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Abstract 

A theoretical framework that supports automated construction of dynamic prime models purely from experimental 
time series data has been invented and developed, which can automatically generate (construct) data-driven models 
of any time series data in seconds. This has resulted in the formulation and formalisation of new reverse engineering 
and dynamic methods for automated systems modelling of complex systems, including complex biological, 
financial, control, and artificial neural network systems. The systems/model theory behind the invention has been 
formalised as a new, effective and robust system identification strategy complementary to process-based modelling. 
The proposed dynamic modelling and network inference solutions often involve tackling extremely difficult 
parameter estimation challenges, inferring unknown underlying network structures, and unsupervised formulation 
and construction of smart and intelligent ODE models of complex systems. In underdetermined conditions, i.e., 
cases of dealing with how best to instantaneously and rapidly construct data-consistent prime models of unknown 
(or well-studied) complex system from small-sized time series data, inference of unknown underlying network of 
interaction is more challenging. This article reports a robust step-by-step mathematical and computational analysis 
of the entire prime model construction process that determines a model from data in less than a minute. 
© 2015 Idowu MA. Published by Elsevier B.V. 
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology. 
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1. Introduction 

Complex systems are generally characterized by complex interactions of network components, each 
communicating with many other components in different ways, at different time intervals, and varying rates. 
Complex systems modelling research may be targeted at finding new complementary strategies that can improve 
existing knowledge about studied systems, project new line of thought and understanding of less-studied systems, or 
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nominate new set of objectives for alternative views, hypotheses, experimental design and measurements. In line 
with these principal objectives, contemporary complex systems modelling, machine learning, and data mining 
research fundamentally often focus on model-based exploitation of time series measurements for instantaneous 
system identification and intelligent causal inference.  

Here we introduce a new form of ODE-based discretization theory, apply knowledge of this to develop a new 
algorithm called TRM [1, 2, 3, 4, 5, 6], and demonstrate an application of TRM (causal inference) on test networks 
[2] and a real biological system using quantitative time series data of key kinases of the DDR pathway [6]. 

Nomenclature 

ODE ordinary differential equations 
TRM   transposive regression (causal inference) method 
DDR DNA damage response  

1.1. New model theory and discretization of continuous data 

In mathematical modelling, the concept of discretization applies to the partitioning of continuous data to 
acceptable smaller segments (in intervals) that can be used to represent the whole unpartioned (continuous) data, 
often carried out without loss of dynamic features. Here we reason that a good data discretization research should 
also aim at successful optimal recovery of original continuous data from discretized data. In [3] we evidenced 
successful complete recovery from artificial data discretized at small regular intervals under limited data condition, 
i.e. the total number of measured time points (states) equal to number of dependent (measurable) variables.  The 
proposed discretization technique is based on a newly invented ordinary differential equations (ODE) theory 
formulated by the author [2, 4, 5, 6]. The proposed inference algorithm is discussed here in more detail with an 
illustrated analysis of presented here to show how the inference was performed. 

1.2. The interplay between interaction matrix, interaction network, and mathematical model 

Complex systems may be represented or aided by the use of network of interaction and network diagrams. This 
could be in the form of a graphical network model, interaction matrix, network of nodes in 2D, real physical 
network structure, or any other appropriate depiction for communicating and supporting plausible or functional 
causal explanation. For example, in systems biology interaction networks are used to describe biological phenomena 
and communication in genetic and biochemical networks [7, 8], further explain analysis results from clinical or bio-
molecular data [9] and convey key concepts in personalized medicine [10]. Such representations may be linked to 
well-formulated process-based models that have captured and incorporated existing experts' knowledge extracted 
from the literature.  

To understand the interplay between an interaction matrix, interaction network and model, the study of complex 
networks and use of network paradigm may be employed, seeking appropriate forms of network-based approach to 
describe dynamic systems, where the nodes in the network represent the (measurable) variables and the edges 
represent interactions between any pair of nodes. Crucially, interactions may have weighted edges where the weights 
relate to the strength of the interactions [7]. For example, gene networks are commonly represented by directed 
graphs where the nodes of the graph are genes and the directed edges are causal relationships between genes [7]. For 
example, in metabolic pathway modelling, it is important to formulate appropriate functions that describe the 
behaviour of the constituents of the system by identifying key components of interest with their symbolic names 
using (directional) arrows showing which components modulate the flows into, between, and out of components [8]. 
In such cases, the set of nodes is defined by the dependent variables; importantly, the edges and their weights, and so 
the network topology, must be inferred from the available data. 

A major challenge confronting contemporary complex systems modelling is the problem of finding efficient and 
appropriate model construction methods to use. There is a necessary requirement to develop new, fast network 
inference techniques that may instantaneously solve parameter estimation tasks and construct network of interaction 
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purely from discretized time series data. In this regard we propose a deterministic approach that is founded on 
matrix-based differential equations. The proposed method seeks to tackle system identification and parameter 
estimation challenges by adopting a matrix-based method of solving systems of linear (or alternatively, log-linear) 
differential equations. 

1.3. Systems of ordinary differential equations 

Conventional models that are based on ODE are regularly used to describe complex processes of a complex 
system [11]. The simplest form of ODE-based model is the deterministic system of linear differential equations (e.g. 
figure 1).  

Fig.1. Example of a simple ODE-based model  

Alternatively, further interpretation and analysis of such simple models are easy to reformulated, particularly if 
intrinsically associated with matrix-based forms, e.g. the model in Fig.1 may be reformulated (Fig. 2). 

Fig.2. Example of a reconfigured matrix-based ODE model (with heatmap) 

Such a system is then described to above to be of linear differential equations with 8 dependent variables and an 
associated Jacobian transformation matrix A with the kinetic parameters 

Fig.3. Example of a simple ODE model  
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Furthermore, the transformation matrix A could be viewed as a representation of captures influxes and effluxes 
within and out of the interrelated components. For instance, the matrix A may be interpreted as illustrating complex 
interactions between the components (modes or dependent variables), each exerting positive and/or negative 
influences on other components of the network (Fig. 4). 

Fig.4. A transformation matrix as a mechanism of capturing and representing interactions (influxes and effluxes) within an interaction network

In general, prime models such as the above-mentioned may be employed to capture and represent systems of 
nonlinear equations whose general solution is equivalent to the system of linear (or log-linear) differential equations 
(Fig. 5). 

Fig.5. A model of linear differential equations (upper model); and an equivalent system of nonlinear equations based on eigenvalues and 
eigenvectors (lower image) [2] 

The latter (i.e. nonlinear representation) adopts a formulation that may be based on eigenvalues and parameters or 
other forms of parameters and variables that must be consistent with the initial condition, e.g. linear combination of 
the eigenvectors, etc. As partially evidenced in [2], the author here concludes the implied solution must also be 
consistent with the eigen-based model (Fig. 6 below).  

Fig.6. A proposed eigen-based model which is consistent with the initial condition (IC) involving a decomposition of IC into linear combinations 
of eigenvectors.  
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2. Inverse Problems as Reverse Engineering Challenges 

Assume that some evolutionary dynamics of a target complex system may be captured and recorded by 
measuring the amount, concentrations, or levels of key dependent (interacting) components over a sufficient time-
period or certain (regular) time intervals. The unknown transformation matrix that defines the system characteristics 
or behavior, i.e. that have not been predetermined, must be inferred from the historical data in an efficient and 
consistent fashion. Ultimately the associated inverse problem must be completely solved to optimally identify the 
relevant and valid kinetics (approximated interactions and processes) that have occurred. In such scenarios where 
little or no information is supplied about the topology of the interaction network, prime models may be used to 
capture the unknown systems dynamics. The solution found may not be entirely unique, depending on the amount of 
data given, but it should adequate capture the observable features exhibited in the data. However, fast methods 
capable of producing plausible solutions are required, must be developed and engaged. For improved efficiency, 
there must be a devised non-iterative technique that can adequately guarantee a solution would be found under 
limited data condition and identify the unique solution in optimum time requirement and unlimited data conditions 
[2]. We assume a unique solution may exist if the data size (i.e. the total number of time points measured) exceeds 
the number of dependent variables. 

2.1. Inverse problems: systems of nonlinear equations 

Essentially, an inverse problem that is based on time series data may be formulated as a reverse engineering 
problem of finding a consistent matrix exponential from a system of nonlinear equations (figure 7). 

Fig.7. An elementary perspective on inverse problem definition of seeking to find optimal matrix exponential   

Finding a matrix exponential is usually a difficult task; solving such without making a priori assumptions about the 
structure of the interaction network is much more challenging. The algorithm prescribed below introduces an 
efficient algorithm for solving inverse problems in seconds; the Xbefore and Xafter vectors (defined and introduced 
above) represent the system states (i.e. array of vectors) before and after any transformations within the stated 
period, respectively.  
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2.2. A fast and efficient solution to inverse problems 

Given an inverse problem where both the matrix exponential and transformation matrix must be found, the 
following algorithm may be used to find an appropriate solution. The transposive regression (TRM) method [2, 6], 
invented by the author, is presented in Fig. 8. 

Fig.8. An invented TRM method for tackling system identification and parameter estimation challenges.  

Using an appropriate discretization theory the derived transformation matrix must be assessed to verify that the 
actual historical data could be simulated. Our expectation is that a proposed inference method of strategy must first 
be simulating the original data that is supplied. This fundamental requirement should be satisfied and assessed in 
model construction before further simulation is performed or prediction made from the constructed model. For 
improved trust, reliability and evidencing performance any comparison made between the actual data and simulated 
data should minimize discrepancies during the assessment tests on solution methods. 

3. Application of the proposed TRM method  

3.1. Dynamic modelling of biological systems 

Consider an application of the proposed reverse engineering method to DNA damage response (DDR) pathway 
modelling. A sample quantitative time series data of key kinases of the DDR pathway treated with an anti-cancer 
chemotherapy drug Doxorubicin is (measured and) recorded at (almost) regular time intervals (Fig. 9 – left image). 

Fig.9. (a) A sample time series data (left) associated with the DNA damage response pathway; (b) the inferred Jacobian transformation matrix 
(right) consistent with the historical data [6]. The TRM inference method used to derive the transformation matrix ensures that the Jacobian-based 

model is consistent with the historical data as demonstrated in Fig. 10 (a). 

The above data set typifies a limited data condition – the number of time points is quite small for effective dynamic 
modelling. The difficulty of the reverse engineering is even greater when the whole inference process must be 
purely based on the supplied data, i.e. in the absence of any additional constraints. The TRM method is then applied 
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on the dataset measured at regular time intervals. Here in our case, this requires eliminating the 2hr-state vector 
(only) before analyzing the entire data. The transformation matrix (Fig. 9 – right image) is first derived using the 
TRM algorithm and should be verified (to ensure that it is capable of reproducing the historical data utilized) prior to 
simulating other missing (unmeasured, uncaptured and unrecorded) data within the recorded time periods. At the 
unknown interpolated time steps, the constructed model is then used to populate the actual dataset to produce a more 
continuous, far much richer quantity. 

Fig.10. (a) An application of the TRM produces a non-discrepant comparison (left image) between actual (discretized experimental) data and 
predicted (simulated and interpolated) data ensuring data consistency; (b) Derived in-silico topological map representing revealed network of 

interaction extracted from the sample time series data. The derived topological map successfully evidences mild ATR activity, positive induction 
of ATM activity at the scale of DNA damage, a demonstration of pP53 S-15 to be the immediate downstream substrate of ATM and its positive 
regulation, signs of down regulation of E2F1 consistent with pATM-mediated E2F1 inhibition - characteristic that may further lead to cell cycle 

arrest [6]. 

With the inferred (Jacobian) matrix the constructed prime model of the biological system is able to simulate the 
complete dynamics of the system through continuous simulation; unknown dynamics are instantaneously generated 
to reconfirm the model outputs, verifying and ensuring little or no discrepancy between the actual and simulated 
(predicted) data as illustrated in Fig. 10 (left image). On successful identification of models that are consistent with 
data, a further system analysis of the optimal model would be required to further understand the revealed 
interactions extracted from the experimental data. Such an ODE-based causal inference strategy upgrades 
contemporary dynamic modelling and intelligent reverse engineering with data consistency and plausible extraction 
results, i.e. interaction network that may give adequate explanation to data in meaningful and understandable ways, 
e.g. Fig. 10 (right image).  

Fig.11. An overview of the proposed dynamic modelling method based on a direct utilization of the measured time series data and
implementation of an optimization algorithm (e.g. the transposive regression method - TRM) for instantaneous system identification and network 

inference. 
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The proposed modelling strategies may be employed to analyse data of many complex systems, e.g. the proposed 
modelling and network inference technique is adopted to investigate and understand the role that certain key kinases 
play in the regulation of the cell cycle control system (Fig. 11). Beyond complex biological systems modelling, the 
TRM method may be implemented and in tackling other similar computational or mathematical challenges 
associated with complex adaptive systems, e.g. artificial neural networks (ANN), econometric modelling, inferential 
statistical analysis, advanced data analysis of complex dynamical systems, etc. 

4. Conclusions 

Dynamic processes in complex systems may be profiled by measuring system properties over time. One way of 
capturing and representing such complex processes (phenomena) is through an ODE model of the associated 
(measured) time series data. A novel computational method for reconstructing data-consistent ODE models in 
seconds has been invented by the author. The proposed technique could be used either as a purely data-driven 
modelling strategy or complementary approach to other existing process-based modelling methods. As demonstrated 
here, difficult challenges of instantaneous system identification (or automated parameter estimation) may be 
adequately tackled using the TRM algorithm. In underdetermined conditions, the solution produced might not be 
unique, however, the method always seeks a data consistent solution and avoid other candidate solutions that may 
not be plausible through the proposed discretization theory. In essence, our method demands utilization and 
reproducibility of original and additional historical data to improve intelligence and performance. Sample time series 
data are highly useful for instantaneous systems modelling, identification and improved design of optimization 
algorithms, inference methods and complex adaptive systems that require the support of theoretical network science. 
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