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Abstract 26 

Polyphenols of citrus by-products, due to their antioxidant and antimicrobial activities, could 27 

be valorized by pharmaceutical and food industries, adding a value to the citrus processing 28 

companies. A number of studies have investigated the effect of ultrasound-assisted extraction 29 

(UAE) conditions on the recovery of phenolics derived from citrus waste using both organic 30 

solvents or mixed aqueous solvent systems. To maximize efficiency, UAE conditions should 31 

be tailored to the physical parameters of the solvent(s) employed. The aim of this study was to 32 

investigate the effect of four UAE parameters: particle size (1.40-2.80 mm), extraction time 33 

(10-60 min), extraction temperature (23-50 °C) and ultrasonic power (150-250 W) on the 34 

simultaneous recovery of p-coumaric acid, caffeic acid, chlorogenic acid, and hesperidin from 35 

citrus waste using pure water as a solvent. High-performance liquid chromatography (HPLC) 36 

was employed for the identification and quantification of the cited compounds. Particle size 37 

was determined to be an important parameter affecting compound recovery, with the exception 38 

of chlorogenic acid. A particle size of 1.40 mm resulted in the highest recovery of p-coumaric 39 

and caffeic acids (0.25 and 0.58 mg/g, respectively), while higher hesperidin yields were 40 

achieved from the particle sizes of 2.00 and 1.40 mm (6.44 and 6.27 mg/g, respectively). 41 

Extraction temperature significantly affected only the recovery of the flavanone glycoside 42 

(P<0.05). As the extraction temperature increased from 30 to 50 °C the recovery of hesperidin 43 

increased from 6.59 to 7.84 mg/g, respectively. Neither extraction time nor ultrasonic power 44 

significantly affected the recovery of any individual phenolic compound.  45 

 46 

Keywords: sustainable extraction, particle size, phenolic acids, flavanone, citrus waste. 47 

 48 

 49 

 50 
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1. Introduction 51 

Lemons (Citrus limon L.) are widely grown around the world and are known for their 52 

nutritional value. In 2013/14, lemon and lime production exceeded 13 million tonnes where 53 

more than 14% of this production was processed (FAO, 2016). During lemon processing, a 54 

large amount of solid waste, primarily composed of the peel (flavedo and albedo) and seeds, is 55 

generated. Citrus peel is comprised of a wide variety of organic compounds including 56 

polyphenols, vitamins, sugars, organic acids, fibers and oils (Putnik et al., 2017; Sharma et al., 57 

2017).   58 

Polyphenols are the most abundant secondary metabolites synthesized by fruits and 59 

vegetables, and are responsible for their organoleptic properties (Dai and Mumper, 2010). 60 

Citrus peel contains quantities of flavonoids (flavanones, flavonols and flavones) and phenolic 61 

acids. Flavonoids are important bioactive compounds due to their antioxidant, anticancer, 62 

antifungal and antibacterial activities (Ortuño et al., 2006; Casquete et al., 2015; Sharma et al., 63 

2017). Hesperidin is a flavanone glycoside found in lemon peel and has been reported to possess 64 

antibacterial, antifungal and anti-inflammatory properties (Garg et al., 2001). Phenolic acids, 65 

such as hydroxycinnamic and hydroxybenzoic acids, also present in lemon peel which have 66 

been linked to antioxidant, antifungal and antimicrobial activities (Wang et al., 2007; Shetty et 67 

al., 2016; Papoutsis et al., 2017).  68 

Presently, peel derived from citrus processing is typically discarded as landfill, 69 

representing a cost and environmental liability to the industry. The opportunity to extract 70 

bioactives from peel waste for use in foods or pharmaceuticals using economic, 71 

environmentally sustainable practices products, therefore, represents an attractive proposition 72 

to the citrus industry. 73 

Extraction must be undertaken to liberate phenolic compounds from lemon peel and 74 

appropriate extraction conditions must be identified in order to maximize their recovery yields 75 



4 
 

(Putnik et al., 2017). Methanol, ethanol or corresponding aqueous mixtures of these solvents 76 

are typically employed for the recovery of polyphenols from citrus pomace (Abad-García et al., 77 

2007; Lou et al., 2016). Despite their efficiency, the cost of these solvents is high. Safety and 78 

toxicity concerns also exist over the industrial scale use of alcohols, leading to water being the 79 

preferred solvent for high volume extraction. Consequently, techniques to improve the 80 

efficiency of aqueous extraction remains a priority for researchers.  81 

Although ultrasound-assisted extraction (UAE) has been previously identified as an 82 

efficient extraction technique (Roselló-Soto et al., 2015), undesirable UAE conditions may lead 83 

to a significant degradation of phenolic compounds (Dahmoune et al., 2013; Babazadeh et al., 84 

2017). Solvent type, extraction time, extraction temperature, particle size of the sample, 85 

ultrasonic power and frequency are parameters that may affect the recovery of phenolic 86 

compounds (Chemat et al., 2017). Khan et al. (2010) reported that sample particle size 87 

significantly affected UAE yield efficiency of total phenolic compounds from orange peels, 88 

while Ma et al. (2009) identified temperature as a variable affecting the extraction yields of 89 

phenolic acids from Citrus unshiu Marc peels.  90 

To date, most of the studies that have investigated the effect of different UAE 91 

parameters (such as ultrasonic power and frequency, extraction time and temperature) on the 92 

recovery of individual phenolic compounds from citrus have employed either pure organic 93 

solvents or mixed aqueous solvent systems (Ma et al., 2008a; Ma et al., 2008b; Ma et al., 2009). 94 

Chemat et al. (2017) recently reported that UAE conditions should be selected according to the 95 

physical parameters of the solvents that are employed. Moreover, to date, the effect of particle 96 

size of the sample on the recovery of individual phenolic compounds from citrus waste has not 97 

been reported. The aim of this study was to investigate the effect of four UAE parameters, 98 

including particle size of sample, extraction time, extraction temperature and ultrasonic power 99 

on the simultaneous recovery of hesperidin, p-coumaric acid, caffeic acid, and chlorogenic acid 100 
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from lemon pomace, using distilled water as the extracting solvent. High-performance liquid 101 

chromatography was performed for the identification and quantification of the individual 102 

phenolic compounds. 103 

 104 

2. Materials and methods 105 

2.1. Chemicals 106 

All chemicals used in this study were of analytical grade. Folin–Ciocalteu phenol reagent, 107 

sodium carbonate (Na2CO3) anhydrous, sodium nitrite (NaNO2), gallic acid, catechin, 108 

hesperidin, p-coumaric acid, chlorogenic acid, caffeic acid, formic acid, copper (II) chloride 109 

(CuCl2), ammonium acetate (NH4Ac), neocuproine, (±)-6-hydroxy-2,5,7,8-110 

tetramethylchromane-2-carboxylic acid (Trolox), 2,2-diphenyl-1-picrylhydrazyl (DPPH) were 111 

purchased from Sigma-Aldrich Pty Ltd (Castle Hill, Sydney, Australia). Aluminium chloride 112 

(Al2Cl3·6H2O) was obtained from J. T. Baker Chem. Co. (Zedelgem, Belgium). Sodium 113 

hydroxide (NaOH) was purchased from Ajax Chem. (NSW, Australia). Methanol, ethanol and 114 

acetonitrile were purchased from Merck (Darmstadt, Germany).  115 

 116 

2.2. Materials 117 

Lemon (Citrus limon L.) waste, including peel, membranes and seeds, was kindly 118 

provided by the Eastcoast company (Kulnura, NSW, Australia). Pomace was collected the same 119 

day of lemon juice production and was immediately transferred to the laboratory (20 °C ± 0.5 120 

°C). After seed removal, the remaining pomace with a moisture content of 85.1% ± 1.2% (mean 121 

± standard deviation), was stored at −18 °C until use, to prevent polyphenol degradation. Low 122 

temperatures tend to decrease the activity of polyphenol oxidase (PPO) the enzyme responsible 123 

for polyphenol oxidation (Nguyen et al., 2003). Citrus waste was dried by freeze drying (FD3 124 

freeze dryer; Thomas Australia Pty. Ltd., Seven Hills, Australia) as described by Papoutsis et 125 
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al. (2017). The dried pomace was ground using a commercial blender (Waring 2-speed blender, 126 

John Morris Scientific, Chatswood, Australia), with the resulting powder then sized and 127 

separated using three steel mesh sieves (1.40, 2.00, 2.80 mm) (EFL 2000; Endecotts Ltd., 128 

London, England). The ground lemon waste was then sealed in a container and stored at −18 129 

°C until required. The water activity (aw) of the dried lemon pomace was determined to be 0.19 130 

± 0.01 (mean ± standard deviation) at 24.3 °C and the residual moisture content was 7.36% ± 131 

0.51% (mean ± standard deviation). 132 

 133 

2.3. Ultrasound-assisted extraction (UAE) 134 

A 20 L ultrasonic bath (Soniclean Pty Ltd., Thebarton, Australia) operating at a frequency of 135 

43 ± 2 kHz was employed for pomace extraction. The effects of four individual parameters: i) 136 

particle size of sample (1.40, 2.00 and 2.80 mm), ii) extraction time (10, 20, 30, 40, 50 and 60 137 

min), iii) extraction temperature (ambient (23 °C), 30, 40 and 50 °C), and iv) ultrasonic power 138 

(150, 200 and 250 W) on the recovery of hesperidin, p-coumaric acid, caffeic acid, chlorogenic 139 

acid, total phenolic content, total flavonoid content, as well as antioxidant capacity of lemon 140 

pomace aqueous extracts were investigated. In all experiments, a sample-to-solvent ratio of 1 141 

g/100 mL was used (Papoutsis et al., 2016). Initially, the effect of particle size was investigated 142 

and the particle size of 1.40 was selected for the following experiments, since it resulted in the 143 

highest recovery of the most of the parameters that were examined. Every time that one 144 

parameter was examined, the others maintained constant. The constant values for the extraction 145 

temperature, extraction time and ultrasonic power were 30 °C, 20 min and 150 W, respectively. 146 

The experimental design of the experiment can be seen in Fig. 1. 147 

 148 

 149 

 150 
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2.4. Phytochemical analysis 151 

2.4.1. Identification and quantification of individual phenolic compounds 152 

The identification and quantification of hesperidin, p-coumaric acid, chlorogenic acid, 153 

and caffeic acid was performed using high-performance liquid chromatography (HPLC) 154 

(Shimadzu LC-20AD, Rydalmere, NSW, Australia). Both standards and samples were pre-155 

filtered through a 0.45 µm nylon filter prior to analysis. A C18 reversed-phase column (Gemini 156 

110A 5 µm, 150 × 4.6 mm Phenomenex Australia Pty., Ltd., Lane Cove, NSW, Australia) fitted 157 

with a guard column (Gemini C18, 4 × 3.0 mm) was used for the separation. The injection 158 

volume for samples and standards was 50 μL. The column temperature was maintained at 30 159 

°C using an oven (Shimadzu CTO-20AC, Rydalmere, NSW, Australia). A photodiode array 160 

(PDA) detector (Shimadzu SPD-M20A, Rydalmere, NSW, Australia) was employed for sample 161 

detection (250-380 nm). The mobile phase for separation was as follows; water: acetonitrile: 162 

formic acid, 95:4:1 (v:v:v) (Mobile Phase A) and 100% (v/v) acetonitrile (Mobile Phase B). 163 

The flow rate of the solvents was 1 mL/min using the following gradient elution: 0 min 5% B; 164 

15 min, 20% B; 35 min, 100% B; 40 min, 5% B; 50 min, 50% B. Analysis ceased after 60 min. 165 

The system was re-equilibrated between runs for 10 min using 5% B.  166 

The quantification of hesperidin, chlorogenic acid, caffeic acid and p-coumaric acid 167 

contents were calculated from the peak area recorded at λ=280 nm by the external standard 168 

method using calibration curves (R2=0.9995, 0.9932, 0.9978 and 0.9999, respectively). 169 

Hesperidin, chlorogenic acid, caffeic acid and p-coumaric acid standards were prepared by 170 

dissolving standard compounds in methanol at a concentration of 200 µg/mL. Their 171 

concentrations were expressed as mg/g.  172 

 173 

 174 

 175 
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2.4.2. Total phenolic content (TPC) 176 

The TPC was measured according to Škerget et al. (2005). Gallic acid was used as a 177 

standard to build the calibration curve (R2=0.9923) and the results were expressed as mg of 178 

gallic acid equivalents per g (mg GAE/g). 179 

 180 

2.4.3. Total flavonoid content (TF) 181 

The TF was determined according to Zhishen et al. (1999). Catechin was used as a 182 

standard to build the calibration curve (R2=0.9928) and the results were expressed as mg of 183 

catechin equivalents per g (mg CE/g). 184 

 185 

2.4.4.  Antioxidant capacity  186 

Cupric Reducing Antioxidant Capacity (CUPRAC) was determined according to Apak et al. 187 

(2004). Trolox was used as a standard to build the calibration curve (R2=0.9900) and the results 188 

were expressed as mg Trolox equivalents per g (mg TE/g). DPPH radical scavenging capacity 189 

was determined according to Thaipong et al. (2006). Trolox was used as a standard to build the 190 

calibration curve (R2=0.9980) and the results were expressed as mg Trolox equivalents per g 191 

(mg TE/g). 192 

 193 

2.5. Scanning electron microscopy (SEM) 194 

SEM was employed for observing the morphology of the different particle sizes of lemon 195 

pomace residues using a Phillips XL 30 microscope. Samples were gold coated (3 min) before 196 

the images were taken using a secondary electron detector. 197 

 198 

 199 

 200 
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2.6. Statistical analysis 201 

The effect of independent variables (particle size of sample, extraction time, extraction 202 

temperature and ultrasonic power) on individual phenolic compounds, TPC, TF, CUPRAC and 203 

DPPH was investigated by employing one-way ANOVA and Tukey's test, using SPSS 204 

statistical software (version 23, IBM, Crop., NY, USA) at P<0.05. Each extraction run and 205 

analysis were performed in triplicate. 206 

 207 

3. Results and Discussion 208 

3.1. Effect of particle size on hesperidin, chlorogenic acid, caffeic acid, and p-coumaric 209 

acid contents 210 

The effect of particle size on the recovery of chlorogenic acid, caffeic acid, p-coumaric 211 

acid, and hesperidin is shown in Fig. 2A, B. As the particle size decreased from 2.80 mm to 212 

1.40 mm the recovery of caffeic acid and p-coumaric acid significantly increased from (0.52 213 

and 0.12 mg/g, respectively) to (0.58, and 0.25 mg/g, respectively) (P<0.05). In case of 214 

hesperidin, greater recovery was achieved from the particle sizes of 2.00 and 1.40 mm (6.44 215 

and 6.27 mg/g, respectively). However, particle size had no influence on the recovery of 216 

chlorogenic acid (P<0.05) (Fig. 2A). Prior to extraction, particles from each sieve range were 217 

examined using scanning electron microscopy. The images (Fig. 3) reveal that the surface area 218 

in contact with the solvent significantly increased as the particle size diminished from 2.80 to 219 

1.40 mm, facilitating greater penetration of the solvent into the plant tissue, which promotes 220 

greater mass transfer from the solid matrix into the liquid. Phenolic compounds of citrus 221 

pomace can be found either sequestered into the vacuole or bound onto the cell matrix (Shahidi 222 

and Yeo, 2016). Decreasing the particle size under UAE conditions, the sample area exposed 223 

to ultrasonic radiation increases (Fig. 3), which may lead to an increased breakdown of cellular 224 

material and vacuole, which facilitates greater penetration of the solvent into the plant matrix, 225 



10 
 

leading to higher diffusion rates of polyphenols into the solvent (Roselló-Soto et al., 2015). 226 

Simultaneously, cavitation phenomena may facilitate in the release of the phenolic compounds 227 

which are bound onto the cell walls. These results are in accordance with Lee et al. (2010) who 228 

mentioned that the extraction yields of nobiletin and tangeretin increased as the particle size of 229 

orange peel decreased from 0.75 to 0.188 mm under supercritical fluid extraction (CO2). As a 230 

consequence of these findings, a particle size of 1.40 mm was selected for the assessment of 231 

the other experimental variables affecting extraction efficiency.  232 

 233 

3.2. Effect of extraction time on hesperidin, chlorogenic acid, caffeic acid, and p-coumaric 234 

acid contents 235 

The effect of extraction time on the recovery of chlorogenic acid, caffeic acid, p-236 

coumaric acid, and hesperidin is shown in Fig. 2C, D. Extraction time as a variable had no 237 

significant effect on the yields of hesperidin or the phenolic acids of lemon pomace under the 238 

extraction conditions applied (particle size = 1.40 mm, power =150 W, temperature = 30 °C) 239 

(P<0.05). This finding was in contrast to recently reported findings by Hani et al. (2017) who 240 

identified a correlation between extraction efficiency and extraction time – albeit a modest one. 241 

It has been previously reported that lemon pomace is resistant to ultrasound energy when the 242 

extraction is carried out at ambient temperature (Dahmoune et al., 2013), suggesting a possible 243 

explanation for our findings. A slight, but non-significant rise in hesperidin yield was recorded 244 

by increasing extraction time from 20 to 40 min (from 6.22 to 6.67 mg/g, respectively), after 245 

which the yield slightly declined. Although extraction time did not affect the recovery of 246 

phenolic acids, the maximum extraction yields of caffeic and chlorogenic acids were obtained 247 

when the UAE was performed for 40 min (0.56 and 0.32 mg/g, respectively) and then slightly 248 

declined, whereas the maximum p-coumaric acid yield was obtained when the UAE was 249 

performed for 60 min (0.25 mg/g). These results indicated that prolong sonication times may 250 
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lead to the formation of free radicals which may be scavenged by some phenolic compounds 251 

(Dahmoune et al., 2013). Ma et al. (2008b) reported that the content of hesperidin derived from 252 

penggan (Citrus reticulata) peel in methanol extracts significantly increased as the sonication 253 

time increased from 20 to 60 min. Moreover, it has been previously mentioned that sonication 254 

time significantly affected the recovery of phenolic acids from citrus peels in a temperature 255 

dependent manner (Ma et al., 2009). These differences could be attributed to the variability of 256 

the cellular wall ultrastructure and composition between citrus species (Li et al., 2009), which 257 

is known to affect cavitation phenomena which occurs during UAE, as well as to the different 258 

physical parameters of the solvents and the different UAE conditions that were employed 259 

(Chemat et al., 2017).  260 

 261 

3.3. Effect of extraction temperature on hesperidin, chlorogenic acid, caffeic acid, and p-262 

coumaric acid contents 263 

In UAE, temperature is considered as an important parameter influencing the recovery 264 

of bioactive compounds, since it directly affects both the physical parameters of the solvent 265 

employed and the effectiveness of sonication (Chemat et al., 2017).  266 

Temperature had no significant effect on the recovery of phenolic acids but significantly 267 

affected the recovery of hesperidin from lemon pomace (P<0.05) (Fig. 2E, F). Higher 268 

hesperidin yields were obtained as the temperature increased from 30 to 50 °C (from 6.59 to 269 

7.84 mg/g, respectively). Similar results have been reported for hesperidin recovery from Citrus 270 

reticulata peel using methanol as the extraction solvent under UAE (Ma et al., 2008b). Higher 271 

temperature in UAE may facilitate higher recovery of polyphenols by: i) affecting the physical 272 

properties of the solvent and by extension sonication effects, ii) enhancing the solubility of 273 

some phenolic compounds which increases mass transfer rate from the plant matrix into the 274 

solvent, and iii) diminishing the integrity of cellular structures by enhancing the activity of 275 
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some enzymes (Ma et al., 2016). Under the UAE conditions applied in our study, the 276 

temperature did not affect the recovery of phenolic acids (p-coumaric acid, caffeic acid, and 277 

chlorogenic acid). This is in contrast with the findings of Ma et al. (2009) who reported 278 

temperature to be a crucial factor influencing the recovery of phenolic acids from Citrus unshiu 279 

Marc peel. These differences could be due to the different physical parameters of the solvent, 280 

such as viscosity, surface tension, and vapor pressure, as well as the different operating 281 

conditions that were employed (Chemat et al., 2017).   282 

 283 

3.4. Effect of ultrasonic power on hesperidin, chlorogenic acid, caffeic acid, and p-284 

coumaric acid contents 285 

Ultrasonic power had no significant effect on the recovery of phenolic acids, and 286 

hesperidin (Fig. 2G, H). A slight but non-significant rise in the recovery of hesperidin was 287 

found when the ultrasonic power increased from 150W to 200W (from 6.50 to 6.82 mg/g) and 288 

then slightly declined (6.65 mg/g). These results are in accordance with the findings of Ma et 289 

al. (2008b) who reported that ultrasonic power exerted limited effect on the recovery of 290 

hesperidin from penggan (Citrus reticulata) peel. In contrast, studies by the same author found 291 

that the yield of phenolic acids extracted from satsuma mandarin peel increased with increasing 292 

ultrasonic power (from 3.2 to 56 W) (Ma et al., 2008a). These differences could be attributed 293 

to the different UAE conditions, physical parameters of the solvents (viscosity and vapor 294 

pressure), as well as the composition of the plant matrix used in the studies. It has been 295 

previously reported that high-level ultrasonic power may degrade some polyphenols by 296 

inducing the production of free radicals within the solvent (Dahmoune et al., 2013). However, 297 

under the examined ultrasonic powers and conditions, the flavanone glycoside and the three 298 

phenolic acids were stable.  299 

 300 
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3.5. Effect of ultrasonic conditions on TPC, TF, and antioxidant capacity 301 

The effects of particle size, extraction time, extraction temperature and ultrasonic power 302 

on TPC, TF, and antioxidant capacity values are displayed in Tables 1 and 2. Similarly to the 303 

individual phenolic compounds, particle size and extraction temperature significantly affected 304 

the recovery of TPC, TF and antioxidant capacity (Table 1, 2). As the particle size decreased 305 

from 2.80 to 1.40 mm, the TPC, TF, and antioxidant capacity values increased (P<0.05). These 306 

results are in agreement with previous studies (Stamatopoulos et al., 2013; D’Alessandro et al., 307 

2014). However, Khan et al. (2010) reported that under UAE, the total phenols extracted from 308 

orange peel slightly increased with increasing particle size (from 0.5 to 2.0 cm2). This result 309 

was attributed to the fact that during UAE, smaller particles remained at the air-solvent interface 310 

leading to limited exposure to ultrasonic waves and reduced extraction efficiency. However, 311 

this phenomenon was not noted in our study. Extraction temperatures of 40 and 50 °C resulted 312 

in higher TPC, TF, and antioxidant capacity values (P<0.05) (Tables 1, 2). These results are in 313 

accordance with previous studies which mentioned temperature as an important parameter for 314 

the recovery of phenolic compounds from citrus peels (Ma et al., 2008c; Garcia-Castello et al., 315 

2015). In conclusion, particle size of the sample and extraction temperature found to be the 316 

most important parameters affecting the values of TPC, TF and antioxidant capacity of lemon 317 

pomace aqueous extracts.     318 

 319 

4. Conclusions 320 

Hesperidin, p-coumaric, caffeic and chlorogenic acids due to their antioxidant and antimicrobial 321 

activities could be valorized by both pharmaceutical and food industries, adding a value to the 322 

citrus processing companies. The effects of four UAE parameters, including particle size of 323 

sample, extraction time, extraction temperature and ultrasonic power on the recovery of three 324 

phenolic acids and hesperidin from lemon pomace using water as a solvent, was examined. 325 
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Particle size of the sample significantly affected the recovery of p-coumaric acid, caffeic acid, 326 

hesperidin, TPC, TF, and the antioxidant capacity. As the extraction temperature increased from 327 

30 to 50 °C, the recovery of hesperidin, TPC, TF and antioxidants measured by CUPRAC 328 

significantly increased, while extraction temperature had no effect on the recovery of phenolic 329 

acids (p-coumaric acid, caffeic acid and chlorogenic acid) and antioxidant capacity measured 330 

by DPPH. Neither extraction time nor ultrasonic power had a significant effect on the recovery 331 

of polyphenols and antioxidants. With solvent considered to be an important parameter 332 

affecting the recovery of polyphenols under UAE, studies optimizing and scanning the 333 

interaction effects of different ultrasonic parameters on the recovery of individual phenolic 334 

compounds from citrus pomaces using water as a solvent should be examined, since most of 335 

the studies to date have focused on the use of organic solvents for the extraction.  336 

 337 
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Tables 

Table 1. Effect of different ultrasonic extraction parameters on the total phenolic content (TPC), and total flavonoid content (TF). Data are expressed as 

mean ± standard deviation (n=3). 

 

* Values followed by different letters within the same column are significantly different at P<0.05, according to ANOVA and Tukey’s test. 

** Coefficient of variation (CV). 

 

 

 

 

 

 

Effect of Effect of Effect of Effect of 

Particle size Extraction time Extraction temperature Ultrasonic power 

Size TPC TF Time TPC TF Temperature TPC TF Power TPC TF 

mm mg GAE/g  mg CE/g  min mg GAE/g  mg CE/g  °C mg GAE/g  mg CE/g  W mg GAE/g  mg CE/g  

1.40 15.76 ± 0.18a* 4.65 ± 0.14 a 10 15.72 ± 0.20a 4.55 ± 0.10a Ambient  16.38 ± 0.23b 4.64 ± 0.03b 150 15.48 ± 0.13a 4.56 ± 0.13a 

2.00 14.76 ± 0.03b 4.40 ± 0.04ab 20 15.88 ± 0.62a 4.56 ± 0.16a 30 16.32 ± 0.11b 4.62 ± 0.01b 200 15.24 ± 0.62a 4.56 ± 0.27a 

2.80 14.37 ± 0.25b 4.10 ± 0.01b 30 15.89 ± 0.10a 4.82 ± 0.07a 40 16.75 ± 0.06ab 4.74 ± 0.03ab 250 15.77 ± 0.21a 4.66 ± 0.09a 

   40 16.59 ± 0.39a 4.81 ± 0.15a 50 17.24 ± 0.15a 4.84 ± 0.08a    

   50 16.21 ± 0.61a 4.74 ± 0.01a       

   60 16.13 ± 0.16a 4.73 ± 0.10a       

CV** 1.59% 2.79%  2.52% 2.37%  1.29% 1.34%  3.45% 5.33% 
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Table 2. Effect of different ultrasonic extraction parameters on the antioxidant capacity measured by CUPRAC and DPPH assays. Data are expressed as 

mean ± standard deviation (n=3). 

* Values followed by different letters within the same column are significantly different at P<0.05, according to ANOVA and Tukey’s test. 

** Coefficient of variation (CV). 

 

 

 

 

 

Effect of Effect of Effect of Effect of 

Particle size Extraction time Extraction temperature Ultrasonic power 

Size CUPRAC DPPH Time CUPRAC DPPH Temperature CUPRAC DPPH Power CUPRAC DPPH 

mm mg TE/g  mg TE/g  min mg TE/g  mg TE/g  °C mg TE/g  mg TE/g  W mg TE/g  mg TE/g  

1.40 32.91 ± 1.44a* 0.129 ± 0.002a 10 31.97 ± 0.03a 0.113 ± 0.006a Ambient  33.49 ± 0.37b 0.125 ± 0.003a 150 32.38 ± 0.84a 0.120 ± 0.001a 

2.00 29.87 ± 0.04ab 0.122 ± 0.001b 20 32.37 ± 0.91a  0.116 ± 0.005a 30 33.76 ± 0.56b 0.125 ± 0.001a 200 32.44 ± 1.30a 0.117 ± 0.003a 

2.80 28.75 ± 1.00b 0.118 ± 0.003b 30 32.76 ± 0.04a 0.122 ± 0.016a 40 34.40 ± 0.63ab 0.128 ± 0.001a 250 33.61 ± 0.42a 0.117 ± 0.007a 

   40 33.47 ± 0.74a 0.111 ± 0.010a 50 36.29 ± 0.67a 0.128 ± 0.002a    

   50 32.66 ± 0.54a 0.104 ± 0.009a       

   60 33.52 ± 0.82a 0.112 ± 0.007a       

CV** 4.42% 2.53%  1.91% 8.58%  2.17% 1.73%  3.72% 5.31% 
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Figures 

Fig. 1. Experimental design of the experiment.  

TPC: Total phenolic content; TF: Total flavonoid content. 

Fig. 2. Effect of particle size of sample on phenolic acids and hesperidin (A, B); effect of extraction 

time on phenolic acids and hesperidin (C, D); effect of extraction temperature on phenolic acids and 

hesperidin (E, F); effect of ultrasonic power on phenolic acids and hesperidin (G, H). Data are 

expressed as mean ± standard deviation (n=3). Different letters above histogram bars indicate 

significant differences between means according to ANOVA and Tukey’s test at P<0.05.  

Fig. 3. Images of the morphology of different lemon pomace particle sizes using scanning 

electron microscopy (SEM): 1.40 mm (a); 2.00 mm (b) and 2.80 mm (c). 
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