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Abstract: Explicit expressions for the hypergeometric series 2F1(−n, a; 2a±j; 2) and 2F1(−n, a;−2n±j; 2) for positive
integer n and arbitrary integer j are obtained with the help of generalizations of Kummer’s second and third summation
theorems obtained earlier by Rakha and Rathie. Results for |j| ≤ 5 derived previously using different methods are also
obtained as special cases. Two applications are considered, where the first summation formula is applied to a terminating
3F2(2) series and the confluent hypergeometric function 1F1(x) .
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1. Introduction
In a problem arising in a model of a biological problem, Samoletov [14] obtained by means of a mathematical
induction argument the following sum containing factorials:

n∑
k=0

(−1)k

(n− k)!

(2k + 1)!!

k!(k + 1)!
=

(−1)n√
n!(n+ 1)!

(√
n+ 1

(n− 1)!!

n!!

)(−1)n

,

where throughout n denotes a positive integer and, as usual,

(2n)!! = 2 · 4 · 6 · · · (2n) = 2nn!, (2n+ 1)!! = 1 · 3 · 5 · · · (2n+ 1) =
(2n+ 1)!

2nn!
.

Samoletov [14] also expressed the above sum in the equivalent hypergeometric form:

2F1

[
−n, 3

2
2

; 2

]
=


Γ(

1
2n+

1
2 )√

πΓ(
1
2n+1)

, (n even)

−Γ(
1
2n+1)

√
πΓ(

1
2n+

3
2 )
, (n odd).

Subsequently, Srivastava [17] pointed out that this result could be easily derived from a known hypergeometric
summation formula [11, Vol. 2, p. 493] for 2F1(−n, a; 2a− 1; 2) with a = 3

2 , which is a contiguous result to the
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well-known summation

2F1

[
−n, a
2a

; 2

]
=

2n
√
πΓ(1− a)

(2a)nΓ(
1
2 − 1

2 n)Γ(1− a− 1
2 n)

(n = 0, 1, 2, . . .). (1)

The aim in this note is to obtain explicit expressions for

2F1

[
−n, a
2a± j

; 2

]
and 2F1

[
−n, a

−2n± j
; 2

]
(2)

for arbitrary integer j . We shall employ the following generalizations of Kummer’s second and third summation
theorems given in [13] (we correct a misprint in Theorem 6 of this reference). These are respectively

2F1

[
α, β

1
2 (α+ β ± j + 1)

;
1

2

]
=

√
πΓ( 1

2 α+ 1
2 β + 1

2 ± 1
2 j)

Γ( 1
2 α+ 1

2 )Γ(
1
2 β + 1

2 )

Γ( 1
2 α− 1

2 β + 1
2 ∓ 1

2 j)

Γ( 1
2 α− 1

2 β + 1
2 + 1

2 j)

×
j∑

r=0

(∓1)r
(
j
r

)
( 1
2 β)r/2

( 1
2 α+ 1

2 )(r−j)/2

(3)

and

2F1

[
α, 1− α± j

γ
;
1

2

]
=

2±jΓ( 1
2 γ)Γ(

1
2 γ + 1

2 )

Γ( 1
2 γ + 1

2 α)Γ(
1
2 γ − 1

2 α+ 1
2 )

Γ(α∓ j)

Γ(α+ ϵj)

×
j∑

r=0

(∓1)r
(
j
r

)
( 1
2 γ − 1

2 α)r/2

( 1
2 γ + 1

2 α)r/2−δj

(4)

for j = 0, 1, 2, . . . , where ϵj = 0 (resp. j ), δj = j (resp. 0) when the upper (resp. lower) signs are taken and
(a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol defined for arbitrary index k . The formulas (3) (for j > 0)
and (4) (separately for j > 0 and j < 0) are given in a different form in [1, p. 582, (130)–(132)]. When j = 0 ,
the summations (3) and (4) reduce to the well-known second and third summation theorems due to Kummer
[16, p. 243]:

2F1

[
α, β

1
2 (α+ β + 1)

;
1

2

]
=

√
πΓ( 1

2 α+ 1
2 β + 1

2 )

Γ( 1
2 α+ 1

2 )Γ(
1
2 β + 1

2 )

and∗

2F1

[
α, 1− α

γ
;
1

2

]
=

Γ( 1
2 γ)Γ(

1
2 γ + 1

2 )

Γ( 1
2 γ + 1

2 α)Γ(
1
2 γ − 1

2 α+ 1
2 )

.

In addition, we shall make use of the transformation [10, (15.8.6)]

2F1

[
−n, β
γ

; 2

]
=

(−2)n(β)n
(γ)n

2F1

[
−n, 1− γ − n
1− β − n

;
1

2

]
. (5)

Expressions for the series in (2) for arbitrary integer j were recently obtained by Chu [3] using a different
approach. This involved expressing the series for j ̸= 0 as finite sums of 2F1(2) series in (2) with j = 0 . The

∗In [16, p. 243], this summation formula is referred to as Bailey’s theorem. However, it has been pointed out in [2] that this
theorem was originally found by Kummer.
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cases with |j| ≤ 5 were also given by Kim and Rathie [6] and Kim et al. [5]. An application of the first series in
(2) for j = 0, 1, . . . , 5 was discussed in [7]. In Sections 4 and 5, we give two additional applications, the first to
the evaluation of a terminating 3F2(2) series and the second to the confluent hypergeometric function 1F1(x) .

2. Statement of the results
Our principal results are stated in the following two theorems.

Theorem 1 Let n be a positive integer, let a be a complex parameter, and define j0 = ⌊ 1
2 j⌋ . Then we have

2F1

[
−2n, a
2a± j

; 2

]
=

22n( 1
2 )n

(2a± j)2n

j0∑
r=0

(−1)r
(

j
2r

)
(−n)r(a+ δj)n−r (6)

and

2F1

[
−2n− 1, a
2a± j

; 2

]
=

±22n( 3
2 )n

(2a± j)2n+1

j0∑
r=0

(−1)r
(

j
2r + 1

)
(−n)r(a+ δj)n−r (7)

for j = 0, 1, 2, . . . , where δj = j (resp. 0) when the upper (resp. lower) signs are taken.

Proof From the result (5) we have

2F1

[
−n, a
2a± j

; 2

]
=

(−2)n(a)n
(2a± j)n

2F1

[
−n, 1− 2a∓ j − n

1− a− n
;
1

2

]
.

The hypergeometric function on the right-hand side can be summed by the generalized second Kummer
summation theorem (3). Proceeding first with the function whose denominator parameter is 2a + j , we put
α = 1− 2a− j − n and β = −n in (3) to find, after some straightforward algebra,

2F1

[
−n, a
2a+ j

; 2

]
=

(−2)n(a)n
(2a+ j)n

√
πΓ(1− a− n)

Γ(− 1
2 n+ 1

2 )Γ(1− a)

j∑
r=0

(−1)r
(
j
r

)
(− 1

2 n)r/2

(1− a− j)(r−n)/2

=
2n

(2a+ j)n

√
π

Γ(− 1
2 n+ 1

2 )

j∑
r=0

(−1)r
(
j
r

)
(− 1

2 n)r/2

(1− a− j)(r−n)/2
. (8)

Now replace n by 2n and use the reflection formula for the gamma function to yield

2F1

[
−2n, a
2a+ j

; 2

]
=

(−1)n22n( 1
2 )n

(2a+ j)2n

j∑
r=0

(−1)r
(
j
r

)
(−n)r/2

(1− a− j)r/2−n
.

Since (−n)r/2 vanishes for odd r and positive integer n , we finally obtain

2F1

[
−2n, a
2a+ j

; 2

]
=

22n( 1
2 )n

(2a+ j)2n

j0∑
r=0

(−1)r
(

j
2r

)
(−n)r(a+ j)n−r , (9)

where j0 = ⌊ 1
2 j⌋ and we have used the fact that (1− a− j)r−n = (−1)n−r/(a+ j)n−r .
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If we replace n by 2n+ 1 in (8), we find

2F1

[
−2n− 1, a
2a+ j

; 2

]
=

22n+1

(2a+ j)2n+1

√
π

Γ(−n− 1
2 )

j0∑
r=0

(−1)r
(
j
r

)
(−n)(r−1)/2

(1− a− j)(r/2−1/2−n
,

where we have used
(−n− 1

2 )r/2

Γ(−n)
=

(−n)(r−1)/2

Γ(−n− 1
2 )

.

Since (−n)(r−1)/2 vanishes for even r and positive integer n , we find

2F1

[
−2n− 1, a
2a+ j

; 2

]
=

22n( 3
2 )n

(2a+ j)2n+1

j0∑
r=0

(−1)r
(

j
2r + 1

)
(−n)r(a+ j)n−r. (10)

Proceeding in a similar manner for the function whose denominator parameter is 2a− j , we have upon
letting α = 1− a+ j − n and β = −n in (3)

2F1

[
−n, a
2a− j

; 2

]
=

2n

(2a− j)n

√
π

Γ(− 1
2 n+ 1

2 )

j∑
r=0

(
j
r

)
(− 1

2 n)r/2

(1− a)(r−n)/2
. (11)

Then we have

2F1

[
−2n, a
2a− j

; 2

]
=

22n( 1
2 )n

(2a− j)2n

j0∑
r=0

(−1)r
(

j
2r

)
(−n)r(a)n−r (12)

and

2F1

[
−2n− 1, a
2a− j

; 2

]
=

−22n( 3
2 )n

(2a− j)2n+1

j0∑
r=0

(−1)r
(

j
2r + 1

)
(−n)r(a)n−r. (13)

The summations in (9), (10) and (12), (13) then correspond to the results stated in the theorem. 2

We remark that in (7) the upper limit of summation can be replaced by ⌊ 1
2 j⌋ − 1 when j is even. Also,

since (−n)r vanishes when r > n , it is possible to replace the upper summation limit in both (6) and (7) by n

whenever n > ⌊ 1
2 j⌋ .

Theorem 2 Let n be a positive integer and a be a complex parameter. Then we have

2F1

[
−n, a

−2n+ j
; 2

]
=

22n−j(n− j)!

(2n− j)!

j∑
r=0

(
j
r

)
( 1
2 a+ 1

2 − 1
2 r)n (14)

provided that j does not lie in the interval [n+ 1, 2n] (where the hypergeometric function on the left-hand side
of (14) is, in general, not defined), and

2F1

[
−n, a

−2n− j
; 2

]
=

22n+jn!

(2n+ j)!

j∑
r=0

(−1)r
(
j
r

)
( 1
2 a+ 1

2 − 1
2 r)n+j (15)

for j = 0, 1, 2, . . . . When j ≥ 2n + 1 in (14), the ratio of factorials (n − j)!/(2n − j)! can be replaced by
(−1)n(j − 2n− 1)!/(j − n− 1)! .
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Proof From the result (5) we have

2F1

[
−n, a

−2n∓ j
; 2

]
=

2n(a)n(n± j)!

(2n± j)!
2F1

[
−n, 1 + n± j
1− a− n

;
1

2

]
when the parameters are such that the hypergeometric functions make sense. The hypergeometric function on
the right-hand side can be summed by the generalized third Kummer theorem (4), where we put α = −n and
γ = 1− a− n . Then we obtain

2F1

[
−n, a

−2n+ j
; 2

]
=

2n−j(a)n(n− j)!

(2n− j)!

Γ( 12γ)Γ(
1
2γ + 1

2 )

Γ( 12−
1
2a)Γ(1−

1
2a)

j∑
r=0

(
j
r

)
Γ( 12 − 1

2a+ 1
2r)

Γ( 12 − 1
2a+ 1

2r − n)

=
(−1)n22n−j(a)n(n− j)!

(2n− j)!

Γ(1− a− n)

Γ(1− a)

j∑
r=0

(
j
r

)
( 12 − 1

2a+ 1
2r)n

=
22n−j(n− j)!

(2n− j)!

j∑
r=0

(
j
r

)
( 12 − 1

2a+ 1
2r)n,

where we have used the reflection formula for the gamma function and

(2a)2n = 22n(a)n(a+ 1
2 )n.

Similarly, we find

2F1

[
−n, a

−2n− j
; 2

]
=

(−1)j2n+j(a)nn!

(2n+ j)!

Γ( 12γ)Γ(
1
2γ + 1

2 )

Γ( 12−
1
2a)Γ(1−

1
2a)

j∑
r=0

(−1)r
(
j
r

)
Γ( 12−

1
2a+

1
2r)

Γ( 12−
1
2a+

1
2r−n−j)

=
(−1)n22n+j(a)nn!

(2n+ j)!

Γ(1− a− n)

Γ(1− a)

j∑
r=0

(−1)r
(
j
r

)
( 12 − 1

2a+ 1
2r)n+j

=
22n+jn!

(2n+ j)!

j∑
r=0

(−1)r
(
j
r

)
( 12 − 1

2a+ 1
2r)n+j ,

which establishes the theorem. 2

The sums on the right-hand sides of (14) and (15) can be written in an alternative form involving just
two Pochhammer symbols containing the index n by making use of the result

(α− r)n =
(α)n(1− α)r
(1− α− n)r

for positive integers r and n . Then we find, with j0 = ⌊ 1
2 j⌋ ,

2F1

[
−n, a

−2n+ j
; 2

]

=
22n−j(n− j)!

(2n− j)!

{
( 1
2 a+ 1

2 )n

j0∑
r=0

(
j
2r

)
Ar(n, 0) + ( 1

2 a)n

j0∑
r=0

(
j

2r + 1

)
Br(n, 0)

}
(16)
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and

2F1

[
−n, a

−2n− j
; 2

]

=
22n+jn!

(2n+ j)!

{
( 1
2 a+ 1

2 )n+j

j0∑
r=0

(
j
2r

)
Ar(n, j)− ( 1

2 a)n+j

j0∑
r=0

(
j

2r + 1

)
Br(n, j)

}
, (17)

where

Ar(n, j) :=
( 1
2 − 1

2 a)r

( 1
2 − 1

2 a− n− j)r
, Br(n, j) :=

(1− 1
2 a)r

(1− 1
2 a− n− j)r

.

Again, when j is even, the upper summation limit in the second sums in (16) and (17) can be replaced by
j0 − 1 , if so desired.

3. Special cases

If we set 0 ≤ j ≤ 5 in (6) we obtain the following summations:

2F1

[
−2n, a
2a

; 2

]
=

( 1
2 )n

(a+ 1
2 )n

= 2F1

[
−2n, a
2a+ 1

; 2

]
, (18)

2F1

[
−2n, a
2a+ 2

; 2

]
=

( 1
2 )n

(a+ 3
2 )n

(
1 +

2n

a+ 1

)
, (19)

2F1

[
−2n, a
2a+ 3

; 2

]
=

( 1
2 )n

(a+ 3
2 )n

(
1 +

4n

a+ 2

)
, (20)

2F1

[
−2n, a
2a+ 4

; 2

]
=

( 1
2 )n

(a+ 5
2 )n

(
1 +

8n

a+ 2
+

8n(n− 1)

(a+ 2)(a+ 3)

)
, (21)

2F1

[
−2n, a
2a+ 5

; 2

]
=

( 1
2 )n

(a+ 5
2 )n

(
1 +

12n

a+ 3
+

16n(n− 1)

(a+ 3)(a+ 4)

)
(22)

and

2F1

[
−2n, a
2a− 1

; 2

]
=

( 1
2 )n

(a− 1
2 )n

, (23)

2F1

[
−2n, a
2a− 2

; 2

]
=

( 1
2 )n

(a− 1
2 )n

(
1 +

2n

a− 1

)
, (24)

2F1

[
−2n, a
2a− 3

; 2

]
=

( 1
2 )n

(a− 3
2 )n

(
1 +

4n

a− 1

)
, (25)

2F1

[
−2n, a
2a− 4

; 2

]
=

( 1
2 )n

(a− 3
2 )n

(
1 +

8n

a− 2
+

8n(n− 1)

(a− 1)(a− 2)

)
, (26)

2568



KIM et al./Turk J Math

2F1

[
−2n, a
2a− 5

; 2

]
=

( 1
2 )n

(a− 5
2 )n

(
1 +

12n

a− 2
+

16n(n− 1)

(a− 1)(a− 2)

)
. (27)

Similarly, if we set 0 ≤ j ≤ 5 in (7) we obtain the following summations:

2F1

[
−2n− 1, a

2a
; 2

]
= 0, (28)

2F1

[
−2n− 1, a
2a+ 1

; 2

]
=

( 3
2 )n

(2a+ 1)(a+ 3
2 )n

, (29)

2F1

[
−2n− 1, a
2a+ 2

; 2

]
=

2( 3
2 )n

(2a+ 2)(a+ 3
2 )n

, (30)

2F1

[
−2n− 1, a
2a+ 3

; 2

]
=

( 3
2 )n

(2a+ 3)(a+ 5
2 )n

(
3 +

4n

a+ 2

)
, (31)

2F1

[
−2n− 1, a
2a+ 4

; 2

]
=

( 3
2 )n

(2a+ 4)(a+ 5
2 )n

(
4 +

8n

a+ 3

)
, (32)

2F1

[
−2n− 1, a
2a+ 5

; 2

]
=

( 3
2 )n

(2a+ 5)(a+ 7
2 )n

(
5 +

20n

a+ 3
+

16n(n− 1)

(a+ 3)(a+ 4)

)
(33)

and

2F1

[
−2n− 1, a
2a− 1

; 2

]
= −

( 3
2 )n

(2a− 1)(a+ 1
2 )n

, (34)

2F1

[
−2n− 1, a
2a− 2

; 2

]
= −

2( 3
2 )n

(2a− 2)(a− 1
2 )n

, (35)

2F1

[
−2n− 1, a
2a− 3

; 2

]
= −

( 3
2 )n

(2a− 3)(a− 1
2 )n

(
3 +

4n

a− 1

)
, (36)

2F1

[
−2n− 1, a
2a− 4

; 2

]
= −

( 3
2 )n

(2a− 4)(a− 3
2 )n

(
4 +

8n

a− 1

)
, (37)

2F1

[
−2n− 1, a
2a− 5

; 2

]
= −

( 3
2 )n

(2a− 5)(a− 3
2 )n

(
5 +

20n

a− 2
+

16n(n− 1)

(a− 1)(a− 2)

)
. (38)

Finally, from (16) and (17) we obtain:

2F1

[
−n, a
−2n

; 2

]
=

22nn!

(2n)!
( 1
2 a+ 1

2 )n =
( 1
2 a+ 1

2 )n

( 1
2 )n

, (39)
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2F1

[
−n, a

−2n+ 1
; 2

]
=

22n−1(n− 1)!

(2n− 1)!
{( 1

2 a+ 1
2 )n + ( 1

2 a)n}, (40)

2F1

[
−n, a

−2n− 1
; 2

]
=

22n+1n!

(2n+ 1)!
( 1
2 a+ 1

2 )n+1, (41)

2F1

[
−n, a

−2n+ 2
; 2

]
=

22n−1(n− 2)!

(2n− 2)!

{
1− a− n

1− a− 2n
( 1
2 a+ 1

2 )n + ( 1
2 a)n

}
, (42)

2F1

[
−n, a

−2n− 2
; 2

]
=

22n+3n!

(2n+ 2)!

{
(1− a− n− j)

1− a− 2n− 2j
( 1
2 a+ 1

2 )n+2 − ( 1
2 a)n+2

}
(43)

and so on.
The above evaluations agree with those given in [3, 6], although presented in a different format; the

results (18) and (23), together with (28), (29), and (34), are also recorded in [11] in another form.

4. An application of Theorem 1 to a terminating 3F2(2) series

From the results in Section 2 we shall establish a summation formula for the terminating 3F2(2) series

3F2

[
−n, a,
2a+ p,

d+m
d

; 2

]
,

where m , n are positive integers and p is an arbitrary integer such that 2a+ p ̸= 0,−1,−2, . . . ,−n+ 1 . The
cases m = 1 and m = 2 (when m = p) have been obtained previously by different means in [4, 12]. When
m = p = 0 the above series reduces to that in (1).

We employ a general result proved in [9, Lemma 4] expressing an r+2Fr+1(x) hypergeometric function,
with r pairs of numeratorial and denominatorial parameters differing by positive integers, as a finite sum of
2F1(x) functions. In the particular case r = 1 , we obtain for positive integer m

3F2

[
a, b
c

d+m
d

;x

]
=

1

(d)m

m∑
j=0

Aj
(a)j(b)j
(c)j

xj
2F1

[
a+ j, b+ j

c+ j
;x

]
. (44)

The coefficients Aj are defined by

Aj =

m∑
k=j

σm−kS(j)
k ,

where S(j)
k is the Stirling number of the second kind and the σj (0 ≤ j ≤ m) are generated by the relation

(d+ x)m =

m∑
j=0

σm−jx
j .

It was shown in [8] that

Aj =
(−1)j(d)m

j!
2F1

[
−j, d+m

d
; 1

]
=

(−1)j(−m)j(d)m
j! (d)j

, (45)
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the second result following by application of Vandermonde’s theorem [16, p. 243].
In order to simplify the presentation of our summation theorem we introduce the coefficients Cr(n, j)

given by

Cr(n, j) =
Γ(− 1

2 n+ 1
2 j +

1
2 r)

Γ(− 1
2 n+ 1

2 j)Γ(−
1
2 n+ 1

2 j +
1
2 )

,

which yield the even- and odd-order values

C2r(n, j) =
(− 1

2 n+ 1
2 j)r

Γ(− 1
2 n+ 1

2 j +
1
2 )

, C2r+1(n, j) =
(− 1

2 n+ 1
2 j +

1
2 )r

Γ(− 1
2 n+ 1

2 j)
.

We further introduce the finite sums for 0 ≤ j ≤ m :

S
(1)
j (n, p) =

p−j∑
r=0

(
p− j
r

)
(−1)rCr(n, j)

(1− a− p)(r−n+j)/2
(p ≥ j),

S
(2)
j (n, p) =

j−p∑
r=0

(
j − p
r

)
Cr(n, j)

(1− a− j)(r−n+j)/2
(p ≤ j).

Then we obtain the following theorem.

Theorem 3 Let m , n be positive integers and p be an arbitrary integer such that 2a+p ̸= 0,−1,−2, . . . ,−n+1 .
Then

3F2

[
−n, a,
2a+ p,

d+m
d

; 2

]
=



2n
√
π

(2a+ p)n

m∑
j=0

(−1)j(−m)j(−n)j(a)j
j! (d)j

S
(1)
j (n, p) (p ≥ m > 0)

2n
√
π

(2a+ p)n

{ p∑
j=0

(−1)j(−m)j(−n)j(a)j
j! (d)j

S
(1)
j (n, p)

+

m∑
j=p+1

(−1)j(−m)j(−n)j(a)j
j! (d)j

S
(2)
j (n, p)

}
(0 ≤ p < m)

2n
√
π

(2a+ p)n

m∑
j=0

(−1)j(−m)j(−n)j(a)j
j! (d)j

S
(2)
j (n, p) (p ≤ 0).

Proof If we put b = −n , c = 2a+ p and x = 2 in (44), combined with (45), we find

3F2

[
−n, a
2a+ p

d+m
d

; 2

]
=

m∑
j=0

(−2)j(−m)j(−n)j(a)j
j! (2a+ p)j(d)j

2F1

[
−n+ j, a+ j
2a+ p+ j

; 2

]
.

Substitution of (8) and (11) with n → n − j , a → a + j and the parameter in the denominator replaced by
2(a+ j) + p− j , followed by some straightforward algebra to distinguish between the cases with p− j ≥ 0 and
p− j < 0 , leads to the results stated in the theorem. 2

We conclude this section by giving some specific examples of the summation in Theorem 3. Alternatively,
these results may be obtained from (44), (45), and the 2F1(2) summations listed in Section 3. For convenience
in presentation we define

℘k :=
(a)k
(d)k

(k = 1, 2, . . .).
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When m = p , we have for 1 ≤ m ≤ 4 and positive integer n

3F2

[
−2n, a,
2a+ 1,

d+ 1
d

; 2

]
=

( 1
2 )n

(a+ 1
2 )n

, (46)

3F2

[
−2n− 1, a,
2a+ 1,

d+ 1
d

; 2

]
=

( 3
2 )n

(2a+ 1)(a+ 3
2 )n

(1− 2℘1) , (47)

3F2

[
−2n, a,
2a+ 2,

d+ 2
d

; 2

]
=

( 1
2 )n

(a+ 3
2 )n

{
1 +

2n

a+ 1
[1− 2℘1 + 2℘2]

}
, (48)

3F2

[
−2n− 1, a,
2a+ 2,

d+ 2
d

; 2

]
=

( 3
2 )n

(a+ 1)(a+ 3
2 )n

{1− 2℘1} , (49)

3F2

[
−2n, a,
2a+ 3,

d+ 3
d

; 2

]
=

( 1
2 )n

(a+ 3
2 )n

{
1 +

4n

a+ 2
(1− 3℘1 + 3℘2)

}
, (50)

3F2

[
−2n− 1, a,
2a+ 3,

d+ 3
d

; 2

]
=

( 3
2 )n

(2a+ 3)(a+ 5
2 )n

{
3− 6℘1 +

4n

a+ 2
(1− 3℘1 + 3℘2 − 2℘3)

}
, (51)

3F2

[
−2n, a,
2a+ 4,

d+ 4
d

; 2

]

=
( 1
2 )n

(a+ 5
2 )n

{
1 +

8n

a+ 2
(1− 3℘1 + 3℘2) +

8n(n− 1)

(a+ 2)(a+ 3)
(1− 4℘1 + 6℘2 − 4℘3 + 2℘4)

}
, (52)

and

3F2

[
−2n− 1, a,
2a+ 4,

d+ 4
d

; 2

]
=

2( 3
2 )n

(a+ 2)(a+ 5
2 )n

{
1− 2℘1 +

2n

a+ 3
(1− 4℘1 + 6℘2 − 4℘3)

}
. (53)

Finally, we give some evaluations when m ̸= p . When m = 2 and p = 0,±1 , for example, we have

3F2

[
−2n, a,
2a,

d+ 2
d

; 2

]
=

( 1
2 )n

(a+ 1
2 )n

{
1 +

4n

a
(℘1 + ℘2) +

8n(n− 1)

a(a+ 1)
℘2

}
, (54)

3F2

[
−2n− 1, a,

2a,
d+ 2
d

; 2

]
= −

2( 3
2 )n

a(a+ 1
2 )n

{
℘1 +

2n℘2

a+ 1

}
, (55)

3F2

[
−2n, a,
2a+ 1,

d+ 2
d

; 2

]
=

( 1
2 )n

(a+ 1
2 )n

{
1 +

4n℘2

a+ 1

}
, (56)

3F2

[
−2n− 1, a,
2a+ 1,

d+ 2
d

; 2

]
=

( 3
2 )n

(2a+ 1)(a+ 3
2 )n

{
1− 4℘1 −

4n℘2

a+ 1

}
, (57)
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3F2

[
−2n, a,
2a− 1,

d+ 2
d

; 2

]
=

( 1
2 )n

(a− 1
2 )n

{
1 +

4n

a
(2℘1 + ℘2) +

16n(n− 1)

a(a+ 1)
℘2

}
, (58)

and

3F2

[
−2n− 1, a,
2a− 1,

d+ 2
d

; 2

]
= −

( 3
2 )n

(2a− 1)(a+ 1
2 )n

{
1 + 4℘1 +

4n

a
(2℘1 + 3℘2) +

16n(n− 1)

a(a+ 1)
℘2

}
. (59)

5. A second application of Theorem 1 to 1F1(x)

Kummer’s second theorem applied to the confluent hypergeometric function 1F1 is [15, p. 12]

e−x/2
1F1

[
a
2a

;x

]
= 0F1

[
−

a+ 1
2

;
x2

16

]
= ( 1

4 x)
1
2−aΓ(a+ 1

2 )Ia− 1
2
( 1
2 x), (60)

where Iν(z) denotes a modified Bessel function of the first kind. We now show how the result in Theorem 1
can be used to derive a generalization of the above theorem for the functions

e−x/2
1F1

[
a

2a± j
;x

]
for arbitrary integer j .

We have upon series expansion

e−x/2
1F1

[
a

2a± j
;x

]
=

∞∑
n=0

(− 1
2 x)

n

n!

∞∑
m=0

(a)m
(2a± j)m

xm

m!
=

∞∑
n=0

∞∑
m=0

(−1)n(a)mxm+n

2n(2a± j)mm!n!
.

Making the change of summation index n → n −m and using the fact that (n −m)! = (−1)mm!/(−n)m , we
find

e−x/2
1F1

[
a

2a± j
;x

]
=

∞∑
n=0

n∑
m=0

(−1)n(a)m(−n)mxn

2n−m(2a± j)mm!n!

=

∞∑
n=0

(− 1
2 x)

n

n!
2F1

[
−n, a
2a± j

; 2

]
.

Separation of the above sum into even and odd n and use of the evaluation of the 2F1(2) series given in
(6) and (7) followed by inversion of the order of summation leads to the result in the following theorem.

Theorem 4 For integer j we have

e−x/2
1F1

[
a

2a± j
;x

]
=

j0∑
r=0

(−1)r
(

j
2r

) ∞∑
n=0

(−n)r(a+ δj)n−rx
2n

22n(2a± j)2nn!

∓
j0∑
r=0

(−1)r
(

j
2r + 1

) ∞∑
n=0

(−n)r(a+ δj)n−rx
2n+1

22n+1(2a± j)2n+1n!
, (61)

where j0 and δj are defined in Theorem 1.
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When j = 0 it is easily seen that (61) reduces to (60).
The result (61) is given in a different form in terms of modified Bessel functions in [11, Vol. 3, p. 579].

For some interesting and general expressions for 2F1(z) we refer to [1, pp. 563–564, Eq. (1)–(7)].
An alternative method of proof of this relation can be obtained from the following generalization of a

result due to Ramanujan, considered in [7] for j = 0,±1, . . . ,±5 .

Theorem 5 Let ϕ(t) be analytic for |t − 1| < R , where R > 1 . Suppose that a and ϕ(t) are such that the
order of summation in

∞∑
n=0

2n(a)n
(2a± j)nn!

∞∑
k=n

(−1)k

k!
(−k)nϕ

(k)(1)

may be inverted. Then

∞∑
n=0

2n(a)nϕ
(n)(0)

(2a± j)nn!
=

∞∑
n=0

ϕ(2n)(1)

(2a± j)2nn!

j0∑
r=0

(−1)r
(

j
2r

)
(−n)r(a+ δj)n−r

∓
∞∑

n=0

ϕ(2n+1)(1)

(2a± j)2n+1n!

j0∑
r=0

(−1)r
(

j
2r + 1

)
(−n)r(a+ δj)n−r (62)

for j = 0, 1, 2, . . . , where j0 and δj are defined in Theorem 1.

Proof We employ the identity obtained in [7, §2] relating the sum of derivatives of ϕ(t) evaluated at t = 0

to a sum of derivatives evaluated at t = 1 given by

∞∑
n=0

2n(a)nϕ
(n)(0)

(2a± j)nn!
=

∞∑
n=0

(−1)nϕ(n)(1)

n!
2F1

[
−n, a
2a± j

; 2

]
.

Separation of the sum on the right-hand side into even and odd n and insertion of the 2F1(2) series evaluations
in (6) and (7) then establishes the theorem. 2

If we take ϕ(t) = ext/2 in (62), where x is an arbitrary variable, we immediately obtain (61) after reversal
of the order of summation. Other choices for ϕ(t) in (62) were considered in [7] but with the integer j restricted
to the values j = 0,±1, . . . ,±5 .
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