
BRANCHING PARTICLE SYSTEMS AND COMPOUND POISSON
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ABSTRACT. We establish numerous new refined local limit theorems for a class of com-
pound Poisson processes with Pólya-Aeppli marginals, and for a particular family of the
branching particle systems which undergo critical binary branching and can be approxi-
mated by the backshifted Feller diffusion. To this end, we also derive new results for the
families of Pólya–Aeppli and Poisson–exponential distributions. We relate a few of them
to properties of certain special functions some of which were previously unknown.

1. Introduction

This paper is devoted to the derivation of various asymptotics for the probabilities as-
sociated with specific branching particle systems (or BPS’s) which undergo critical binary
branching and constitute a family of time-homogeneous Markov processes with discon-
tinuous paths, and with the following class of compound Poisson-geometric processes
(which are also frequently referred to as Pólya-Aeppli Lévy processes):

R(ρ,γ)(t) :=

{
0 if Πρ(t) = 0;
Q1 + ...+QΠρ(t) if Πρ(t) ≥ 1.

(1.1)

Hereinafter, {Q(γ)
n , n ≥ 1} is a sequence of geometrically distributed i.i.d. random vari-

ables (or r.v.’s) whose range is N, and which are characterized by the probability of suc-
cess γ ∈ (0, 1). In addition, they are assumed to be independent of the Poisson counting
process {Πρ(t), t ≥ 0} with intensity ρ > 0. In view of [9], [26], [28], the marginals of
both these classes of stochastic processes belong to the two-parameter Pólya-Aeppli fam-
ily of distributions described in Definition 3.1 of Section 3 (see also formulas (5.3)–(5.5)
of Section 5). This is an important common feature of these two classes of stochastic
processes.

The BPS’s, whose new properties are derived in Section 4, are identical to those dealt
with in [9]. Since [9, Introduction] already contains a comprehensive bibliography on
relevant BPS’s as well as on their applications and limits, we will now provide a few
references on the compound Poisson-geometric Lévy processes. They were considered
as early as in [5, p. 96]. More recently, their realizations in specific stochastic models,
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characterizations, properties and applications were discussed in [3], [4], [15], [16], [22],
[32].

Thus, [4] gives two natural realizations of the Lévy process {R(ρ,γ)(t), t ≥ 0}, which
is defined above by formula (1.1). One of them, presented as [4, Proposition 3.1], speci-
fies each such process as a delayed renewal process with the first inter-arrival time being
exponentially distributed, and all the subsequent inter-arrival times being i.i.d.r.v.’s with
common zero-modified exponential law. (We refer to [27, Sections 2–3] for a compre-
hensive description of the class of zero-modified exponential distributions.) The other
realization characterizes a Pólya-Aeppli Lévy process as a particular pure birth process
(see [4, Proposition 3.2]). On the other hand, [3, pp. 19, 27–28] employs the fact that
the marginals of a generic Pólya-Aeppli process coincide with those of a particular mixed
Poisson process with the mixing process being a specific compound Poisson-exponential
process. We extend this observation in Proposition 5.1 of Section 5 (see also its proof).
But even at this stage, it is still relevant to refer the reader to our article [20] where nu-
merous properties of compound Poisson-exponential processes were derived, as well as
to [14] and to [29], where those of a more general class of Hougaard processes were in-
vestigated. (Note in passing that the subclass of Hougaard processes which corresponds
to the value of the power parameter p = 3/2 comprises the entire family of compound
Poisson-exponential processes.)

Some applications in Risk Theory for more general classes of Lévy processes, but
which all contain Pólya-Aeppli processes as their components associated with the struc-
ture of the jumps of these processes, were addressed in [15], [22], [32].

It is known (see, for example, [26, Section 3], [9, Section 3]) that the totality of the
class of Pólya-Aeppli distributions can be parameterized in a manner that this family
would constitute an additive exponential dispersion model (or EDM) on the set Z+ :=
{0, 1, 2, ...} (compare [9, Section 3]). We refer to [12, Chapter 3] for a comprehensive
consideration of such structures. By [26, formula (3.4)], each Pólya-Aeppli distribution is
infinitely divisible. It turns out that the theory of weak convergence of the EDMs to mem-
bers of the power-variance family (see, for example, [12, Theorem 4.5] and its variants)
is quite relevant to our studies of the BPS’s which are pursued in Section 4. In contrast,
a natural bijection between additive EDMs comprised of specific infinitely divisible dis-
tributions and the marginals of the corresponding exponential families of Lévy processes,
which is discussed in [12, Subsection 3.2.3], is of importance in Section 5.

Our investigation of the BPS’s with Pólya-Aeppli marginals and of the compound
Poisson-geometric processes, which is undertaken in Sections 4 and 5, respectively, ne-
cessitated rather thorough studies of both the family of Pólya-Aeppli distributions per se
and a closely related class of Poisson-exponential probability laws. There are some prop-
erties of the class of Pólya-Aeppli distributions already available, and they occurred to us
to be useful for the derivation of new subtle results on the two classes of stochastic pro-
cesses mentioned above. In addition, our studies of these processes led to the derivation of
a variety of new distribution theory results on the Pólya-Aeppli and Poisson-exponential
probability laws. Since these results take up a substantial amount of space, it was natural
to isolate them into a separate Section 3.

We stress that our interest in this family of distributions, whose members take values
in Z+, is three-fold. First, it is interesting in its own right, since this class represents a toy
example for which numerous approximations can be derived in closed form. Secondly,
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members of the Pólya-Aeppli class frequently emerge in applications (see, for example,
[9, Introduction] and the references therein). Recall that one of them is their use for
describing the stochastic evolution of some BPS’s. This point of view has already been
developed in [26], [28], and [9, Introduction].

Thirdly, this article is closely related to numerous assertions of the Theory of Spe-
cial Functions, some of which were previously unknown. We regard these connections
between Probability Theory and the Theory of Stochastic Processes on one side and the
Theory of Special Functions on the other one to be a two-way road (compare to [30]
and [31]). For instance, the well-known result on the asymptotics of the confluent hyper-
geometric function in the third argument implies the local version of the limit theorem
on Poisson convergence (see formula (2.6), Theorem 3.13, Corollary 4.3, and Remark
4.4). In contrast, it appears that sometimes, special cases of previously unknown results
of Analysis which concern special functions, are present implicitly in certain general re-
sults of Probability Theory. Thus, a special case of Corollary 3.8 which can be recovered
from [17, Theorem 2] and is discussed in Remark 3.9.i led us to conjecture the validity
of the purely analytical assertion of Theorem 2.3.i, which we were fortunate to establish
by applying very recent results of Analysis (see [24, formula (27.4.62)]). We reckon that
revealing such interplays between two separate branches of Mathematics is particularly
important.

The other illustration of this interplay is the fact that the Poisson-exponential approxi-
mation for the Pólya-Aeppli family as well as its stochastic processes counterpart, which
involves the Feller-diffusion approximation for a family of BPS’s, is parallel to some
properties of confluent hypergeometric and Bessel functions. For instance, we derive new
asymptotic properties of particular BPS’s by specifying our more general results on the
Pólya-Aeppli family. See Theorems 3.10–3.11 and Corollary 4.1, which are of a proba-
bilistic character, but rely on the analytical results given by representations (3.9)–(3.10)
and (3.31).

Some results summarized in Section 3 were already known (see the references therein).
At the same time, our studies of the stochastic processes mentioned above necessitate the
derivation of a variety of new subtle results on the Pólya-Aeppli probability laws, which
are also presented in Section 3. In turn, since the probability function of a generic Pólya-
Aeppli distribution is expressed in terms of the confluent hypergeometric function (which
is introduced in Definition 2.1 of Section 2), we had to derive new and also modify specific
properties of this class of special functions which were already available.

In view of a large number of such technicalities which pertain to the Theory of Special
Functions and which are employed in this paper, it was natural to isolate them into a
separate Section 2. Hence, that section has a primarily analytic character.

We believe that both the properties of members of the Pólya-Aeppli family and rele-
vant results on the confluent hypergeometric function are interesting in their own right.
However, they only play an auxiliary role in this paper and are employed in Sections 4–5.

Section 4 concerns the derivation of numerous local approximations of various degrees
of accuracy for the same class of the BPS’s as those dealt with in [9]. Also, we correct
and refine [9, Theorem 3], where the second-order local approximation for these BPS’s
was constructed (see Corollary 4.1). The proof of this result involves the derivation of a
refinement of the local Poisson-exponential approximation for the Pólya-Aeppli family,
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which is given as Theorem 3.10 of Section 3. The necessary background on the Poisson-
exponential class is provided in Section 3.

It is relevant that the assertions of Theorems 3.10–3.11 are closely related to the Feller-
diffusion approximation for some BPS’s. This important member of the class of the real-
valued diffusion stochastic processes with continuous trajectories, which is hereinafter
denoted by {F̃ (t), t ≥ 0}, is characterized by formulas (1.2)–(1.4) below. In particular,
it constitutes a continuous martingale, which satisfies the following stochastic differential
equation that describes the time dynamics:

dF̃(t) =

√
F̃(t) · dW(t). (1.2)

Here, W(t) denotes the standard univariate Brownian motion (with zero drift). In addi-
tion, we impose the following initial condition:

F̃(0) = 1. (1.3)

The solution to (1.2)–(1.3) is hereinafter called the Feller diffusion with zero drift, and
which starts from a point source. Also, the stochastic process F̃(t) is a time-homogeneous
Markov process with generator V such that for an arbitrary twice-continuously differen-
tiable function τ(x),

Vτ(x) = (x/2) · τ ′′(x). (1.4)
See [6] or [21] for more detail.

Also in Section 4, we present Corollary 4.3 to Theorem 3.13 of Section 3. This corol-
lary specifies the second-order-term approximation in the local limit theorem on Poisson
convergence for a specific subclass of Pólya-Aeppli distributions which are associated
with the stochastic backward evolution of the BPS dealt with in Section 4. The integral
limit theorem on Poisson convergence, which is analogous to this corollary, was pre-
sented in [9, Theorem 2.iv and formula (4.30)]. In turn, that result serves as an excellent
illustration to [12, Theorem 4.5]; see [9, Proposition 2] for more details. In short, these
results stipulate that particular BPS’s which undergo critical binary branching and start
from a random, Pólya-Aeppli distributed number of particles, must have originated from
a Poisson field (compare [9, p. 257]).

We reckon that the results of such kind deserve being discussed in detail. This is
because such assertions on the Poisson convergence do not appear to be related to the
Poisson law of small numbers. See Remark 4.4 of Section 4 for a relevant discussion.

At the same time, our results which pertain to the Poisson-exponential approximation
for the Pólya-Aeppli family are parallel to the classical Gnedenko-Kolmogorov theory on
weak convergence to infinitely divisible distributions. This is partly because of several in-
variance properties of this class, which are presented in [26, formulas (3.1) and (3.3)], [9,
Theorem 1]. Namely, the Poisson sum (4.3) (with a bounded mean) of strictly positive ge-
ometrically distributed i.i.d.r.v.’s can also be represented as a different Poisson sum (with
an increasing mean) of certain i.i.d.r.v.’s with common zero-modified geometric distribu-
tion. Recall that the resulting Poisson-exponential limit is closely related to the Feller
diffusion, which is described by formulas (1.2)–(1.4). Other characterization properties
of members of the Pólya-Aeppli class are given in [4, Section 5].

Note that in contrast to [9], where emphasis was made primarily on the use of the
cumulant-generating function (or c.g.f.), the unit variance function (or u.v.f.), and the
Poisson-mixture representation (see formula (3.8)), here we also employ representation
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(3.3) for the probability function of a generic member of the Pólya-Aeppli family in terms
of the confluent hypergeometric function defined by formula (2.2). We relate some of our
results to those discussed in [26], [28], and [9, Introduction].

This article is not self-contained. Therefore, we refer to [6] or [9, Introduction] for
more detail on BPS’s (including their properties and limits), to [12] or [30]–[31] for a
comprehensive description and important examples of EDMs and natural exponential
families (or NEFs), and to [23] for more information on the relevant special functions.

2. Auxiliary Definitions and Relevant Properties of Special Functions

First, we summarize some relevant notation and terminology. We will follow the cus-
tom of formulating various statements of distribution theory in terms of the properties of
r.v.’s, even when such results pertain only to their distributions. Hereinafter, R1

+ stands

for the set of all positive reals. In what follows, the sign “ d
=” will denote the fact that the

distributions of (univariate) r.v.’s coincide, whereas the symbol “ d→” will stand for weak
convergence. Given a ∈ R1, we denote by D[a,∞) the càdlàg space of functions on
the time interval [a,∞) that are right continuous and possess left-hand limits, which is

equipped with the Skorohod topology. The sign “
D[a,∞)
====” is understood as the fact that

the laws of two stochastic processes coincide in this space, and the symbol “
D[a,∞)
=⇒ ” will

denote convergence in the càdlàg space D[a,∞). An empty sum is interpreted as zero.
In the sequel, we will denote a sequence of i.i.d.r.v.’s which possess the same distribution
as a generic r.v. Y by {Y(n), n ≥ 1}.

Given k ∈ Z+, denote the Pochhammer symbol by

(w)k :=
Γ(w + k)

Γ(w)
= w(w + 1)...(w + k − 1)

with the convention that (w)0 := 1.
Hereinafter, Iυ(·), χ(·) and log stand for the modified Bessel function of the first kind

of order υ, the indicator function, and the natural logarithm, respectively. Given Poisson
r.v. Poiss(ρ) with mean ρ ∈ R1

+ and ℓ ∈ Z+, set

πρ(ℓ) := P{Poiss(ρ) = ℓ} = e−ρρℓ/ℓ!. (2.1)

Definition 2.1. For arbitrary complex values of a, b and z such that b /∈ {0,−1,−2, . . .},
set

1F1(a; b; z) :=

∞∑
ℓ=0

(a)ℓ
(b)ℓ

· z
ℓ

ℓ!
. (2.2)

Following [23, formula (1.1.8)], we refer to 1F1(a; b; z) as the confluent hypergeometric
function.

In this work, we will concentrate primarily on the case where the second argument b
of the function 1F1(a; b; z) equals 2.

The following Poincaré series is derived with some effort from [23, formula (3.8.3)].
For an arbitrary fixed z ∈ R1

+ and as real u → ∞,

1F1(u+ 1; 2; z) ∼ (zu)−3/4ez/2

2
√
π

· e2
√
zu ·

∞∑
ℓ=0

(−1)ℓ · Bℓ(z) · (zu)−ℓ/2. (2.3)
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Here, {Bℓ(x), ℓ ≥ 0} are certain polynomials such that B0(x) = 1, B1(x) = (3−
(4/3)x2)/16, B2(x) = (−15/16 − 5x2/2 + x4/9)/32, . . . . Next, from the expansion
of the ratio of two gamma functions given in [2, formula (5.11.13)], we note that for an
arbitrary fixed r ∈ N,

(w)r ∼ wr(1 + r(r − 1)/(2w) + · · · ) as w → +∞.

Subsequently, the above asymptotic result implies the following refinement of [23, for-
mula (4.4.1)]. Given u ∈ R1

+, y ∈ R1
+, and as real a → ∞,

1F1(au; 2; y/a) ∼
∞∑
r=0

(uy)r

r!(r + 1)!
·
(
1 +

r(r − 1)

2ua
+ · · ·

)

∼ I1(2
√
uy)/

√
uy +

√
y/u

2a
· I3(2

√
uy) + · · · .

(2.4)

We were not able to find a reference to the following assertion in the literature on
Analysis. At the same time, its version has already been known to probabilists (see the
proof of the lemma below). It will be employed for the derivation of the asymptotic
representation (2.6), which is of particular value in the studies of branching populations.

Lemma 2.2. For fixed integer z ≥ 2 and s ∈ C \ {0},

1F1(z; 2; s) =
es

Γ(z)
· sz−2 ·

z−2∑
k=0

(2− z)k(1− z)k
k!

· s−k. (2.5)

Proof. It can be derived by application of Kummer’s transformation with a subsequent
reversion of the terminating hypergeometric series (compare to [11, formulas (9.138)–
(9.139)]). □

In turn, (2.5) leads to the asymptotic result that for a fixed integer z ≥ 2 and as real
s → ∞,

1F1(z; 2; s) =
es

Γ(z)
· sz−2 · (1 + (z − 2) · (z − 1)/s+O(s−2)) (2.6)

(compare [23, formula (4.1.6)]).
We conclude this section with an important analytical result and its two corollaries.

Thus, the following theorem can be regarded as the analytical counterpart of the prob-
abilistic local large deviation limit theorem for the lattice family of the Pólya-Aeppli
distributions (see Theorem 3.7 of Section 3). This is because Theorem 2.3 below is con-
sistent with the probabilistic local limit Theorem 3.7. The latter assertion concerns the
case where there is no upper bound on the magnitude of large deviations imposed. Specif-
ically, the following statement stresses the analytical reason behind the asymptotic repre-
sentation (3.21), which is valid because of the double asymptotic result on the behavior
of function 1F1.

Theorem 2.3. Suppose that y and ν are real-valued parameters, and that y → ∞.
(i) In addition, assume that y · ν → ∞. Then

1F1(1 + y; 2; ν) ∼ 1

ν
√
2πy(1 + 4y/ν)1/4

× exp{ν(1 +
√
1 + 4y/ν)/2} · (

√
1 + 4y/ν + 1)/(

√
1 + 4y/ν − 1))y.
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(ii) Assume that 0 < ν ≤ Const/y. Then

1F1(1 + y; 2; ν) ∼ I1(2
√
νy)/

√
νy. (2.7)

Proof. (i) From the expansion in terms of modified Bessel functions Ic given in [24,
formula (27.4.64)] we have the leading term

1

Γ(c)
· 1F1(a; c; ax) ∼ β1−cΓ(1 + a− c)

Γ(a)

× exp{ax/2}{A0(c)Ic−1(2aβ)−B0(c)Ic(2aβ)}
for a → +∞ uniformly in x ∈ [0,∞) with the parameter c bounded. The coefficients
A0(c) and B0(c) are as follows:

A0(c) =
21/2βc−1/2x−c/2

(1+4/x)1/4
cosh( 12cw0),

B0(c) =
21/2βc−1/2x−c/2

(1+4/x)1/4
sinh( 12cw0).

(2.8)

Here,
β = 1

2 (w0 + sinhw0), w0 = 2 arcsinh( 12
√
x). (2.9)

The following recurrence relation can be easily derived from [23, formula (2.2.3)]:

1F1(1 + a; 2; z) =
(a− 1)

a
· 1F1(a; 2; z) +

1

a
· 1F1(a; 1; z).

Therefore, we find that, with ζ := 2aβ,

1F1(1 + a; 2; ax)

∼
exp{ 1

2ax}
aβ

{A0(2)I1(ζ)−B0(2)I2(ζ) + β(A0(1)I0(ζ)−B0(1)I1(ζ))}.
(2.10)

In the case where x is such that aβ → ∞, we can employ the well-known asymptotic
approximation Iν(z) ∼ ez/

√
2πz for z → +∞. Observing from formula (2.8) that

A0(2)−B0(2) =
21/2β3/2

(1 + 4/x)1/4x
(1 + ω(x)),

A0(1)−B0(1) = − 21/2β1/2ω(x)

(1 + 4/x)1/4x
,

with ω(x) := 1
2x(1−

√
1 + 4/x), we then obtain

1F1(1 + a; 2; ax) ∼
exp{ 1

2ax+ 2aβ}
2
√
π(aβ)3/2

{A0(2)−B0(2) + β(A0(1)−B0(1))}

=
exp{ 1

2ax+ 2aβ}
√
2πa3/2x(1 + 4/x)1/4

=
exp{ 1

2ax(1 +
√
1 + 4/x)}

√
2π · a3/2x(1 + 4/x)1/4

(√
1 + 4/x+ 1√
1 + 4/x− 1

)a

(2.11)

upon expressing the arcsinh appearing in the quantity β in formula (2.9) in its standard
logarithmic form.

For the function 1F1(1 + y; 2; ν) ≡ 1F1(1 + y; 2;xy), with x = ν/y → 0, we have
from formula (2.9) that β ∼

√
x = (ν/y)1/2 and hence, the argument of the Bessel
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functions ζ ∼ 2(νy)1/2. The result stated in Theorem 2.3.i then immediately follows
from formula (2.11) as y → ∞ with ν such that νy → ∞.
(ii) When ν ≤ C/y, x = ν/y ≤ C/y2, then ζ ∼ 2(νy)1/2 = O(1) and we can no longer
approximate the Bessel functions which emerge in formula (2.10) by their asymptotic
form. Since β ∼ x1/2 as x → 0 and, from formula (2.8), A0(c) ∼ 1, B0(c) ∼ 1

2c
√
x

in this limit, we obtain from formula (2.10) the validity of the asymptotic relation (2.7).
This result can also be obtained from [23, formula (3.8.3)]. □

The following corollary to Theorem 2.3.i is of particular value. Namely, we will em-
ploy it in the proof of Corollary 5.5 of the concluding Section 5, when studying asymptotic
properties of the average process {Nµ,λ(t), t ≥ 0}. It is constructed starting from the
Pólya-Aeppli Lévy process R(ρ,γ)(t), which is defined by formula (1.1) with the values
of µ and λ specified by formulas (5.4)– (5.5).

Corollary 2.4. Suppose that a ∈ R1
+, b ∈ R1

+ are fixed, and that the real-valued param-
eter ν → ∞. Then

1F1(1 + aν; 2; bν) ∼ 1

b
√
2πa

· 1

ν3/2(1 + 4a/b)1/4

× exp

{
ν
[b(1 +√1 + 4a/b)

2
− a · log

√
1 + 4a/b− 1√
1 + 4a/b+ 1

]}
.

(2.12)

Proof. It easily follows from Theorem 2.3.i when y/ν = O(1). In addition, it can also
be derived by a simple saddle-point calculation using the contour integral representation,
which can be found in [23, formula (3.1.27)]. □

Finally, we will utilize the following modifications of formula (2.4) in Theorems 3.7.ii
and 3.11 of Section 3, which in turn are employed for the derivation of Corollary 4.1.ii
and Theorem 5.3 of Sections 4 and 5, respectively.

Corollary 2.5. Fix K ∈ R1
+ and L ∈ R1

+. Then
(i) Suppose that the positive real-valued parameter C → ∞, and u ∈ R1

+ (which might
depend on C) is such that uC → ∞. Then

1F1(uC + 1; 2;K/(L+ C)) ∼ I1(2
√
Ku)/

√
Ku. (2.13)

(ii) In the case where all the conditions of part (i) are fulfilled and u → ∞, the expres-
sions on both sides of (2.13) are equivalent to e2

√
Ku/(2

√
π(Ku)3/4).

Proof. The result (2.13) follows from the leading term of the expansion given in [23,
formula (3.8.3)]. □

3. Background and New Results for Pólya-Aeppli and Poisson-exponential Laws

Throughout the remainder of this paper, we will index two related families of Pólya-
Aeppli and Poisson-exponential distributions {Xµ,λ; µ ∈ R1

+, λ ∈ R1
+} and {Uµ,λ; µ ∈

R1
+, λ ∈ R1

+}, whose members take values in Z+ and [0,∞), respectively, with two
parameters µ and λ. Both µ and λ take values in R1

+. For each such admissible pair
(µ, λ), set

M := 2λ
√
µ; θ := 2λ/

√
µ; Z := Mθ/(θ + 1). (3.1)
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Definition 3.1. (Pólya-Aeppli family). Given arbitrary µ ∈ R1
+ and λ ∈ R1

+, a generic
Pólya-Aeppli r.v. X (= Xµ,λ) is determined by the following probability function on Z+:

P{X = 0} = eZ−M; (3.2)

P{X = k} = e−M(θ + 1)−kZ · 1F1(k + 1; 2;Z) for k ∈ N. (3.3)

By [26, formula (3.2)], the c.g.f. ξµ,λ(s) of the r.v. Xµ,λ is such that for s < log (1+θ),

ξµ,λ(s) := log E exp{sXµ,λ}
= M(es − 1)/(1 + θ − es) = Mθ/(1 + θ − es)−M.

(3.4)

It easily follows from formula (3.4) that

EXµ,λ = µ. (3.5)

The variance of this r.v. is given in [9, formula (3.6)], where a slightly different notation
is used. See also the variance-to-mean relationship (3.15) below.

The algorithms for computing the cumulative distribution function of a generic mem-
ber of the Pólya-Aeppli class as well as some interesting applications can be found in [18].
Also, we recall that a connection between a generic compound Poisson-geometric process
defined by formula (1.1) and the above class of the Pólya-Aeppli probability laws is spec-
ified by formulas (5.3)–(5.5) of Section 5.

Definition 3.2. (Poisson-exponential family). Given µ ∈ R1
+ and λ ∈ R1

+, a generic
Poisson-exponential r.v. U (= Uµ,λ) is characterized by the following c.g.f.:

ζµ,λ(s) := log E exp{sUµ,λ} = Ms/(θ − s), where the argument s < θ. (3.6)

The r.v. Uµ,λ has a mixed probability law. Thus, since

P{Uµ,λ = 0} = lim
s→−∞

exp{ζµ,λ(s)} = exp{−M},

it has a positive mass at zero. Also, it has an absolutely continuous component in R1
+

with the following density:

fµ,λ(x) = 2λx−1/2 · exp{−θ(x+ µ)} · I1(4λ ·
√
x)

=
√
θM · x−1/2 · exp{−(θx+M)} · I1(2

√
θM · x).

(3.7)

It is well known (see, for example, [26, formulas (2.3)–(2.6)]) that for arbitrary fixed
values of µ ∈ R1

+ and λ ∈ R1
+, the r.v. U (= Uµ,λ) admits a compound Poisson-

exponential representation with the Poisson parameter M and common mean 1/θ of
the corresponding i.i.d. exponentially distributed summands. An analogous, compound
Poisson-geometric representation for a generic member of the Pólya-Aeppli class can be
found in [26, formula (3.3)] or [9, formulas (4.1)–(4.8)].

A combination of these representations with the Yaglom theorem on the exponential
limit for a scaled geometric family (see, for example, [9, formula (4.12)]) justifies the
validity of the Poisson-exponential approximation for a scaled Pólya-Aeppli family on a
heuristic level. Its local version is closely ralated to Theorem 3.10 below.

The following assertion, which stipulates that the Pólya-Aeppli r.v. Xµ,λ can be repre-
sented as the Poisson mixture (with unit value of the Poisson parameter) of the Poisson-
exponential r.v. Uµ,λ is well known (compare [28, formula (3.8)] or [9, formula (3.28)]).
However, we elected to present its alternative, but still simple proof here because of its



52 RICHARD B. PARIS AND VLADIMIR VINOGRADOV

originality, since it relies on representation (3.9) of the Theory of Special Functions and
thus, emphasizes a connection between two branches of Mathematics.

Lemma 3.3. For arbitrary fixed µ ∈ R1
+, λ ∈ R1

+, and integer k ∈ Z+,

P{Xµ,λ = k} =

∫ ∞

0

e−u · uk

k!
· dP{Uµ,λ ≤ u}. (3.8)

Proof. It follows from [23, p. 44, formula (3.2.27)] that for each integer k ∈ Z+,∫ ∞

0

e−ttk−1/2I1(2
√
xt)dt = k!

√
x · 1F1(k + 1; 2;x). (3.9)

It then follows from formulas (3.7) and (3.9) that for an arbitrary fixed integer k ∈ Z+,∫ ∞

0

e−u · uk

k!
· fµ,λ(u) · du = e−M(θ + 1)−kZ · 1F1(k + 1, 2,Z). (3.10)

A subsequent combination of formulas (3.2), (3.3), (3.10) with the trivial identity z ·
1F1(1, 2, z) ≡ ez − 1 implies the validity of representation (3.8). □

The following definition was introduced in [17, Definition 2] in order to describe the
class of univariate lattice distributions for which it turned out to be possible to derive nu-
merous results on the Cramér-type asymptotics up to equivalence for the probabilities of
large deviations for the partial sums of the corresponding i.i.d.r.v.’s. The subsequent tech-
nical Lemma 3.5 stipulates that each Pólya-Aeppli probability law belongs to this class.
Moreover, it is interesting that our Theorem 3.7 and Corollary 3.8 below generalize [17,
Theorem 2] in the case where the common distribution of these i.i.d.r.v.’s belongs to the
Pólya-Aeppli family (see Remark 3.9.i).

Definition 3.4. A generic r.v. N which takes values on the lattice {f + nh} (with real
f ≥ 0, span h ∈ R1

+, and n ∈ Z) is said to belong to the class (S) if there exists a fixed
κ ∈ R1

+ such that for ℓ ∈ {f + nh}, and as ℓ → ∞,

P{N = ℓ} ∼ exp
{
− κℓ+

∫ ℓ

x0

g(u)du
}
. (3.11)

Also, it is assumed that the function g(·) : R1
+ → R1 is such that (i) there exists x0 ∈ R1

+

such that ∀x ≥ x0 > 0, g(x) > 0; (ii) g(∞) = 0; (iii) g′′(x) ↓; (iv) the product
x · g(x) → +∞ as x → +∞, and (v) ∀x ≥ x0, 0 ≤ −g′′(x)/g′(x) ≤ 2/x.

Lemma 3.5. Each member Xµ,λ of the Pólya-Aeppli family belongs to the class (S) with
f = 0, h = 1, and integer ℓ ∈ Z+.

Proof. The first step is similar to [26, Proposition 3.1]. Given a generic Pólya-Aeppli r.v.
Xµ,λ, a combination of formulas (2.3) and (3.3) yields that this r.v. admits representation
(3.11) with κ = log (θ + 1) > 0. Namely, as integer ℓ → ∞,

P{Xµ,λ = ℓ} ∼ exp
{
− ℓ · log (θ + 1) + (2

√
Zℓ− 3

4
· log ℓ+K)

}
. (3.12)

Here, the constant K = log(e−MZ1/4/(2
√
π)) (compare [26, Proposition 3.1]). In view

of formula (3.12), representation (3.11) is valid with

g(x) :=
d

dx

(
2
√
Zx− 3

4
· log x+K

)
=
√
Z/x− 3/(4x). (3.13)
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The first two derivatives of this function are as follows:

g′(x) = −
√
Z/(2x3/2) + 3/(4x2); g′′(x) = 3

√
Z/(4x5/2)− 3/(2x3). (3.14)

The verification of the fact that the function g(x) defined by formula (3.13) satisfies all
the conditions imposed in Definition 3.4 is straightforward. Thus, formula (3.14) yields
that as x → ∞,

0 ≤ −g′′(x)/g′(x) = (2/x) · (3
√
Z/4− 3/(2

√
x)/(

√
Z − 3/(2

√
x))

< 2/x for x > x0 := 4/Z > 0.

□

Remark 3.6. (i) Recall that the totality of the class of Pólya-Aeppli distributions can be
parameterized in such a way that it constitutes an additive EDM on Z+. It is relevant that
the invariant α of the exponential tilting transformation of this family, which is defined
by [9, formula (3.7)], coincides with the third argument Z of the function 1F1 (see for-
mulas (3.1) and (3.3)). A combination of this observation with [9, formula (3.10)] implies
that the u.v.f. VZ(µ) of the NEF comprised of the members of the Pólya-Aeppli family
with this value of invariant Z is as follows:

VZ(µ) = µ ·
√
4Z−1 · µ+ 1 . (3.15)

(ii) A combination of formulas (3.2)–(3.3) stipulates that a probabilistic interpretation for
the reciprocal 1/Z of the invariant of the exponential tilting transformation of the Pólya-
Aeppli class, which is given below [9, proof of Lemma 3], is equivalent to the following
representation for the confluent hypergeometric function, which is easily derived from its
basic properties:

(1 + z/2) · 1F1(2; 2; z)
2 ≡ ez · 1F1(3; 2; z), where the argument z ∈ C.

Next, we present the unit deviance function (or u.d.f.) dZ(w, µ) of the Pólya-Aeppli
EDM, which describes the rate of the exponential decay (compare to formula (3.21)).
Thus, a combination of [12, p. 68, Exercise 2.25], formula (3.15) and some calculus
stipulates that for real w ≥ µ,

1

2
dZ(w, µ) =

∫ w

µ

w − t

VZ(t)
dt

=
(
w · log

√
1 + (4/Z)t− 1√
1 + (4/Z)t+ 1

− Z
2
·
√

1 + (4/Z)t
)∣∣∣∣∣∣∣∣∣w

µ

= w ·
(
log

√
1 + (4/Z)w − 1√
1 + (4/Z)w + 1

+ log (θ + 1)
)
− Z

2
· (1 +

√
1 + (4/Z)w).

(3.16)

At this stage, we proceed with the presentation of a series of new results of Probability
Theory which pertain to the asymptotic behavior of various probabilities for certain Pólya-
Aeppli distributed r.v.’s. They are geared towards our further studies in the Theory of
Stochastic Processes presented in Sections 4-5, and involve two different transformations
of the pair of parameters (µ, λ) of the Pólya-Aeppli family. Specifically, the results needed
for the studies of branching particle systems, which are undertaken in Section 4, involve



54 RICHARD B. PARIS AND VLADIMIR VINOGRADOV

either the following scaling of the parameters:{
µ → Cµ;
λ → λ/

√
C (3.17)

or no scaling of the parameter µ at all. It is easy to check that the transformation (3.17)
does not change the value of M, whereas θ is divided by the scaling factor C (compare
with formulas (3.28)–(3.29)). In contrast, our new results geared towards the studies
of compound Poisson-geometric processes with Pólya-Aeppli marginals, which are con-
ducted in Section 5, rely on a different scaling of these parameters of the Pólya-Aeppli
distributions. Namely, {

µ → Cµ;
λ → λ

√
C. (3.18)

It easily follows from formula (3.1) that the transformation (3.18) leaves the value of θ
unchanged, whereas M is multiplied by the scaling factor C. A subsequent application
of formula (3.4) implies that this transformation corresponds to the addition of specific
independent Pólya-Aeppli r.v.’s. In particular, the scaling transformation (3.18) which is
consistent with summation of i.i.d.r.v.’s with common Pólya-Aeppli distribution, implies
that this class constitutes an additive EDM for counts, and leads to consideration of Lévy
processes with Pólya-Aeppli marginals.

The first group of our results pertains primarily to the probabilities of large devia-
tions and saddlepoint-type approximations. In addition, part (ii) of Theorem 3.7 below
addresses a version of the Poisson-exponential approximation. Recall that the density
component fµ,λ(x) of a generic Pólya-Aeppli distribution, which is employed on the
right-hand side of formula (3.20) below, is given by formula (3.7).

Theorem 3.7. Fix µ ∈ R1
+ and λ ∈ R1

+, and assume that the parameter ν takes on pos-
itive real values. Consider a family of the Pólya-Aeppli distributed r.v.’s {Xνµ,

√
νλ, ν ∈

R1
+} and suppose that the integer-valued y → +∞.

(i) Suppose that ν varies in such way that y · ν → +∞. Then

P{Xνµ,
√
νλ = y} ∼ 1√

2πνVZ(y/ν)
exp

{
− ν

2
· dZ(y/ν, µ)

}
=

1√
2πy(1 + 4Z−1y/ν)1/4

· (θ + 1)−y · exp{−νM}

×

( √
1 + 4Z−1y/ν + 1√
1 + 4Z−1y/ν − 1

)y

exp
{Z
2
ν
(
1 +

√
1 + 4Z−1y/ν

)}
.

(3.19)

(ii) Suppose that ν varies in such way that ν ≤ Const/y. Then

P{Xνµ,
√
νλ = y} ∼ 1

θ + 1
exp

{
y
( θ

θ + 1
− log (θ+1)

)}
· fνµ,√νλ(y/(θ+1)). (3.20)

Proof. It follows with some effort from a combination of formulas (3.1), (3.3), (3.15),
(3.16) with Theorem 2.3.i-ii. □

The following corollary to Theorem 3.7 stipulates the validity of both a local limit
theorem which takes into account small, normal and large deviations for a sequence of
the partial sums of Pólya-Aeppli distributed i.i.d.r.v.’s with an increasing number of terms,
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and also the tail asymptotics up to equivalence of such sums in the case of a fixed number
of the Pólya-Aeppli distributed summands.

Corollary 3.8. Fix µ ∈ R1
+ and λ ∈ R1

+. Consider the sequence X (1)
µ,λ + ... + X (n)

µ,λ of
the partial sums of Pólya-Aeppli distributed i.i.d.r.v.’s. Suppose that y ∈ N and n ∈ N
vary in such way that y → ∞ and y · n → ∞. Then

P{X (1)
µ,λ + ...+ X (n)

µ,λ = y} ∼ 1√
2πnVZ(y/n)

exp
{
− n

2
· dZ(y/n, µ)

}
=

1√
2πy(1 + 4Z−1y/n)1/4

· (θ + 1)−y · exp{−nM}

×

( √
1 + 4Z−1y/n+ 1√
1 + 4Z−1y/n− 1

)y

exp
{Z
2
n
(
1 +

√
1 + 4Z−1y/n

)}
.

(3.21)

Proof. It follows from formula (3.4) that for each n ∈ N,

Xnµ,
√
nλ

d
= X (1)

µ,λ + ...X (n)
µ,λ , (3.22)

where {X (ℓ)
µ,λ 1 ≤ ℓ ≤ n} are the i.i.d.r.v.’s which have the same distribution as the Pólya-

Aeppli r.v. Xµ,λ. The rest follows from formula (3.19). □

Remark 3.9. (i) Suppose that ϵ > 0 is an arbitrary fixed real. Then in the special case
where integer y = y(n) varies in such a way that y ≥ (µ + ϵ)n as n → ∞, the validity
of representation (3.21) can be derived with some effort from [17, Theorem 2]. Indeed,
it requires straightforward calculus to verify that formula (3.21) is consistent with [17,
Theorem 2]. In fact, it is [17, Theorem 2] which was our driving force for the derivation
of Theorems 2.3.i and 3.7, as well as Corollaries 2.4 and 3.8.
(ii) In the case where y ∼ Const · n, i.e., when the magnitude of large deviations is
proportional to the number of summands, Corollary 3.8 becomes the local version of
the classical Cramér–Petrov theorem for the partial sums of i.i.d.r.v.’s with common lat-
tice distribution. Moreover, it appears that one can refine this theorem with some effort.
To this end, one would need to derive the closed-form expression for the terms of the
Poincaré series which emerge in [10, Theorem 5] or [7, Theorem 2.4.1] in our special
case of Pólya-Aeppli distributed i.i.d.r.v.’s. We conjecture that such results would be con-
sistent with those that can be obtained by modifying the terms of the Poincaré series which
emerges in [24, formula (27.4.62)].
(iii) The middle expressions in formulas (3.19) and (3.21), which involve the functions
introduced by formulas (3.15) and (3.16), can be regarded as the saddlepoint-type approx-
imations for the Pólya-Aeppli additive EDM and for the sample mean, respectively, in the
case where there are specific constraints imposed on the parameter values.

The second group of our results pertains to the local Poisson-exponential approxima-
tions for the Pólya-Aeppli family. Note in passing that the corresponding result on weak
convergence in an important special case which pertains to branching particle systems is
given by formula (4.8) of Section 4.

Next, for arbitrary fixed µ ∈ R1
+, λ ∈ R1

+, and values of the argument u ∈ R1
+, define

Dµ,λ(u) := 4λ2 + θ2u− 4λ
√
uθI0(4λ

√
u)/I1(4λ

√
u); (3.23)
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Eµ,λ(u) := θ3u(3θu− 8)/4 + 6λ2θ(3θu− 4) + 12λ4I3(4λ
√
u)/I1(4λ

√
u)

+ 8λ3(2− 3θu) · I2(4λ
√
u)√

u · I1(4λ
√
u)

+ 6λ
√
uθ2(2− θu) · I0(4λ

√
u)

I1(4λ
√
u)

.
(3.24)

Since ∀n ∈ Z+, In(z)/I1(z) ∼ (z/2)n−1/n! as z → 0, it is natural to define these
functions at the origin by continuity:

Dµ,λ(0) := lim
u↓0

Dµ,λ(u) = 4λ2 − 2θ = (M− 2)θ; (3.25)

Eµ,λ(0) := lim
u↓0

Eµ,λ(u) = 2(8λ4 − 12λ2θ + 3θ2) = (M2 − 6M+ 6)θ2. (3.26)

Theorem 3.10. Fix µ ∈ R1
+, λ ∈ R1

+, and the value of argument u ∈ [0,+∞). Suppose
that the positive real-valued parameter C is such that uC is an integer as C → ∞. Then

P{XCµ,λ/
√
C = u · C} = e−Mχ({u = 0})

+
fµ,λ(u)

C
·
{
1 +

Dµ,λ(u)

2C
+

Eµ,λ(u)
6C2

+O(1/C3)
}
.

(3.27)

Proof. First, a combination of formula (3.1) with the fact that µC := Cµ and λC := λ/
√
C

yields that
M(C) ≡ M(1) := M; (3.28)

θ(C) ≡ θ/C. (3.29)
A subsequent combination of formulas (3.7) and (3.8) yields that the probability which
emerges on the left-hand side of formula (3.27) equals

e−M

(uC)!
·
∫ ∞

0

e−(θ(C)+1)v · vuC−1 · (4λ2 · v/C)1/2 · I1(4λ ·
√
v/C)dv

=
e−M · CuC

(uC)!
·
∫ ∞

0

e−Cz · zuCfµ,λ(z)dz,
(3.30)

where fµ,λ(z) is defined by formula (3.7). Here, we made the change of variables z =
v/C.

The rest of the proof is similar to that of [28, Theorem 2.9.i]. We rewrite the integrand
on the right-hand side of formula (3.30) and consider the following integral

I :=

∫ ∞

0

e−C(z−u log z) · fµ,λ(z)dz (3.31)

as C → +∞. The asymptotics of the integral (3.31) is easily derived by an application of
Laplace’s method. Thus, we find that as C → +∞

I = uuCe−uC ·
√

2πu

C
fµ,λ(u)

{
1 +

d1
C

+
d2
C2

+O(C−3)

}
, (3.32)

where (see, for example, [19, p. 13])

d1 :=
1

2
uf2 + f1 +

1

12u
, d2 :=

1

8
u2f4 +

5

6
uf3 +

25

24
f2 +

f1
12u

+
1

288u2

and we have defined fk := f
(k)
µ,λ(u)/fµ,λ(u) with k ≥ 1.

Combining formulas (3.30)–(3.32) with the Stirling expansion

(uC)! =
√
2π(uC)uC+1/2e−uC

{
1 +

1

12uC
+

1

288(uC)2
+O(1/C3)

}
, (3.33)
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we find
e−MCuC · I

(uC)!
=

e−Mfµ,λ(u)

C

{
1 +

Dµ,λ(u)

2C
+

Eµ,λ(u)
6C2

+O(1/C3)

}
,

where

Dµ,λ(u) = d1 −
1

12u
, Eµ,λ(u) = d2 −

d1
12u

+
1

288u2
.

After some lengthy algebra, the coefficients Dµ,λ(u) and Eµ,λ(u) are found to be ex-
pressible in terms of ratios of modified Bessel functions as given in formulas (3.23) and
(3.24). □

The following assertion is analogous to limit theorems which act on the whole axis for
a sequence of partial sums of i.i.d.r.v.’s with a common not necessarily lattice distribution.
We refer to [25] for a comprehensive description of numerous limit theorems which act
on the whole axis in the context of partial sums of i.i.d.r.v.’s.

Theorem 3.11. Fix µ ∈ R1
+ and λ ∈ R1

+. Suppose that the positive real-valued param-
eter C → ∞. Let the argument u (which might depend on C) take on non-negative real
values, but uC be an integer. Then

P{XCµ,λ/
√
C = uC} = e−Mχ({u = 0}) + fµ,λ(u)

C
· (1 + o(1)). (3.34)

Proof. In the case where non-negative integer u is bounded from above as C → ∞,
the validity of (3.34) easily follows from formula (3.27). In the case where u → ∞ as
C → ∞ (and even as just u · C → ∞ as C → ∞), the validity of (3.34) is obtained from
a combination of formulas (3.1), (3.3), (3.28) and (3.29). This ascertains the applicability
of Corollary 2.5 with K = 4λ2 and L = 2λ/

√
µ. The rest is simple algebra. □

Remark 3.12. It is relatively easy to extend Theorem 3.11 to the case when the value of
uC, which emerges inside the sign of probability on the left-hand side of formula (3.34),
is replaced by a more general integer-valued function k(C) which varies in such a manner
that k(C)/C → u as C → ∞. The details are left to the reader.

The third “group” of our results presented in this section is comprised of Theorem
3.13, which pertains to the Poisson approximation for the Pólya-Aeppli family. Thus, it is
relevant that formula (2.6) implies the following second-order-term approximation in the
local limit theorem on Poisson convergence for the Pólya-Aeppli EDM in the case where
µ ∈ R1

+ is fixed and real λ → ∞. This result is closely related to the stochastic backward
evolution problem investigated in [9, Theorem 2.iv and formula (4.30)]. Recall that πµ(ℓ)
is defined by formula (2.1).

Theorem 3.13. Fix µ ∈ R1
+, and assume that the real-valued parameter λ → ∞. Then

for an arbitrary fixed ℓ ∈ Z+,

P{Xµ,λ = ℓ} = πµ(ℓ) ·
(
1 +

ℓ2 − (1 + 2µ)ℓ+ µ2

2
√
µλ

+O(λ−2)
)
. (3.35)

Proof. It follows with some effort from a combination of formulas (2.6) and (3.2)–(3.3).
Thus, in the case where ℓ = 0, the verification of the validity of formula (3.35) is straight-
forward. Also, in view of formula (3.3), in the case where ℓ ∈ N representation (3.35) is
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equivalent to the following formula:

e−2λ
√
µ · 4λ2 · (1 + 2λ/

√
µ)−(ℓ+1) · 1F1(ℓ+ 1; 2; 4λ2/(1 + 2λ/

√
µ))

=
e−µµℓ

ℓ!
·
(
1 +

ℓ2 − (1 + 2µ)ℓ+ µ2

2
√
µλ

+O(λ−2)
)
as λ → ∞.

(3.36)

The validity of formula (3.36) then follows by combining formula (2.6) with some alge-
bra. □

Remark 3.14. It is not difficult to derive the asymptotics up to equivalence for the proba-
bilities of “large deviations” under fulfillment of the assumptions of Theorem 3.13 which
would complement this theorem. For instance, one can consider the case where inte-
ger ℓ → ∞ with the same rate as Z . For simplicity, set µ = 1. Then Z = Z(λ) =
4λ2/(2λ+ 1) ∼ 2λ → ∞. Assume that ℓ := ℓ(λ) = 4λ takes on integer values. Then it
relatively easily follows from formula (2.12) that as λ → ∞,

P{X1,λ = 4λ} = e−2λ · 4λ2 · (1 + 2λ)−(4λ+1) · 1F1(4λ+ 1; 2; 4λ2/(1 + 2λ))

∼
√

λ/(6π) · e2λ24λ

(1 + 2λ)4λ+1
.

(3.37)

At the same time, Stirling’s formula (compare representation (3.33)) implies that in the
case where µ = 1 and as λ → ∞, the Poisson probability

π1(4λ) = e−1/Γ(4λ+ 1) ∼ e4λ−1

√
8λπ · (4λ)4λ

. (3.38)

However, it is easily seen that the right-hand sides of formulas (3.37) and (3.38) are not
equivalent to each other as λ → ∞.

Note that [10, Theorems 1 and 5] are quite general providing asymptotic expansions
in local limit theorems for lattice distributions, which take into account large deviations,
in the case of convergence to various limiting distributions. However, these results do
not seem to be applicable under the fulfillment of the conditions of the above Theorems
3.10–3.11, since [10, condition (1)] is not met. In addition, it would be of interest to
investigate possible relations of the local large deviation limit theorems of the same type
as representatiom (3.37) above with the integral large deviation limit theorems in the case
of approximation by the Poisson law, which can be found in [1] (see also the references
therein). However, this is beyond the scope of this paper.

4. Local Limit Theorems for Branching Particle Systems

This section pertains to applications of some of our general results on Pólya-Aeppli
distributions to the derivation of new asymptotic expansions in the local approximations
for specific BPS’s. They are presented as Corollaries 4.1 and 4.3.

Here, we provide a rather limited description of this class of the BPS’s, which undergo
critical binary branching, as well as of the limiting diffusion process, which is closely
related to that defined by formulas (1.2)–(1.4). We refer to [6], [21] or [9] for a more
comprehensive consideration of these topics. First, recall that there is an important result
of Probability Theory which concerns the Poisson-exponential approximation for scaled
members of the Pólya-Aeppli family. (This assertion is presented below in the relevant
special case as formula (4.8).) Its interesting counterparts in the context of the stochastic
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evolution of the BPS’s are also widely available. This group of results of the Theory of
Stochastic Processes is usually termed the Feller-diffusion approximation (see, for exam-
ple, [6] or [21]). Its version is presented below as formula (4.6). Note that although the
compound Poisson representations for specific members of the Pólya-Aeppli and Poisson-
exponential classes of distributions along with the Yaglom theorem on the exponential
convergence provide a simple probabilistic explanation for the validity of this approxi-
mation in our special case, but in fact, it is representation (3.8) which is quite suitable
for the derivation of rather accurate asymptotic representations for specific probabilities
associated with members of the Pólya-Aeppli and Poisson-exponential classes. They are
given by formulas (3.27) and (4.13).

It is relevant that our major driving force behind the studies of subtle properties of the
class of Pólya-Aeppli distributions is the fact that members of this family emerge as the
total number of particles of the BPS considered in [9], which are alive at a particular time
instant t (see [9, pp. 261–262]).

Now, let us provide some more specific details. Given the parameter δ ∈ R1
+ and the

real-valued time instant t ∈ (−2/δ,+∞), set Aδ,t := 2δ/(2 + δt). Following [9], we in-
troduce a positive integer-valued parameter η. We launch our BPS from the Pólya-Aeppli
distributed, random number Xη,δ/(2

√
η) of the independent particles (possibly sparsely lo-

cated) at the initial time instant t = 0. In view of formula (3.5), the expected number of
initial particles EXη,δ/(2

√
η) = η.

Note that the initial field here is different from those used in the majority of previous
works in this area, but this assumption coincides with the specific initial field that was
employed in [9, Sections 4–5]. We elect to assume that our BPS has such Pólya-Aeppli
distributed field at time t = 0 in order to be consistent with the terminology and results
of [9]. In particular, this assumption enables one to trace back this particle system to a
Poisson field at time t = −2/δ (compare to formula (4.15) below and [9, Theorem 2.iv]).
Moreover, our Corollary 4.3 below can be regarded as a local counterpart of that theorem.
We refer to [9, p. 254] for more details on the rationale behind this choice of the initial
distribution of the BPS’s considered.

Each particle is assumed to perform an independent random spatial motion in Rd and
is assigned the same mass 1/η. This BPS undergoes critical binary branching. Namely,
at an exponentially distributed time instant with mean 1/η, the particle either dies out with
probability 1/2 or splits into two offspring with the same probability 1/2. Each newly-
born particle is an identical copy of its parent and immediately starts to perform the same
spatial motion. The motions, lifetimes and branchings of all particles are assumed to be
independent of each other. Following [9], hereinafter we denote this BPS by L(η)

δ,t . It
constitutes a measure-valued stochastic process (see, for example, [6] or [21]).

Subsequently, we introduce the so-called total mass process, which is the following
real-valued stochastic process:

L
(η)
δ (t) := η−1 · L(η)

δ,t (R
d). (4.1)

Here, we can now assume that t ∈ (−2/δ,+∞). This is because in view of [9], the
stochastic evolution of this BPS can be traced backward in time up to time instant −2/δ.
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Also, it is often more convenient to deal with the integer-valued modification of the pro-
cess (4.1), which is defined as follows:

L̃
(η)
δ (t) := η · L(η)

δ (t) = L(η)
δ,t (R

d). (4.2)

Evidently, the integer-valued stochastic process (4.2) represents a random total number of
the living particles of the BPS L(η)

δ,t at time t.
It then follows from [9, pp. 261–262] that given time instant t ∈ (−2/δ,+∞), the r.v.

L̃
(η)
δ (t)

d
= Xη,Aδ,t/(2

√
η). (4.3)

The formula (4.3) stipulates that for each such value of t, the total number of the living
particles L̃(η)

δ (t) of this BPS is a member of the Pólya-Aeppli family with parameters η
and Aδ,t/(2

√
η). A subsequent combination of formulas (3.5) and (4.3) implies that the

average number η of the living particles of this BPS is time invariant, i.e., the branching
mechanism is critical.

Next, recall that we have already defined the Feller diffusion F(t) with no drift, and
which starts from a point source by formulas (1.2)–(1.4). Subsequently, given δ ∈ R1

+, we
introduce the backshifted Feller diffusion process {Fδ(t), t ∈ [−2/δ,+∞)} as follows:

Fδ(t) := F(t+ 2/δ). (4.4)

By (1.3),
Fδ(−2/δ) = 1. (4.5)

It is well known that for an arbitrary fixed time instant s ∈ (−2/δ,+∞), the total mass
process {L(η)

δ (t), t ∈ [s,+∞)}, which is defined by (4.1), converges in the càdlàg space
D[s,∞) to the backshifted Feller diffusion process {Fδ(t), t ∈ [s,+∞)}. Namely,

L
(η)
δ (·) D[s,∞)

=⇒ Fδ(·) as η → +∞ (4.6)

(see, for example, [6] or [21]).
It is important that all the marginals of the latter limiting diffusion process with con-

tinuous trajectories, which emerges on the right-hand side of formula (4.6), belong to the
Poisson-exponential family. Specifically, given time instant t ∈ (−2/δ,+∞), the r.v.

Fδ(t)
d
= U1,δ/(2+tδ) (4.7)

(see, for example, [6] or [21]). Also, a combination of formulas (4.2)–(4.7) implies that
for an arbitrary fixed time instant t ∈ (−2/δ,+∞) and as η → +∞,

L
(η)
δ (t) (

d
= η−1 · Xη,Aδ,t/(2

√
η))

d→ U1,δ/(2+tδ) (
d
= Fδ(t)) (4.8)

(compare [9, Proposition 3.i]). It is easily seen that the result (4.8) on weak conver-
gence can also be derived by establishing the pointwise convergence of the corresponding
c.g.f.’s, which are given by formulas (3.4) and (3.6) of Section 3. Also, it is relevant that
formula (4.5) is consistent with [9, formula (4.54)]. Indeed, the latter result stipulates
that the backward stochastic evolution of the limiting backshifted Feller diffusion process
{Fδ(t), t ∈ (−2/δ,+∞)} can be traced back up to time t = −2/δ in the sense that

1 = Fδ(−2/δ)
P
= lim

t↓−2/δ
Fδ(t). (4.9)
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Next, we proceed with the construction of the asymptotic expansions in the local ver-
sion of the relationship (4.8) on weak-convergence. To this end, and by analogy to [9,
formulas (5.1)–(5.2)], we define Jν = Jν(δ, t, u) := Iν(2Aδ,t

√
u).

Now, set Gδ,t(u) := D1,Aδ,t/2(u). Combine formulas (3.23) and (3.25) of Section 3 to
yield that

Gδ,t(u) =

{
A2

δ,t · (u+ 1)− 2Aδ,t
√
uJ0/J1 if u > 0

A2
δ,t − 2Aδ,t if u = 0

(4.10)

(compare [9, formula (5.3)]). Also, define Hδ,t(u) := E1,Aδ,t/2(u). It then follows from
formulas (3.24) and (3.26) of Section 3 that

Hδ,t(u) = A3
δ,t

(3Aδ,tu
2 + 2(9Aδ,t − 4)u− 24

4

+
3Aδ,tJ3

4J1
+

(2− 3Aδ,tu)J2 + 3u(2−Aδ,tu)J0)√
uJ1

)
if u > 0;

(4.11)

Hδ,t(0) = A2
δ,t(A2

δ,t − 6Aδ,t + 6). (4.12)
The parts (i) and (ii) of the following assertion specify Theorems 3.10 and 3.11 for

the BPS described above. In addition, part (i) corrects and refines [9, Theorem 3] in an
essential way.

Corollary 4.1. Given δ ∈ R1
+, fix t ∈ (−2/δ,∞), and suppose that the integer-valued

parameter η, which constitutes the time-invariant expected number of the living particles,
is such that η → ∞. Then
(i) In the case where integer u ∈ Z+ is fixed, the marginals of the total mass process
L
(η)
δ (t) of the BPS admit the following third-order local approximation:

P{L(η)
δ (t) = u} = e−Aδ,tχ({u = 0})

+
f1,Aδ,t/2(u)

η
·
{
1 +

Gδ,t(u)

2η
+

Hδ,t(u)

6η2
+O(1/η3)

}
.

(4.13)

Here, the functions Gδ,t(u) and Hδ,t(u) are defined by formulas (4.10)–(4.12).
(ii) In the case where u ∈ Z+ might depend on η, the following asymptotic representation
for the probability function of the marginals of the total mass process L(η)

δ (t), which takes
into account large deviations, is valid:

P{L(η)
δ (t) = u} = e−Aδ,tχ({u = 0}) +

f1,Aδ,t/2(u)

η
· (1 + o(1)). (4.14)

Proof. The validity of the parts (i) and (ii) of this corollary follows by setting C = η,
µ = 1, and λ = Aδ,t/2 = δ/(2 + δt) in Theorems 3.10 and 3.11, respectively. It remains
to combine these two new representations with formulas (4.2)–(4.3). □

Remark 4.2. (i) In the case where u = 0, the quantity

f1,Aδ,t/2(0)Gδ,t(0)/2 = A3
δ,te

−Aδ,t(Aδ,t/2− 1),

which emerges as a component of the limit as u ↓ 0 of the expression which is present
on the right-hand side of (4.13), is consistent with [9, bottom part of formula (5.3)].
Moreover, the continuity of the functions Gδ,t(u) and Hδ,t(u) at the origin, which easily
follows from formulas (3.25)–(3.26), contradicts the claim on discontinuity at zero made
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in [9, p. 265, Remark 9.i]. Hence, Corollary 4.1.i corrects and refines [9, Theorem 3].
(ii) The formula (4.14) stipulates that in the case where one is only interested in the
marginals of the BPS, the corresponding local approximation by the backshifted Feller
diffusion takes into account both the normal and the large deviations.

Next, consider a fixed value of η ∈ N. In view of [9, Theorem 2.iv], the integer-
valued Markov process {L̃(η)

δ (t), t ∈ (−2/δ,+∞)}, which is defined by formula (4.2)
and constitutes the total number of particles alive at time t for the above BPS (with Pólya-
Aeppli marginals), must have originated from a Poisson distribution Poiss(η) with mean
η at time t = −2/δ. Namely,

lim
t↓−2/δ

L̃
(η)
δ (t) =: L̃

(η)
δ (−2/δ)

d
= Poiss(η), (4.15)

where the limit in (4.15) is to be understood in the sense of weak convergence.
It is easily seen that the weak convergence of the marginals, which is stipulated by

formula (4.8) in the case where t > −2/δ, is transferred to the left-end point t = −2/δ
in the sense that the expression on the right-hand side of formula (4.15) converges in
probability as η → +∞ to a non-random constant limit 1 (compare expressions (4.5) and
(4.9)). At the same time, in view of Remark 3.14, the asymptotic behavior of L̃(η)

δ (t) in
the case where t ↓ −2/δ and η → +∞ simultaneously might not be consistent with that
of Poiss(η) as η → +∞ in the domain of large deviations.

We conclude this section with the local counterpart of formula (4.15), which also con-
tains the leading error term.

Corollary 4.3. Given δ ∈ R1
+, η ∈ N, ℓ ∈ N, and as t ↓ −2/δ the probability function

for the total number of particles L̃
(η)
δ (t), which are alive at time instant t, admits the

following asymptotic representation:

P{L̃(η)
δ (t) = ℓ} = πη(ℓ) ·

(
1 +

ℓ2 − (1 + 2η)ℓ+ η2

2δ · √η
· (2 + δt) +O((2 + δt)2)

)
.

Proof. It easily follows by setting the parameters µ = η, and λ = Aδ,t/2 = δ/(2 + δt)
in Theorem 3.13. □
Remark 4.4. In contrast to the majority of the results on Poisson convergence, which
usually assume the infinite growth of the number of summands in the corresponding tri-
angular array, our Theorem 3.13 and Corollary 4.3, as well as the corresponding assertions
of [9], involve a rather uncommon scaling of the parameters. This is because our model
stipulates a Poisson number of the geometrically distributed clusters with the Poisson pa-
rameter being bounded and approaching a positive constant. In addition, the probability
of success in a single trial, which characterizes the geometric distribution involved, ap-
proaches 1. In other words, the random size of each cluster collapses into the non-random
constant 1, whereas a random number of such clusters is approximated by the Poisson
r.v. whose mean tends to constant η. Hence, this is a rather specific result on the Poisson
convergence which clarifies the mechanism of the stochastic backward evolution of the
cluster structure of the BPS considered. Recall that this assertion illustrates [12, Theorem
4.5].

It would be interesting to compare our Theorem 3.13 and Corollary 4.3 with other
known results on the Poisson convergence which provide the rate of convergence or even
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the leading error term, such as [13, Corollary 1]. See also Remark 3.14 of Section 3 for a
relevant discussion concerning the probabilities of large deviations.

5. New Results for Pólya-Aeppli Lévy Processes

First, it is well known that all the members of the classes of Pólya-Aeppli and Poisson-
exponential distributions introduced by Definitions 3.1 and 3.2 of Section 3, respectively,
are infinitely divisible (see, for example, [26, formula (3.4)] and [20, formula (2.10)]).
Also, let us point out that the consideration of the following two classes of the corre-
sponding Lévy processes, which are introduced by formulas (5.1)–(5.2) below, is justified
by the properties of these two classes of the infinitely divisible, Pólya-Aeppli and Poisson-
exponential distributions. They are described in [9, Section 3], [29, Section 3], and [20,
Section 3]. See also formulas (5.6)–(5.7) below.

Throughout this section we denote the Pólya-Aeppli and Poisson-exponential Lévy
processes, which correspond to specific values of parameters µ ∈ R1

+ and λ ∈ R1
+, by

{Gµ,λ(t), t ≥ 0} and {Hµ,λ(t), t ≥ 0}, respectively. It is well known that a generic
Lévy process is completely determined by its marginal at time t = 1. Hence, it suffices
to define these two processes as follows:

Gµ,λ(1)
d
= Xµ,λ; (5.1)

Hµ,λ(1)
d
= Uµ,λ. (5.2)

Recall that the specific Pólya-Aeppli and Poisson-exponential r.v.’s Xµ,λ and Uµ,λ which
emerge on the right-hand sides of formulas (5.1)–(5.2), are characterized in Definitions
3.1 and 3.2 of Section 3, respectively. Also, let us recall that {Π1(t), t ≥ 0} stands for
the Poisson process with unit intensity.

A combination of the compound Poisson-geometric representation (1.1) and formula
(3.4) with some algebra yields that given ρ ∈ R1

+, γ ∈ (0, 1), and for an arbitrary fixed
t ∈ R1

+, the r.v.

R(ρ,γ)(t)
d
= Xµρ,γ(t),λρ,γ(t), (5.3)

where the parameters µρ,γ(t) and λρ,γ(t) are as follows:

µρ,γ(t) = (ρ/γ)t; (5.4)

λρ,γ(t) =
√
ργt/(2(1− γ)). (5.5)

Evidently, representation (5.3) stipulates that all the marginals of the compound Poisson-
geometric process {R(ρ,γ)(t), t ≥ 0} are Pólya-Aeppli distributed with the values of the
parameters µρ,γ(t) and λρ,γ(t) as those specified by formulas (5.4) and (5.5), respectively.
In addition, since a Lévy process can be regarded as a continuous-time analogue of the
sequence of partial sums of the related i.i.d.r.v.’s, one ascertains that given µ ∈ R1

+,
λ ∈ R1

+, and for an arbitrary fixed t ∈ R1
+, the r.v.

Gµ,λ(t)
d
= Xµt,

√
tλ (5.6)

(compare formulas (5.6) and (3.22)).
Similar to representation (5.6), [20, formula (3.2)] implies that given µ ∈ R1

+, λ ∈
R1

+, and for an arbitrary fixed t ∈ R1
+, the r.v.

Hµ,λ(t)
d
= Uµt,

√
tλ. (5.7)
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Since a generic compound Poisson-exponential Lévy process is a subordinator, it can
be employed in lieu of the “time” argument to make a random time change. Therefore,
one may consider a mixed Poisson process with time t replaced by a particular compound
Poisson-exponential process. We refer to [8] for more details on the mixed Poisson pro-
cesses.

The following representation result of the Theory of Stochastic Processes character-
izes a generic Pólya-Aeppli Lévy process as the mixed Poisson process of unit intensity
with the random time change being a specific Poisson-exponential Lévy process. It is
a stochastic-processes-theory analogue of Lemma 3.3 of Section 3, which concerns a
closely related Poisson-mixture representation for a Pólya-Aeppli distribution.

Proposition 5.1. Given µ ∈ R1
+ and λ ∈ R1

+, the Pólya-Aeppli Lévy process defined by
formula (5.1), considered as an element of the càdlàg space D[0,∞), admits the follow-
ing representation as a mixed Poisson process:

Gµ,λ(·)
D[0,∞)
==== Π1(Hµ,λ(·)). (5.8)

Proof. The equality in law between the Lévy processes which emerge on both sides of
formula (5.8), considered as the elements of D[0,∞), easily follows from a combination
of Lemma 3.3 of Section 3 with [14, Propositions 3.2 and 4.1] and the well-known above-
quoted fact that a generic Lévy process is completely determined by its marginal at time
t = 1. Some relevant comments and observations can also be found in [3, p. 19 and
Example 1, pp. 27–28]. □

Remark 5.2. The derivation of the validity of representation (5.8) starting from the fact
that all the marginals of two Lévy processes coincide is straightforward, since a com-
position of Lévy processes is also a Lévy process. It would be interesting to determine
whether a mixed Poisson process with unit intensity and the random time change being (a
version of) the Feller diffusion (1.2)–(1.4) can be characterized as a BPS similar to that
described in Section 4. In view of Lemma 3.3 of Section 3, all the marginals of these
two stochastic processes coincide. We conjecture that the laws of these two stochastic
processes also coincide in the càdlàg space D[0,∞). However, the consideration of this
hypothesis is beyond the scope of this paper.

The following assertion provides the tail asymptotics for the short-term behavior of a
generic Pólya-Aeppli Lévy process.

Theorem 5.3. Given µ ∈ R1
+ and λ ∈ R1

+, consider the Pólya-Aeppli Lévy process

{Gµ,λ(t), t ≥ 0}.

Suppose that the integer-valued y → ∞, and the time argument t ≤ Const/y. Then

P{Gµ,λ(t) = y} ∼ 1

θ + 1
exp

{
y
( θ

θ + 1
− log (θ + 1)

)}
· fHµ,λ(t)(y/(θ + 1)). (5.9)

Proof. It easily follows from Theorem 3.7.ii of Section 3. In addition, note that the closed-
form expressions for the probability function of the r.v. Gµ,λ(t) and for the density com-
ponent fHµ,λ(t)(y/(θ+1)) which emerge in formula (5.9) are easily derived by combining
Definition 3.1 with formulas (3.7), (5.6), and (5.7). □
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We conclude this paper with a new theorem which takes into account large deviations
for the class of Pólya-Aeppli Lévy processes, and its corollary. This corollary is related
to the long-time behavior of the so-called average process constructed starting from a
generic Pólya-Aeppli Lévy process.

Theorem 5.4. Given µ ∈ R1
+ and λ ∈ R1

+, consider the Pólya-Aeppli Lévy process

{Gµ,λ(t), t ≥ 0}.
Suppose that the integer-valued argument y and the time instant t vary in such way that
y → ∞ and y · t → ∞. Then

P{Gµ,λ(t) = y} ∼ 1√
2πy(1 + 4Z−1y/t)1/4

· (θ + 1)−y · exp{−tM}

×

( √
1 + 4Z−1y/t+ 1√
1 + 4Z−1y/t− 1

)y

exp
{Z
2
t
(
1 +

√
1 + 4Z−1y/t

)}
.

(5.10)

Proof. It easily follows from a combination of Theorem 3.7.i of Section 3 with the above
formulas (5.6)–(5.7). □
Corollary 5.5. Given µ ∈ R1

+ and λ ∈ R1
+, consider the average process

Nµ,λ(t) := Gµ,λ(t)/t,

which is constructed starting from the corresponding Pólya-Aeppli Lévy process

{Gµ,λ(t), t ≥ 0}.
Suppose that t ∈ R1

+ and x ∈ R1
+ vary in such way that the product t · x ∈ Z+, and that

both t · x → ∞, t2 · x → ∞. Then

P{Nµ,λ(t) = x} ∼ 1√
2πtx(1 + 4Z−1x)1/4

· (θ + 1)−tx · exp{−tM}

×

( √
1 + 4Z−1x+ 1√
1 + 4Z−1x− 1

)tx

exp
{Z
2
t
(
1 +

√
1 + 4Z−1x

)}
.

Proof. It easily follows from representation (5.10) and Corollary 2.4. □
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7. Féray, V., Méliot, P.-L and Nikeghbali, A.: Mod-ϕ convergence and precise deviations. https://archive.org/

details/arxiv-1304.2934v3
8. Grandell, J.: Mixed Poisson Processes, Chapman & Hall, London, 1997.
9. Hochberg, K.J. and Vinogradov, V.: Structural, continuity and asymptotic properties of a branching particle

system, Lithuanian Math. J. 49 (2009) 241–270.
10. Hwang, H.-K.: Large deviations of combinatorial distributions II. Local limit theorems, Ann. Appl. Probab.

8 (1998) 163–181.
11. Johnson, N.L., Kotz, S. and Kemp, A.W.: Univariate Discrete Distributions, 3rd edn., Wiley, Hoboken NJ,

2005.
12. Jørgensen, B.: The Theory of Dispersion Models, Chapman & Hall, London, 1997.
13. Karymov, D.N.: On the accuracy of approximation in the Poisson limit theorem, Discrete Math. Appl. 14

(2004) 317–327.
14. Lee, M.-L.T. and Whitmore, G.A.: Stochastic processes directed by randomized time, J. Appl. Probab. 30

(1993) 302–314.
15. Mao, Z. C. and Liu, J. E.: A risk model and ruin probability with compound Poisson-geometric process,

Acta Math. Appl. Sin. 28 (2005) 419–428 (in Chinese).
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