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CHAPTER 1 
 

INTRODUCTION TO FUNGAL PHYSIOLOGY 
 

Graeme M. Walker & Nia A. White 
 
 1.1. Introduction 
 

Fungal physiology refers to the nutrition, metabolism, growth, reproduction 

and death of fungal cells. It also generally relates to interaction of fungi with their 

biotic and abiotic surroundings, including cellular responses to environmental stress. 

The physiology of fungal cells impacts significantly on the environment, industrial 

processes and human health. In relation to ecological aspects, the biogeochemical 

cycling of carbon in Nature would not be possible without the participation of fungi 

acting as primary decomposers of organic material. Furthermore, in agricultural 

operations fungi play important roles as mutualistic symbionts, pathogens and 

saprophytes, where they mobilize nutrients and affect the physico-chemical 

environment, or can be exploited as agents of biocontrol or as bio-fertilizers. Fungal 

metabolism is also responsible for the detoxification of organic pollutants and for 

bioremediating heavy metals and other recalcitrant chemicals in the environment 

(including waste- and ground-waters). The production of many economically 

important industrial commodities relies on the exploitation of yeast and fungal 

metabolism and these include such diverse products as whole foods, food additives, 

fermented beverages, antibiotics, probiotics, pigments, pharmaceuticals, biofuels, 

enzymes, vitamins, organic and fatty acids and sterols. More negatively, fungi can 

cause considerable disease, spoilage and decay of important artefacts, commodities 

and materials, buildings and of course food supplies.  In terms of human health, some 

yeasts and fungi represent major opportunistic life-threatening pathogens, whilst 

others are life-savers as they provide antimicrobial and chemotherapeutic agents. In 
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modern biotechnology, several yeast species are being exploited as hosts for the 

expression of human therapeutic proteins following recombinant DNA and gene 

editing technologies (see Chapter 9). Recently, the application of gene editing using 

CRISPR/Cas  is leading to a revolution in fungal genetic engineering (see Chapter 2). 

Furthermore, an international synthetic biology research consortium, called Sc-2.0, 

has embarked on the construction of a completely synthetic version of S. cerevisiae. 

This would represent the world’s first fully synthetic eukaryotic genome! In addition 

to the direct industrial exploitation of yeasts and fungi, it is important to note that 

these organisms, most notably the yeast Saccharomyces cerevisiae, play increasingly 

significant roles as model eukaryotic cells in furthering our fundamental knowledge 

of biological and biomedical science. This is especially the case now that numerous 

fungal genomes have been completely sequenced and the information gleaned from 

fungal genomics and proteomics is providing valuable insight into human genetics 

and heritable disorders. However, knowledge of cell physiology is essential if the 

functions of many of the currently unknown fungal genes, including “synthetic” ones, 

are to be fully elucidated.  

  It is apparent, therefore, that fungi are important organisms for human society, 

health and well-being and that studies of fungal physiology are very pertinent to our 

understanding, control and exploitation of this group of microorganisms. This Chapter 

describes some basic aspects of fungal cell physiology, focusing primarily on 

nutrition, growth and metabolism in unicellular yeasts and filamentous fungi. 

 

 1.2. Morphology of yeasts and fungi 
 

There are a diversity of yeast and fungal cellular morphologies. Most higher 

fungi are filamentous, yeasts grow as unicells, and some primitive fungi such as the 
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chytridomycota grow as individual rounded cells or dichotomous branched chains of 

cells with root like rhizoids for attachment to a nutrient resource. Here we will 

consider the most common growth forms, the filamentous fungi and unicellular 

yeasts. 

 

1.2.1. Filamentous fungi 

          The gross morphologies of macrofungi and microfungi are varied and often 

apparent throughout the environment (see Plate 1.1).  For example, we can easily 

recognise a variety of mushrooms and toadstools, the sexual fruiting bodies of certain 

macro fungi (the higher fungi Asomycota and Basidiomycota and related forms), 

during a walk through pasture or woodland. Microfungi (the moulds) are also diverse 

and are often observed on decaying foods and detritus, whereas many, including the 

coloured rusts, smuts and mildews, are common plant pathogens. Closer inspection of 

these visible structures, however, reveals that all are composed of aggregated long, 

branching threads termed hyphae (singular: hypha), organised to support spores for 

reproduction and dissemination. The hyphae of these aerial structures extend and 

branch within the supporting substratum as a network, termed a mycelium, from 

which the apically growing hyphae seek out, exploit and translocate available 

nutrients. Apically growing hyphae usually have a relatively constant diameter 

ranging from 1- 30m or more, depending on fungal species and growth conditions.  

Filamentous fungi may be cultivated within the laboratory on a variety of different 

liquid or solid media. On agar, the radially expanding colonial growth form of the 

fungal mycelium is most evident, extending from an inoculum, on, within and 

sometimes above the substrate, forming a near spherical 3-dimensional colony. This 
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radiating, circular pattern is also visible during the growth of fairy ring fungi in 

grassland and as ringworm infections of the skin (Plate 1.1). 

               The hyphae of individual fungi may (theoretically) extend endlessly via 

apical growth, provided they are supported with appropriate nutrients and other 

environmental conditions. Eucarpic fungi are therefore spatially and temporally 

indeterminate organisms, and unlike animal, plant and other microbial individuals, 

have no predetermined maximum size or age. The mycelium is not, however, simply a 

homogeneously extending entity, but displays considerable developmental plasticity. 

Different interconnected regions of the fungal mycelium may grow, branch, 

anastomose (fuse), age, die, sporulate, and display varying physiological and 

biochemical activities at different times or even simultaneously, depending on local 

micro-environmental conditions. Thus, colonies growing on relatively homogeneous 

media may be pigmented, exhibit different morphological sectors, produce aerial 

structures, grow as fast-effuse or slow-dense forms, and even exhibit rhythmic growth 

As well as reproductive structures and substrate mycelium, certain higher fungi, most 

notably the basidiomycetes, when growing within an environment where nutrients are 

distributed heterogeneously, can differentiate into long string-like structures called 

rhizomorphs or cords. These linear organs have evolved to rapidly explore for, 

connect and translocate water and nutrients between patches of resource (e.g. pieces 

of fallen timber on the forest floor or from tree root to tree root). Accordingly, many, 

particularly mature rhizomorphs, contain internal vessel hyphae which possess a wide 

diameter, forming a channel running along the organ. The peripheral hyphae are often 

closely packed and melanized for insulation (Plate 1.1) 
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Filamentous fungi and yeasts are simply different styles of fungal growth 

suitable for occupation of different habitats and produced by differing cell growth 

polarities. Many species termed dimorphic fungi can adopt either the hyphal or 

unicellular yeast forms according to environmental circumstances. For example, 

certain important human and animal pathogens exist as yeast forms mobilised in body 

fluids but are able to form hyphae or pseudohyphae for tissue invasion.  

 
1.2.2. Yeasts 
 

Yeasts are unicellular (mostly Ascomycete, Basidiomycete or members of the  

Deuteromycete group) fungi that divide asexually by budding or fission and whose 

individual cell size can vary widely from 2-3m to 20-50m in length and 1-10m in 

width. Saccharomyces cerevisiae, commonly referred to as brewer’s or baker’s yeast, 

is generally ellipsoid in shape with a large diameter of 5-10m and a small diameter 

of around 5m (Figure 1.1). There is great diversity in cell shapes and modes of 

cellular reproduction in the yeasts, as summarised in Tables 1.1. 

 <FIGURE 1.1 HERE> 

The morphology of agar-grown yeasts show great diversity in terms of colour, 

texture and geometry (peripheries, contours) of giant colonies. Several yeasts are 

pigmented and the following colours may be visualised in surface-grown colonies: 

cream (e.g. S. cerevisiae); white (e.g. Geotrichum candidum); black (e.g. 

Aureobasidium pullulans); pink (e.g. Phaffia rhodozyma); red (e.g. Rhodotorula 

rubra); orange (e.g. Rhodosporidium spp.) and yellow (e.g. Cryptococcus laurentii). 

The pigments of some yeasts have biotechnological uses, including astaxanthin from 

P. rhodozyma in aquacultural feed supplements for farmed salmon (that are unable to 

synthesise these natural pink compounds).  

<TABLE 1.1 HERE> 
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1.3. Ultrastructure and function of fungal cells 
 
1.3.1 The fungal cell surface  

The cell envelope in yeasts and fungi is the peripheral structure that encases the 

cytoplasm and comprises the plasma membrane, the periplasm, the cell wall and 

additional extracellular structural components (such as fimbriae and capsules). The 

cell wall represents a dynamically forming exoskeleton that protects the fungal 

protoplast from the external environment and defines directional growth, cellular 

strength, shape and interactive properties (Figure 1.2). In filamentous fungi, cell wall 

formation and organisation is intimately bound to the process of apical growth. Thus, 

for example in Neurospora crassa, the wall is thin (approx. 50nm) at the apex but 

becomes thicker (approx. 125nm) at 250m behind the tip.  The plasma membrane 

component of the fungal cell envelope is a phospholipid bilayer interspersed with 

globular proteins that dictates entry of nutrients and exit of metabolites and represents 

a selective barrier for their translocation. Ergosterol is the major sterol found in the 

membranes of fungi, in contrast to the cholesterol found in the membranes of animals 

and phytosterols in plants. This distinction is exploited during the use of certain 

antifungal agents used to treat some fungal infections, and can be used as an assay 

tool to quantify fungal growth. The periplasm, or periplasmic space, is the region 

external to the plasma membrane and internal to the cell wall. In yeast cells, it 

comprises secreted proteins (mannoproteins) and enzymes (such as invertase and acid 

phosphatase) that are unable to traverse the cell wall. In filamentous fungi, the cell 

membrane and wall may be intimately bound as hyphae are often resistant to 

plasmolysis. <INSERT FIGURE 1.2> 

Fungal cell surface topological features can be visualised using scanning electron 

microscopy (SEM) and nanometre resolution achieved using atomic force microscopy 
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(AFM). The latter is beneficial as it can be employed with unfixed, living cells and 

avoids potentially misleading artefacts that may arise when preparing cells for 

electron microscopy.  

Ultrastructural analysis of fungal cell walls reveals a thick, complex fibrillar 

network. The cell walls of filamentous fungi are mainly composed of different 

polysaccharides according to taxonomic group. For example, they may contain either 

chitin, glucans, mannoproteins, chitosan, polyglucuronic acid or cellulose (absent 

from true fungi), together with smaller quantities of proteins and glycoproteins (Table 

1.2). Generally, the semi-crystalline microfibrillar components are organised in a 

network mainly in the central cell wall region and are embedded within an amorphous 

matrix. Bonding occurs between certain components behind the extending hyphal tip, 

thereby strengthening the entire wall structure. The processes of endocytosis and 

exocytosis occur around apical and subapical regions and serve to both shape hyphal 

growth and interactions with the environment (Figure 1.2). There is evidence to 

suggest that the cell wall is a dynamic structure where considerable quantitative and 

qualitative differences occur not only between different fungal species, but also 

between different morphological forms of the same species and even in response to 

environmental stress. For example, a class of hydrophobic proteins called 

hydrophobins are localised within the aerial growth or appresoria (terminal swellings 

involved in infection) of certain fungi, whereas pigmented melanins are often found 

within some fungal cell walls to insulate against biotic and abiotic stresses.  

<INSERT TABLE 1.2 HERE> 

The hyphae of higher fungi extend via tip growth followed by cross-wall 

formation or septation, whereas the lower fungi remain aseptate (except when 

segregating spores or in damaged colony regions). Septa may offer some structural 
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support to hyphae. Significantly, septa serve to compartmentalise hyphae but are 

typically perforated, thereby permitting passage and communication of cytoplasm or 

even protoplasm between compartments. However, septal pores can become blocked 

by Woronin bodies or other materials. This aids morphological and biochemical 

differentiation and serves to seal-off stressed or damaged hyphae from undamaged 

colony regions.  Again, different pore types are representative of different taxonomic 

groups and species (Table 1.2).  

In yeasts, the cell wall provides stability and protection to the cells and its 

structure comprises polysaccharides (predominantly -glucans for rigidity), proteins 

(mainly mannoproteins on the outermost layer for determining porosity), together 

with some lipid, chitin (eg. in bud scar tissue) and inorganic phosphate material. 

Figure 1.3 shows the composition and structure of the S. cerevisiae cell wall.  Hyphal 

cell walls generally contain fewer mannans than yeast cell forms, and such changes in 

composition are even observed during the transition from unicellular to mycelial 

growth of dimorphic fungi.   

Chitin is also found in yeast cell walls and is a major constituent of bud scars 

(Figure 1.1). These are remnants of previous budding events found on the surface of 

mother cells following birth of daughter cells (buds). The chitin-rich bud scars of 

yeast cells can be stained with fluorescent dyes (e.g. calcoflour white) and this can 

provide useful information regarding cellular age, since the number of scars 

represents the number of completed cell division cycles. Outside the cell wall in 

fungi, several extramural layers may exist including fimbriae and capsules. Fungal 

fimbriae are long, protein-containing protrusions appearing from the cell wall of 

certain basidiomycetous and ascomycetous fungi that are involved in cell-cell 

conjugation. Capsules are extracellular polysaccharide-containing structures found in 
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basidiomycetous fungi that are involved in stress protection. In Cryptococcus 

neoformans (the pathogenic yeast state of Filobasidiella neoformans) the capsule may 

determine virulence properties and evasion from macrophages. One extrahyphal 

substance, the polymer pullulan, is produced commercially from Aureobasidium 

pullulans, and is used in the production of oral hygiene products <FIGURE 1.3 

HERE> 

 

1.3.2. Subcellular architecture and organelle function 

 Transmission electron microscopy of ultrathin sections of fungal cells reveals 

intracellular fine structure (Figures 1.2 & 1.4). Sub-cellular compartments 

(organelles) are bathed in an aqueous cytoplasm containing soluble proteins and other 

macromolecules together with low-molecular weight metabolites.  

However, the hyphae of central (and therefore older) colony regions of 

filamentous fungi may become devoid of protoplasm and organelles,  as protoplasmic 

components are driven forward or are recycled, to support the growth of actively 

growing hyphal-tips. Cytoplasmic components additionally comprise microbodies, 

ribosomes, proteasomes, lipid particles and a cytoskeletal network. The latter confers 

structural stability to the fungal cytoplasm and consists of microtubules and 

microfilaments. The following membrane-bound organelles may be found in a typical 

fungal cell: nucleus, endoplasmic reticulum (ER), mitochondria, Golgi apparatus, 

secretory vesicles and vacuoles. Several of these organelles form extended 

membranous systems. For example, the ER is contiguous with the nuclear membrane 

and secretion of fungal proteins involves inter-membrane trafficking in which the ER, 

Golgi apparatus, plasma membrane and vesicles all participate. The physiological 
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function of the various fungal cell organelles is summarised in Table 1.3.  <FIGURE 

1.4 AND TABLE 1.3 HERE> 

The nucleus is the structure that defines the eukaryotic nature of fungal cells. 

It is bound by a double-membrane and encases the chromosomes in a nucleoplasm. 

Most yeast and fungi are haploid (singular copies of each chromosome), although 

some (e.g.  S. cerevisiae) may alternate between haploidy and diploidy. Many 

industrial strains of S. cerevisiae exhibit aneuploidy (odd numbers of chromosomes) 

or are polyploid (multiple chromosome copies). Chromosomes comprise DNA-

protein structures that replicate and segregate to newly-divided cells or hyphal 

compartments at mitosis. This, of course, ensures that genetic material is passed onto 

daughter cells or septated compartments at cell division. Yeasts usually contain a 

single nucleus per cell. However, the hyphal compartments of filamentous fungi may 

contain one or more nuclei. Monokaryotic basidiomycetes possess one nucleus per 

compartment whereas dikaryons and heterokaryons possess two or more genetically 

distinct haploid nuclei. The maintenance of multiple nuclei within individual hyphal 

compartments allows fungi to take advantage of both haploid and diploid life-styles. 

This is discussed further in Chapter 2.  

 In filamentous fungi, a phase-dark near-spherical region, which also stains 

with iron-haemotoxylin, is evident by light microscopy at the apex during hyphal tip 

growth. The region is termed the Spitzenkörper, the apical vesicle cluster or centre or 

apical body, and it consists of masses of small membrane-bound vesicles around a 

vesicle-free core with emergent microfilaments and microtubules (Figure 1.2). The 

Spitzenkörper contains differently sized vesicles derived from Golgi bodies, either 

large vesicles or microvesicles (chitosomes), with varying composition. It orientates 

to the side as the direction of tip growth changes, and disappears when growth ceases. 
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This vesicle supply centre is involved in wall extension and hence tip growth, 

branching, clamp connection formation (in Basidiomycetes) and germ tube formation. 

 
1.4. Fungal nutrition and cellular biosyntheses 
 
1.4.1 Chemical requirements for growth 
 

Yeasts and fungi have relatively simple nutritional needs and most species 

would be able to survive quite well in aerobic conditions if supplied with glucose, 

ammonium salts, inorganic ions and a few growth factors. Exceptions to this would 

include for example, obligate symbionts such as the Vesicular-Arbuscular 

Mycorrhizal fungi (VAM) which require growth of a plant partner for cultivation. 

Macronutrients, supplied at millimolar concentrations, comprise sources of carbon, 

nitrogen, oxygen, sulphur, phosphorus, potassium and magnesium; and 

micronutrients, supplied at micromolar concentrations, comprise trace elements like 

calcium, copper, iron, manganese and zinc would be required for fungal cell growth 

(Table 1.4). Some fungi are oligotrophic, apparently growing with very limited 

nutrient supply, surviving by scavenging minute quantities of volatile organic 

compounds from the atmosphere.  <INSERT TABLE 1.4 HERE> 

Being chemoorganotrophs, fungi need fixed forms of organic compounds for 

their carbon and energy supply. Sugars are widely utilised for fungal growth, and can 

range from simple hexoses like glucose to polysaccharides like starch and cellulose. 

Some fungi can occasionally utilise aromatic hydrocarbons (e.g. lignin by the white-

rot fungi). Table 1.5 outlines the variety of carbon sources which can be utilised by 

yeasts and filamentous fungi for growth. <INSERT TABLE 1.5 HERE> 

Fungi are non-diazotrophic (cannot fix nitrogen) and need to be supplied with 

nitrogenous compounds, either in inorganic form such as ammonium salts, or in 

organic form such as amino acids. Ammonium  sulphate is a commonly used nitrogen 
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source in fungal growth media since it also provides a source of utilisable sulphur.  

Many fungi (but not the yeast S. cerevisiae) can also grow on nitrate, and if able to do 

so, may also utilize nitrite. Nitrate reductase, followed by nitrite reductase, are the 

enzymes responsible for converting nitrate to ammonia. Most fungi can assimilate 

amino acids, amines and amides as nitrogen sources. Most fungi (but not many 

yeasts) are also proteolytic and can hydrolyse proteins (via extracellularly secreted 

proteases) to liberate utlisable amino acids for growth. Urea utilisation is common in 

fungi and some basidiomycotenous yeasts are classed as urease-positive (able to 

utilise urea) whilst several ascomycotenous yeasts are urease-negative.  

In terms of oxygen requirements, most fungi are aerobes and are often 

described as being microaerophilic (preferring an oxygen tension below that of 

normal atmospheric). Although yeasts like S. cerevisiae are sometimes referred to as 

facultative anaerobes, they cannot actually grow in strictly anaerobic conditions 

unless supplied with certain fatty acids and sterols (which they cannot synthesise 

without molecular oxygen). In fact, there are thought to be very few yeast species that 

are obligately anaerobic. Unsaturated fatty acids (e.g. oleic acid) and sterols (e.g. 

ergosterol) are important constituents of the yeast cell membrane, and oxygen is 

required for their synthesis and to maintain membrane functional integrity and stress 

resistance. For aerobically respiring yeasts and fungi, oxygen is required as the 

terminal electron acceptor where it is finally reduced to water in the electron transport 

chain. Different fungal species respond to oxygen availability in diverse ways and 

Table 1.6. categorises fungi into different groups on this basis. <TABLE 1.6 HERE> 

Sulphur sources for fungal growth include sulphate, sulphite, thiosulphate, 

methionine and glutathione with inorganic sulphate and the sulphur amino acid 
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methionine being effectively utilised.  Virtually all yeasts can synthesize sulphur 

amino acids from sulphate, the most oxidized form of inorganic sulphur. 

Phosphorus is essential for biosynthesis of fungal nucleic acids, phospholipids, 

ATP, glycophosphates and polyphosphates. Hence, the phosphate content of fungi is 

considerable (e.g. in yeast cells, this accounts for around 3-5% of dry weight; the 

major part of this is in the form of orthophosphate (H2PO4-) which acts as a substrate 

and enzyme effector). The fungal vacuole can serve as a storage site for phosphate in 

the form of complexed inorganic polyphosphates (also referred to as volutin 

granules). Both nitrogen and phosphorus availability may be growth limiting in 

Nature. Filamentous fungi have evolved a number of biochemical and morphological 

strategies allowing capture of often poorly available phosphorus within the natural 

environment. Plants exploit such efficiency during symbioses between their roots and 

certain mycorrhizal fungi. The major storage form of phosphorus in plants is phytic 

acid (myo-inositol hexa-dihydrogenphosphate) that is poorly utilised by monogastrics 

(e.g. humans, pigs, poultry) and fungal (and yeast) phytases have applications in 

reducing phytate content of foods and feeds (see Chapter 8). 

Concerning requirements for minerals, potassium, magnesium and several 

trace elements are necessary for fungal growth.  K and Mg are macroelements 

required in millimolar concentrations primarily as enzyme cofactors, whereas other 

microelements (trace elements) are generally required in the micromolar range.  These 

include: Mn, Ca Fe, Zn, Cu, Ni, Co, Mo.  Table 1.7 summarises the main metals 

required for fungal growth. Toxic minerals (eg Ag, As, Ba, Cs, Cd, Hg, Li, Pb) 

adversely affect fungal growth generally at concentrations greater than 100M.  

<TABLE 1.7 HERE> 
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Fungal growth factors are organic compounds occasionally needed in very low 

concentrations for specific enzymatic or structural roles, but not as energy sources. 

These include vitamins (e.g. thiamine, biotin), purines, pyrimidines, nucleosides, 

nucleotides, amino acids, fatty acids and sterols. For fungi to have a growth factor 

requirement, this indicates that cells cannot synthesise the particular factor resulting in 

the curtailment of growth without its provision in culture media.  Some fungi (e.g. 

Aspergillus niger, Penicillium chrysogenum) have very simple nutritional needs and 

are able to synthesise their own growth factors from glucose. 

 
1.4.2 Fungal cultivation media 
 

Fungal nutritional requirements are important not only for successful 

cultivation in the laboratory but also for the optimisation of industrial fermentation 

processes. In the laboratory, it is relatively easy to grow yeasts and fungi on complex 

culture media such as malt extract or potato-dextrose agar or broth, which are both 

carbon rich and in the acidic pH range. Mushrooms are cultivated on various solid-

substrates depending on provincial availability. Therefore, Agaricus bisporus 

(common button mushroom) is grown in the UK, US and France on wheat-straw; the 

padi-straw mushroom (Volvariella volvacea) is grown in South-east Asia on damp 

rice-straw and in Hong-Kong on cotton waste; and in Japan, the shiitake mushroom 

(Lentinus edodes) is cultivated on fresh oak logs (see Chapter 6). In industry, media 

for fungal fermentation purposes needs to be optimised with regard to the specific 

application and production process. For some industrial processes, growth media may 

already be relatively complete in a nutritional sense, such as malt wort or molasses for 

brewing or baker’s yeast production, respectively (Table 1.8). However, for other 

processes, supplementation of agriculturally-derived substrates like corn steep liquor, 

molasses or malt broth with additional nutrients and growth factors may be necessary. 



 15

For example, for penicillin production by Penicillium spp. the following may 

constitute a suitable fermentation medium: sucrose (3 g/L), corn steep liquor (100 

g/L), KH2PO4 (1g/L), (NH4)2SO4 (12 g/L), CaCl2.2H2O (0.06 g/L), phenoxyacetic 

acid (5.7 g/L)   Whereas, other industrial processes such as the growth of Fusarium 

graminarium for the production of Quorn™ mycoprotein, requires culture on a 

completely defined medium.  <TABLE 1.8 HERE> 

 
1.4.3 Nutrient uptake and assimilation 
 

Fungal cells utilise a diverse range of nutrients and employ equally diverse 

nutrient acquisition strategies. Fungi are non-motile, saprophytic (and sometimes 

parasitic), chemo-organotrophic organisms. They exhibit dynamic interactions with 

their nutritional environment that may be exemplified by certain morphological 

changes depending on nutrient availability. For example, the filamentous mode of 

growth observed at the periphery of certain yeast colonies growing in agar is akin to a 

foraging for nutrients as observed in certain eucarpic fungi. Metabolic dynamism is 

also evident in yeasts which, although not avid secretors of hydrolytic enzymes like 

higher fungi, are nevertheless able to secrete some enzymes to degrade polymers such 

as starch (as in amylolytic yeasts like Schwanniomyces spp.).  

Several cellular envelope barriers to nutrient uptake by fungal cells exist, 

namely: the capsule, the cell wall, the periplasm and the cell membrane. Although not 

considered as freely porous structures, fungal cell walls are relatively porous to 

molecules up to an average molecular mass of around 300Da, and will generally 

retain molecules greater than around 700Da.  Typically, fungi absorb only small 

soluble nutrients such as monosaccharides and amino acids. 

The plasma membrane is the major selectively permeable barrier which 

dictates nutrient entry and metabolite exit from the fungal cell. Membrane transport 
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mechanisms are important in fungal physiology since they govern the rates at which 

cells metabolise, grow and divide. Fungi possess different modes of passive and 

active uptake at the plasma membrane: free diffusion, facilitated diffusion, diffusion 

channels and active transport (Table 1.9). Active transport of nutrients such as sugars, 

amino acids, nitrate, ammonium, sulphate and phosphate in filamentous fungi 

involves spatial separation of the ion pumps mostly behind the apex, whereas the 

symport proteins are active close to the tip. Thus, nutrient uptake occurs at the hyphal 

tip as it continuously drives into fresh resource, and the mitochondria localised behind 

the apex supply ATP to support the ion pump and generate proton motive force. 

<TABLE 1.9 HERE> 

 
1.4.4. Overview of fungal biosynthetic pathways 
 

Anabolic pathways are energy-consuming, reductive processes which lead to 

the biosynthesis of new cellular material and are mediated by dehydrogenase enzymes 

which predominantly use reduced NADP+ as the redox cofactor. NADPH is generated 

by the hexose monophosphate pathway (or Warburg-Dickens pathway) which 

accompanies glycolysis (see section 1.5a). In S. cerevisiae, up to 20% of total glucose 

may be degraded via the hexose monphosphate pathway.  This pathway generates 

cytosolic NADPH (following the dehydrogenation of glucose 6-phosphate using 

glucose 6-phosphate dehydrogenase and NADP+ as hydrogen acceptor) for 

biosynthetic reactions leading to the production of fatty acids, amino acids, sugar 

alcohols, structural and storage polysaccharides and secondary metabolites. Besides 

generating NADPH, the hexose monophosphate pathway also produces ribose sugars 

for the synthesis of nucleic acids, RNA and DNA and for nucleotide coenzymes, 

NAD, NADP, FAD and FMN. This is summarised as follows: 
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Glucose 6-phosphate + 2NADP+--> Ribulose 5-phosphate + CO2 +NADPH + 2H+ 

 
and complete oxidation of glucose 6-phosphate would result in: 

Glucose 6-phosphate + 12NADP+ ->  6CO2 + 12NADPH + 12H+ + Pi 

 Fungal growth on non-carbohydrate substrates as sole carbon sources (e.g. 

ethanol, glycerol, succinate and acetate) may lead to gluconeogenesis (conversion of 

pyruvate to glucose) and polysaccharide biosynthesis. Gluconeogenesis may be 

regarded as a reversal of glycolysis and requires ATP as energy and NADH as 

reducing power. 

 Concerning fungal amino acid biosynthesis, simple nitrogenous compounds 

such as ammonium may be assimilated into amino acid families, the carbon skeletons 

of which originate from common precursors of intermediary carbon metabolism.  

 The two main fungal storage carbohydrates are glycogen and trehalose. 

Glycogen is similar to starch with α(1->4) glucan linear components and  α(1->6) 

branches. Trehalose (also known as mycose) is a disaccharide of glucose comprising 

an α,α(1->1) glucoside bond between two α-glucose units. Both trehalose and 

glycogen are synthesised following the formation of UDP-glucose, catalysed by UDP-

glucose pyrophosphorylase: 

 UTP + Glucose 1-phosphate -> UDP-glucose + Pyrophosphate 

  

             Glycogen is synthesised by glycogen synthase. Glycogen may be metabolised 

by glycogen phosphorylase when nutrients become limited under starvation 

conditions and this contributes to the maintenance metabolism of cells by furnishing 

energy in the form of ATP. In yeast cells, glycogen breakdown is accompanied by 

membrane sterol biosynthesis (in the presence of some oxygen) and this is important 

for brewing yeast vitality and successful beer fermentations. The other major storage 

carbohydrate, trehalose, is synthesized from glucose 6-phosphate and UDP-glucose 

by trehalose 6-phosphate synthase and converted to trehalose by a phosphatase. In 
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addition to a storage role, trehalose is an important translocation material in 

filamentous forms and is also involved in stress protection in yeasts and fungi, 

accumulating when cells are subject to environmental insults such as heat shock or 

osmotic stress, or during plant host-fungal parasite interactions. Trehalose acts by 

protecting cell membranes against desiccation or thermal damage. Polyols, such as 

mannitol derived from fructose phosphate and glycerol from the glycolytic 

intermediate dihydroxyacetone phosphate, are also translocated by fungi. In 

particular, glycerol is produced as a “compatible solute” in response to osmotic stress 

to counteract the loss of intracellular water (see section 1.6.1). Glycerol is also a yeast 

fermentation by-product and contributes to the viscosity or mouthfeel of alcoholic 

beverages such as beer and wine.  
 
 
1.4.5. Fungal cell wall growth 

 The structural polysaccharides in fungal cell walls include mannans, glucans 

and chitin and are synthesised from sugar nucleotides substrates formed by 

pyrophosphorylase enzymes.  For example: 

 

  Glucose 1-phosphate + UTP  ->UDP-glucose + PPi 

  Mannose 1-phosphate + GTP -> GDP-mannose + PPi 

 

  Glucan synthesis involves plasma membrane-associated glucan synthetases for 

assembly of -1,3 linkages and -1,6 branches of cell wall glucan. Chitin (a polymer 

of N-acetylglucosamine) is an important fungal cell wall structural component and is 

involved in the yeast budding process and in dimorphic transitions from yeast to 

filamentous forms. Chitin synthetases catalyze the transfer of N-acetylglucosamine 

from UDP-N-acetylglucosamine to a growing chitin polymer within the fungal cell 

wall. The mannoproteins predominantly of unicellular forms are pre-assembled within 

the Golgi and are delivered to the cell wall via vesicles from the vesicle supply centre. 

Various vesicles containing cell wall-synthetic enzymes, wall-lytic enzymes, enzyme 
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activators and certain pre-formed wall components, are transported to the tip where 

they fuse with the plasma membrane and release their contents, which together with 

substrates delivered from the cytosol, facilitate synthesis of the growing cell wall.  

 
1.5. Fungal metabolism  
 
1.5.1 Carbon catabolism 

Being chemoorganotrophs, fungi derive their energy from the breakdown of 

organic compounds. Generally speaking, fungi, but few yeast species, extracellularly 

breakdown polymeric compounds by secreted enzymes prior to utilization of 

monomers as carbon and energy sources.  Due to their relatively large size (20-60 

KDa), enzymes assembled by the Golgi are transported in vesicles to be secreted from 

sites of cell growth, essentially from extending hyphal tips. Enzymes may either 

become linked to the cell wall as wall bound enzymes or may diffuse externally to 

decay substrates within the local environment.  

Some examples follow of hydrolytic, oxidative, peroxidative and free radical 

generating enzyme systems produced by fungi for the degradation of polymeric 

compounds: 

Pectin  Pectin lyase, polygalactorunase   Galacturonic acid 

Starch  Amylases,glucoamylase   Glucose 

 Inulin  Inulinase   Fructose 

 Cellulose  Cellulases Glucose  

 Hemicellulose     xylanaseases,Hemicellul Xylose, Glucose 

 Lipids  Lipases   Fatty acids             

Proteins Proteinases  Amino acids 

Chitin                  Chitinase                            N-acetylglucosamine 

 
  
Lignin  Ligninase; manganese peroxidase; laccase; glucose oxidase      Variety of   
                                                                                              largely phenolic products 
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Several lipolytic yeasts are known (eg Candida rugosa, Yarrowia lipolytica) 

which secrete lipases to degrade triacylgycerol substrates to fatty acids and glycerol.  

In wood, the cellulose and hemicellulose components are embedded within a 

heteropolymeric 3-D lignin matrix, thus forming a complex lignocellulose material. 

Only certain filamentous basidiomycete or ascomycete fungi are able to degrade the 

recalcitrant lignin component making available the cellulose or hemicellulose 

components. These are known as white-rot fungi due to resultant colouration of the 

delignified wood. Such fungi employ a cocktail of oxidative (including laccases) and 

peroxidative enzymes, together with hydrogen peroxide generating enzyme systems, 

to attack at least 15 different inter-unit bond types extant within the lignin polymer. 

The manganese and lignin peroxidase enzyme systems operate by releasing highly 

reactive but transient oxygen free radicals, which bombard and react with parts of the 

lignin molecule, generating a chain of chemical oxidations and producing a range of 

mainly phenolic end products. White-rot fungi have applications in, for example, 

upgrading lignocellulose waste for animal feed, paper production and bleaching, the 

bioremediation of contaminated land and water and (potentially) for biofuel 

production (e.g. pre-treatment of lignocellulosic biomass for second-generation 

bioethanol). Brown-rot and soft-rot (in wet wood) fungi are only able to degrade the 

cellulose and hemicellulose components of wood. Cellulose decomposition involves 

the synergistic activity of endoglucanases (that hydrolyse the internal bonds of 

cellulose), exoglucanases (that cleave cellobiose units from the end of the cellulose 

chain) and glucosidases (that hydrolyse cellobiose to glucose). Initial attack of 

cellulose microfibrills within the cell wall may involve the generation of hydrogen 

peroxide. Commercially available cellulolytic enzymes are produced from 

filamentous fungal cultures, notably Trichoderma reesei. 
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           Catabolic pathways are oxidative processes which remove electrons from 

intermediate carbon compounds and use these to generate energy in the form of ATP. 

The catabolic sequence of enzyme-catalyzed reactions that convert glucose to pyruvic 

acid is known as glycolysis, and this pathway provides fungal cells with energy, 

together with precursor molecules and reducing power (in the form of NADH) for 

biosynthetic pathways.  Therefore, in serving both catabolic and anabolic  functions, 

glycolysis is sometimes referred to as an amphibolic pathway. Glycolysis may be 

summarised as follows:  

 Glucose + 2ADP + 2Pi + 2NAD+       2Pyruvate + 2ATP + 2NADH+ + 2H+ 

 
 During glycolysis, glucose is phosphorylated using ATP to produce fructose 

1,6-biphosphate which is then split by aldolase to form two triose phosphate 

compounds. Further phosphorylation occurs forming two triose diphosphates from 

which four H atoms are accepted by two molecules of  NAD+.  In the latter stages of 

glycolysis, four molecules of ATP are formed (by transfer of phosphate from the 

triose diphosphates to ADP) and this results in the formation of two molecules of 

pyruvic acid. ATP production (2 molecules net) during glycolysis is referred to as 

substrate-level phosphorylation. 

 In yeast cells undergoing alcoholic fermentation of sugars under anaerobic 

conditions, NAD+ is regenerated in terminal step reactions from pyruvate.  In the first 

of these, pyruvate is decarboxylated (by pyruvate decarboxylase) before a final 

reduction, catalyzed by alcohol dehydrogenase (ADH) to ethanol. Such regeneration 

of NAD+ prevents glycolysis from stalling and maintains the cell’s oxidation-

reduction balance and ATP production. Additional minor fermentation metabolites are 

produced by fermenting yeast cells, including glycerol, fusel alcohols (e.g. isoamyl 

alcohol), esters, (e.g. ethyl acetate) organic acids (e.g. citrate, succinate, acetate) and 
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aldehydes (e.g. acetaldehyde). Such compounds are important in flavour development 

in alcoholic beverages such as beer, wine and whisky.   

Aerobic dissimilation of glucose by fungi leads to respiration which is the 

major energy-yielding metabolic route and involves glycolysis, the citric acid cycle, 

the electron transport chain and oxidative phosphorylation. Yeasts, in particular S. 

cerevisiae, are unique microorganisms in that they can switch from respiration to 

fermentation, and vice versa, depending on the prevailing growth conditions.  In 

addition to glucose, many carbon substrates can be respired by fungi including: 

pentose sugars (e.g. xylose), sugar alcohols (e.g. glycerol), organic acids (e.g. acetic 

acid), aliphatic alcohols (eg methanol, ethanol), hydrocarbons (e.g. n-alkanes) and 

aromatic compounds (e.g. phenol). Fatty acids are made available for fungal 

catabolism following extracellular lipolysis of fats and are metabolised by-oxidation 

in mitochondria.  

During glucose respiration under aerobic conditions, pyruvate enters the 

mitochondria where it is oxidatively decarboxylated to acetyl CoA by pyruvate 

dehydrogenase which acts as the link between glycolysis and the cyclic series of 

enzyme catalyzed reactions known as the citric acid cycle (or Krebs cycle).  This 

cycle represents the common pathway for the oxidation of sugars and other carbon 

sources in yeasts and filamentous fungi and results in the complete oxidation of one 

pyruvate molecule to: 2CO2, 3NADH, 1FADH2, 4H+ and 1GTP. Like glycolysis, the 

citric acid cycle is amphibolic since it performs both catabolic and anabolic functions, 

the latter providing intermediate precursors (e.g. oxaloacetate and ketoglutarate) 

for the biosynthesis of amino acids and nucleotides.  The removal of intermediates 

necessitates their replenishment to ensure continued operation of the citric acid cycle.  
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The glyoxylate cycle is an example of such an anaplerotic reaction and involves the 

actions of the enzymes pyruvate carboxylase: 

 Pyruvate +CO2 + ATP + H2O -> Oxaloacetate + ADP + Pi 

and phosophoenolpyruvate carboxykinase: 

 Phosphoenolpyruvate + CO2 + H2O -> Oxaloacetate + H3PO4 

 During the citric acid cycle, dehydrogenase enzymes transfer hydrogen atoms 

to the redox carriers NAD+ and FAD, which become reduced.  On the inner membrane 

of mitochondria, these reduced coenzymes are then re-oxidized and oxygen is reduced 

to water via the electron transport chain. Energy released by electron transfer is used to 

synthesize ATP by a process called oxidative phosphorylation. The chemiosmotic 

theory describes proton pumping across the inner mitochondrial membrane to create a 

transmembrane proton gradient (pH) and a membrane potential difference. Together, 

these comprise the proton motive force that is the driving force for ATP synthesis.  

Each pair of electrons in NADH yields about 2.5 ATP while residual energy is largely 

dissipated as metabolic heat.  Since mitochondria are impermeable to NADH, this 

reduced coenzyme generated in the cytoplasm during glycolysis is “shuttled” across the 

mitochondrial membrane using either the glycerophosphate shuttle (that uses NADH to 

reduce dihydroxyacetone phosphate to glycerol 3-phosphate) or the malate shuttle (that 

uses NADH to reduce oxaloacetate to malate).   These processes enable molecules to be 

oxidized within mitochondria to yield reduced cofactors which in turn are oxidized by 

the electron transport chain.  

  Fungi use molecular oxygen as a terminal electron acceptor in aerobic 

respiration in different ways (Table 1.10).  Some yeasts, including S. cerevisiae, 

exhibit alternative respiration characterised by insensitivity to cyanide but sensitivity 

to azide.  <TABLE 1.10 HERE> 
 

1.5.2. Nitrogen metabolism 
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Fungi assimilate simple nitrogenous sources for the biosynthesis of amino 

acids and proteins. For example, ammonium ions are readily utilised and can be 

directly assimilated into the amino acids glutamate and glutamine that serve as 

precursors for the biosynthesis of other amino acids.  Proteins can also be utilised 

following release of extracellular protease enzymes. Glutamate is a key compound in 

both nitrogen and carbon metabolism and glutamine synthetase is important as it 

catalyzes the first step in pathways leading to the synthesis of many important cellular 

macromolecules. Other important enzymes of fungal nitrogen metabolism include 

glutamate dehydrogenase and glutamate synthase (glutamine amide: 2-oxoglutarate-

aminotransferase, or GOGAT), the latter requiring ATP. When glutamine synthetase 

is coupled with glutamate synthase this represents a highly efficient “nitrogen-

scavenging” process for fungi to assimilate ammonia into amino acids and citric acid 

cycle intermediates. The particular route(s) of ammonium assimilation adopted by 

fungi depend on the concentration of available ammonium ions and the intracellular 

amino acid pools. 

Some yeasts (but not S. cerevisiae) and fungi can use nitrate as a sole source 

of nitrogen through the activities of nitrate reductase: 

NO3
-    NO2

-     

and nitrite reductase:     

NO2
-    NH4

+  

The resulting ammonium ions can then be assimilated into glutamate and 

glutamine that represent end products of nitrate assimilation by yeasts. 
 

Urea can also be utilised following its conversion to ammonium by urea 

aminohydrolase (urea carboxylase plus allophanate hydrolase):  
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NH2CONH2 + ATP + HCO3
- -> NH2CONHCOO-   2NH4

+ + 2HCO3
-  

 

Amino acids can either be assimilated into proteins or dissimilated by 

decarboxylation, deamination, transamination and fermentation. Amino acid 

degradation by yeasts and fungi yields both ammonium and glutamate. During 

fermentation, yeasts may produce higher alcohols or fusel oils such as isobutanol and 

isopentanol following amino acid deamination and decarboxylation. These represent 

important yeast-derived flavour constituents in fermented beverages.  

 

1.6 Fungal growth and reproduction 

  
1.6.1 Physical requirements for growth 
 

Most yeast and fungal species thrive in warm, sugary, acidic and aerobic 

conditions. The temperature range for fungal growth is quite wide, but generally 

speaking most species grow very well around 25C. Low-temperature psychrophilic 

fungi and high-temperature thermophilic fungi do, however, exist in nature. Fungal 

growth at various temperatures depends not only on the genetic background of the 

species but also on other prevailing physical growth parameters and nutrient 

availability. With regard to high temperature stress (or heat shock) on fungal cells, 

thermal damage can disrupt hydrogen bonding and hydrophobic interactions leading 

to general denaturation of proteins and nucleic acids. Fungi, of course, have no means 

of regulating their internal temperature and the higher the temperature, the greater the 

cellular damage with cell viability declining when temperatures increases beyond 

growth optimal levels. Temperature optima vary greatly in fungi with those termed 

"thermotolerant” growing well above 40oC. Thermotolerance relates to the transient 
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ability of cells subjected to high temperatures to survive subsequent lethal exposures 

to elevated temperatures, such that intrinsic thermotolerance is observed following a 

sudden heat shock (e.g. to 50oC), whereas induced thermotolerance occurs when cells 

are pre-conditioned by exposure to a mild heat shock (e.g. 30 minutes at 37oC) prior 

to a more severe heat shock. Heat-shock responses in fungi occur when cells are 

rapidly shifted to elevated temperatures and if this is sub-lethal, induced synthesis of a 

specific set of proteins, the highly conserved "heat-shock proteins" (Hsps) occurs. 

Hsps play numerous physiological roles, including thermo-protection. 

High water activity, aw, is required for growth of most fungi with a minimum 

aw of around 0.65. Water is absolutely essential for fungal metabolism, and any 

external conditions which result in reduced water availability to cells (i.e. 

"osmostress") will adversely affect cell physiology. The term water potential refers to 

the potential energy of water and closely relates to the osmotic pressure of fungal 

growth media. Certain fungal species, for example, the yeast Zygosaccharomyces 

rouxii, and some Aspergillus species are able to grow in low water potential 

conditions (i.e. high sugar or salt concentrations) and are referred to as osmotolerant 

or zerotolerant. By comparison, S. cerevisiae is generally regarded as a non-

osmotolerant yeast. Mild water stress, or hyper-osmotic shock, occurs in fungi when 

cells are placed in a medium with low water potential brought about by increasing the 

solute (e.g. salt, sugar) concentration. Conversely, cells experience a hypo-osmotic 

shock when introduced to a medium of higher osmotic potential (due to reducing the 

solute concentration). Fungi are generally able to survive such short-term shocks by 

altering their internal osmotic potential (e.g. by reducing intracellular levels of K+ or 

glycerol). Glycerol is an example of a compatible solute that is synthesised in order to 

maintain low cytosolic water activity when the external solute concentration is high. 
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Glycerol can effectively replace cellular water, restore cell volume and enable fungal 

metabolism to continue. Trehalose, arabitol and mannitol can similarly protect against 

osmotic stress. Evidence suggests that the accumulation of compatible solutes is 

attributed not only to their synthesis but also to control of membrane fluidity thus 

preventing their leakage to the external environment. 

As for pH, most fungi are acidiophilic and grow well between pH 4-6 but 

many species are able to grow, albeit to a lesser extent, in more acidic or alkaline 

conditions (around pH 3 or pH 8, respectively).  Fungal cultivation media acidified 

with organic acids (e.g. acetic, lactic acids) are more inhibitory to growth compared 

with those acidified with mineral acids (e.g. hydrochloric, phosphoric acids) because 

organic acids can lower intracellular pH (following their translocation across fungal 

plasma membranes).   Exposure to organic acids leads to cells exhausting their energy 

(ATP) when endeavouring to maintain pH homeostasis through the activities of 

proton-pumping ATPase in the plasma membrane.  This forms the basis of action of 

weak acid preservatives in inhibiting the growth of food spoilage fungi. Many 

filamentous fungi can alter their local external pH by selective uptake and exchange 

of ions (NO3
- or NH4

+/ H+), or by excretion of organic acids such as oxalic acid.  

Other physical parameters influencing fungal physiology include radiation 

(light or UV may elicit mycelial differentiation and sporulation in some fungi that 

produce airborne spores), aeration, pressure, centrifugal force and mechanical shear 

stress.  
 
 
1.6.2 Cellular reproduction  

Fungal growth involves transport and assimilation of nutrients followed by 

their integration into cellular components followed by biomass increase and eventual 

cell division (as in yeasts) or septation (as in higher fungi). The physiology of 
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vegetative reproduction and its control in fungi has been most widely studied in two 

model eukaryotes, the budding yeast, Saccharomyces cerevisiae, and the fission yeast, 

Schizosaccharomyces pombe.  

Budding is the most common mode of vegetative reproduction in yeasts and 

multilateral budding is typical in ascomycetous yeasts (Table 1.11). In S. cerevisiae, 

buds are initiated when mother cells attain a critical cell size and this coincides with 

the onset of DNA synthesis.  The budding processes results from localized weakening 

of the cell wall and this, together with tension exerted by turgor pressure, allows 

extrusion of cytoplasm in an area bounded by a new cell wall.  Cell wall 

polysaccharides are mainly synthesized by glucan and chitin synthetases. Chitin is a 

polymer of N-acetylglucosamine and this material forms a ring between the mother 

cell and the bud that will eventually form the characteristic bud scar after cell 

division.  Under optimised growth conditions, budding yeasts, typified by S. 

cerevisiae, can complete their budding cell division cycle in around 2 hours. 

<TABLE 1.11 HERE> 

 
Fission yeasts, typified by Schizosaccharomyces spp, divide exclusively by 

forming a cell septum, which constricts the cell into two equal-sized daughters. In 

Schiz. pombe, newly divided daughter cells grow in length until mitosis is initiated 

when cells reach a constant cell length (about 14m). The cell septum in Schiz. pombe 

forms by lateral growth of the inner cell wall (the primary septum) and proceeds 

inwardly followed by deposition of secondary septa. Cellular fission, or transverse 

cleavage, is completed in a manner resembling the closure of an iris diaphragm.  

In certain yeast species, the presence or absence of pseudohyphae and true 

hyphae can be used as taxonomic criteria (e.g. the ultrastructure of hyphal septa may 

discriminate between certain ascomycetous yeasts). Some yeasts grow with true 

hyphae initiated from germ tubes (eg Candida albicans), but others (including S. 
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cerevisiae) may grow in a pseudohyphal fashion when starved of nutrients or when 

subjected to environmental stress.  Filamentous growth of yeasts by hyphal or 

pseudohyphal extension represents a different developmental pathway that is 

generally reversible. In other words, cells can revert to yeast unicellular growth in 

more conducive growth conditions indicating that a filamentous mode of growth 

represents an adaptation by yeast to foraging when nutrients are scarce. 

What constitutes a cell in filamentous fungi is ambiguous. The apical 

compartments of higher filamentous fungi are often multinucleate, and so the process 

of nuclear replication and segregation into a newly extended septated hyphal 

compartment is known as the duplication cycle. Thus, Aspergillus nidulans apical 

compartments contain approximately 50 nuclei per compartment produced during a 2 

hour duplication cycle period. Continued septation results in the formation of sub-

apical compartments containing fewer nuclei. Hyphae also commonly branch, usually 

at some distance behind the leading growing hyphal tip and often just behind a septum 

in higher fungi. The processes that control branching are not fully elucidated but 

branch initiation is associated with the appearance of a Spitzenkörper at the site of tip 

emergence and extension. Mathematical and computational models coupled with 

experimental data are being used to test our understanding of fungal growth not just at 

the hyphal tip but across multiple spatio-temporal scales and within communities. 

Branching allows filamentous fungi to fill space in an efficient and appropriate way, 

and according to local environmental circumstances. Therefore, fungi colonising 

nutrient rich substrata branch frequently producing dense mycelia for resource 

exploitation, whereas hyphae colonising nutrient poor substrata branch less frequently 

producing effuse mycelia appropriate for resource exploration.  
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Rates of branching and tip growth are related to the cytoplasmic volume. 

Thus, the Hyphal Growth Unit is a measure of the average length of hypha required to 

support hyphal tip growth. It can be calculated from microscopic preparations 

growing on agar media as the ratio between the total length of mycelium and the total 

number of tips. The ratio becomes constant after the initial stages of growth, and is 

characteristic of each fungal species or strain.     

 

1.6.3 Population growth  

 
When yeast or fungal cells are inoculated into a nutrient medium and 

incubated under optimal physical growth conditions, a typical batch growth curve will 

result comprising lag, exponential and stationary phases.  The lag phase represents a 

period of zero population growth and reflects the time required for inoculated cells to 

adapt to their new physical and chemical growth environment (by synthesizing 

ribosomes and enzymes). The exponential phase is a period of logarithmic cell (or 

mycelial biomass in the case of filamentous growth) doublings and constant, 

maximum specific growth rate (max, in dimensions of reciprocal time, h-1), the 

precise value of which depends on the prevailing growth conditions. If growth is 

optimal and cells double logarithmically, then 

 

dx

dt
  max

x  when integrated, this yields 

lnx - lnxo = max
t (where xo is the initial cell mass) 

or 

x = xoe (maxt) 
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which is the fundamental equation for exponential batch growth.  According to these 

kinetic expressions a plot of lnx versus time is linear with the slope being max. 

Calculation of the doubling time (td) of a yeast or fungal culture can be achieved 

from knowledge of max as follows: 

td = 
ln2 0.693

max max 
  

During the exponential phase of balanced growth, cells are undergoing 

primary metabolism, explicitly those metabolic pathways that are essential for growth 

of the cell. Industrial fermentations requiring maximum cell biomass production or 

the extraction of primary metabolites or their products, therefore aim to extend this 

phase of growth, often via fed-batch culture (incremental nutrient feeding) or 

continuous culture techniques (continuous nutrient input with concomitant withdrawal 

of the biomass suspension).  

Following the exponential phase, cells enter a period of zero population 

growth rate, the stationary phase, in which the accumulated fungal or yeast biomass 

remains relatively constant and the specific growth rate returns to zero.  After 

prolonged periods in stationary phase, individual cells may die and autolyse (see 

below). The stationary phase may be defined as cellular survival for prolonged 

periods (i.e. months) without added nutrients. In addition to nutrient deprivation, other 

physiological causes may promote entry of fungal cells into stationary phase 

including: toxic metabolites (e.g. ethanol in the case of yeasts), low pH, high CO2, 

variable O2 and high temperature. During the stationary phase of unbalanced growth, 

fungi may undergo secondary metabolism, specifically initiating metabolic pathways 

that are not essential for growth of cells but are involved in the survival of the 

organism. The industrial production of fungal secondary metabolic compounds such 
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as penicillin and the ergot alkaloids, therefore involves the controlled maintenance of 

cell populations within a stationary phase of growth. Recently, S. cerevisiae has been 

grown at near-zero growth rates in specialised cultivations systems called retentostats, 

in which cells can retain high metabolic capacities and stress resistance. Retaining 

yeast cells under such maintenance-energy metabolic conditions may have relevance 

for industrial bioprocesses.  

Filamentous fungi tend to grow as floating surface pellicles when cultivated in 

static liquid culture. In agitated liquid culture, fungi grow either as dispersed 

filamentous forms, or as pellets of aggregated mycelia subject to species, inoculum 

size, agitation rate and nutrient availability. Different growth forms will locally 

experience different micro-environmental conditions which will affect fungal 

physiology and hence fermentation processes. In fungal biotechnology, cell 

morphology may directly influence fermentation progress. For example, the 

rheological properties of the growth medium, oxygen transfer and nutrient uptake may 

adversely affect bioproduct formation. In the natural environment, fungal populations 

interact frequently to form often complex dynamic communities which in turn shape 

ecosystem functioning. Understanding the population growth and functional 

(physiological) responses of fungi to their local environment is key to the 

development of predictive models and to our general understanding of the resilience 

and resistance of fungal communities to environmental perturbations such as climate 

change.   

Yeast or fungal cell immobilization onto inert carriers has many advantages 

over free cell suspension culture in industrial processes. Cells may be successfully 

immobilized either by entrapment, aggregation, containment, attachment or 

deposition. Fungal biofilms represent a natural form of cell immobilization resulting 
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from cellular attachment to solid support materials. Yeast biofilms have several 

practical applications in fermentation biotechnology and are also medically important 

with regard to colonization of human tissue. Regarding the former case, with 

dimorphic yeasts such as Kluyveromyces marxianus, filamentous cells with a large 

surface area may be better suited to immobilization compared with ellipsoidal 

unicellular yeast forms with a low surface area.  In this latter case of pathogenic yeast 

biofilms, Candida albicans has been shown to adhere to surgical devices such as heart 

pacemakers and catheters, human epithelial cells and dental acrylic. 

 

1.6.4 Fungal cell death 
 

An understanding of the death of fungal cells is important from a fundamental 

viewpoint because fungi, especially yeasts, represent valuable model systems for the 

study of cellular ageing and apoptosis (programmed cell death). Recycling and 

redeployment of cellular material also helps drive the apical growth of filamentous 

fungi and the mycelium explores and extends through the environment. From a 

practical perspective, cell death in fungi is pertinent in relation to the following 

situations: industrial fermentation biotechnology (where high culture viabilities are 

desired), food preservation (regarding inhibition of spoilage fungal growth), food 

production (promotion of cellular autolysis for yeast extracts), and clinical mycology 

(where fungal death is the goal in treatment of human mycoses).  

Numerous physical, chemical and biological factors influence fungal cell 

death, which may be defined as complete and irreversible failure of cells to reproduce. 

Fungi will die if confronted with excessive heat, extreme cold, high voltage 

electricity, ionizing radiation, high hydrostatic and osmotic pressures and if exposed 

to chemical or biological fungicidal agents.  When the cells' physiological protection 
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responses are insufficient to counteract the cellular damage caused by physical stress, 

cells will die. In industrial situations, physical treatments can be used to eradicate 

contaminant fungi.  For example, yeasts exposed to elevated temperatures may lead to 

their thermal death, and this is exploited in the pasteurization of foods and beverages 

to kill spoilage yeasts.  

There are numerous chemical factors influencing survival of fungi. Several 

external chemical agents act as fungicides including toxic organic compounds, 

oxygen free radicals and heavy metals. Chemical preservatives are commonly 

employed as antifungal agents in foodstuffs, including weak acids such as sorbic, 

benzoic and acetic acids.  These agents, which are generally fungistatic rather than 

fungicidal, act by dissipating plasma membrane proton gradients and depressing cell 

pH when they dissociate into ions in the yeast cytoplasm. Similarly, sulphur dioxide 

which has long been used to eliminate undesirable yeasts (and bacteria) from wine, 

dissociates within the yeast cell to SO32- and HSO3
-
 resulting in a decline in 

intracellular pH and this forms the basis of its antizymotic action. Fungicidal acids 

include medium-chain fatty acids (e.g. decanoic acid) which may cause rapid cell 

death of yeasts and fungi by disruption of cell membrane integrity. Endogenous 

chemical factors such as ethanol and other toxic metabolites (e.g. acetaldehyde) 

produced by fermentative activity, excessive intracellular acidity or alkalinity, 

inability to protect against oxidative damage or sequester toxic metals, may also prove 

lethal to fungi. If fungal cells are unable to detoxify or counteract detrimental effects 

of chemicals, they may die.   

Examples of lethal biotic interactions with fungi include direct ingestion (by 

insects, protozoa), engulfment and lysis (by mycoparasitising fungi), direct predation 

(by haustoria-mediated processes) and intoxication (by killer toxin producing yeasts). 
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Killer yeasts secrete proteinaceous toxins that are lethal to other yeasts but to which 

the killers themselves are immune. Several yeast species have now been identified as 

possessing killer character, but the best known is the K1 system in S. cerevisiae. The 

K1 toxin from this species acts by binding to cell wall receptors in sensitive yeast 

cells, followed by plasma membrane channel formation. This latter event causes 

disruption of membrane permeability, which leads to the death of sensitive cells. 

Killer cells synthesise a membrane-bound immunity protein that prevents cellular 

suicide. In recent years, it has been established that some killer yeasts may also 

possess antimycotic activity against filamentous fungi. This has lead to the potential 

use of killer yeasts and their toxins as novel antifungal biocontrol agents for 

combating important fungal pathogens in agriculture. For example, the killer yeast 

Pichia anomala (Wickerhamomyces anomalus) has been shown to inhibit the growth 

of grain-storage fungi (Penicillium spp.) and fungal spoilage of fruits (caused by 

Botrytis cinerea).  

With regard to endogenous biotic factors influencing fungal cell survival, 

several physiological, morphological, genetic and biochemical events may take place 

leading to 'self-inflicted' death.  For example, fungal autolysis may be described as 

cellular self-digestion and occurs when endogenous (vacuolar) hydrolytic enzymes, 

notably proteases and carbohydrases, cause dissolution of cytoplasmic proteins and 

cell wall polysaccharides, respectively. Autolytic enzymatic activity is encouraged 

during the production of yeast extracts in the food industry by using high 

temperatures (e.g. 45C), salt (to encourage plasmolysis) and solvents (to promote 

lipid dissolution). Exogenous hydrolytic enzymes such as papain can also be used to 

accelerate cell wall breakdown.  
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Genetic factors also influence fungal cell death. For example, cells may 

commit suicide following DNA damage, presumably to avoid the risk of producing 

genetically altered progeny.  Cellular ageing and apoptotic cell death has been widely 

studied in yeasts, especially S. cerevisiae, which is a valuable model organism for 

understanding molecular genetic basis of the ageing process in eukaryotic cells. 

Beyond a certain finite limit (termed the Hayflick limit) of cell division cycles 

(generally around 20 in S. cerevisiae), this yeast can generate no further progeny and 

cells enter a senescent physiological state leading to death.  Aged and senescent 

populations of this yeast can be isolated, together with mutants displaying age-related 

phenotypes. In S. cerevisiae, UTH  (youth) genes have now been identified which 

appear to influence both stress resistance and longevity.  

 
 
 
1.7 Conclusion 
 

This Chapter has highlighted the physiological diversity of yeasts and fungi in 

terms of morphology, growth, metabolism and cell death. Understanding the ways in 

which fungi interact with their growth environment is crucial in medical mycology to 

control fungal pathogens and also in industry to exploit yeasts and fungi for 

production of biotechnological commodities. 
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CHAPTER 1: FIGURE LEGENDS  
 
LEGENDS TO FIGURES 
 
 

Figure  1.1  Scanning electron micrograph of a typical yeast cell. 

(x10,000). BS, bud scar; BirS, birth scar.   (Reproduced with kind 

permission of Professor Masako Osumi, Japan Women's University, 

Tokyo".) 

Figure 1.2 Transmission electron microscopy of ultrathin sections of a 

hyphal tip of Fusarium reveals intracellular fine structure. M, 

mitochondrion; V, vesicles; P, plasma membrane; MT, microtubules; SC, 

smooth Golgi cisternae; 4 layers of the cell wall (1,2,3,4). The 

Spitzenkörper appears as a region surrounded by vesicles containing 

many small particles (from Carlile, Watkinson and Gooday, 2001) 

Figure 1.3. Cell envelope structure of the yeast, S. cerevisiae (from 

Walker, 1998). 

Figure 1.4  Electron micrograph of a typical yeast cell. (CW, cell wall; 

CM, cell membrane; CMI, cell membrane invagination; BS, bud scar; M, 

mitochondrion, N, nucleus; V, vacuole; ER, endoplasmic reticulum. 

(Reproduced with kind  permission of Professor Masako Osumi, Japan 

Women's University, Tokyo") 

 
 
 
 
 



Table 1.1:  Diversity of yeast cell shapes 
 
Cell shape  Description Examples of yeast genera 

Ellipsoid Ovoid shaped cells Saccharomyces 

Cylindrical  Elongated cells with hemi-sherical ends Schizosaccharomyces 
Apiculate Lemon-shaped Hanseniaspora, Saccharomycodes 

Ogival  Elongated cell rounded at one end and 
pointed at other 

Dekkera, Brettanomyces 

Flask-shaped  Cells dividing by bud-fission Pityrosporum 

Miscellaneous 
shapes 

Triangular Trigonopsis 

 Curved Cryptococcus (e.g. C. cereanus) 
 Spherical Debaryomyces 

 Stalked Sterigmatomyces 

Pseudohyphal Chains of budding yeast cells which have 
elongated without detachment.   

Candida (e.g. C. albicans) 

Hyphal Branched or unbranched filamentous cells 
which form from germ tubes.  Septa may 
be laid down by the continuously extending 
hyphal tip.  Hyphae may give rise to 
blastospores 

Candida albicans 

Dimorphic Yeasts that grow vegetatively in either 
yeast or filamentous (hyphal or 
pseudohyphal) form. 

Candida albicans 
Saccharomycopsis fibuligera 
Kluyveromyces marxianus 
Malassezia furfur 
Yarrowia lipolytica 
Histoplasma capsulatum 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Table 1.2. The major polymers found in different taxonomical groups of fungi and 

fungus-like organisms together with the presence of perforate septa in these groups 

(adapted from Deacon, 2000; Carlile, Watkinson  and Gooday, 2001).  

Taxonomic 

grouping 

Fibrillar polymers Matrix polymers Perforate septa present or 

absent 

Oomycetes 

(no longer considered 

to be true fungi) 

(1,3), (1,6)-

Glucan 

Cellulose 

Glucan Absent 

Chytridomycetes Chitin; glucan Glucan;  Absent 

Zygomycetes Chitin; chitosan Polyglucuronic acid; 

glucuronomannopro

teins 

Absent 

Basidiomycetes Chitin; (1,3)-

(1,6) glucans 

(1,3) –Glucan; 

xylomannoproteins 

Present (mostly Dolipore) 

Ascomycetes / 

Deuteromycetes 

Chitin; (1,3)-

(1,6) glucans 

(1,3) –Glucan; 

galactomannoprotei

ns 

Present (mostly simple with 

large central pore) 

 

  



Table 1.3 Functional components of an idealised fungal cell  
 
Organelle or cellular structure                Function 
Cell envelope 
 
 
 
 
 
 
 
 
 
 
Nucleus 
 
 
 
 
 
Mitochondria 
 
 
 
 
Endoplasmic reticulum  
 
 
Proteasome 
 
 
Golgi apparatus and vesicles 
 
 
Vacuole 
 
 
 
 
 
Peroxisome 
 
 

Comprising: the plasma membrane which acts as a 
selectively permeable barrier for transport of 
hydrophilic molecules in and out of fungal cells; the 
periplasm containing proteins and enzymes unable 
to permeate the cell wall; the cell wall which 
provides protection, shape and is involved in cell-
cell interactions, signal reception, and specialised 
enzyme activities; fimbriae involved in sexual 
conjugation; capsules to protect cells from 
dehydration and immune cell attack. 
 
Relatively small. Containing chromosomes (DNA-
protein complexes) that pass genetic information to 
daughter cells at cell division and the nucleolus 
which is the site of ribosomal RNA transcription 
and processing. 
 
Site of respiratory metabolism under aerobic 
conditions and, under anaerobic conditions, for fatty 
acid, sterol and amino acid metabolism. 
 
 
Ribosomes on the rough ER are the sites of protein 
biosynthesis  
 
Multi-subunit protease complexes involved in 
regulating protein turnover 
 
Secretory system for import (endocytosis) and 
export (exocytosis) of proteins 
 
Intracellular reservoir (amino acids, polyphosphate, 
metal ions); proteolysis; protein  trafficking; control 
of cellular pH. In filamentous fungi, tubular 
vacuoles transport materials bi-directionally along 
hyphae. 
 
Oxidative utilisation of specific carbon and nitrogen 
sources (contain catalase, oxidases). Glyoxysomes 
contain enzymes of the glyoxylate cycle. 

  



Table 1.4. Elemental Requirements of Fungal Cells 

Element Common Sources Cellular Functions 

   
Carbon Sugars Structural element of fungal cells in 

combination with hydrogen, oxygen 
and nitrogen. Energy source 

Hydrogen Protons from acidic 
environments 

Transmembrane proton motive force 
vital for fungal nutrition.  Intracellular 
acidic pH (around 5-6) necessary for 
fungal metabolism 

Oxygen Air, O2 Substrate for respiratory and other 
mixed-function oxidative enzymes.  
Essential for ergosterol and 
unsaturated fatty acid synthesis 

Nitrogen NH4+ salts, urea, 

amino acids 

Structurally and functionally as 
organic amino nitrogen in proteins and 
enzymes 

Phosphorus Phosphates Energy transduction, nucleic acid and 
membrane structure 

Potassium K+ salts Ionic balance, enzyme activity 

Magnesium Mg2+ salts Enzyme activity, cell and organelle 
structure 

Sulphur Sulphates, 
methionine 

Sulphydryl amino acids and vitamins 

Calcium Ca2+ salts Possible second messenger in signal 
transduction 

Copper Cupric salts Redox pigments 
Iron Ferric salts. Fe3+ is 

chelated by 
siderophores and 
released as Fe2+ 
within the cell. 

Haeme-proteins, cytochromes 

Manganese Mn2+ salts Enzyme activity 

Zinc Zn2+ salts Enzyme activity 

Nickel Ni2+ salts Urease activity 

Molybdenum Na2MoO4 Nitrate metabolism, vitamin B12 

 
  



Table 1.5.  Diversity of carbon sources for yeast and filamentous fungal growth (adapted from 
Walker, 1998) 
 

Carbon source Typical Examples Comments 

   
Hexose sugars D-glucose, D-galactose, Glucose metabolized by  majority of  

yeasts and filamentous fungi 
 D-fructose, D-mannose If a yeast does not ferment glucose, it will 

not ferment other sugars. If a yeast 
ferments glucose, it will also ferment 
fructose and mannose, but not necessarily 
galactose 

   
Pentose sugars L-arabinose, D-xylose,  

D-xyulose, L-rhamnose 
Some fungi respire pentoses better than 
glucose.  S.cerevisiae can utilize xylulose 
but not xylose 

   
Disaccharides Maltose, sucrose, lactose, 

trehalose, melibiose, 
cellobiose, melezitose 

If a yeast ferments maltose, it does not 
generally ferment lactose and vice versa.  
Melibiose utilization used to distinguish 
ale and lager brewing yeasts.  Large 
number of yeasts utilize disaccharides. 
Few filamentous fungi (e.g. Rhizopus 
nigricans) cannot utilise sucrose. 

   
Trisaccharides Raffinose, maltotriose Raffinose only partially used by 

S.cerevisiae, but completely used by other 
Saccharomyces spp. (S.carlsbergensis, 
S.kluyveri) 

   
Oligosaccharides Maltotetraose, 

maltodextrins 
Metabolized by amylolytic yeasts, not by 
brewing strains 

   
Polysaccharides Starch, inulin, cellulose, 

hemicellulose, chitin, 
pectic substances. 

Polysaccharide-fermenting yeasts are 
rare. Saccharomycopsis spp. and 
S.diastaticus can utilize soluble starch; 
Kluyveromyces spp. possess inulinase. 
Many filamentous fungi can utilise these 
depending on extracellular enzyme 
activity. 

   
Lower aliphatic 
alcohols 

Methanol, ethanol Respiratory substrates for many fungi.  
Several methylotrophic yeasts (e.g. Pichia 



pastoris, Hansenula polymorpha) have 
industrial potential 

   
Sugar alcohols Glycerol, glucitol Can be respired by yeasts and a few fungi.
Organic acids Acetate, citrate, lactate, 

malate, pyruvate, 
succinate 

Many yeasts can respire organic acids, but 
few can ferment them 

   
Fatty acids Oleate, palmitate Several species of oleaginous yeasts can 

assimilate fatty acids as carbon and 
energy sources 

   
Hydrocarbons n-alkanes Many yeast and a few filamentous species 

grown well on C12-C18 n-alkanes 

   
Aromatics Phenol, cresol, quinol, 

resourcinol, catechol, 
benzoate 

Few yeasts can utilize these compounds.  
Several n-alkane utilizing yeasts use 

phenol as carbon source via the -
ketoadipate pathway 

   
Miscellaneous Adenine, uric acid, 

butylamine, pentylamine, 
putrescine.  

Some mycelial fungi and yeasts, for 
example, Arxula adeninivorans and 
A.terestre can utilize such compounds as 
sole source of carbon and nitrogen. 

 Lignin Can be decayed only by white-rot fungi 
(basidiomycotina). Little net energy 
gained directly, but makes available other 
polysaccharides such as cellulose and 
hemicellulose. 

 ‘Hard’ keratin Keratinophilic fungi. 
 
  



Table 1.6. Yeast and fungal metabolism based on responses to oxygen availability 
 
Mode of energy metabolism Examples Comments 

   
Obligate fermentative Yeasts: Candida 

pintolopesii 
(Saccharomyces telluris) 
 
Fungi: facultative and 
obligate anaerobes 

Naturally occurring 
respiratory-deficient yeasts.  
Only ferment, even in 
presence of oxygen. 
No oxygen requirement for 
these fungi. Two categories 
exist with respect to the 
effects of air: 
Facultative anaerobes (e.g. 
Aqualinderella and 
Blastocladia) and obligate 
anaerobes (e.g. 
Neocallimastix) 

   
Facultatively fermentative   
 Crabtree-positive Saccharomyces cerevisiae Such yeasts predominantly 

ferment high sugar-
containing media in the 
presence of oxygen. 
 

 Crabtree-negative Candida utilis Such yeasts do not form 
ethanol under aerobic 
conditions and cannot grow 
anaerobically. 

   
 Non-fermentative Yeasts: Rhodotorula rubra 

 
 
Fungi: Phycomyces 

Such yeasts do not produce 
ethanol, either in the 
presence or absence of 
oxygen. 
Oxygen essential for such 
(obligately oxidative) fungi 

   
Obligate aerobes  Gaemannomyces graminis (the 

take-all fungus) 
The growth of these is 
markedly reduced if oxygen 
partial pressure falls below 
normal atmospheric. 

   
 
Adapted from Walker (1998), Deacon (2000) and Carlile, Watkinson and Gooday (2001) 
  



 

Table 1.7. Metals required for fungal growth and metabolic functions (adapted from 

Walker, 2004) 

 
Metal 
ion 

Concentration                                        Main cellular functions 
supplied in growth medium* 

Macroelements 

K 
               
              2-4mM                            Osmoregulation, enzyme  activity 

 Mg               2-4mM                            Enzyme activity, cell division  
 

Microelements

Mn 
               

              2-4M                             Enzyme cofactor 
Ca               <M                                 Second messenger, yeast flocculation 
Cu               1.5M                             Redox pigments 
Fe               1-3M                             Haem-proteins, cytochromes 
Zn               4-8M                             Enzyme activity, protein structure 
Ni              ~10M                             Urease activity 
Mo               1.5M                             Nitrate metabolism, vitamin B12 
Co               0.1M                             Cobalamin, coenzymes 

* Figures relate to yeast (S. cerevisiae ) growth stimulation, and are dependent on the species/strain 
and conditions of growth, but they would be generally applicable for fungal growth. 
 
 



 
Table 1.8. Principal Ingredients of Selected Industrial Media for Yeasts and Fungi 

Componen

ts 

Molasses Malt Wort Wine Must Cheese Whey Corn Steep 

Liquor 

Carbon 
Sources 

Sucrose 
Fructose 

Maltose 
Sucrose 

Glucose 
Fructose 

Lactose Glucose, other 
sugars 

 Glucose Fructose Sucrose (trace)   
 Raffinose Glucose    
  Maltotriose    

Nitrogen 
Sources 

Nitrogen 
compounds as 
unassimilable 
proteins. 
Nitrogen sources 
need to be 
supplemented. 

Low molecular 

-amino 
nitrogen 
compounds, 
ammonium ions 
and a range of 
amino acids. 

Variable levels 
of ammonia 
nitrogen, 
which may be 
limiting. 
Range of 
amino acids. 

Unassimilable 
globulin and 
albumin proteins. 
Low levels of 
ammonium and 
urea nitrogen. 

Amino acids,  
protein 

Minerals Supply of P, K, 
and S available.  

High K+ levels 
may be inhibitory. 

Supply of P, K, 
Mg and S 
available. 

Supply of P, K, 
Mg and S 
available.  
High levels of 
sulphite often 
present. 

Supply of P, K, 
Mg, S. 

Supply of 
P, K, Mg, S 

Vitamins Small, but 
generally adequate 
supplies.  Biotin is 
deficient in beet 
molasses. 

Supply of 
vitamins is 
usually 
adequate. High 
adjuct sugar 

Vitamin supply 
generally 
sufficient. 

Wide range of 
vitamins present. 

Biotin, 
pyridoxine, 
thiamin 



wort may be 
deficient in 
biotin. 

Trace 
Elements 

Range of trace 
metals present, 
although Mn2+ 

may be limiting. 

All supplied, 

although Zn2+ 
may be limiting.

Sufficient 
quantitities 
available. 

Fe, Zn, Mn, Ca, 
Cu present. 

Range of trace  
Elements present 

Other 
Component
s 

Unfermentable 
sugars (2-4%), 
organic acids, 
waxes, pigments, 
silica, pesticide 
residues, 
carmelized 
compounds, 
betaine. 

Unfermentable 
maltodextrins, 
pyrazines, hop 
compounds. 

Unfermentable 
pentoses.  
Tartaric and 
malic acids. 
Decanoic and 
octanoic acids 
may be 
inhibitory.  
May be 
deficient in 
sterols and 
unsaturated 
fatty acids. 

Lipids, NaCl. 
Lactic and citric 
acids. 

High levels of 
lactic acid  
present. Fat and 
fibre also present 

 
 
 
 
 



 

Table 1.9. Modes of nutrient transport in fungi 

Mode of 

nutrient 

transport 

Description Examples of nutrients transported 

Free diffusion Passive penetration of lipid-soluble 
solutes through the plasma membrane 
following the law of mass action from 
a high extracellular concentration to a 
lower intracellular concentration. 

Organic acids, short-chain alkanes an
 long-chain fatty acids by fungi and th
export of lipophilic metabolites  
(e.g. ethanol) and gaseous compound
 

Facilitated 

diffusion 

Translocates solutes down a 
transmembrane concentration gradient 
in an enzyme (permease) mediated 
manner. As with passive diffusion,  
nutrient translocation continues until 
the intracellular concentration equals 
that of the extracellular medium. 

In the yeast, S. cerevisiae, glucose is 
transported in this manner.  
 

Diffusion 

channels 

These operate as voltage-dependent 
"gates" to transiently move certain 
nutrients ions down concentration 
gradients. They are normally closed at 
the negative membrane potential of 
resting yeast cells but open when the 
membrane potential becomes positive. 

Ions such as potassium may be 
transported in this fashion. 
 

Active 

transport 

The driving force is the membrane 
potential and the transmembrane 
electrochemical proton gradient 
generated by the plasma membrane 

H+-ATPase.  The latter extrudes 
protons using the free energy of ATP 
hydrolysis that enables nutrients to 
either enter with influxed protons, as in 
"symport" mechanisms, or against 
effluxed protons, as in "antiport" 
mechanisms.   
 

Many nutrients (sugars, amino 
acids, ions) 

 



Table 1.10. Respiratory chain characteristics of yeasts and fungi (Adapted from Walker, 

1998) 
 
Type 

Typical Species Sensitive to Insensitive to 

    
Normal 
respiration 

All aerobic fungi Cyanide 
and low 
azide1 

 

SHAM2 

Classic 
alternative 

Yarrowia lipolytica 
(and in stationary phase cultures of 
several yeast species) 
 

SHAM Cyanide, high 
azide 

New alternative Schizosaccharomyces pombe, 
Saccharomyces cerevisiae 
Kluyveromyces lactis  
Williopsis saturnus 
 
 

High azide Cyanide, low 
azide, SHAM 
 

1The azide-sensitive pathway lacks proton transport 
capability and accepts electrons from NADH but not 
from succinate.  
2SHAM = Salycil hydroxamate. The SHAM-sensitive 
pathway transports electrons to oxygen also without 
proton transport, and therefore does not phosphorylate 
ADP. 
 

  

 



Table 1.11. Modes of vegetative reproduction in yeasts (adapted from Walker 1998) 
Mode Description Representative Yeast Genera 

   
Multilateral budding Buds may arise at any 

point on the mother cell 
surface, but never again at 
the same site. 
Branched chaining may 
occasionally follow 
multilateral budding when 
buds fail to separate. 

Saccharomyces, 
Zygosaccharomyces, 
Torulaspora, Pichia, 
Pachysolen, Kluyveromyces, 
Williopsis, Debaryomyces, 
Yarrowia, Saccharomycopsis, 
Lipomyces  

Bi-polar budding Budding restricted to poles 
of elongated cells 
(apiculate or lemon-
shaped) along their 
longitudinal axis. 

Nadsonia, Saccharomycodes, 
Haneniaspora, Wickerhamia, 
Kloeckera 

Unipolar budding Budding repeated at same 
site on mother cell surface.  

Pityrosporum, Trigonopsis 

Monopolar budding Buds originate at only one 
pole of the mother cell. 

Malassezia 

Binary fission A cell septum (cell plate or 
cross-wall) is laid down 
within cells after 
lengthwise growth and 
which cleaves cells into 
two. 

Schizosaccharomyces 

Bud fission Broad cross-wall at base of 
bud forms which separates 
bud from mother. 

Occasionally found in: 
Saccharomycodes, Nadsonia and 
Pityrosporum 

Budding from stalks Buds formed on short 
denticles or long stalks. 

Sterigmatomyces 

Ballistoconidiogenesis Ballistoconidia are actively 
discharged from tapering 
outgrowths on the cell. 

Bullera, Sporobolomyces 

Pseudomycelia Cells fail to separate after 
budding or fission to 
produce a single filament.  
Pseudomycelial 
morphology is quite 
diverse and the extent of 
differentiation variable 
depending on yeast species 
and growth conditions. 

Several yeast species may 
exhibit 'dimorphism' eg Candida 
albicans, Saccharomycopsis  
figuligera.  Even S.cerevisiae 
exhibits pseudohyphal growth 
depending on conditions. 
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