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Abstract: 

Yeast flocculation is the reversible aggregation of yeast cells promoted by the interaction 

between lectin-like protein receptors with mannose side chains on adjacent cell walls. 

Flocculation is governed by several physiological factors, including the type of nutrient sugar 

available to yeast. We grew four industrial strains of S.cerevisiae, representing applications in 

the brewing, winemaking and bioethanol sectors, to late stationary phase and quantified the 

cellular content of mannans, glucans and lectin-like proteins on yeast cell surfaces. Results 

indicated that brewing and champagne strains showed moderate to high flocculation ability 

when grown with glucose, fructose, maltose or galactose, whereas winemaking and fuel alcohol 

strains only showed moderate flocculation when grown on maltose and galactose. All yeast 

strains studied were weakly flocculent when grown on mannose. With regard to lectin-like 

receptors, their number played a more important role in governing yeast flocculation than the 

mannan and glucan contents in yeast cell walls. We conclude that all the industrial strains of S. 

cerevisiae belonged to New-Flo type on the basis of their flocculation behavior observed when 

cultured on different sugars. Quantification of yeast cell wall polysaccharides and receptor sites 

indicate that mannan and glucan levels remain almost constant, irrespective of the strain under 

investigation. The main difference in flocculation characteristics in industrial yeast strains 

appears due to variations in concentrations of lectin-like cell surface receptors.  



Our findings may benefit brewers, winemakers and other yeast-based technologies in design of 

media to prevent premature flocculation during fermentation.  
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Introduction  

Yeast flocculation is a type of asexual aggregation involving Ca2+dependent interaction 

between lectins (also known as flocculins) and cell wall polysaccharides, notably mannans and 

glucans (1,2). Flocculins are lectins, i.e. proteins that bind to cell surface carbohydrates. Each 

yeast lectin is found to be specific for one or two monosaccharide haptens (eg. for mannose or 

glucose) and binds to haptenic oligosaccharides that contain these sugars in several different 

glycoside linkages (3,4). Lectins are sugar-binding proteins of non-immune origin, with no 

catalytic activity, which play a role in cell recognition (5). In yeast, these lectins are products 

of a family of genes known as Flo genes. Saccharomyces cerevisiae has five major flocculin – 

encoding genes (FLO1, FLO5, FLO8, FLO9, FLO10 and FLO11). The genes FLO1, FLO5, 

FLO9 and FLO10 encrypt proteins related to cell-cell adhesion, while FLO11 encodes a protein 

responsible for cellular adhesion to substrates, diploid pseudohyphae formation and haploid 

invasive growth (6,7,8).  

The Flo1p, Flo5p and Flo11p, have been identified as “Flo1-type flocculins” whose activity is 

inhibited by mannose and not by glucose (9). “New-Flo type flocculins” on the other hand, are 

those strains whose activity is inhibited by both mannose and glucose as they have a variant of 

flocculin, Lg-Flo1. Studies by Liu et al. (2007) indicate that presence of truncated forms of 

FLO1 (FLO1NS, FLO1NL, FLO1S and FLO1M) could also lead to phenotype conversion from 



Flo1 to New-Flo type. Domain swap experiments have shown that sugar binding domains of 

Flo1p and Lg-Flo1 are externally exposed N-terminal domains (10).  

Studies have shown that the N terminal part of a three-domain lectin protein is responsible for 

carbohydrate binding (11). The N terminal of the protein shows high affinity binding towards 

carbohydrate moieties, specifically to D-mannose, α-methyl-D-mannoside, various 

dimannoses, and mannans.  

Three flocculation phenotypes are known in S. cerevisiae:  

(i) Flo1 phenotype strains that are inhibited by mannose and derivatives  

(ii) New-Flo type strains, which are inhibited by mannose, glucose, maltose and 

sucrose, but not by galactose, and  

(iii) MI (mannose insensitive) strains, in which flocculation is insensitive to mannose 

(12). 

In addition to genetic determination, certain physical factors such as cell wall hydrophobicity, 

cell surface charge, cell surface topography, and cell age all contribute to the ability of yeast 

cells to flocculate (13,14,15). Nevertheless, all factors that determine yeast cell flocculation, 

especially in industrial strains, are unknown. For example, in brewing fermentation processes, 

repeated pitching of yeast leads to a loss in their flocculation ability, and this is difficult to 

predict (16).  

We hypothesized that either a direct determination of yeast  cellular mannose residues or cell 

wall associated lectins would provide more dynamic information regarding flocculation 

behaviour of industrial strains of S. cerevisiae. In addition, we  discuss the roles that  yeast 

sugar metabolic pathways, and  sugar depletion pathways, play in  expression of FLO-specific 

lectins on the cell surface. We selected four S. cerevisiae yeast strains used in different 



fermentation applications to investigate if their flocculation behaviour when grown in different 

sugars was linked to lectin receptor density and the contents of cell wall glucans and mannans.  

Materials and Methods  

Yeast strains  

In this study four industrial strains of S. cerevisiae were used. The strains were provided 

courtesy of Lallemand Inc. Montreal, Canada. The strains (prefixed with Lallemand Yeast 

Culture Collection (LYCC) designation) were: a lager brewing yeast strain, LYCCI, a 

champagne strain, LYCCII, a wine strain, LYCCIII, and a fuel alcohol strain, LYCCIV.  

Growth media and culture conditions  

Yeasts were routinely maintained at 4oC on YEPG agar slopes containing: 1% (w/v) yeast 

extract, 2% (w/v) peptone, 2% (w/v) glucose and 2% (w/v) agar.  

Pre-cultures or seed cultures were prepared in 50 mL of YEPG in 100-mL Erlenmeyer flasks. 

Cells were incubated at 25oC on an orbital shaker (Infors HT Ecotron, Switzerland) at 170 rpm 

for 48 hours. Culture medium was prepared by inoculating YEPG at a starting cell density of 

5×106cells/mL. The glucose in YEPG media was replaced with mannose, fructose, maltose, or 

galactose to investigate effects of sugar source on flocculation ability, glucan/mannan 

distribution on the cell wall and on the receptor density. 

 

 

Flocculation assay  



Flocculation abilities of the yeast strains were monitored using a method adapted from Bony et 

al. (1997) (17). At defined periods of growth, yeast cells were harvested by centrifugation 

(4500×g for 5 min), washed and re-suspended in de-flocculation buffer (50 mM sodium acetate, 

5 mM CaCl2, pH 4.5) while the culture OD600 was adjusted at 2. The cells suspended in 

flocculation buffer containing calcium chloride (CaCl2) were placed in test tubes of 15 mm 

diameter and 50 mm height was adjusted to give a final OD600 reading of 2. The tubes were 

sealed and kept on the shaking incubator at 140 rpm for 30 min. After agitation, 5 mL of the 

cell suspension was transferred to a new test tube and allowed to stand undisturbed for 6 min 

in a vertical position, after which, samples (1000 µL) were taken from just below the meniscus 

and the OD600 determined spectrophotometrically (Thermo Spectronic Genesys 10UV/10 UV 

Scanning Spectrophotometer 10-S). The percentage of flocculated cells was calculated by 

subtracting the fraction of cells remaining in suspension from the total cell count.  

Mannan and glucan staining  

We made use of the fluorescent lectins Concanavalin A- Alexa Fluor®-350 (Con A) and Pisum-

sativum-agglutinate-fluorescein isothiocyanate (PSA-FITC) to determine contents of mannans 

and glucans, respectively, in yeast cells using a modification of the method of Heine et al. 

(2009).Yeast cells were harvested at late stationary phase of the growth curve by centrifugation 

at 5000 rpm for 5 min at 20oC.The pellet was then washed with PBS buffer (final concentration 

of 10 mM phosphate ions, 137 mM sodium chloride, and 2.7 mM potassium chloride) and then 

the cells were counted using a haemocytometer to a desired concentration of 3.15 106 

cells/mL. Final concentration of the cells (1mL) was prepared in PBS and then 5 µL Pisum 

sativum-agglutinate FITC Conjugate was added and incubated in the dark for 25 min. The cells 

were centrifuged and the suspension was then transferred to 96 well plate and the fluorescence 

was read using a Modulus Microplate reader (Turners Biosystem). A small amount of sample 



was placed on a clean slide and fluorescence observed using an inverted fluorescence 

microscope (Leica DMIRE2).The cells were then incubated with 25 µL Concanavalin A Alexa 

Fluor 350 nm for 10 min and then centrifuged and transferred to 96 well plate. The images 

were captured using a charged coupled EMCCD camera and analysed using Andor SOLIS for 

imaging X- 3043 software to visualise the distribution of the mannans and glucans on yeast cell 

walls.  

Microscopy  

The stained cells were observed using an inverted fluorescence microscope (Leica DM IRE2, 

Germany) and image analysis (camera: Charged coupled EMCCD iXon3, Andor, UK; 

software: Andor SOLIS for imaging X-3043). The fluorescence filters used were: Zeiss filter 

set 02 for Alexa Fluor®- 350 fluorescence (excitation G 365, BS 395, emission LP 420), Zeiss 

filter set 09 for FITC fluorescence (excitation BP 450-490, BS 510, emission LP 515).  

Lectin-like receptor quantification  

In general, the density of lectin like receptors present on the yeast cell surface was quantified 

using Avidin-FITC probe (Sigma) in the following modification of the method of Patelakis et 

al. (1998) (18). The probe and FITC conjugates were prepared at concentrations of 1500, 900, 

540, 324, 192µg/mL in cCalcium-ethanol sodium acetate buffer (pH 4.0). 20 µL of the probe- 

FITC conjugates was added to 2980 µL and thoroughly mixed such that the final concentration 

of solution ranged from 10mg/mL down to 0.66mg/mL. The solution was then vortexed for 15 

sec and measured using an excitation wavelength of 494±5 nm, and fluorescence read during 

1 sec at 520±5 nm, using a Modulus Microplate reader (Turners Biosystem).  

However, In order to quantify the presence of mannose receptors sites in specific (lectins) on 

the yeast cell surface, 137 the cells were harvested between 12-24 hours. The method of 



analysis is based on spectrofluormetric measurements that generate the amount of free and 

bound probe. This concentration of free and bound probe on the yeast cell surface provides an 

estimate of the mannose binding receptors.  

Briefly, the yeast cells were washed twice with distilled water and counted using a coulter 

counter (Beckman Coulter, UK). 2980 µL of 106 cells/mL suspension of yeast cells in 

cCalcium-ethanol buffer (pH 4) was prepared to which 20 µL of each of the different 

concentrations of Avidin-FITC probe was added, vortexed for 15 sec and fluorescence intensity 

was noted on a using a Modulus Microplate reader (Turners Biosystem). This was repeated for 

all the selected probe concentrations of (1500, 900,540,324,192 µg/mL). These readings gave 

the probe bound to the receptor reading (A). The solution was then centrifuged for 6 min at 

4,400 rpm and the supernatant was then slowly removed and the fluorescence was measured 

again using the Modulus Microplate reader (Reading B). For the blank determination 106 yeast 

cells/ mL were put into calcium-ethanol buffer and the volume was made up to 3 mL. In this 

case no probe was added. The solution was vortexed for 10 sec and fluorescence reading was 

taken in a Modulus Microplate reader (Reading C).The suspension was again centrifuged at 

4,400 rpm for 6 mins and then the readings were taken. (Reading D). 

After measuring the yeast and buffer background fluorescence (free probe fluorescence 

intensity (B-D) and the bound probe fluorescence intensity (A-[C+(B-D)]), the actual amount 

of free and bound probe to the receptor was calculated in µg/mL. Further, free and bound probe 

concentrations were then analyzed according to the following Langmuir equation (19) in order 

to obtain the receptor density:  

P/x = k/x’ + (1/x’) P  

Where, P stands for the concentration of free probe, x is the concentration of bound probe, k is 

the proportionality constant and x’ is the number of binding sites per molecule (number of 



lectin sites). After deriving the equation by P, plotting 1/x versus 1/P will give a y-intercept of 

1/x’.  

Statistical Analysis  

Statistical analysis was performed using IBM SPSS software (version 22).One way ANOVA 

analysis was performed to ascertain the change in parameters in respect to yeast strains and 

type of sugar in the growth medium. Significance was noted using Bonferroni and Tukey’s 

estimation. Correlation analysis was performed taking into consideration the Pearson’s 

coefficient at two tailed level.  

Results  

The effects of carbohydrates on flocculation of industrial strains of S. cerevisiae are shown in 

Table 1. Results from flocculation assays are expressed as means (± standard deviation) of two 

independent experiments. In order to have a better understanding of the flocculation behaviour 

of industrial strains of S. cerevisiae, we studied the distribution patterns and semi- quantitative 

measurement of mannan and glucan as well as the presence of lectin-like receptors on the yeast 

cell walls (See Table 1.)  

Effect of sugars on flocculation  

Fig (1A) shows the variation in flocculation ability when the strains were grown in media 

containing different sugars (i.e. maltose, glucose, mannose, galactose and fructose). The 

interactions mediated by Flo glycoproteins can be divided into two categories namely lectin- 

like (cell-to-cell adhesion) and sugar-insensitive (adhesion to abiotic surfaces) adhesion 

phenotypes (4). Furthermore, cell-cell adhesion phonotypes are divided into three sub types on 

the basis of their sensitivity towards sugars (12, 20). In our study, choice of yeast strain and 

sugar were observed to have significant effects on flocculation ability (p≤0.001). In terms of 



strains, it was observed that a winemaking strain (LYCCIII), exhibited a range of flocculation 

from 2-24%. The strain almost lost flocculation when cultured on mannose and maltose in 

contrast to when the yeast cells were cultured in galactose, fructose and glucose where it 

showed high to moderate flocculation. A fuel alcohol strain, LYCCIV, exhibited consistently 

weak flocculation behaviour which ranged from 10-17%, when cultured on the five selected 

sugars. Unlike all the other strains, there was no effect on the flocculation when cultured on 

mannose. For a champagne yeast strain (LYCCII), this exhibited a range of 15- 29% 

flocculation ability. LYCCII yeast cells flocculated more when cultured on galactose and 

maltose, as the cells contained a high mannan content as well as mannose binding sites on the 

cell wall. Lastly, the brewing strain, LYCCI, flocculated highly on fructose (53%) and glucose 

(43%) and lost their flocculation ability when cultured on mannose (10%). Maltose and 

galactose had a moderate effect on the flocculation ability of the brewing strain.  

Effect of sugars on mannan and glucan content in the cell wall  

Fluorometric analysis of the selected industrial yeast strains was performed by applying 

fluorescent lectins ConA-Alexa Fluor and PSA-FITC to measure the levels of mannans and 

glucans, respectively, on the cell wall (Fig 1 (B) (C)). The strains were grown in media 

containing five different sugars (glucose, mannose, maltose, galactose or fructose) and 

harvested at the early stationary growth phase.  

The protocol followed was modified from Heine et al. (2009) and showed good fluorescence 

when 5 µg PSA-FITC per 3.15 ×106 cells/mL was used for 25 min followed by incubation with 

25 µg ConA-Alexa Fluor for 10 min. PSA-FITC application was done first in order to  

mask the effect of excess cell wall-associated glucan (Fig 2). From the spectrofluormetric 

findings, it was observed that the type of sugar nutrient employed governed the extent of 

distribution of glucans on the yeast cell wall (p≤0.001), while no such effect was observed for 



mannans (p≥0.05). The overall distribution of mannan remained same for all the strains when 

grown in different sugars. Interestingly, glucose and galactose had similar effects on cell wall 

glucan distribution as compared to maltose, mannose and fructose. The overall distribution 

pattern of mannan and glucan helped in understanding the flocculation pattern of these strains 

grown in different sugars as these are the binding sites for the lectin-like protein receptors (2).  

Effect of sugars on the density of lectin like receptors  

In an attempt to quantify bound fluorescence due to lectin sites on yeast cell walls, an 

investigation of the amount of cell wall mannan and glucan of the four yeast strains was 

undertaken. The group followed fluorescent probe intensity was unaffected by binding to the 

yeast cell wall and the intensity of bound probe to the yeast cell wall was similarly unaffected 

by the length of the binding period, or by the number of receptors occupied.  

Fluorescence due to binding of the avidin-FITC complex to lectin sites provided an indication 

of the number of lectin sites available on the cell surface for the attachment to the neighboring 

mannan residues. The bound and free probe concentrations were analysed according to the 

Langmuir relationship (19) to obtain the receptor density, and data revealed significant 

relationship (p≤0.001) in the four strains when grown on different sugars (Fig 1D). This implies 

that the number of lectin-like receptors on the cell surface differs depending on the type of 

sugar available in the growth medium. In general, the brewing yeast strain LYCCI exhibited 

the maximum number of receptors on the cell surface, except when grown on galactose, 

followed by the champagne strain LYCII. Sugars in the medium may affect the transcription 

of FLO genes (4). The protein products for these genes (flocculins) could either be Flo1 or 

New-Flo type. Flo1 type strains have flocculins that are only mannose sensitive while New-Flo 

has a broader sugar range for sensitivity. Thus, despite having high receptor numbers on the 

yeasts when cultured on mannose sugars, they exhibited weak flocculation ability.  



Correlation between the cell wall mannan-glucan content, receptor binding site and 

flocculation ability 

Yeast flocculation is generally considered to result from interactions between protein 

components on one cell surface and carbohydrate components on an adjacent cell surface. Thus, 

it is important to ascertain the effect of sugars on the cell wall polysaccharides as well as the 

protein or the lectin sites. Figure 3 shows the relationship amongst the mannan-glucan content 

(RFU), flocculation ability and the receptor density in yeast cells cultured with different sugars. 

When the data was analysed on the basis of sugars, taking each independent parameter namely 

(mannan content, glucan content and receptor density) vs. % flocculation ability, it was 

observed that sugars like maltose, fructose and galactose gave a negative correlation when 

plotted for mannan content (r2 = -0.013,-0.066,-0.914, respectively) while glucose and mannan 

gave a positive correlation (r2= 0.785,0.663, respectively). Significantly less important appears 

to be the role of cell wall glucans in yeast flocculation. We quantified the amount of glucans in 

cells cultured on different sugars and their role in yeast flocculation.  

It was observed that glucan content vs. flocculation ability gave negative correlation for all the 

sugars except for maltose, which gave a positive correlation (r2= 0.802). Finally, when the 

receptor density was plotted against flocculation ability, we observed a positive correlation (r2= 

0.872, 0.613, 0.938, 0.708, 0.748) for glucose, mannose, maltose, fructose and galactose, 

respectively.  

 

Discussion  

We examined the effect of sugars commonly found in industrial fermentation media employed 

for brewing, winemaking, fuel alcohol production processes (mainly glucose, fructose, maltose 



or sucrose), as well as the other carbohydrates like galactose and mannose, on yeast 

flocculation. Flocculation was determined in washed cells, in standard conditions making it 

possible to correlate flocculation with the presence of lectin-like cell wall receptors.  

As we know, the generally accepted mechanism of yeast flocculation is lectin mediated 

adhesion of adjacent yeast cells to form large cell clusters. Lectins (flocculins) are required for 

flocculation to occur, as their presence on one cell binds to mannose residues in the cell wall 

of adjacent cells and so link the yeast cells into clusters that contain thousands of cells. 

(20,21,22,23).  

Maximum flocculation ability was observed for the strains when they were in the stationary 

phase of growth curve due to sugar depletion. We found that all the industrial yeast strains 

under the study belonged to the New-Flo type as flocculation behaviour in these strains was 

inhibited by mannose, glucose, maltose and fructose. This suggests that cell surface proteins 

were able to bind to a wider range of sugars, except galactose. Homologues of the FLO1 gene 

known as Lg-FLO1, FLONL and FLONS are believed to encode for flocculin proteins 

conferring the New-Flo phenotype (10,24).  

Quantification of cell wall polysaccharides and receptor sites indicated that mannan and glucan 

levels remained relatively constant on cell surfaces of all the strains studied (Table 1.). The 

main difference in flocculation ability was due to varying lectin receptor concentrations; their 

higher numbers on the cell surface per cell, then the higher the propensity of cells to  

flocculate. Our results indicate a higher number of lectin like receptors compared to the work 

of Patelakis et al.(18), which  focused more on the role of fermentation time on the density of 

lectin like receptors in a  laboratory strain of S. cerevisiae. Our study was based on industrial 

strains of S. cerevisiae, that revealed  approximately 100 fold more number of lectin like 

receptors on the yeast cell surface. 



Strain-sensitivity to different sugars is the basis of the distinction of Flo1 and New-Flo 

phenotypes. Furthermore, fermentable sugars, including those found in brewer’s wort, induce 

the loss of flocculation in the early lag and logarithmic phases of growth (25) or in starved cells 

(26,27) most likely affecting the expression of FLO genes. Although in the current study we 

did not isolate and amplify FLO genes, other studies have reported such findings in S. 

cerevisiae with various genes including FLO1, FLO5 and FLO9 (6,7,8,10). These studies, and 

the work reported here,  highlight the diversity and strain dependency of flocculation gene 

expression in S. cerevisiae.  

Reversible inhibition of flocculation by specific sugars such as mannose, maltose, glucose or 

fructose, which leads to dispersal of the flocs and eventually leading to loss of flocculation 

ability, by competitive inhibition with sugars of the yeast cell wall for lectin like receptors, has 

been described previously (2,20,28). Emergence of these receptors may be directly related to 

the expression levels of FLO genes. Sugars like glucose, fructose and galactose are responsible 

for expression of FLO genes though the Ras/ cAMP / PKA pathway (4,29). In this pathway, 

activation of PKA, TpK2 kinases leads to inactivation of Sfl1 (a suppressor of flocculation) 

and activates the positive regulation gene FLO8 (30,31). The FLO8 gene product acts as a 

transcriptional factor for other FLO genes mainly, FLO1 gene that is responsible for the 

formation of the lectin like receptors on the yeast cell surface (32,33). In addition to the 

interconnection of the sugar metabolic pathways with the expression of flocculation genes, 

Amory et al. (1988) have identified other physiological factors in the medium that influence 

the emergence of receptors on the yeast cell surface (eg. pH, temperature, cell age etc.). 

Activation of the FLO genes is not only governed by presence of glucose but is also triggered 

by carbohydrate depletion, which may explain the role of the glucose repression pathway, 

which represses FLO11 as long as glucose is present in the medium. Thus, these pathways 

cannot be considered as single, independent entities, but rather as integrated systems working 



together to control cellular adhesion (30,34,35). Therefore, when cultured on glucose, fructose, 

galactose and maltose (to some extent) cells exhibit sufficient receptors on their cell surfaces, 

which in turn govern the extent of flocculation (10,36). 

Although the industrial strains of all S. cerevisiae strains selected for this investigation appear 

to belong to the NewFlo type, it remains to be seen if other strains employed in brewing, 

winemaking and bioethanol fermentations exhibit similar NewFlo flocculation phenotypes. 

Our findings may benefit brewers, winemakers and other yeast-based technologies in design of 

fermentation media comprising sugars that would not induce premature flocculation during the 

early stages fermentation. 
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