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Abstract 11 

The misuse of benzodiazepines as new psychoactive substances is an increasing problem 12 

around the world. Basic physicochemical and pharmacokinetic data is required on these 13 

substances in order to interpret and predict their effects upon humans. Experimental log D7.4, 14 

pKa and plasma protein binding values were determined for 11 benzodiazepines that have 15 

recently appeared as new psychoactive substances (3-hydroxyphenazepam, 4’chlorodiazepam, 16 

desalkylflurazepam, deschloroetizolam, diclazepam, etizolam, flubromazepam, 17 

flubromazolam, meclonazepam, phenazepam and pyrazolam) and compared with values 18 

generated by various software packages (ACD/I-lab, MarvinSketch, ADMET Predictor and 19 

PreADMET). ACD/I-LAB returned the most accurate values for log D7.4 and plasma protein 20 

binding while ADMET Predictor returned the most accurate values for pKa. Large variations 21 

in predictive errors were observed between compounds. Experimental values are currently 22 

preferable and desirable as they may aid with the future ‘training’ of predictive models for 23 

these new psychoactive substances. 24 

 25 
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1. Introduction 29 

New psychoactive substances (NPSs) are an increasing problem around the world [1]. 30 

Benzodiazepines are one of a number of groups of NPSs that have appeared on the illicit drug 31 

market [2]. They also exist as common prescription drugs for anxiety, insomnia and other 32 

medical conditions [3]. Benzodiazepines were misused long before emerging as new 33 

psychoactive substances and a recent report highlighted the increasing illicit availability and 34 

misuse of a clinically-used benzodiazepine, alprazolam, often purchased from the dark web 35 

[4]. The new psychoactive substance benzodiazepines (referred to in this work as NPS-36 

benzodiazepines) have already been reported in a number of overdose cases, driving under the 37 

influence of drugs (DUID) cases and hospital admissions [5–8]. The lack of control and safety 38 

over these NPS-benzodiazepines is a prevalent issue and it is predicted that it will become an 39 

even more worrying trend as their misuse continues to rise. A number of these compounds 40 

were originally prescription drugs such as phenazepam (Russia) as well as etizolam and 41 

flutazolam (Japan) [9–11]. Some of these compounds never gained marketing approval (e.g. 42 

adinazolam) but the majority were simply patented and never brought to market and, as such, 43 

there is a deficit of physiochemical and pharmacokinetic data that would otherwise exist if they 44 

had undergone clinical trials [12]. However, such information is essential to fully understand 45 

the pharmacological behaviour of these compounds, especially as they are becoming more and 46 

more prevalent on the illicit drug market. This paper focuses on two physiochemical properties 47 

(log D7.4 and pKa) and one pharmacokinetic property (plasma protein binding). 48 

The lipophilicity of a compound is often expressed by the term log D7.4, this is the distribution 49 

coefficient and represents the relative ratios of a compound in an organic and aqueous solvent 50 

at the physiologically-relevant pH of 7.4 [13]. Lipophilicity has various pharmacokinetic 51 

implications such as affecting a compound’s absorption through cell membranes and its 52 

distribution in biological tissues and accordingly is important for the prediction of many of 53 
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these pharmacokinetic parameters [14,15]. Highly-lipophilic compounds typically exhibit 54 

greater plasma protein binding and can generally cross the blood-brain barrier with greater ease 55 

[16,17]. The majority of the well-known, from herein referred to as ‘classic’, benzodiazepines 56 

have comparatively high values for lipophilicity and can therefore partition with ease across 57 

cellular membranes and accumulate in areas of the body that are high in lipids [18,19]. 58 

Furthermore, benzodiazepines also have high volumes of distribution (Vd) such as diazepam 59 

with a Vd at steady state of 0.88 – 1.39 L kg-1 [20–23]. The lipophilicity (as log P) of some 60 

NPS-benzodiazepines has already been published in literature [24]. 61 

The acid-base dissociation constant (pKa) of a compound is typically investigated during 62 

pharmaceutical development and plays an important role when used in conjunction with other 63 

parameters such as molecular weight and lipophilicity [25]. pKa can affect the site in the body 64 

where compounds are absorbed [26] and can also assist with the development of extraction 65 

methods from biological samples [27].  66 

Upon administration to the body, compounds bind to proteins present within the plasma, this 67 

is reflected through measurement of plasma protein binding values [28,29].  The fraction that 68 

is not bound (known as the unbound or free fraction) is responsible for the pharmacological 69 

effect and it is this fraction that undergoes metabolism and excretion [18]. The majority of the 70 

classic benzodiazepines are highly protein-bound such as diazepam (99 % bound) but some 71 

experience vastly lower binding, for example bromazepam (60 % bound) [30,31]. Reducing 72 

clearance (Cl) and increased plasma protein binding generally correlates with an increase in 73 

half-life (t1/2) of a drug [32].  Knowledge of plasma protein binding is therefore important to 74 

help characterise pharmacokinetics of drugs without in vivo studies. There has already been 75 

interest in the determination of these properties for new psychoactive substances, for example 76 

the plasma protein binding of flubromazolam (89 %) has recently been published in the 77 
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literature [33]. Yet for many of the more recently synthesised benzodiazepines the percentage 78 

bound is as yet unknown.  79 

As many of these compounds have never undergone clinical trials, and are unlikely to as a 80 

result of the time and expense involved, it is critical that such analysis is undertaken, especially 81 

for the future prediction of any newly emerging psychoactive substances. The use of predictive 82 

software could be an attractive alternative to in vitro experiments to calculate these properties 83 

and this research will focus upon comparison of some predictive software packages with 84 

experimental values. 85 

2. Materials and methods 86 

Eight benzodiazepines that had values available in the literature for log D7.4, pKa and plasma 87 

protein binding were chosen to examine the suitability of the devised methods (alprazolam, 88 

clonazepam, diazepam, flunitrazepam, nitrazepam, oxazepam, prazepam and temazepam). 89 

These three properties were then investigated experimentally for a further 11, as yet, 90 

uncharacterised benzodiazepines, recently appearing as new psychoactive substances (3-91 

hydroxyphenazepam, 4’chlorodiazepam, desalkylflurazepam, deschloroetizolam, diclazepam, 92 

etizolam, flubromazepam, flubromazolam, meclonazepam, phenazepam and pyrazolam). The 93 

chemical structures of this latter group of compounds can be found in the Supplementary 94 

Information.  95 

2.1. Materials 96 

4’-chlorodiazepam, alprazolam, clonazepam, desalkylflurazepam, diazepam, flunitrazepam, 97 

nitrazepam, oxazepam, prazepam and temazepam were obtained from Sigma-Aldrich (Dorset, 98 

UK). 3-hydroxyphenazepam, deschloroetizolam, diclazepam, etizolam, flubromazepam, 99 

flubromazolam, meclonazepam, phenazepam and pyrazolam were obtained from Chiron 100 

(Trondheim, Norway). All compounds were received as powdered solids. 101 
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Dimethyl sulfoxide (DMSO), methanol, phosphoric acid, sodium hydrogen phosphate 102 

heptahydrate, sodium dihydrogen phosphate, disodium hydrogen phosphate, acetic acid, 103 

sodium acetate trihydrate, boric acid, sodium hydroxide, hydrochloric acid, sodium chloride 104 

and octan-1-ol were purchased from Fisher Scientific (Leicestershire, UK). Phosphate buffered 105 

saline (PBS) tablets were purchased from Sigma-Aldrich (Dorset, UK).  106 

Human plasma (pooled, from three male donors and three female donors) was obtained from 107 

Seralab (West Sussex, UK). Plasma was received frozen with sodium citrate as an 108 

anticoagulant. 109 

2.2. Methods 110 

2.2.1. Determination of log D7.4 111 

The shake-flask method is commonly used in determining log D7.4 values [34]. The compound 112 

of interest is dissolved in equal volumes of a buffer at a specified pH and an organic solvent, 113 

such as octanol. Following equilibration the octanol and buffer are separated and the 114 

concentration of the compound in each is determined. The log D7.4 is then calculated using 115 

Equation 1. 116 

 
𝑙𝑜𝑔𝐷 =

𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑝ℎ𝑎𝑠𝑒

𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑝ℎ𝑎𝑠𝑒
 

(1) 

   

Sodium phosphate buffer (0.01 M) was formulated using deionised water (Barnstead 117 

UltraPure) and filtered through a 0.45 µm Nylon Phenex filter membrane (Phenomenex, 118 

Cheshire, UK) using a Millipore filtration apparatus (Merck Millipore, Hertfordshire, UK).  119 

Compounds were dissolved in methanol at a concentration of 1 mg ml-1. Aliquots of compound 120 

solution were evaporated with a flow of nitrogen using a TurboVap to yield 0.20 mg of 121 

compound. Equal volumes (700 µl) of sodium phosphate buffer (0.01 M, pH 7.4) and octan-1-122 

ol were added and the samples were vortexed for 30 seconds. 123 
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The samples were transferred into 1.5 mL Eppendorf microcentrifuge tubes and placed on a 124 

Stuart SB3 rotator (Bibby Scientific, Staffordshire UK) and rotated at 40 rpm for four hours. 125 

Samples were then centrifuged at 10,000 rpm for 20 minutes. The separated octanol and buffer 126 

phases were collected and analysed using high performance liquid chromatography (HPLC) 127 

coupled to a diode array detector (DAD). Further details of the method employed are given in 128 

Section 2.4. Each log D determination was repeated in triplicate. 129 

2.2.2. Determination of pKa 130 

Capillary electrophoresis is a common method of measuring pKa [35]. The basic principle 131 

behind this technique is an applied electrical voltage which separates ions according to their 132 

electrophoretic mobility. When the solute is unionised it has no mobility and when an electrical 133 

voltage is applied and it is fully ionised it has maximum electrophoretic mobility. The mobility 134 

of the solute between these two extremes is a function of the dissociation equilibrium. The 135 

effective electrophoretic mobility of a compound can be calculated by using the difference in 136 

migration time between the test compound and a neutral marker [35]. 137 

 𝜇𝑒𝑓𝑓 = (
𝐿𝑑𝐿𝑡

𝑉
) (

1

𝑡𝑎
−

1

𝑡𝑚
) (2) 

In Equation , ta is the migration time for the test compound (s), tm is the migration time for the 138 

neutral marker (s), Ld is the total length from the capillary inlet to the detection window (cm), 139 

Lt is the total capillary length (cm) and V is the applied voltage (V). As a result of the differences 140 

in pH there can be variations in electroosmotic flow but these are corrected for by using a 141 

neutral compound as a marker and adjusting for this in the calculation of effective mobility.  142 

𝜇𝑒𝑓𝑓 =
𝛼 × 10−𝑝𝐻

10−𝑝𝐾𝑎 + 10−𝑝𝐻
 (3) 

𝜇𝑒𝑓𝑓 =
𝑏1(10−𝑝𝐻)2 + 𝑎110−𝑝𝐾𝑎1 10−𝑝𝐾𝑎2

(10−𝑝𝐻)2 + 10−𝑝𝐾𝑎110−𝑝𝐻 + 10−𝑝𝐾𝑎110−𝑝𝐾𝑎2
 (4) 
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Equations (3) and (4) describe the relationship between the effective electrophoretic mobility 143 

of a compound and its pKa for benzodiazepines with one ionisable basic group and an ionisable 144 

basic and acidic group [36].  145 

Phosphate, acetate and borate buffers were utilised as described elsewhere with a pH spacing 146 

of 0.5 pH units [36]. All buffers had an ionic strength of I=0.05 and a concentration of 0.05 M. 147 

Sodium chloride was used to adjust the ionic strength and hydrochloric acid (0.1 M) or sodium 148 

hydroxide (0.1 M) were used to adjust the pH values if necessary. The pH was measured with 149 

a Jenway 3505 pH meter (Jenway, Essex, UK) which was calibrated before use. Buffers were 150 

filtered prior to use through a 0.45 µm Nylon Phenex filter membrane (Phenomenex, Cheshire, 151 

UK) using a Millipore filtration apparatus (Merck Millipore, Hertfordshire, UK).  152 

Compounds were dissolved in methanol at a concentration of 1 mg ml-1. Solutions were diluted 153 

to 0.25 mg ml-1 with deionised water (Barnstead UltraPure) and contained DMSO as the 154 

electroosmotic flow marker (1 % v/v). 155 

DMSO (1 % v/v) in deionised water (Barnstead UltraPure) was run at each pH before 156 

experimental repeats to ensure that an expected electrophoretic mobility was obtained. 157 

Compound migration times were determined using a Beckman Coulter P/ACE MDQ Capillary 158 

Electrophoresis System with a diode array detector (Beckman-Coulter, High Wycombe, UK). 159 

The internal capillary temperature was set at 25 °C using the liquid cooling system. Sample 160 

injection was conducted at 1.0 psi for 10 seconds and then 20 kV voltage was applied during 161 

separations. The capillary was rinsed between each run in the following manner; NaOH applied 162 

at 20 psi for 1.0 minute followed by the appropriate buffer for the next repeat at 20 psi for 2.0 163 

minutes.  164 

Experimentally determined µeff values were obtained using Equation 2. The Microsoft Excel 165 

add-in, Solver, was used to calculate the pKa value using least-squares regression. An initial 166 
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‘best-guess’ estimate for the pKa and α values were used to calculate theoretical effective 167 

mobilities and the squared difference (the residuals) between these theoretical values and 168 

experimental values was then calculated and then minimised by varying the values for pKa and 169 

α. 170 

For pKa measurements, accuracy is defined as a measured value being within 0.20 units from 171 

the literature value and precision is defined as a measured value having a repeatability that is 172 

equal to or less than 0.07 units [35]. Each pKa measurement was repeated in triplicate. 173 

2.2.3. Determination of plasma protein binding 174 

Plasma protein binding values were determined using the commonly-used method of 175 

equilibrium dialysis [37]. 176 

Frozen plasma was thawed at room temperature prior to the experiments. The pH was measured 177 

with a Jenway 3505 pH meter (Jenway, Essex, UK) which was calibrated before use. Plasma 178 

pH was found to be within the physiological range of 7.38 – 7.42 and adjustment was not 179 

required [38]. 180 

PBS tablets were dissolved in deionised water (Barnstead UltraPure) to yield a buffer solution 181 

that contained 0.01M phosphate, 0.0027M KCl, and 0.137M NaCl, pH 7.4 at 25 °C. Stock 182 

solutions of compounds in DMSO at a concentration of 10 mM were created and were diluted 183 

with PBS prior to the experiments to yield working solutions at a concentration of 200 µM.  184 

Reusable Single-Sample Fast Micro-Equilibrium Dialyzers (500 µL volume) were obtained 185 

from Harvard Apparatus (Cambridge, UK), as were cellulose acetate membranes with a 186 

molecular weight cut-off (MWCO) of 10,000 Da.  187 

The membranes were soaked for 30 minutes in deionised water (Barnstead UltraPure) and 188 

rinsed thoroughly. 30 µL of compound working solution was added to 270 µL of plasma to 189 

yield a final concentration of 20 µM of compound (final DMSO concentration 0.2 %). This 190 
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was placed in one chamber and 500 µL of PBS was placed in the second chamber. The Micro-191 

Equilibrium Dialyzers were then placed into a shaking waterbath held at 37 °C for 24 hours. 192 

The temperature was monitored with a Sentry Thermometer (Fisher Scientific, Leicestershire, 193 

UK). After 24 hours had elapsed, the samples were extracted from each chamber, matrix 194 

matched (with blank plasma or blank buffer). Ice-cold acetonitrile at a 4:1 ratio was then added 195 

to precipitate proteins. The samples were centrifuged at 10,000 rpm for 20 minutes and the 196 

supernatant was recovered and evaporated using a flow of nitrogen with a TurboVap. The 197 

samples were then reconstituted in 200 µL of acetonitrile and analysed using HPLC-DAD. 198 

Details of this analysis are given in Section 2.4. Each plasma protein binding measurement was 199 

repeated in triplicate.  200 

Plasma protein binding (PPB) was calculated using the experimental plasma concentration 201 

(Pexp) and the experimental buffer concentration (Bexp) according to Equation (5). 202 

 𝑃𝑃𝐵 (%) = 100 ×
𝑃𝑒𝑥𝑝 − 𝐵𝑒𝑥𝑝

𝑃𝑒𝑥𝑝
 (5) 

For those benzodiazepines that were highly protein bound and had a concentration in the buffer 203 

phase that was below the limit of quantitation (LOQ), the buffer concentration was calculated 204 

indirectly using Equation (6) which involved the experimental plasma concentration and the 205 

total expected concentration (Ptot), determined using a calibration plot. The total expected 206 

concentration was adjusted using a previously-determined correction factor (CF) for the 207 

extraction efficiency (≈ 95 %). This indirectly-calculated buffer concentration was then input 208 

into Equation (5) to generate plasma protein binding values. 209 

 𝐵𝑒𝑥𝑝 = (𝑃𝑡𝑜𝑡 × 𝐶𝐹) − 𝑃𝑒𝑥𝑝 (6) 
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2.3. Theoretical approaches 210 

Theoretical log D7.4 and pKa values were generated using the free, online software ACD/I-211 

Lab (which makes use of the EPSRC funded National Chemical Database Service hosted by 212 

the Royal Society of Chemistry) and two commercial software packages; MarvinSketch 213 

(version 17.28.0) (ChemAxon) and ADMET Predictor (Simulations Plus). Theoretical plasma 214 

protein binding values were obtained from two sources used for log D7.4 and pKa; ACD/I-Lab 215 

and ADMET Predictor (Simulations Plus) and one source available as a free online resource, 216 

PreADMET (version 2.0). These software packages are all commonly used for the prediction 217 

of physicochemical and pharmacokinetic parameters [39–42]. Theoretical values were 218 

compared with experimental values by means of the absolute difference in values. 219 

2.4. HPLC analysis for log D7.4 and plasma protein binding 220 

Analysis was achieved with a Dionex UltiMate 3000 HPLC system equipped with an UltiMate 221 

3000 Pump, UltiMate 3000 Autosampler, UltiMate 3000 Column Compartment, UltiMate 222 

3000 Photodiode Array Detector and Chromeleon software (Dionex, Surrey, UK). Separation 223 

was achieved with a Waters® Spherisorb® analytical cartridge, C18 5 µm 80 Å (4.6 × 150 224 

mm) with an attached guard cartridge identically packed to the analytical cartridge (Waters, 225 

Hertfordshire, UK). The internal column temperature was kept constant at 25 °C and a flow 226 

rate of 0.8 mL min-1 was set. Injection volumes for the log D7.4 experiments were 25 µL for the 227 

octanol phase and 100 µL for the phosphate buffer phase so that a dilution step was not 228 

necessary. Compound concentrations were retrospectively corrected. Injection volumes of 100 229 

µL were used for the plasma protein binding experiments. A 46:54 (v/v) ratio of acetonitrile 230 

and sodium phosphate buffer (pH 3.0, 25 mM) was applied for 25 minutes. All compounds 231 

eluted within this time. The eluent was monitored by UV detection at 230 nm. Details of the 232 

method validation can be found in the Supplementary Information. 233 
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3. Results and discussion 234 

Experimental log D7.4, pKa and plasma protein binding values for all the classic and NPS- 235 

benzodiazepines were successfully determined and compared with theoretical values. 236 

3.1.Experimental values 237 

3.1.1. Log D7.4 238 

Buffer composition is important for the determination of log D7.4 values. Use of a 0.01 M 239 

phosphate buffer has been shown to give an excellent correlation of distribution coefficients 240 

determined in the octanol-phosphate system for acidic and neutral compounds [43]. Despite 241 

the basic nature of the compounds in this study, a 0.01 M sodium phosphate buffer (pH 7.4) 242 

was chosen and its suitability evaluated by way of a comparison between the experimental log 243 

D7.4 values and literature log D7.4 values. 244 

For the clinically-used (and previously characterised) benzodiazepines the experimental results 245 

obtained for log D7.4 in this study were very close to those reported elsewhere in the literature, 246 

thus proving the suitability of this method and also the use of the 0.01 M sodium phosphate 247 

buffer (pH 7.4) (Table 1).  248 

The majority of the NPS-benzodiazepines were fairly lipophilic with log D7.4 values above 2 249 

(Table 1). None of the NPS-benzodiazepines had literature-reported log D7.4 values other than 250 

desalkylflurazepam with 2.78 versus a value of 2.82 in this work. Phenazepam (log D7.4 of 251 

3.25) was observed to be the most lipophilic NPS-benzodiazepine in this dataset while 252 

pyrazolam (log D7.4 of 0.97) was the least lipophilic, a 190-fold difference. The reason behind 253 

the low lipophilicity for pyrazolam becomes more apparent when its structure is considered. 254 

Pyrazolam contains a pyridin-2-yl ring at position 7 rather than a phenyl ring, as is the case 255 

with the rest of the benzodiazepines in this study. The phenyl ring has a log D7.4  value of 1.56 256 

versus a log D7.4 value of 0.62 for the pyridin-2-yl ring [44]. Replacement of a phenyl ring for 257 

a pyridin-2-yl ring could lead to a decrease in lipophilicity. The benzodiazepine bromazepam 258 

contains a pyridin-2-yl ring rather than a phenyl ring and has a log D7.4 value of 1.60 [45]. The 259 
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addition of a triazole ring to some compounds is also known to lead to a decrease in the partition 260 

coefficient [46][47]. The pyridin-2-yl ring and triazole ring addition appear to lead to a marked 261 

decrease in lipophilicity for pyrazolam. Previous research has used log D7.4 values in a 262 

quantitative structure-activity relationship (QSAR) model which predicted the post-mortem 263 

distribution of benzodiazepines and was found to contribute significantly to their distributive 264 

potential [48]. Log D7.4 has also been utilised, along with plasma protein binding and pKa, to 265 

derive models capable of predicting the volume of distribution at steady state of a wide range 266 

of compounds [49,50].   267 

3.1.2. pKa 268 

Experimental pKa values were all within 0.20 units of their literature values for the classic 269 

benzodiazepines and had excellent repeatability, under 0.07 units for all the reference 270 

compounds (Table 2). Classic benzodiazepines either have one pKa value, for example 271 

flunitrazepam (1.8), or two clonazepam (1.5 and 10.5) [51,52]. The first pKa value refers to the 272 

deprotonation of the nitrogen cation at position 4 and the second pKa refers to the deprotonation 273 

of the nitrogen atom at position 1 [51]. The deprotonation of the nitrogen atom at position 1 is 274 

thought to be resonance stabilised with the negatively-charged oxygen atom [51]. This can be 275 

visualised in Figure 1 for clonazepam. 276 

Figure 1. The two sites of deprotonation and corresponding pKa values for clonazepam  277 
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Values of 2.83 for etizolam and 2.51 and 11.64 for desalkylflurazepam were calculated in this 278 

work. These compared favourably to their previously-reported values of 2.76 for etizolam and 279 

of 2.57 and 11.76 for desalkylflurazepam [53,54]. 280 

The presence of an electron-withdrawing hydroxyl group decreases the pKa2 value, as does the 281 

presence of an ortho-chlorine substituent on the phenyl ring [55]. Clonazepam has this ortho-282 

chlorine substituent and has a calculated pKa value of 1.55 in this work. 3-hydroxyphenazepam, 283 

in addition to an ortho-chlorine substituent, also has a hydroxyl group and therefore its low pKa 284 

value of 1.25 was not unexpected. Repeatability was generally good for the NPS-285 

benzodiazepines; 0.07 is typically the expected variance in capillary electrophoresis 286 

measurements [35]. However, a variance of up to ±0.10 was observed for some compounds 287 

including 3-hydroxyphenazepam. This could be as a result of its pKa1 value (1.25) being lower 288 

than the pH of the lowest buffer used (1.50).  289 

3.1.3. Plasma protein binding 290 

A number of the benzodiazepines had concentrations in the buffer phase would have been 291 

below the limit of quantitation (LOQ), these were; diazepam, oxazepam, prazepam, 4’-292 

chlorodiazepam, flubromazepam and phenazepam. All concentrations were higher than the 293 

limit of detection (LOD). As mentioned in the methods section the buffer phase concentrations 294 

were calculated indirectly. The use of a correction factor is less desirable than direct 295 

measurements however, it did not appear to affect the calculated values for plasma protein 296 

binding when compared with literature values (Table 3).  297 

Values for plasma protein binding are listed in Table 3 for clinically used benzodiazepines; 298 

wide variations were reported in the literature for many of the benzodiazepines. Age and sex 299 

have both been observed as causing differences in the plasma protein binding of drugs which 300 

may have been a factor in these variations as many of them were determined in vivo [56–58].  301 

The experimentally derived values for the reference benzodiazepines were typically within the 302 
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literature ranges with low variations. The majority of the NPS-benzodiazepines were observed 303 

to exhibit a high degree of plasma protein binding (> 90 %), i.e. similar to the clinically used 304 

benzodiazepines (Table 3). Literature values for the plasma protein binding of three NPS-305 

benzodiazepines were available and experimental values derived in this work returned a 306 

consensus with these; desalkylflurazepam (experimental 95.5 % versus 96.1 – 96.5 % 307 

literature), etizolam (experimental 92.8 % versus 93 % literature) and flubromazolam 308 

(experimental 89.5 % versus literature 89 %) [24,59–61].  309 

The lowest plasma protein binding was observed for pyrazolam which was 78.7 %. Such a low 310 

value of plasma protein binding for a benzodiazepine is not unheralded as bromazepam has a 311 

reported 60 % plasma protein binding [31]. Substitution of the phenyl ring at position-5 for a 312 

pyridin-2-yl ring has been previously reported to lead to a large decrease in lipophilicity for 1,-313 

4-benzodiazepines [59]. The same effect could well occur for triazolobenzodiazepines.  314 

4’-chlorodiazepam differs from diazepam by having an additional chlorine atom substituted at 315 

the 4’-position of the phenyl ring and exhibits similarly high plasma protein binding; 98.2 % 316 

versus 99.0 % for diazepam. Diclazepam is an isomer of 4’-chlorodiazepam; identical in 317 

chemical formula but differing in structure with the chlorine atom being substituted at the 2’-318 

position of the phenyl ring. Its plasma protein binding value was calculated as being 93.8 %, 319 

lower than diazepam or 4’-chlorodiazepam. However diclazepam’s demethylated metabolite 320 

has been reported as having a plasma protein binding of 94.9 % and demethylation at the 1-321 

position is not thought to substantially affect plasma protein binding [59]. Therefore, it stands 322 

to reason that the decreased plasma protein binding observed is most likely as a result of the 323 

substitution of a chlorine atom at the 2’-position. Substitution at the 2’-position with a chlorine 324 

atom has been observed to decrease plasma protein binding but if this substitution instead 325 

occurs at the 4’ position then no such decrease is observed [59]. This is thought to be as a result 326 
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of the substitution at the 2’-position affecting the rotation and orientation of the benzene ring 327 

and resulting in lower binding.  328 

3-hydroxyphenazepam exhibited lower plasma protein binding than its parent compound, 329 

phenazepam; 97.7 % versus 98.3 % and this is consistent with observations that hydroxylation 330 

at the 3-position leads to a decrease in plasma protein binding [59]. Deschloroetizolam has a 331 

reduced plasma protein binding compared to the thienotriazolodiazepine etizolam (87.2 % 332 

versus 92.8%). Removal of a chlorine atom from position-7 has been found to decrease plasma 333 

protein binding for 1,4-benzodiazepines and a similar relationship may hold true for 334 

thienotriazolodiazepines [59].  335 

Desalkylflurazepam differs from flubromazepam by replacement of the bromine atom at the 7-336 

position by a chlorine atom. Its plasma protein binding is lower (95.5 % versus 96.2 %) which 337 

is consistent with literature observations that this replacement causes a decrease in plasma 338 

protein binding [59].  339 

Phenazepam differs from flubromazepam by replacement of the fluorine atom at the 2’-position 340 

with a chlorine atom and exhibits an increase in plasma protein binding from 96.4 % to 98.3 341 

%. Again, this is consistent with previous literature observations on 1,4-benzodiazepines [59]. 342 

3.2. Theoretical values 343 

3.2.1. Log D7.4 344 

ACD/I-Lab returned the closest predicted log D7.4 values to the experimental values for both 345 

the eight test benzodiazepines (average absolute error 0.18) and the 11 NPS-benzodiazepines 346 

(average absolute error 0.28). ADMET Predictor returned the next-closest predicted values 347 

with average absolute errors of 0.24 for the test benzodiazepines and 0.37 for the NPS-348 

benzodiazepines. MarvinSketch fared the worst, returning an average absolute error of 0.39 for 349 

the test benzodiazepines and 0.97 for the NPS-benzodiazepines. It is therefore clear that all 350 

three programs had a lower accuracy in predicting the log D7.4 for the NPS-benzodiazepines 351 
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and this highlights the importance of the collection of experimental data especially if these 352 

models are to be improved. An example of this is for pyrazolam, with an experimental value 353 

of 0.97 yet ACD/I-Lab returned a value of 1.76, i.e. approximately a six-fold difference in 354 

apparent lipophilicity. The atypical structure of pyrazolam, with its pyridin-2-yl ring, possibly 355 

led to these large differences. Inclusion of pyrazolam along with the other NPS-356 

benzodiazepines in any future training dataset for these predictive models could possibly assist 357 

in the prediction of log D7.4. 358 

3.2.2. pKa 359 

ADMET Predictor returned the closest predicted values to experimental values, with an 360 

absolute average error of 0.4 for both the test set and the NPS set. This was closely followed 361 

by ACD/I-Lab which returned absolute average errors of 0.5 for both sets. MarvinSketch 362 

returned average absolute errors of 0.6 for the test set and 0.7 for the NPS set. MarvinSketch 363 

did not predict pKa1 values for oxazepam and temazepam and instead predicted two pKa2 364 

values for oxazepam (only one of which exists) and one pKa2 value for temazepam (only a 365 

pKa1 value is observed). Large errors were observed in some of the pKa values returned by the 366 

software. For example; a pKa of 2.45 predicted by ACD/I-Lab for deschloroetizolam versus an 367 

experimental pKa of 4.19, a pKa of 1.33 predicted by MarvinSketch for etizolam versus an 368 

experimental pKa of 2.80 and a pKa of 2.98 predicted for flubromazolam by ADMET Predictor 369 

versus an experimental pKa of 2.07. Additionally, all three software packages predicted 370 

multiple other deprotonation sites for some of the benzodiazepines which are not 371 

experimentally observed. The importance of obtaining accurate experimental pKa values is 372 

therefore clear especially if these predictive models wish to be improved upon. 373 

3.2.3. Plasma protein binding 374 

Plasma protein binding was best predicted by ACD/I-Lab which returned average absolute 375 

errors of 4.4 % for the test benzodiazepines and 3.0 % for the NPS-benzodiazepines. ADMET 376 

Predictor followed closely behind with average absolute errors of 6.8 % for the test 377 
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benzodiazepines and 3.4 % for the NPS-benzodiazepines. PreADMET returned average 378 

absolute errors of 9.9 % for the test benzodiazepines and 5.0 % for the NPS-benzodiazepines. 379 

The software appeared to be less effective at predicting plasma protein binding of the test 380 

benzodiazepines than the NPS-benzodiazepines (Table 3). However an important caveat is that 381 

the average absolute errors for the test benzodiazepines were influenced heavily by the small 382 

dataset and the presence of alprazolam; the experimental plasma protein binding was 383 

determined as being 71.6 % and the predicted values were 89.5 % (ACD/I-Lab), 91.2 % 384 

(ADMET Predictor) and 95.2% (PreADMET). Again, inclusion of a wider range of 385 

benzodiazepines (especially those with aberrant structures such as pyrazolam) in any training 386 

dataset may assist with their predictive power. 387 

4. Conclusions 388 

Log D7.4, pKa and plasma protein binding values were successfully determined in this work for 389 

a range of benzodiazepines that have emerged as novel psychoactive substances. The 390 

experimental methods presented were judged to be suitably accurate for the determination of 391 

these values.  392 

Large variations in plasma protein binding and log D7.4 were observed for the NPS-393 

benzodiazepines. Pyrazolam was found to be the least lipophilic NPS-benzodiazepine with a 394 

log D7.4 of 0.97 and experienced the lowest plasma protein binding of 78.7 %. Phenazepam was 395 

the most lipophilic NPS-benzodiazepine with a log D7.4 of 3.25 and a plasma protein binding 396 

of 98.3 %. 3-hydroxyphenazepam had the lowest pKa1 value of 1.25 while deschloroetizolam 397 

had the highest pKa1 value of 4.19. Phenazepam had the lowest pKa2 value of 11.24 and 3-398 

hydroxyphenazepam had the highest of 11.96. 399 

ACD/I-Lab returned the closest predicted values to experimental values for both plasma protein 400 

binding and log D7.4 while ADMET Predictor returned the closest predicted values to 401 

experimental values for pKa. Although the average errors returned by each software package 402 
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were often low, there were large variations in individual errors. It is therefore likely that 403 

experimental data for these novel psychoactive substances remains preferable to that generated 404 

from predictive software. The inclusion of experimental data for these NPS-benzodiazepines 405 

could aid the predictive capability of various software packages.406 
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Table 1. Literature, experimental (n= ≥3) and theoretical log D7.4 values for a set of classic and NPS benzodiazepines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Literature log D7.4 Experimental log D7.4 

Theoretical log D7.4 

References 
ACD/I-

LAB/I-

lab 

MarvinSketch 
ADMET 

Predictor 

Benzodiazepines 

Alprazolam 2.12 – 2.16 2.10 ±0.01 2.44 3.02 2.63 [62,63] 

Clonazepam 2.41 2.40 ±0.02 2.57 3.15 2.49 [45,62] 

Diazepam 2.79 – 2.99 2.81 ±0.03 2.87 3.08 2.96 [45,62–64] 

Flunitrazepam 2.06 – 2.14 2.05 ±0.01 2.20 2.55 1.87 [45,62,63] 

Nitrazepam 2.13 – 2.16 2.17 ±0.03 2.03 2.55 2.49 [45,62] 

Oxazepam 2.13 – 2.24 2.24 ±0.05 2.04 2.92 1.95 [17,45] 

Prazepam 3.7 – 3.73 3.74 ±0.04 3.84 3.86 3.68 [45,62] 

Temazepam 1.79 – 2.19 2.32 ±0.01 2.13 2.79 2.18 [45,62] 

NPS-benzodiazepines 

3-hydroxyphenazepam Not reported 2.54 ±0.01 2.67 3.69 2.40 Not reported 

4’-chlorodiazepam Not reported 2.75 ±0.08 3.13 3.68 3.40 Not reported 

Desalkylflurazepam 2.70 2.82 ±0.09 2.71 3.15 2.74 [62] 

Deschloroetizolam Not reported 2.60 ±0.03 2.43 3.45 2.82 Not reported 

Diclazepam Not reported 2.73 ±0.02 3.13 3.68 3.25 Not reported 

Etizolam Not reported 2.40 ±0.01 2.74 4.06 3.32 Not reported 

Flubromazepam Not reported 2.87 ±0.05 2.96 3.52 2.80 Not reported 

Flubromazolam Not reported 2.40 ±0.04 2.52 3.33 2.60 Not reported 

Meclonazepam Not reported 2.64 ±0.05 2.91 3.72 2.80 Not reported 

Phenazepam Not reported 3.25 ±0.04 3.52 3.98 3.19 Not reported 

Pyrazolam Not reported 0.97  ±0.01 1.76 2.36 2.03 Not reported 
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Table 2. Literature, experimental (n= ≥3) and theoretical pKa values for a set of classic and NPS benzodiazepines 

 

 

 

Compound 
Literature pKa Experimental pKa 

Theoretical pKa 

References 
ACD/I-LAB/I-

lab 
MarvinSketch ADMET Predictor 

pKa1 pKa2 pKa1 pKa2 pKa1 pKa2 pKa1 pKa2 pKa1 pKa2 

Benzodiazepines 

Alprazolam 2.4 None 2.48 ±0.01 None 2.37 None 
1.45, 

5.01 
None 0.93, 3.01 None [65] 

Clonazepam 1.49 – 1.52 
10.37 – 

10.51 
1.55 ±0.02 10.45 ±0.05 1.55 11.21 1.89 11.65 1.43 10.77 [65–67] 

Diazepam 3.17 – 3.31 None 3.10 ±0.00 None 3.40 None 2.92 None 2.96 None [66,68] 

Flunitrazepam 1.8 None 1.82 ±0.04 None 1.68 None 1.72 None 1.87 None [65] 

Nitrazepam 2.94 – 3.2 10.8 – 11 3.11 ±0.06 11.02 ±0.05 2.55 11.35 2.65 11.66 2.49 11.02 [55,66] 

Oxazepam 1.56 – 1.7 11.21 – 11.6 1.67 ±0.05 11.34 ±0.03 1.17 
10.94, 

12.75 
None 

10.65, 

12.47 
2.57 11.31 [66,67] 

Prazepam 2.7 – 2.74 None 2.71 ±0.01 None 3.44 None 3.06 None 3.10 None [65,66] 

Temazepam 1.31 – 1.6 None 1.45 ±0.05 None 1.58 11.66 None 10.68 2.48 None [66,69] 

NPS-benzodiazepines 

3-hydroxyphenazepam Not reported Not reported 1.25 ±0.10 11.96 ±0.09 0.13 
10.80, 

12.68 
None 

10.61, 

12.45 
1.95 11.24 Not reported 

4’-chlorodiazepam Not reported Not reported 3.13 ±0.01 None 3.08 None 2.45 None 2.55 None Not reported 

Desalkylflurazepam 2.57 11.76 2.51 ±0.05 11.64 ±0.04 2.36 11.55 1.80 12.29 2.31 11.37 [53]  

Deschloroetizolam Not reported Not reported 4.19 ±0.01 None 
0.20, 

2.45 
None 

1.31, 

5.37 
None 1.84, 3.96 None Not reported 

Diclazepam Not reported Not reported 2.31 ±0.07 None 1.75 None 2.13 None 1.95 None Not reported 

Etizolam 2.76 None 2.83 ±0.06 None 
0.10, 

2.37 
None 

1.33, 

4.55 
None 1.61, 3.31 None [54] 

Flubromazepam Not reported Not reported 3.25 ±0.10 10.74 ±0.05 2.32 11.55 1.8 12.28 2.70 11.45 Not reported 

Flubromazolam Not reported Not reported 2.07 ±0.02 None 2.27 None 
1.48, 

4.01 
None 0.96, 2.98 None Not reported 

Meclonazepam Not reported Not reported 2.10 ±0.09 11.45 ±0.07 1.70 11.24 1.65 11.57 2.10 10.88 Not reported 
Phenazepam Not reported Not reported 2.19 ±0.05 11.21 ±0.04 2.18 11.58 2.06 12.28 2.44 11.43 Not reported 

Pyrazolam Not reported Not reported 3.30 ±0.03 None 
1.30, 

2.18 
None 

1.79, 

2.75 
None 

0.65, 2.47, 

3.21 
None Not reported 
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Table 3. Literature, experimental (n= ≥3) and theoretical plasma protein binding (PPB) values for a set of classic and NPS benzodiazepines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Literature PPB (%) Experimental PPB (%) 

Theoretical PPB (%) 

References ACD/

I-lab 

ADMET 

Predictor 
PreADMET 

Benzodiazepines 

Alprazolam 68.4 – 76.7 71.6 ±0.5 89.5 91.2 95.2 [31,70] 

Clonazepam 85.4 – 86.1 85.5 ±1.2 91.9 90.9 93.3 [31,70] 

Diazepam 98.4 – 99 99.0 ±0.2 96.5 93.2 98.7 [31,37] 

Flunitrazepam 77.5 – 84.5 78.9 ±1.2 84.4 86.5 98.9 [31,70] 

Nitrazepam 82.1 – 88.9 88.4 ±1.8 88.5 84.3 92.0 [71,72] 

Oxazepam 89.0 – 98.4 96.9 ±0.1 95.6 88.9 96.7 [31,70] 

Prazepam ≈97 97.4 ±0.5 97.7 96.5 94.0 [73] 

Temazepam 92 – 96.8 94.3 ±0.1 95.4 91.1 74.3 [31,70] 

NPS-benzodiazepines 

3-hydroxyphenazepam Not reported 97.7 ±0.6 92.5 93.8 90.1 Not reported 

4’-chlorodiazepam Not reported 98.2 ±0.5 96.5 96.2 93.2 Not reported 

Desalkylflurazepam 96.1 – 96.5 95.5 ±1.5 96.1 92.8 91.4 [60] 

Deschloroetizolam Not reported 87.2 ±1.5 85.8 91.5 89.8 Not reported 

Diclazepam Not reported 93.8 ±1.2 96.5 95.7 97.7 Not reported 

Etizolam Not reported 92.8 ±0.6 90.2 94.7 90.8 Not reported 

Flubromazepam Not reported 96.4 ±0.9 89.0 93.2 93.9 Not reported 

Flubromazolam 89 89.5 ±0.4 87.4 91.1 92.2 [24] 

Meclonazepam Not reported 88.2 ±0.5 93.0 93.0 92.3 Not reported 

Phenazepam Not reported 98.3 ±1.2 94.6 95.6 93.6 Not reported 

Pyrazolam Not reported 78.7 ±0.4 77.6 86.5 94.8 Not reported 
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Supplementary information 

Benzodiazepine structures 

The structures of the NPS-benzodiazepines used in this work are visualised in Figures 1A – C and Tables 1 – 3. 

A) 1,4-benzodiazepine 

 

B) Triazolobenzodiazepine

 

C) Thienotriazolodiazepine 

 

Figures 1A – C. Basic structure of a 1,4-benzodiazepine, a triazolobenzodiazepine and a 

thienotriazolodiazepine  

Table 1. Substituents for 1,4-benzodiazepines 

 From Figure 1A 

Compound R1 R2’ R3 R7 

3-hydroxyphenazepam H Cl OH Br 

4-chlorodiazepam (Ro5-

4864)a 

CH3 H H Cl 

Desalkylflurazepam H F H Cl 

Diclazepam CH3 Cl H NO2 

Flubromazepam H F H Br 

Meclonazepam H Cl CH3 NO2 

Phenazepam H Cl H Br 
a Note:  4-chlorophenyl ring instead of phenyl ring at position 6 

 

Table 2. Substituents for triazolobenzodiazepines 

 From Figure 1B 

Compound R1 R2’ R8 

Flubromazolam CH3 F Br 

Pyrazolama 

 

CH3 None Br 

a Note: pyridine ring instead of phenyl ring at position 6 

 

Table 3. Substituents for thienotriazolodiazepines 

 From Figure 1C 

Compound R2 R2’ R9 

Deschloroetizolam CH2CH3 H CH3 

Etizolam CH2CH3 Cl CH3 
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HPLC Method validation 

The method was validated in terms of linearity, limit of quantitation (LOQ), limit of detection (LOD), accuracy 

and precision. This was performed according to the ICH guidelines. 

Linearity 

The linearity of this method was measured by constructing a five-point calibration plot of the area under the curve 

(AUC) of each compound against its concentration in mg ml-1 (n=3). The method was linear over the concentration 

range 0.0004 – 0.25 mg ml-1 for all compounds. The residual sum of squares for each compound was reasonably 

low indicating linear concentration-response and a suitable method (Table 4). 

Limit of detection (LOD) and limit of quantitation (LOQ) 

The limits of detection and quantitation were determined from the signal-to-noise ratio. The baseline response of 

blank samples was recorded. A ratio of 10:1 for the compound response to the baseline response was used for the 

LOQ and a ratio of 3:1 for the LOD. All compounds generally had good limits of detection and quantitation (Table 

4). Pyrazolam exhibited the lowest response to the HPLC method, with a LOQ of 263.9 ng ml-1 and a LOD of 

82.0 ng ml-1. 

Accuracy 

Accuracy was determined through comparison of the percentage recovery at three concentrations (0.25, 0.01 and 

0.0004 mg ml-1). Percentage recovery was generally within 2 % and thus deemed to be acceptable (Table 5). 

Precision 

Precision was determined from the calculation of the standard deviation and relative standard deviation (RSD) of 

the compound peak areas at three concentrations (0.25, 0.01 and 0.0004 mg ml-1). High levels of precision for all 

benzodiazepines were recorded (Table 5). 
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Table 4. Linearity, LOQ and LOD data for benzodiazepines 

Compound Slope Correlation 

coefficient 

y intercept Residual 

sum of 

squares 

LOQ  

(ng ml-1) 

LOD 

(ng ml-1) 

3-hydroxyphenazepam 4455.57 1.00 -0.55 19.40 188.9 42.9 

4’-chlorodiazepam 4819.30 1.00 1.44 11.30 202.2 59.5 

Alprazolam 4826.85 1.00 1.36 27.07 144.6 49.8 

Clonazepam 4407.07 1.00 0.37 21.90 185.4 59.2 

Desalkylflurazepam 4283.08 1.00 -0.74 16.43 187.2 53.4 

Deschloroetizolam 4072.89 1.00 0.86 13.00 206.1 62.5 

Diazepam 4758.95 1.00 -0.74 18.41 185.5 51.8 

Diclazepam 4817.39 1.00 0.48 12.73 198.8 59.9 

Etizolam 4007.71 1.00 0.51 13.20 194.2 57.0 

Flubromazepam 4084.79 1.00 0.73 15.99 165.6 67.6 

Flubromazolam 4168.69 1.00 -0.42 10.68 177.3 47.2 

Flunitrazepam 4223.77 1.00 -0.92 13.05 159.0 51.5 

Meclonazepam 4805.99 1.00 0.87 9.15 186.4 52.5 

Nitrazepam 4367.07 1.00 -0.37 10.82 179.2 49.4 

Oxazepam 4466.93 1.00 -0.53 7.17 159.8 50.2 

Phenazepam 4149.34 1.00 -0.17 11.76 191.2 65.3 

Prazepam 4338.90 1.00 0.34 9.32 172.3 56.0 

Pyrazolam 3967.82 1.00 -0.31 14.76 263.9 82.0 

Temazepam 4646.75 1.00 -0.34 9.67 195.6 51.9 
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Table 4. Precision and accuracy data for benzodiazepines 

 

 

 

 

Compound 

Concentration (mg ml-1) 

0.0004 (n=3) 0.01 (n=3) 0.25 (n=3) 

Precision 

SD 

Precision 

RSD (%) 

Accuracy (%) 
Precision SD  

Precision 

RSD (%) 

Accuracy (%) 
Precision SD 

Precision 

RSD (%) 

Accuracy (%) 

3-hydroxyphenazepam 0.04 2.08 99.39 0.53 1.17 100.46 8.88 0.80 99.17 

4’-chlorodiazepam 0.06 1.72 101.35 0.47 0.93 101.85 10.29 0.85 100.54 

Alprazolam 0.04 1.31 99.49 0.88 1.75 100.57 13.44 1.10 99.86 

Clonazepam 0.05 1.53 101.11 0.81 1.62 99.25 6.91 1.77 99.98 

Desalkylflurazepam 0.02 1.10 98.60 0.27 0.62 101.50 7.16 0.66 101.12 

Deschloroetizolam 0.04 1.58 99.25 0.24 0.57 99.56 5.81 0.57 100.68 

Diazepam 0.02 1.16 98.90 0.59 1.24 100.98 11.69 0.97 101.23 

Diclazepam 0.02 0.70 98.92 0.54 1.07 101.49 6.46 0.54 99.10 

Etizolam 0.04 1.74 98.99 0.72 1.78 99.57 9.95 1.00 99.73 

Flubromazepam 0.03 1.16 99.21 0.66 1.56 101.76 5.36 0.52 101.34 

Flubromazolam 0.03 2.15 100.41 0.55 1.13 100.89 17.93 1.71 100.74 

Flunitrazepam 0.06 2.03 98.97 0.27 0.55 99.56 9.33 0.78 99.72 

Meclonazepam 0.02 0.81 99.43 0.31 0.63 100.35 8.49 0.71 99.46 

Nitrazepam 0.02 1.21 98.20 0.54 1.10 100.15 9.67 0.78 100.83 

Oxazepam 0.02 1.44 101.76 0.70 1.56 101.68 7.48 0.68 99.21 

Phenazepam 0.03 2.17 101.01 0.98 2.37 99.95 6.45 0.62 100.23 

Prazepam 0.05 2.15 98.63 0.67 1.54 99.78 6.51 1.66 99.51 

Pyrazolam 0.03 2.14 99.47 0.53 1.33 101.53 2.95 0.30 100.73 

Temazepam 0.03 2.05 101.74 0.65 1.40 101.27 13.64 1.18 99.55 
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