by—1 ( D q )
H . . — 1 1— 2 _
X X4(b1 + b2, b3; c1, c2, c352t(1 — 1), y(1 — t), 2t) dt; (2.2)

(B —=7)" (o = 7)2 T(by + by)
(B —a)brtb=1 T(b1)T(ba)

Hppq(bi,b2,b3;c1,¢2,c3;2,y,2) =

B _ b1—1 _ bo—1
X / (E-a” (5= GXP(—p - q)X4(b1 + b, b3; 1, ¢, €3; 01022, 01y, 022) dE,
01

@ (§ — )brtbe 02
(2.3)
where o, B, v are real parameters satisfying v < o < 8 and
_(a=7(B-9 _(B=E—a),
o1 = y 02 = )
(B—a)&—) (8 —a)(&—7)
2F(bl+b2)/72r . 9 b1 2 \by— L ( p Q>
H b1, b, bs3; ; = ! 2 - -
B,Pu‘]( 1,02, 3,61,02,63,.%,:1/,2) F(bl)F(bQ) 0 (Sln g) Q(COS 5) 2 exp o9 o1
x X4(b1 + b2, bs; c1, c2, ¢33 01092, 01y, 022) dE, (2.4)
where
o1 = cos? &, o9 = sin’ &;

21 blr s s 2 b —1 2 \bo—1
HB,p,q(blab2,b3§01,02a03;$aya2) = ( +)\) (b1+b2) \/02 (Sln 5) Q(COS g) :

['(b1)T(b) (1 + Asin? £)b1+b2
X eXP<—f - C3>X4(bl + b, b3; c1, ¢2, c3; 0102%, 01y, 022) dE, (2.5)
2 1
where
2 1 22
S 0—2:% (> —1);
1+ Asin“ & 1+ Asin“ €
and

AT (by + b 3 (sin? bi—3 cos? bo—3
HB7p,q(bl,bQ,bg;Cl,CQ,Cg;x,y,Z) = ( ! 2)/0 ( 5) ( E)

['(b1)T(be) (cos? € + Asin? £)b1+b2
p q . .
X eXp<—U2 - 01>X4(51 + bo, b3; c1, ¢, €3, 01022, 01y, 022) dE, (2.6)
where
cos? ¢ B Asin? ¢

= = A>0).
71 cos2 & + Asin? ¢’ o2 cos2 & + Asin? ¢ (A>0)
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Proof: The proof of the first integral representation (2.2) follows by use of the extended
beta function (1.6) in (2.1), a change in the order of integration and summation (by uniform
convergence of the integral) and, after simplification, use of Exton’s triple hypergeometric
function (1.3), to obtain the right-hand side of the result (2.2). The integral representations
(2.3)-(2.6) can be proved directly by using the following transformations

B=—E-—a) dt  (B-—y(a—17)

2.3): = 7> 7 b
B3 = G & BoaE—T
(2.4) : t = sin?¢, C(Z:Qsinfcosf
(2.5) : P M dt 2(14A)sin{cos§
o 14 Asin®¢ 7 dé (14 Asin?€)?
(2.6) : P Asin? € dt  2Xsincosé

cos2 € + Asin2¢’ df (cos? € + Asin? €)2

in turn in (2.2) to obtain the right-hand side of each result.
Theorem 2. The following representation of Hp p 4(-) associated with Laguerre polynomials
holds true:

e P—4qT b1 + b2 >

1
Lin( / ghrtm (1 — gybetn
e 3 ["m

n,m=0
X Xa(b1 + b2, b3;c1,c2,c3;0t(1 — t),y(1 — 1), 2t) dt, (2.7)
where p >0, ¢ > 0 and min{R(b1), R(b2)} > 0.

Hppq(b1,bo, b3 : c1,c0,¢3;2,y,2) =

Proof: A representation of exponential factor in (1.6) can be obtained in terms of Laguerre
polynomials. The definition of the Laguerre polynomials L,,(x) (m € Ny) is given by the
generating function [19, p. 202 |

exp <_”) = (1-1) fj "Lo(z)  (—l<t<1)

1—-t¢ oy

for x > 0. From this we see that

oo

exp(—ﬁt) — e (1—t) Y " Lnlg)  (—1<t<1)

m=0
and, upon replacement of ¢ by 1 — ¢,
oo
exp(—f> — et (-0 La(p)  (0<i<2).
n=0
Combining these last two expressions, we obtain

eXp(fﬁ:)ze_p_qniotm*1<lt>"+1Ln<p>Lm<q> O<t<1). (28

Applying (2.8) in (2.2), we then obtain the required result.
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3. The Mellin transform for Hp ) ,(-)

The Mellin transform of a locally integrable function f(x,y) with indices r and s given in
[14, p.193, Sec.(2.1), Entry (1.1)] is defined by

¥(r,5) = M{f (@)} 9) = [ °°/0 Ty () dady (3.1)

which defines an analytic function in the strips of analyticity a < R(r) < 8, v < R(s) < 0.
The inverse Mellin transform is defined by

1 o c+i00 d—i—zoo s dsd
fay) = MR8} = s [ () ds dr.

100
where a < c < B, vy <d <.

Theorem 3. The following Mellin transform of the extended Srivastava triple hypergeomet-
ric function Hp,, 4(-) holds true:

:/0 /0 P " T Hpypg(b1, b, b3;c1, ¢, c3;2,y, 2) dpdg,

=T (r)I'(s) Hg’s) (b1,b2,b3;¢1,¢2,¢3;2,y,2), (3.2)

where Hg’s) is defined in (1.4) and R(p) > 0, R(q) > 0, R(r) > 0, R(s) >0, R(by +7r) > 0,
R(ba + s) > 0 and c1,c9,c3 € C\Za

Proof: Substituting the extended Srivastava function (2.1) into the double integral in
(3.2) and changing the order of integration (by the uniform convergence of the integral), we
obtain

1 (bl + b2)2m+n+k(b3)n+k
MA{H babab;cacyc;x, , 2 rs) = ———7-
Hopalbrbabiier ez ciia . D09 = 555 20 00 (Gl
L T kb dpd 3.3
m!n!k!/o/o pq pa(b1 +m+k, by +m+n)dpdg. (3.3)

Applying the following integral formula [9, Eq. (2.1)]

L7 Bpale ) dpda =TT ) B+ 7, +9),

where R(p) > 0, R(q) > 0, R(r) > 0, R(s) > 0, R(z+7r) >0, R(y +s) > 0 in (3.3), we
obtain
M{HBypq(b1,b2,b3;c1,c2,¢3;2,9,2)} (1, 5)

2 (b1 +02)2mntk (b3)nrk B(b1+r+m+k,bo+s+m+n) a™ y™ 2
=T T .
(r)L(s) m’gzo ()m(e2)n(C3) B(by, b2) o B

Finally, in view of the definition in (1.4), we obtain right-hand side of the Mellin transform
stated in (3.2).
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Corollary 1: The following inverse Mellin formula for Hp p, 4(-) holds:

Hp p q(b1,b2,b3; c1, ca, 35,9, 2)

c+1i00 d+zoo )
27‘(’2 / /d (T>F(8)HB’ (51,52753301,02,c3;x,y, Z) deT (34)

100

where ¢ > 0, d > 0.

4. A differentiation formula for Hp, ,(-)

Theorem 4. The following derivative formula for Hp, 4() holds:
aM—&-N—&-K
OxMoyN 92K

(b1) v x(02) a4 v (03) N1 K

(c1)m(c2)n(e3)r
XHp po(b1+M~+K,bo+M~+N,bs+N+K;c1+M,co+N,c3+K; 2,9, 2), (4.1)
where M, N, K € Ny.

Hp g (b1,b2,b35c1,c2,C3;2,y,2) =

Proof: If we differentiate partially the series for H = Hpp (b1, b2, b3;c1,¢2,¢3;2,y,2) in
(2.1) with respect to x we obtain

OH i i (b1 + b2)2mintk(b3)ntk Bpg(bt +m+k,bo+m—+mn) am bt ynzk
m=1 nl=0 (Cl)m(CQ)n(Cg)k B(bl, bz) (m — 1)' n' ]{1'

Making use of the fact that

(b1 + b2)2

B(b1,bs) = bibs

B(bl +1,bo + 1) (4.2)

and (A)m4n = (A)m(A 4+ m),, we have upon setting m — m + 1

O biby i (b1 + b2 + 2)2minik(03)nik Bpg(bi+1+m+k bo+1+m+n) z™y 2*

or ¢ oy (c1 4+ 1)m(c2)n(ca)k B(b1 +1,b2+1) m! n! k!
b1by
?Hqu(bl-Fl ybo +1,b35¢1 + 1,¢2,¢35 2,9, 2). (4.3)

Repeated application of (4.3) then yields for M =1,2,...

oM (b1)m (b))
oxM (e

HB,p,q(bl + Ma b2 + Mv b3; c + Mv C2,C3; L, Y, Z)‘

A similar reasoning shows that

oMH1y _ (b)) M Z Z (b1+b24+2M )2 ni ke (03) v
dzM oy m k=0 n—1 (c1+M)m(c2)n(cs)k

By, (bi+M+m+k,bo+M+n+k) zm y1 i
B(bi+M,by+M) ml (n—1) k
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b b b
= M Oabs gy b Mby M+ b+ ier + Mo+ s y,2) (4)
(c1)mca
upon putting n — n + 1 and using the property of the Beta function in (1.2). Repeated

differentiation of (4.4) N times with respect to y then produces
OMENH_ (ba)nr (b2) v (b3)
OxMoyN (c1)m(c2)N

Application of the same procedure to deal with differentiation with respect to z then
yields the result stated in (4.1).

N Hppq(bi+M,bo+M+N,b3+N;c1+M,co+N,c3;2,y, 2).

5. An upper bound for HB@,q(-)

Theorem 5. Let the parameters bj, ¢; (1 < j < 3) be positive and the variables x,y,z € C.
Further suppose that R(p) > 0 and R(q) > 0. Then the following bounded inequality for
Hp pq(-) holds:

|HB pq(b1,b2,b3;c1,co,c3;2,y, 2)| < Ap Hp(b1,ba, b3; c1, 2, ¢33 ||, |yl, [2]), (5.1)
where Ap = exp [—R(p) — R(q) — 2/R(p)R(q) ]

Proof: We shall assume that the parameters b;, ¢; > 0 (1 < j < 3) and that R(p) > 0,
R(q) > 0 with z,y,z € C. Then from (2.1) we have

’HBJLQ(bl? b27 b37 C1,C2,C3;2,Y, Z)’

< i (b1+b2)2mtn+k(03)n+k |Bp,q(b1—|—m—|—k‘,bz+m+n)||x|:n¢¢' (5.2)
mon k=0 (Cl)m(CQ)n(Cg)k B(bl,bg) m! n! k!

Now from the definition of the extended Beta function B, 4(a,b) in (1.6), with a,b > 0, we
have

1
- - p q
Bua(ad)| < [ €00 By ()ldt, Epglt) =exp( -2 - L)

1
< /0 tail(l — t)bilEg:e(p)vgﬁ\t(q) (t) dt.

From the fact that Egg) () (t) attains its maximum value at t* = r/(1 + r), with r =
R(p)/R(q), we then deduce that

|Bpg(a,b)] < Ap B(a,b),  Ap:=exp[-R(p) — R(qg) — 2\/R(p)R(q) ].

Consequently, from (5.2), we obtain

|Hp p,q(b1,b2,b3;c1,c2, 352, 9, 2)|

Y i (b1+b2)2m+n+k(b3)n+k B(b1+m+k,b2+m+n) |I|mwﬁ
Foey (eomlea)n(ca B(b1,by) m! nl Kkl

Identification of this last sum by means of (1.1) then yields the result stated in (5.1).
We remark that if p = ¢ = ¢ > 0 then \g = e %
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6. Recursion formulas for Hg,, ,(-)

In this section, we obtain two recursion formulas for the extended Srivastava function
Hppq(-). The first formula gives a recursion with respect to the numerator parameter
b3, and the second a recursion with respect to any one of the denominator parameters c;
(1<j<3).

Theorem 6. The following recursion for Hp p 4(-) with respect to the numerator parameter
bs holds:

HB,p,q(bla b2; b3+17 C1,C2,C3;2,Y, Z) = HB,p,q(bla b2a b3; C1,C2,C3;7,Y, Z)

Z/bz

zb
C Z=Hppq(b1,ba+1,b3+1;c1,c04+1, 352, y, 2) + TIHB,p,q(b1+1,b2,b3+1;01,02763-1'1;1‘,% z).
2 3

(6.1)
Proof. From (2.1) and the result (b3 + 1),+% = (b3)n+x(1 + n/bz + k/b3), we obtain

HBva‘](blv b27 b3 + 1? C1,C2,C3;,Y, Z)

_ i (b1 + b2)2m+n+k (b3 + 1)pik Bpg(b1 +m+k, by +m +n) ﬁﬁik
. h=0 (e1)m(c2)n(cs)k B(b1,b) m! n! k!

= Hpp4(b1,b2,b3;c1,c2,C3; 2,9, 2)

U om o= e b1+b2 2m+n+k(b3)n+k3pq(b1+m+k by +m+mn)z™m yvl 2F
=y ZZ
0n=1 k=0

m(c2)n(c3)n B(by, b2) m! (n—1 k!

i Z (b1 + 52 2m+n+k(b3)n+k Bpg(by +m +k, by +m +n) 2™ y" Zk—1
n=0 k=1 ) (03)k (blabQ) m' n! (k 1)'
(6.2)
Consider the first sum in (6.2) which we denote by S. Put n — n+1 and use the identity
(@)pn+1 = a(a + 1), to find

_|_

m=
0
2.

0

m=

z
b3

i (b1+b2)2m+n+14k(03)n+14k Bp,g(br+m+k, by+1+m+n) ﬁﬁi
n,k=0 (c1)m(c2)n1(c3)r B(b1,b2) m! n! k!

(c1)m(c2 + Dnles)k B(b1,b2) m! n! k!’

_ y(ba+ba) i (b1+b24+ 1) 2m k(b3 + D Bpg(br+m—+k,ba+1+m+n) o™ y" 2F

€2 m,n,k=0

Using the fact that

we then obtain

S = yba i (b1+bo+Dominsk(b3+1)nsk Bpg(bi+m—+k, bo+1+m+n) x™y" 2F

(c1)m(c2+1)n(cs)k B(b1,b2 + 1) m! n! k!

€2 m,n,k=0

b
=Y QHB,pq(b17b2+1 by + 1;c1,c0+ 1,352, 9, 2). (6.3)
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Proceeding in a similar manner for the second series in (6.2) with k& — k + 1, we find
that this sum can be expressed as

zb
ClHB,pq(bl +1,b2,b3 + 1;¢1,¢2,¢c3 + 15,9, 2). (6.4)

Combination of (6.3) and (6.4) with (6.2) then produces the result stated in (6.1).
Corollary 2: From (6.1) the following recursion holds

Hppq(b1,b2,b3 + Nicy,c2,c3:2,y,2) = Hpp g(b1, b2, b3; c1, 2, €312,y 2)

yc;ZHBM bi,ba + 1,b3+ l;c1,00+ 1, c352,y, 2)
/=1

zb
CIZHqu (b1 +1,b2,b3 + £;c1,¢2,¢c3 + 12,9, 2) (6.5)
3 =1

for positive integer N.

Theorem 7. The following 3-term recursion for Hp, q(-) with respect to the denominator
parameter ¢ holds:

HB,p,q(blv b2a b37 C1,C2,C3;2,Y, Z) =
Jjblbg

H b1, b2, bs; 1 : _
B,p,q( 1,02,03;5¢1 + 7627037x7yvz)+cl<cl+1)

HB,p,q(b1 +1,b04+1,b3;¢14+2,¢2,c3;2,Y, 2).
(6.6)

Permutation of the c; enables analogous recursions in the denominator parameters ca and
c3 to be obtained.

Proof. Consider the case when ¢; is reduced by 1, namely

H = Hppq(b1,b2,b3;¢c1 — 1, 2,3, 2,9, 2)

and use (c1 — 1)m = (c1)m/{1 + %7} Then
- i (b1+02)2m+n+k(b3)n+k Bpg(br+m+k,bo+m+n) ™ y" 2
mn k=0 (Cl—l)m(CQ)n(Cg)k B(bl,bg) m! n! k!
_ i (b1+02)2msntk(b3)ntk Bpg(bi+m+k,ba+m-+n) (1 Lom )g:my"zk
k=0 (Cl)m(CQ)n(Cg)k B(bl,bg) C1 — 1/ m! n! k!

= Hp,, q(bl, ba, b3 c1,c2,C3; 2,9, 2)

S bl+bz 2m+n+k(b3)n+k Bpg(bi+m+k,bo+m+n) am™ 1 ﬁi
m=1n, k=0 (02) <c3)k (bl,bQ) (m — 1)' nl k!’

Putting m — m + 1 in the above sum, we obtain

(e 9]

x Z (b1 + b2)2m+2+n+k(b3)n+k Bp7q(b1+1+m+k, bg—i—l—l—m—i-n) " y" 2k

- (c1)m+1(c2)n(cs)k B(b1,b9) m! n! k!

m,n,k=0
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~ x(bi+b2)2 i (b1+b242)2m -k (D3)nsk Bpg(b1+14+m+k, bo+1+m+n) o™ y" 2~

" (e —1) (c1 + D (c2)n(c3)s B(by, b2) mlnl k!

m,n,k=0

Using (4.2), we find that this last sum becomes

xb1 by i (b1+b2+2)2m+n+k(b3)n+kz Bp7q(b1+1+m+k,b2+1+m+n) ﬁy” 2k

cler—1) = (cr+ Dm(c2)n(ca)k B(by +1,by+1) m! n! k!
bib
=12 Hppq(b1 + 1,02+ 1,b3;¢1 + 1,¢2,¢3; 2,9, 2).
Cl(Cl — 1)

This then yields the recurrence relation (in ¢1) given by
Hvavq(bh b27 b3’ 1 — 17 C2,C3;2,Y, Z) =

xblbg
C1 (Cl — 1)
Replacement of ¢; by ¢; + 1 then yields the result stated in (6.6).

HB,p,q(bla b27 b3, C1,C2,C3;2,Y, Z) + HB,p,q(bl + 1, b2 + ]-a b3a c+ 1,025 c3;%,Y, Z)'

7. Concluding remarks

In this paper, we have introduced the (p, ¢)-extended Srivastava triple hypergeometric func-
tion given by Hp p4(-) in (2.1). We have given some integral representations of this function
that involve Exton’s triple hypergeometric function Xy. We have also established some
properties of the function Hp p4(-), namely the Mellin transform, a differential formula, a
bounded inequality and some recursion relations. In addition, we have given an integral
representation involving Laguerre polynomials.
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