
Accepted Manuscript

GPU Driven Finite Difference WENO Scheme for Real Time Solution
of the Shallow Water Equations

P. Parna, K. Meyer, R. Falconer

PII: S0045-7930(17)30419-X
DOI: 10.1016/j.compfluid.2017.11.012
Reference: CAF 3657

To appear in: Computers and Fluids

Received date: 15 May 2017
Revised date: 24 October 2017
Accepted date: 19 November 2017

Please cite this article as: P. Parna, K. Meyer, R. Falconer, GPU Driven Finite Difference WENO
Scheme for Real Time Solution of the Shallow Water Equations, Computers and Fluids (2017), doi:
10.1016/j.compfluid.2017.11.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

This accepted manuscript is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International license

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228178201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.compfluid.2017.11.012
https://doi.org/10.1016/j.compfluid.2017.11.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A new 3rd order in space and 2nd order in time finite difference scheme is

proposed.

• Work is based on Picard integral formulation coupled with WENO recon-

struction.

• Strategies are presented that allow for a fast single kernel GPU implemen-

tation.

• Results indicate single precision arithmetic to be sufficient for the formu-

lation.

• Simultaneous simulation and rendering is achieved on consumer-level hard-

ware.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

GPU Driven Finite Difference WENO Scheme for Real
Time Solution of the Shallow Water Equations

P. Parnaa,∗, K. Meyera, R. Falconera

aAbertay University, Bell Street, Dundee DD1 1HG, Scotland

Abstract

The shallow water equations are applicable to many common engineering prob-

lems involving modelling of waves dominated by motions in the horizontal direc-

tions (e.g. tsunami propagation, dam breaks). As such events pose substantial

economic costs, as well as potential loss of life, accurate real-time simulation

and visualization methods are of great importance. For this purpose, we pro-

pose a new finite difference scheme for the 2D shallow water equations that is

specifically formulated to take advantage of modern GPUs. The new scheme

is based on the so-called Picard integral formulation of conservation laws com-

bined with Weighted Essentially Non-Oscillatory reconstruction. The emphasis

of the work is on third order in space and second order in time solutions (in

both single and double precision). Further, the scheme is well-balanced for

bathymetry functions that are not surface piercing and can handle wetting and

drying in a GPU-friendly manner without resorting to long and specific case-

by-case procedures. We also present a fast single kernel GPU implementation

with a novel boundary condition application technique that allows for simul-

taneous real-time visualization and single precision simulations even on large

(> 2000× 2000) grids on consumer-level hardware - the full kernel source codes

are also provided online at https://github.com/pparna/swe_pifweno3.

Keywords: shallow water, Picard integral, WENO, finite difference, GPGPU

∗Corresponding author
Email address: p.parna@phys-gfx.net (P. Parna)
URL: www.phys-gfx.net (P. Parna)

Preprint submitted to Computers & Fluids November 20, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

The shallow water equations (SWE) are a set of hyperbolic partial differential

equations that arise from the more general inviscid Navier-Stokes equations (also

referred to as the Euler equations) under the assumption that the vertical water

depth h0 is much smaller than the horizontal length scale L of the waves, i.e.

h0 � L, and hence the vertical acceleration is considered negligible [1, p.89,91].

Such a simplification is especially beneficial from a computation point of view

as the arising equations result in dimensional reduction from R3 to R2, while

still describing the evolution of a three dimensional fluid surface. As a result,

the equations are often used for real-time flood prediction [2], simulations of

tsunami propagation and inundation [3], modelling of dam breaks [4] and even

computer graphics animations of water [5].

The shallow water equations in 2D conservation form are given as:

∂U(x, y, t)

∂t
+
∂F (U(x, y, t))

∂x
+
∂G(U(x, y, t))

∂y
= S(b(x, y)) (1)

where U is the vector of conserved variables (mass and momentum), F and

G the x and y directional fluxes, respectively; S is the source term due to

topography underneath the water surface (also referred to as the bathymetry).

In this work, we are interested in modelling the time-independent source term

(i.e. only static bathymetry functions are considered). The vectors themselves

are given as:

U =




h

hu

hv


 ; F =




hu

hu2 +
1

2
gh2

huv




; G =




hv

huv

hv2 +
1

2
gh2




; S =




0

−gh
∂b

∂x

−gh
∂b

∂y




(2)

where h is the water height, u and v are the horizontal velocities, b is the

underlying topography function and g the gravitational constant. It will also be

useful to consider the total surface elevation η = b+h as illustrated in Figure 1.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Spatial setup for the shallow water equations.

The conservation law form of the shallow water equations lends itself to many5

well-known numerical methods - the equations have been solved by several au-

thors using classic finite difference schemes, such as the MacCormack method [3,

6, 7], alongside specifically designed finite volume schemes such as the central-

upwind scheme by Kurganov and Petrova [8, 4, 9]. These schemes generally

have a fixed order of accuracy - often the spatial order of accuracy is for-10

mulated to second order, with no straight-forward way of increasing it. Fur-

thermore, these schemes commonly use the method of lines (MOL) approach1

with Runge-Kutta integration for timestepping, leading to multi-step imple-

mentations requiring complex flux evaluations at every stage. One of the most

common arbitrary-order finite difference methods is based on the Weighted Es-15

sentially Non-Oscillatory (WENO) reconstruction procedures [10]. Recently,

the application of WENO to conservation laws was further modified to incorpo-

rate time-averaged flux functions by Seal et al. [11] (called the Picard Integral

Formulation of WENO (PIFWENO) schemes), who also successfully applied

the idea to the compressible Euler equations [12]. The compact nature of the20

1A partial differential equation is transformed into multiple ordinary differential equations

via initial semi-discretization in space - this results in n ordinary differential equations in time

where n is the total number of grid cells.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

PIFWENO formulation (specifically the Taylor timestepping variation) makes

it a particularly interesting candidate for high-accuracy real-time simulations

and as such the following paper provides a complete derivation and description

of a PIFWENO-type scheme for the 2D shallow water equations that is third

order accurate in space and second order accurate in time, well-balanced (the25

flux terms balance the source term [9]) and is capable of retaining the positivity

of the water depth, thus allowing for simulations with dry zones. Further, we

present an optimized, single pass GPU implementation of the scheme capable

of achieving real-time performance on various grid sizes using either single or

double precision floating point arithmetic.30

The rest of the paper is organized as follows: in Section 2 a detailed mathemat-

ical description of the numerical scheme is presented, followed by an overview of

the practical implementation describing the employed optimization strategies in

Section 3. In Section 4 the numerical accuracy and the capability of the scheme

to model complex flows with moving shorelines are investigated, alongside veri-35

fication of the well-balanced property and grid convergence rates. Furthermore,

the performance of the GPU implementation for real-time computation and ren-

dering is assessed using both single and double precision arithmetic. Finally,

increasing the scheme’s spatial and temporal orders are discussed, followed by

conclusions of the undertaken research in Section 5.40

2. Numerical Method

2.1. Picard Integral Formulation for SWE

The Picard integral formulation (PIF) of the SWE can be defined by integrating

Equation (1) over the interval t ∈ [tn, tn+1] [11] (subscripts denote derivatives

while superscripts denote the time level):

Un+1 = Un −∆tF̃ n
x −∆tG̃n

y + ∆tSn (3)

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where F̃ n and G̃n are the time-averaged fluxes defined as:

F̃ n =
1

∆t

∫ tn+1

tn
F n(U) dt

G̃n =
1

∆t

∫ tn+1

tn
Gn(U) dt.

(4)

The conservative finite difference discretization of Equation (3) can be written

as:

Un+1
i,j = Un

i,j −
∆t

∆x

(
F̂ n
i+1/2,j − F̂ n

i−1/2,j

)
− ∆t

∆y

(
Ĝn

i,j+1/2 − Ĝn
i,j−1/2

)
+ ∆tSn

i,j

(5)

where the values of F̂ n and Ĝn at the cell edges are given by the WENO

reconstruction procedure of the time-averaged fluxes F̃ n and G̃n, respectively.

The time averaged fluxes can be approximated via Taylor expansion of the

fluxes centred at t = tn and then integrating the result with respect to t [11]

(henceforward, time level n dropped for convenience):

F̃ = F (U) +
∆t

2

dF (U)

dt
+O(∆t2)

G̃ = G(U) +
∆t

2

dG(U)

dt
+O(∆t2).

(6)

Higher order approximations can be achieved by including more terms in the

Taylor expansions. However, these require evaluations of Hessians and other

higher order tensors which grow exponentially in size [11] - we found second

order to be sufficient for our purposes. Note that the Hessian tensors of the flux

functions for the SWE involve a scalar multiplier 1/h which further complicates

simulations involving dry zones (h = 0). The temporal derivatives appearing in

Equation (6) can be expanded as:

dF (U)

dt
=
∂F (U)

∂U

∂U

∂t
dG(U)

dt
=
∂G(U)

∂U

∂U

∂t

(7)

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where ∂F /∂U and ∂G/∂U are the flux Jacobians. For the SWE these are [13,

p.429]:

∂F

∂U
=




0 1 0

−u2 + gh 2u 0

−uv v u




∂G

∂U
=




0 0 1

−uv v u

−v2 + gh 0 2v


 . (8)

Combining Equation (7) with the Cauchy-Kowalewski procedure (using the orig-

inal PDE in Equation (1)) and plugging the results into Equation (6) gives the

final form of the time-averaged fluxes as:

F̃ n = F (U) +
∆t

2

∂F (U)

∂U
(S − F (U)x −G(U)y)

G̃n = G(U) +
∆t

2

∂G(U)

∂U
(S − F (U)x −G(U)y) .

(9)

Any derivatives that appear in Equation (9) are evaluated using simple central

finite difference equations of order k − 1 where k is the order of the WENO

reconstruction. Due to the extra ∆t term, this approximation is sufficiently45

accurate (for any higher order time-averaged flux approximations, every higher

order term can be evaluated with a consequently lower order approximation

stencil, e.g. see [11] for an example of third order approximation).

2.2. WENO Reconstruction

The core idea of the essentially non-oscillatory (ENO) reconstruction procedure

[14] is to choose an approximation to the function to be reconstructed such that

it is as smooth as possible in the candidate stencil used for the approximation.

Weighted ENO (WENO) [10] takes this a step further by instead of choosing

a single approximation, combining all of the possible rth order approximations

with appropriate weightings whereby smoother approximations in a given stencil

receive larger weights. This results in schemes that are of (2r − 1)th order

accurate in smooth regions. For the sake of completeness, we briefly summarize

the procedure here - a more in-depth introduction can be found in the report

by Shu [15].

The first step for finite difference WENO methods is to split the fluxes into

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

positive and negative parts using a smooth flux splitting in order to follow

correct upwinding [16] (henceforth only F̃ is considered but the same applies to

G̃):

F̂i+1/2,j = f+(U) + f−(U) (10)

where
∂f+(U)

∂U
≥ 0;

∂f−(U)

∂U
≤ 0. (11)

One of the most common flux splittings satisfying Equation (11) is the Lax-

Friedrichs flux splitting [16]:

f±(U) =
1

2

(
F̃ (U)± αU

)
(12)

where α = max
U∈I

max
1≤i≤3

|λi| with λi being the ith eigenvalue of the flux Jacobian

and I the stencil of values to be considered. Global splitting is achieved when

I includes the entire computational domain whereas defining a local stencil re-

sults in the Rusanov flux formulation [17] (also referred to as the

local Lax-Friedrichs (LLF) flux splitting [13, p.233]). In this work, LLF

is used and as such, e.g. in the x direction the third order stencil is given as

I ∈ {Ui−1,j ,Ui,j ,Ui+1,j ,Ui+2,j}.
Generally, a more robust scheme is achieved by projecting the fluxes and con-

served variables to the local characteristic fields before applying the WENO

reconstruction procedures [18]. For this, the left and right eigenvector-matrices

need to be defined at the flux interfaces: a simple average of the two states

beside the interface is sufficient for this. For example, in the x direction:

Ui+1/2,j =
1

2
(Ui,j + Ui+1,j)

R−1
i+1/2,j = R−1(Ui+1/2,j)

Ri+1/2,j = R(Ui+1/2,j).

(13)

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Defining c =
√
gh, the left and right eigenvector-matrices for the SWE are given

as [19]:

R−1
F =




u+ c

2c
−

1

2c
0

−v 0 1

−
u− c

2c

1

2c
0




RF =




1 0 1

u− c 0 u+ c

v 1 v




R−1
G =




v + c

2c
0 −

1

2c

−u 1 0

−
v − c

2c
0

1

2c




RG =




1 0 1

u 1 u

v − c 0 v + c


 .

(14)

Therefore, Equation (12) becomes:

f±(U) =
1

2

(
R−1

F F̃ (U)± αiR
−1
F U

)
(15)

where the dissipation coefficient α can now be chosen based on the maximum

values in the specific characteristic field [17], i.e. αi = max
U∈I
|λi| where i is the

ith characteristic variable. After the reconstruction, the values can be projected

back to physical space using R:

F̂i+1/2,j = RF · (f+(U) + f−(U)). (16)

Finally, the WENO reconstruction can be applied on the split fluxes: f+(U)50

uses a stencil biased to the left and f−(U) uses one biased to the right [16].

The third order reconstruction procedure is given in Appendix A.

2.3. Well-Balanced Treatment of the Source Term

The well-balanced treatment of the source term, also referred to as the exact

conservation property (C-property), is achieved with the incorporation of the

method by Xing and Shu [20] into the formulation. The core of the idea is to

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

first split the source term into two parts as follows:

S =




0(
1

2
gb2
)

x(
1

2
gb2
)

y




+




0

−g(h+ b)bx

−g(h+ b)by


 . (17)

Next, since b is independent of the time t, then the Lax-Friedrichs flux can be

modified to include η:

f±(U) =
1

2


F̃ (U)± α




η

hu

hv





 . (18)

This replacement is useful because for still water stationary solutions, η remains

constant. Due to the flux splitting, the source term derivatives are further split

into two parts, each of which can be associated with the reconstruction of either

f−(U) or f+(U):




0
(

1
2gb

2
)
x

(
1
2gb

2
)
y


 =

1

2




0
(

1
2gb

2
)
x

(
1
2gb

2
)
y


+

1

2




0
(

1
2gb

2
)
x

(
1
2gb

2
)
y







0

bx

by


 =

1

2




0

bx

by


+

1

2




0

bx

by


 .

(19)

The further split source components are then approximated using the WENO55

procedure with the non-linear weights fixed with respect to the flux being re-

constructed. This means that the usual small stencils are used to approximate

the source term derivatives, followed by a combination of said stencils using the

same weights computed for the relevant flux reconstructions. Xing and Shu [20]

further suggest absorbing the computation of the first source term into the60

computation of the relevant flux (note that smoothness indicators would still be

based on the flux only) - this was found to be suitable for the component-by-

component WENO solution, however the characteristic projection based scheme

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

was found to exhibit worse stability in simulations involving dry regions. Hence,

for the characteristic version we chose to reconstruct both of the source terms65

separately. Further, in order to achieve the well-balanced property, the central

finite difference approximations of the source term in Equation (9) must also

follow the splitting given in Equation (17).

2.4. General Handling of the Wetting/Drying Processes

For the scheme to allow for wetting and drying processes, the computation of

the mass-conservation equation must be made positivity preserving - physically,

the values of h need to remain non-negative; numerically the eigenvalues of the

flux functions must be real in order to retain hyperbolicity of the

system [13, p.425-426]. For this purpose, the maximum principle preserving

method of Liang and Xu [21] can be incorporated for the mass computation

equations. To this end, the final fluxes for the mass can be re-written as:

f̃i+1/2,j = θi+1/2,j

(
F̂

(1)
i+1/2,j − f̂i+1/2,j

)
+ f̂i+1/2,j

g̃i,j+1/2 = θi,j+1/2

(
Ĝ

(1)
i,j+1/2 − ĝi,j+1/2

)
+ ĝi,j+1/2

(20)

where F̂
(1)
i+1/2,j and Ĝ

(1)
i,j+1/2 are the first entries of F̂i+1/2,j and Ĝi+1/2,j , respec-

tively. The f̂i+1/2,j and ĝi,j+1/2 are first order monotone flux approximations

that preserve the strict maximum principle. These can be evaluated using the

Lax-Friedrichs flux [12]:

f̂i+1/2,j =
1

2
(F (U)i,j + F (U)i+1,j − αi (Ui+1,j −Ui,j))

ĝi,j+1/2 =
1

2
(G(U)i,j + F (U)i,j+1 − αj (Ui,j+1 −Ui,j))

(21)

where αk = max
U∈I

max
1≤i≤3

|λi|. The θi+1/2,j and θi,j+1/2 in Equation (20) are the

parameters to be found such that the interpolation between the high order

WENO flux and the low-order LF flux is of as high order as possible while

preserving the positivity of the solution. Thus, we need to find values

0 ≤ ΛL,i,j ; ΛR,i,j ; ΛD,i,j ; ΛU,i,j ≤ 1 (22)

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

such that:

(
θi−1/2,j , θi+1/2,j , θi,j−1/2, θi,j+1/2

)
∈ [0,ΛL,i,j]×[0,ΛR,i,j]×[0,ΛD,i,j]×[0,ΛU,i,j] .

(23)

Plugging Equation (20) into Equation (5), we have for the h component (let

λx = ∆t/∆x and λy = ∆t/∆y):

hn+1
i,j = hni,j − λx

(
f̂i+1/2,j − f̂i−1/2,j

)
− λy

(
ĝi,j+1/2 − ĝi,j−1/2

)

− λxθi+1/2,j

(
F̂

(1)
i+1/2,j − f̂i+1/2,j

)
+ λxθi−1/2,j

(
F̂

(1)
i−1/2,j − f̂i−1/2,j

)

− λyθi,j+1/2

(
Ĝ

(1)
i,j+1/2 − ĝi,j+1/2

)
+ λyθi,j−1/2

(
Ĝ

(1)
i,j−1/2 − ĝi,j−1/2

)
.

(24)

Defining:

Γi,j = −
(
hni,j − λx

(
f̂i+1/2,j − f̂i−1/2,j

)
− λy

(
ĝi,j+1/2 − ĝi,j−1/2

))
(25)

and

Fi+1/2,j = −λx
(
F̂

(1)
i+1/2,j − f̂i+1/2,j

)

Fi−1/2,j = λx

(
F̂

(1)
i−1/2,j − f̂i−1/2,j

)

Fi,j+1/2 = −λy
(
Ĝ

(1)
i,j+1/2 − ĝi,j+1/2

)

Fi,j−1/2 = λy

(
Ĝ

(1)
i,j−1/2 − ĝi,j−1/2

)

(26)

gives us:

hn+1
i,j = −Γi,j+θi+1/2,jFi+1/2,j+θi−1/2,jFi−1/2,j+θi,j+1/2Fi,j+1/2+θi,j−1/2Fi,j−1/2.

(27)

We require hn+1
i,j ≥ 0, hence we need to solve:

θi+1/2,jFi+1/2,j +θi−1/2,jFi−1/2,j +θi,j+1/2Fi,j+1/2 +θi,j−1/2Fi,j−1/2−Γi,j ≥ 0.

(28)

This can be solved by checking the signs of the values in Equation (26) and

collectively defining ΛL,i,j , ΛR,i,j , ΛD,i,j and ΛU,i,j . For example if Fi+1/2,j ≥ 0,

Fi−1/2,j < 0, Fi,j+1/2 < 0 and Fi,j−1/2 ≥ 0 then:




ΛR,i,j = ΛD,i,j = 1

ΛL,i,j = ΛU,i,j = min

(
1,

Γi,j

Fi−1/2,j + Fi,j+1/2

)
.

(29)

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

There are a total of 16 cases to consider. A closer look at the solutions to

Equation (28) reveals a clear pattern and hence we propose an alternative,

minimal case formulation instead:

ΛR,i,j = (1− α) + αQ

ΛL,i,j = (1− β) + βQ

ΛU,i,j = (1− γ) + γQ

ΛD,i,j = (1− δ) + δQ

(30)

where

Q = min

(
1,

Γi,j

αFi+1/2,j + βFi−1/2,j + γFi,j+1/2 + δFi,j−1/2

)
(31)

and

α =





1 if Fi+1/2,j < 0

0 otherwise

β =





1 if Fi−1/2,j < 0

0 otherwise

γ =





1 if Fi,j+1/2 < 0

0 otherwise

δ =





1 if Fi,j−1/2 < 0

0 otherwise.

(32)

Note that in actual implementation branching can be completely avoided by

directly utilizing the return value of a conditional statement. Further, if α =

β = γ = δ = 0 then one can take Q = 0.

Finally, the local limiting parameters are given as:

θi+1/2,j = min (ΛR,i,j ,ΛL,i+1,j)

θi,j+1/2 = min (ΛU,i,j ,ΛD,i,j+1) .
(33)

Besides positivity preservation, the velocities at the end of a simulation timestep

need to be desingularized in order to avoid high velocities developing near

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the wet/dry interface that inevitably would lead to instabilities. This can be

achieved using the method by [8]: the following equations are applied in regions

where hi,j is less than a specified threshold value ε:

ui,j =

√
2hi,j(hu)i,j√

h4
i,j + max(h4

i,j , ε)

vi,j =

√
2hi,j(hv)i,j√

h4
i,j + max(h4

i,j , ε)
.

(34)

The determination of ε is generally problem specific - we found that setting

ε = 0.01 provided stable results for a variety of problems. For the sake of

consistency, the conserved quantities must be updated with the new velocity

values (the water height h can become negative because of numerical round-off

errors, so it’s clamped to zero here as well):

hi,j = max (hi,j , 0)

Ui,j =




hi,j

hi,jui,j

hi,jvi,j


 .

(35)

When using the projection to the local characteristic fields before the WENO

reconstruction, the definition of the matrix of left eigenvectors becomes ill-posed

due to matrices RF and RG becoming singular at dry zones:

RF =




1 0 1

0 0 0

0 1 0


 ; RG =




1 0 1

0 1 0

0 0 0


 . (36)

We handle this by setting the left and right eigenvector-matrices to the identity70

matrix at dry zones: this results in reversion to the component-by-component

WENO scheme at dry regions. Such a simple treatment is also the likely cause

for the previously noted lowered stability of the characteristic projection based

scheme near dry regions.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. GPU Implementation75

3.1. Choice of Technology

The implementation of the numerical scheme was undertaken using general-

purpose GPU (GPGPU) programming. Modern GPUs can handle large amounts

of data in parallel and have been shown to be highly effective for real-time fluid

simulations [22, 23, 5, 4] - the Eulerian (grid) methodology also maps without80

complications to the GPU data processing paradigms. As real-time, simulta-

neous simulation and visualization of the results was paramount to our work,

we chose to use the DirectX 12 API’s DirectCompute technology (similar to

work in [24]). The following discussion however is API agnostic, and GPGPU

concepts are generally consistent across different APIs and hardware vendors.85

Therefore, the discussion is focused on appropriate choice of GPU resources,

configuration of the massively parallel program execution as well as our fast

boundary condition application methodology. A high-level overview of the final

algorithm is also presented.

3.2. Data Storage90

Simulation data was stored using texture resources as opposed to buffers for

several reasons:

1. Eulerian methods are naturally dependant on spatial discretization prop-

erties, hence textures, which are particularly suitable for spatially sampled

data [25], are an obvious choice.95

2. Modern GPU texture caches provide more flexibility by minimizing the

cost of cache misses and unaligned memory accesses [26].

3. Visualization of results is straight-forward as texture coordinates assigned

to the visualization mesh can be used to directly query the simulation

data.100

As GPUs do not support double-precision texture formats, our double precision

simulations used two textures with 4 channels of 32bit unsigned integer data

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

each, which were then reinterpreted in pairs as 64bit doubles in the computa-

tion kernel. Single precision computations used a texture with 4 channels of

32bit floating point data. For both setups, the first three components were used105

for storing the height and momentum terms whereas the last ones were used

for encoding the boundary information for our novel boundary-condition appli-

cation methodology (see Section 3.4.2). As most of the inner domain cells do

not contain any meaningful data in the 4th component, one could also use three

channel textures and the usual (separate pass) boundary application methods if110

so desired (this would be preferable when simulation storage requirements are

close to the maximum available video memory of the GPU).

3.3. Threading Scheme

Central to any GPGPU implementations is the management of concurrent com-

putation work - the most common method being the decomposition of the sim-

ulation domain into fixed size smaller groups (e.g. see [25]). Clearly when

performing computations separately in these smaller groups, each of them re-

quire their own set of boundary cells in order to correctly process the values at

the edges of the group’s domain. Henceforth we refer to these boundary cells

as local and the ones for the complete domain as global (the number of local

boundary cells per dimension is the same as the number of equivalent global

boundary cells). The local computation results are written to main memory

only for cells that are part of the inner domain in both local as well as global

computation domains. Since some grid points are involved in calculations more

than once (e.g. once as a local boundary cell whereby its results are discarded

and once as a local and global inner domain cell whereby the results are writ-

ten to main memory), then more threads need to be dispatched than the total

number of inner domain cells. The total number of threads to be dispatched for

processing all cells can, for example, be found as [27]:

D =
E + (S − 1)

S (37)

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where E is the total number of elements in the dimension to be processed and

S is the number of elements in the smaller group (i.e. the threadgroup; the

optimal total size being platform and problem specific) in the given dimension.

In order to accommodate for the local boundary cells, S has to be chosen as

follows:

S = Q− 2B (38)

where Q = {X ∨Y} where X ×Y is the size of the local threadgroup in x and y

directions respectively. B defines the number of local boundary cells considered115

per side of a dimension. As an example, consider a scheme that requires 2

boundary cells on each side in the x direction, then B = 2 when Q = X . An

illustration of the described overlapping of threads is shown in Figure 2.

Figure 2: Sample 22 × 22 grid partitioning. On the left, a 3D view of superimposed local

computation grids (X = Y = 10), on the right a flattened, top-down view of the overlapping

grids. When tiling the smaller grids over the larger, it becomes obvious that some cells need

to be processed more than once and hence Equations (37) and (38) have to be used for finding

the total number of threads to be dispatched for updating all of the inner domain cells.

Indexing into the textures has to be modified accordingly as well. The global

indices in the x and y directions can be found as follows:

xg = Gx × (X − 2× B) + Tx

yg = Gy × (Y − 2× B) + Ty
(39)

where xg and yg are the global indices, the x/y subscripts denote the dimension,

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

G the group ID and T the thread ID in the given group. These indices are used

only for loading data from main memory to local memory and the final write-

back to main memory. All other computations are performed using the thread

group local indices. The final writes are governed by the following statements:

ID = (xg ≥ B) ∧ (xg <W + B) ∧ (yg ≥ B) ∧ (yg < H+ B)

IL = (xl ≥ B) ∧ (xl < X − B) ∧ (yl ≥ B) ∧ (yl < Y − B)

if (ID ∧ IL)→ store result

(40)

where ID defines the set of threads that are indexing global inner domain values

and IL the set that are indexing local inner domain values; W and H are the120

width and height of the global inner domain region; xl and yl are the local

thread indices.

Additionally, our implementation goal was to avoid splitting the simulation into

many separate computation kernels or passes: this follows from the fact that

memory reads/writes take a lot longer than arithmetic operations. As Crane et125

al. [23] put it, “math is cheap compared to bandwidth”. Vaisse [28] also showed

performance gains for their cloth simulation implementations when comparing

multi-pass and single pass implementations. We were able to compress the

entire scheme into one and two-pass solutions by making heavy use of the above-

described local groups setup combined with local synchronization and abstract130

group shared memory (GSM) usage.

3.4. Boundary Conditions

The purpose of the following discussion is to briefly summarize boundary re-

quirements of the scheme as well as present our novel method for application

of boundary conditions within our framework. Note that heavy use is made135

of DirectX specific behaviour regarding ouf-of-bounds queries in this section

(see Appendix B).

3.4.1. Boundary Cell Count

The number of boundary cells required due to our implementation strategy can

be found by considering validity of computed data in the GSM of the thread140

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

local space. Validity of the data stored in a given GSM cell depends on whether

the computation that resulted in that data used well-defined cells. For example,

consider the edges of the GSM domain - any central differencing involves values

outside the range of the GSM, hence turning the computed result meaningless.

Following this idea, the single pass 3rd order PIFWENO scheme requires 4145

boundary cells. An example walkthrough of the reasoning as to why this is the

case is given in Figure 3 - the necessary boundaries can be derived for a kth order

scheme in a similar way. For the two-pass version (split at the time-averaged

flux computation stage) one less boundary cell is needed as the stencils in steps

a) and b) overlap in this case.150

Figure 3: Boundary cell usage for the PIFWENO3 scheme in the x direction (X = 20; same

applies to the y direction).

3.4.2. Boundary Condition Application

For the purposes of our work, we were mainly interested in no-slip boundary

conditions, i.e. the velocity in the normal and tangential directions should

be zero at the boundaries [29, p.14]. A näıve implementation of boundary

conditions inside the main computation kernel would involve branching based155

on the thread ID, leading to thread divergence and hence potentially reduced

performance. As an alternative, we exploited the 4th texture channel - as this

component doesn’t contain any simulation data, offsets of the boundary cells

that would receive a copy (multiplied by a specific boundary vector, e.g. for no-

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

slip we can easily deduce B = (1,−1,−1)T) from the currently being processed160

inner domain cell can be packed into that cell’s fourth component. Furthermore,

for the 2D SWE, the value of an inner domain cell can be propagated up to a

maximum of two possible boundary cell locations (one in x direction and one in

y direction). Combining this with the fact that for real time simulations, offsets

provided by 16bit integers are sufficient, a total of two 16bit integer offsets can165

be packed per grid cell into the 4th component of the simulation storage texture.

For cells that don’t propagate their content to boundary cells, it’s sufficient to

assign a large offset κ that would direct the writes out-of-bounds given a specific

grid configuration. In the program kernel, the values can easily be extracted

and stored offsets can be added to the previously computed global indices in170

order to find the storage ID of the boundary cell. Hence all inner domain cells

write their computation results as well as boundary-vector multiplied results

into two boundary cells. Three example scenarios are given in Figure 4.

Figure 4: Example scenarios of boundary cell storages (B = 2). The green cells indicate inner

domain cells, the solid arrows signify the direction of the packed offsets and the dashed arrows

signify offsets that lead to out-of-bounds accesses. At (3, 2) (texture origin at top left), the

offsets are -3 in the x direction and -1 in the y direction. On the other hand, at (6, 4), the

offsets are +1 and κ and at (3, 8) κ and κ respectively.

Note that this type of boundary condition application is not viable for GSM local

periodic boundaries - most other types of boundaries (e.g. in-flow/out-flow)175

shouldn’t pose a problem - as long as the information required by a boundary

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cell is propagated to it from a nearby cell and not from across the computation

domain. Further, it’s also important to write the loaded indices back to main

memory for the inner domain cells and for the boundary cells being modified

assign a 32bit floating point value which upon unpacking would correspond to180

indices that lead to out-of-bounds accesses (for example we used the floating

point constant 1.99414051f which upon unpacking results in offsets κ1 = 16383

and κ2 = 16383, see below).

i = 0x3fff3fff; // same constant in hex

k_1 = i >> 16; // high 16 bits, in dec: 16383185

k_2 = (i << 16) >> 16; // low 16 bits, in dec: 16838

3.4.3. Flux Boundaries

After computing the time-averaged fluxes, one needs to apply intermediate flux

boundaries on the dataset. In our two-pass implementation, these can be ap-

plied in the same way as just described (with an appropriate flux boundary

vector). Unfortunately, in our one-pass implementation we can’t avoid manu-

ally handling out-of-bounds writes due to invalidation of shared memory. As

these boundary conditions are local, it’s sufficient to check only the following

condition for setting x directional flux boundaries:

if (xl +Ox ≥ 0) ∧ (xl +Ox < X)→ set boundaries (41)

and similarly for the y direction:

if (yl +Oy ≥ 0) ∧ (yl +Oy < Y)→ set boundaries (42)

where O are the unpacked offsets with x/y subscripts denoting direction. As

both of these branches involve only a single group-local memory operation then

any thread divergence should cause negligible performance issues.190

Note that the flux boundary conditions need to be consistent with the gen-

eral boundary conditions applied to the simulation domain, i.e. in our case

no-slip boundary handling was needed. Considering the fluxes given in the x

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and y direction in Equation (2), it’s clear that for no-slip conditions the time-

averaged flux boundary cells need copies of their respective inner domain cell195

values multiplied by a boundary-vector such that both of the horizontal velocity

components are reflected in the resulting flux vector, i.e. the boundary vector

for the no-slip flux boundaries is given by Bflux = (−1, 1, 1)T .

3.5. Algorithm Overview

The input resources to the computation kernel(s) are the previous timestep’s200

simulation results and the bathymetry values. The following steps are taken in

order to implement the previously described PIFWENO scheme:

1. Load previous timestep’s results and extract boundary information.

2. Compute the dissipation coefficient α for the LLF flux splitting, evaluate

the fluxes F (U) and G(U) as well as the respective Jacobian matrices.205

3. Compute the Lax-Friedrichs flux for the h component as well as the

(k − 1)th order flux and source term derivatives. Construct the time-

averaged fluxes.

4. Set the flux boundary conditions for the x direction and perform the flux

splitting. Apply the WENO reconstruction procedure with or without pro-210

jection to the characteristic fields (for component-by-component versions

also absorb the first source term into the flux calculations as suggested

by [20]).

5. Repeat previous step for the y direction.

6. Find the limiting θ parameters via the proposed minimal case method215

and construct the final fluxes for the h component.

7. Construct Un+1.

8. Desingularize the cell velocities as needed and apply the consistency re-

quirement.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9. Based on the result of Equation (40), write the results to main memory.220

Multiply the found U by the boundary vectors and write the results to

main memory.

All of these steps were compressed into one and two pass/kernel configurations,

the latter of which was constructed due to periodic boundaries. The actual

implementation is quite involved, requiring abstract GSM usage and splitting225

of the computation of equations across local synchronization calls due to the

limited available GSM size. A comprehensive description of such a procedure

is infeasible and as such we’ve made the single pass GPU kernels for the 3rd

order scheme available online (URL in abstract) with the hope that the previ-

ously described strategies combined with the full kernel source codes make any230

reproduction efforts easier.

4. Results & Discussion

In the following tests we’ve taken ε = 0.01 in Equation (34) and g = 9.81ms−2

unless otherwise stated. All of the results were gathered on a NVIDIA Titan

X Pascal GPU. Timing information was obtained using D3D12 Query Heap235

functionality with the stable power state flag enabled for more consistent re-

sults. In the following, we refer to the component by component scheme as

PIFWENO3 and the characteristic projection based scheme as PIFWENO3C.

Further, we denote single precision computations with SP and double precision

computations with DP.240

4.1. Validation

Given a parabolic bathymetry and the requirement that the water’s surface re-

main planar throughout the motion, Thacker [30] found an analytical expression

for both the surface elevation η and the velocities u and v. This particular test

case has been used by several authors [31, 32, 4] before to test the accuracy of

their numerical schemes and in general is considered quite a severe test case due

to involving shoreline movement [33, 34]. The test case was set up similar to [4],

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

i.e. given a domain [−3960, 3960]× [−3960, 3960] m2 with reflective boundaries

and a parabolic bottom topography:

b = D0

(
x2 + y2

L2
− 1

)
(43)

where D0 = 1m and L = 2500m, the exact solution to the SWE is given by:

η =
2AD0

L2
(x cosωt+ y sinωt+ LB0)

u = −Aω sinωt

v = Aω cosωt

(44)

where A = L/2, B0 = −A/2L and ω =
√

2D0/L2. Furthermore, the gravita-

tional constant g = 1ms−2 for this test case. The grid size chosen was 100×100

with ∆x = ∆y = 80m and a constant timestep ∆t = 10s. The induced motion

is periodic with a period of T = 2π/ω - we present slices near the center of245

the domain (at y = 40m) of the simulation at times t ≈ 3T, 3.25T, 3.5T for

both PIFWENO3 and PIFWENO3C schemes using single and double precision

floating point arithmetic in Figures 5-7. The motion within this timespan cor-

responds to a surface rotation of 7π radians - for a time-lapse from t = 0, see

the demo video available at the URL given in the abstract.250

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 5: PIFWENO3 (top) and PIFWENO3C (bottom) solution plots for η, u and v at

t = 33320s ≈ 3T .

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 6: PIFWENO3 (top) and PIFWENO3C (bottom) solution plots for η, u and v at

t = 36100s ≈ 3.25T .

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 7: PIFWENO3 (top) and PIFWENO3C (bottom) solution plots for η, u and v at

t = 38880s ≈ 3.5T .

It’s clear from these figures that both schemes provide accurate estimates to

the surface elevation η - in Figure 6 one can however notice some small distur-

bances in the PIFWENO3C surface in the highlighted x < 0 region. On the

other hand, the velocity profiles show much larger errors for both schemes -

this is to be expected, as an accurate simulation of the velocity profile for this255

test case is known to be problematic [33, 35, 36] and the gathered results are

consistent with those in other works [31, 34, 37]. The differences between the

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

characteristic and component based schemes are especially apparent in Figures 5

and 7 for the u components. Interestingly, double precision does not seem to

have a major effect on either the accuracy of the surface elevation nor velocity260

profiles - this is potentially due to the fact that the velocity desingularization

at dry zones requires square root operations which HLSL does not support for

double precision [38, 39]. In order to investigate the discrepancy between the

accuracy of the schemes, Figure 8 shows the evolution of the average error over

the entire simulation grid for both methods over three periods of motion. Ev-265

idently, the error profiles for η, u and v have very similar structures with the

characteristic based scheme performing worse than the component based one.

The ill-posed nature of the characteristic based scheme at dry zones clearly has

a negative effect on the solution - future work could look at alternatives to the

reversion to the component based scheme. The differences between single and270

double precision results were once again found to be small. Note that while

the error profiles for the velocity components are highly oscillatory for both of

the schemes, the actual resulting velocity fields retain their overall smoothness

and hence the resulting circular surface also retains its shape despite the arisen

errors.275

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 8: PIFWENO3 and PIFWENO3C average errors over 3 periods of motion for η, u and

v.

4.2. Well-Balanced (C-property) Test

The next test was designed to check the well-balanced (C-property) of the pre-

sented schemes. The bathymetry and initial conditions for this test were chosen

as:

b(x, y) =





0.8 if x > 0.8

0.5 sin (4πx) cos (4πy) otherwise

U(x, y, 0) =
(

1− b(x, y) 0 0
)T

(45)

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

on a domain [0.005, 0.995] × [0.005, 0.995] m2 with reflective boundaries. Fur-

ther, ∆x = ∆y = 0.01m and ∆t = (∆x/20)s. The grid size for the test was

100 × 100 and the end time was t ≈ 0.2s. Note that the bathymetry has both

smooth and discontinuous components. In general, the developed schemes280

were found to handle discontinuities within the bathymetry with-

out issues when dealing with completely wet domains. On the other

hand, instabilities were observed for some scenarios involving wetting

and drying processes (more so for the characteristic variations). For

our purposes, slightly smoothing the bathymetry in a pre-processing285

stage for those scenarios was found to alleviate any arising issues and

hence further analysis was not performed. The L1 and L∞ errors (for

more info see e.g. [40, Appendix A]) using single and double precision are pre-

sented in Table 1 - the C-property is confirmed by the fact that both schemes

reached machine-precision level errors in their respective calculations. Note that290

similar to the scheme by Kurganov and Petrova [8], neither of the PIFWENO

schemes maintain this C-property when the bathymetry pierces the surface. In

our simulations we made observations similar to those in [4] - these small flux

imbalances have a negligible effect on the overall solution and the results were

found to be satisfactory for our purposes. Future work could look at further295

modifying the flux calculations to allow for accurate steady-state solutions with

surface-piercing bathymetry functions.

PIFWENO3 PIFWENO3C

Norm h hu hv h hu hv

L1

4.38e-08 3.11e-07 2.68e-07 7.18e-08 4.08e-07 4.01e-07

3.66e-17 5.12e-16 4.77e-16 1.82e-16 7.53e-16 6.93e-16

L∞
3.28e-07 1.99e-06 1.94e-06 5.07e-07 2.17e-06 2.59e-06

4.44e-16 3.01e-15 3.24e-15 1.28e-15 5.01e-15 4.67e-15

Table 1: Well-balanced test results for PIFWENO3 and PIFWENO3C schemes.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.3. Grid Convergence

The purpose of the following test was to verify that the practical convergence

rate of the scheme matches its theoretical order of accuracy for smooth solutions.

To this end, we used a similar setup to [20], i.e. the initial conditions were

defined as:

b(x, y) = sin (2πx) + cos (2πy)

U(x, y, 0) =




10 + exp (sin (2πx)) cos (2πy)

sin (cos (2πx)) sin (2πy)

cos (2πx) cos (sin (2πy))




(46)

on a domain [0, 1)×[0, 1) m2 with periodic boundaries (hence we used a modified

version of our 2-pass implementation for this test case (see below)). Addition-

ally, we set ∆x = ∆y = (1/N)m where N is the number of grid cells per dimen-

sion - the fine grid solution at 1600×1600 was considered the reference solution

and hence the computations were run on grids with N ∈ {25, 50, . . . , 1600}. The

end time was chosen as t = 0.05s. In order to minimize the temporal error, the

tests were run with a CFL number ν = 0.2, defined as [13, p.70] [41]:

ν = ∆t

(
umax

∆x
+
vmax

∆y

)
(47)

where umax and vmax are the maximum eigenvalues in the x and y directions,

respectively. As the previously described GPU implementation was designed300

for constant timestepping, additional passes had to be written for enforcing the

CFL condition: a single pass over the entire computation grid was used to find

maximum eigenvalues per grid cell, followed by basic parallel reduction in GSM

for finding the maximum values for each thread group. A further additional pass

was then used to find the global maximum eigenvalues and hence the timestep305

size - this brought the number of total computation passes up to 4 for this

test case. Note that when dealing with very large grids, it might be beneficial

to introduce additional GSM-based parallel reduction passes in order to speed

up the global maximum computation (due to a limited maximum number of

allowed threads per group, it might not be possible to reduce the number of310

maximum eigenvalues to a sufficiently small number in just a single pass).

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The convergence test results are given in Tables 2 and 3 for PIFWENO3 and

PIFWENO3C schemes, respectively. It’s clear that with grid refinement, the

computed order approaches the expected value of 3 (i.e. the spatial order) for

both schemes. We note that our Taylor timestepping solution does not reach315

hyper-convergence levels as often seen with Runge-Kutta method-of-lines solvers

(cf. [11]).

h hu hv

Mesh L1 Order L1 Order L1 Order

252 7.38e-02 4.21e-01 8.67e-01

502 2.03e-02 1.86 1.09e-01 1.96 1.81e-01 2.26

1002 4.26e-03 2.25 2.18e-02 2.32 3.38e-02 2.42

2002 8.55e-04 2.32 4.17e-03 2.39 6.83e-03 2.31

4002 1.76e-04 2.28 8.77e-04 2.25 1.45e-03 2.24

8002 3.33e-05 2.40 1.54e-04 2.51 2.93e-04 2.30

Table 2: Grid convergence test results for PIFWENO3.

h hu hv

Mesh L1 Order L1 Order L1 Order

252 7.78e-02 4.15e-01 9.27e-01

502 2.53e-02 1.62 1.12e-01 1.89 2.20e-01 2.08

1002 6.01e-03 2.07 2.66e-02 2.07 4.85e-02 2.18

2002 1.16e-03 2.37 5.20e-03 2.35 8.70e-03 2.48

4002 2.03e-04 2.51 8.82e-04 2.56 1.53e-03 2.51

8002 3.34e-05 2.60 1.35e-04 2.71 2.79e-04 2.46

Table 3: Grid convergence test results for PIFWENO3C.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.4. Complex Heightfield Test

The purpose of this last test was to investigate the ability of the schemes to

model complex flow features with generic bathymetry data. To achieve this, we

used L3DT [42] to generate a detailed heightmap dataset which we then applied

over the following initial conditions:

b(x, y) = max
(

0, 4 sin
(πx

24

))
+H(x, y)

Ψ = max

(
0, cos

(
π

2
+

2πx

24

))
+





max (0, 1.5− b(x, y)) if x < 3

0 otherwise

U(x, y, 0) =
(

Ψ 0 0
)T

(48)

where H is the value at (x, y) in the heightfield dataset. The test was set up on a

1600×1152 grid over a numerical domain defined in (−12, 12)×(−8.75, 8.75). We320

used a slightly modified ∆x = ∆y = 0.2m and ∆t = 0.016s for our simulations

in order to approximately synchronize the simulation to 60 frames per second

(FPS) rendering. 3D snapshots and the corresponding contour plots given in

Figure 9 show that the PIFWENO3 scheme can clearly handle complicated

flows without issues (PIFWENO3C results omitted for brevity as they were very325

similar). A video showing real-time as well as faster than real-time simulation

results from this test case can be found online (one can also find the heightfield

dataset there, URL in abstract).

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 9: Complex heightfield test for the PIFWENO3 scheme at t ≈ 50, 70, 90s. Left - 3D

surface renders, right - surface elevation η contour plots.

4.5. Performance Evaluation

The purpose of the following discussion is to assess the suitability of the pre-330

sented schemes for real-time simulation and rendering. A brief overview of the

single pass computation kernels for both single and double precision is given in

Table 4 - the threadgroup sizes were found through thorough testing of various

different configurations, aided by the CUDA Occupancy Calculator [43]. Due

to a number of different conflicting optimization parameters (for a discussion335

see e.g. [4]), optimizing for maximum occupancy was not always found to pro-

duce best results. Further, even the common practice of keeping the number of

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

threads to an integer multiple of the warp size was found to not always yield

expected results (e.g. PIFWENO3C in double precision was found to perform

best with a non-integer number of warps per thread group).340

PIFWENO3 PIFWENO3C

SP DP SP DP

Registers 20 34 37 52

Threads (X × Y) 32× 24 24× 16 24× 24 20× 20

GSM (bytes) 30720 30720 23040 32000

Instructions 390 843 564 1375

Occupancy (%) 75 38 56 41

Table 4: Overview of the computation kernels for the single pass schemes.

In theory, PIFWENO3 in single precision should perform the best - the kernel

has significantly less instructions and uses far fewer registers than the other

kernels. In order to verify this, the performance of the schemes was measured on

varying grid sizes - as all cells were treated equal in the schemes, the results were

found to be independent of the setup of the problem and hence we present results345

for a slightly modified (g = 9.81ms−2, ∆x = ∆y = (1/N)m, ∆t = (∆x/20)s)

version of the validation test case (Section 4.1). Measured timings for a single

timestep over an average of 1000 iterations are given in Table 5.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

PIFWENO3 PIFWENO3C

Mesh SP DP SP DP

642 0.015 0.414 (↑ 27.6×) 0.018 (↑ 1.2×) 0.854 (↑ 56.9×)

1282 0.016 1.043 (↑ 65.2×) 0.027 (↑ 1.7×) 1.518 (↑ 94.9×)

2562 0.040 2.509 (↑ 62.7×) 0.061 (↑ 1.5×) 3.579 (↑ 89.5×)

5122 0.141 7.533 (↑ 53.4×) 0.223 (↑ 1.6×) 11.882 (↑ 84.3×)

10242 0.358 29.849 (↑ 83.4×) 0.630 (↑ 1.8×) 46.913 (↑ 131.0×)

20482 1.374 116.020 (↑ 84.4×) 2.461 (↑ 1.8×) 179.280 (↑ 130.5×)

40962 5.628 455.518 (↑ 80.9×) 10.176 (↑ 1.8×) 696.508 (↑ 123.8×)

Table 5: Computational performance of the schemes. Timings in milliseconds, the value in

brackets signifies the change in computation time compared to the single precision PIFWENO3

kernel.

From Table 5, it’s clear that the single precision kernels run much faster on the

GPU - while double precision support for GPUs has grown significantly, it is not350

a priority in consumer GPUs such as the one used in this paper. Since double

precision results were comparable to single precision results for the validation

test case, we recommend first experimenting with single precision before using

the considerably more expensive double precision arithmetic. Single precision

is also the only viable option for applications requiring simultaneous simulation355

and rendering of the results in real-time - for a smooth 60FPS (≈16.67ms)

rendering, one actually encounters drops in framerate due to the amount of

geometry required for rendering both the bathymetry and water surfaces. In

contrast, double precision computations on grids > 5122 already exceed the

16ms threshold by themselves. The only test case of the ones we’ve presented360

that really required double precision was the grid convergence test. The table

also shows that the characteristic projection based scheme performs, on average,

∼1.6× worse than the per-component version. As this extra computational

expense does not come with better accuracy (as shown by the validation test),

we find the component based version to be the better option of the two - at365

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

least for simulations involving dry zones.

In order to investigate our hypothesis that fewer simulation passes result in

better overall performance, the same performance test was repeated with a two-

pass version needed for handling periodic boundary conditions. As both the

single and double pass implementations shared the same code-paths and hence370

resources, the two-pass kernels in this test also used 4 boundary cells and the

same threading configuration for both passes. The test results for both of the

schemes using the faster single precision kernels are given in Table 6. This

showcases an average of ∼1.4× higher performance for single pass kernels. The

performance gap could potentially be lowered by different threading schemes for375

either of the passes, however we do not see a reason for further optimizing the

2-pass variation when it’s clear that the 1-pass version is, if not faster, at least

comparative in speed to the 2-pass version.

PIFWENO3 (SP) PIFWENO3C (SP)

Mesh 1-pass 2-pass 1-pass 2-pass

642 0.015 0.022 (↑ 1.5×) 0.018 0.026 (↑ 1.4×)

1282 0.016 0.027 (↑ 1.7×) 0.027 0.038 (↑ 1.4×)

2562 0.040 0.057 (↑ 1.4×) 0.061 0.082 (↑ 1.3×)

5122 0.141 0.199 (↑ 1.4×) 0.223 0.320 (↑ 1.4×)

10242 0.358 0.478 (↑ 1.3×) 0.630 0.782 (↑ 1.2×)

20482 1.374 1.829 (↑ 1.3×) 2.461 3.034 (↑ 1.2×)

40962 5.628 7.820 (↑ 1.4×) 10.176 12.553 (↑ 1.2×)

Table 6: Computational performance of the one and two-pass versions of the schemes. Timings

in milliseconds, the value in brackets signifies the change in computation time compared to

the relevant single pass kernel.

4.6. Increasing the Orders of Accuracy

As mentioned in the introduction, one of the benefits of employing the WENO380

reconstructions in a numerical method is it’s capability to be extended to arbi-

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

trary orders. In this paper we’ve focused on a third order in space and second

order in time solution, however we have also done early experiments with higher

order formulations and think the following information might be of interest to

those using e.g. the classic 5th order WENO reconstructions:385

• We’ve found the 5th order WENO to require at least 3rd order timestep-

ping to achieve grid convergence. The need for higher order timestepping is

further suggested by initial comparisons of the Thacker test case whereby

PIFWENO5 variations using just second order timestepping result in loss

of accuracy over the PIFWENO3 schemes. However, note that higher390

order tensors involved in the computation of the time averaged fluxes

include terms involving 1/h which further complicate the simulation in

regions where h = 0.

• The ratio of local inner domain cells to local boundary cells is reduced

significantly with higher orders (e.g. 5th order requires 6 boundary cells for395

the single pass). This results in a lot more overlapping cells and hence more

work to be done by the GPU on top of the more involved reconstruction

procedures.

• Higher order formulations on current hardware will likely be register bound

- even PIFWENO3C in double precision with the 20 × 20 configuration400

uses more registers than recommended by the HLSL compiler. Therefore,

multi-pass solutions could potentially give better performance in these

situations (at least on current hardware; see also [44]).

5. Conclusions

We have presented a new high order finite difference based numerical method for405

solving the 2D shallow water equations and showcased the numerical accuracy

as well as computational performance of both the component by component

and characteristic projection based variations. For simulations involving mov-

ing shorelines, the presented results indicate higher accuracy for the component

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

based scheme. This can be explained by the simplistic approach taken to han-410

dling the ill-posed nature of the projection matrices when h = 0 - future work

could look at alternative, smoother transitions. We also presented a re-

formulated GPU-friendly positivity preservation method alongside a

novel fast boundary condition application technique. Combining these

developments with the compact nature of the PIFWENO formulation, we were415

able to implement the entire numerical scheme in a single GPU kernel and as

a result achieved real-time simultaneous simulation and rendering using single

precision arithmetic even on large (> 2000×2000) grids. Comparisons to double

precision computations showcased negligible accuracy gains with significant per-

formance loss (more than 50×) and as such we recommend experimenting with420

single precision calculations before choosing the more expensive double preci-

sion route. Based on the presented results, we recommend the single precision

component based scheme for those who are interested in real-time simultane-

ous simulation and rendering of the 2D SWE - the GPU friendly formulation

has greatly benefited our work as even very large (4096 × 4096) grids can be425

processed using just 5.6ms of GPU compute time per timestep on consumer-

level hardware. Future work could look at modelling frictional forces similar

to [4], well-balanced treatment of the wet-dry interface or further increasing

temporal/spatial orders of the scheme. We have provided a brief discussion of

preliminary results and pointed out issues pertaining to the final item for those430

interested in taking the scheme further.

Acknowledgements

P. Parna would like to dedicate this paper to his grandmother Viivi

who unfortunately passed away recently - thank you for teaching me

how to read and do arithmetic: puhka rahus. We gratefully acknowledge435

the support of NVIDIA Corporation with the donation of the Titan X Pascal

GPU used for this research.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] D. J. Acheson, Elementary Fluid Dynamics, Oxford University Press, 1990.

[2] D. Che, L. W. Mays, Development of an Optimization/Simulation Model440

for Real-Time Flood-Control Operation of River-Reservoirs Systems, Wa-

ter Resources Management 29 (11) (2015) 3987–4005. doi:10.1007/

s11269-015-1041-8.

[3] W.-Y. Liang, T.-J. Hsieh, M. T. Satria, Y.-L. Chang, J.-P. Fang, C.-C.

Chen, C.-C. Han, A GPU-Based Simulation of Tsunami Propagation and445

Inundation, Springer Berlin Heidelberg, 2009, pp. 593–603. doi:10.1007/

978-3-642-03095-6_56.

[4] A. R. Brodtkorb, M. L. Sætra, M. Altinakar, Efficient shallow water simula-

tions on GPUs: Implementation, visualization, verification, and validation,

Computers and Fluids 55 (2012) 1–12. doi:10.1016/j.compfluid.2011.450

10.012.

[5] N. Chentanez, M. Müller, Real-time Simulation of Large Bodies of Water

with Small Scale Details, in: Eurographics/ACM SIGGRAPH Symposium

on Computer Animation, 2010.

[6] T.-J. Hsieh, W.-Y. Liang, Y.-L. Chang, M. T. Satria, B. Huang, Parallel455

tsunami simulation and visualization on tiled display wall using OpenGL

Shading Language, Journal of the Chinese Institute of Engineers 36 (2)

(2013) 202–211. doi:10.1080/02533839.2012.727606.

[7] O. T. Ransom, B. A. Younis, Explicit GPU Based Second-Order Finite-

Difference Modeling on a High Resolution Surface, Feather River, Califor-460

nia, Water Resources Management 30 (1) (2016) 261–277. doi:10.1007/

s11269-015-1160-2.

[8] A. Kurganov, G. Petrova, A second-order well-balanced positivity preserv-

ing central-upwind scheme for the Saint-Venant system, Communications

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in Mathematical Sciences 5 (1) (2007) 133–160. doi:10.4310/CMS.2007.465

v5.n1.a6.

[9] A. Bollermann, G. Chen, A. Kurganov, S. Noelle, A Well-Balanced

Reconstruction of Wet/Dry Fronts for the Shallow Water Equations,

Journal of Scientific Computing 56 (2) (2013) 267–290. doi:10.1007/

s10915-012-9677-5.470

[10] G.-S. Jiang, C.-W. Shu, Efficient Implementation of Weighted ENO

Schemes, Journal of Computational Physics 126 (1996) 202–228.

[11] D. C. Seal, Y. Güçlü, A. J. Christlieb, The Picard integral formulation of

weighted essentially non-oscillatory schemes (2014) 1–24.

URL https://arxiv.org/abs/1403.1282v2475

[12] D. C. Seal, Q. Tang, Z. Xu, A. J. Christlieb, An Explicit High-Order Single-

Stage Single-Step Positivity-Preserving Finite Difference WENO Method

for the Compressible Euler Equations, Journal of Scientific Computing

68 (1) (2016) 171–190. doi:10.1007/s10915-015-0134-0.

[13] R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cam-480

bridge University Press, 2002.

[14] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, Uniformly high order

accurate essentially non-oscillatory schemes, III, Journal of Computational

Physics 71 (2) (1987) 231–303. doi:10.1016/0021-9991(87)90031-3.

[15] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-485

Oscillatory Schemes for Hyperbolic Conservation Laws, Tech. rep. (1997).

[16] C.-W. Shu, Lecture 2: Finite Difference WENO Schemes (2013).

URL http://dauns.math.tulane.edu/~kurganov/

CliffordLectures2013/Shu2.pdf

[17] N. Črnjarić-Žic, S. Vuković, L. Sopta, On different flux splittings and flux490

functions in WENO schemes for balance laws, Computers & Fluids 35 (10)

(2006) 1074–1092. doi:10.1016/j.compfluid.2005.08.005.

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[18] G.-S. Jiang, C.-c. Wu, A High-Order WENO Finite Difference Scheme for

the Equations of Ideal Magnetohydrodynamics, Journal of Computational

Physics 150 (2) (1999) 561–594. doi:10.1006/jcph.1999.6207.495

[19] C. Lu, G. Li, Simulations of Shallow Water Equations by Finite Dif-

ference WENO Schemes with Multilevel Time Discretization, Numerical

Mathematics: Theory, Methods and Applications 4 (4) (2011) 505–524.

doi:10.4208/nmtma.2011.m1027.

[20] Y. Xing, C.-W. Shu, High order finite difference WENO schemes with500

the exact conservation property for the shallow water equations, Journal

of Computational Physics 208 (1) (2005) 206–227. doi:10.1016/j.jcp.

2005.02.006.

[21] C. Liang, Z. Xu, Parametrized Maximum Principle Preserving Flux Lim-

iters for High Order Schemes Solving Multi-Dimensional Scalar Hyper-505

bolic Conservation Laws, Journal of Scientific Computing 58 (2014) 41–60.

doi:10.1007/s10915-013-9724-x.

[22] M. J. Harris, Fast Fluid Dynamics Simulation on the GPU, in: R. Fernando

(Ed.), GPU Gems, 2004, Ch. 38.

[23] K. Crane, I. Llamas, S. Tariq, Real-Time Simulation and Rendering of 3D510

Fluids, in: H. Nguyen (Ed.), GPU Gems 3, 2007, Ch. 30.

[24] R. Falconer, A. Houston, Visual Simulation of Soil-Microbial System Us-

ing GPGPU Technology, Computation 3 (1) (2015) 58–71. doi:10.3390/

computation3010058.

[25] J. Zink, M. Pettineo, J. Hoxley, Practial Rendering and Computation with515

Direct3D 11, CRC Press, 2011.

[26] L. Nyland, S. Jones, Inside Kepler (2012).

URL http://on-demand.gputechconf.com/gtc/2012/presentations/

S0642-GTC2012-Inside-Kepler.pdf

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[27] J. Sanders, E. Kandrot, CUDA By Example: an introduction to general-520

purpose GPU programming, Addison-Wesley, 2010.

[28] A. Vaisse, Efficient usage of compute shaders on Xbox One and PS4

(2014).

URL http://twvideo01.ubm-us.net/o1/vault/gdceurope2014/

Presentations/828884_Alexis_Vaisse.pdf525

[29] R. Bridson, Fluid Simulation for Computer Graphics, A K Peters Series,

Taylor & Francis, 2008.

[30] W. C. Thacker, Some exact solutions to the nonlinear shallow-water wave

equations, Journal of Fluid Mechanics 107 (1981) 499–508. doi:10.1017/

S0022112081001882.530

[31] R. Holdahl, H. Holden, K.-A. Lie, Unconditionally Stable Splitting Meth-

ods for the Shallow Water Equations, BIT Numerical Mathematics 39 (3)

(1999) 451–472. doi:10.1023/A:1022366502335.

[32] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T. N. T. Vo,

F. James, S. Cordier, SWASHES: a compilation of Shallow Water Analytic535

Solutions for Hydraulic and Environmental Studies, International Journal

for Numerical Methods in Fluids 72 (3) (2011) 269–300. doi:10.1002/

fld.3741.

[33] M. E. Hubbard, N. Dodd, A 2D numerical model of wave run-up and

overtopping, Coastal Engineering 47 (1) (2002) 1–26. doi:10.1016/540

S0378-3839(02)00094-7.

[34] A. I. Delis, I. K. Nikolos, M. Kazolea, Performance and Comparison of Cell-

Centered and Node-Centered Unstructured Finite Volume Discretizations

forShallow Water Free Surface Flows, Archives of Computational Methods

in Engineering 18 (1) (2011) 57–118. doi:10.1007/s11831-011-9057-6.545

[35] A. I. Delis, I. K. Nikolos, A novel multidimensional solution reconstruc-

tion and edge-based limiting procedure for unstructured cell-centered fi-

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

nite volumes with application to shallow water dynamics, International

Journal for Numerical Methods in Fluids 71 (5) (2013) 584–633. doi:

10.1002/fld.3674.550

[36] Z. Horváth, J. Waser, R. A. P. Perdigão, A. Konev, G. Blöschl, A Two-

Dimensional Numerical Scheme of Dry/Wet Fronts for the Saint-Venant

System of Shallow Water Equations, International Journal for Numerical

Methods in Fluids 77 (3) (2015) 159–182. doi:10.1002/fld.3983.

[37] J. Hou, Q. Liang, H. Zhang, R. Hinkelmann, An efficient unstructured555

MUSCL scheme for solving the 2D shallow water equations, Environmental

Modelling & Software 66 (2015) 131–152. doi:10.1016/j.envsoft.2014.

12.007.

[38] Microsoft, D3D12 FEATURE DATA D3D12 OPTIONS structure (Win-

dows).560

URL https://msdn.microsoft.com/en-us/library/windows/desktop/

dn770364(v=vs.85).aspx

[39] Microsoft, D3D11 FEATURE DATA D3D11 OPTIONS structure (Win-

dows).

URL https://msdn.microsoft.com/en-us/library/windows/desktop/565

hh404457(v=vs.85).aspx

[40] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Dif-

ferential Equations: Steady-State and Time-Dependent Problems, SIAM,

2007.

[41] CFD-Online, Courant-Friedrichs-Lewy condition – CFD-Wiki, the free570

CFD reference.

URL https://www.cfd-online.com/Wiki/Courant%E2%80%

93Friedrichs%E2%80%93Lewy_condition

[42] A. Torpy, L3DT (2016).

URL http://www.bundysoft.com/L3DT/downloads/standard.php575

44

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[43] NVIDIA, CUDA Occupancy Calculator (2016).

URL http://developer.download.nvidia.com/compute/cuda/CUDA_

Occupancy_calculator.xls

[44] J. Pekkilä, M. Väisälä, M. J. Käpylä, P. J. Käpylä, O. Anjum, Methods for

compressible fluid simulation on GPUs using high-order finite differences,580

Computer Physics Communications 217 (2017) 11–22. doi:10.1016/j.

cpc.2017.03.011.

[45] C. Gardner, WENO-LF.

URL https://math.la.asu.edu/~gardner/weno.pdf

[46] F. A. Andiga, A. Baeza, A. M. Belda, P. Mulet, Analysis of WENO Schemes585

for Full and Global Accuracy, SIAM J. Numer. Anal. 49 (2) (2011) 893–915.

doi:10.1137/100791579.

[47] I. Cravero, M. Semplice, On the Accuracy of WENO and CWENO Re-

constructions of Third Order on Nonuniform Meshes, Journal of Scientific

Computing 67 (3) (2016) 1219–1246. doi:10.1007/s10915-015-0123-3.590

[48] C. Boyd, DirectX 11 Compute Shader (2008).

URL http://s08.idav.ucdavis.edu/boyd-dx11-compute-shader.pdf

[49] Microsoft, ld structured (sm5 - asm) (2016).

URL https://msdn.microsoft.com/en-us/library/windows/desktop/

hh447157(v=vs.85).aspx595

[50] Microsoft, store structured (sm5 - asm) (2016).

URL https://msdn.microsoft.com/en-us/library/windows/desktop/

hh447237(v=vs.85).aspx

Appendix A. WENO3 Reconstruction

A single WENO reconstruction step for a value v involves the following (the600

± superscripts denote which bias the stencil uses, x direction as an example, j

offsets dropped for convenience):

45

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Find the candidate stencil approximations. For the third order scheme

(k = 3, r = 2) these are [45]:

f+
0 = 1

2vi + 1
2vi+1 f−0 = 1

2vi+1 + 1
2vi

f+
1 = − 1

2vi−1 + 3
2vi f−1 = − 1

2vi+2 + 3
2vi+1.

(A.1)

2. Find the smoothness indicators using the method by [10]. For the third

order scheme the explicit equations are [45]:

β+
0 = (vi+1 − vi)2

β−0 = (vi+1 − vi)2

β+
1 = (vi − vi−1)

2
β−1 = (vi+2 − vi+1)

2
.

(A.2)

3. Find the non-linear weights as [15, p.18]:

ω±n =
ζ±n∑r−1

m=0 ζ
±
m

(A.3)

where n ∈ [0, r − 1]. Furthermore,

ζ±n =
dn(

ε+ β±n
)2 (A.4)

where dn are the linear weights and ε > 0 which was originally chosen in

order to avoid the denominator becoming zero. Recently, it’s been shown

that ε should actually be related to the grid-spacing or the square of the605

grid-spacing [46, 47] - hence in this work we’ve used ε = (∆x)
2
. The dn

for the third order scheme are d0 = 2
3 and d1 = 1

3 .

4. Find the kth order accurate approximation [15, p.18]:

v±i+1/2 =

r−1∑

n=0

ω±n f
±
n . (A.5)

Appendix B. Out-of-bounds Accesses

Our implentation heavily relies on the fact that there’s no explicit need to check

for out-of-bounds reads when using DirectX. Out-of-bounds reads from main610

memory return zeros for all components [48] whereas the return results from

46

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

groupshared memory are undefined [49] - note that this doesn’t cause GSM

invalidation. In the latter case, it is often known a priori that the data received

from out-of-bounds queries would not be used further in the computations and

hence explicit branching is omitted. Writes to out-of-bounds main memory615

locations are guaranteed to be no-ops by the DirectX API [48]. No out-of-bounds

writes to local memory take place as such actions would cause invalidation of

the entire GSM [50]. We highly recommend verifying these assumptions if any

other API is used - if unsure, protective branches should be used.

47

	Blank Page

