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From economic inequality and species diversity to power laws and the analysis of multiple trends and trajectories, diversity within
systems is a major issue for science. Part of the challenge is measuring it. Shannon entropy 𝐻 has been used to rethink diversity
within probability distributions, based on the notion of information. However, there are two major limitations to Shannon’s
approach. First, it cannot be used to compare diversity distributions that have different levels of scale. Second, it cannot be used to
compare parts of diversity distributions to the whole. To address these limitations, we introduce a renormalization of probability
distributions based on the notion of case-based entropy 𝐶𝑐 as a function of the cumulative probability 𝑐. Given a probability density𝑝(𝑥), 𝐶𝑐 measures the diversity of the distribution up to a cumulative probability of 𝑐, by computing the length or support of an
equivalent uniform distribution that has the same Shannon information as the conditional distribution of 𝑝𝑐(𝑥) up to cumulative
probability 𝑐. We illustrate the utility of our approach by renormalizing and comparing three well-known energy distributions
in physics, namely, the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac distributions for energy of subatomic particles. The
comparison shows that 𝐶𝑐 is a vast improvement over𝐻 as it provides a scale-free comparison of these diversity distributions and
also allows for a comparison between parts of these diversity distributions.

1. Diversity in Systems

Statistical distributions play an important role in any branch
of science that studies systems comprised of many similar
or identical particles, objects, or actors, whether material or
immaterial, human or nonhuman. One of the key features
that determines the characteristics and range of potential
behaviors of such systems is the degree and distribution of
diversity, that is, the extent to which the components of the
system occupy states with similar or different features.

As Page outlined in a series of inquiries [1, 2], includ-
ing The Difference and Diversity and Complexity, diversity
within systems is an important concern for science, be it
making sense of economic inequality, expanding the trade
portfolio of countries, measuring the collapse of species
diversity in various ecosystems, or determining the optimal
utility/robustness of a network. However, an importantmajor
challenge in the literature on diversity and complexity, which
Page also points out [1, 2], remains: the issue ofmeasurement.

Although statistical distributions that directly reflect the
spread of key parameters (such as mass, age, wealth, or
energy) provide descriptions of this diversity, it can be
difficult to compare the diversity of different distributions or
even the same distribution under different conditions, mostly
because of differences in scales and parameters. Also, many
of the measures currently available compress diversity into a
single score or are not intuitive [1–4].

At the outset, motivated by examples of measuring
diversity in ecology and evolutionary biology from [3, 4],
we sought to address these challenges. We begin with some
definitions and a review of our previous research.

First, in terms of definitions, we follow the ecological
literature, defining diversity as the interplay of “richness” and
“evenness” in a probability distribution. Richness refers to the
number of different diversity types in a system. Examples
include (a) the different levels of household income in a
city, (b) the number of different species in an ecosystem, (c)
the diversity of a country’s exports, (d) the distribution of
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different nodes in a complex network, (e) the various health
trends for a particular disease across time/space, or (f) the
cultural or ethnic diversity of an organization or company. In
all such instances, the greater the number of diversity types
(be these types discrete or continuous), the greater the degree
of richness in a system. In the case of the current study,
for example, richness was defined as the number of different
energy states.

In turn, evenness refers to the uniformity or “equiprob-
ability” of occurrence of such states. In terms of the above
examples, evenness would be defined as (a) a city where
household income was evenly distributed, (b) an ecosystem
where the diversity of its species was equal in number,
(c) a country with an even distribution of exports, (d) a
complex network where all nodes had the same probability of
occurrence, (e) a disease where all possible health trends were
equiprobable, or (f) a company or organization where people
of different cultural or ethnic backgrounds were evenly
distributed. In the case of the current study, for example,
evenness was defined as the uniformity or “equiprobability”
of the occurrence of all possible energy states.

More specifically, as we will see later in the paper, we
define the diversity of a probability distribution as the number
of equivalent equiprobable types required to maintain the
same amount of Shannon entropy 𝐻 (i.e., the number of
Shannon-equivalent equiprobable states). Given such a def-
inition, a system with a high degree of richness and evenness
would have a higher degree of 𝐻, whereas a system with a
low degree of richness and evenness would have a low degree
of 𝐻. In turn, a system with high richness but low evenness
(as in the case of a skewed-right system with long tail) would
have a lower degree of 𝐻 than a system with high richness
and high evenness.

1.1. Purpose of the Current Study. Recently, we have intro-
duced a novel approach to representing diversity within sta-
tistical distributions [5, 6], which overcomes such difficulties
and allows the distribution of diversity in any given system
(or cumulative portions thereof) to be directly compared
to the distribution of diversity within any other system. In
effect, it is a renormalization that can be applied to any
probability distribution to produce a direct representation
of the distribution of diversity within that distribution.
Arising from our work in the area of complex systems,
the approach is based on the notion of case-based entropy,𝐶𝑐 [5]. This approach has two major advantages over the
Shannon Entropy 𝐻, which, as we alluded to above, is one
of the most commonly used measures of diversity within
probability distributions and which calculates the average
amount of uncertainty (or information, depending on one’s
perspective) present in a given probability distribution. First,𝐶𝑐 can be used to compare distributions that have different
levels of scale; and, second, 𝐶𝑐 can be used to compare parts
of distributions to their whole.

After developing the concept and formalism for case-
based entropy for discrete distributions [5], we first applied it
to compare complexity across a range of complex systems [6].
In that work, we investigated a series of systems described by
a variety of skewed-right probability distributions, choosing

examples that are often suggested to exhibit behaviors
indicative of complexity such as emergent collectivity, phase
changes, or tipping points. What we found was that such
systems obeyed an apparent “limiting law of restricted diver-
sity” [6], which constrains the majority of cases in these
complex systems to simpler types. In fact, for these types
of distribution, the distributions of diversity were found
to follow a scale-free 60/40 rule, with 60% or more of
cases belonging to the simplest 40% or less of equiprobable
diversity types. This was found to be the case regardless of
whether the original distribution fit a power law or was long-
tailed, making it fundamentally distinct from the well-known
(but often misunderstood) Pareto Principle [7].

In the following, we continue to explore the use of case-
based entropy in comparing systems described by statistical
distributions. However, we now go beyond our prior work
in the following ways. First, we extend the formalism in
order to compute case-based entropy for continuous as well
as discrete distributions. Second, we broaden our focus
from complexity/complex systems to diversity in any type
of statistically distributed system. That is, we start to explore
distributions of diversity for systems where richness is not a
function of the degree of complexity types.

Third, the discrete indices we used had a degree of
subjectivity to them, for example, how should household
income be binned and what influence does that have on the
distribution of diversity? As such, we wanted to see how well𝐶𝑐 worked for distributions where the unit of measurement
was universally agreed upon.

Fourth, we had not emphasized how 𝐶𝑐 was a major
advance on Shannon entropy 𝐻. As known, while 𝐻 has
proven useful, it compresses itsmeasurement of diversity into
a single number; it is also nonintuitive; and, as we stated
above, it is not scale-free and therefore cannot be used to
compare the diversity of different systems; neither can it be
used to compare parts of the diversity within a system to the
entire system.

Hence, the purpose of the current study, as a demon-
stration of the utility of 𝐶𝑐, is to renormalize and compare
three physically significant energy distributions in statistical
physics: the energy probability density functions for systems
governed by Boltzmann, Bose-Einstein, and Fermi-Dirac
statistics.

2. Renormalizing Probability: Case-Based
Entropy and the Distribution of Diversity

The quantity case-based entropy [5], 𝐶𝑐, renormalizes the
diversity contribution of any probability distribution 𝑃(𝑥),
by computing the true diversity 𝐷 of an equiprobable distri-
bution (called the Shannon-equivalent uniform distribution)
that has the same Shannon entropy𝐻 as 𝑃(𝑥). 𝐶𝑐 is precisely
the number of equiprobable types in the case of a discrete
distribution, or the length, support, or extent of the variable in
the case of continuous distributions, which is required to keep
the value of the Shannon entropy the same across the whole
or any part of the distribution up to a cumulative probability
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𝑐. We choose the Shannon-equivalent uniform distribution
for two reasons:

(i) First, it is well known that, on a finite measure space,
the uniform distribution maximizes entropy: that is,
the uniform distribution has the maximal entropy
among all probability distributions on a set of finite
Lebesgue measures [8].

(ii) Second, a Shannon-equivalent uniform distribution
will, by definition, count the number of values (or
range of values) of 𝑥 that are required to give the
same information as the original distribution 𝑃(𝑥) if
we assume that all the values (or range of values) are
equally probable.

Hence, the uniformdistribution renormalizes the effect of
varying relative frequencies (or probabilities) of occurrence
of the values of 𝑥 without losing information (or entropy).
In other words, if all choices of the random variable are
equally likely, the number of values (or the length, if it
is a continuous random variable) needed for the random
variable to keep the same amount of information as the given
distribution is a measure of diversity. In a sense, each new
value (or type) is counted as adding to the diversity, only if
the new value has the same probability of occurrence as the
existing values. Diversity necessarily requires the values of the
random variable to be equiprobable since lower probability,
for example, means that such values occur rarely in the
random variable and hence cannot be treated as equally
diverse as other values with higher probabilities. Hence,
by choosing an equiprobable (or uniform) distribution for
normalization, we are counting the true diversity, that is, the
number of equiprobable types that are required to match
the same amount of Shannon information 𝐻 as the given
distribution.

This calculation (as we have shown elsewhere [5]) can
be done for parts of the distribution up to a cumulative
probability of 𝑐. This means that a comparison of 𝐶𝑐 for
a variety of distributions is actually a comparison of the
variation of the fraction of diversity 𝐶𝑐 contributed by values
of the random variable up to 𝑐.

Since, regardless of the scale and units of the original
distribution, 𝑐 and 𝐶𝑐 both vary from 0 to 1, one can plot
a curve for 𝐶𝑐 versus 𝑐 for multiple distributions on the
same axes. 𝐶𝑐 thus provides us with a scale-free measure to
compare distributions without omitting any of the entropy
information, but by renormalizing the variable to one that
has equiprobable values. What is more, it also allows us to
compare different parts of the same distribution, or parts to
wholes. That is, we can generate a 𝐶𝑐 versus 𝑐 curve for any
part of a distribution (normalizing the probabilities to add up
to 1 in that part) and compare the 𝐶𝑐 curve of the part to the𝐶𝑐 curve of the whole or another part to see if the functional
dependence of 𝐶𝑐 on 𝑐 is the same or different. In essence, 𝐶𝑐
has the ability to compare distributions in a “fractal” or self-
similar way.

In [5], we showed how to carry out the renormalization
for discrete probability distributions, both mathematical and
empirical. In this paper, as we stated in the Introduction, we

make the case for how 𝐶𝑐 constitutes an advance over 𝐻,
in terms of providing a scale-free comparison of probability
distributions and also comparisons between parts of distri-
butions. More importantly, we demonstrate how 𝐶𝑐 works
for continuous distributions, by examining the Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac distributions for
energy of subatomic particles. We begin with a more detailed
review of 𝐶𝑐.
3. Case-Based Entropy of a Continuous
Random Variable

Our impetus for making an advance over the Shannon
entropy 𝐻 comes from the study of diversity in evolutionary
biology and ecology, where it is employed tomeasure the true
diversity of species (types) in a given ecological system of
study [3, 4, 9, 10]. As we show here, it can also be used to
measure the diversity of an arbitrary probability distribution
of a continuous random variable.

Given the probability density function 𝑝(𝑥) of a random
variable𝑥 in ameasure space𝑋, the Shannon-Weiner entropy
index𝐻 is given by

𝐻 = −∫
𝑋
𝑝 (𝑥) ln (𝑝 (𝑥)) 𝑑𝑥. (1)

The problem, however, with the Shannon entropy index𝐻, as we identified in our abstract and Introduction, is
that while being useful for studying the diversity of a single
system, it cannot be used to compare the diversity across
probability distributions. In other words,𝐻 is not multiplica-
tive: a doubling of value for 𝐻 does not mean that the actual
diversity has doubled. To address this problem, we turned to
the true diversitymeasure 𝐷 [3, 11, 12], which gives the range
of equiprobable values of 𝑥 that gives the same value of𝐻:

𝐷 = 𝑒𝐻. (2)

The utility of 𝐷 for comparing the diversity across
probability distributions is that, in𝐷, a doubling of the value
means that the number of equiprobable ranges of values
of 𝑥 has doubled as well. 𝐷 calculates the range of such
equiprobable values of 𝑥 that will give the same value of
Shannon entropy 𝐻 as observed in the distribution of 𝑥.
We say that two probability densities 𝑝1(𝑥) and 𝑝2(x) are
Shannon-equivalent if they have the same value of Shannon
entropy. Case-based entropy is then the range of values of𝑥 for the Shannon-equivalent uniform distribution for 𝑝(𝑥).
We also note that Shannon entropy can be recomputed from𝐷 by using𝐻 = ln(𝐷).

In order to measure the distribution of diversity, we
next need to determine the fractional contribution to overall
diversity up to a cumulative probability 𝑐. In other words, we
need to be able to compute the diversity contribution 𝐷𝑐 up
to a certain cumulative probability 𝑐. To do so, we replace 𝐻
with𝐻𝑐, the conditional entropy, given that only the portion
of the distribution up to a cumulative probability 𝑐 (denoted
by𝑋𝑐) is observed with conditional probability of occurrence
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with density𝑝𝑐(𝑥) up to a given cumulative probability 𝑐.That
is,

𝑝𝑐 (𝑥) = 𝑝 (𝑥)
∫
𝑋𝑐

𝑝 (𝑥) 𝑑𝑥 ,

𝐻𝑐 = −∫
𝑋𝑐

𝑝𝑐 (𝑥) ln (𝑝𝑐 (𝑥)) ,

𝑐 = ∫
𝑋𝑐

𝑝 (𝑥) 𝑑𝑥,
𝐷𝑐 = 𝑒𝐻𝑐 .

(3)

The value of𝐷𝑐 for a given value of cumulative probability𝑐 is the number of Shannon-equivalent equiprobable energy
states (or of values of the variable in the 𝑥-axis in general) that
are required to explain the information up to a cumulative
probability of 𝑐 within the distribution. If 𝑐 = 1, then 𝐷𝑐 =𝐷 is the number of such Shannon-equivalent equiprobable
energy states for the entire distribution itself.

We can then simply calculate the fractional diversity
contribution or case-based entropy as

𝐶𝑐 = 𝐷𝑐𝐷 . (4)

It is at this point that the renormalization (𝐶𝑐 as a function
of 𝑐) becomes scale independent as both axes range between
values of 0 and 1with the graph of𝐶𝑐 versus 𝑐 passing through(0, 0) and (1, 1). Hence, irrespective of the range and scale
of the original distributions, all distributions can be plotted
on the same graph and their diversity contributions can be
compared in a scale-free manner.

To check the validity of our formalism, we calculate 𝐷𝑐
for the simple case of a uniform distribution given by 𝑝(𝑥) =𝜒[0,𝐿](𝑥) on the interval 𝑋 = [0, 𝐿]. Intuitively, if we choose𝑋𝑐 = [0, 𝑐], then, owing to the uniformity of the distribution,
we expect 𝐷𝑐 = 𝑐 itself. In other words, the diversity of
the part [0, 𝑐] is simply equal to 𝑐, that is, the length of the
interval [0, 𝑐], and hence the 𝐶𝑐 versus 𝑐 curve will simply be
the straight line with slope equal to 1. This can be shown as
follows:

𝑝𝑐 (𝑥) = 1
𝑐 𝜒[0,𝐿] (𝑥) ,

𝐻𝑐 = −∫
[0,𝑐]

1
𝑐 ln(1

𝑐 ) 𝑑𝑥 = ln (𝑐) ,
𝐷𝑐 = 𝑒𝐻𝑐 = 𝑒ln(𝑐) = 𝑐.

(5)

With our formulation of 𝐶𝑐 complete, we turn to the
energy distributions for particles governed by Boltzmann,
Bose-Einstein, and Fermi-Dirac statistics.

4. Results

4.1. 𝐶𝑐 for the Boltzmann Distribution in One Dimension. We
first illustrate our renormalization by applying it to a relatively
simple case: that of an ideal gas at temperature 𝑇. The kinetic

energies 𝐸 of particles in such a gas are described by the
Boltzmann distribution [8]. In one dimension, this is

𝑝𝐵,1𝐷 (𝐸) = ( 1
𝑘𝐵𝑇) 𝑒−𝐸/𝑘𝐵𝑇 = 𝛽

𝑒𝛽𝐸 , (6)

where 𝑘𝐵 is the Boltzmann constant and 𝛽 = (1/𝑘𝐵𝑇).
The entropy of 𝑝𝐵,1𝐷(𝐸) can be shown to be 𝐻𝐵 = 1 −

ln(𝛽), and hence the true diversity of energy in the range[0,∞) is given by

𝐷𝐵,1𝐷 = 𝑒𝐻 = 𝑒1−ln(𝛽) = 𝑒
𝛽 . (7)

The cumulative probability 𝑐 from 𝐸 = 0 to 𝐸 = 𝑘 is then
given by

𝑐 = ∫
[0,𝑘]

𝑝𝐵,1𝐷 (𝐸) 𝑑𝐸 = 1 − 𝑒−𝛽𝑘. (8)

Hence, 𝑘 can be computed in terms of 𝑐 as
𝑘 = − ln (1 − 𝑐)

𝛽 . (9)

Equation (9) is useful for the one-dimensional Boltzmann
case to eliminate the parameter 𝑘 altogether in (11) to obtain
an explicit relationship between𝐶𝑐 and 𝑐. It is to be noted that,
inmost cases, both𝐶𝑐 and 𝑐 can only be parametrically related
through 𝑘. The other quantities introduced in Section 3 can
then be calculated as follows:

𝑝𝑐 (𝐸) = 𝑝𝐵,1𝐷 (𝐸)𝑐 = 𝛽𝑒−𝛽𝐸
1 − 𝑒−𝛽𝑘 , (10)

𝐻𝑐 = −∫
[0,𝑘]

𝛽𝑒−𝛽𝐸
1 − 𝑒−𝛽𝑘 ln( 𝛽𝑒−𝛽𝐸

1 − 𝑒−𝛽𝑘)𝑑𝐸

= 1 + ln( 𝑐
𝛽 (1 − 𝑐)(1−𝑐)/𝑐) ,

(11)

𝐷𝑐 = 𝑒𝐻𝑐 = 𝑒1+ln((𝑐/𝛽)(1−𝑐)(1−𝑐)/𝑐)
= 𝑒

𝛽 ⋅ (𝑐 (1 − 𝑐)(1−𝑐)/𝑐) , (12)

𝐶𝑐 = 𝐷𝑐𝐷𝐵,1𝐷 = (𝑒/𝛽) ⋅ (𝑐 (1 − 𝑐)(1−𝑐)/𝑐)
𝑒/𝛽

= 𝑐 (1 − 𝑐)(1−𝑐)/𝑐 .
(13)

We note that, in (13), the temperature factor 𝛽 cancels
out, indicating that the distribution of diversity for an
ideal gas in one dimension is independent of temperature.
The resulting graph of 𝐶𝑐 as a function of 𝑐 is shown in
Figure 1. It is worth noting in passing that 𝐶𝑐 reaches 40%
when 𝑐 ≈ 69%, indicating that approximately 69% of the
molecules in the gas are contained within the lower 40% of
diversity of energy probability states at all temperatures (here,
diversity is defined as the number of equivalent equiprobable
energy states required to maintain the same amount of
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Figure 1: 𝐶𝑐 as a function of 𝑐 for the Boltzmann distribution in one dimension.

Shannon entropy𝐻). Thus, the one-dimensional Boltzmann
distribution obeys an interesting phenomenon that we have
identified in a wide range of skewed-right complex systems,
which (as we briefly discussed in the Introduction) we call
restricted diversity and, more technically, the 60/40 rule [6].
The independence of temperature in the 𝐶𝑐 versus 𝑐 curve,
for the Boltzmann distribution, shows that the effect of
increasing 𝑇 is to shift the mean of the distribution to higher
energies and to increase its standard deviation, but not to
change its characteristic shape. Still, what is key to our results
is that the temperature independence of the 𝐶𝑐 curve for the
Boltzmann distribution in one dimension validates that our
renormalization preserves the fundamental features of the
original distribution.

4.2. 𝐶𝑐 for the Boltzmann Distribution in Three Dimensions.
We now turn to the calculation of 𝐶𝑐 for the physically
more important case of the Boltzmann distribution in three
dimensions [8]:

𝑝𝐵,3𝐷 (𝐸) = 2𝛽3/2𝐸1/2
√𝜋𝑒𝛽𝐸 , (14)

where the additional factor of √4𝛽𝐸/𝜋 accounts for the
density of states.

The cumulative probability 𝑐 from 𝐸 = 0 to 𝐸 = 𝑘 can be
computed as follows:

𝑐 = ∫
[0,𝑘]

𝑝𝐵,3𝐷 (𝐸) 𝑑𝐸 = √𝜋 erf (√𝑘𝛽) − 2𝑒−𝑘𝛽√𝑘𝛽
√𝜋 . (15)

As we would hope, (15) has the property that as 𝑘 → ∞,
the cumulative probability 𝑐 → 1.

However, it is difficult to solve (15) for 𝑘 directly in terms
of 𝑐. We therefore compute 𝐶𝑐 in parametric form with 𝑘

being the parameter. Also, analytical forms are not possible,
so Matlab was used to compute𝐻𝑐,𝐷𝑐, and 𝐶𝑐, respectively:

𝐷𝑐 (𝑘) = 𝑒𝐻𝑐(𝑘),
𝐷𝐵,3𝐷 = lim

𝑘→∞
𝐷𝑐 (𝑘) ,

𝐶𝑐 = 𝐷𝑐𝐷𝐵,3𝐷 .
(16)

Thus, 𝐶𝑐 can also only be computed in parametric form
with parameter 𝑘 that varies from 0 to∞. Figure 2 shows the𝐶𝑐 curve thus calculated for the Boltzmann distribution in
three dimensions.

Although the temperature independence of this distribu-
tion is not immediately evident from Figure 2, one would,
following the same logic as for the one-dimensional case,
expect the distribution of diversity to be the same for all 𝑇.
That is, as in the one-dimensional case, because changes in𝑇 do not affect the original distributions characteristic shape,
we expect the renormalized distribution to be independent
of temperature. This does, indeed, turn out to be the case.
This is illustrated in Figure 2, which overlays the results
of the calculations for 𝑇 = 50K, 500K, and 5000K. It is
also worth noting that, just like our one-dimensional case,
the curve obeys the 60/40 rule of restricted diversity [6]:
regardless of temperature, over 60 percent of molecules are in
the lower 40 percent of diversity of energy probability states
(here again, diversity is defined as the number of equivalent
equiprobable energy states required to maintain the same
amount of Shannon entropy𝐻).

In addition, it is worth noting that as we might expect,
addingmore degrees of freedom increases the average energy
by a factor of (1/2)𝑘𝐵𝑇 per degree while maintaining the
same shape for the distribution of energy. Hence, the current
result will still hold true for gasmolecules with higher degrees
of freedom; that is, the distribution of diversity is always
exactly the same for an ideal gas, whether monoatomic or
polyatomic.
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are indistinguishable when superimposed
Boltzmann 3D curves at T = 50K, 500 KK, and 5000
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Figure 2: 𝐶𝑐 versus 𝑐 for Boltzmann 3D superimposed at three different temperatures: 𝑇 = 50K, 500K, and 5000K.
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Figure 3: 𝐶𝑐 versus 𝑐 for Helium-4 and for photons. Note: the results of calculations carried out at 𝑇 = 50K, 500K, and 5000K are overlaid.

4.3. The Bose-Einstein Distributions for Massive and Massless
Bosons. We now move on to consider the second of our
example distributions. The Bose-Einstein distribution gives
the energy probability density function for massive bosons
above the Bose temperature 𝑇𝐵 as

𝑝HB (𝐸) = 𝐶 ⋅ 𝐸1/2
𝐵𝑒𝛽𝐸 − 1 , (17)

where 𝐶 is a normalization constant and

𝐵 = 1
𝜁 (3/2) (

𝑇
𝑇𝐵)
3/2 , (18)

where 𝜁 is the Riemann zeta function. In the following
calculations, we use the Bose temperature for helium, 𝑇𝐵 =3.14K.

For massless bosons such as photons, the energy proba-
bility density function is [13]

𝑝BE = 𝐶 ⋅ 𝐸2
𝑒𝛽𝐸 − 1 . (19)

It is important to note that the “density of states” factors
shown in (17) and (19) result in different energy distributions,
despite the two types of boson obeying the same statistics.

The conditional probabilities, conditional entropies, true
diversities, and case-based entropies for these distributions
cannot be calculated analytically but can be calculated
numerically. The results of such calculations, using the
software Matlab, are shown in Figure 3.

As with the Boltzmann distributions, we find that the
distributions of diversity for the two boson systems are



Complexity 7

FD Na 15000000 K
FD Na 6000 K

FD Na 300 K
FD Na 2.7 K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
ta

ge
 o

f c
as

es
 c

10 0.3 0.4 0.5 0.8 0.90.2 0.60.1 0.7

Case-based entropy Cc

Figure 4: Diversity curves for sodium electrons at a range of temperatures with 𝐶𝑐 on the 𝑥-axis and 𝑐 on the 𝑦-axis.

independent of temperature. Although the curves for the
two types of boson are very similar, it is evident that the
distributions of diversity do differ to some extent. For helium-
4 bosons, a slightly larger fraction of particles are contained
in lower diversity energy states than is the case for photons,
with 60%of atoms contained in the approximately 37%of the
lowest diversity states, as compared to approximately 42% for
photons. In otherwords, using𝐶𝑐, we are able to identify, even
in such instances where intuition might suggest it to be true,
common patterns within and across these different energy
systems, as well as their variations. With this point made, we
move to our final energy distribution.

4.4. The Fermi-Dirac Distribution. The final distribution we
use to illustrate our approach is the Fermi-Dirac distribution:

𝑝FD (𝐸) = 𝐶 ⋅ 𝐸1/2
𝑒𝛽(𝐸−𝜇) + 1 , (20)

where 𝐶 is again a normalization constant and 𝜇 is the Fermi
energy [13]. In the following, we calculate distributions for
sodiumelectrons, forwhich𝜇 = 3.4 eV.Once again,𝑝,𝐻𝑐, 𝐷𝑐,
and 𝐶𝑐 cannot be calculated analytically and so we rely on
numerical calculations using Matlab.

The Fermi-Dirac distribution differs from the previous
examples in that it is not simply scaled by changes in energy.
Instead, its shape changes, transforming from a skewed-left
distribution, with a sharp cut-off at the Fermi energy at
low temperatures, to a smooth, skewed-right distribution
at high temperatures. Thus, unlike the situation for Boltz-
mann and Bose-Einstein distributions, one would expect
the distributions of diversity for fermions such as electrons
to be dependent on temperature. Figure 4 compares the
results of calculating 𝐶𝑐 as a function of 𝑐 for electrons in
sodium at temperatures of 2.7K (the temperature of space),

300K (representing temperatures on earth), 6000K (the
temperature of the surface of the sun), and 15 × 106 K (the
temperature of the core of the sun).

This figure shows that the degree of diversity is the
highest for fermions at low temperatures; for example, at2.7K, fully 70% of the lowest equiprobable diversity states
are need to contain 60% of the particles, compared with only
approximately 38%at 15×106 K. It also shows that, for sodium
electrons, the diversity curve at normal temperatures on earth
(300K) is almost identical to that at very low temperatures.
That is, a room temperature Fermi gas of sodium electrons
has a distribution of diversity very similar to that of a “Fermi
condensate.”

5. Using 𝐶𝑐 to Compare and Contrast Systems

With our renormalization complete for all three distributions,
we sought next to demonstrate, albeit somewhat superficially,
the utility of𝐶𝑐 for comparing and contrasting systems, given
how widely known the results are for these three classic
energy distributions. To begin with, it is usual to assume that,
in the limit of high 𝑇, both Bose-Einstein and Fermi-Dirac
distributions reduce to Boltzmann distributions, and so the
physical properties of both bosons and fermions in this limit
should be those of an ideal gas.

In Figures 5 and 6, we show a comparison of all three
energy distributions for temperatures of 6000K and 15 ×106 K (the Bose-Einstein distribution for massless bosons is
included for comparison). In these figures, it appears that,
by 6000K, the Bose-Einstein distribution for helium-4 is
indistinguishable from the 3D Boltzmann distribution. Also,
while the Fermi-Dirac distribution has clearly not reduced to
the Boltzmann distribution even at 15 × 106 K, it appears to
be trending towards it.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y 
c

0.6 0.8 10.2 0.40

Case-based entropy Cc

FD Na 6000 K
MB 3D, BE Photon, and BE Helium 6000 K

(a) 𝐶𝑐 versus 𝑐 curves for Maxwell-Boltzmann 3D, Bose-Einstein
Helium, Bose-Einstein Photon, and Fermi-Dirac Na 6000K

0.2 0.4 0.6 0.80 1
Case-based entropy Cc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y 
c

FD Na 15000000 K
MB 3D, BE Photon, and BE Helium at 15000000K

(b) 𝐶𝑐 versus 𝑐 curves for Maxwell-Boltzmann 3D, Bose-Einstein
Helium, Bose-Einstein Photon, and Fermi-Dirac Na 15000000K

Figure 6: 𝐶𝑐 versus 𝑐 curves.

However, comparison of the diversity distributions sug-
gests that even when the energy probability density functions
appear to coincide, significant physical differences remain
between the systems. Figure 7 compares all the diversity
curves calculated in the present work.

It is clear from Figure 7 that the distributions of diversity
for a classical ideal gas and for both Bose-Einstein and Fermi-
Dirac distributions are significantly different. Because these
renormalized distributions are independent of temperature,

this suggests that there is no limit in which the Bose-
Einstein distribution for the photon becomes completely
indistinguishable from the Boltzmann distribution. Even
more strikingly, the distribution of diversity in a system obey-
ing Fermi-Dirac statistics only approaches that of bosonic
systems at extremely high temperatures, similar to those at
the core of the sun. At lower temperatures, the Fermi gas
has substantially higher degrees of diversity than all the other
systems. This is because, at lower temperatures, most of the
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Figure 7: Superposition of all diversity curves for Boltzmann 1D, Boltzmann 3D, Bose-Einstein Helium, Bose-Einstein Photon, and Fermi-
Dirac Na at 2.7 K, 300K, 6000K, and 15000000K.

fermions are yet to surpass the barrier created by the Fermi
energy and hence are all restricted to the lower end of the
energy.

Thus, the transformation from the usual probability
distribution to a distribution of case-based entropy (𝐶𝑐 versus𝑐) has allowed us to make direct scale-free comparisons, of
the ways in which the Maxwell-Boltzmann, Bose-Einstein,
and Fermi-Dirac energy distributions are similar or differ
both internally (as a function of temperature 𝑇) and across
distributions. It appears that, except for extremely high
temperatures, the Fermi-Dirac distribution has a larger value
of 𝐶𝑐 than the others. This means that there are a larger
number of Shannon-equivalent equiprobable states of energy
for the Fermi-Dirac distribution as compared to the others.
A speculative explanation could be that Pauli’s exclusion
principle does not allow formore than one fermion to occupy
the same quantum state, thereby restricting the accumulation
of fermions in the same state (i.e., more diversity).

6. Conclusion

As we have hopefully shown in this paper, while Shannon
entropy𝐻 has been used to rethink probability distributions
in terms of diversity, it suffers from two major limitations.
First, it cannot be used to compare distributions that have
different levels of scale. Second, it cannot be used to compare
parts of distributions to the whole.

To address these limitations, we introduced a renor-
malization of probability distributions based on the notion
of case-based entropy 𝐶𝑐 (as a function of the cumulative
probability 𝑐). We began with an explanation of why we
rethink probability distributions in terms of diversity, based

on a Shannon-equivalent uniform distribution, which comes
from thework of Jost and others on the notion of true diversity
in ecology and evolutionary biology [4, 9, 10]. With this
approach established, we then reviewed our construction of
case-based entropy 𝐶𝑐. Given a probability density 𝑝(𝑥), 𝐶𝑐
measures the diversity of the distribution up to a cumulative
probability of 𝑐, by computing the length or support of an
equivalent uniform distribution that has the same Shannon
information as the conditional distribution of 𝑝𝑐(𝑥) up to a
cumulative probability 𝑐.

With our conceptualization of 𝐶𝑐 complete, we used it to
renormalize and compare three physically significant energy
distributions in physics, namely, the Maxwell-Boltzmann,
Bose-Einstein, and Fermi-Dirac distributions for energy of
subatomic particles. We chose these three distributions for
three key reasons: (1) we wanted to see if 𝐶𝑐 works for
continuous distribution; (2) where the focus was on diversity
of types and not on their rank order in terms of complexity;
and (3) where the unit order of measure was both objective
and widely accepted. Based on our results, we concluded that𝐶𝑐 is a vast improvement over 𝐻 as it provides an intuitively
useful, scale-free comparison of probability distributions and
also allows for a comparison between parts of distributions as
well.

The renormalization obtained will have a different shape
for different distributions. In fact, a bimodal, right skewed,
or other kinds of distributions will lead to a different 𝐶𝑐
versus 𝑐 curve. There are two interesting points of inquiry
in future papers, namely, (a) how the shape of the original
distribution influences the 𝐶𝑐 versus 𝑐 curve and (b) whether
we can reconstruct the original shape of the distribution given
the 𝐶𝑐 versus 𝑐 curve. Because of the scale-free nature of 𝐶𝑐,
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all distributions can be compared in the same plot without
reference to their original scales. In our future work, we will
endeavor to connect the shape of the 𝐶𝑐 versus 𝑐 curve to the
shape of the original distribution. This will allow us to locate
portions of the original distribution (irrespective of their
scale), where diversity is concentrated, and portions where
it is sparse, even though the original distributions cannot
be plotted on the same graph due to huge variation in their
scales.
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