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Abstract 22 

 Mature green tomatoes (Solanum lycopersicum cv Neang Pich) were exposed to 23 

13.6 kJm-2 UV-C or 0.5 μl l−1 1-MCP or combination of 13.6 kJm-2 UV-C and 0.5 μl l−1 1-24 

MCP, with appropriate untreated controls. After treatment, tomatoes were stored in 25 

continuous air containing 0.1 μl l−1 ethylene at 20°C and 100% RH. The untreated fruit 26 

ripened significantly faster than all other treatments. UV-C treatment alone was able to 27 

delay fruit ripening by up to five days longer compared to untreated fruits whilst the 28 

additional of 1-MCP further delayed fruit ripening. UV-C and 1-MCP treatments alone or 29 

in combination had significantly slower ethylene production rates throughout the storage 30 

period. The fruit treated with the combination of 1-MCP and UV-C was significantly 31 

firmer and had higher in total phenolic content compared to the other treatments. 32 

However, there was no difference between treatments in SSC/TA ratio, chlorophyll 33 

content, lycopene content and total antioxidant activity. These results show that UV-C 34 

and 1-MCP treatment delay ripening and improve the quality of tomatoes in the presence 35 

of low level ethylene during storage. This new treatment could be used to extend the 36 

shelf-life of mature green tomatoes through the supply chain without the use of 37 

refrigeration. 38 

Keywords : Solanum lycopersicum, ethylene, ripening, chlorophyll, lycopene, total 39 

antioxidant, total phenolic content. 40 

41 



3 
 

Introduction 42 

The tomato is the world’s most widely consumed vegetable (Scibisz et al., 2011). In many 43 

countries, tomato production is largely aimed at the fresh-produce market and therefore 44 

requires close management of ripening and the supply chain to ensure optimal external 45 

and internal quality (De Oliveira et al., 2014).  46 

Tomatoes are highly perishable and as for most climacteric fruits, anticipating 47 

harvest before the climacteric rise is considered the best strategy to prolong shelf-life and 48 

reduce the spoilage rate (Saltveit, 2005). However this practice can also negatively affect 49 

taste and nutritional quality as fruit picked at the mature green stage or before turning to 50 

red colour, although able to continue the ripening process, generally develop poor eating 51 

and nutritional traits when fully ripened (Kader, 1986). The tomato fruit is composed 52 

mainly of water, soluble and insoluble solids, organic acids (principally citric acid) and 53 

micronutrients such as carotenoids and vitamins A and C (Pedro & Ferreira, 2007). 54 

Sugars and organic acids are responsible for sweetness and tartness, and also influence 55 

tomato flavour; as a result, they are the major factors affecting consumer acceptability 56 

(Kader, 2008). Colour also has a marked influence on the initial purchasing decision by 57 

consumers, who tend to link fruit colour to taste quality (Causse et al., 2010).  58 

Treatment with UV-C (180 -280 nm) after harvest has been shown to reduce 59 

pathogen growth (Guerrero-Beltrán & Barbosa-Cánovas, 2004) and has been reported to 60 

extend the postharvest shelf-life of tomatoes by delayed fruit softening (Liu et al., 2011). 61 

UV-C treatment has also been shown to delay ripening and senescence in table grapes 62 

(Cantos & Tomás-Barberán, 2002), oranges (D’hallewin et al., 1999), peaches (Gonzalez-63 

Aguilar et al., 2004) and mangoes (Gonzalez-Aguilar et al., 2007).  Therefore, postharvest 64 
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UV-C treatment has the potential to become a technological alternative to improve 65 

storage of fruit and vegetables.   66 

1-Methylcyclopropene (1-MCP) is an ethylene antagonist that widely used  in 67 

many horticultural industries (Blankenship & Dole, 2003). 1-MCP has been shown to 68 

extend shelf-life, through fruit firmness maintenance, delaying carotenoid accumulation, 69 

reducing respiration rate and ethylene production (Blankenship & Dole, 2003, and Cliff et 70 

al., 2009).  1-MCP has been shown to be very effective in delaying ripening and in 71 

extending the shelf life of tomatoes (Wills & Ku, 2002). Noting that UV-C treatment 72 

induces ethylene synthesis (Stevens et al., 1998), and that this hormone could interfere in 73 

the responses to UV-C, treatment unit of 1-MCP was applied to evaluate the impact of 74 

UV-C treatment without the influence of ethylene.  Previous study observed the 75 

application of combination UV-C and 1-MCP, followed by storage in air at room 76 

temperature (Tiecher et al., 2013 and Severo et al., 2015), they reported that combination 77 

treatment of UV-C and 1-MCP delayed the tomato fruit degreening. 78 

Ethylene is a ubiquitous in the storage environment (Wills et al., 2000), where the 79 

ethylene levels in the supermarkets have been shown to be 0.017-0.035 μl l−1 and greater 80 

than 0.06 μl l−1 in the wholesale markets and distribution centres.  To date, there have 81 

been no studies on UV-C treatments and in combination with 1-MCP followed by storage 82 

in continuous low level ethylene atmosphere. Therefore, the objective of this study was to 83 

evaluate the effect of UV-C treatment in combination with 1-MCP on tomato quality 84 

during storage at 20°C with 100% RH, in continuous air containing 0.1 μl l−1 ethylene. 85 

Materials and methods 86 
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Produce 87 

Mature green or when fruits started to show the changed in incipient pink colouration at 88 

the end of blossom tomatoes (Solanum lypopersicum cv Neang Pich) were harvested from 89 

NSW Department of Primary Industries greenhouse (Ourimbah, N.S.W, Australia). Fruits 90 

were hand-harvested from greenhouses in the cool of early morning to minimise 91 

temperature differences at harvest.  Tomatoes of uniform shape and size were taken to the 92 

laboratory, weighed, randomised and sorted into experimental units of 20 fruits.  93 

1-methylcyclopropene (1-MCP) and UV-C treatment and storage conditions 94 

The UV-C treatments were conducted using a custom made light proof box fitted with 95 

two germicidal lamps (Sahkyo Denki Co. Ltd G20T10 20 Watt, Low Pressure Mercury).  96 

A SED008/W detector with PIR Irradiance Calibration at 254 nm was used to monitor 97 

UV-C intensity. UV-C intensity was determined prior to treatment by measuring the light 98 

intensity (kJm-2) using an International Light Technologies 1700 series research 99 

radiometer. The applied dose (kJm-2) was calculated by multiplying the emitting UV light 100 

intensity with treatment time in seconds. Light intensity was evaluated several times 101 

during the experiments to ensure consistent output. The tomatoes were placed 102 

approximately 15 cm from the UV-C light sources on one side then rotated 180°C and 103 

exposed again to ensure complete coverage; and during 12 min treatment received 13.6 104 

kJm-2 of radiation.  UV-C irradiation treatment was carried out at room temperature (20 ± 105 

1°C) and relative humidity at 79%, unless otherwise stated. 106 

In order to block the ethylene action, 0.5 μl l−1 1-MCP was applied in a 60 l sealed 107 

jar 24 h at 20°C and 85% RH, using SmartFresh powder (AgroFresh Solutions Inc., 108 

Philadelphia, PA, USA) containing 0.34% 1-MCP as active ingredient. Treatments 109 
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consisted of fruit without UV-C or 1-MCP application (control), UV-C application at 13.6 110 

kJm-2, 0.5 μl l−1 1-MCP and a combined 1-MCP + UV-C application under the same 111 

conditions as when applied separately. For the combined treatment, UV-C was applied 112 

24 h after the 1-MCP application. This unit treatment was performed to evaluate the effect 113 

of UV-C treatment without the interference of ethylene. After treatment, all fruit were 114 

stored in a constant atmosphere of 0.1 μl l−1  ethylene to provide simulated storage 115 

conditions at 20°C and 100% RH. Treatment unit was 20 tomato fruits. 116 

Determination of fruits quality attributes  117 

Tomato quality (every day or every second day) was measured weight loss, ethylene 118 

production, respiration rate, and skin colour. Tomatoes were also assessed for firmness, 119 

soluble solids content (SSC) and titratable acidity (TA) when fully ripe. The chlorophyll, 120 

lycopene, total phenols and total antioxidant were analysed at the beginning of the 121 

experiment (day 0) and when tomatoes were fully ripe. The weight loss percentages were 122 

calculated based on the initial weight of the tomatoes.   123 

The colour was assessed according to the method of Tiecher et al. (2013). 124 

Specifically, skin colour was measured by Hue angle using a Minolta colorimeter 125 

(Minolta CR-400, Osaka), where the average of 3 points from calyx to blossom end were 126 

measured.  Hue angle (°Hue) was calculated using the formula °Hue  = arctan (b*/a*). 127 

The ethylene production and respiration were measured according to Pristijono (2007), 128 

where tomatoes were transferred to a sealed 750 ml glass jars at 20°C, and after one hour 129 

a gas sample (1 ml) was collected in a syringe and the ethylene and carbon dioxide 130 

content were analysed.  Ethylene was measured by injecting a gas sample into a gas 131 

chromatograph (Gow-Mac 580, Bridgewater NJ). The ethylene concentration was 132 
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calculated with reference to the concentration of an ethylene standard. Ethylene 133 

production was calculated as [(C2H4 (μl l−1 ) x volume (ml)) / (weight (kg) x Time (h))], 134 

and expressed as µl C2H4.kg-1.h-1. Carbon dioxide concentration was measured to within 135 

0.1% using an ICA40 series low volume gas analysis system (International controlled 136 

Atmosphere Ltd., Kent, UK). Respiration rate was calculated as [(CO2 (%) x volume 137 

(ml)) / (weight (kg) x Time (h) x 100)] and expressed as ml CO2.kg-1.h-1. 138 

Tomato firmness was determined as the maximum force (Lloyd texture analyser, 139 

Fareman, UK), required to push a 7 mm probe into the fruit flesh to a depth of 2 mm. The 140 

average of 2 reading points from each side of the fruit was taken.  Results were expressed 141 

in Newton (N). The soluble solid content (SSC), expressed as °Brix, was measured 142 

according to Pataro et al. (2015), with slight modifications where sample were collected 143 

from the pressed juice of fruit by means of a hand refractometer (ATAGO Inc., Bellevue, 144 

WA, USA). Titratable acidity (TA), expressed as % citric acid, was determined by 145 

titrating 3 ml tomato supernatant to pH 8.2 with a 0.1 N NaOH solution using an 146 

automatic titrator (Mettler Toledo T50, Switzerland). 147 

Chemical analysis and antioxidant activity evaluation 148 

Three tomatoes were randomly selected from each treatment units, at the beginning of the 149 

experiment and after each fruit was fully ripe. After sampling, tomatoes were sliced into 150 

small pieces discarding the top and bottom sections and immediately stored at −20°C 151 

until further analysis. The frozen samples were later analysed for chlorophyll, lycopene 152 

content, total phenolic content and total antioxidant activity. 153 

Total chlorophyll and lycopene content 154 
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Total chlorophylls and lycopene were estimated according to the method of Lichtenthaler 155 

and Wellburn (1983). Specifically, 1 g of blended sample was mixed with 10 ml 100% 156 

acetone in test tubes and held at -20oC for 48 h. The samples were then vortexed, 157 

centrifuged at 10,000 × rpm for 10 min at 20oC and then the supernatants were filtered 158 

through Whatman No 1 filter in volumetric flasks of 25 ml. Subsequently, 10 ml 100% 159 

acetone were added to the precipitate and the samples were shaken at 150 × rpm for 10 160 

min. The samples were again filtered and added at the previous volumetric flasks, which 161 

were completed with 100% acetone and the absorption was determined 162 

spectrophotometrically at 652 nm. The following formula was used for the calculation of 163 

total chlorophyll and lycopene based on the study by Arnon (1949); Total chlorophyll 164 

(mg l−1) = D652 × 1000/34.5, where D652 is the absorbance at 652 nm and 34.5 is the 165 

value of the specific absorption coefficient at 652 nm. The following formula was used 166 

for the calculation of lycopene; Lycopene: (mg g−1) = (Abs 503 x Volume (ml)) x 3.1212 167 

/ Weight (g)). Where A503 the absorbance at 503 nm and 3.12 is the extinction 168 

coefficient. 169 

Total phenolic content  170 

The total phenolic content was measured by the Folin–Ciocalteu method as described by 171 

Singleton and Rossi (1965) and the results were expressed as mg gallic acid equivalents 172 

(GAE) per 100 g of fresh weight (mg GAE 100−1 g FW). 173 

Total antioxidant activity 174 

DPPH radical scavenging activity was determined according to Brand-Williams et al. 175 

(1995), with slight modifications. Specifically, 200 μl of the extracted sample were added 176 
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to 2800 μl 100 μm 2,2-diphenyl-1- picrylhydrazyl (DPPH) methanolic solution, it was 177 

vortexed and maintained in dark and at 20°C for 1 h. Absorbance was measured at 517 178 

nm. The percentage of DPPH˙ scavenging is calculated according to the equation of % 179 

DPPH scavenging = 100 × (control absorbance – sample absorbance  / control 180 

absorbance). 181 

Statistical analysis 182 

The experimental design was completely randomized, consisting three UV-C treatment 183 

units (a) control (without UV-C or 1-MCP), (b) UV-C, (c) 1-MCP and (d) UV-C + 1-184 

MCP.  The experiments were replicated three times. The one-way ANOVA and the Least 185 

Significance Difference (LSD) were conducted using the SPSS statistical software 186 

version 22. Data were reported as means ± standard deviations. Differences between the 187 

mean levels of the components in the different treatments were taken to be statistically 188 

significant at p < 0.05. 189 

Results and discussion 190 

Tomatoes at the mature green stage or when the fruits had just started to show incipient 191 

pink colouration at the end of blossom tomatoes stage were used since this represents the 192 

stage at which they are usually harvested in order to minimize loss during transport and 193 

storage. Skin colour values determined before each of the three replicate experiments 194 

showed only slight differences among the three batches used. Hue angle (°Hue) is one of 195 

the appropriate ripening indexes in tomato (Lopez Camelo & Gomez, 2004) and the 196 

results did not show significant differences (p < 0.05) between batches denoting 197 

homogeneity in terms of maturity level. Not surprisingly, the average initial lycopene 198 
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content (mg/g f.w) was low and high in chlorophyll content (mg l−1). Ethylene 199 

production, respiration rate, SSC, TA, fruit firmness, total phenolic content and 200 

antioxidant activity of tomatoes at harvest is presented in Table 1. 201 

Effect on weight loss 202 

Weight loss of tomatoes was measured when the fruits were fully ripe (°Hue = 60.4), and 203 

with the results showing that the tomatoes treated with UV-C alone did not significantly 204 

affect weight loss during ripening (Figure 1A). The 1-MCP treatment and combined 205 

treatment of 1-MCP + UV-C fruits showed a significantly (p  <  0.05) lower in weight loss 206 

than UV-C treatments or control fruits, however  the weight loss was only 0.2 % lower 207 

compared to control fruits and not to be considered commercially significant.  This result 208 

contrary to Pinheiro at al., (2015) who found that tomatoes treated with  4.83 kJm−2 UV-C 209 

showed lower levels of  weight loss of fruits after 15 d storage at 10ºC, than untreated 210 

UV-C fruits. The difference observed may be due to the storage conditions, where in this 211 

study, after treatments the fruits were stored in air containing 0.1 μl l−1 ethylene at 20°C, 212 

with 100% RH until the fruits were fully ripe.  213 

Effect on ethylene production 214 

Tomato is a climacteric fruit that is characterised by increased ethylene production and 215 

continued ripening after harvest (Cara & Giovannoni, 2008). The results of this 216 

experiment showed that UV-C, 1-MCP and 1-MCP+UV-C treatments slowed ethylene 217 

production, while control fruit had concluded the ethylene climacteric peak in 6 d, the 218 

UV-C or 1-MCP or 1-MCP+UV-C treated fruit after 6 d storage still had elevated 219 

ethylene production which indicated that fruit were not completely ripe (Figure 2A). In 220 
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addition, the maximum climacteric peak was delayed by 3 d with UV-C or 15 d with 1-221 

MCP treatments. The combination treatment of 1-MCP prior to UV-C was able to delay 222 

the climacteric by 12 d which explained that the application of 1-MCP prior to UV-C was 223 

unable to promote ethylene production. These results also show that the UV-C treatment 224 

delayed ripening in tomatoes by inhibiting ethylene production during storage. These 225 

results in accord with the privious report by Tiecher  et al. (2013) who found that 226 

tomatoes treated with 3.7 6 kJm−2 still had elevated ethylene production after 7 d storage 227 

in air.  The delay in ethylene production also affected the development of the red colour 228 

where untreated tomato fruit changed colour quicker than fruit treated with UV-C, 1-MCP 229 

or 1-MCP +UV-C. It should be noted that in this experiment the storage environment 230 

contained 0.1 μL.L−1 ethylene to stimulate comercial storage conditions. These results are 231 

consitent with those previously reported by Stevens et al. (1998) and Maharaj et al. 232 

(1999) observed a reduction of ethylene production in tomatoes treated with UV-C. These 233 

results suggest that the UV-C treatment irradiation extends the postharvest life of 234 

tomatoes by delaying the peak ethylene production and fruit ripening. 235 

Effect on skin colour 236 

The most visible symptom of tomato ripening is the change in skin colour from green to 237 

red, where the Hue value of a typical tomato fruit will decrease as the ripening process 238 

progresses (Jagadeesh et al. 2011). Tomato colour (Hue values) changed during storage 239 

are shown in Figure 2B, where at day 0, all samples were described as green colour (high 240 

Hue values).  The tomatoes treated with 13.6 kJm−2 UV-C alone or 0.5 μl l−1 1-MCP alone 241 

or the combination of 13.6 kJm−2 UV-C and 0.5 μl l−1 1-MCP produced significant delays 242 

in colour change. Untreated fruits fully ripened and became red 6 d after harvest while 243 



12 
 

UV-C treated fruit became fully red 11 d after harvest, whilst fruits from the combined 244 

treatment of 1-MCP + UV-C, became fully red within 17 d after harvest. As expected, 1-245 

MCP treated fruits were the longest period to become fully red within 21 d. Even though, 246 

there was difference in the storage conditions with previous study, where the fruit was 247 

stored in air at room temperature, but this result was consistent with the finding by 248 

Tiecher et al. (2013) and Severo et al. (2015) who reported that the application 3.7 kJm−2 249 

UV-C maintained the green colour of tomatoes, and combination treatment of 2 μL.L−1   250 

1-MCP and 3.7 kJm−2 UV-C further inhibit colour change, and retained a higher hue 251 

values. Also, Liu et al. (2009) observed that after tomato treated with 13.7 kJm−2 UV-C, 252 

followed by storage in air with fans continuously circulating air across the tomatoes, they 253 

found that a high Hue value was obtained on UV-C treated fruits after 21 d storage at 254 

14°C. This result suggests that UV-C treatment alone or in combination with 1-MCP 255 

delayed the tomato degreening regardless the storage conditions. 256 

Effect on firmness 257 

Fruit firmness was evaluated when the tomatoes were fully ripe (6 d for control, 11 d for 258 

UV-C treated, 17 d for 1-MCP+UV-C treated and 21 d for 1-MCP treated fruits). The 259 

results showed that the highest firmness was maintained in the combined treatment of 1-260 

MCP + UV-C treated fruit followed by 1-MCP alone, UV-C alone and untreated fruit 261 

(Figure 1B). The UV-C treatment did not contribute to flesh firmness preservation. 262 

However, combining 1-MCP and UV-C treatments produced significantly firmer fruits 263 

than UV-C treatment alone or when compared to control. This result confirms that 1-264 

MCP treatment contributed to maintaining flesh firmness in tomato (Jeong et al., 2002). 265 

Moreover, comparing untreated and UV-C treated fruits, there was no significant in fruit 266 
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firmness (p < 0.05). These results were contradictory with the previous report of Barka et 267 

al., (2000) and Stevens et al., (2004) who reported that tomato firmness was significantly 268 

increased by low-dose UV-C treatment, and that cell-wall degrading enzyme activities 269 

were also decreased. Also, Liu et al. (2009) reported that tomato firmness was 270 

significantly decreased by UV-C treatment. This experiment result suggest that  UV-C 271 

treatment acts more in colour (degreening and reddening) than in firmness changes of 272 

tomatoes. 273 

Effect on TSS, TA and TSS/TA ratio 274 

SSC and TA were measured on fully ripe fruits and the result shows that  SSC and TA 275 

were not affected by UV-C, 1-MCP treatments alone or the combination treatment of 1-276 

MCP + UV-C (Table 2). These results are consistent with those previously reported by 277 

Liu et al., (2009) who observed that SSC did not change in tomatoes (cv Red Ruby) after 278 

treatment with  22.8 W.m-2  UV-C lights stored at 12 - 14°C for 21 d. However, other 279 

reports have shown that tomatoes treated with 3.7 kJ.m−2 UV-C followed by storage at 280 

15°C for 15 d produced lower sugar content and higher in TA that untreated fruits 281 

(Charles et al., 2016).  These differences may be due to the assessment of sugar content, 282 

where in this experiment  SSC and TA were measured, while the previous report 283 

measured the total simple sugar of glucose, fructose and sucrose, as well as total organic 284 

acid were measured. 285 

The SSC/TA, or sugar to acid ratio is an important taste factor and an indicator of 286 

maturity, ripeness, or both in some mature fruit-type vegetables such as tomato (Malundo 287 

et al., 1995). Loss of sensory quality in tomatoes is associated with reduction of sweetness 288 

and acidic taste (Grierson & Kader, 1986). In this experiment, the SSC/TA showed no 289 
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significant difference between untreated fruits  and all other treaments (Table 2). These 290 

results suggest that UV-C treatments, alone or in combination with 1-MCP, did not have 291 

any effect on SSC to TA ratio in tomato. 292 

Effect on total chlorophyll and lycopene content 293 

Colour change in fruit which including chlorophyll degradation is closely associated with 294 

the chloroplast transition to chloroplast, which regulated by ethylene (Barsan et al., 2010). 295 

In this study, Total chlorophyll content was measured when tomatoes were fully ripe. The 296 

result shows that there were not statistically different in total chlorophyll content between 297 

treated and untreated fruits (Figure 3A). However untreated tomatoes showed higher 298 

chlorophyll content than UV-C treated fruits, which potentially UV-C treatments induced 299 

chlorophyll degradation, and when comparing UV-C treatments and 1-MCP treatment 300 

alone or the combination treatment of 1-MCP + UV-C show that UV-C treated fruits  had 301 

lower chlorophyll content than fruits treated with  combination of 1-MCP + UV-C or 1-302 

MCP alone. This may suggest that 1-MCP prevented chlorophyll degradation during 303 

ripening, which may also indicate that chlorophyll degradation is ethylene dependent. 304 

Lycopene, is the major carotenoid present in the tomato fruit and is one of the 305 

most important health attributes of tomatoes. The accumulation of lycopene during the 306 

ripening process causes an increase in the redness of tomatoes (Li et al., 2016).  In these 307 

observations, after ripening at 20ºC, all tomatoes were measured the lycopene content, 308 

and the results show that there was no significant difference between untreated tomatoes 309 

and all other treated fruits (Figure 3B). Moreover, the fruits treated with UV-C had 310 

significantly higher lycopene content than 1-MCP treated fruits or combination treatment 311 

of 1-MCP +UVC, and these results suggest that lycopene accumulation maybe  partially 312 
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ethylene dependent, as even though UV-C treated fruits had low ethylene production 313 

(2.66 µL C2H4.kg-1.h-1)  but accumulated high lycopene content (35.1 mg/g f.w.). The 314 

difference in lycopene content was potentially due to weight loss since the high lycopene 315 

content was found in tomatoes with high weight loss (Figure 1A). 316 

These results are in an agreement with the data reported by Tiecher et al., (2013) 317 

who found that 1 -MCP treatment inhibited total carotenoid accumulation including 318 

lycopene. The increased lycopene content may be attributed to a pressure-induced 319 

physiological stress during storage.  Gonzalez-Aguilar et al. (2010) suggest that 320 

postharvest treatments used to prolong fruit shelf-life such as high O2 atmosphere, 321 

irradiation, and heat treatments could induce changes in metabolic activity of the treated 322 

produce, such as the triggering bioactive molecule synthesis. UV-C treatment during 323 

storage may act in a similar manner. 324 

Effect on total phenolic content (TPC)  325 

After ripening of tomatoes in air containing 0.1 μl l−1 ethylene at 20°C and 100% RH, the 326 

total phenolic content was measured and the results showed that untreated tomatoes had 327 

significantly lower TPC compared to other treatments (Figure 4A). The highest TPC was 328 

found in the combination treatment of 1-MCP and UV-C, followed by fruits treated with 329 

UV-C, 1-MCP alone, with an increase of 12%, 12% and 24% for UV-C, 1-MCP  and 1-330 

MCP +UV-C treatments, respectively compared with the control. 331 

These observations are consistent with those previously reported by Liu et al., 332 

(2011) who found that tomatoes treated with UV-C had highest levels of TPC. This 333 

maybe due to general abiotic stresses which affect the pathways involved in biosynthesis 334 

of the main three groups of secondary metabolites including terpenes, phenolic, and 335 
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nitrogen-containing compounds (Cisneros-Zevallos, 2003).  Many studies have reported 336 

the enhancement of phenolic compound contents by environmental stress. For example, 337 

UV-C irradiation has been demonstrated to increase the levels of phenolics in several 338 

fruits such as tomato (Jagadeesh et al., 2011), apple (Dong et al., 1995), mango 339 

(González-Aguilar et al., 2007), and grape (Cantos et al., 2002). This may be a result of 340 

plant tissue induction of protective pathways to produce an accumulation of UV-light-341 

absorbing flavonoids and other phenolics. In this study, 13.6 kJm-2 UV-C treatment was 342 

found to enhance total phenolic content when the fruits were fully ripe, the further 343 

significant enhancement was found in icombined 3.6 kJm-2 UV-C and 0.5 μl l−1 1-MCP 344 

treated fruits.  345 

Effect on total antioxidant activity 346 

After fruit ripening at 20ºC, the DPPH antioxidant activity of fully ripe tomatoes was 347 

measured and the result is presented in Figure 4B. The result shows that there was no 348 

significant difference in DPPH activity between treated fruit and control.  The main 349 

antioxidants in tomato are carotenoids, ascorbic acid, and phenolic compounds 350 

(Giovanelli et al., 1999).  In this study, a 13.6 kJm-2 UV-C, 0.5 μl l−1 1-MCP and 351 

combination treatment of 0.5 μl l−1 1-MCP and 13.6 kJm-2 UV-C did not significantly 352 

affect DPPH scavenging activity during ripening periods even though the lycopene 353 

content was found to be higher by 11% in UV-C treated fruits than control. The 354 

relationship between lycopene and antioxidant activity is not always directly proportional, 355 

where the increase in lycopene content does not necessarily result in an increased 356 

antioxidant activity. In certain cases, an inverse relationship between antioxidant activity 357 

and lycopene content of red tomato varieties was observed at the end of the ripening stage 358 
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(Kotíková et al., 2011). The assessment of the single antioxidant assay indicated that an 359 

increase in pure lycopene concentrations beyond critical levels could reduce scavenging 360 

capacity values (Liu et al., 2008). However, its interactions with such other antioxidants 361 

such as β-carotene, lutein, α-tocopherols could act either additively, synergistically or 362 

antagonistically in scavenging free radicals (Zanfini et al., 2010). 363 

Conclusions 364 

The quality of fully ripe tomatoes was evaluated after the application of 13.6 kJm-2 UV-C 365 

or 0.5 μl l−1  1-MCP alone or the combination of 0.5 μl l−1  1-MCP and 13.6 kJm-2 UV-C 366 

followed by storage in air containing 0.1 μl l−1   ethylene at 20°C. Fruit ripening was 367 

delayed by 3 d with UV-C treatment and further delayed when the application of 1-MCP 368 

added. The combination treatment of 1-MCP and UV-C resulted in firmer fruits compared 369 

to untreated fruits and UV-C or 1-MCP treated fruit alone. The level of TPC was 370 

significantly affected by combination treatment of 1-MCP and UV-C, whereas there was 371 

no difference in DPPH antioxidant activity.  The ratio SSC to TA was not affected by the 372 

treatments. Overall, the UV-C treatment combined with 1-MCP improved tomato quality 373 

by delayed the fruits ripening and improved the firmness, as well as TPC. More study is 374 

required to assess the effect of application of UV-C followed by 1-MCP, to determine if 375 

the mode of action of UV-C is similar with this study.  376 
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Table 1. Quality parameters of tomatoes at the beginning of the experiment. Values 551 
represent the mean and standard error (S.E.) of three replicates consisting of 10 552 
tomatoes each replicate. 553 

 554 
 555 
 556 
 557 
 558 
 559 

560 

Parameter Value 
Colour (°Hue) 116.0 ± 0.2 
Ethylene (µl C2H4.kg-1.h-1) 0.17 ± 0.07 
Respiration rate (ml CO2.kg-1.h-1) 5.11 ± 0.26 
SSC (°Bx) 4.2 ± 0.2 
TA (% citric acid) 1.02 ±0 .08 
Ratio TSS to TA 4.2 ± 0.2 
Firmness (N) 42.9 ± 0.8 
Chlorophyll (mg/L) 0.46 ± 0.03 
Lycopene (mg/g f.w) 1.27 ± 0.06 
TPC (mg Gallic acid equiv /g f.w) 0.62 ± 0.02 
Total antioxidant activity (% DPPH 
scavenging activity) 

18.2 ± 1.3 
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 561 
Table 2. Soluble solids content (SSC), titratable acidity (TA), and SSC/TA (or 562 
sugar/acid) ratio of fully ripe tomato after treated with UV-C, 1-MCP and UV-C 563 
combined with 1-MCP, followed by storage in in continuous air containing 0.1 μl l−1 564 
ethylene at 20°C. 565 
 566 

 567 
 568 
 569 

570 

Treatments SSC (°Brix) TA (% citric acid) SSC/TA ratio 

Control 4.1 0.51 8.1 
UV-C 3.9 0.50 7.9 
1-MCP 3.9 0.50 7.8 
1-MCP + UV-C 4.0 0.50 8.1 
LSD (5%) ± 0.4 ± 0.11 ± 0.4 
Values are the mean of 3 replicates  
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Figure 1. Weight loss (A) and firmness (B) of tomato after treated with UVC, 1-MCP and 590 
UV-C integrated with 1-MCP, followed by storage in continuous air containing 0.1 μl.l−1 591 
ethylene at 20°C. 592 
 593 
 594 
 595 
 596 

597 
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Figure 2. Ethylene production (A) and skin colour (B) of tomato after treated with UV-C, 629 
1-MCP and UV-C combined with 1-MCP, followed by storage in continuous air 630 
containing 0.1 μl l−1 ethylene at 20°C. 631 
 632 
 633 

634 
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Figure 3. Total chlorophyll (A) and lycopene content (B) of fully ripe tomato after treated 654 
with UV-C, 1-MCP and UV-C combined with 1-MCP, followed by storage in continuous 655 
air containing 0.1 μl l−1 ethylene at 20°C. 656 
 657 

658 
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Figure 4. Total phenolic content (A) and total antioxidant activity (B) of fully ripe tomato 678 
after treated with UV-C, 1-MCP and UV-C combined with 1-MCP, followed by storage 679 
in continuous air containing 0.1 μl l−1 ethylene at 20°C. 680 
 681 
 682 
 683 
 684 
 685 
 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 


