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ABSTRACT 13 

Abundant marine biomass in coastal regions has continued to attract increasing attention in 14 

recent times as a possible source of renewable energy. This study aimed to evaluate the 15 

effects of hydrolytic pre-treatment for the purpose of enhancing biogas yield of Laminaria 16 

digitata and Ascophyllum nodosum species found on the west coast of Scotland. Results 17 

show that L. digitata, in its natural and untreated form, appears to be more readily 18 

hydrolysable than A. nodosum. Two treatments were assessed: acid only and acid followed 19 

by enzyme. Both treatments enhanced the hydrolysis of both seaweed species, with acid-20 

enzyme treatment providing a better performance. 21 

22 
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1. INTRODUCTION26 
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The need for sustained energy security has led to the realization of the need for alternatives 27 

to fossil fuels [1,2]. This coupled with the need to mitigate greenhouse gas emissions, which 28 

is believed to be the major cause of climate change has simulated increased research into 29 

alternative energy sources [1,3-6].  In order to achieve global reduction in greenhouse gas 30 

emissions, countries across the world have set targets on the amount of energy to be 31 

generated from renewable sources. For instance, the European Union has set a binding 32 

target of 20% of energy use by member states to be generated from renewable sources by 33 

2020 [1], while the USA plans to replace 75% of its imported oil by renewable energy by 34 

2025 [7]. Scotland aims to generate 100% of its electricity needs from renewable sources by 35 

2020 [8]. 36 

Various means of generating renewable energy including solar, wind, hydro, tidal and 37 

biomass energy have been reported in literature [1,9,10]. Biomass energy has received 38 

significant attention due to its availability, ease of utilisation and the relative maturity of the 39 

technology involved [1,10-12]. A huge amount of scientific publications on biomass energy 40 

(56%) in relation to other sources of renewable energy has been published in the last 30 41 

years [13]. Of particular interest is the use of marine biomass for renewable energy 42 

production [12,14,15]. Marine macroalgae have many advantages over terrestrial energy 43 

crops such as lack of competition with agricultural practices for land and high growth rates. 44 

It can also withstand different environmental and nutritional conditions and much is known 45 

about their cultivation processes. These factors make algae biomass a promising energy crop 46 

for increased energy security and greenhouse gas emission mitigation across the world and 47 

in the UK in particular   [1,15-17].  48 

For efficient macroalgae conversion into energy, various components making up the biomass 49 

must be amenable to biodegradation. Alginate is the main structural compound and the 50 
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most abundant polysaccharide in brown seaweed. While the intercellular matrix of the 51 

brown algae is dominated by alginate, the cell walls also contain cellulose, fucoidan and 52 

protein [18-20]. These polysaccharides are broken down during hydrolysis prior to biogas 53 

production. Another polysaccharide is laminarin, the main storage carbohydrate in Laminaria 54 

species. Fucoidan is another storage carbohydrate present in brown algae and made up of 55 

sulphated fucan. The absence of lignin and low cellulose content of algae makes it more 56 

suitable for microbiological conversion to energy fuels than terrestrial plants [21,22]. Since 57 

seaweeds have growth and primary production rates that exceed those of most terrestrial 58 

plants, the concerns over feed stock supply would be considerably reduced compared to 59 

terrestrial crop, when used for energy production [16,23]. 60 

Seaweeds have been found to be suitable feedstocks for biogas production via anaerobic 61 

digestion processes [19,21,24]. This is due to the presence of readily hydrolysable sugars 62 

(e.g. alginate and laminaran) present in the seaweeds, with low amount of cellulose and zero 63 

lignin content [21]. However, hydrolysis remains the rate limiting step in the anaerobic 64 

digestion of biomass (including marine biomass) [11,14,25]. Different pre-treatment 65 

methods have been reported in literature to enhance hydrolysis of algal biomass including; 66 

mechanical chopping, grinding, ultrasonic treatment, ozone oxidation, thermal treatment, 67 

alkaline treatment and Fenton pre-treatment [14]. Others include heating and milling to 68 

reduce the particle size to 1-5 mm. It has been reported that the process of releasing sugars 69 

from algal biomass can be enhanced by the combination of acid hydrolysis followed by 70 

treatment with a cocktail of different enzymes rather a single enzyme [26]. Enzymatic pre-71 

treatment employing multienzymatic preparations containing cellulase is reportedly 72 

effective in addressing the heterogeneous nature of the algal carbohydrates [27].   73 
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The aim of this study is therefore to determine the effects of acid and enzymatic pre-74 

treatment methods on two of the most common types of seaweeds, Laminaria digitata and 75 

Ascophyllum nodosum, using acid treatments and acid plus multienzymatic preparations. 76 

 77 

2. MATERIAL AND METHODS  78 

2.1 Collection and preliminary treatment of seaweed samples 79 

The seaweed (A. nodosum) was collected at Broughty Ferry beach, Dundee, UK while L. 80 

digitata was collected at Arbroath beach, UK in March, 2010. After collection, the seaweed 81 

was placed on foil covered trays and dried in a drying cabinet at 80°C for two days. The dried 82 

seaweeds were crushed and milled using a hammer mill (Retsch, fitted with a 1 mm screen) 83 

to create a powder that was used for the experiments. This was done to reduce the particle 84 

size to increase the surface area available for effective biodegradation [28]. The seaweed 85 

powder was stored in sealed containers at room temperature until used.  86 

 87 

2.2 Pre-treatment methods 88 

2.2.1. Acid and heat pre-treatment  89 

Powdered seaweed (10 g) for Laminaria digitata and Ascophyllum nodosum, was weighed 90 

into 250 ml Erlenmyer flasks in duplicate. 100 ml of 0.2M H2SO4 acid was added to each of 91 

the samples, then covered and autoclaved for 1 hour at 121
o
C and allowed to cool. After 92 

cooling, the pH was adjusted to 7.5±0.4 using drops of 35% NH4OH solution. 93 

 94 

2.2.2. Acid, heat and enzymatic hydrolysis 95 

An enzyme cocktail was added to the prepared samples from above (section 2.2.1). The 96 

commercial enzyme cocktail procured from Novozyme (Denmark) was used for the algal 97 
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biomass hydrolysis in the following proportion: Cellulose 6% w/w, β- glucosidase 0.6% w/w, 98 

Multi-complex 0.4% w/w, Hemi-cellulase 2% w/w and Xylanase 0.25% w/w, according to 99 

manufacturer instructions (Table 1). The enzymes were added to the mixture containing acid 100 

hydrolysed seaweeds after the pH has been adjusted to 5.5 (suitable for all enzymes) using 101 

drops of 35% NH4OH solution. After the addition of the enzymes, the samples were 102 

incubated at 50
o
C and 100 rpm for 18 hours. The pH dropped slightly after enzymatic 103 

hydrolysis to 4-5, but not below the required range for any of the enzymes (Table 1). After 104 

enzyme hydrolysis samples were cooled to room temperature and the pH corrected to 105 

7.5±0.4 using 35% NH4OH solution. 106 

 107 

Table 1.  Enzyme parameters used in this study (information from Novozymes A/S) 108 

Enzyme Activity pH Temperature 

(
o
C) 

Dose (%w/w 

seaweed)* 

Cellulase 

complex 

700EGU
ε
 g

-1
 4.5-6.5 45-60 6.0 

Β-Glucosidase 250CbU
τ
g

-1
 2.5-6.5 45-70 0.6 

Multi-complex 500FXUᴽ g
-1

 4.0-6.0 40-65 0.4 

Xynalase 500FXUᴽ g
-1

 4.5-6.0 35-55 0.5 

Hemicellulose 750FXU g
-1

 5.0-8.0 45-70 0.4 
*Dose values were calculated based on 10% seaweeds substrate.  109 
ε
Endoglucanase units 

τ 
β-Glucanase units  ᴽfungal xynalase units 110 

 111 

2.3 Anaerobic digestion 112 

2.3.1 Culture media  113 

Non-growth synthetic medium was prepared for the anaerobic digestion process using the 114 

following compounds; 2.7 g/l KH2PO4 (strong buffer agent), 3.5 g/l K2HPO4 (strong buffer 115 

agent), 5 mg/l MgSO4.7H2O, 0.5 mg/l CaCl2, 0.5 mg/l FeCl3, 0.5 mg/l KCl3, 0.1 mg/l CoCl2 and 116 

0.1 mg/l NiCl2. The medium provided the essential nutrients required by the microorganisms 117 
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[29]. Anaerobically digested sludge was obtained from wastewater treatment plant in 118 

Dundee (UK). The pH of the inoculum was 7.5 while the volatile solid content was 2.67 g/l.  119 

 120 

2.3.2 Experimental design 121 

Pre-treated feedstock (110 ml) was diluted with 190 ml of the non-growth medium and 122 

seeded with 100 ml of anaerobically digested sludge to make up 400 ml of culture volume in 123 

a 500 ml capacity culture bottle for each of the experimental condition tested. The culture 124 

bottles were then purged with nitrogen gas and incubated at mesophilic temperature of 125 

37
o
C for 25 days. Blank samples containing only the inoculum and medium were set up to 126 

discount anaerobic digestion activities due to residual substrates in the inoculum. The pH of 127 

the cultures was adjusted to 7.4 at the start of the experiment using drops of 35% NH4OH 128 

solution. All experimental set-ups were prepared in duplicates. Samples of about 20 ml were 129 

collected at regular intervals from each culture bottle and analysed for pH, volatile fatty 130 

acids concentration, total and volatile solids.  131 

  132 

2.4 Analytical methods 133 

The protein content of the seaweed species was analysed employing the Coomassie 134 

(Bradford) protein assay. Proteins were extracted from seaweed powder using 2M NaOH in a 135 

proportion of 10% seaweed powder and 90% NaOH, incubated at 65°C at 150 rpm for 60 136 

minutes. Samples were centrifuged and the supernatant used for the protein assay. Total 137 

carbohydrate content was determined by hydrolysis using the methods described in the 138 

NREL Chemical and Testing procedure (NREL 1996). The amount of reducing sugars and the 139 

specific sugars produced after acid and enzyme hydrolysis was determined using high-140 

performance liquid chromatography (HPLC) analysis. pH was evaluated using pH meter 141 
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SensIon 3 (HACH). Gas produced in the batch reactors was measured with gas analyser GA 142 

2000 Geotechnical Instrument (England) after which the reactor bottles were sealed with 143 

silicon to avoid gas leakages and maintain anaerobic conditions. Volatile fatty acids (VFAs) 144 

concentrations of the anaerobic cultures were determined by esterification method [30]. 145 

Total and volatile solids content was determined according to standard methods [31].  146 

 147 

2.5 Statistical analysis  148 

Experimental error was determined for duplicate assays and expressed in standard 149 

deviation. The significance of differences in reducing sugar yields and volatile acid formation 150 

were determined by one-way analysis of variance (ANOVA). Statistical significant 151 

interactions were further analysed using post hoc test (Tukey) at 95% confidence interval. 152 

Differences between species and across treatments were also determined. All statistical 153 

analyses were performed using Minitab Statistical Software version 17.0. 154 

 155 

3. RESULTS AND DISCUSSION 156 

3.1 Algal composition 157 

Table 2 shows the composition of algae used in the study.  158 

Table 2: Characterisation of experimental seaweeds prior to treatments and anaerobic 159 

digestion 160 

Component  A. nodosum  L. digitata  

Total Carbohydrate (%) 57.84 64.47 

Protein (%) 2.12 2.64 

Others
a
 (%) 20.52 13.12 

Ash  19.51 19.63 

VS (%) 80.49 80.33 

TS (% wet solid)
b
 24.7 26.4 

a
other components of algae such as lipid were determined by the difference in 100% determined components. 161 

b
Total solids in seaweeds were determined by drying wet seaweeds at 105

o
C for 24hours. 162 
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Table 2 shows significant differences in the composition of both species of seaweed 163 

especially in both the protein (P<0.032) and carbohydrate contents (P<0.003), both of which 164 

are greater in L. digitata. These characteristics seem to suggest that the L. digitata is likely to 165 

be more readily biodegradable than A. nodosum.  Algal biomass composition is known to 166 

vary depending on the time and season of harvest [15,17,20]. It has been reported that the 167 

amount of laminaran and mannitol present in L. digitata are lowest around March and reach 168 

a peak between June and July [15]. A similar trend has also been found for A. nodosum [19]. 169 

The seaweeds used for this study were harvested in March, suggesting that the total 170 

carbohydrate content shown in Table 2 may be considered as being lower than average 171 

value for the species. 172 

 173 

3.2 Effect of hydrolytic pre-treatment on the production of reducing sugar  174 

The effectiveness of the hydrolysis process in this study has been assessed by the 175 

determination of the amount and type of monomers produced. Figure 1 shows an increase 176 

in sugar production after enzymatic hydrolysis in both seaweed cultures. 177 

During acid treatment, 11.8 and 10.11g/l of sugar were produced by A. nodosum and L. 178 

digitata respectively showing that sugars produced by A. nodosum was significantly higher 179 

than that of L. digitata (P<0.015 . However, after further enzyme treatment there was 180 

significant increase (P<0.0001) in reducing sugar production by L. digitata from 10.11 to 28.3 181 

g/l. 182 

 183 
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 184 

Figure 1.  Reducing sugar concentration after acid and enzymatic hydrolysis of the two 185 

seaweeds. 186 

 187 

Similarly, addition of hydrolytic enzymes to acid treated A. nodosum cultures resulted in 188 

significant increase in reducing sugars production (P<0.002) from 11.8 to 15.64g/l. Tukey’s 189 

post hoc comparison of reducing sugar production between the two seaweeds cultures 190 

shows that significantly higher reducing sugars (P<0.0001) were produced by L. digitata than 191 

by A. nodosum after enzyme hydrolysis as L. digitata produced 81% more sugars. 192 

Analysis of the specific monomers that make up the reducing sugars showed the presence of 193 

glucose, MGX, (mannose, galactose and xylose analysed together), rhamnose and fucose as 194 

shown in Figure 2.  195 

For the L. digitata culture, glucose accounted for most (about 63%) of the reducing sugar 196 

produced while rhamnose accounted for the highest amount (55%) of the reducing sugar 197 

produced in the A. nodosum. This relative abundance of glucose in L. digitata compared to A. 198 

nodosum is likely to have significant impact on the relative rates of biodegradation of both 199 

seaweed species.  The results of this study seem to support the literature reports that 200 
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various bonds linking the polymers that make up algal biomass are broken during hydrolysis 201 

to produce monomers (sugars), which could readily be converted to bioenergy [20,32].  202 

 203 

 204 

Figure 2. Percent specific sugar in L. digitata and A. nodosum after enzyme hydrolysis. (Note: 205 

MGX= Mannose + Galactose + Xylose) 206 

 207 

3.3 Effect of hydrolytic pre-treatment on anaerobic biodegradability of the seaweed 208 

species 209 

To evaluate the effect of the various pre-treatment methods used in the study on the 210 

anaerobic biodegradability of each of the seaweed species, anaerobic digestion of both 211 

treated and untreated seaweed samples was carried out over a period of 25 days. Gas was 212 

analysed (%) and released during the digestion process (data not included). Negligible 213 

amounts of methane (<1%) were recorded in all batches in the first 6 days of digestion. The 214 

acidogenic activity was used as a measure of the biodegradability potential of the various 215 

untreated and pre-treated seaweed species. Figures 3 and 4 show the volatile fatty acids 216 

(VFAs) production and accumulation obtained in each of the cultures during the 217 
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experimental period. Both figures indicate that acidogenesis was more dominant up to Day 218 

6. Thereafter, a gradual decrease of the accumulated volatile fatty acids (VFAs) 219 

concentration was observed, most likely due to their conversion to methane gas. The levels 220 

of VFAs production up to Day 6 were used to evaluate the immediate impact of the various 221 

pre-treatment methods used in this study on the substrates’ level of biodegradability. 222 

 223 

 224 

 225 

Figure 3. Volatile fatty acids accumulation in L. digitata cultures: L1: Untreated; L2: Acid 226 

treated;   L3: Acid/enzyme treated 227 

 228 

In general, VFAs production and accumulation were greater in cultures containing pre-229 

treated seaweeds. One-way analysis of variance of peak VFAs production by L. digitata on 230 

Day 6 shows that VFA production in acid treated (L2) was significantly higher (P<0.001) than 231 

untreated (L1) cultures. This is an indication that hydrolysis was enhanced by the addition of 232 

acid. Further statistical analysis of results obtained from treated cultures highlighted a 233 

significantly higher VFAs production (P<0.008) in enzyme treated L. digitata (L3) than acid 234 

only treated cultures (fig 3). This shows that the combination of acid and enzyme hydrolysis 235 
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is better than acid only treatment and further improves the digestibility of the seaweed 236 

substrates.   237 

 238 

 239 

Figure 4. Volatile fatty acids production in A. nodosum cultures: A1: Untreated; A2: Acid 240 

treated;   A3: Acid/enzyme treated  241 

 242 

Analysis of VFAs production in A. nodosum cultures produced 3346 mg/l in untreated (A1) 243 

which increased to 5921 mg/l after acid hydrolysis (A2). One-way analysis of variance of that 244 

increase in fatty acids productions shows that it is statistically significant and suggests that 245 

addition of acids to A. nodosum biomass enhances its biodegradation. ANOVA and Tukey’s 246 

pairwise post hoc comparison between VFAs produced in the acid only and the enzyme 247 

treated A. nodosum cultures indicated that a significant increase occurred (P<0.001) after 248 

the addition of enzymes.  249 

Comparison of VFAs production by untreated seaweeds (L1 and A1) on Day 6 shows that 250 

VFAs produced by untreated L. digitata (L1) was 45% higher than VFAs obtained from 251 

untreated A. nodosum (A1). Statistical analysis showed that this difference in VFA production 252 

was significant (P>0.001). This result indicates that untreated L. digitata is more readily 253 
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biodegradable than A. nodosum. This result is consistent with the observations shown in 254 

Figures 1 and 2.   255 

One-way ANOVA and post hoc analysis of VFAs production in acid treated cultures between 256 

the two seaweeds showed that significantly higher (24%) levels of VFAs was recorded in acid 257 

treated L. digitata (L2) than in acid treated A. nodosum (A2) (P>0.002). This suggests that 258 

acid pre-treatment of A. nodosum increases its biodegradability to a level comparable to 259 

that on untreated L. digitata (fig.3).  260 

One-way ANOVA carried out on enzyme treated seaweeds (A3 and L3) shows that there no 261 

significant difference in the amount of VFAs produced between L. digitata and A. nodosum 262 

(P>0.63). Tukey pairwise post hoc analysis at 95% confidence interval also confirmed that 263 

there’s no significant difference between the means of VFAs produced by both seaweeds 264 

when treated with enzyme. Although significant differences were observed when both 265 

seaweeds were treated with acids, the differences observed diminished when the seaweeds 266 

were further subjected to enzymatic hydrolysis. This is despite the fact that L. digitata 267 

produced significantly higher concentration of reducing sugars. This might be due to the 268 

production of other fatty acids not detected by the esterification methods employed in their 269 

estimation. 270 

 In general, it can be seen that there is significant benefit in combining acid and enzyme pre-271 

treatment for both seaweed species. 272 

 273 

4 CONCLUSIONS 274 

 This study has shown that acid and enzymatic pre-treatment of seaweed prior to anaerobic 275 

digestion can enhance their hydrolysis, with the level of impact dependent on the seaweed 276 

species. L. digitata, in its natural and untreated form, appears to be more readily 277 
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hydrolysable than A. nodosum. The pre-treatments used in this study have been shown to 278 

have a greater effcet on hydrolysis of A. nodosum than on L. digitata.  Acid pre-treatment 279 

alone can significantly enhance the hydrolysis of seaweed species. Enzymatic treatment 280 

following acid-pre-treatment can further significantly improve on the hydrolysis of both 281 

species of seaweed. 282 

 283 
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