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We study the transport properties of coherent vortices over a finite time duration. Here we reveal that such
vortices can be identified based on frequency-domain representation of Lagrangian trajectories. We use Fourier
analysis to convert particles’ trajectories from their time domain to a presentation in the frequency domain.
We then identify and extract coherent vortices as material surfaces along which particles’ trajectories share
similar frequencies. Our method identifies all coherent vortices in an automatic manner, showing high vortices’
monitoring capacity. We illustrate our new method by identifying and extracting Lagrangian coherent vortices
in different two- and three-dimensional flows.

Keywords: Lagrangian coherent vortex, eddies, fluid dynamics, Fourier transform, frequency domain analysis.

Various vortex definitions have been introduced
in the literature together with their automatic de-
tection. These formulations generally fall into two
classes: Eulerian and Lagrangian. Here we take
a very different approach to define Lagrangian
coherent vortices. Our method is based on a
frequency-domain representation of Lagrangian
trajectories. It simply defines vortices as material
surfaces along which particles’ trajectories share
similar frequencies.

I. INTRODUCTION

Lagrangian coherent structures (LCSs) are differenti-
ated surfaces of trajectories in a dynamical system that
exert a significant effect on adjacent trajectories over a
time interval of interest1. These LCSs are mainly struc-
tured into three physical shapes; hyperbolic LCSs which
act as repelling or attracting neighboring material ele-
ments with locally the highest rate over a given finite-
time interval, parabolic LCSs which serve as generalized
jet cores and elliptic LCSs serve as generalized coherent
vortex boundaries in finite-time unsteady flows. In the
geophysical fluid dynamics community these structures
are referred to as mesoscale and submesoscale filaments,
jets and eddies2.

In this paper, we are interested in physical structures
of elliptical shapes. Such physical structures are om-
nipresent in the ocean and usually exhibit different prop-
erties to their surroundings. They are known to stir and
mix surroundings water masses as well as by their ability
to trap and carry fluid properties in coherent manner.
In the present work, we are interested on those that live
long-enough to be observed despite their environment’s
chaotic nature. These mesoscale eddies have an impor-
tant role to play in climate change arising from their
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influence on the circulation by transporting temperature
and salinity. They are also known to contribute in main-
taining the extra-tropical climate through the meridional
transport of heat from the tropics to the poles3.

As these mesoscale eddies have a remarkable impact
on the global circulation, their systematic and precise
detection has been of great concern over the last two
decades4–7. Several vortex definitions have been intro-
duced in the literature together with their automatic
detection8–10, most of these formulations are of Eulerian
nature. These latter approaches make use of instanta-
neous velocity field to detect vortices boundaries. How-
ever, these vortices boundaries fail to coherently carry
and transport their encircled water masses, instead, they
stretch, deform and develop filaments11.

On the other hand, Lagrangian methods are powerful
tools to identify coherent vortices because they take into
account the time-evolution of particles trajectories6,7,11.
Various dynamical systems approaches have been pre-
sented to define a Lagrangian transport characterization
of nonautonomous chaotic dynamical systems. These ap-
proaches generally fall into different classes. Probabilistic
techniques, which study the evolution of probability den-
sities and almost-invariant sets5,12–16 and geometric ap-
proaches which use invariant manifolds. In6 the authors
introduce a variational principle for coherent material
vortices, where vortices’ boundaries are sought as elliptic
LCSs. This method has been reformulated such that it
can be solved via the variational level set methodology17.
These stretching-based variational methods rely on a pre-
cise computation of Cauchy-green tensor and its invari-
ants, which requires accurate differentiation of particles
trajectories with respect to their initial positions18. In19

authors propose a clustering approach to identify coher-
ent structures by classifying fluid particles into coher-
ent and incoherent. This was done by defining coherent
structures as a group of trajectories that conserve short
distances between themselves relative to the others out-
side the structure. This method is simple to implement
and requires no differentiation of particles trajectories
with respect to their initial positions but it requires a
well-defined eigengap18. In7, authors use the Lagrangian-
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averaged vorticity deviation to identify Lagrangian co-
herent vortices. This is based on a unique decomposition
of gradient deformation into product of pure strain and
pure rotation gradients20. This approach is simple and
low in computation cost but it requires large computa-
tional domain for spatial mean of vorticity18.

Our approach is based on frequency-domain analysis
of Lagrangian particle trajectories. We represent parti-
cles’ trajectory in their frequency domain in the form of
sinusoid. Each sinusoid is characterized by an amplitude
which gives information about vortex’s diameter, and fre-
quency which measures the vortex-turn-over time. The
latter part yields an objective measure of material ro-
tation. We define Lagrangian coherent vortex as closed
material surfaces in which fluid parcels complete the same
rotation. In the frequency domain, this turns out to be
filled with tubular level-sets of particle trajectories’ fre-
quencies. This paper is organized as follows: Section II
describes the setup and outlines the main computational
tool. Section III discusses and illustrates particles tra-
jectories in time domain. Section IV describes the repre-
sentation of particles’ trajectories in frequency domain.
Section V presents and details our new approach. Section
VI illustrate our method via different fluid simulations.
Conclusion is drawn in the last Section.

II. SET-UP

We consider a time-dependent smooth vector field:

v(x, t), x ∈ R3, t ∈ [α, β] (1)

and its associated ordinary differential equation:

ẋ = v(x, t), x ∈ R3, t ∈ [α, β] (2)

where v a smooth velocity field defined on a domain:

U(t) ⊂ R3, U =
⋃

t∈[α,β]

U(t) ⊂ R3 × [α, β] (3)

The flow map is defined as the map that takes a par-
ticle from its initial location x0 at time t0 to its location
xt at time t:

Ftt0(x0) := x(t, t0,x0), α ≤ t0 ≤ t ≤ β, (4)

x(t, t0,x0) denoting the trajectory of Eq.2 passing
through a point x0 at time t0.

Consider a material domain (defined by a set of fluid
particles)M(t0) advected by the flow. Its image at time
t can be expressed in term of the flow map as M(t) =
Ftt0(M(t0)).

III. METHOD

The general outline of the proposed method is as fol-
lows. We produce particle trajectories by solving the or-
dinary differential equation 2. Next we apply the Fourier
transform over each particle trajectory to represent them
in the frequency domain. Finally, we seek coherent vor-
tices as material surfaces along which particles’ trajecto-
ries share similar frequencies’ components.

A. Frequency-domain analysis and Fourier transform

Frequency-domain analysis is a cornerstone of signal
and system analysis. While time-domain analysis shows
how a mathematical function or a signal changes over
time, frequency-domain analysis shows how their ener-
gies are distributed over a domain of frequencies. Fur-
thermore, observing a given system from frequency point
of view usually gives an intuitive interpretation of the
qualitative behavior of the system. A given signal con-
tains frequency information that can be computed using
the Fourier transform which is recalled below.

If x(t) is any signal, either integrable or of finite en-
ergy, the Fourier transform of x, F(x)(ξ), measures, at
each frequency ξ, the amount of periodic information con-
tained in x, by simply evaluating < x | e−iξ > through
an integral computation:

F(x)(ξ) =

∫
R
x(t)e−itξdt (5)

with the frequency spectrum defined as the mapping
ξ 7→ |F(ξ)|2.

If x(t) is absolutely integrable on ] − ∞,+∞[, then
F(ξ) is continuous, F(ξ)→ 0 as ξ → ±∞, and

|F(ξ)| ≤
∫ +∞

−∞
|x(t)|dt (6)

In present scenario, continuous signals are sampled and
quantized to get a discrete domain signal. This approach
helps employing a variety of digital signal processing op-
erations. In signal processing field, the Fourier transform
is mostly computed using the Fast Fourier Transform al-
gorithm (FFT).

IV. VORTEX TRAJECTORY IN TIME DOMAIN

Various studies have addressed the problem of coherent
vortex identification based on their observed trajectories.
In21 authors use trajectory length to reveal the time t0
positions of geometrical structures of different dynamics.
This method is supposed to display an imprint of La-
grangian coherent structures as shown in21. However, no
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existing mathematical link between that method’s fea-
tures and material coherent structures18. Moreover, the
scalar field does not allow the identification and extrac-
tion of coherent vortices to allow their tracking and moni-
toring. Another method which make use of particles’ tra-
jectories to identify coherent structures is presented in19.
This has been done by classifying fluid particles into co-
herent and incoherent classes. In their work, a coherent
structure is described as a set of Lagrangian trajectories
that keep minimum distances between themselves with
respect to others outside the structure. This method is
simple to implement but it has no link between material
vortices and the expected spinning motion18.

Particle trajectory produced by integrating the veloc-
ity vector field in a vortex results into a loopy curve as
shown in Fig.1, this figure shows trajectories’ examples
of particles initialized within a given vortex. Thus, a
natural way to identify vortex is by locating particle tra-
jectories which exhibit spinning motion. By neglecting
the vertical components, particles’ trajectories in Fig.1
result in continuous curves which intersects themselves
and create closed-curves segments each time a particle
returns to one of its former positions after some time such
as in Fig.1. Based on this idea, authors in22 proposed a
scheme to identify loops from trajectories of oceanic sur-
face drifters. Such method indeed does identify the ex-
istence of eddies, but it does not identify vortices’ cores
or boundaries. Moreover this method leaves several un-
addressed vortices cases where particle trajectories don’t
intersect themselves; for example, given a vortex with
zero-translating speed and radial flow where the parti-
cles’ trajectories converge according to inflow.
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FIG. 1: a) Two particle trajectories within the same
vortex: particle within the vortex boundary is presented
in black while red color refers to a particle near by the

vortex center. b) Their projection on the (x, y)
coordinates.

V. PARTICLE TRAJECTORY IN FREQUENCY
DOMAIN

In spatial domain, particle’s trajectory coordinates are
represented by the Euclidean components x, y and z,
where they refer to their spatial position. In this do-
main, a particle trajectory within a vortex results into a
loopy curve as shown in Fig.1. Its time projection over
each of the spatial direction results into three components
responsible for plane and vertical movement as shown in
Fig.2. The x and y components of this particle trajectory
show the emergence of an attractor associated with vorti-
cal motion. They display periodic motions characterized
by a frequency presenting the vortex-turn-over time and
an amplitude referring to the vortex radius.

In frequency domain, particle trajectory coordinates
refer to frequencies ξx, ξy and ξw in each of the spatial
directions. Fig.3 shows the frequency-domain representa-
tion of particles’ trajectories in the Fig.1 after excluding
the drift effect. Both red and black trajectories share the
same frequency but have different amplitudes. Here we
see that analyzing such trajectories in their frequency do-
main representation is more easier than analyzing their
general shapes.
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FIG. 2: Two particle trajectories within the same
vortex: particle within the vortex boundary is presented
in black while red color refers to a particle near by the

vortex center.
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FIG. 3: Frequency-domain representation of the
particles’ trajectories in Fig.1, red an black trajectories
have the same frequency but different amplitudes: a)

within x-direction, b) within y-direction.

VI. DEFINING VORTICES FROM THEIR FREQUENCY
COMPONENTS

We seek to identify Lagrangian coherent vortices as
closed material surfaces along which particles exhibit
similar rotations around the same axis, and over a finite
time interval. In the frequency domain representation,
we seek Lagrangian coherent vortices as closed material
surfaces along which particle trajectories share similar
frequencies’ components. In this domain, a particle tra-
jectory can further be divided into two components; fre-
quency which gives information about uniformly rotating
flow, and the amplitude that describes the radius of a ro-
tating particle. Based on the fact that fluid particles
along vortex boundary exhibit the same polar rotation,
we only consider the first part which gives information
about the frequency of particle trajectory.

We define Lagrangian Trajectory Frequency LT F as:

LT Fξ(x(·, t0,x0)) :=

∫ tn

t0

x(t,x0)e−itξdt,

ξ = (ξ1, ξ2, . . . ξn)

(7)

where ξ = (ξ1, ξ2, . . . ξn) presents a vector of n fre-
quencies of a given particle trajectory. With that, we are
computing n points of a one-dimensional Fourier trans-
form. For a particle fluid starting from x0, the LT Fξ(x0)
vector field is a dynamically consistent measure of ma-
terial rotation; the average frequency weighted by the

frequency spectrum:

ξ =

∫ ξn
ξ0
ξdξ|LT Fξ|2∫ ξn

ξ0
dξ|LT Fξ|2

(8)

gives a consistent measure of particle rotation, whereas,

the mean average of the magnitude |LT Fξ(x0)| is a con-
sistent measure of particle rotation radius.

We now use the LT F to identify closed material sur-
face along which fluid parcels experience the same rota-
tion over a time interval [t0 tf ]. Time t0 positions of such
material tubes are tubular level ( a convex contour in
two dimensions, and a convex cylindrical or cone-shaped
set in three dimensions) surfaces of the scalar ξ, with

ξ 7→ |LT Fξ(x0)|2. By definition, the |LT Fξ(x0)| map
allows the identification of vortex’ center as inner most
member of the vortex with the minimal rotation radius.

We summarize the LT F-based vortex identification in
the following definition, with its geometry illustrated in
Fig.4-a.

Definition 1 For a given time interval [t0, tf ]:

• 1) Lagrangian coherent vortex is an evolving mate-
rial domain U =

⋃
t∈[t0,tf ] U(t) ⊂ R3× [t0, tf ] such

that U(t0) ⊂ R3 is filled with a nested family of

tubular level surfaces of ξ =

∫ ξn
ξ0

ξdξ|LT Fξ|2∫ ξn
ξ0

dξ|LT Fξ|2
.

• 2) The boundary B =
⋃
t∈[t0,tf ] B(t) ⊂ R3 × [t0, tf ]

of U is the outermost closed material surface of ξ
in U(t0).

In the computational world, we relax the convexity
strictness for closed material surface of ξ. The first
reason for this convexity relaxation consists of allowing
small tangential filamentation even at time t0 of vor-
tices’ boundaries (Fig.4-b-1). The second reason con-
sists of the nature of multi-scale data, such data shows
the presence of small-scale vortices nearby the bound-
aries of big-scale vortices (Fig.4-b-2). The third reason
consists of the representation of vortices’ boundaries by
discrete polygons (Fig.4-b-3). At the initial time t0, the
definition 1 identify Lagrangian coherent vortices with a
simple geometry, that is by defining a parameter of max-
imal convexity deficiency dmax to allow the relaxation of
convexity strictness. This enables capturing filamented
parts that rotate together with the vortices without a
global breakaway. The aforementioned definition allows
the identification of vortex boundary B(t0) which has
convexity deficiency less than the maximal limit dmax.
We define the convexity deficiency of a closed curve in
the plane as the ratio of the area difference between the
curve and its convex hull to the area enclosed by the

curve as: d = A(Conv(B(t0)))−A(B(t0))
A(B(t0))

. Fig.4-b shows the

geometrical view of the convexity deficiency parameter,
the dark red color refers to the difference between the
curve (in white) and its convex hull.
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FIG. 4: a) Initial and time t positions of a coherent
Lagrangian vortex U(t) and a Lagrangian vortex

boundary B(t). Also shown within U(t) are different
vortex cores C(t) along which particles’ trajectories

share different frequencies over the time interval [t0, t].
b) An example of a closed material line which profits
from the relaxation of convexity to small convexity

deficiency. Dark red area indicates the area difference
between the closed material line and its convex hull: (1)

minor tangential filamentation, (2) deformation by
smaller-scale vortices, (3) discrete approximation of a

convexity.

Lagrangian vortices, as well as their boundaries are
materials objects7. Thus, their position at a given time
t is only determined by Lagrangian advection:

U(t) = Ftt0(U(t0)), B(t) = Ftt0(B(t0)),

t ∈ [t0, tf ]
(9)

The LT F-vortex approach differs from the previous
definitions, it does define vortex based on the frequency
domain representation of their trajectories; more pre-
cisely, it defines vortices as closed material surfaces along
which particles share similar frequencies. Our method
does not require differentiation of particles trajectories
with respect to their initial positions, thus, it does not re-
quire advection of high-density grids. LT F-vortex might
show material filament, but by definition, they will all ro-
tate together with the vortex without breaking away.

VII. EXPERIMENTS

Here we present numerical results that confirm our the-
oretical predictions regarding the identification of coher-
ent vortices.

A. Two-dimensional examples

1. Direct numerical simulation of two-dimensional
turbulence

We solve numerically the Navier-Stokes PDE model
for the time evolution of 2 components of the velocity,
u : D → R2 of an incompressible fluid on a torus, D =
[0, 2π]× [0, 2π]. This can be expressed as:

∂ut + u · ∇u = −∇p+
1

Re
∆u+ f, (x, t) ∈ D × [a, b],

∇ · u = 0, (x, t) ∈ D × [a, b],∫
ujdx = 0, (x, t) ∈ D × [a, b], j = 1, 2,

u = u∗, (x, t) ∈ D × {0}
(10)
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FIG. 5: Time evolution of the magnitude of fluid
velocity, governed by the Navier-Stokes model 10, over

two spatial dimensions: the angle of the inner ring
(horizontal axis) and outer ring (vertical axis) of a two

dimensional torus. Angles are expressed in radians.
Velocities are evaluated at times t = (0, 400, 700, 1000).
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FIG. 6: a) Lagrangian coherent vortices at time t0
extracted from the velocity field generated by

Navier-Stokes model 10 using definition.1 with the ξ
map shown in background, with ξ 7→ |LT Fξ(x0)|2. b)

The mean-average magnitude |LT Fξ(x0)| highlighting
areas of spinning movement. c) Their initial and final

positions under Lagrangian advection as well as
different particles initialized within their boundaries

and their trajectories in Dashed line. (See the
supplemental movie M1 for the complete advection

sequence of these vortices.)

Where u · ∇u is the inertial term which characterizes
Navier-Stokes equation, and is responsible for the trans-
fer of kinetic energy in the turbulent cascade. ∇p is
the pressure gradients which guarantee the incompress-
ibility of the flow, and 1

Re∆u is the the dissipative vis-
cous term. We further assume periodic boundary con-
ditions and use a standard pseudo-spectral method with
512 modes in each direction and 2/3 dealiasing to solve
the above Navier-Stokes equation with Reynolds number
Re = 104 on the time interval t ∈ [0, 1000]. The model is
parametrized by the pressure function p : D× [a, b]→ R,
with no external forcing (f = 0). We initialize the sys-
tem with the vorticity of two adjacent vortices perturbed

by a random uniform distribution:

ω|t0 = exp(
(x− π)2 + (y − 2π − π/4)2

0.2
)

− exp( (x− π − π/4)2 + (y − π − π/4)2

0.8
) (11)

We use the vorticity stream formulation23 for imple-
mentation and get back velocity and pressure from the
stream function. The flow integration is then carried out
over the interval t ∈ [400, 1000], in which the turbulent
flow is under fully developed turbulence, by a fourth-
order Runge-Kutta method with variable step-size.

Fig.5 shows the forward simulated velocity field, ob-
tained at four distinct time points by the Navier-Stokes
model 10, over two-dimensional plane defined by: the
angle of the inner and outer rings of a two dimensional
torus.

To construct the LT Fξ vector field, we consider an
initial grid of 512×512 points and integrate the simulated
velocity field over the time interval [t0 = 400, tf = 1000]
using the eq.2.

Fig.6(a) shows coherent vortices extracted from the ξ
map computed from the simulated realization of fluid ve-
locity of the model 10, with dmax = 10−3. For each
vortex we extract the inner- and outer-most cores. Fig.
6(c) shows their final position under Lagrangian advec-
tion as well as trajectories of particles initialized on their
boundaries. These Lagrangian vortices maintain their co-
herency, they don’t stretch or fold. The complete advec-
tion sequence over the time interval [t0 = 400, tf = 1000]
is illustrated in the movie M1.

B. Two-dimensional eddies in satellite altimetry

Here, we use sea surface velocity data to illustrate the
detection of Lagrangian vortices. This velocity data is
derived from satellite altimetry under the geostrophic ap-
proximation where sea-surface height η(ϕ, θ, t) serves as
a non-canonical Hamiltonian for surface velocities in the
(ϕ, θ) longitude-latitude coordinate system. The evolu-
tion of fluid particles satisfies

ϕ̇(ϕ, θ, t) = − g

R2f(θ) cos θ
∂θη(ϕ, θ, t)

θ̇(ϕ, θ, t) =
g

R2f(θ) cos θ
∂ϕη(ϕ, θ, t)

(12)

where g is the constant of gravity, R is the mean ra-
dius of the Earth and f(θ) = 2Ω sin θ is the Coriolis ef-
fect, with Ω denoting the Earth’s mean angular veloc-
ity. This data is produced by Ssalto/duacs multi-mission
sea level products provided by AVISO (CLS/Archiving,
Validation, and Interpretation of Satellite Oceanographic
data)24 with a spatial resolution of 1/4◦ and temporal
resolution of 7 days.

We chose the region of the Agulhas leakage in
the Southern Ocean, spans from [−28◦N,−4◦W ] and
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FIG. 7: a) Coherent eddies at time t0 extracted using
definition.1 with the ξ map shown in background, with
ξ 7→ |LT Fξ(x0)|2. b) The mean-average magnitude

|LT Fξ(x0)| highlighting areas of spinning movement.
c) Their initial and final positions under Lagrangian

advection as well as different particles initialized within
their boundaries and their trajectories in Dashed line.

(See the supplemental movie M2 for the complete
advection sequence of these vortices.)

[−35◦N, 9◦W ]. This region is well known for its long-
lived propagating eddies that carry water properties from
the Indian ocean far into the South Atlantic25. In this
study, we chose the time period between 11/11/2006 and
11/1/2007.

We integrate the AVISO data set (eq.12) over the
period of time between t0 = 11 November 2006 and
tf = t0+90 days over an initial grid of particles with step

size ∆x0 = 1/50◦. We show in Fig.7(a) ξ map computed
from the satellite velocity field (eq.12). In the same im-
age, we show coherent eddies’ boundaries as they are ex-
tracted from the ξ map, with dmax = 10−3. In Fig.7(c) ,
we show their initial and final position under Lagrangian
advection as well as trajectories of particles initialized
on their boundaries. These eddies remain coherent. The

complete advection sequence over the time interval [0,
90] is illustrated in the movie M2.

1. Three-dimensional Agulhas eddies in a
data-assimilating circulation model

Here, we apply LT F-based vortex extraction to a
three-dimensional unsteady velocity field set obtained
from the Southern Ocean state estimation (SOSE)
model26. The domain of the data set lies in the area
of the Agulhas leakage in the Southern Ocean.

Our Lagrangian study covers a period of T = 30 days,
ranging from t0 = 15 May 2006 to t = 15 june 2006. As
in7, we select the computational domain bounded by lon-
gitudes [11◦E, 16◦E], latitudes [37◦S, 33◦S] and depths
[7, 2000] m. We compute the LT F vector field over a
uniform grid of 150 × 160 × 60 points, and identify a
Lagrangian coherent eddy.

Fig.8(a) shows the three-dimensional field of the ξ,

ξ 7→ |LT Fξ(x0)|2 with the eddy’s inner- and outer-most
cores enclosed with red color. Particles belonging to these
two cores have different frequencies. Fig.8(b) shows the
initial position of a coherent Lagrangian eddy boundary
(dark red), extracted as level sets of ξ. Also shown is a

nearby |LT Fξ| level surface outside the eddy boundary,
illustrating the complexity of the near-surface mixing re-
gion enclosing the eddy. Fig.8(c) gives a full view of the
Lagrangian eddy. Fig.8(d) shows the initial and the ma-
terially advected position of the eddy at the final time
tf = t0 + 30 days, whereas, Fig.8(e) shows the initial
and final position of different eddy’s layers presented in
different colors. As anticipated there is moderate tan-
gential filamentation in the material eddy boundary, but
precisely no breakaway from the rotating eddy core. This
high degree of material coherence in the presence of the
complex surrounding material mixing demonstrates the
efficiency of LT F-based vortex detection.

VIII. CONCLUSION

We have presented an objective frequency-domain defi-
nition of Lagrangian coherent vortices as closed material
surfaces along which fluid parcels exhibit the same in-
trinsic rotation. This coherent material is obtained from
the frequency-domain representation of their trajectories.
This intrinsic rotating material is expressible as material
tube characterized by a given frequency. We illustrated
our new method on different two- and three-dimensional
flows. Our results show that vortices boundaries obtained
are sharply defined. Our approach does not require ad-
vection of high-density material grids, a generally an ex-
pensive computational procedure in Lagrangian coher-
ence calculations. Moreover, it is suitable to applications
to float data.
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(a) (b)

(c)

(d) (e)

FIG. 8: a) A three-dimensional field of the ξ, with ξ 7→ |LT Fξ(x0)|2. b) Representative level surfaces of ξ. The dark
red surface is extracted using the definition.1, marking the vortex boundary for a mesoscale coherent Lagrangian

eddy, extending from 7 m down to 600 m in depth. The green surface is a nearby level surface of |LT Fξ| outside the
Lagrangian eddy region. c) Full view of the Lagrangian eddy boundary. d) The initial and the advected eddy

boundary 30 days later, whereas e) shows initial and the advected images of different layers of the eddy. (See the
supplemental movie M3 and M4 for the complete advection sequence of these vortices.)

SUPPLEMENTARY MATERIAL

See the supplemental movie M1 for the complete ad-
vection sequence of the vortices in Fig.6.

See the supplemental movie M2 for the complete ad-
vection sequence of the vortices in Fig.7.

See the supplemental movie M3 and M4 for the com-
plete advection sequence of the vortices in Fig.8.
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