
On the asymptotics of products related to generalizations 
of the Wilf and Mortini problems

Chao-Ping Chen and Richard B. Paris

This is an Accepted Manuscript of an article published by Taylor & Francis in 
Integral Transforms and Special Functions on 11th December 2015, available 
online: http://wwww.tandfonline.com/10.1080/10652469.2015.1118627

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228177461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the asymptotics of products related to generalizations of

the Wilf and Mortini problems

Chao-Ping Chen and Richard B. Paris

Abstract

In 1997, Wilf posed the following elegant infinite product formula as a problem:

∞∏
j=1

{
e−1/j

(
1 +

1

j
+

1

2j2

)}
=
eπ/2 + e−π/2

πeγ
,

which contains the most important mathematical constants π, e and the Euler-Mascheroni
constant γ. In 2009, Mortini posed the following problem to determine the limit as n→∞
of the product

n

n∏
j=1

(
1− 1

j
+

5

4j2

)
.

In this paper, we shall establish the connection between generalized versions involving m
parameters of Wilf’s and Mortini’s problems. We also consider the asymptotic expansion of
these generalized products with several parameters for large values of the index n.

1. Introduction

In 1997, Wilf [9] posed the following elegant infinite product formula as a problem:

∞∏
j=1

{
e−1/j

(
1 +

1

j
+

1

2j2

)}
=
eπ/2 + e−π/2

πeγ
, (1.1)

which contains the most important mathematical constants π, e and the Euler-Mascheroni con-
stant γ. Subsequently, Choi and Seo [4] proved (1.1) together with three other similar product
formulas by making use of well-known infinite product formulas for the circular and hyperbolic
functions and the familiar Stirling formula for the factorial function. In 2009 a closely related
example of the determination of an infinite product was posed by Mortini [7] also as a problem
in the form

lim
n→∞

n

n∏
j=1

(
1− 1

j
+

5

4j2

)
. (1.2)

A solution to (1.2) was given in [6].
In 2003, Choi et al. [5] extended these results and obtained the infinite products

∞∏
j=1

{
e−1/j

(
1 +

1

j
+
α2 + 1/4

j2

)}
=

2(eπα + e−πα)

(4α2 + 1)πeγ
(α ∈ C; α 6= ±1

2
i) (1.3)

and

∞∏
j=1

{
e−2/j

(
1 +

2

j
+
β2 + 1

j2

)}
=

eπβ − e−πβ

2β(β2 + 1)πe2γ
(β ∈ C \ {0}; β 6= ±i) , (1.4)
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where C denotes the set of complex numbers and i =
√
−1. Subsequently, Chen and Choi [1]

presented a more general infinite product formula that includes (1.3) and (1.4) as special cases:

∞∏
j=1

{
e−p/j

(
1 +

p

j
+

q

j2

)}
=

e−pγ

Γ
(
1 + 1

2p+ 1
2∆
)

Γ
(
1 + 1

2p−
1
2∆
) , (1.5)

where p, q ∈ C and ∆ :=
√
p2 − 4q. In the same paper, the authors presented another infinite

product formula as follows:

∞∏
j=1

{
e−p/(2j−1)

(
1 +

p

2j − 1
+

q

(2j − 1)2

)}
=

2−pπ e−pγ/2

Γ
(
1
2 + 1

4p+ 1
4∆
)

Γ
(
1
2 + 1

4p−
1
4∆
) . (1.6)

Very recently, Chen and Paris [3] generalized the formulas (1.5) and (1.6) and obtained the
following results valid for any positive integer m:

P ′n :=

∞∏
j=1

{
e−p1/j

(
1 +

p1
j

+
p2
j2

+ · · ·+ pm
jm

)}
=

e−p1γ∏m
j=1 Γ(1 + ρj)

(1.7)

and

Q′n :=

∞∏
j=1

{
e−p1/(2j−1)

(
1 +

p1
2j − 1

+
p2

(2j − 1)2
+ · · ·+ pm

(2j − 1)m

)}
=

2−p1πm/2e−p1γ/2∏m
j=1 Γ( 1

2 + 1
2ρj)

,

(1.8)
where pj ∈ C and ρj (j = 1, 2, . . . ,m) satisfy the following expressions∑

1≤i≤m

ρi = p1,
∑

1≤i<j≤m

ρiρj = p2,
∑

1≤i<j<k≤m

ρiρjρk = p3,

. . . , (1.9)

ρ1ρ2 . . . ρm = pm.

The choice m = 2 in (1.7) and (1.8) with ρ1,2 = 1
2p1 ±

1
2

√
p21 − 4p2 yields (1.5) and (1.6),

respectively.
In this paper, we shall determine the asymptotic expansion as n→∞ of the products defined

by

Pn ≡ Pn(p1, p2, . . . , pm) :=

n∏
j=1

(
1 +

p1
j

+
p2
j2

+ · · ·+ pm
j

)
(1.10)

and

Qn :=

n∏
j=1

(
1 +

p1
2j − 1

+
p2

(2j − 1)2
+ · · ·+ pm

(2j − 1)m

)
, (1.11)

and present the connection between the generalized Wilf and Mortini problems.

2. The asymptotic expansion of the products Pn and Qn

We determine the asymptotic expansions as n→∞ of the products Pn and Qn defined in (1.10)
and (1.11). In terms of the Pochhammer symbol (λ)n defined by

(λ)n = λ(λ+ 1) . . . (λ+ n− 1) =
Γ(λ+ n)

Γ(λ)
, (λ)0 = 1,

2



it is easily seen that
n∏
j=1

(
1 +

ρ

j

)
=

(1 + ρ)n
n!

=
Γ(n+ 1 + ρ)

Γ(1 + ρ)Γ(n+ 1)
.

If we write

1 +
p1
j

+
p2
j2

+ · · ·+ pm
jm

=

m∏
j=1

(
1 +

ρj
j

)
,

where the ρj (1 ≤ j ≤ m) satisfy (1.9), then it follows that

Pn =

n∏
j=1

(
1 +

ρ1
j

)
. . .

(
1 +

ρm
j

)
=

1∏n
j=1 Γ(1 + ρj)

m∏
j=1

Γ(n+ 1 + ρj)

Γ(n+ 1)
.

From the expansion of the ratio of two gamma function [8, §5.11(iii)] we have

Γ(n+ 1 + ρj)

Γ(n+ 1)
= nρj

{
1 +

αj
n

+
βj
n2

+O(n−3)

}
(n→∞),

where

αj =
1

2
ρj(1 + ρj), βj =

1

24
ρj(ρ

2
j − 1)(3ρj + 2).

Then some straightforward algebra shows that

Pn =
np1∏m

j=1 Γ(1 + ρj)

m∏
j=1

{
1 +

αj
n

+
βj
n2

+O(n−3)

}

=
np1∏m

j=1 Γ(1 + ρj)

{
1 +

C1

n
+
C2

n2
+O(n−3)

}
(2.1)

as n→∞, where

C1 ≡ C1(~ρ) =

m∑
j=1

αj =
1

2
p1 +

1

2

m∑
j=1

ρ2j , C2 ≡ C2(~ρ) =

m∑
j=1

βj +
∑

1≤j<k≤m

αjαk

with ~ρ = {ρ1, ρ2, . . . , ρm}.
For the product Qn in (1.11) we can determine the expansion in a similar manner using the

fact that

Qn =
π1/2∏m

j=1 Γ( 1
2 + 1

2ρj)

m∏
j=1

Γ(n+ 1
2 + ρj)

Γ(n+ 1
2 )

.

Alternatively, we can proceed as follows making use of the expansion for Pn obtained in (2.1)
above. We find

Qn =

n∏
j=1

(
1 +

p1
2j − 1

+ · · ·+ pm
(2j − 1)m

)
=

∏2n
j=1

(
1 + p1

j + · · ·+ pm
jm

)
∏n
j=1

(
1 + p1

2j + · · ·+ pm
(2j)m

)
=

P2n(p1, p2, . . . , pm)

Pn(p1/2, p2/22, . . . , pm/2m)

= 2p1np1/2
m∏
j=1

Γ(1 + 1
2ρj)

Γ(1 + ρj)

{1 + C1(~ρ)/(2n) + C2(~ρ)/(2n)2 +O(n−3)}
{1 + C1( 1

2~ρ)/n+ C2( 1
2~ρ)/n2 +O(n−3)}

=
πm/2np1/2∏m

j=1 Γ( 1
2 + 1

2ρj)

(
1 +

D1

n
+
D2

n2
+O(n−3)

)
, (2.2)
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where

D1 =
1

2
C1(~ρ)− C1( 1

2~ρ) =
1

8

m∑
j=1

ρ2j , D2 =
1

4
C2(~ρ)− C2( 1

2~ρ)− C1( 1
2~ρ)D1,

upon use of the duplication formula for the gamma function (see, e.g. [8, (5.5.5)])

Γ(2z) = (2π)−
1
2 22z−

1
2 Γ(z)Γ(z + 1

2 ).

3. The expansion of the associated products P ′n and Q′n

The expansion of the associated products P ′n and Q′n in (1.7) and (1.8) follows from

P ′n = Pn

n∏
j=1

e−p1/j = n−p1PnE1, Q′n = Qn

n∏
j=1

e−p1/(2j−1) = n−p1/2QnE2, (3.1)

where

E1 := e−p1(
∑n

k=1
1/k−ln n), E2 := e

−p1
(∑n

k=1
1/(2k−1)− 1

2 ln n

)
.

From [8, (5.4.14), (5.11.2)] we obtain that

n∑
k=1

1/k − ln n = γ +
1

2n
− 1

12n2
+O(n−4),

n∑
k=1

1/(2k − 1)− 1
2 ln n = 1

2γ + ln 2 +
1

48n2
+O(n−4)

as n→∞, and hence that

E1 = e−p1γ
(

1− p1
2n

+
p1(2 + 3p1)

24n2
+O(n−3)

)
,

E2 = 2−p1e−p1γ/2
(

1− p1
48n2

+O(n−4)
)
.

Substitution of these last results in (3.1), combined with (2.1) and (2.2), then yields the
expansions

P ′n =
e−p1γ∏m

j=1 Γ(1 + ρj)

{
1 +

C ′1
n

+
C ′2
n2

+O(n−3)

}
, (3.2)

Q′n =
2−p1πm/2e−p1γ/2∏m
j=1 Γ( 1

2 + 1
2ρj)

{
1 +

D′1
n

+
D′2
n2

+O(n−3)

}
(3.3)

as n→∞, where

C ′1 =
1

2

m∑
j=1

ρ2j , C ′2 = C2 −
1

4
p1

m∑
j=1

ρ2j +
1

24
p1(2− 3p1)

and
D′1 = D1, D′2 = D2 −

p1
48n2

.
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4. Concluding remarks

The limiting values of the products Pn and Qn immediately follow from the results in (2.1) and
(2.2) to yield the connection between the generalized Wilf and Mortini problems given by

Theorem 1 For positive integer m, we have

lim
n→∞

n−p1Pn =
1∏m

j=1 Γ(1 + ρj)
, lim

n→∞
n−p1/2Qn =

πm/2∏m
j=1 Γ( 1

2 + 1
2ρj)

,

where pj ∈ C and ρj (1 ≤ j ≤ m) satisfy (1.9).

The choice m = 2, with p1 = p, p2 = q and ρ1,2 = 1
2p+ 1

2∆, ∆ =
√
p2 − 4q in the expansions

(2.1) and (2.2) yields the following results:

n∏
j=1

(
1 +

p

j
+

q

j2

)
=

np

Γ(1 + 1
2p+ 1

2∆)Γ(1 + 1
2p−

1
2∆)

×
{

1 +
p(1 + p)− 2q

2n
+
p(3p3 + 2p2 − 2) + 12q(1 + q)− 3p2(1 + 4q)

24n2
+O(n−3)

}
(4.1)

and

n∏
j=1

(
1 +

p

2j − 1
+

q

(2j − 1)2

)
=

πnp/2

Γ( 1
2 + 1

4p+ 1
4∆)Γ( 1

2 + 1
4p−

1
4∆)

×
{

1 +
p2 − 2q

8n
+
p3(3p− 8)− 12q(p2 − q) + 8p(1 + 3q)

384n2
+O(n−3)

}
(4.2)

as n→∞.

In particular, setting (p, q) = (−1, 5/4), so that ρ1,2 = − 1
2 ± i, we have from (4.1)

n∏
j=1

(
1− 1

j
+

5

4j2

)
=

coshπ

πn

{
1− 5

4n
+

25

32n2
+O(n−3)

}

as n→∞, where we have employed the result [8, (5.4.4)]

Γ( 1
2 + iy)Γ( 1

2 − iy) = |Γ( 1
2 + iy)|2 =

π

coshπy
.

Similarly, from (4.2) we obtain

n∏
j=1

(
1− 1

2j − 1
+

5

4(2j − 1)2

)
=

πn−1/2

|Γ( 1
4 + 1

2 i)|2

{
1− 3

16n
− 31

512n2
+O(n−3)

}
.

Finally, the determination of the quantities ρj from the set of coefficients p1, . . . , pm requires
the computation of the zeros of an mth degree polynomial. Apart from the cases with m = 2
and m = 3, this would necessitate, in general, a numerical approach to determine the zeros. If,
on the other hand, the ρj are specified the coefficients pj can be simply determined by (1.9).
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