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Abstract. We give an explicit formula for the determination of the coefficients cj appearing in the expan-

sion

x

⎛
⎝1 +

q∑
j=1

cj
xj

⎞
⎠( √

π

Γ
(
x+ 1

2

)
)1/x

= e+O

(
1

xq+1

)

for x → ∞ and q ∈ N := {1, 2, . . .}. We also derive a pair of recurrence relations for the determination

of the constants λ� and μ� in the expansion

(
1 +

1

x

)x

∼ e

(
1 +

∞∑
�=1

λ�

(x+ μ�)2�−1

)

as x → ∞. Based on this expansion, we establish an inequality for (1 + 1/x)x. As an application, we

give an improvement to a Carleman-type inequality.
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1 Introduction
The constant e can be defined by the limit

e = lim
x→∞

(
1 +

1

x

)x

.

∗Corresponding Author.
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With the possible exception of π, e is the most important constant in mathematics since it appears in

myriad mathematical contexts involving limits and derivatives. Joost Bürgi seems to have been the first

to formulate an approximation to e around 1620, obtaining three-decimal-place accuracy (see [13, p.

31], [23], and [29, pp. 26–27]).

Theorems 1.1 and 1.2 below were proved by Chen and Mortici [9].

Theorem 1.1. For all n ∈ N := {1, 2, 3, . . .},

2 (n+ α)

(
2nn!

(2n)!

)1/n

< e ≤ 2 (n+ β)

(
2nn!

(2n)!

)1/n

(1.1)

with the best possible constants

α =
ln 2

2
= 0.34657 . . . and β =

e

2
− 1 = 0.35914 . . . .

Theorem 1.2. Let (vn)n∈N be defined by

vn = 2

(
n+

ln 2

2
+

a

n
+

b

n2

)(
2nn!

(2n)!

)1/n

. (1.2)

Then, for

a =
3(ln 2)2 − 1

24
, b =

(ln 2)3 − ln 2

48
,

we have

lim
n→∞n4(vn − e) = −e

(
19− 30(ln 2)2 + 15(ln 2)4

)
5760

.

The speed of convergence of the sequence (vn)n∈N is n−4.

By using the Maple software, we find, as n → ∞,

2n

(
2nn!

(2n)!

)1/n

= e+O

(
1

n

)
, (1.3)

2n

(
1 +

ln 2

2n

)(
2nn!

(2n)!

)1/n

= e+O

(
1

n2

)
, (1.4)

2n

(
1 +

ln 2

2n
+

3(ln 2)2 − 1

24n2

)(
2nn!

(2n)!

)1/n

= e+O

(
1

n3

)
(1.5)

and

2n

(
1 +

ln 2

2n
+

3(ln 2)2 − 1

24n2
+

(ln 2)3 − ln 2

48n3

)(
2nn!

(2n)!

)1/n

= e+O

(
1

n4

)
. (1.6)

Motivated by (1.3)-(1.6), we first establish a general approximation formula for e (given in Theorem 2.1,

by mainly using the partition function. From this result, we give an explicit formula for the coefficients

cj (1 ≤ j ≤ q) such that

2n

⎛
⎝1 +

q∑
j=1

cj
nj

⎞
⎠(

2nn!

(2n)!

)1/n

= e+O

(
1

nq+1

)
(1.7)
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for n → ∞ and q ∈ N, which contains the formulas (1.3)-(1.6) as special cases.

The second aim of the paper is to derive a pair of recurrence relations for the determination of the

constants λ� and μ� in the expansion(
1 +

1

x

)x

∼ e

(
1 +

∞∑
�=1

λ�

(x+ μ�)2�−1

)

as x → ∞ (given in Theorem 3.1). Based on this expansion, we establish an inequality for (1 + 1/x)x

and, as an application, we give an improvement to a Carleman-type inequality (Remark 3.2).

2 The general form of the coefficients cj in (1.7)

For our later use, we introduce the following set of partitions of an integer n ∈ N:

An := {(k1, k2, . . . , kn) ∈ N
n
0 : k1 + 2k2 + · · ·+ nkn = n} . (2.1)

In number theory, the partition function p(n) represents the number of possible partitions of n ∈ N; that

is, the number of distinct ways of representing n as a sum of natural numbers (with order irrelevant). By

convention p(0) = 1 and p(n) = 0 for n negative integers. For more information on the partition function

p(n), see [38] and the references therein. The first few values of the partition function p(n) are (starting

with p(0) = 1) (see [37]):

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, . . . .

It is easy to see that the cardinality of the set An is equal to the partition function p(n).
The following results are needed in our present investigation. The logarithm of the gamma function

has the asymptotic expansion (see [28, p. 32]):

ln Γ(x+ t) ∼
(
x+ t− 1

2

)
lnx− x+

1

2
ln(2π) +

∞∑
n=1

(−1)n+1Bn+1(t)

n(n+ 1)

1

xn (2.2)

as x → ∞, where Bn(t) denotes the Bernoulli polynomials defined by the following generating function:

xetx

ex − 1
=

∞∑
n=0

Bn(t)
xn

n!
. (2.3)

Note that the Bernoulli numbers Bn are defined by Bn := Bn(0) in (2.3).

Taking t = 1
2 in (2.2), we have

ln Γ

(
x+

1

2

)
∼ x lnx− x+

1

2
ln(2π) +

∞∑
n=1

(−1)n+1Bn+1(
1
2 )

n(n+ 1)

1

xn
(2.4)

as x → ∞. Noting that

Bn

(
1

2

)
= (21−n − 1)Bn for n ∈ N0

(see [1, p. 805, 23.1.21]), we find from (2.4) that

1 +
1

x
ln Γ

(
x+

1

2

)
− lnx− 1

2x
ln(π) =

ln 2

2x
+

q∑
j=2

(−1)j−1(1− 21−j)Bj

(j − 1)j

1

xj
+O

(
1

xq+1

)
(2.5)

as x → ∞.
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Theorem 2.1. The following approximation formula for the constant e holds true:

x

⎛
⎝1 +

q∑
j=1

cj
xj

⎞
⎠( √

π

Γ
(
x+ 1

2

)
)1/x

= e+O

(
1

xq+1

)
(2.6)

for x → ∞ and q ∈ N, with the coefficients cj (1 ≤ j ≤ q) given by

cj = (−1)j
∑

(k1, k2, ..., kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !
(
S1

1

)k1
(
S2

2

)k2

· · ·
(
Sj

j

)kj

, (2.7)

where the Aj (for j ∈ N) are given in (2.1),

S1 =
ln 2

2
, Sj =

(1− 21−j)Bj

j − 1
(2 ≤ j ≤ q),

and Bn are the Bernoulli numbers.

Proof. To determine the coefficients cj (1 ≤ j ≤ q), we first express (2.6) in the form

ln
(
1 +

c1
x

+
c2
x2

+ · · ·+ cq
xq

)
=

ln 2

2x
+

q∑
j=2

(−1)j−1(1− 21−j)Bj

(j − 1)j

1

xj
+O

(
1

xq+1

)
(2.8)

as x → ∞, upon making use of (2.5). From the fundamental theorem of algebra, we see that there exist

unique complex numbers x1, . . . , xq such that

1 +
c1
x

+ · · ·+ cq
xq

=
(
1 +

x1

x

)
· · ·

(
1 +

xq

x

)
. (2.9)

By using the following series expansion:

ln
(
1 +

z

x

)
=

q∑
j=1

(−1)j−1zj

jxj
+O

(
1

xq+1

)

for |z| < |x| and x → ∞, we obtain, as x → ∞,

ln
(
1 +

c1
x

+ · · ·+ cq
xq

)
=

q∑
j=1

(−1)j−1Sj

jxj
+O

(
1

xq+1

)
, (2.10)

where

Sj = xj
1 + · · ·+ xj

q (1 ≤ j ≤ q).

We then find from (2.8) and (2.10) that

S1 =
ln 2

2
and Sj =

(1− 21−j)Bj

j − 1
(2 ≤ j ≤ q); (2.11)
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that is, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + · · ·+ xq = ln 2
2 ,

x2
1 + · · ·+ x2

q = B2

2 ,

. . . . . .

xq
1 + · · ·+ xq

q =
(1−21−q)Bq

q−1 .

(2.12)

Let

Pq(x) = xq + b1x
q−1 + · · ·+ bq−1x+ bq

be a polynomial with zeros x1, . . . , xq satisfying the system of equations (2.12). Then we have

Pq(x) = (x− x1) · · · (x− xq). (2.13)

The Newton formulas (see, for example, [15] and the references therein) give the connection between the

coefficients bj and the power sums Sj :

Sj + Sj−1b1 + Sj−2b2 + · · ·+ S1bj−1 + jbj = 0 (1 ≤ j ≤ q).

It is known (see [15]) that the coefficients bj can be expressed in terms of Sj :

bj =
∑

(k1, k2, ..., kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !
(
S1

1

)k1
(
S2

2

)k2

· · ·
(
Sj

j

)kj

, (2.14)

where the Aj (j ∈ N) are given in (2.1).

From (2.13) we therefore obtain

(−1)q

xq
Pq(−x) =

(
1 +

x1

x

)
· · ·

(
1 +

xq

x

)
so that

1− b1
x

+
b2
x2

+ · · ·+ (−1)qbq
xq

=
(
1 +

x1

x

)
· · ·

(
1 +

xq

x

)
. (2.15)

We see from (2.9) and (2.15) that the coefficients cj are then given by

cj = (−1)j bj

= (−1)j
∑

(k1, k2, ..., kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !
(
S1

1

)k1
(
S2

2

)k2

· · ·
(
Sj

j

)kj

,
(2.16)

where the Sj are specified in (2.11). This completes the proof.

Noting that

2

(
2nn!

(2n)!

)1/n

=

( √
π

Γ
(
n+ 1

2

)
)1/n

(2.17)

holds, we obtain the following corollary.
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Corollary 2.1. As n → ∞, we have

2n

⎛
⎝ q∑

j=0

cj
nj

⎞
⎠(

2nn!

(2n)!

)1/n

= e+O

(
1

nq+1

)
, (2.18)

where c0 = 1 and the coefficients cj (1 ≤ j ≤ q) are given by (2.7).

Here we give explicit numerical values of the first few coefficients cj by using the partition set (2.1)

and the formula (2.7). This shows how easy it is to determine the coefficients cj in (2.7). It is clear that

c1 = −
∑
k1=1

(−1)k1

k1!

(
S1

1

)k1

=
ln 2

2
.

For k1 + 2k2 = 2, since p(2) = 2, the partition set A2 in (2.1) is seen to have 2 elements:

A2 = {(0, 1), (2, 0)} .
From (2.7) we have

c2 =
∑

(k1, k2)∈A2

(−1)k1+k2

k1!k2!

(
S1

1

)k1
(
S2

2

)k2

=
3(ln 2)2 − 1

24
.

For k1 + 2k2 + 3k3 = 3, since p(3) = 3, the partition set A3 in (2.1) contains 3 elements:

A3 = {(0, 0, 1), (1, 1, 0), (3, 0, 0)}
and so we find from (2.7) that

c3 = −
∑

(k1, k2, k3)∈A3

(−1)k1+k2+k3

k1!k2!k3!

(
S1

1

)k1
(
S2

2

)k2
(
S3

3

)k3

=
(ln 2)3 − ln 2

48
,

where 00 is interpreted as 1.

Likewise, the partition sets A4 and A5 have p(4) = 5 and p(5) = 7 elements, respectively, and so

A4 = {(0, 0, 0, 1), (1, 0, 1, 0), (0, 2, 0, 0), (2, 1, 0, 0), (4, 0, 0, 0)} ;
A5 = {(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (2, 0, 1, 0, 0),

(1, 2, 0, 0, 0), (3, 1, 0, 0, 0), (5, 0, 0, 0, 0)}
which yields

c4 =
19− 30(ln 2)2 + 15(ln 2)4

5760
and c5 =

(
19− 10(ln 2)2 + 3(ln 2)4

)
ln 2

11520
.

This then produces the following asymptotic expansion:

e ∼ 2n

(
1 +

ln 2

2n
+

3(ln 2)2 − 1

24n2
+

(ln 2)3 − ln 2

48n3
+

19− 30(ln 2)2 + 15(ln 2)4

5760n4

+

(
19− 10(ln 2)2 + 3(ln 2)4

)
ln 2

11520n5
+ · · ·

)(
2nn!

(2n)!

)1/n

(2.19)

as n → ∞.

6



3 Approximation formulas for (1 + 1/x)x and a Carleman-type in-
equality

Let an ≥ 0 for n ∈ N := {1, 2, . . .} and 0 <
∑∞

n=1 an < ∞. Then

∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an. (3.1)

The constant e is the best possible. The inequality (3.1) was presented in 1922 in [4] by the Swedish

mathematician Torsten Carleman and it is now called Carleman’s inequality. Carleman discovered this

inequality during his important work on quasi-analytical functions.

Carleman’s inequality (3.1) has been generalized by Hardy [17] (see also [18, p. 256]) as follows. If

an ≥ 0, λn > 0, Λn =
∑n

m=1 λm for n ∈ N, and 0 <
∑∞

n=1 λnan < ∞, then

∞∑
n=1

λn

(
aλ1
1 aλ2

2 · · · aλn
n

)1/Λn
< e

∞∑
n=1

λnan. (3.2)

Note that inequality (3.2) is usually referred to as a Carleman-type inequality, or a weighted Carleman-

type inequality. In his original paper [17], Hardy himself said that it was Pólya who pointed out this

inequality to him. For information about the history of Carleman-type inequalities, see [21, 22, 24, 34].

3.1 Summary of previous results
In [5–7, 11, 12, 14, 25–27, 30, 31, 33, 39–44], some strengthened and generalized results of (3.1) and (3.2)

have been given by estimating the weight coefficient (1 + 1/n)
n

. For example, Mortici and Jang [33]

proved that for 0 < x ≤ 1,

e

(
1− 1

2
x+

11

24
x2 − 7

16
x3 +

2447

5760
x4 − 959

2304
x5

)
< (1 + x)1/x

< e

(
1− 1

2
x+

11

24
x2 − 7

16
x3 +

2447

5760
x4

)
. (3.3)

According to Pólya’s proof of (3.1) in [35],

∞∑
n=1

(a1a2 · · · an)1/n ≤
∞∑

n=1

(
1 +

1

n

)n

an, (3.4)

so that the following strengthened form of Carleman’s inequality can be derived directly from the right-

hand side of (3.3) as

∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

(
1− 1

2n
+

11

24n2
− 7

16n3
+

2447

5760n4

)
an. (3.5)

Brothers and Knox [3] (see also [8,23]) derived, without a formula for the general term, the following

expansion:(
1 +

1

x

)x

= e

(
1− 1

2x
+

11

24x2
− 7

16x3
+

2447

5760x4
− 959

2304x5
+

238043

580608x6
− · · ·

)
(3.6)
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for x < −1 or x ≥ 1. With(
1 +

1

x

)x

= e

∞∑
j=0

aj
xj

, (x < −1 or x ≥ 1), (3.7)

Chen and Choi [8] gave an explicit formula for successively determining the coefficients aj in the form

a0 = 1, aj = (−1)j
∑

(k1, k2, ..., kj)∈Aj

(
1
2

)k1
(
1
3

)k2 · · ·
(

1
j+1

)kj

k1!k2! · · · kj ! , (3.8)

where the Aj (j ∈ N) are given in (2.1). The above result immediately shows that (−1)jaj > 0 so that

(3.7) is an alternating series for positive x. Recently, Chen and Paris [10] obtained a recurrence relation

for βj = (−1)jaj given by

β0 = 1 and βj =
1

j

j∑
k=1

k

k + 1
βj−k (j ≥ 1). (3.9)

Use of (3.9) is easily seen to generate the values

β1 =
1

2
, β2 =

11

24
, β3 =

7

16
, β4 =

2447

5760
, β5 =

959

2304
, β6 =

238043

580608
, . . . ,

which are the same coefficients as in (3.6). The representation using a recursive algorithm for the coeffi-

cients (−1)jβj = aj in (3.9) is more practical for numerical evaluation than the expression in (3.8).

Chen and Paris [10] have given an integral representation for the coefficients βj and have proved

that the sequence {βj}∞j=0 is monotonically decreasing. They thereby obtained the following double

inequality [10, Theorem 2.1]:

e
2m+1∑
j=0

(−1)jβj

xj
<

(
1 +

1

x

)x

< e

2m∑
j=0

(−1)jβj

xj
(x ≥ 1), (3.10)

which develops the double inequality (3.3) to produce a general result. As an application of (3.10), Chen

and Paris [10, Theorem 3.1] have given a generalized Carleman-type inequality.

In 2001 Yang [43] conjectured, then Yang [44], Gylletberg and Yan [16], Chen [5], Lü et al. [27], and

Hu and Mortici [20] proved that if the following equality holds:(
1 +

1

x

)x

= e

(
1−

∞∑
k=1

bk
(1 + x)k

)
(3.11)

for x > 0, then bk > 0 for k ∈ N. In fact, Yang [44], Gylletberg and Yan [16], and Chen [5] presented

the following recurrence relation for determining the coefficients bk in (3.11):

b1 =
1

2
, bn+1 =

1

n+ 1

⎛
⎝ 1

n+ 2
−

n∑
j=1

bj
n+ 2− j

⎞
⎠ (n ≥ 1), (3.12)

and then proved bk > 0 for k ∈ N; see also Lü et al. [27]. Hu and Mortici [20] used an argument of

Alzer and Berg [2] to derive an integral representation for bk, and then obtained some new properties

of bk, including bk > 0 for k ∈ N. We remark that the recurrence relation of the coefficients bk given

in [19, Lemma 2.2] is not correct.

8



Remark 3.1. We give here an explicit formula for determining the coefficients bk in (3.11):

bj = −
∑

(k1, k2, ..., kj)∈Aj

(−1)k1+k2+···+kj

k1!k2! · · · kj !
(

1

1 · 2
)k1

(
1

2 · 3
)k2

· · ·
(

1

j(j + 1)

)kj

, (3.13)

where the Aj (j ∈ N) are given in (2.1).

Noting that bk > 0 for k ∈ N in (3.11), it follows from (3.11) that(
1 +

1

x

)x

< e

(
1−

m∑
k=1

bk
(1 + x)k

)
(3.14)

for x > 0 and m ∈ N. As an application of (3.14), inequalities (3.2) and (3.1) were strengthened by

Yang [44, Corollaries 2 and 3].

In the final part of his paper, Yang [43] remarked that in order to obtain better results, the right-hand

side of (3.11) could be replaced by e[1 − ∑∞
n=1(dn/(x + ε)n)], where ε ∈ (0, 1] and dn = dn(ε), but

information about the values of ε are not provided. In fact, Xie and Zhong [39] proved in 2000 that x ≥ 1,

e

(
1− 7

14x+ 12

)
<

(
1 +

1

x

)x

< e

(
1− 6

12x+ 11

)
, (3.15)

and then applied it to obtain an improvement of (3.2) as follows: if 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm,

an ≥ 0 (n ∈ N) and 0 <
∑∞

n=1 λnan < ∞, then

∞∑
n=1

λn+1

(
aλ1
1 aλ2

2 · · · aλn
n

)1/Λn
< e

∞∑
n=1

(
1−

1
2

Λn/λn + 11
12

)
λnan. (3.16)

Recently, Mortici and Hu [32] gave a formula for determining the coefficients dk such that(
1 +

1

n

)n

= e

(
1−

∞∑
k=1

dk

( 1112 + n)k

)

= e

(
1−

1
2

n+ 11
12

−
5

288

(n+ 11
12 )

3
−

139
17280

(n+ 11
12 )

4
−

119
23040

(n+ 11
12 )

5
− · · ·

)
, (3.17)

which is better than (3.11), since by truncation after k ≥ 3 terms of series (3.11), the last term is of order

n−(k−1), while the last term of series (3.17) truncated after k terms is of order n−k. For the same reason,

the formula (3.17) is better than (3.6).

Let (
1 +

1

x

)x

= e

(
1−

∞∑
k=1

bk
(1 + x)k

)
= e

(
1−

∞∑
k=1

dk

( 1112 + x)k

)
,

σm(x) =

m∑
k=1

bk
(1 + x)k

and Sm(x) =

m∑
k=1

dk

( 1112 + x)k
.

Then Ren and Li [36] proved that (i) if m ≥ 6 is even, we have Sm(x) > σm(x) for all x > 0 and (ii)

if m ≥ 7 is odd, we have Sm(x) > σm(x) for all x > 1. This provides an intuitive explanation for the

main result in Mortici and Hu [32].

Recently, You et al. [45] provided continued fraction inequalities related to (1 + 1/x)x, which can be

used to refine the inequalities (3.1) and (3.2).
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3.2 A new form of approximation for (1 + 1/x)x

Using the Maple software, we find1

(
1 +

1

x

)x

∼ e

(
1−

1
2

x+ 11
12

−
5

288

(x+ 343
450 )

3
−

41683
15552000

(x+ 558100391
787808700 )

5
− · · ·

)
(3.18)

as x → ∞. This led us to pose the following problem: Find the constants λ� and μ� such that

(
1 +

1

x

)x

∼ e

(
1 +

∞∑
�=1

λ�

(x+ μ�)2�−1

)

as x → ∞. In this section we solve this problem. Thus, we would appear to obtain an odd-type asymptotic

expansion for (1 + 1/x)
x

. From a computational viewpoint, (3.18) is an improvement on the formulas

(3.6), (3.11) and (3.17).

Theorem 3.1. As x → ∞, we have

(
1 +

1

x

)x

∼ e

(
1 +

∞∑
�=1

λ�

(x+ μ�)2�−1

)
, (3.19)

where the constants λ� and μ� are given by the pair of recurrence relations

λ� = a2�−1 −
�−1∑
k=1

λkμ
2�−2k
k

(
2�− 2

2�− 2k

)
(� ≥ 2) (3.20)

and

μ� = − 1

(2�− 1)λ�

{
a2� +

�−1∑
k=1

λkμ
2�−2k+1
k

(
2�− 1

2�− 2k + 1

)}
(� ≥ 2), (3.21)

with λ1 = − 1
2 and μ1 = 11

12 . Here aj are given in (3.7).

Proof. We first express (3.19) in the form

e−1

(
1 +

1

x

)x

− 1 ∼
∞∑
j=1

λj

x2j−1

(
1 +

μj

x

)−2j+1

.

1Using the Maple software, formula (3.18) is given in the appendix.
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Direct computation yields

∞∑
j=1

λj

x2j−1

(
1 +

μj

x

)−2j+1

=

∞∑
j=1

λj

x2j−1

∞∑
k=0

(−2j + 1

k

)
μk
j

xk

=

∞∑
j=1

λj

x2j−1

∞∑
k=0

(−1)k
(
k + 2j − 2

k

)
μk
j

xk

=

∞∑
j=1

j−1∑
k=0

λk+1μ
j−k−1
k+1 (−1)j−k−1

(
j + k − 1

j − k − 1

)
1

xj+k

=

∞∑
j=1

⎧⎨
⎩

� j+2
2 �∑

k=1

λkμ
j−2k+1
k (−1)j−1

(
j − 1

j − 2k + 1

)⎫⎬
⎭ 1

xj
.

We then obtain

e−1

(
1 +

1

x

)x

− 1 ∼
∞∑
j=1

⎧⎨
⎩

� j+2
2 �∑

k=1

λkμ
j−2k+1
k (−1)j−1

(
j − 1

j − 2k + 1

)⎫⎬
⎭ 1

xj
. (3.22)

On the other hand, it follows from (3.7) that

e−1

(
1 +

1

x

)x

− 1 =

∞∑
j=1

aj
xj

, (3.23)

where aj are given in (3.8). Equating coefficients of the term x−j on the right-hand sides of (3.22) and

(3.23), we obtain

aj =

� j+2
2 �∑

k=1

λkμ
j−2k+1
k (−1)j−1

(
j − 1

j − 2k + 1

)
(j ∈ N). (3.24)

Setting j = 2�− 1 and j = 2� in (3.24), respectively, we find

a2�−1 =

�∑
k=1

λkμ
2�−2k
k

(
2�− 2

2�− 2k

)
(3.25)

and

a2� = −
�+1∑
k=1

λkμ
2�−2k+1
k

(
2�− 1

2�− 2k + 1

)

= −
�∑

k=1

λkμ
2�−2k+1
k

(
2�− 1

2�− 2k + 1

)
− λ�+1μ

−1
�+1

(
2�− 1

−1

)

= −
�∑

k=1

λkμ
2�−2k+1
k

(
2�− 1

2�− 2k + 1

)
. (3.26)
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From (3.25) and (3.26) we obtain for � = 1,

λ1 = a1 = −1

2
and μ1 = −a2

λ1
=

11

12
,

and for � ≥ 2 we have

a2�−1 =

�−1∑
k=1

λkμ
2�−2k
k

(
2�− 2

2�− 2k

)
+ λ�

and

a2� = −
�−1∑
k=1

λkμ
2�−2k+1
k

(
2�− 1

2�− 2k + 1

)
− (2�− 1)λ�μ�.

We then obtain the recurrence relations (3.20) and (3.21). The proof is complete.

We give explicit numerical values of the first few constants λ� and μ� by using the formulas (3.20)

and (3.21). This demonstrates the ease with which the constants λ� and μ� in (3.19) can be determined.

λ1 = −1

2
, μ1 =

11

12
,

λ2 = a3 − λ1μ
2
1 = − 7

16
−
(
−1

2

)
·
(
11

12

)2

= − 5

288
,

μ2 = −a4 + λ1μ
3
1

3λ2
= −

2447

5760
+

(
−1

2

)
·
(
11

12

)3

3 ·
(
− 5

288

) =
343

450
,

λ3 = a5 − λ1μ
4
1 − 6λ2μ

2
2 = − 959

2304
−
(
−1

2

)
·
(
11

12

)4

− 6 ·
(
− 5

288

)
·
(
343

450

)2

= − 41683

15552000
,

μ3 = −a6 + λ1μ
5
1 + 10λ2μ

3
2

5λ3

= −
238043

580608
+

(
−1

2

)
·
(
11

12

)5

+ 10 ·
(
− 5

288

)
·
(
343

450

)3

5 ·
(
− 41683

15552000

) =
558100391

787808700
.

We note that the values of λ� and μ� (for � = 1, 2, 3) above are equal to the constants appearing in (3.18).

Remark 3.2. By using the Maple software, we can show that for x > 0,(
1 +

1

x

)x

< e

(
1−

1
2

x+ 11
12

−
5

288

(x+ 343
450 )

3
−

41683
15552000

(x+ 558100391
787808700 )

5

)
. (3.27)

We omit the proof.
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By virtue of the proof given in [42] and the inequality (3.27), we have the Carleman-type inequality

∞∑
n=1

λn+1

(
aλ1
1 aλ2

2 · · · aλn
n

)1/Λn
<

∞∑
n=1

(
1 +

1

Λn/λn

)Λn/λn

λnan

< e

∞∑
n=1

⎛
⎜⎝1−

1
2

(Λn/λn) +
11
12

−
5

288(
(Λn/λn) +

343
450

)3 −
41683

15552000(
(Λn/λn) +

558100391
787808700

)5

⎞
⎟⎠λnan, (3.28)

which is an improvement on the inequality (3.16).

Finally, we propose the following conjecture.

Conjecture 3.1. For all � ∈ N, we have

λ� < 0 and μ� > 0. (3.29)

Further, we have the inequality

(
1 +

1

x

)x

< e

(
1 +

m∑
�=1

λ�

(x+ μ�)2�−1

)
(3.30)

for x > 0 and m ∈ N.

Appendix: A derivation of formula (3.18)

Define the function F (x) by

F (x) =

(
1 +

1

x

)x

− e

(
1 +

λ1

x+ μ1

)
.

We are interested in finding the values of the parameters λ1 and μ1 such that F (x) converges as fast as

possible to zero, as x → ∞. This provides the best approximation of the form:(
1 +

1

x

)x

≈ e

(
1 +

λ1

x+ μ1

)
.

Using the Maple software, we find, as x → ∞,

F (x) = −e(1 + 2λ1)

2x
+

e(24λ1μ1 + 11)

24x2
− e(16λ1μ

2
1 + 7)

16x3
+O

(
1

x4

)
.

The two parameters λ1 and μ1, which produce the fastest convergence of the function F (x), are given by{
1 + 2λ1 = 0

24λ1μ1 + 11 = 0,
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namely, if

λ1 = −1

2
, μ1 =

11

12
.

We then obtain, as x → ∞,

(
1 +

1

x

)x

= e

(
1−

1
2

x+ 11
12

+O

(
1

x3

))
. (3.31)

In view of (3.31), we define the function G(x) by

G(x) =

(
1 +

1

x

)x

− e

(
1−

1
2

x+ 11
12

+
λ2

(x+ μ2)3

)
.

Using the Maple software, we find, as x → ∞,

G(x) = −e(5 + 288λ2)

288x3
+

e(343 + 25920λ2μ2)

8640x4
− e(2621 + 248832λ2μ

2
2)

41472x5
+O

(
1

x6

)
.

For λ2 = − 5
288 and μ2 = 343

450 , we obtain, as x → ∞,

(
1 +

1

x

)x

= e

(
1−

1
2

x+ 11
12

−
5

288

(x+ 343
450 )

3
+O

(
1

x5

))
. (3.32)

In view of (3.32), we define the function H(x) by

H(x) =

(
1 +

1

x

)x

− e

(
1−

1
2

x+ 11
12

−
5

288

(x+ 343
450 )

3
+

λ3

(x+ μ3)5

)
.

Using the Maple software, we find, as x → ∞,

H(x) = −e(41683 + 15552000λ3)

15552000x5
+

e(558100391 + 293932800000λ3μ3)

58786560000x6

− e(52111420409 + 37791360000000λ3μ
2
3)

2519424000000x7
+O

(
1

x8

)
.

For λ3 = − 41683
15552000 and μ3 = 558100391

787808700 , we obtain, as x → ∞,

(
1 +

1

x

)x

= e

(
1−

1
2

x+ 11
12

−
5

288

(x+ 343
450 )

3
−

41683
15552000

(x+ 558100391
787808700 )

5
+O

(
1

x7

))
.
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