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ABSTRACT 

Experimental evolution studies are used to investigate bacterial adaptive radiation in simple 

microcosms. In the case of the Wrinkly Spreader, a class of biofilm–forming adaptive mutants of 

Pseudomonas fluorescens SBW25, the current paradigm is that they are only evolutionarily 

successful in static microcosms where they out-compete other lineages for O2 at the air-liquid 

interface. However, we have isolated Wrinkly Spreaders from drip-fed glass bead columns as an 

example of parallel evolution. These mutants are adaptive, with competitive fitness advantages on 

columns of 1.28 – 1.78. This might be explained by the enhanced attachment characteristically 

shown by Wrinkly Spreaders, allowing them to resist liquid flow through the column pore network. 

A comparison of column and static microcosm–isolated Wrinkly Spreaders showed that many 

aspects of wrinkleality, including colony reversion, microcosm growth, biofilm strength and 

attachment, as well as fitness in static microcosms, were significantly different within and between 

the two groups of mutants. These findings indicate that the two environments had selected for 

Wrinkly Spreaders with subtly differing degrees of wrinkleality and fitnesses, suggesting that 

aspects of the Wrinkly Spreader phenotype may have different relative values in static microcosms 

and drip-fed columns. 

 

INTRODUCTION 

Divergent selection arising from environmental differences and competition for limited resources 

are drivers of ecological adaptive radiation and ultimately speciation (reviewed by Schluter, 2000). 

Adaptive radiation has been investigated in experimental evolution studies, often using bacterial 

populations in simple environments or microcosms in which ecological opportunity can be varied to 

alter selective pressures, to relax stabilising selection, or to create conditions that generate 

diversifying selection (reviewed by MacLean, 2005; Buckling et al., 2009; Shapiro et al., 2009; 

Spiers, 2013). A common feature of these studies is the consistent evolution of similar phenotypes 

across replicates and experiments, often referred to parallel evolution (Wood et al., 2005; Arendt & 

Reznick, 2008). 

One particularly successful example of the investigation of bacterial adaptive radiation has used 

glass vials containing liquid growth medium which where incubated with shaking to provide a 

single homogeneous environment, or statically to provide a heterogeneous, structured 

environment in which access to O2 at the air-liquid (A-L) interface imposes a strong selection on 

bacterial populations (Spiers, 2013). When King’s B (KB) growth medium-containing static 
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microcosms are inoculated with wild-type Pseudomonas fluorescens SBW25 (Rainey & Bailey, 

1996), an O2 gradient is rapidly established and differentiating the top O2-rich layer from the 

deeper O2-depleted zone (Koza et al., 2011). The gradients persist for long periods (up to 5 days) 

and select for biofilm-forming mutants (lineages) such as the Wrinkly and Fuzzy Spreaders which 

colonise the A-L interface where O2 levels are the greatest (Rainey & Travisano, 1998; Spiers et 

al., 2002; Koza et al., 2011; Ferguson et al., 2013) (A-L interface biofilms are often refereed to as 

‘pellicles’ but should be considered a specialised biofilm in their own right, see Spiers, 2013; Spiers 

et al., 2013; Armitano et al., 2014). 

The underlying molecular biology of the archetypal Wrinkly Spreader (strain PR1200 in Spiers et 

al., 2002) is well understood, with WS-activating mutations identified in a range of diguanylate 

cyclase (DGC) or DGC–associated genes for a number of independently-isolated mutants (an 

example of parallel evolution; Bantinaki et al., 2007; McDonald  et al., 2009; McDonald et al., 2011; 

recently reviewed by Spiers, 2014). These result in increased levels of c-di-GMP that lead to a 

common final pathway, including the over-expression of a pili-like attachment factor and cellulose 

(Spiers et al., 2002; Spiers et al., 2003; Spiers & Rainey, 2005), to produce the WS phenotype (in 

the archetypal Wrinkly Spreader a mutation in the chemosensory-like Wsp complex WspF subunit 

results in the over-phosphorylation of the DGC WspR; Bantinaki et al., 2007).  

Here we define the WS phenotype sensu stricto as a wrinkled colony morphology, robust, well-

attached biofilm formation at the A-L interface of static microcosms, and copious cellulose 

expression in both colonies and biofilms (see Figure 1 images of Wrinkly Spreader colonies and a 

biofilm in situ). Variations in WS phenotype, or wrinkleality (see Spiers, 2013; Spiers, 2014), can 

be quantified using a number of assays including colony expansion and reversion rates, and 

microcosm growth, biofilm strength and attachment levels (Spiers et al., 2003; Ude et al., 2006; 

Spiers, 2007; Robertson et al., 2013). The archetypal Wrinkly Spreader mutation is also 

pleiotropic, having a significant effect on physiology (Huang et al., 2007) and the expression of 

several proteins found in metabolic pathways not required for the WS phenotype per se (Knight et 

al., 2006) (other Wrinkly Spreaders have been reported to have similar metabolic deficiencies, e.g. 

MacLean et al., 2004).  

Wrinkly Spreaders are generally adaptive mutants, as shown by a competitive fitness (W) 

advantage compared to the ancestral strain or other non-biofilm–forming competitors in static 

microcosms of 1.5 – 2.5 (i.e. W > 1) (Spiers et al., 2002; Spiers, 2007; Green et al., 2011), though 

this advantage is frequency-dependent and is reduced when Wrinkly Spreaders become common. 

Other measurements of fitness in static microcosms have been made elsewhere using different 

approaches, and Wrinkly Spreaders have also been reported to arise in soil microcosms where 

they are also adaptive (Gómez & Buckling, 2013). However, the Wrinkly Spreader is poorly 
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adapted to shaken microcosms (W = ~0.3 – 1.0) and agar plates (W = 0.15) demonstrating that 

there is a significant cost to the WS phenotype (Spiers et al., 2002; Spiers, 2007; Green et al., 

2011). As a result, the current paradigm is that Wrinkly Spreaders are only evolutionarily 

successful in static microcosms, though variation in fitnesses when compared to the archetypal 

Wrinkly Spreader (W = ~0.7 – 1.1) suggests that some may be more successful than others 

(Bantinaki et al., 2007; McDonald  et al., 2009; McDonald et al., 2011). Wrinkly Spreaders may 

also be adapted to micro-niches within mature biofilms, allowing multiple Wrinkly Spreaders to 

stably coexist in static microcosms (Brockhurst et al., 2006). 

However, experiments investigating biofilm-formation by wild-type P. fluorescens SBW25 in drip-

fed glass bead columns resulted in the isolation of Wrinkly Spreaders, suggesting that the WS 

phenotype might provide a fitness advantage in this environment. In these columns (see Figure 1), 

we presume that the increased levels of attachment and cellulose production help retain Wrinkly 

Spreader cells and biofilms against the flow of KB medium, and that the pore network provides a 

very complex heterogeneous environment which will generate diversifying selection (see the 

visualisation and modelling of biofilms in porous media in Graf von der Schulenburg et al., 2009; 

Bottero et al., 2013). Here we investigate the rise of Wrinkly Spreaders in drip-fed columns. We 

use quantitative measurements of wrinkleality and fitness (based on assays from Spiers et al., 

2003; Ude et al., 2006; Spiers, 2007; Robertson et al., 2013) to determine whether the Wrinkly 

Spreaders isolated from drip-fed columns are different to those isolated from static microcosms, 

and whether the two environments that appear to be selecting for the same general phenotype are 

in fact selecting for subtly different variations. We demonstrate that they are adaptive mutants with 

significant fitness advantage over a non-biofilm–forming reference strain. 

 

MATERIALS AND METHODS 

Experimental system 

A partially-saturated glass bead column irrigated by drip-fed growth medium was developed to 

investigate the evolution of Pseudomonas fluorescens SBW25 (Rainey & Bailey, 1996) 

populations, the rise of Wrinkly Spreader mutants, and to test the fitness of these in comparison to 

the non-biofilm–forming mutant SM-13 (P. fluorescens SBW25 wssB::mini-Tn5-km; maintained 

with 50 µg mL-1 kanamycin; Spiers et al., 2002). Plastic chromatography columns (15 mm inner 

diameter, 0-20 ml, Bio-Rad, UK) and plugged with glass wool, were filled with 1-2 mm diameter 

glass balls (SIGMA, UK) to produce a 5 cm bead bed (see Figure 1). The top of the columns were 

sealed with foil and then pieced by a P1000 pipette tip positioned 2 cm from the top of the bed. A 
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peristaltic pump was used to drip-feed King’s B (KB) medium (10 g glycerol, 1.5 g K2HO4, 1.5 g 

MgSO4.7H2O and 20 g Proteose peptone No. 3 (Becton, Dickinson and Company, UK) per L) into 

the tip at 1 mL min-1 and a short length of drainage tubing was fixed to the bottom of the column to 

maintain a constant matric potential of 1 kPa and to prevent flooding. Before inoculation, the drain 

was sealed and KB added to submerged the beads. Over-night KB culture (100 µL, wild-type P. 

fluorescens SBW25 or mixtures of different Wrinkly Spreaders and SM-13, see below) was then 

added and the bacteria allowed to attach for 1 h before the drain was opened. Replicate drip-fed 

columns were run at 18 – 20°C for up to 5 days before destructive sampling (columns were 

occasionally abandoned due to contamination or blockage). The beads were transferred to 50 mL 

tubes containing 10 mL sterile water and vortexed vigorously for 1 min. The bacterial suspension 

was then serially-diluted and aliquots spread onto KB plates which were incubated at 28°C for 48 – 

72 h before inspection. 

Evolution of Wrinkly Spreaders 

A total of 24 Wrinkly Spreaders were randomly chosen from plates spread with samples from 

replicate 3 day-old static microcosms (6 mL KB in 30 mL lidded universal glass vials, incubated 

without shaking) (WS-1 to WS-12; one isolated from each of 12 replicate microcosms) and drip-fed 

columns operated for the same period (WS-13 to WS-24; three isolated from each of 4 replicate 

columns and listed in order), all of which were initially inoculated with wild-type P. fluorescens 

SBW25. The WS phenotype was confirmed for all isolates by testing for biofilm–formation in static 

microcosms and inspection of biofilm samples by fluorescent microscopy for cellulose after 

staining with Calcofluor (SIGMA-ALDRICH, UK) after Spiers et al. (2003). Wrinkly Spreader 

isolates were maintained at -80°C in KB containing 30% (v/v) glycerol. 

Fitness of Wrinkly Spreaders on columns 

The fitness of representative Wrinkly Spreaders relative to SM-13 was determined by competitive 

fitness (W) assays on drip-fed columns. A mixture of over-night KB cultures of WS and SM-13 (100 

µL, 1:1 ratio) was used to inoculate replicate columns (n = 8). Initial numbers of attached WS and 

SM-13 bacteria were determined by destructively sampling four columns after washing with 30 mL 

sterile water, whilst the remaining columns were run for 3 days before sampling for final numbers. 

Bacteria were recovered from columns as above, and W was calculated as ln [WSf / WSi] / ln [SM-

13f / SM-13i], where i denotes the initial numbers of attached bacteria and f the final numbers after 

Lenski et al. (1991).  

Fitness of Wrinkly Spreaders in static microcosms 
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Fitness relative to SM-13 was determined by competitive fitness (W) assays in static microcosms 

after Green et al. (2011). A mixture of over-night KB cultures of representative Wrinkly Spreaders 

and SM-13 (100 µL, 1:1 ratio) was used to inoculate replicate microcosms (n = 4). The mixture was 

also used to determine initial numbers after serial dilution and spreading onto KB plates. 

Microcosms were incubated for 3 days at 28°C before destructive sampling by vortexing for 1 min, 

serial dilution and spreading onto KB plates to determine final numbers. W was calculated as for 

the column assays.  

Quantitative assessment of wrinkleality 

Wrinkeality was determined by measuring colony expansion and reversion on KB plates, and 

microcosm growth, biofilm strength and attachment levels in static microcosms. Overnight KB 

cultures were used to dot-inoculate (5 µL, n = 4)  KB plates and colony spreading was determined 

by measuring diameters (mm) after 3 days at 28°C (Spiers et al., 2003). Reversion to a wild-type–

like phenotype was determined using dot-inoculated (n = 4) KB plates incubated for 3 days at 

28°C. Colony material was re-suspended in sterile water before serial dilution and spreading onto 

KB plates which were incubated at 28°C for 48 – 72 h to determine the percentage of Wrinkly 

Spreaders (% WS) (Spiers, 2007). Static microcosm growth, biofilm strength and attachment levels 

were determined using a combined biofilm assay after Robertson et al. (2013). Briefly, replicate 

static microcosms (n = 8) inoculated with 100 µL of overnight KB cultures were incubated for three 

days at 28°C before assay. Biofilm strength was determined by the maximum deformation mass 

(MDM) assay where glass beads (mean weight of 0.0115 g) were added until the biofilm was 

destroyed (Ude et al., 2006). The contents of the microcosm were then transferred into a new tube 

and vortexed vigorously for 1 min before a sample was taken to determine microcosm growth by 

optical density (OD600) measurement. Finally, the original microcosm tube was washed, stained 

with Crystal violet, and the absorbance (A570) of the eluted stain measured to determine 

attachment levels after Spiers et al. (2003).  

Impact of WspR9 on attachment 

Plasmids pVSP61-WspR9 and pVSP61 (control) were used to assess the impact of the expression 

of WspR9 (Goymer et al., 2006) in representative Wrinkly Spreaders. Plasmid DNA was isolated 

using a GeneJet Plasmid Miniprep Kit (Thermo Scientific, UK) and dialysed against deionised 

water for 1 h using 0.025 µm VSWP membrane filters (Millipore, UK). Aliquots of cells (100 µL) 

were prepared from overnight KB cultures, washed twice and then re-suspended in an equal 

volume of ice-cold 10% (v/v) glycerol, 1 mM HEPES solution. Freshly-prepared cells were 

electroporated with 10 µL DNA in ice-cold 1 mm gap-width cuvettes using an Electroporator 2510 

(Eppendorf, UK) set at 200 Ω, 1.75 kV and 25 µF. Cells were out-grown in 1 mL KB for 1 h at 28°C 
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before aliquots were spread on KB plates containing 50 µg mL-1 kanamycin and incubated for 48 h 

at 28°C. Transformant colonies were re-streaked onto fresh selective plates and stored at -80°C as 

for the Wrinkly Spreader isolates. Attachment levels were determined as for the wrinkleality assay 

in static microcosms containing 50 µg mL-1 kanamycin. Repression of attachment was calculated 

as A570 pVSP61 strain / A570 pVSP61-WspR strain. 

Genome sequencing 

Whole genome re-sequencing of WS-14 was undertaken by the Centre for Genomic Research, 

University of Liverpool. Briefly, a library was produced using purified genomic DNA and sequenced 

with other samples (not part of this work) on one flowcell of a MiSeq 2000 with 2 x 150 bp paired-

end sequencing and v2 chemistry. The read library was aligned against the reference genome 

sequence (RefSeq ID: NC_012660.1) with 3,698,789 aligned reads after filtering, resulting in a 

breadth of coverage of 6,178,150 bp (91.9% of the whole genome) with a mean depth of 79.7x, 

and sufficient for variant calling using UnifiedGenotyper, snpEff v3.2a and BREAKDANCER (Chen 

et al., 2009; McKenna et al., 2010; DePristo et al., 2011; Cingolani et al., 2012). 

Statistical analyses and modelling 

Experiments and assays were conducted with replication as stated, and means ± SE provided 

where necessary. Data were examined using JMP Statistical Discovery Software (JMP 7.0, SAS 

Institute Inc., USA) and SPSS Statistics (IBM, USA). T-tests were used to determine whether 

competitive fitness was significantly different to one (W ≠ 1). Wrinkleality and fitness were 

investigated using a nested ANOVA (standard least squares) approach with origin (drip-fed 

columns and static microcosms) and isolate [origin] as factors. Competitive fitness was examined 

using a general linear model (GLM) approach with fitness as a response variable and origin as the 

main factor, and colony expansion and reversion, microcosm growth, biofilm strength and 

attachment levels as covariates. Similarities between Wrinkly Spreaders were also explored by 

principal component analysis (PCA) on correlations of mean wrinkleality and fitness data.  

 

RESULTS AND DISCUSSION 

P. fluorescens SBW25 populations developing on columns undergo adaptive radiation 

Populations established by wild-type P. fluorescens SBW25 on replicate drip-fed columns 

expanded rapidly, from the initial inoculum of ~105 un-attached bacteria to 7.1 ± 0.7 x 1010 cells in 

3 days, and plateauing at 7.5 ± 1.1 x 1010 cells after 5 days (Figure 2). The accumulation of 

biomass in columns could be seen in the clumping of beads by adhering biomass when emptied 
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from the columns (see Figure 1) and in µX-ray CT imaging of biofilms in situ obtained with the help 

of W. Otten (SIMBIOS Centre) (Figure 3). Pore spaces between beads containing biofilms and 

those with only liquid were not differentiated by µX-ray CT as Wrinkly Spreader biofilms are highly 

hydrated with a density almost equivalent to KB (Spiers et al., 2003). However, the images suggest 

that not all spaces have developed biofilms which might reflect a high degree of environmental 

heterogeneity within the drip-fed column. In particular, flow dynamics and shear stress might effect 

initial colonization of the bead surfaces and impose a physical limit to biofilm-formation, and liquid 

depth and distance to the nearest A-L interface might impact on O2 availability and growth rates. 

Note however, that the simple assumption that nutrient and O2 supply in biofilms is restricted to 

diffusion has been challenged; when liquid flow is allowed within biofilms, computer simulations 

show more patchy and realistic distributions of biomass within pore networks (Thullner & Baveye, 

2008). Such patchy distributions have been seen in Shewanella biofilms developing in a glass 

bead column after imaging with high-energy synchrotron-based µX-ray CT (Iltis et al., 2011). 

During the five day incubation, P. fluorescens SBW25 populations developing on drip-fed columns 

also underwent radiation; producing a number of mutants with altered colony characteristics 

including mucoidal and siderophore-deficient mutants, as well as Wrinkly Spreaders which 

represented 35 ± 8 % of the total cell numbers after 3 days (in comparison, wild-type P. 

fluorescens SBW25 populations developing in parallel static microcosms reached 1.6 ± 0.2 x 1013 

cells after 3 days, producing 29 ± 7 % Wrinkly Spreaders) (a total of 24 Wrinkly Spreaders were 

isolated from static columns (WS-1 – WS-12) and columns (WS-13 – WS-24) after 3 days for 

further comparison). The large variation in Wrinkly Spreader numbers in both columns and 

microcosms seen here and elsewhere (e.g. Green et al., 2011) is in part explained by the 

randomness with which WS-inducing mutations occur in growing populations: if mutations occur 

early, the proportion of Wrinkly Spreaders will be high at the end compared with populations in 

which mutations occurred later on (notwithstanding the selective advantage these mutants might 

have that will further increase the proportion of Wrinkly Spreaders). 

Testing of the 12 randomly-chosen column-isolated Wrinkly Spreaders (WS-13 – WS-24) 

confirmed that they had the classical WS phenotype, including a wrinkled colony morphology on 

KB plates, biofilm-formation in static microcosms, and the expression of large amounts of cellulose 

(Rainey & Travisano, 1998; Spiers et al., 2002; Spiers et al., 2003). The adaptive nature of these 

Wrinkly Spreaders was demonstrated by determining the competitive fitness (W) on drip-fed 

columns of four representative isolates (WS-14, WS-17, WS-20 and WS-23) relative to the 

reference strain SM-13 (Spiers et al., 2002). The biofilm-deficient strain SM-13 was used in these 

assays instead of wild-type P. fluorescens SBW25 because the latter forms a weak biofilm in KB 

when Fe3+ levels are high (Koza et al., 2009) which might confound our observations. The 
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competitive fitnesses of the four Wrinkly Spreaders on columns, calculated as the ratio of 

Malthusian parameters after Lenski et al. (1991), ranged from 1.28 – 1.78 (Figure 4), 

demonstrating that each were adaptive mutants with significant advantages over SM-13 (i.e. W > 

1) in the environment from which they were isolated. The range of competitive fitness advantage 

seen here for the column-isolated Wrinkly Spreaders is similar to that reported for the archetypal 

Wrinkly Spreader in static microcosms (W = 1.5 – 2.5; Rainey and Travisano, 1998; Spiers et al., 

2002; Green et al., 2011). 

Column-isolated Wrinkly Spreaders are similar to the archetypal Wrinkly Spreader, but there is 

evidence for quantitative differences in phenotype and underlying genetics 

Preliminary testing showed very low levels of attachment of SM-13, WS-14, WS-17, WS-20 and 

WS-23 cells to the glass beads of drip-fed columns (0.1% SM-13 and 0.09 – 4.8% for the Wrinkly 

Spreaders). Nonetheless, the highest level of attachment shown by a Wrinkly Spreader relative to 

SM-13 seen here (4.8x) is similar to that reported for the archetypal Wrinkly Spreader in static 

microcosms (~3 – 5x relative to wild-type P. fluorescens SBW25; Spiers et al., 2003; Spiers & 

Rainey, 2005), suggesting that these isolates are not unusual. This is further supported by the 

finding that the WS colony phenotype of all four column-isolated Wrinkly Spreaders, plus four static 

microcosm-isolated Wrinkly Spreaders chosen for comparison (WS-1 – WS-4), revert to wild-type–

like colonies when the dominant-negative WspR mutant, WspR9 (G296R) (Goymer et al., 2006), 

was expressed in trans from the plasmid pVSP61-WspR9 (no change in colony morphology was 

observed for the control plasmid pVSP61). Previously, WspR9 has been shown to revert the WS 

phenotype of the archetypal Wrinkly Spreader (Goymer et al., 2006) and acts to inhibit the normal 

functioning of the chromosomal copy of WspR, preventing the normal production of c-di-GMP 

required for the WS phenotype. These observations suggest that the Wrinkly Spreaders 

investigated in this work are likely to have similar WS-activating pathways as has been reported for 

the archetypal Wrinkly Spreader and other Wrinkly Spreader isolates recovered from static 

microcosms (Bantinaki et al., 2007; McDonald  et al., 2009; McDonald et al., 2011) and are the 

result of parallel evolution.  

In order to investigate this further, we have determined a draft sequence of the WS-14 genome 

with a breadth and depth of coverage of 91.9% and 79.7x, respectively. Bioinformatics analysis 

identified a single base mutation in wspF (G823T resulting in a change in amino acids from glycine 

to cysteine) likely to be responsible for the WS phenotype, though this preliminary finding has not 

yet been confirmed by allele replacement experiments (as in Bantinaki et al., 2007). The same 

mutation has been seen previously, and two additional mutations found within two base pairs of 

this position in other Wrinkly Spreaders (WSC, G823T; WSF, C821T; and WSU, 823-824; 
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Bantinaki et al., 2007), suggesting this region of the protein is particularly susceptible to adaptive 

mutation. 

Although the static microcosm and column-isolated Wrinkly Spreaders showed similar qualitative 

responses to WspR9 expression in trans, quantitative measurements of the repression of 

attachment levels by WspR9 determined in static microcosms showed clear differences between 

WS-1 – 4, WS-14, WS-17, WS-20 and WS-23 (Table 1), suggesting that different WS-activating 

mutations might generate quantitatively-different phenotypes (particularly in the case of WS-23 

which shows a low level of WspR9-mediated repression of attachment levels). However, an 

alternative explanation that cannot as yet be excluded is that Wrinkly Spreaders contain secondary 

mutations not directly associated with the WS pathway which might nonetheless affect some 

aspects of the WS phenotype. Previously, only qualitative comments on variations of colony 

morphology have been reported for independently-isolated Wrinkly Spreaders (Rainey & 

Travisano, 1998; Buckling et al., 2000; Kassen et al., 2000; Buckling et al., 2003). 

Different environments select for subtly different wrinklealities 

Quantitative measurements of wrinkleality were used to determine whether Wrinkly Spreaders 

could be differentiated on the basis of the environment in which they originated (i.e. origin). 

Phenotype means ranged from 14.5 – 34.8 mm for colony expansion and 5.5 – 100 % WS for 

colony reversion on KB agar plates, and 0.77 – 1.80 OD600 for microcosm growth, 0.6 – 0.75 g for 

biofilm strength, and 0.17 – 0.27 A570 for attachment levels in static microcosms (Figure 5). The 

phenotype data were analysed by ANOVA with origin and isolate[origin] (i.e. isolate nested within 

origin) as factors, as the origin of each of the Wrinkly Spreaders was presumed likely to have an 

impact on phenotypes. Analyses of the data demonstrated that isolate[origin] had a significant 

effect on each of the phenotypes measured (P < 0.0001), and in all but the colony expansion 

assay, origin also had a significant effect on phenotype (P ≤ 0.0496) (Table 2). These findings 

provide the first quantitative demonstration that the WS phenotype sensu stricto varies between 

Wrinkly Spreader isolates, confirming our earlier impression based on the repression of attachment 

by WspR. Furthermore, the comparison of isolates from drip-fed columns and static microcosms 

suggests that the two environments had selected for Wrinkly Spreaders with differing degrees of 

wrinkleality. 

Wrinkly Spreaders have different fitnesses in static microcosms 

The competitive fitness (W) of each of the Wrinkly Spreaders was also determined in static 

microcosms in comparison with the reference strain SM13 and analysed as for the measurements 

of wrinkleality. Mean fitness ranged from 1.17 – 1.90 and 0.84 – 1.86 for drip-fed column and static 
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microcosm-isolated Wrinkly Spreaders, respectively (Figure 5), and both isolate [origin] and origin 

had a significant effect on fitness (P < 0.0001) (Table 2). This adds further support to the 

suggestion that the two environments had selected for differing Wrinkly Spreaders. Finally, no 

significant correlation was observed between the drip-fed column and static microcosm competitive 

fitnesses for WS-14, WS-17, WS-20 and WS-23 (P =  0.9865). 

Modelling fitness with wrinkleality 

In order to investigate in more detail the relationship between competitive fitness and wrinkleality, a 

GLM approach was used to model fitness as a response variable and origin as the main factor, 

with colony expansion and reversion, microcosm growth, biofilm strength and attachment levels as 

covariates (Table 3A). In this analyses, origin was found to be marginally insignificant (P = 0.058), 

supporting our earlier ANOVA findings that the environment from which the Wrinkly Spreaders had 

been isolated had a significant effect on fitness, colony reversion, microcosm growth, biofilm 

strength and attachment levels. Significant between-subject effects were also found between origin 

x colony reversion (P = 0.044), origin x microcosm growth (P = 0.017) and origin x attachment 

levels (P = 0.007). This suggests that there was an interaction between the environment in which 

Wrinkly Spreaders were selected and some aspects of wrinkleality, i.e. the  drip-fed column and 

static microcosm-isolated Wrinkly Spreaders differed in terms of colony reversion, microcosm 

growth and attachment levels. An examination of parameter estimates showed further differences 

between effects when the column and static microcosm-isolated Wrinkly Spreaders were 

considered separately though the linear correlations were poor (R2 ≤ 0.306) (Table 3B). We 

interpret this to mean that the phenotypes quantified in these assays may not map directly onto the 

Wrinkly Spreader characteristics that are critical for competitive success in static microcosms, i.e. 

competitive fitness in static microcosms is more complex than that described by the wrinkleality 

data. Nonetheless, the environment in which Wrinkly Spreaders originated provides a legacy effect 

on wrinkleality and fitness, as shown by the  PCA clustering of Wrinkly Spreaders by origin (Figure 

6). 

Explaining variability in wrinkleality and fitness 

Although variation in WS phenotype have been noted (Rainey and Travisano, 1998; Buckling et 

al., 2000; Kassen et al., 2000; Buckling et al., 2003), this is the first report quantifying variation 

using a number of different phenotypic assays for wrinkleality as well as competitive fitness. It is 

clear that some phenotypic variation is the result of differential selection in the environments from 

which the Wrinkly Spreaders originated (Table 4). Furthermore, the variation in fitnesses also 

suggests that the Wrinkly Spreaders may not be optimally adapted to their original environment. 

Instead, they might be better adapted to micro-environments defined by physical heterogeneity, 
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nutrient and O2 availability within maturing static microcosm or drip-fed column biofilms, or they 

carry secondary mutations which reduce their over-all fitness. The variation not explained by 

environment might reflect the nature of the WS phenotype–inducing mutation in each Wrinkly 

Spreader and the presence of additional secondary mutations. 

Although the genotypes of the Wrinkly Spreaders examined here are unknown (with the exception 

of WS-14 in which preliminary analysis has identified a wspF mutation), we would predict that 

those having mutations in the chemosensory-like Wsp complex leading to the activation of WspR 

(as in the case of the archetypal Wrinkly Spreader and ~50% of all other independently-isolated 

Wrinkly Spreaders; Bantinaki et al., 2007; McDonald  et al., 2009; McDonald et al., 2011) could be 

differentiated from those with mutations in other diguanylate cyclases or DGC-associated 

pathways (including phosphodiesterases which destroy c-di-GMP), as both sets of mutations might 

be expected to increase c-di-GMP to varying levels which may then differentially affect attachment 

factor and cellulose expression and DGC or c-di-GMP–associated pleiotropies. However, the 

presence of non-WS phenotype inducing mutations, regardless of whether they are compensatory, 

or add additional phenotypic burden, would be expected to increase wrinkleality variation even 

further.  

 

CONCLUDING STATEMENT 

As has been previously shown in static microcosms, populations of wild-type P. fluorescens 

SBW25 undergo adaptive radiation in drip-fed columns and give rise to Wrinkly Spreader mutants. 

Although these are adaptive on columns as well as in static microcosms, column and static 

microcosm-isolated Wrinkly Spreaders can be differentiated on the basis of wrinkleality and fitness, 

suggesting that the two environments select for subtly different mutants. This parallel evolution in 

columns and static microcosms suggests that the adaptive advantage provided by the WS 

phenotype is not restricted to static microcosms in which enhanced attachment levels and the 

over-expression of cellulose allows the colonisation of the A-L interface through the production of a 

robust biofilm. These characteristics also help retain colonising bacteria and developing biofilms in 

the pore network of the glass bead column, providing resistance to fluid flow and shear stress. 

Nonetheless, adaptation in drip-fed columns and static microcosms clearly selects for different 

Wrinkly Spreaders, suggesting that small differences in phenotype are also important in the 

colonisation of these opposite environments. Such heterogeneity within an adaptive phenotype 

also has wider implications for bacterial ecology and medicine, and may help explain the 
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colonisation of heterogeneous environments and the broadening of host ranges, as well as the 

variable efficacy of antibiotic intervention. 
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Table 1.  Wrinkly Spreader attachment levels in static microcosms is repressed by WspR9 

expressed in trans. 
 

 Origin Isolate Relative repression 

 

 Static microcosms WS-1 2.1 ± 0.4  

  WS-2 3.0 ± 0.5  

  WS-3 2.8 ± 0.6  

  WS-4  3.4 ± 0.5  

 

 Drip-fed columns WS-14  1.8 ± 0.4 

  WS-17  2.8 ± 0.6 

  WS-20  1.9 ± 0.4 

  WS-23  0.6 ± 0.1 

 
 
Means and standard errors are shown. Relative repression of attachment was determined by measuring the levels of 
attachment in static microcosms (A570 after Crystal violet staining, n = 8) for Wrinkly Spreaders carrying pVSP61 and 
pVSP61-WspR9 and calculated as A570 (pVSP61) / A570 (pVSP61-WspR9). 
 



Page 19 of 27 

Table 2.  Analysis of Variance testing the effects of isolate and origin on wrinkleality and fitness 
 

 Isolate [Origin] Origin 

 –––––––––––––––––––––––––– ––––––––––––––––––––––––––––––– 

Assay R2 NP DF F P NP DF F P 

 

Attachment levels 0.32 22 22 3.41 <0.0001 1 1 3.91 0.0496 

Biofilm strength 0.53 22 22 6.82 <0.0001 1 1 40.48 <0.0001 

Colony expansion 0.77 22 22 10.56 <0.0001 1 1 0.0 1.0000 

Colony reversion 0.97 22 22 41.61 <0.0001 1 1 1315.41 <0.0001 

Microcosm growth 0.81 22 22 8.17 <0.0001 1 1 540.63 <0.0001 

 

Fitness in static microcosms 0.86 22 22 10.98 <0.0001 1 1 23.32 <0.0001 

 
 
Wrinkleality and competitive fitness in static microcosms data were analysed using an ANOVA (standard least squares) approach with 
isolate (WS-1 – 24) nested within origin (static microcosm and column) and origin as factors. Each assay was analysed independently. 
R2, coefficient of determination; NP, number of parameters; DF, degrees of freedom; F, F statistic; P, P-value. The low R2 values 
suggest that this was not particularly robust for attachment levels and biofilm strength. 
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Table 3.  Test of between-subject effects, parameter estimates and linear correlations. 
 

(A) Source SS DF MS F Sig. 

 

Origin 0.176 1 0.176 4.402 0.058 

Origin x Attachment levels 0.606 2 0.303 7.578 0.007 

Origin x Biofilm strength 0.187 2 0.094 2.338 0.139 

Origin x Colony expansion 0.040 2 0.020 0.503 0.617 

Origin x Colony reversion 0.328 2 0.164 4.097 0.044 

Origin x Microcosm growth 0.470 2 0.235 5.868 0.017 

 
 
 

 (B) Parameters B SE t Sig. Linear R2 

 

Origin (Column) x Attachment levels -2.830 2.460 -1.151 0.272  -0.101 

Origin (Static) x Attachment levels 11.309 3.041 3.719 0.003  0.076 

Origin (Column) x Biofilm strength -1.520 0.730 -2.161 0.052  -0.306 

Origin (Static) x Biofilm strength  0.043 0.642 0.067 0.948  0.019 

Origin (Column) x Colony expansion 0.002 0.016 0.107 0.917  -0.114 

Origin (Static) x Colony expansion -0.032 0.032 -0.997 0.338  0.236 

Origin (Column) x Colony reversion -0.005 0.006 -0.831 0.422  0.325 

Origin (Static) x Colony reversion -0.016 0.006 -2.739 0.018  -0.258 

Origin (Column) x Microcosm growth 1.216 0.727 1.672 0.120 0.008 

Origin (Static) x Microcosm growth 1.629 0.545 2.990 0.011  0.026 

 
 
Competitive fitness was examined using a GLM approach with fitness as a response variable, origin as the main factor, attachment 
levels, biofilm strength, colony expansion, colony reversion and microcosm growth as covariates. R2 = 0.764 (Adjusted R2 = 0.548). 
Abbreviations: B, Unstandardized coefficient; DF, Degrees of freedom; F, F statistic; MS, Mean square; SE, Standard error; SS, Type III 
Sum of squares; t, t statistic; Sig., Significance; R2, Linear correlation (sign indicates slope of the line). a, Set to zero because it is 
redundant. 
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Table 4.  Selective pressures operating in drip-fed columns and static microcosms. 
 

 Selection Drip-fed columns Static microcosms 

 

Proximal / Immediate Physical disturbance Very important as the early Less important as developing 

  colonising cells and developing biofilms are not continuously 

  biofilm needs to resist fluid flow subject to physical disturbance. 

  and shear stress. 

 

Medial / Intermediate O2 availability Less important as the constant Very important as static  

  flow of fluid brings new O2 to microcosms are rapidly divided  

  most regions of the column into low and high–O2 regions  

  pore network. by the metabolic activity of the 

   early colonists. 

 

Distal / Longer term Environmental heterogeneity Very important in mature columns Very important in mature biofilms  

  where cells and regions of biofilms where the low and high–O2  

  may be protected from fluid shear, division occurs within the biofilm, 

  subject to different flow dynamics and biofilm structure adds  

  and O2 availability. additional heterogeneity. 

 

 Competition Very important in mature columns  Very important in mature biofilms 

  where biofilms support  in static microcosms for similar 

  non-biofilm–forming mutants and  reasons. 

  high cell-densities enhance competition  

  for diffusion-limited nutrients and O2. 
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FIGURE LEGENDS 

 

Figure 1 The Wrinkly Spreader adaptive mutant produces a robust biofilm in static 
microcosms and a wrinkled colony morphology. Wrinkly Spreaders arise in 

populations of wild-type P. fluorescens SBW25 radiating in static microcosms, 

producing a biofilm at the air-liquid (A-L) interface of static microcosms (left) and a 

wrinkled colony morphology on agar plates (top middle). Wrinkly Spreaders can also 

be isolated from the glass beads (bottom middle) recovered from drip-fed glass bead 

columns (right). 
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Figure 2 P. fluorescens SBW25 populations developing on columns giving rise to Wrinkly 
Spreader mutants. Wild-type P. fluorescens SBW25 populations develop quickly on 

columns as determined by measurements of viable numbers on KB plates. During this 

period the population radiates, as shown by the detection of significant numbers of 

Wrinkly Spreader mutants by day 3. Replicate columns were destructively sampled 

after 1, 3 and 5 days to determine viable numbers and the percentage of Wrinkly 

Spreaders (% WS). Means and standard errors are shown (n = 4). 
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Figure 3 Biofilm formation in glass bead columns appears not to be uniform throughout the 
pore network. µX-ray CT was used to image biofilm formation in glass bead columns. 

Shown here are two representative images (axial, left; sagittal, left) of the top region of 

a drip-fed column inoculated with wild-type P. fluorescens SBW25 after 5 days in which 

glass balls (white), air spaces (black) and regions containing biofilms and liquid (grey) 

can be identified. The plastic column is not visible in these images. The glass bead bed 

is 15 mm wide.  
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Figure 4 Column-isolated Wrinkly Spreaders are adaptive. Representative Wrinkly Spreaders 

recovered from columns show a competitive fitness (W) advantage on replicate drip-

fed columns compared to the non-biofilm–forming reference strain SM-13. Fitness was 

calculated as the ratio of Malthusian parameters for both strains, using the number of 

attached bacteria at the beginning of the assay and final numbers after three days. 

Means and standard errors are shown (n = 8). For all four Wrinkly Spreaders, W ≠ 1 (t 

test, P < 0.05). 
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Figure 5 Quantitative measurements of wrinkleality and fitness show differences amongst 

Wrinkly Spreaders and between origins. Colony expansion, colony reversion, 

microcosm growth, biofilm strength, attachment levels, and competitive fitness in static 

microcosms were determined for each of the twenty-four Wrinkly Spreaders (left to 

right). Data are shown for each of the two environments from which the Wrinkly 

Spreaders originated (C, drip-fed columns; M, static microcosms). Means are shown 

for individual Wrinkly Spreaders (white circles) (n = 24, some may be obscured). 

Means (black circles) and standard errors are shown for each origin (n = 12). The 

grand means across origins are indicated by the grey horizontal lines. Statistical 

analyses of these data are presented in Tables 2 and 3. 
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Figure 6 The origin of Wrinkly Spreaders can be distinguished by wrinkleality and fitnesses. 
A principal components analysis of the mean wrinkleality and fitness data 

demonstrates that individual Wrinkly Spreaders group according to origin (white circles, 

column isolates; grey circles, microcosm isolates). Six components (mean colony 

expansion, colony reversion, microcosm growth, biofilm strength, attachment levels, 

and competitive fitness in static microcosms) were used in this analysis. The score plot 

shown here uses principal components 1 and 2. The associated Eigenvalues are 

2.3172 and 1.2173, respectively, and account for 58% of the total variation. The arcs 

delineating the two origins are descriptive only. 
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