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ABSTRACT 

Aim. This study aimed to determine effects of recovery intensity (passive, 20, 30 and 

40%V̇O2peak) on oxygen uptake kinetics, performance and blood lactate accumulation during 

repeated sprints.  

Methods. 7 moderately-trained male participants (V̇O2peak: 48.1 ± 5.1 ml·kg
-1

·min
-1

) 

performed 4 x 30-s repeated Wingate tests on 4 separate occasions.  

Results. Recovery of V̇O2 between sprints was prolonged with recovery intensity (time 

required to reach 50% V̇O2peak: Passive: 50 ± 9; 20%: 81 ± 17; 30%: 130 ± 43; 40%: 188 ± 62 

sec, P<0.001), while V̇O2-to-sprint work ratio was mainly increased by the higher intensities 

(Passive: 138 ± 17; 20%: 149 ± 14; 30%: 159 ± 15; 40%: 158 ± 17 ml·min
-1

·kJ
-1

, P=0.001). 

The decline in peak power tended to be greater in the higher intensity conditions during sprint 

2 (Passive: 7.4 ± 5.4; 20%: 5.8 ± 7.9; 30%: 12.7 ± 7.4; 40%: 12.7 ± 5.5%, P=0.052), whereas 

average power was less decreased with recovery intensity during sprint 4 (Passive: 22.4 ± 

8.9; 20%: 19.9 ± 6.1; 30%: 18.4 ± 7.3; 40%: 16.6 ± 6.2%, P=0.036). Blood lactate was not 

different with recovery intensity (P=0.251).  

Conclusion. The present study demonstrated that while the higher recovery intensities induce 

prolonged oxygen recovery and impaired peak power restoration during the initial sprints, 

those intensities provide a greater aerobic contribution to sprint performance, resulting in 

better power maintenance during the latter sprints.  

Key Words: Intermittent exercise - Active recovery - Passive recovery - Anaerobic 

metabolism - Aerobic metabolism. 
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TEXT 

Introduction 

 Recovery mode (i.e. active vs. passive) has been shown to be important during high-intensity 

intermittent exercise. 
1- 4

 When recovery duration is brief (15 to 21 sec) relative to sprint 

duration (e.g. sprint: rest ratio between 1:1 to 1:5), active recovery results in a greater 

performance decline in subsequent sprints. 
2- 4

 Furthermore, there was a shorter time to 

exhaustion during repeated sprints with active recovery regardless of intensity. 
5, 6 

Conversely, active recovery improves sprint power production when repeated efforts are 

interspersed with longer recovery periods (180 to 300 sec; sprint: rest ratio between 1:8 to 

1:12). 
1, 7, 8

 This difference could be due to the oxygen cost of active recovery which may 

inhibit re-oxygenation of the haemoglobin and myoglobin 
2, 5, 6 

or re-synthesis of PCr 
3, 4

 in 

short recoveries With longer recovery, the increased aerobic metabolism induced by active 

recovery may allow greater oxygen availability to facilitate PCr restoration during recovery 
1, 

9, 10
 and increase aerobic energy production during repeated sprints. 

11
 

 

 Over recent years the use of repeated Wingate-based exercise training (four to six all-out 30-

s cycling efforts interspersed with 4-min recovery, sprint: rest ratio of 1:8) has become 

increasingly utilised to improve metabolic functions (e.g. an improved mitochondrial 

function) and endurance performance. 
12- 15

 However, most of the studies have not considered 

workload during the recovery period. Previously, active recovery (28 to 40% of V̇O2max) 

during repeated Wingate tests has shown a greater maintenance of power production with 

similar blood lactate accumulation compared to passive recovery. 
1, 8, 16

 Despite this, only 

Bogdanis et al. 
1
 investigated effects of recovery mode on oxygen uptake during two 30-s 

Wingate tests interspersed with 4-min recovery.
 
Furthermore, although they found that active 

recovery increased V̇O2 during the 4-min recovery compared to passive recovery, only 
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average V̇O2 was reported due to the method used (Douglas bag method). 
1 

Therefore, effects 

of recovery mode on the time course of oxygen uptake recovery is yet to be determined. 

Moreover, it is unknown whether the intensity of recovery affects overall sprint performance, 

cardiorespiratory or blood lactate response as these studies merely compared active or passive 

but not intensity of recovery.  

  

 Therefore, this study sought to determine the effects of four different recovery intensities 

(passive, 20, 30 and 40% V̇O2peak) on oxygen uptake kinetics, sprint performance, and blood 

lactate accumulation during repeated 30-s Wingate tests that have been utilised previously to 

promote training adaptations. 
15

 It was hypothesised that oxygen demand would be increased 

with recovery intensity, whereas all active recovery intensities would result in improved 

sprint performance with a similar level of blood lactate when compared with passive 

recovery. 

 

Materials and Methods 

Subjects 

 Seven healthy active males who took part in a minimum of 3-h exercise per week 

participated in the present study (Table I). Subjects were fully informed both verbally and in 

writing about the study as well as any risks before giving their informed consent.  The study 

was approved by the Institutional Ethics Committee and was carried out in line with the 

Declaration of Helsinki.  

Experimental design 

 All subjects were asked to maintain their normal diet and activity throughout the study 

period and to refrain from alcohol intake and any form of intense physical activity for 24 h 

prior to each session. Subjects reported to the Human Performance Laboratory having only 
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consumed water 4h prior to arriving at the lab. All subjects performed 5 sessions at a similar 

time of day (± 2h) in a controlled environment (temperature: 19.8 ± 0.7 °C; humidity: 34.0 ± 

3.8%) throughout the study period. Each session was separated by at least a period of 48h but 

by no more than 2 weeks. On the initial visit, body composition was recorded on a calibrated 

bio-impedance meter (Tanita TBF 300, Tanita Co., Ltd. Japan) where body fat and mass were 

recorded (Table I).  

 

Determination of V̇O2peak  

 Subjects performed an exhaustive incremental cycling test to determine V̇O2peak via breath by 

breath analysis (Metalyzer
®
3B gas analyser, Cortex, Leipzig, Germany). Subjects warmed up 

by cycling for 4 minutes at any speed above 60 rpm on an unloaded cycle ergometer (Monark 

Ergomedic 874E, Varberg, Sweden). The weight of the bike cradle was then increased by 0.5 

kg every minute until the subjects could no longer maintain a speed of 60 rpm or until 

volitional exhaustion occurred. After the incremental test, an additional supra-maximal 

verification test was performed to ensure that true V̇O2peak had been elicited. Subjects rested 

for 5 minutes either passively or actively (unloaded cycling). They then cycled again until 

they reached the limit of tolerance (~2min) at a work rate equivalent to one stage higher 

(0.5kg heavier) than that of the last stage in the incremental test. 
17

 A high correlation 

between peak V̇O2 achieved during the incremental and verification tests was obtained using 

a linear regression model (r≥0.99 in both relative and absolute values), and the difference in 

peak V̇O2 between the two tests (77.4 ± 36.4 ml·min
-1 

or 1.0 ± 0.5 ml·kg
-1

·min
-1

) was less 

than the conventional concept of a plateau in V̇O2 (i.e. ≤150 ml·min
-1

 or ≤2.1 ml·kg
-1

·min
-1

) 

18
, suggesting the attainment of a true V̇O2peak. Respiratory gas exchange measures were 

averaged every 10s with V̇O2peak calculated as the highest oxygen consumed over a 10-s 

period, while power output elicited at V̇O2peak was defined as the maximal aerobic power 
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(MAP). Heart rate was recorded throughout using a heart rate monitor (Polar Electro, 

Kempele, Finland) and was averaged every 5s. Maximal heart rate (HRmax) was defined as 

the highest heart rate recorded over a 5-s period. Recovery intensities (i.e. 20, 30 and 40% of 

V̇O2peak) were determined according to the linear relationship between each individual’s V̇O2 

and work rate during the incremental test. 

 

Procedures of repeated Wingate tests and determination of cardiorespiratory kinetics 

 Subjects performed 4 x 30 second cycle sprints with 4 minutes of recovery (Monark 

Ergomedic 894E, Varberg, Sweden) against 7.5% bodyweight on 4 different days separated 

by at least 48 h. Upon cessation the workload was adjusted to a given recovery intensity (20, 

30, or 40% V̇O2peak), which had been randomly allocated, and the subjects cycled at this 

intensity for 230 sec. 10 sec before the next sprint, the workload was adjusted again to 7.5% 

of the subjects’ bodyweight. In the case of passive recovery, the subjects remained still on the 

bike for 240 sec. Heart rate (Polar Electro, Kempele, Finland) and on-line gas analysis 

(Metalyzer
®
3B gas analyser, Cortex, Leipzig, Germany) were both recorded continuously 

throughout. Oxygen uptake and HR were averaged every 5 seconds during the sprint 

protocol, and average values were expressed as percentage of V̇O2peak and HRmax 

determined in the incremental test respectively. During recovery, each V̇O2 or HR was 

divided by V̇O2peak or HRmax, and the slope of V̇O2 or HR versus time was determined for 

each recovery condition using a second-order polynomial regression (Figure 3A & 3B). 
19

 

Although the decrease in V̇O2 was well described by the mathematical model chosen as a 

group (Figure 3A), a large intra- or inter-individual difference was observed (r=0.55 to 0.98) 

mainly due to the different recovery conditions. Therefore, recovery kinetics of V̇O2 was 

determined by measuring the time required to reach 50% V̇O2peak (T to 50V̇O2peak) in 

accordance with the previous study. 
19

 If V̇O2 did not reach 50% V̇O2peak during the 4-min 
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recovery (3 out of 84 cases), T to 50V̇O2peak was defined as 240 sec. However, V̇O2 reduced 

to 51% V̇O2peak during the 4-min recovery in the above all 3 cases, suggesting that this 

method does not seem to underestimate T to 50V̇O2peak and is independent of the 

mathematical model chosen. 

 

Determination of repeated sprint performance and blood lactate accumulation  

 Peak power (PP) and average power (AP) during each 30-s sprint was automatically 

calculated using software (Monark Anaerobic Test Software version 2.24.2, Monark Exercise 

AB). Power drop of PP or AP across sprints was also determined using the following 

formula; (PP or AP
S2, S3 or S4 

– PP or AP
S1

) / PP or AP
S1

 x 100, where PP or AP
S1

 is peak or 

average power of sprint 1 and PP or AP
S2, S3 or S4 

is peak or average power of sprint 2, 3, or 4. 

V̇O2 – to - sprint work ratio (V̇O2/kJ) was also calculated in an attempt to determine aerobic 

contribution relative to mechanical work produced across the sprints and recovery conditions. 

20
 Blood samples were taken from the subjects’ fingertips before the first sprint and 180 sec 

after each sprint to determine blood lactate concentration (Lactate pro, Arkray Inc., Kyoto, 

Japan). Briefly, the skin was punctured using an Accu-check single use lancet (Roche 

Diagnostics, UK) and pressure applied to the finger to draw the blood. The initial drop was 

discarded and the second drop was taken for analysis.  

 

Statistical Analyses 

 All data are presented as means ± standard deviation. Before conducting parametric tests, a 

one sample Kolmogorov-Smirnov test was performed to ensure that all values were normally 

distributed. A two-way analysis of variance (ANOVA) with repeated measures was used to 

determine overall differences between recovery conditions (passive, 20, 30 and 40% V̇O2peak) 

and sprint/recovery number for Wingate performance, cardiorespiratory and blood lactate 
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variables. Greenhouse-Geisser corrections were used where the violation of sphericity was 

detected. In the case of a significant main effect of condition, the test was followed by post -

hoc Least significant difference (LSD) test. Where a significant sprint/recovery number by 

condition interaction effect was observed, one-way repeated ANOVA with post-hoc LSD test 

was performed to determine differences among the conditions for each sprint/recovery. 

Moreover, where the post-hoc test revealed a significant difference between conditions, effect 

size (Cohen’s d) was calculated. Due to the study design (i.e. repeated measures), Cohen’s d 

was corrected for dependence between means using the equation suggested by Morris and 

DeShon; 
21

 d = M diff / SDpooled√2(1 - r), where M diff is mean difference between conditions, 

SD pooled is pooled standard deviation, and r is correlation between means. Cohen’s effect size 

was defined as follows: d< 0.2 trivial effect, 0.2 - 0.5 small effect, 0.6 - 1.1 moderate effect 

and 1.2 – 1.9 as a large effect.
22

 Changes over time (P<0.01 in all cases) are only mentioned 

where appropriate for clarity. All statistics were run on IBM
®
 SPSS

®
 Version 21.0 for 

Windows and the significance level was set at P<0.05. 

 

Results 

Wingate performance 

 There was no main effect of recovery condition in the overall peak power, average power or 

power drop rate (Table II). However, a significant sprint by condition interaction effect was 

observed in peak power, and the drop rates of both peak and average power (Table II). 

Although the 30% recovery condition temporarily decreased peak power compared to the 

20% recovery during sprint 2 (P<0.01, d=1.44), all active recovery conditions improved it 

during the last sprint compared with the passive recovery (P<0.05 in all cases, d=0.94, 1.01 

and 0.95 for passive vs. 20, 30 and 40%, respectively) (Table II). A greater drop rate in peak 

power was observed following the higher recovery intensities during sprint 2, which nearly 
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reached significance (P=0.052), whereas that in average power was significantly improved by 

the 30 and 40% recovery conditions compared with the passive recovery (P<0.05 in both 

cases, d=1.46 and 1.18 for passive vs. 30 and 40%, respectively), or for the 40% recovery 

compared to the 20% recovery (P<0.05, d=1.17) during the last sprint (Table II). 

 

Oxygen uptake during sprints  

 There was a main effect of recovery condition in overall V̇O2 during sprints (Figure 1A: 

Passive: 57 ± 5; 20%: 63 ± 6; 30%: 66 ± 5; 40%: 67 ± 5 % V̇O2peak, P<0.001). Overall sprint 

V̇O2 was significantly elevated for all active recovery conditions compared with the passive 

recovery (P<0.05 for passive vs. 20%, d=1.16; P<0.01 for passive vs. 30 and 40%, d=2.12 

and 2.33 for passive vs. 30 and 40%, respectively), while there was no significant difference 

among active recovery conditions (Figure 1A). There was a main effect of condition in V̇O2 –

to- sprint work ratio (Figure 1C: Passive: 138 ± 17; 20%: 149 ± 14; 30%: 159 ± 15; 40%: 158 

± 17 ml·min
-1

·kJ
-1

, P=0.001). V̇O2 –to- sprint work ratio was significantly increased in the 30 

and 40% recovery groups compared to the passive recovery (P<0.01 in both cases, d=1.64 

and 2.23 for passive vs. 30 and 40%, respectively). It was also significantly elevated for the 

30% recovery condition compared with the 20% recovery condition (P<0.05, d=1.16) (Figure 

1C).  

 

Heart rate during sprints  

 There was a main effect of recovery condition in overall heart rate during sprints (Figure1B: 

Passive: 78 ± 4; 20%: 80 ± 4; 30%: 83 ± 6; 40%: 84 ± 4 % HRmax, P<0.001). Overall sprint 

HR was significantly elevated for the 30 and 40% recovery groups compared with the passive 

recovery (P<0.01 for passive vs. 30%, d=2.74; P<0.001 for passive vs. 40%, d=4.04) or 20% 

recovery group (P<0.05 for 20% vs. 30%, d=1.14; P<0.01 for 20% vs. 40%, d=2.74), but 
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there was no significant difference between the 20% recovery and the passive recovery 

(Figure 1B).  

 

Oxygen uptake during recovery 

 There was a main effect of recovery condition in overall V̇O2 during recovery (Figure 2A: 

Passive: 35 ± 4; 20%: 51 ± 5; 30%: 57 ± 4; 40%: 63 ± 7 %V̇O2peak, P<0.001). Overall 

recovery V̇O2 was significantly increased for all active recovery conditions compared with 

the passive recovery (P<0.001 in all cases, d=4.52, 6.49 and 6.61 for passive vs. 20, 30 and 

40%, respectively) (Figure 2A). It was also significantly elevated for the 30 and 40% 

recovery groups compared with the 20% recovery group (P<0.01 for 20% vs. 30%, d=2.22; 

P<0.001 for 20% vs. 40%, d=5.66), and for the 40% recovery compared to the 30% recovery 

condition (P<0.05, d=1.96) (Figure 2A). Likewise there was a main effect of condition in 

time required to reach 50%V̇O2peak (Figure 2C: Passive: 50 ± 9; 20%: 81 ± 17; 30%: 130 ± 

43; 40%: 188 ± 62 sec, P<0.001). T to 50V̇O2peak was increased for all active recovery 

conditions compared with the passive recovery (P<0.01 in all cases, d=2.22, 2.53 and 2.99 for 

passive vs. 20, 30 and 40%, respectively) (Figure 2C). It was also significantly elevated for 

the 30 and 40% recovery groups compared with the 20% recovery group (P<0.05 for 20% vs. 

30%, d=1.69; P<0.01 for 20% vs. 40%, d=2.88), and for the 40% recovery compared to the 

30% recovery condition (P<0.05, d=1.53) (Figure 2C). Example of recovery kinetics of V̇O2 

is shown in Figure 3A.  

 

Heart rate during recovery 

 There was a main effect of recovery condition in overall HR during recovery (Figure 2B: 

Passive: 74 ± 4; 20%: 80 ± 4; 30%: 82 ± 3; 40%: 84 ± 4 %HRmax, P<0.001). Overall 

recovery HR was significantly increased for all active recovery conditions compared with the 
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passive recovery (P<0.01 in all cases, d=2.15, 7.36 and 2.73 for passive vs. 20, 30 and 40%, 

respectively) (Figure 2B). It was also significantly elevated for the 30 and 40% recovery 

groups compared with the 20% recovery group (P<0.05 for 20% vs. 30%, d=0.96; P<0.01 for 

20% vs. 40%, d=1.62) (Figure 2B). Example of recovery kinetics of HR is shown in Figure 

3B. 

 

Blood lactate 

 Although blood lactate level significantly rose with repeated sprints, there was no main or 

sprint by condition interaction effect in blood lactate concentration (Table III).  

 

Discussion 

 This study sought to determine the effects of recovery intensity on the oxygen uptake 

kinetics, repeated 30-s Wingate performance and blood lactate accumulation. To the best of 

our knowledge, this is the first study to examine the effects of four different recovery 

intensities (passive, 20, 30 and 40%V̇O2peak) during the typical Wingate-based exercise 

training protocols. 
15

 The novel findings of the study are that oxygen cost during recovery is 

increased with the intensity of recovery, aerobic contribution to repeated sprint performance 

is only elevated by the higher recovery intensities and any active recovery intensity does not 

cause an alteration of blood lactate accumulation when compared with the passive recovery.  

 

 Although average V̇O2 during the repeated sprints was increased in all active recovery 

conditions compared with the passive recovery, V̇O2- to- sprint work ratio was only 

significantly increased by the 30 and 40% recovery groups (Figure 1A & 1C). V̇O2 at the end 

of the recovery periods was greater in the higher recovery conditions (30%: 46.5 ± 2.7; 40%: 

47.6 ± 6.5 %V̇O2peak) compared to the 20% recovery group (38.1 ± 1.7 %V̇O2peak, P<0.01) as 
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well as the passive recovery (21.9 ± 4.6 %V̇O2peak, P<0.001; Figure 3A), suggesting that the 

subjects began sprints with an elevated oxidative metabolism following the higher recovery 

intensities compared to the passive or 20% recovery. Further, HR during the sprints was 

significantly increased by the higher recovery intensities compared to the passive or 20% 

recovery condition (Figure 1B), indicating an increased muscle blood flow and thus a greater 

O2 delivery to the working muscles 
23

 during the sprints in these conditions. The elevated 

whole body V̇O2 along with the increased HR following the higher recovery intensities seems 

to have become increasingly important with the successive sprint repetitions where muscle O2 

extraction and thus aerobic contribution to mechanical work progressively increase (Figure 

1C). 
20, 24

 The attenuated drop in average power induced by the higher recovery intensities 

during the last sprint (Table II) would support this assumption. 

 

 Conversely, there was a tendency for the 30 and 40% recovery groups to cause greater peak 

power decline during sprint 2 compared with the passive or the lower recovery condition 

(Table II). In contrast to the current study, Bogdanis et al.
 1

 demonstrated that active recovery 

at 40% V̇O2max  increased power production in sprint 2 compared to passive recovery, which 

was totally attributed to a 3.1% higher power output produced during the initial 10s, when 

two 30-s cycle sprints were separated by 4 min. Since they also found a high correlation 

between re-synthesis of PCr and recovery of power output during the initial 10s of the second 

30-s sprint (r=0.84, P<0.05), 
25

 the improved power production might be attributed to a 

greater O2 availability for PCr re-synthesis induced by the active recovery (as reflected by 

greater V̇O2 compared with passive recovery, P<0.01) during the 4-min recovery. 
1
 In support 

of this, Haseler et al. 
9
 demonstrated that hyperoxia caused by greater fractions of inspired O2 

enhanced PCr restoration during 5-min recovery following submaximal exercise. 

Nevertheless, considering that a close relationship has been shown between time course of 
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V̇O2 recovery and that of PCr restoration, 
10, 19 

the greater decrease in peak power seen in the 

higher recovery conditions during sprint 2 could be explained by the prolonged V̇O2 recovery 

(Figure 2C). Indeed, it has been demonstrated that a prolonged T to 50V̇O2peak results in a 

slower rate of PCr recovery, 
19

 and within our study T to 50V̇O2peak is greater with higher 

intensity recoveries (Figure 2C). Although Bogdanis et al. 
1
 only reported average V̇O2 

during the 4-min recovery (55% V̇O2max) and thus the time course of V̇O2 recovery is 

unknown, a greater maximal aerobic capacity (4.28 ± 0.13 l·min
-1

; approximately 55 ml·kg
-

1
·min

-1
) of their subjects compared to the current study (3.6 ± 0.6 l·min

-1
, or 48.1 ± 5.1 ml·kg

-

1
·min

-1
) might have allowed faster V̇O2 recovery, 

26, 27
 possibly resulting in faster and/or 

greater PCr restoration. Similar to the current study, Lopez et al. 
16

 employed six 30-s cycle 

sprints alternated by 4-min recovery, and saw a greater peak power drop during sprint 2 in 

active recovery condition compared with passive recovery, while the active recovery 

improved average power during sprint 5 and 6. Although they did not report V̇O2max/V̇O2peak 

of their subjects and therefore their findings cannot be directly compared with those of the 

current study or the study by Bogdanis et al., 
1
 it could be assumed that active recovery may 

not be beneficial when only two sprints are performed whereas it would facilitate maintaining 

power production with the sprint repetitions, as the sprints become more aerobically 

demanding. 
20,

 
25, 28, 29 

Lopez et al. 
16

 also found that the active recovery tended to improve 

peak power during sprint 5 and 6 compared to the passive recovery (improved by 0.3 W·kg
-1 

in both cases), which is in agreement with the current study (i.e. peak power during the last 

sprint; Table II). This may suggest that greater aerobic metabolism caused by active recovery 

during the rest periods may become increasingly beneficial to PCr restoration as sprints are 

repeated 
27

 where muscle re-oxygenation rate progressively increases. 
20

 

  

The blood lactate level markedly rose after sprint 1, however the magnitude of increase in 
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blood lactate notably decreased with the successive bouts (Table III), indicating that 

anaerobic glycolysis progressively reduced with repeated sprints. 
25, 28, 29

 The present study 

did not find any difference in blood lactate concentration across the recovery intensities. This 

is not in line with the previous studies employing longer recovery periods (> 450 sec) where 

active recovery promoted a greater clearance of lactate from the blood, 
8, 30

 but similar to 

those employing shorter recovery periods (15 to 240 sec) where recovery mode did not affect 

blood lactate concentration despite the difference in repeated sprint performance between 

recovery conditions. 
1, 5- 7

 This indicates that the level of blood lactate may not be a decisive 

factor in repeated sprint exercise and longer recovery duration might be needed to see effects 

of an increased blood flow induced by active recovery on lactate transport and uptake by 

other tissues. 
31- 33

  

Practical implications 

 It is now well established that Wingate-based exercise training induces various physiological 

and metabolic adaptations comparable to those seen following traditional endurance training 

despite its markedly lower training volume. 
14, 15

 It could be argued that active recovery, 

especially at higher intensities, ensures greater aerobic demand (e.g. higher V̇O2 and HR) 

during the training without diminishing overall exercise intensity (i.e. mechanical work) 

and/or anaerobic demand. Moreover, the smaller power decrement achieved by active 

recovery in the latter sprints might be related to higher levels of muscle fibre recruitment 

(chiefly Type II fibres) 
20 

which may bring about greater training benefits. Therefore when 

designing HIT programmes the demands of the rest period should be considered to ensure 

maximal adaptation to this type of training.   

Conclusions 
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 The present study demonstrates that V̇O2 recovery kinetics and aerobic contribution to power 

generation during repeated Wingate tests are dependent on the intensity of recovery while no 

difference was observed in blood lactate accumulation among the recovery conditions. Peak 

power tended to be decreased with the higher recovery intensities (30 and 40% V̇O2peak) 

during sprint 2 and this might reflect an impaired intramuscular recovery (e.g. PCr recovery) 

due to the prolonged V̇O2 recovery induced by those conditions. On the other hand, aerobic 

contribution to sprint performance was only increased by the higher intensities which likely 

resulted in the less decreased average power during the last sprint. It is currently unknown 

whether acute alterations in sprint performance and physiological responses caused by the 

manipulation of recovery modality (i.e. active vs. passive) have an impact on chronic 

physiological and performance adaptations.  Therefore, further research is required to 

investigate effects of recovery mode on training adaptations (e.g. V̇O2max, endurance 

performance) to sprint interval training. 
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Table 1 Physical and Physiological characteristics of the subjects. 

Subjects (n = 7) 

V̇O2peak (l·min-1) 3.6 ± 0.6 

V̇O2peak  48.1 ± 5.1 (ml·kg-1·min-1) 

MAP (W) 321 ± 71 

HRmax (beats·min-1) 181 ± 11 

Age (year) 23 ± 5 

Height (cm) 180 ± 6 

Body mass (kg) 74 ± 8 

Body fat (%) 14.4 ± 4.9 

Abbreviations: V̇O2peak, peak oxygen uptake; MAP, maximal aerobic power; HRmax, 
maximal heart rate. Values are means ± SD. 



Table 2 Peak power, average power and respective power drop rate across the sprints and 
recovery conditions. 

Peak power (W·kg-1) # Passive 20% 30% 40% 
Sprint 1 12.6 ± 2.2 12.8 ± 2.1 12.4 ± 1.9 13.1 ± 1.7 
Sprint 2§ 11.7 ± 2.1 12.1 ± 2.1‡‡ 10.8 ± 2.0 11.4 ± 1.4 
Sprint 3 10.4 ± 1.9 10.9 ± 2.0 10.0 ± 1.5 11.0 ± 1.6 
Sprint 4§ 9.5 ± 1.7 10.1 ± 1.8* 10.3 ± 1.8* 10.6 ± 1.8* 

     PP drop relative to Sprint 1 (%) ## Passive 20% 30% 40% 
Sprint 2 7.4 ± 5.4 5.8 ± 7.9 12.7 ± 7.4 12.7 ± 5.5 
Sprint 3 17.0 ± 9.9 14.8 ± 7.2 19.5 ± 3.4 16.0 ± 5.8 
Sprint 4 23.7 ± 11.8 20.9 ± 10.3 16.6 ± 8.5 19.3 ± 10.0 

     Average power (W·kg-1) Passive 20% 30% 40% 
Sprint 1 8.3 ± 0.5 8.4 ± 0.5 8.3 ± 0.5 8.3 ± 0.4 
Sprint 2 7.3 ± 0.7 7.6 ± 0.7 7.3 ± 0.9 7.3 ± 0.5 
Sprint 3 6.8 ± 0.9 7.0 ± 0.6 6.7 ± 0.6 7.0 ± 0.3 
Sprint 4 6.4 ± 0.8 6.8 ± 0.7 6.8 ± 0.6 6.9 ± 0.5 

     AP drop relative to Sprint 1 (%) # Passive 20% 30% 40% 
Sprint 2 11.2 ± 5.0 10.4 ± 5.2 11.6 ± 7.9 12.0 ± 4.9 
Sprint 3 17.5 ± 9.3 16.8 ± 4.5 18.5 ± 6.3 15.7 ± 5.6 
Sprint 4§ 22.4 ± 8.9 19.9 ± 6.1 18.4 ± 7.3* 16.6 ± 6.2*† 

Abbreviations: PP, peak power; AP, average power. Values are means ± SD. ##Indicates 
sprint by condition interaction effect (P < .01). #Indicates sprint by condition interaction 
effect (P < .05). §Indicates main effect of condition during each sprint (P < .05). *Indicates P 
< .05 vs. passive recovery. †Indicates P < .05 vs. 20%. ‡‡Indicates P < .01 vs. 30%. 



Table 3 Blood lactate concentration across the sprints and recovery conditions. 

Blood lactate (mmol·l-1) Passive 20% 30% 40% 
Pre-Sprint 1.6 ± 0.5 1.7 ± 0.5 1.5 ± 0.4 1.9 ± 0.3 

Post-Sprint 1 at 180 sec*** 10.7 ± 0.9 12.1 ± 2.1 11.3 ± 1.2 12.2 ± 1.9 
Post-Sprint 2 at 180 sec***††† 14.0 ± 0.7 14.6 ± 2.5 14.6 ± 1.9 13.9 ± 1.1 
Post-Sprint 3 at 180 sec***††† 14.8 ± 0.8 15.8 ± 2.0 14.7 ± 2.9 15.3 ± 1.7 
Post-Sprint 4 at 180 sec***†††‡ 15.0 ± 1.6 14.9 ± 0.7 15.8 ± 1.2 15.7 ± 1.6 
Values are means ± SD. ***Indicates P < .001 vs. pre-sprint. †††Indicates P < .001 vs. post-
sprint 1. ‡Indicates P < .05 vs. post-sprint 2. 
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Figure 1 – Percentage of V̇O2peak (A), percentage of HRmax (B) and V̇O2 –to- sprint work 
ratio (C) across sprints. ***Indicates P < .001 vs. passive recovery. **Indicates P < .01 vs. 
passive recovery. *Indicates P < .05 vs. passive recovery. ††Indicates P < .01 vs. 
20%. †Indicates P < .05 vs. 20%. Significant differences across the recovery conditions are 
only shown for clarity. 
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Figure 2 – Percentage of V̇O2peak (A), percentage of HRmax (B) and time required to reach 
50% V̇O2peak (C) during recovery periods. ***Indicates P <.001 vs. passive recovery. 
**Indicates P < .01 vs. passive recovery. *Indicates P < .05 vs. passive recovery. †††Indicates 
P < .001 vs. 20%. ††Indicates P < .01 vs. 20%. †Indicates P < .05 vs. 20%. ‡Indicates P < .05 
vs. 30%. Significant differences across the recovery conditions are only shown for clarity. 
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Figure 3 - Example of recovery kinetics of oxygen uptake (A) and HR (B) during recovery 
(group mean). Error bars are not shown for clarity.  
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