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Abstract 37 

The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt 38 
favourable cell signalling responses to exercise, suggesting that redox signalling contributes 39 
to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with 40 
redox signalling by attenuating exercise-induced reactive oxygen species (ROS) and reactive 41 
nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of 42 
ascorbate and α-tocopherol and characterisation of the type and source of the ROS/RNS 43 
produced during exercise theoretically enables identification of the redox-dependent 44 
mechanism responsible for the blunting of favourable cell signalling responses to exercise. 45 
This review aimed to apply this reasoning to determine how the aforementioned antioxidants 46 
might attenuate exercise-induced ROS/RNS production. The principal outcomes of this 47 
analysis are (1) neither antioxidant is likely to attenuate nitric oxide signalling either directly 48 
(reaction with nitric oxide) or indirectly (reaction with derivatives, e.g. peroxynitrite) (2) 49 
neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox 50 
signalling (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced 51 
superoxide generation and (4) alternate mechanisms, namely pro-oxidant side reactions 52 
and/or reduction of bioactive oxidised macromolecule adducts, are unlikely to interfere with 53 
exercise-induced redox signalling. Out of all the possibilities considered, ascorbate mediated 54 
suppression of superoxide generation with attendant implications for hydrogen peroxide 55 
signalling is arguably the most cogent explanation for blunting of favourable cell signalling 56 
responses to exercise. However, this mechanism is dependent on ascorbate accumulating at 57 
sites rich in NADPH oxidases, principal contributors to contraction mediated superoxide 58 
generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major 59 
conclusions of this review are: (1) direct evidence for interference of ascorbate and α-60 
tocopherol with exercise-induced ROS/RNS production is lacking (2) theoretical analysis 61 
reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox 62 
signalling and (3) it is worth considering alternate redox-independent mechanisms.  63 
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Phosphatase and Tensin Homolog; SHP-2: Src Homology Protein-2; SOD: Superoxide 75 
Dismutase; Src:  STAT3: Signal Transducer and Activator of Transcription 3 76 
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Introduction 78 

In the last year, many studies have observed that exogenous antioxidant supplementation, 79 
principally ascorbate and α-tocopherol co-supplementation, blunts favourable molecular 80 
responses to exercise training [1-3]. These findings confirm some [4-7] but not others [8-14] 81 
in this area [reviewed in 15-18]. Irrespective of the outcome, all of the aforementioned 82 
studies share a common mechanistic rationale that depends on the antioxidant action of 83 
ascorbate and α-tocopherol (see figure 1A). This redox dependent mechanism is often 84 
assumed, yet seldom confirmed by any biochemical measurements. That is, evidence to 85 
support the postulate that redox-dependent mechanisms are responsible for the observed 86 
results is rarely presented. A redox-dependent mechanism of action principally rests on the 87 
assumption that ascorbate and α-tocopherol react appreciably with reactive oxygen species 88 
(ROS) and reactive nitrogen species (RNS) implicated in redox signalling (see box 1). In line 89 
with a recent commentary [19] the terms ROS/RNS are not used hereafter for two reasons (1) 90 
they convey limited mechanistic information and (2) the two electron oxidants that 91 
principally mediate redox signalling (e.g. peroxynitrite) are known. The well-documented in 92 
vitro antioxidant actions of ascorbate and α-tocopherol and characterisation of the sources of 93 
superoxide and nitric oxide (NO) generation, precursors of hydrogen peroxide (H2O2) and 94 
peroxynitrite, during exercise in skeletal muscle enables the veracity of this assumption to be 95 
explored (see figure 1B). Possible redox-dependent mechanisms for these results are 96 
appraised herein. 97 

Redox signalling 98 

Cell signalling enables cells to integrate information provided by internal and external cues 99 
into an orchestrated biological response [20-22]. A fundamental aspect of cell signalling is 100 
the propagation, via regulated biochemical reactions, of specific and reversible 101 
compartmentalised signals [20-22]. There is an increasing realisation and indeed evidence 102 
base supporting the notion that redox-dependent mechanisms contribute to cell signalling 103 
processes [23-29]. The basic premise of redox signalling is that two electron oxidants, 104 
principally H2O2, regulate specific and reversible post-translational modifications to thiol 105 
(SH-) moieties on target proteins implicated in cell signalling [27]. Salient modifications 106 
include inter alia: disulphide formation, sulfenic acid formation, S-nitrosylation and S-107 
glutathionylation [23-31]. Of course, redox signalling is not limited to thiol modification with 108 
other processes contributing, notably oxidation of other amino acids (e.g. methionine) and 109 
oxidised macromolecule adducts (e.g. 4-hydroxynonenal [25, 32-33]). Whilst the biological 110 
importance of redox signalling is clear, the underpinning mechanisms are unresolved [23-25, 111 
34]. This is best evidenced by the chemical constraints that could limit the reaction of H2O2 112 
with thiol moieties on target proteins (see below [24-25]). It is, therefore, clear that redox 113 
signalling is important but that elucidating the underpinning mechanisms requires further 114 
research. 115 

 116 

 117 



Exogenous antioxidants, exercise and redox signalling  118 

One conceptual model of exercise adaptation posits that ‘exercise signals’ (e.g. altered Ca2+ 119 
flux and energy status) during acute exercise bouts activate signalling pathways, that with 120 
repeated activation (multiple exercise bouts), yield exercise adaptations [35-37]. From a 121 
redox perspective, increased exercise-induced superoxide, NO, peroxynitrite and H2O2 122 
generation is an ‘exercise signal’ implicated in the regulation of beneficial cyto-protective 123 
and mitochondrial exercise adaptations [38-41]. Cyto-protective adaptations confer increased 124 
resistance to oxidative stress owing to increased glutathione content, antioxidant enzyme 125 
activity and content coupled to up-regulation of cyto-protective proteins, notably heat shock 126 
proteins [42-45]. Mitochondrial adaptations are principally manifested by increased 127 
mitochondrial content and consequent metabolic adaptations post-training [46-49]. At the 128 
molecular level, increased contraction-mediated superoxide, NO, peroxynitrite and H2O2 129 
generation is implicated in the regulation of several signalling proteins, including kinases 130 
(e.g. p38 MAPK [50]), transcriptional co-activators (e.g. PGC-1α [51]) and transcription 131 
factors (e.g. NF-κB, HSF-1, AP-1 and Nrf2 [38-41; 52]). Akin to the parent discipline, 132 
knowledge of mechanisms underpinning exercise-induced redox signalling is fragmentary. 133 
That is, how contraction-mediated superoxide, NO, peroxynitrite and H2O2 generation 134 
impacts the post-translational state of redox-sensitive signalling proteins remains to be fully 135 
resolved and demonstrated in an exercise setting. Exercise-induced redox signalling could 136 
involve free radical (e.g. superoxide) and non-radical mediated (e.g. peroxynitrite) 137 
mechanisms [26-28]. The aforementioned mechanisms will next be considered in turn but it 138 
is emphasised that the impact of ascorbate and α-tocopherol cannot be fully appraised until 139 
the mechanistic nature of exercise-induced redox signalling is better understood. The need to 140 
advance knowledge of exercise-induced redox signalling constitutes a major theme of this 141 
review.  142 

Direct signalling 143 

Skeletal muscle contractions are associated with a transient increase in superoxide and NO 144 
generation, secondary to NADPH oxidase and nitric oxide synthease (NOS) isoform 145 
activation, respectively [53-56]. It is, therefore, necessary to consider whether (1) direct 146 
redox signalling by superoxide and NO is possible (2) ascorbate and α-tocopherol react 147 
appreciably with either radical (3) this reaction out-competes other reactions and (4) any 148 
reaction interferes with compartmentalised redox signalling. 149 

Superoxide 150 

There are several sources of superoxide in skeletal muscle, including: mitochondrial electron 151 
transport chain complex I and III, NADPH oxidases, dual oxidases, xanthine oxidase, 152 
uncoupled NOS isoforms, phospholipases and lipoxygenases [57-59]. Recent data suggest 153 
that NADPH oxidases are the principal contributors to contraction mediated superoxide 154 
generation [60-61]. NADPH oxidases are expressed at several locations in skeletal muscle, 155 
including: mitochondria, sarcolemma, transverse tubules and sarcoplasmic reticulum [60-64]. 156 
From a signalling perspective, superoxide does not react appreciably with thiols (k ~ 103 M-1 157 



s-1 [65]) and any reaction would have to outcompete the kinetically favourable (k ~ 109 M-1 s-158 
1) reaction of superoxide with superoxide dismutase (SOD) isoforms [66]. Hence, signalling 159 
via this mechanism is unlikely in vivo [23, 66]. It should be noted that the reaction of 160 
superoxide with thiols is complex and involves intermediate thiyl radicals that ultimately 161 
result in the regeneration of superoxide [29, 65]. It is also of note that superoxide is not that 162 
reactive with most biomolecules [66-67]. Indeed, superoxide is more of a reductant than an 163 
oxidant unless protonated [66-67]. Nevertheless, we do not exclude the possibility that 164 
elevated superoxide concentrations allied to target co-localisation might overcome this 165 
kinetic constraint [28, 68]. Whilst the reaction with thiols might be unlikely, superoxide can 166 
react with protein metal centres directly [69]. One example relevant to exercise is the 167 
involvement of superoxide in the regulation of HIF-α, a protein that regulates exercise-168 
induced angiogenesis [70-71]. Superoxide can react with the metal centre of propyl 169 
hydroxylase, an inhibitor of HIF-α, converting Fe2+ to Fe3+ and inactivating the enzyme [72]. 170 
Direct signalling by superoxide is, therefore, possible but comes with the caveat that this 171 
mechanism is not well characterised and thiol oxidation seems unlikely.  172 

Although, under-characterised and indeed unlikely in some contexts (e.g. thiol oxidation) 173 
superoxide may contribute to exercise-induced redox signalling. Providing a potential 174 
mechanism for ascorbate and α-tocopherol to blunt exercise-induced redox signalling 175 
provided either antioxidant reacts appreciably with superoxide. α-tocopherol does not react 176 
appreciably with superoxide, partly owing to its poor solubility in aqueous solution and the 177 
negative charge of superoxide that restricts diffusion across biological membranes [69, 73]. It 178 
follows that α-tocopherol is extremely unlikely to interfere with exercise-induced redox 179 
signalling in this fashion. A redox-independent mechanism is possible via inhibition of 5-180 
lipoxygenase (5-LOX) activity [74-75] but this has not been demonstrated in skeletal muscle 181 
cell lines.  182 

Ascorbate can directly react with superoxide (k ~ 105 M-1 s-1 [76]). From a kinetic 183 
perspective, therefore, ascorbate mediated scavenging of superoxide with attendant 184 
implications for redox signalling is possible. Human skeletal muscle is highly responsive to 185 
ascorbate supplementation [77-78]. Indeed, levels can be increased by ~3.5 fold post-186 
supplementation [77]. Elevated ascorbate concentrations post-supplementation increase the 187 
likelihood of the ascorbate-superoxide reaction occurring. This could have signalling 188 
implications provided (1) ascorbate out-competes other reactants and (2) reacts in the relevant 189 
microdomain. Whether ascorbate out-competes other reactants, namely SOD isoforms and 190 
NO for superoxide [78], is not known. It is unlikely however, that ascorbate out-competes the 191 
diffusion-limited superoxide-NO reaction [78]. Redox signalling is compartmentalised and 192 
subject to intricate spatiotemporal regulation [80-86]. Spatiotemporal regulation of different 193 
redox-sensitive networks is controlled, in part, by various subcellular redox couples (e.g. 194 
GSH/GSSG) that are not in equilibrium [80-86]. That is, redox couples in different 195 
microdomains and organelles exhibit different redox potentials and are not necessarily 196 
interlinked [80-86]. For instance, a signalling event might involve oxidation of the 197 
cytoplasmic but not nuclear GSH pool [80-82]. It follows that, the reaction of ascorbate with 198 
superoxide requires spatial context for proper interpretation. For example, if it is assumed 199 



that exercise-induced redox signalling occurred in the caveolae of the plasma membrane 200 
following NADPH oxidase activation and resultant superoxide generation. Then ascorbate 201 
would need to be present in this microdomain to effect a reduction in the amount of 202 
superoxide available for reaction with a target or dismutation to H2O2. In this scenario, the 203 
initial signalling event would be unperturbed by reaction of ascorbate with superoxide in 204 
other microdomains (e.g. cytoplasm). Signalling requires only a small proportion of the total 205 
target protein population to be modified hence it is noted that signalling could still proceed 206 
despite some reduction in superoxide and target protein modification levels. Whether 207 
ascorbate is present in the relevant microdomains remains an open question. Overall, 208 
ascorbate reacts with superoxide but the spatiotemporal nature of this reaction and its 209 
relevance to exercise-induced redox signalling requires further investigation.   210 

Nitric oxide 211 

NOS isoforms utilise L-arginine to catalyse NO production [87]. The principal NOSs in 212 
skeletal muscle are nNOS (localised to the sarcolemma), eNOS (localised to the 213 
mitochondria) and iNOS the inducible isoform [88-89]. Skeletal muscle contractions increase 214 
intra and extracellular NO generation [55-56]. NO activates guanylate cyclases, via reversible 215 
heme group binding, to generate the signalling biomolecule cGMP [87]. This signalling 216 
mechanism is associated with several physiological outcomes, notably vasodilation following 217 
NO generation by vascular endothelial cells [90], but is not generally considered to be redox 218 
signalling per se [25]. Rather, NO based redox signalling is typically indirect in nature, 219 
proceeding through reaction of NO with other radicals [28]. Any reaction of exogenous 220 
antioxidants with NO directly would, therefore, be of consequence for indirect signalling. In 221 
this regard, NO reacts rapidly with other ROS/RNS, notably superoxide, but reacts slowly 222 
with other cellular biomolecules [91]. Hence, ascorbate and α-tocopherol have limited ability 223 
to suppress NO directly [69]. It is, however, recognised that ascorbate could influence NO 224 
bioavailability with possible implications for indirect signalling [92-93]. NOS mediated NO 225 
generation is contingent upon several co-factors, notably tetrahydrobiopterin (BH4 [94]). Low 226 
levels of BH4 and/or ablated BH4 binding uncouple NOS isoforms resulting in the production 227 
of superoxide [93]. NOS uncoupling is implicated in the pathophysiology of cardiovascular 228 
disease [95]. Ascorbate is suggested to prevent NOS isoform uncoupling and thus enhance 229 
NO bioavailability [92]. The underpinning mechanisms remain to be fully resolved but might 230 
involve superoxide suppression [92], reduction in BH4 oxidation and/or reduction of oxidised 231 
intermediaries (e.g. BH3 [93]). The implication of this is unclear from a signalling perspective 232 
and may not be relevant in non-pathological settings. Overall, neither antioxidant can 233 
interfere with NO signalling by direct reaction but ascorbate might influence NO 234 
bioavailability, the outcome of this being unclear in an exercise setting.   235 

Indirect signalling 236 

Peroxynitrite 237 

Peroxynitrite, a term encompassing peroxynitrite anion and its protonated form peroxynitrous 238 
acid, is an extremely labile reactive species generated by the diffusion controlled reaction 239 



between NO and superoxide (k ~ 4-16 x 109 M-1 s-1 [97-100]). The aforementioned reaction 240 
proceeds at a significantly faster rate than the reaction of superoxide with SOD isoforms (k ~ 241 
1-2 x 109 M-1 s-1 [88, 101]), rendering peroxynitrite generation a likely fate of NO and 242 
superoxide produced during muscle contractions [102]. From a signalling perspective, direct 243 
signalling by peroxynitrite is unlikely owing to rapid reaction with peroxiredoxins (k ~ 106-244 
107 M-1 s-1 [99, 103-106]) and CO2 (k ~ 5.8 x 104 M-1 s-1 [99, 104, 107-108]). The rather slow 245 
reaction (k ~ 102 M-1 s-1 for ascorbate [69]) of both ascorbate and α-tocopherol with 246 
peroxynitrite is unlikely to outcompete the aforementioned rapid reactants. It is improbable 247 
that this reaction out-competes the moderate reaction of peroxynitrite with glutathione (k = 248 
1.35 x 103 M-1 s-1 [77]), given the abundance, present at millimolar concentrations in most 249 
cells, of glutathione. Further, diffusion of peroxynitrite across biological membranes is 250 
limited, rendering reaction with α-tocoperhol unlikely [77]. It is necessary, therefore, to 251 
consider whether ascorbate or α-tocopherol can modulate indirect peroxynitrite signalling.  252 

Indirect peroxynitrite signalling could proceed via (1) coupled sensing and metabolism 253 
mechanism, wherein peroxiredoxins function as sensor proteins that transmit the signal (2) 254 
reaction with glutathione and generation of thiyl radicals and/or (3) radical derivatives of the 255 
reaction of peroxynitrite with CO2 [25, 28]. Ascorbate and α-tocopherol are unlikely to 256 
interfere with any peroxiredoxin associated sensing-metabolism signalling. This would 257 
necessitate outcompeting two highly abundant and efficient reactants, CO2 and 258 
peroxiredoxins, for peroxynitrite and hence will not be further considered herein. 259 
Analogously, neither antioxidant will likely out-compete glutathione to blunt any thiyl radical 260 
associated signalling. In any case, the principal biological fate of peroxynitrite is rapid 261 
reaction with CO2 to generate short-lived intermediaries (e.g. nitrosoperoxocarbonate) that 262 
can form radical products following homolysis, notably carbonate radical and nitrogen 263 
dioxide [99, 104, 107-108]. It is possible that signalling proceeds through carbonate radical 264 
and nitrogen dioxide, as both are one electron oxidants [109] that could be implicated in thiol 265 
based signalling [28]. The capacity of these radicals to be second messengers in redox 266 
signalling might be limited by their non-selective reaction with protein thiols. Both radicals 267 
can initiate protein nitration with attendant implications for redox signalling [110]. For 268 
instance, nitration of HSP90 at specific residues (Tyr 33 & 56) inducts neuronal apoptosis via 269 
the Fas pathway [110]. It can also inactivate antioxidant enzymes (e.g. SOD2 and GPx1 [111-270 
113]), which could facilitate transient transmission of a redox signal [114-115]. As a 271 
signalling paradigm, protein nitration could be limited by its random nature and lack of 272 
reversibility. Nevertheless, ascorbate or α-tocopherol mediated scavenging of carbonate 273 
radical and nitrogen dioxide could blunt subsequent thiol and/or protein nitration based 274 
signalling. 275 

Ascorbate reacts with both carbonate radical and nitrogen dioxide [109]. In particular, the 276 
reaction of ascorbate with nitrogen dioxide (k ~ 3.5 x 107 M-1 s-1) is similar to glutathione (k ~ 277 
2 x 107 M-1 s-1) and the reaction of nitrogen dioxide with tyrosine radical (k ~ 3.2 x 105 M-1 s-278 
1), an intermediate in the formation of nitrated proteins [77, 116]. Increased ascorbate 279 
concentrations post-supplementation could facilitate scavenging to attenuate nitrogen dioxide 280 
mediated protein nitration or thiol oxidation. The relevance of this for redox signalling is ill 281 



defined and this represents a considerable caveat. Further, ascorbate would have to attenuate 282 
nitrogen dioxide formation proximal to the signalling reaction (nitrogen dioxide-protein 283 
tyrosine residue) as blunting signalling depends on interfering with spatially regulated 284 
cascades [80-83]. Distal reactions would be likely to just attenuate macromolecule damage 285 
without impinging redox signalling [80-83]. Any reaction of α-tocopherol with carbonate 286 
radical is likely biologically irrelevant, since the charge state of carbonate radical restricts 287 
diffusion through lipid bilayers [109, 117]. In contrast, nitrogen dioxide is uncharged and can 288 
react with α-tocopherol (k ≤ 106 M-1 s-1[116]). However, α-tocopherol is not considered an 289 
efficient nitrogen dioxide scavenger [116] and is likely out-competed by other reactants (e.g. 290 
glutathione), despite any increases in α-tocopherol membrane content post-supplementation. 291 
Overall, it is clear that (1) neither antioxidant is likely to interfere with indirect signalling 292 
associated with peroxiredoxins or glutathione (2) α-tocopherol is unlikely to interfere with 293 
any carbonate and nitrogen dioxide signalling but this is theoretically possible for ascorbate 294 
and (3) the importance of carbonate radical and nitrogen dioxide for redox signalling is 295 
unclear, questioning the biological relevance of any interference.  296 

Hydrogen peroxide 297 

Several aspects of redox signalling have been attributed to H2O2, a relatively stable and 298 
membrane permeable reactive oxygen species [23-29, 118-121]. The basic mechanism of 299 
H2O2 mediated signalling involves changes in target protein function following oxidation of 300 
cysteine residues to form sulfenic acid and disulphide bonds [26-27]. The reaction of H2O2 301 
with highly abundant enzymes, notably glutathione peroxidase (k ~108 M-1 s-1 [122]), catalase 302 
(k ~2.0 x 107 M-1 s-1 [123]) and peroxiredoxins (105-108 M-1 s-1 [106, 124]), proceeds at a 303 
significantly faster rate than its reaction with reactive cysteine residues on low abundant 304 
signalling proteins (e.g. KEAP1 estimated k ~140 M-1 s-1 [125]). It would, at first glance, 305 
seem that H2O2 signalling would be precluded, owing to the H2O2 signal being metabolised 306 
before reaction with target proteins [23, 25]. There are several explanations for redox 307 
signalling proceeding despite this chemical bottleneck (see 28, 125), however three are 308 
particularly cogent. First, the H2O2 metabolising enzymes could act as sensors themselves, as 309 
has been suggested for peroxiredoxin isoforms [25; 126]. Indeed, peroxiredoxin 2 acts as a 310 
signal receptor and transmitter in STAT3 signalling [127]. Second, post-translational 311 
modifications (e.g. phosphorylation) could alter the catalytic efficiency of H2O2 metabolising 312 
enzymes, permitting transient transmission of a redox signal [25, 114-115]. Third, co-313 
localisation of target and source allied to a favourable target protein microenvironment, 314 
principally manifested by an exposed thiol with low pKa [23-29; 128-129]. It is apparent that 315 
the mechanistic details of H2O2 mediated signalling require further investigation [23].  316 

Despite the aforementioned mechanistic considerations, H2O2 mediated signalling is 317 
implicated in the regulation of kinases, phosphatases, transcriptional co-activators and 318 
transcription factors in various subcellular compartments [23-29; 125]. For instance, kinases 319 
and phosphatases modulate cell signalling via catalysing phosphorylation and 320 
dephosphorylation of protein residues, respectively [129-130]. Oxidation of cysteine residues 321 
in the catalytic domain of these enzymes, results in reversible activation of tyrosine kinases 322 
(e.g. Src [130]) and inactivation of phosphatases (e.g. PTEN and SHP-2 [131]). This redox 323 



signalling paradigm is important for the propagation of growth factor signalling (e.g. 324 
epidermal growth factor), as demonstrated by genetic over-expression of H2O2 metabolising 325 
enzymes [132]. Indeed, growth factor activation stimulates localised H2O2 generation in 326 
several cell types, probably owing to NADPH oxidase mediated superoxide production and 327 
subsequent dismutation to H2O2 [130]. In an exercise setting, H2O2 mediated inactivation of 328 
mitogen activated protein kinase phosphatase could promote p38 MAPK, JNK and ERK 329 
activation, proteins implicated in exercise-induced cell signalling [36]. Although, the precise 330 
events have yet to be defined, H2O2 is likely a key effector of exercise-induced redox 331 
signalling.  332 

It is noteworthy that neither ascorbate nor α-tocopherol react appreciably with H2O2 [133] 333 
and hence, prima facie, have limited capacity to directly impact this important redox 334 
signalling mechanism. Even if they could react with H2O2, both ascorbate and α-tocopherol 335 
would be unlikely to out-compete endogenous H2O2 reactants, such as peroxiredoxins [24]. 336 
There are, however, two indirect mechanisms that warrant consideration. First, SOD isoforms 337 
catalyse the dismutation of superoxide to H2O2 [134]. Ascorbate could indirectly attenuate 338 
the H2O2 signal via reaction with superoxide, provided spatiotemporal concerns are satisfied, 339 
localised reaction with superoxide in the relevant microdomain (see superoxide section), and 340 
other reactants are outcompeted (e.g. NO). Any attenuation of the H2O2 signal could have 341 
ramifications for superoxide generation since NADPH oxidases are, in part, activated by 342 
H2O2 [135]. However, Nox4 is a NADPH oxidase expressed in skeletal muscle that can 343 
generate H2O2 directly [63; 136]. It is extremely unlikely that ascorbate diminishes Nox4 344 
mediated H2O2 generation. Any indirect inhibition is not possible for α-tocopherol owing to 345 
lack of appreciable reaction with superoxide [69]. Second, the reaction of hydrogen peroxide 346 
with transition metal centres can yield superoxide and/or hydroxyl radical [69]. It is possible 347 
that these radicals could then transmit a local signal that could be scavenged. However, there 348 
are two major problems with this hypothesis (1) the random nature precludes specific 349 
signalling and (2) the reaction of either antioxidant with hydroxyl radical is biologically 350 
meaningless, since hydroxyl radical reacts with the first biomolecule it encounters [137-138]. 351 
Overall, we do not exclude indirect interference with H2O2 signalling, probably via reaction 352 
of ascorbate with superoxide, but emphasise that experimental support in an exercise setting 353 
is required.  354 

Removal of the cysteine modification once formed: S-Nitrosylation as an exemplar 355 
paradigm  356 

Ascorbate and α-tocopherol might remove redox modifications once formed and this could 357 
interfere with exercise-induced redox signalling. S-Nitrosylation (S-NO) is considered as an 358 
exemplar paradigm.  S-NO defines the attachment of NO to cysteine [139]. NO is a weak 359 
nitrating agent and cannot generate S-NO directly [140]. Indeed, the precise reactions 360 
involved in S-NO formation in vivo are ill-defined [141]. It is suggested that transition metal 361 
catalysed pathways, formation of dinitrogen trioxide and thiyl radical species contribute to S-362 
NO generation [142-143]. Knowledge of exercise-induced S-NO events are limited but the 363 
following observations support a role (1) protein kinases and phosphatases are S-nitrosylated 364 
[139] (2) transcription factors implicated in exercise adaptations are S-nitrosylated, including 365 



HIF-α [144], p53 [145] and NF-κB [52] and (3) the ryanodine receptor type I is S-366 
nitrosylated with attendant implications for Ca2+ signalling and muscle function [146]. 367 
Ascorbate can denitrosylate proteins indeed this property forms the basis of the biotin-switch 368 
assay, a S-NO analytical tool [147-148]. Denitrosylation can proceed in a copper dependent 369 
or independent manner [149]. The former is unlikely in vivo given the chelation of transition 370 
metals whilst the latter is associated with high ascorbate concentrations (5-50 mM), and even 371 
then only partial denitrosylation of a sample occurs [27]. Whether ascorbate dependent 372 
denitrosylation occurs at physiological concentrations and in the relevant cellular 373 
microdomains is debatable but should not be discounted at this stage. The literature 374 
appertaining to denitrosylation reactions involving α-tocopherol is limited and hence its 375 
feasibility and relevance in vivo is an open question. Nevertheless, similar concentration, 376 
localisation and specificity concerns apply. Further, it is unlikely that exogenous antioxidants 377 
exert an effect greater than the existing endogenous denitrosylation system [139]. This 378 
system includes the S-nitrosoglutathione and thioredoxin pathway and enzymes such as: 379 
protein disulphide isomerase, SOD isoforms and xanthine oxidase [150]. Taken together, two 380 
observations are apparent (1) S-NO modifications relevant to the adaptive exercise response 381 
require investigation (2) the effect of ascorbate and α-tocopherol on the skeletal muscle S-NO 382 
proteome is not known. Ascorbate and a-tocopherol are unlikely to interfere with other 383 
modifications (e.g. S-glutathionylation) once formed as there is limited chemical basis for 384 
any direct interference.  385 

Alternate mechanisms 386 

Reduction of potentially bioactive oxidised macromolecule adducts 387 

Direct signalling by indiscriminately reactive one electron oxidants, notably hydroxyl radical, 388 
is limited by lack of specificity, precluding signalling via conventional mechanisms (e.g. 389 
protein post-translational modifications [26-27]). Indirect signalling might be afforded by the 390 
generation of oxidised lipid, DNA and protein adducts [151-152]. In particular, pre-treatment 391 
of cells with low-doses of lipid peroxidation products (e.g. 4-hydroxynonenal) inducts 392 
favourable responses, notably activation of the Nrf-2-KEAP1 pathway, that protect against 393 
the stress imposed by a subsequent oxidative challenge [153-154]. Nrf-2-KEAP1 pathway 394 
activation is likely to proceed via S-alkylation of KEAP1 and subsequent inactivation, an 395 
event that promotes the nuclear translocation of Nrf-2 [66, 155]. Interestingly, S-alkylation 396 
also regulates NADPH oxidase activity [156], facilitating a putative negative feedback loop. 397 
The sensing of damaged proteins and DNA adducts by chaperones and repair enzymes, 398 
respectively, could provoke an adaptive response. Cell signalling processes are subject to 399 
intricate spatiotemporal regulation [20-22, 80-85]. Macromolecule oxidation, secondary to 400 
hydroxyl radical attack, fails to satisfy this fundamental signalling requirement, being 401 
inherently random and non-specific [137-138, 157]. Whether levels of oxidised 402 
macromolecules serve as a general non-specific redox rheostat that informs signalling 403 
responses is an open question. Nevertheless, this is unlikely on a global level owing to the 404 
compartmentalised and specific nature of cell signalling [20-22].  405 



Acute exercise bouts are usually, but not always [see 158], associated with an increase in 406 
oxidised macromolecule adducts [159]. If these products were acting in a signalling fashion, 407 
this postulate requires investigation in an exercise setting, then an ascorbate and α-tocopherol 408 
mediated reduction in oxidised macromolecule adducts might blunt this potentially 409 
favourable response (see figure 2). Although, both antioxidants scavenge radicals implicated 410 
in the initiation of macromolecule oxidation the effects of antioxidant supplementation on 411 
oxidised adduct levels are variable [137-138]. This is best exemplified in pathological 412 
contexts wherein global levels of oxidised macromolecule adducts are constitutively elevated 413 
[160], possibly reflecting deregulated redox signalling. In these settings, ascorbate and α-414 
tocopherol supplementation does not decrease disease incidence and generally only 415 
marginally decreases macromolecule oxidation [137-138, 161-164]. This might reflect a 416 
failure of ascorbate and α-tocopherol to accumulate in redox signalling compartments and 417 
effect a reduction in the levels of a reactive species or indeed a failure to react appreciably 418 
with the relevant species [161-164]. Further, positive effects are generally evident in 419 
individuals presenting with ascorbate and α-tocopherol deficiency at baseline [165]. Of 420 
course, the nature of macromolecule oxidation at rest compared to exercise are likely 421 
different. In an exercise setting, ascorbate and α-tocopherol afford limited protection against 422 
exercise-induced macromolecule damage [166]. Indeed, a recent meta-analysis concluded 423 
that α-tocopherol does not reduce exercise-induced lipid peroxidation [166]. Overall, a 424 
signalling role of oxidised macromolecules is speculative in an exercise setting and neither 425 
antioxidant consistently protects against exercise-induced macromolecule oxidation. 426 
Reduction of potentially bioactive oxidised macromolecule adducts does not likely explain 427 
the attenuation of favourable cell signalling responses to exercise training following 428 
ascorbate and α-tocopherol supplementation.  429 

Pro-oxidant potential 430 

The oxidation of ascorbate results in the formation of an ascorbyl radical [93]. Ascorbyl 431 
radical is unlikely to exert pro-oxidant effects in vivo owing to its poor reactivity and 432 
existence of glutathione and NADPH dependent recycling systems [167]. Ascorbate has well-433 
documented pro-oxidant properties in vitro when free transition metal are present [76]. 434 
Ascorbate can reduce Fe3+ to Fe2+, and Fe2+ can then in turn react with O2 to generate 435 
superoxide [176]. Ascorbate can also generate hydroxyl radical and H2O2 via classical Fenton 436 
chemistry [177]. Indeed, this is the basis for the use of pharmacological intravenous ascorbate 437 
administration as a cancer treatment owing to the toxicity of H2O2 to certain cancer cells 438 
[177-178]. This treatment paradigm bypasses gut metabolism removing the absorption 439 
constraints that restrict peak plasma ascorbate concentrations to ~200 µM following even 440 
high-dose oral supplementation [178]. The relevance of these pro-oxidant effects in vivo is 441 
highly debated, and indeed controversial, especially in non-pathological contexts [178]. Any 442 
pro-oxidant action is likely dependent on the availability of transition metals. It is emphasised 443 
that these are largely sequestered by the metallothionein family, transferrin and ferritin [170]. 444 
Despite the intracellular sequestration of certain transition metals, cells still contain small 445 
(~20 µM) un-sequestered pools of free iron that could participate in pro-oxidation reactions 446 
[171]. Interestingly, microarray analysis has revealed that metallothionein mRNA abundance 447 



is significantly enriched following acute endurance exercise [172]. This could reflect a stress 448 
response to exercise-induced perturbations in intracellular transition metal handling. Such 449 
perturbations are likely to be greater following exercise that evokes muscle damage, given 450 
that muscle injury increases labile iron levels in skeletal muscle [173] possibly owing to 451 
increased hemolysis [174]. The aforementioned scenarios would permit increased free 452 
transition metal availability and pro-oxidant ascorbate potential. Any pro-oxidant actions 453 
could elevate the ‘redox’ signal from an adaptive to maladaptive threshold. This supposition 454 
is, however, speculative at present. Some species (e.g. mice and rodents) retain the capacity 455 
to endogenously manufacture ascorbate from glucose owing to expression of gulonolactone 456 
oxidase [175]. Humans harbour a defunct gulonolactone oxidase gene and hence need to 457 
acquire ascorbate exogenously, via dietary sources. Disruption of ascorbate homeostasis in 458 
lower order species with large dose supplementation could favour pro-oxidant and cytotoxic 459 
effects that contribute to blunted training adaptations. 460 

Similar to ascorbate, any pro-oxidant effect of α-tocopherol could elevate the ‘redox’ signal 461 
from an adaptive to maladaptive threshold. The oxidation of α-tocopherol yields α-tocopherol 462 
radical [75]. Although, α-tocopherol radical is capable of inducting lipid peroxidation in vitro, 463 
this has not been consistently been documented in vivo [93, 176]. Toxicity of α-tocopherol 464 
radical is thought to be limited by ascorbate mediated recycling of α-tocopherol radical to α-465 
tocopherol [93]. Indeed, this reason is often cited as a justification for α-tocopherol and 466 
ascorbate co-supplementation [16]. Ascorbate mediated recycling of α-tocopherol radical is 467 
well documented in vitro but evidence for this interaction in vivo, particularly in humans, is 468 
often inconsistent [69]. Recycling can also be achieved by glutathione [177], which could be 469 
an important contributor in vivo. Analogous to ascorbate, tocopherol isoforms can exert 470 
transition metal dependent pro-oxidation effects in vitro but their sequestration and 471 
localisation is likely to limit this possibility in vivo [75]. Overall, it is unlikely that α-472 
tocopherol is acting in a pro-oxidant fashion to diminish exercise-induced redox signalling.  473 

Perspectives 474 

Beyond theory and speculation there is a paucity of evidence supporting the notion that 475 
ascorbate and α-tocopherol supplementation interferes with exercise-induced redox signalling 476 
via a redox-dependent ‘scavenging’ mechanism. Unfortunately, obtaining supporting 477 
evidence is hampered by several analytical limitations. Electron spin resonance and 478 
fluorescent based probe technology are not readily applicable to the in vivo human situation 479 
and many fluorescent probes are prone to experimental artefact, that is, spurious side-480 
reactions that artificially amplify the signal [178-180]. Interpretation of these techniques in 481 
animal and cell culture models is complicated by interspecies differences (e.g. rodents can 482 
manufacture ascorbate) and the oxidative stress that cell culture can impose [181-182]. This 483 
has fostered a reliance on biochemical footprints, such as lipid peroxidation biomarkers (e.g. 484 
malondialdehyde [44, 157]. A change in a biochemical footprint does not necessarily reflect a 485 
redox-dependent scavenging effect of exogenous antioxidants it could simply reflect 486 
differential repair or dietary changes [69, 133]. Redox signalling occurs in specific cellular 487 
compartments hence altered macromolecule oxidation levels do not necessarily reflect the 488 
incidence of redox signalling [80-86]. That is, redox signalling does not require global 489 



changes in oxidised macromolecule adducts to occur [80-82]. Instead, specific, reversible and 490 
compartmentalised signals define redox signalling [80-86]. Whether assaying global levels of 491 
oxidised macromolecule adducts provides any useful information on the interference of 492 
ascorbate and α-tocopherol supplementation with exercise-induced redox signalling is 493 
therefore debatable.  494 

In considering possible technical solutions, redox proteomics enables quantitative and 495 
unbiased analysis of redox-regulated post-translational modifications implicated in cell 496 
signalling [183-187]. However, signalling proteins might be masked by the abundance of 497 
metabolic and contractile proteins in skeletal muscle [183-187]. Further, determining the 498 
functionality of novel modifications would require further experimentation [188]. Application 499 
of redox proteomics to the study of exercise-induced redox signalling is strongly encouraged. 500 
Another way might be to analyse redox regulated end-points, such as activity and abundance 501 
of antioxidant enzymes and heat shock proteins [46]. Ascorbate and α-tocopherol 502 
supplementation did not interfere with antioxidant enzyme and heat shock protein abundance 503 
when this approach was recently applied [8]. This might suggest a lack of a redox dependent 504 
mode of action since these outcome markers are one principal end-point of exercise-induced 505 
redox signalling. However, this approach provides limited mechanistic information being 506 
unable to identify the nature of any possible interference [189]. Overall, it is clear that further 507 
mechanistic research is required and that redox proteomics represents an admiral starting 508 
point.   509 

Ascorbate and α-tocopherol could act in a redox independent manner to attenuate favourable 510 
cell signalling responses to exercise training. Ascorbate is a co-factor for α-ketoglutarate 511 
dependent dioxygenases (e.g. prolyl 4-hydroxylase [93,169,175]) and also promotes HIF-α 512 
repression via proline hydroxylation [190-191]. This is particularly relevant to exercise given 513 
the role of HIF-α in the regulation of angiogenesis, growth, apoptosis and metabolism [192-514 
193]. Of interest, ascorbate can regulate the activity of enzymes implicated in the regulation 515 
of histone methylation [194-195], an epigenetic process that regulates exercise adaptations 516 
[196]. Similarly, α-tocopherol can inhibit 5-LOX, protein kinase C isoforms and 517 
phospholipase A2 which could influence exercise-induced cell signalling [197-199]. 518 
Inhibition of these enzymes is suggested to be redox independent and appears to be related to 519 
the interaction of α-tocopherol with signalling proteins [197-199]. This could explain the 520 
observation that several genes (e.g. tropomyosin) are regulated by α-tocopherol [197]. 521 
Altogether, it is possible that redox-independent actions contribute and this is worthy of 522 
further investigation.  523 

Irrespective of the mechanism, redox dependent or independent, blunted cell signalling 524 
responses following ascorbate and α-tocopherol supplementation have seldom translated to 525 
impaired whole-body exercise adaptations (e.g. diminished increases in aerobic capacity [1]). 526 
There are several possible explanations for this however, two are particularly cogent. First, 527 
changes at the whole-body level are a product of peripheral and central adaptations hence any 528 
peripheral impairment can be compensated for [15]. Second, the molecular processes 529 
measured are often stress responses and have rarely been shown to be either essential to 530 
adaptation and/or predict the magnitude of adaptation [200]. Further, signalling processes 531 



have an in built reserve capacity, therefore, suppression of an upstream signal does not 532 
always translate to blunted downstream responses [20-22]. When it is considered that a 533 
whole-body response is the reflection of highly regulated processes across several cell types 534 
it is unsurprising that blunted activation of one or two regulatory proteins fails to impact 535 
adaptation. The physiological relevance of an impaired molecular response to functional end-536 
points is, therefore, debatable.  537 

Conclusion 538 

Current paradigms posit that ascorbate and α-tocopherol supplementation act as antioxidants 539 
to diminish global superoxide, NO, peroxynitrite and H2O2 levels and thus affect an 540 
attenuation of exercise-induced redox signalling. For this to be possible, it is contended here 541 
that the criteria outlined in box 1 must be satisfied. Our largely theoretical analysis reveals 542 
that all of assumptions implicit in a redox dependent mechanism of action are not met for any 543 
of the aforementioned species. The best candidate for a scavenging effect represents the 544 
reaction of ascorbate with superoxide, with attendant implications for H2O2 signalling. Even 545 
in this case, it is unclear whether the requisite chemical (out-competing other reactants) and 546 
spatiotemporal (co-localisation with relevant targets) concerns are satisfied. It is readily 547 
acknowledged that the present analysis is limited by knowledge of the mechanisms 548 
underpinning exercise-induced redox signalling being fragmentary. It is also emphasised that 549 
a nuanced view of kinetics in space, time and context is warranted. That is, kinetic 550 
information is usually derived from in vitro experiments that do not faithfully mimic the in 551 
vivo situation. A situation characterised by compartment specific redox potentials and pH 552 
characteristics, all of which could influence the reaction of ascorbate and α-tocopherol with a 553 
given species and thus our conclusions. Despite the aforementioned caveats, a clear challenge 554 
to the current interpretational framework is presented. It cannot be assumed that just because 555 
a molecule has ‘antioxidant properties’ that it is acting as an antioxidant to attenuate exercise-556 
induced redox signalling in vivo. Further, in the current context altered global levels of 557 
oxidised macromolecules should not be used to evidence an attenuation of exercise-induced 558 
redox signalling. Indeed, it is our view that redox signalling networks that are insulated from 559 
nutritional antioxidants have evolved. Whilst ascorbate and α-tocopherol could scavenge 560 
reactive species that diffuse out of signalling microdomains the insulation could protect 561 
against any major interference. This observation may be novel in an exercise setting but is 562 
consistent with the failure of nutritional antioxidant therapy to modify diseases associated 563 
with oxidative stress and pathological disruption of redox signalling. It is hoped that the 564 
present dialogue stimulates investigations into the molecular mechanisms underpinning the 565 
blunting of exercise-induced redox signalling following ascorbate and α-tocopherol 566 
supplementation. It is emphasised that this discourse applies only to the antioxidants 567 
discussed and should not be extrapolated to other antioxidants, since antioxidants are not 568 
biochemically and functionally homogenous [133]. In this regard, it might be worthwhile 569 
exploring alternate antioxidant paradigms, such as N-acetyl-cysteine [201].  570 
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Figure Legends  1126 

Figure 1: A) A current general scheme. In this generic model, exercise increases ROS/RNS 1127 
generation and this is associated with kinase activation. Ascorbate and α-tocopherol are 1128 
proposed to reduce ROS/RNS generation to interfere with phosphatase inactivation. Note that 1129 
in this general model the specific species are not identified underscoring a significant 1130 
limitation of this generic model. From this scheme it is not possible to appraise whether this 1131 



redox dependent mode of action is feasible. B) Proposed specific scheme. In this model, 1132 
exercise activates NADPH oxidases resulting in increased superoxide production. Superoxide 1133 
is then dismutated to hydrogen peroxide in a reaction catalysed by SOD isoforms. Hydrogen 1134 
peroxide then reacts, in a two electron reaction, with the phosphatase PTP1B, possibly 1135 
relieving kinase inhibition. Whether this is possible given the peroxiredoxin kinetic 1136 
bottleneck is discussed in text. Nevertheless, ascorbate could inhibit this signalling response 1137 
by competing with SOD isoforms and NO (not shown for clarity) for reaction with 1138 
superoxide.  1139 

Figure 2: Reduction of potentially bioactive oxidised macromolecule adducts. In this model, 1140 
exercise increases superoxide, NO, peroxynitrite and H2O2 generation resulting in the 1141 
generation of bioactive oxidised adducts, such as 4-hydroxynoneneal. This could lead to Nrf-1142 
2 activation and the induction of a cyto-protective response via S-alkylation of KEAP1, a 1143 
negative regulator of Nrf-2. Any ascorbate and α-tocopherol mediated reduction in bioactive 1144 
oxidised macromolecule adducts could attenuate Nrf-2 activation. However, this possibility is 1145 
speculative for several reasons that are discussed in text.  1146 

Figure 3: Summary of the limited reaction of ascorbate and α-tocopherol with specific 1147 
reactive species implicated in exercise-induced redox signalling. Of note, ascorbate can react 1148 
with superoxide (O2

.-) and this could have implications for exercise-induced redox signalling. 1149 
The existence of kinetically favourable out-competing reactions for nitric oxide, hydrogen 1150 
peroxide and peroxynitrite might restrict any interference via a scavenging mechanism at 1151 
least for these species. It is possible for nitrogen dioxide and carbonate radical, but the roles 1152 
of these radicals in redox signalling is not well established.  1153 

Box  1154 

Box 1. Assumptions implicit in a redox dependent mechanism of action. 1155 

Assumptions implicit in a redox dependent mechanism of 
action. 

1. Specific ROS/RNS are involved in redox signalling. 
2. Ascorbate and α-tocopherol react chemically with 

the relevant ROS/RNS. 
3. The localisation of ascorbate and α-tocopherol 

makes interference in cellular microdomains 
implicated in redox signalling likely (e.g. lipid rafts). 

4. Ascorbate and α-tocopherol out-compete enzymes 
and/or other ROS/RNS for reaction with the relevant 
ROS/RNS. 
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