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INEQUALITIES, ASYMPTOTIC EXPANSIONS AND COMPLETELY

MONOTONIC FUNCTIONS RELATED TO THE GAMMA FUNCTION

CHAO-PING CHEN∗ AND RICHARD B PARIS

Abstract. In this paper, we present some completely monotonic functions and asymptotic
expansions related to the gamma function. Based on the obtained expansions, we provide new
bounds for Γ(x+ 1)/Γ(x + 1

2
) and Γ

(

x+ 1

2

)

.

1. Introduction

A function f is said to be completely monotonic on an interval I if it has derivatives of all
orders on I and satisfies the following inequality:

(−1)nf (n)(x) ≥ 0 (x ∈ I; n ∈ N0 := N ∪ {0}, N := {1, 2, 3, . . .}). (1.1)

Dubourdieu [13, p. 98] pointed out that, if a non-constant function f is completely monotonic
on I = (a,∞), then strict inequality holds true in (1.1). See also [16] for a simpler proof of this
result. It is known (Bernstein’s Theorem) that f is completely monotonic on (0, ∞) if and only
if

f(x) =

∫ ∞

0

e−xt dµ(t),

where µ is a nonnegative measure on [0,∞) such that the integral converges for all x > 0 (see
[48, p. 161]). The main properties of completely monotonic functions are given in [48, Chapter
IV]. We also refer to [4], where a extensive list of references on completely monotonic functions
can be found.

Euler’s gamma function:

Γ(x) =

∫

∞

0

tx−1e−tdt, x > 0

is one of the most important functions in mathematical analysis and its applications in various
diverse areas. The logarithmic derivative of the gamma function:

ψ(x) =
Γ′(x)

Γ(x)

is known as the psi (or digamma) function. The derivatives of the psi function ψ(x):

ψ(n)(x) :=
dn

dxn
{ψ(x)}, n ∈ N

are called the polygamma functions.
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In this paper, we present some completely monotonic functions and asymptotic expansions
related to the gamma function. Based on the obtained expansions, we provide new bounds for
Γ(x+ 1)/Γ(x+ 1

2 ) and Γ
(

x+ 1
2

)

.
The numerical values given in this paper have been calculated via the computer program

MAPLE 13.

2. Lemmas

The Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined by the generating
functions

text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
and

2ext

et + 1
=

∞
∑

n=0

En(x)
tn

n!
.

The rational numbers Bn = Bn(0) and integers En = 2nEn(1/2) are called Bernoulli and Euler
numbers, respectively.

It follows from Problem 154 in Part I, Chapter 4, of [39] that

2m
∑

j=1

B2j

(2j)!
t2j <

t

et − 1
− 1 +

t

2
<

2m+1
∑

j=1

B2j

(2j)!
t2j (2.1)

for t > 0 and m ∈ N0. The inequality (2.1) can be also found in [17, 40].
Lemma 1 presents an analogous result to (2.1).

Lemma 1. For x > 0 and m ∈ N,

2m+1
∑

j=2

(1 − 22j)B2j

j

x2j−1

(2j − 1)!
<

2

ex + 1
− 1 +

x

2
<

2m
∑

j=2

(1− 22j)B2j

j

x2j−1

(2j − 1)!
, (2.2)

where Bn (n ∈ N0) are the Bernoulli numbers.

Proof. The noted Boole’s summation formula (see [45, p. 17]) states for k ∈ N that

f(1) =
1

2

k−1
∑

j=0

Ej(1)

j!

(

f (j)(1) + f (j)(0)
)

+
1

2(k − 1)!

∫ 1

0

f (k)(t)Ek−1(t)dt,

which can be written for m ∈ N as

f(1)− f(0) =

m
∑

j=1

E2j−1(1)

(2j − 1)!

(

f (2j−1)(1) + f (2j−1)(0)
)

+
1

(2m− 1)!

∫ 1

0

f (2m)(t)E2m−1(t)dt.

(2.3)

Applying formula (2.3) to f(t) = ext, we obtain

− 2

ex + 1
+ 1− x

2
=

m
∑

j=2

E2j−1(1)

(2j − 1)!
x2j−1 +

x

ex + 1

x2m−1

(2m− 1)!

∫ 1

0

extE2m−1(t)dt. (2.4)

It is well known (see [1, p. 804]) that

E2m+1(1− t) = −E2m+1(t) and E2m+1(
1
2 ) = 0.

Noting that

E4m−1(t) > 0, E4m+1(t) < 0 for 0 < t < 1/2, m = 1, 2, . . . ,
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we imply for x > 0 that

∫ 1

0

extE4m−1(t)dt =

∫ 1/2

0

(

ext − ex(1−t)
)

E4m−1(t)dt < 0

and
∫ 1

0

extE4m+1(t)dt =

∫ 1/2

0

(

ext − ex(1−t)
)

E4m+1(t)dt > 0.

Combining these with (2.4), we immediately obtain that for x > 0 and m ∈ N,

−
2m+1
∑

j=2

E2j−1(1)

(2j − 1)!
x2j−1 <

2

ex + 1
− 1 +

x

2
< −

2m
∑

j=2

E2j−1(1)

(2j − 1)!
x2j−1. (2.5)

Noting that

En(1) =
2(2n+1 − 1)

n+ 1
Bn+1, n ∈ N,

the inequality (2.5) can be written as (2.2). The proof of Theorem 1 is complete. �

The inequality (2.2) can be written for x > 0 and m ∈ N0 as

2m+1
∑

j=1

(1 − 22j)B2j

j

x2j−1

(2j − 1)!
<

2

ex + 1
− 1 <

2m
∑

j=1

(1− 22j)B2j

j

x2j−1

(2j − 1)!
, (2.6)

i.e.,

(−1)m+1





2

ex + 1
− 1−

m
∑

j=1

(1 − 22j)B2j

j

x2j−1

(2j − 1)!



 > 0. (2.7)

Lemma 2 ([10]). Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The gamma

function has the following asymptotic expansion:

Γ(x+ 1) ∼
√
2πx

(x

e

)x



1 +

∞
∑

j=1

bj
xj





xℓ/r

, x→ ∞, (2.8)

where the coefficients bj ≡ bj(ℓ, r) (j ∈ N) are given by

bj ≡ bj(ℓ, r) =
∑ rk1+k2+···+kj

k1!k2! · · · kj !

(

B2

1 · 2

)k1
(

B3

2 · 3

)k2

· · ·
(

Bj+1

j(j + 1)

)kj

, (2.9)

summed over all nonnegative integers kj satisfying the equation

(1 + ℓ)k1 + (2 + ℓ)k2 + · · ·+ (j + ℓ)kj = j.

Lemma 3. Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The gamma function

has the following asymptotic expansion:

Γ

(

x+
1

2

)

∼
√
2π
(x

e

)x



1 +

∞
∑

j=1

cj
xj





xℓ/r

, x→ ∞, (2.10)
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where the coefficients cj ≡ cj(ℓ, r) (j ∈ N) are given by

cj =
∑ (−r)k1+k2+···+kj

k1!k2! · · · kj !

(

(1− 2−1)B2

1 · 2

)k1
(

(1− 2−3)B4

3 · 4

)k2

· · ·
(

(1− 21−2j)B2j

(2j − 1)(2j)

)kj

,

(2.11)

summed over all nonnegative integers kj satisfying the equation

(1 + ℓ)k1 + (3 + ℓ)k2 + · · ·+ (2j + ℓ − 1)kj = j.

Proof. The following asymptotic expansion can be found [27, p. 32]

ln Γ

(

x+
1

2

)

∼ x lnx− x+ ln
√
2π +

∞
∑

j=1

B2j(
1
2 )

2j(2j − 1)
x1−2j , x→ ∞. (2.12)

It is well-known (see [1, p. 805]) that

Bn(
1
2 ) = −(1− 21−n)Bn, n ∈ N0,

and then the expansion (2.12) can be rewritten as

Γ(x+ 1
2 )√

2π (x/e)x
= exp

(

m
∑

k=1

−(1− 21−2k)B2k

2k(2k − 1)x2k−1
+Rm(x)

)

, x→ ∞, (2.13)

where Rm(x) = O(1/x2m+1). Further, we have

(

Γ(x+ 1
2 )√

2π (x/e)
x

)r/xℓ

= erRm(x)/xℓ

exp

(

m
∑

k=1

−r(1 − 21−2k)B2k

2k(2k − 1)x2k+ℓ−1

)

= erRm(x)/xℓ
m
∏

k=1

[

1 +

(−r(1 − 21−2k)B2k

2k(2k − 1)x2k+ℓ−1

)

+
1

2!

(−r(1 − 21−2k)B2k

2k(2k − 1)x2k+ℓ−1

)2

+ · · ·
]

= erRm(x)/xℓ
∞
∑

k1=0

∞
∑

k2=0

· · ·
∞
∑

km=0

1

k1!k2! · · · km!

×
(−r(1 − 2−1)B2

1 · 2

)k1
(−r(1− 2−3)B4

3 · 4

)k2

· · ·
(−r(1 − 21−2m)B2m

(2m− 1)(2m)

)km

× 1

x(1+ℓ)k1+(3+ℓ)k2+···+(2m+ℓ−1)km
. (2.14)

On the other hand, from (2.13) it follows that for any positive integer m,

(

Γ(x+ 1
2 )√

2π (x/e)
x

)r/xℓ

= 1 +

m
∑

j=1

cj
xj

+O(1/xm+1) (2.15)

for some real numbers c1, . . . , cm.
Equating the coefficients by the equal powers of x in (2.14) and (2.15), we see that

cj =
∑ (−r)k1+k2+···+kj

k1!k2! · · · kj !

(

(1− 2−1)B2

1 · 2

)k1
(

(1− 2−3)B4

3 · 4

)k2

· · ·
(

(1− 21−2j)B2j

(2j − 1)(2j)

)kj

,

summed over all nonnegative integers kj satisfying the equation

(1 + ℓ)k1 + (3 + ℓ)k2 + · · ·+ (2j + ℓ − 1)kj = j.

This completes the proof of Lemma 3. �
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Lemma 4. Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The following

asymptotic expansion holds:

Γ(x+ 1)

Γ
(

x+ 1
2

) ∼
√
x



1 +

∞
∑

j=1

pj
xj





xℓ/r

, x→ ∞, (2.16)

where the coefficients pj ≡ pj(ℓ, r) (j ∈ N) are given by

pj =
∑ rk1+k2+···+kj

k1!k2! · · · kj !

(

(22 − 1)B2

1 · 1 · 22
)k1

(

(24 − 1)B4

2 · 3 · 24
)k2

· · ·
(

(22j − 1)B2j

j(2j − 1)22j

)kj

, (2.17)

summed over all nonnegative integers kj satisfying the equation

(1 + ℓ)k1 + (3 + ℓ)k2 + · · ·+ (2j + ℓ − 1)kj = j.

Proof. From (3.7) we obtain the following asymptotic expansion:

Γ(x+ 1)

Γ(x+ 1
2 )

∼
√
x exp





∞
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)x2j−1



 , x→ ∞. (2.18)

Write (2.18) as

Γ(x+ 1)√
xΓ(x+ 1

2 )
∼ exp

(

m
∑

k=1

(22k − 1)B2k

k(2k − 1)22kx2k−1
+Rm(x)

)

, x→ ∞, (2.19)

where Rm(x) = O(1/x2m+1). Further, we have
(

Γ(x+ 1)√
xΓ(x+ 1

2 )

)r/xℓ

= erRm(x)/xℓ

exp

(

m
∑

k=1

r(22k − 1)B2k

k(2k − 1)22kx2k+ℓ−1

)

= erRm(x)/xℓ
m
∏

k=1

[

1 +

(

r(22k − 1)B2k

k(2k − 1)22kx2k+ℓ−1

)

+
1

2!

(

r(22k − 1)B2k

k(2k − 1)22kx2k+ℓ−1

)2

+ · · ·
]

= erRm(x)/xℓ
∞
∑

k1=0

∞
∑

k2=0

· · ·
∞
∑

km=0

1

k1!k2! · · · km!

×
(

r(22 − 1)B2

1 · 1 · 22
)k1

(

r(24 − 1)B4

2 · 3 · 24
)k2

· · ·
(

r(22m − 1)B2m

m(2m− 1)22m

)km

× 1

x(1+ℓ)k1+(3+ℓ)k2+···+(2m+ℓ−1)km
. (2.20)

On the other hand, from (2.19) it follows that for any positive integer m,
(

Γ(x+ 1)√
xΓ(x + 1

2 )

)r/xℓ

= 1 +

m
∑

j=1

pj
xj

+O(1/xm+1) (2.21)

for some real numbers p1, . . . , pm.
Equating the coefficients by the equal powers of x in (2.20) and (2.21), we see that

pj =
∑ rk1+k2+···+kj

k1!k2! · · · kj !

(

(22 − 1)B2

1 · 1 · 22
)k1

(

(24 − 1)B4

2 · 3 · 24
)k2

· · ·
(

(22j − 1)B2j

j(2j − 1)22j

)kj

,

summed over all nonnegative integers kj satisfying the equation

(1 + ℓ)k1 + (3 + ℓ)k2 + · · ·+ (2j + ℓ − 1)kj = j.
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This completes the proof of Lemma 4. �

Lemma 5. For t 6= 0,

1

2t2
+

1

12
− 7

240
t2 +

31

6048
t4 − 127

172800
t6 <

cosh t

cosh(2t)− 1
<

1

2t2
+

1

12
− 7

240
t2 +

31

6048
t4.

(2.22)

Proof. We only prove the second inequality in (2.22). The proof of the first inequality in (2.22)
is analogous. By using the power series expansion of cosh t, we find that

(

1

2t2
+

1

12
− 7

240
t2 +

31

6048
t4
)

(

cosh(2t)− 1
)

− cosh t =

∞
∑

n=4

αn

(2n+ 2)!
t2n

with

αn = 22n−4

(

104

3
+

10513

1260
n+

11117

1890
n2 − 1577

1260
n3 − 4303

1890
n4 − 31

63
n5 +

62

189
n6

)

− 2(n+ 1)(2n+ 1)

= 22n−4

(

339 +
1005649

1260
(n− 4) +

1355243

1890
(n− 4)2 +

382391

1260
(n− 4)3

+
125897

1890
(n− 4)4 +

155

21
(n− 4)5 +

62

189
(n− 4)6

)

− 2(n+ 1)(2n+ 1)

> 22n−4 · 339− 2(n+ 1)(2n+ 1)

> 0 for n ≥ 4.

Hence, the second inequality in (2.22) holds. This completes the proof of Lemma 5. �

3. Completely monotonic functions

It is known in [45, p. 64] that

t

et − 1
− 1 +

t

2
=

n
∑

j=1

B2j

(2j)!
t2j + (−1)nt2n+2νn(t), n ≥ 0, (3.1)

where

νn(t) =

∞
∑

k=1

2

(t2 + 4π2k2)(2πk)2n
> 0.

It is easy to see that (3.1) implies (2.1).
The noted Binet’s first formula [44, p. 16] states that

ln Γ(x) =

(

x− 1

2

)

lnx− x+ ln
√
2π +

∫

∞

0

(

t

et − 1
− 1 +

t

2

)

e−xt

t2
dt, x > 0. (3.2)

Combining (3.1) with (3.2), Xu and Han [46] educed in 2009 that for every m ∈ N0, the function

Rm(x) = (−1)m



ln Γ(x)−
(

x− 1

2

)

lnx+ x− ln
√
2π −

m
∑

j=1

B2j

2j(2j − 1)x2j−1



 (3.3)

is completely monotonic on (0,∞).
For m = 0, complete monotonicity property of Rm(x) was proved by Muldoon [38]. Alzer [2]

first proved in 1997 that Rm(x) is completely monotonic on (0,∞). In 2006, Koumandos [17]
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proved double inequality (2.1), and then used (2.1) and (3.2) to give the proof of complete mono-
tonicity property of Rm(x). In 2009, Koumandos and Pedersen [18, Theorem 2.1] strengthened
this result.

Based on the inequality (2.2), in this section we prove that for every m ∈ N0, the function

Fm(x) = (−1)m



ln

(

Γ(x+ 1)

Γ(x+ 1
2 )

)

− 1

2
lnx−

m
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)x2j−1



 (3.4)

is completely monotonic on (0,∞). This result is similar to complete monotonicity property of
Rm(x) in (3.3).

Theorem 1. For every m ∈ N0, the function Fm(x), defined by (3.4), is completely monotonic

on (0,∞).

Proof. The logarithm of the gamma function has the following integral representation (see [1, p.
258]):

ln Γ(x) =

∫ ∞

0

[

(x − 1)e−t − e−t − e−xt

1− e−t

]

dt

t
, x > 0. (3.5)

By using (3.5) and the following representations:

lnx =

∫

∞

0

e−t − e−xt

t
dt, x > 0

in [1, p. 230, 5.1.32] and

1

xr
=

1

Γ(r)

∫

∞

0

tr−1e−xtdt, x > 0 and r > 0

in [1, p. 255, 6.1.1], we find that

Fm(x) = (−1)m

[

∫ ∞

0

(

− 1

et/2 + 1
+

1

2

)

e−xt

t
dt

−
m
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)!

∫

∞

0

t2j−2e−xtdt

]

=
1

2

∫

∞

0

(−1)m+1λm(t)
e−xt

t
dt, (3.6)

where

λm(t) =
2

et/2 + 1
− 1−

m
∑

j=1

(1− 22j)B2j

j(2j − 1)!

(

t

2

)2j−1

.

By (2.7), we have (−1)m+1λm(t) > 0 for t > 0 and m ∈ N0. From (3.6) we obtain that for every
m ∈ N0,

(−1)nF (n)
m (x) =

1

2

∫

∞

0

(−1)m+1λm(t)tn−1e−xt dt > 0

for x > 0 and n ∈ N0. The proof of Theorem 1 is complete. �

Under the inequality (−1)nF
(n)
m (x) > 0 for x > 0 and m,n ∈ N0, we obtain the following
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Corollary 1. (i) Let m ∈ N0. Then for x > 0,

√
x exp





2m
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)x2j−1



 <
Γ(x+ 1)

Γ(x+ 1
2 )

<
√
x exp





2m+1
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)x2j−1



 . (3.7)

(ii) Let m,n ∈ N. Then for x > 0,

2m
∑

j=1

(

1− 1

22j

)

2B2j

(2j)!

(2j + n− 2)!

x2j+n−1

< (−1)n
(

ψ(n−1)(x+ 1)− ψ(n−1)

(

x+
1

2

))

+
(n− 1)!

2xn

<

2m−1
∑

j=1

(

1− 1

22j

)

2B2j

(2j)!

(2j + n− 2)!

x2j+n−1
. (3.8)

By using the obtained results above, we here present inequalities and integral representations
for the constant π.

The problem of finding new and sharp inequalities for the gamma function Γ and in particular
about the Wallis ratio

Γ(n+ 1)

Γ(n+ 1
2 )

=
1√
π
· (2n)!!

(2n− 1)!!
, n ∈ N (3.9)

has attracted the attention of many researchers (see [11, 19, 20, 33] and references therein). Some
inequalities for π can be found (see, for example, [15, 21, 34, 35]). Here, we employ the special
double factorial notation as follows:

(2n)!! = 2 · 4 · 6 · · · (2n) = 2nn!,

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 1) = π−1/22nΓ(n+ 1
2 ),

0!! = 1, (−1)!! = 1

(see [1, p. 258]). Very recently, Lin [21, Theorem 2.4] proved that for all n ∈ N,
(

(2n)!!

(2n− 1)!!

)2
1

n
exp

(

− 1

4n
+

1

96n3
− 1

320n5
+

17

7168n7
− 31

9216n9

)

< π <

(

(2n)!!

(2n− 1)!!

)2
1

n
exp

(

− 1

4n
+

1

96n3
− 1

320n5
+

17

7168n7

)

. (3.10)

Setting x = n in (3.7), we obtain estimate for the constant π:

(

(2n)!!

(2n− 1)!!

)2
1

n
exp



−
2m+1
∑

j=1

(

1− 1

22j

)

2B2j

j(2j − 1)n2j−1





< π <

(

(2n)!!

(2n− 1)!!

)2
1

n
exp



−
2m
∑

j=1

(

1− 1

22j

)

2B2j

j(2j − 1)n2j−1



 . (3.11)

Obviously, (3.11) is a generalization of (3.10).
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Formula (3.6) gives the following integral representation:

ln

(

Γ(x + 1)

Γ(x+ 1
2 )

)

− 1

2
lnx−

m
∑

j=1

(

1− 1

22j

)

B2j

j(2j − 1)x2j−1

= −1

2

∫ ∞

0





2

et/2 + 1
− 1−

m
∑

j=1

(1− 22j)B2j

j(2j − 1)!

(

t

2

)2j−1




e−xt

t
dt, (3.12)

which implies

ψ(x+ 1)− ψ

(

x+
1

2

)

− 1

2x
+

m
∑

j=1

(

1− 1

22j

)

B2j

jx2j

=
1

2

∫ ∞

0





2

et/2 + 1
− 1−

m
∑

j=1

(1− 22j)B2j

j(2j − 1)!

(

t

2

)2j−1


 e−xt dt (3.13)

for x > 0 and m ∈ N0. Formulas (3.12) and (3.13) can provide integral representations for the
constant π. For example, setting (x,m) = (1/2, 0) in (3.12) yields

∫

∞

0

(

1− 2

eu + 1

)

e−u

u
du = ln

(π

2

)

. (3.14)

Setting (x,m) = (1/4, 1) in (3.13) yields
∫ ∞

0

(

2

eu + 1
− 1 +

u

2

)

e−u/2 du = 4− π. (3.15)

Many formulas exist for the representation of π, and a collection of these formulas is listed [42, 43].
For more history of π see [6, 7, 14].

Very recently, Mortici et al. [36] proved some completely monotonic functions and inequalities
associated with the ratio of gamma functions.

4. Asymptotic expansions

Stirling’s formula

n! ∼
√
2πn

(n

e

)n

, n ∈ N := {1, 2, . . .} (4.1)

has many applications in statistical physics, probability theory and number theory. Actually, it
was first discovered in 1733 by the French mathematician Abraham de Moivre (1667–1754) in
the form

n! ∼ constant ·
√
n(n/e)n

when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the
Scottish mathematician James Stirling (1692–1770) found the missing constant

√
2π when he

was trying to give the normal approximation of the binomial distribution.
Stirling’s series for the gamma function is given (see [1, p. 257, Eq. (6.1.40)]) by

Γ(x+ 1) ∼
√
2πx

(x

e

)x

exp

(

∞
∑

m=1

B2m

2m(2m− 1)x2m−1

)

(4.2)

=
√
2πx

(x

e

)x

exp

(

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+ · · ·

)



10 C.-P. CHEN AND R.B. PARIS

as x → ∞, where Bn (n ∈ N0) are the Bernoulli numbers. The following asymptotic formula is
due to Laplace:

Γ(x+ 1) ∼
√
2πx

(x

e

)x
(

1 +
1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ · · ·

)

(4.3)

as x → ∞ (see [1, p. 257, Eq. (6.1.37)]). The expression (4.3) is sometimes incorrectly called
Stirling’s series (see [12, pp. 2-3]). Stirling’s formula is in fact the first approximation to the
asymptotic formula (4.3). Stirling’s formula has attracted much interest of many mathematicians
and have motivated a large number of research papers concerning various generalizations and
improvements (see, for example, [8, 9, 22, 23, 24, 25, 26, 29, 30, 31, 32, 37] and the references
cited therein). See also an overview at [28].

Windschitl (see [5, p. 128] and [49]) had noted that for x > 8, the approximation

Γ(x+ 1) ∼
√
2πx

(x

e

)x
(

x sinh
1

x
+

1

810x6

)x/2

(4.4)

gives at least eight decimal places of the gamma function. The formula (4.4) derives

Γ(x+ 1) =
√
2πx

(x

e

)x
(

x sinh
1

x

)x/2(

1 +O

(

1

x5

))

, x→ ∞. (4.5)

Inspired by (4.4) and (4.5), Alzer [3] proved in 2009 that for all x > 0,

√
2πx

(x

e

)x
(

x sinh
1

x

)x/2
(

1 +
α

x5

)

< Γ(x+1) <
√
2πx

(x

e

)x
(

x sinh
1

x

)x/2(

1 +
β

x5

)

(4.6)

with the best possible constants α = 0 and β = 1/1620.
In 2014, Lu et al. [24] extended Windschitl’s formula as follows:

Γ(n+ 1) ∼
√
2πn

(n

e

)n
(

n sinh

(

1

n
+
a7
n7

+
a9
n9

+
a11
n11

+ · · ·
))n/2

, (4.7)

where

a7 =
1

810
, a9 = − 67

42 525
, a11 =

19

8505
, . . . . (4.8)

However, the authors did not give the general formula for the coefficients aj (j ≥ 7) in (4.7).
Subsequently, Chen [9] gave a recurrence relation formula for determining the coefficient of n−j

(j ∈ N) in (4.7). Also in [9], Chen developed Windschitl’s approximation formula to a new
asymptotic expansion:

Γ(x+ 1) ∼
√
2πx

(x

e

)x
(

x sinh
1

x

)x/2+
∑

∞

j=0 rjx
−j

, x→ ∞, (4.9)

and provided a recurrence relation for determining the coefficients rj in (4.9).
Smith [41, Eq. (43)] presented the following analogous result to (4.5):

Γ

(

x+
1

2

)

=
√
2π
(x

e

)x
(

2x tanh
1

2x

)x/2(

1 +O

(

1

x5

))

, x→ ∞. (4.10)
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Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. We here determine the
coefficients aj ≡ aj(ℓ, r) and dj ≡ dj(ℓ, r) (for j ∈ N) such that

Γ(x+ 1) ∼
√
2πx

(x

e

)x



x sinh
1

x
+

∞
∑

j=1

aj
xj





xℓ/r

and

Γ

(

x+
1

2

)

∼
√
2π
(x

e

)x



2x tanh
1

2x
+

∞
∑

j=1

dj
xj





xℓ/r

as x→ ∞.

Theorem 2. Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The gamma function

has the following asymptotic expansion:

Γ(x+ 1) ∼
√
2πx

(x

e

)x



x sinh
1

x
+

∞
∑

j=1

aj
xj





xℓ/r

, x→ ∞, (4.11)

with the coefficients aj ≡ aj(ℓ, r) (j ∈ N) given by

a2j−1 = b2j−1(ℓ, r), a2j = b2j(ℓ, r)−
1

(2j + 1)!
, (4.12)

where bj(ℓ, r) (j ∈ N) can be calculated using (2.9).

Proof. The Maclaurin expansion of sinh t with t = 1/x gives

x sinh
1

x
= 1 +

∞
∑

j=1

1

(2j + 1)!x2j
, x 6= 0. (4.13)

In view of (2.8) and (4.13), we can let

(

Γ(x + 1)√
2πx(x/e)x

)r/xℓ

− x sinh
1

x
∼

∞
∑

j=1

aj
xj
, x→ ∞, (4.14)

where aj (j ∈ N) are real numbers to be determined. It follows that

∞
∑

j=1

bj
xj

−
∞
∑

j=1

1

(2j + 1)!x2j
∼

∞
∑

j=1

aj
xj
, x→ ∞, (4.15)

where bj ≡ bj(ℓ, r) (j ∈ N) are given in (2.9). Equating coefficients of equal powers of x in (4.15)
yields (4.12). The proof of Theorem 2 is complete. �

Remark 1. Setting (r, ℓ) = (2, 1) in (4.11) yields full asymptotic expansion of Windschitl’s

formula (4.4):

Γ(x+ 1) ∼
√
2πx

(x

e

)x
(

x sinh
1

x
+

1

810x6
− 163

170100x8
+

1019

680400x10
− · · ·

)x/2

(4.16)

as x→ ∞.
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Theorem 3. Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The gamma function

has the following asymptotic expansion:

Γ

(

x+
1

2

)

∼
√
2π
(x

e

)x



2x tanh
1

2x
+

∞
∑

j=1

dj
xj





xℓ/r

, x→ ∞, (4.17)

with the coefficients dj ≡ dj(ℓ, r) (j ∈ N) given by

d2j−1 = c2j−1(ℓ, r), d2j = c2j(ℓ, r) −
4(22j+2 − 1)B2j+2

(2j + 2)!
, (4.18)

where cj(ℓ, r) (j ∈ N) can be calculated using (2.11).

Proof. The power series expansion of tanh t with t = 1/(2x) gives

2x tanh
1

2x
= 1 +

∞
∑

j=2

4(22j − 1)B2j

(2j)!

1

x2j−2
, |x| > 1

π
. (4.19)

In view of (2.10) and (4.19), we can let

(

Γ(x+ 1
2 )√

2π(x/e)x

)r/xℓ

− 2x tanh
1

2x
∼

∞
∑

j=1

dj
xj
, x→ ∞, (4.20)

where dj (j ∈ N) are real numbers to be determined. It follows that

∞
∑

j=1

cj
xj

−
∞
∑

j=1

4(22j+2 − 1)B2j+2

(2j + 2)!

1

x2j
∼

∞
∑

j=1

dj
xj
, x→ ∞, (4.21)

where cj ≡ cj(ℓ, r) (j ∈ N) are given in (2.11). Equating coefficients of equal powers of x in (4.21)
yields (4.18). The proof of Theorem 3 is complete. �

Remark 2. Setting (r, ℓ) = (2, 1) in (4.17) yields the following full asymptotic expansion:

Γ

(

x+
1

2

)

∼
√
2π
(x

e

)x
(

2x tanh
1

2x
− 31

25920x6
+

6829

5443200x8
− · · ·

)x/2

(4.22)

as x→ ∞.

From (4.5) and (4.10), we derive

Γ(x+ 1)

Γ
(

x+ 1
2

) ∼
√
x

(

cosh
1

2x

)x(

1 +O

(

1

x5

))

, x→ ∞.

This fact motivated us to observe the following

Theorem 4. Let r 6= 0 be a given real number and ℓ ≥ 0 be a given integer. The following

asymptotic expansion holds:

Γ(x+ 1)

Γ
(

x+ 1
2

) ∼
√
x



cosh
1

2x
+

∞
∑

j=1

qj
xj





xℓ/r

, x→ ∞, (4.23)

with the coefficients qj ≡ qj(ℓ, r) (j ∈ N) given by

q2j−1 = p2j−1(ℓ, r), q2j = p2j(ℓ, r)−
1

22j(2j)!
, (4.24)

where pj(ℓ, r) (j ∈ N) can be calculated using (2.17).
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Proof. The Maclaurin expansion of cosh t with t = 1/(2x) gives

cosh
1

2x
= 1 +

∞
∑

j=1

1

22j(2j)!

1

x2j
, |x| 6= 0. (4.25)

In view of (2.16) and (4.25), we can let

(

Γ(x+ 1)√
xΓ(x+ 1

2 )

)r/xℓ

− cosh
1

2x
∼

∞
∑

j=1

qj
xj
, x→ ∞, (4.26)

where qj (j ∈ N) are real numbers to be determined. It follows that

∞
∑

j=1

pj
xj

−
∞
∑

j=1

1

22j(2j)!

1

x2j
∼

∞
∑

j=1

qj
xj
, x→ ∞, (4.27)

where pj ≡ pj(ℓ, r) (j ∈ N) are given in (2.17). Equating coefficients of equal powers of x in
(4.27) yields (4.24). The proof of Theorem 3 is complete. �

Remark 3. Setting (r, ℓ) = (1, 1) in (4.23) yields the following full asymptotic expansion:

Γ(x+ 1)

Γ
(

x+ 1
2

) ∼
√
x

(

cosh
1

2x
+

7

5760x6
− 65

64512x8
+ · · ·

)x

, x→ ∞. (4.28)

5. Inequalities

Theorem 5. For x > 0,

√
x

(

cosh
1

2x

)x (

1 +
θ1
x5

)

<
Γ(x+ 1)

Γ
(

x+ 1
2

) <
√
x

(

cosh
1

2x

)x(

1 +
θ2
x5

)

(5.1)

with the best possible constants

θ1 = 0 and θ2 =
7

5760
. (5.2)

Proof. We first prove the inequality (5.1) with θ1 = 0 and θ2 = 7
5760 . That is

√
x

(

cosh
1

2x

)x

<
Γ(x+ 1)

Γ
(

x+ 1
2

) <
√
x

(

cosh
1

2x

)x (

1 +
7

5760x5

)

, x > 0. (5.3)

Lambert’s continued fraction [47, p. 349]

tanh(z) =
z

1 + z2

3+ z2

5+ z2
7+···

is valid for all values of z. Hence for x > 0,

6x

12x2 + 1
=

1/(2x)

1 + (1/(2x))2

3

< tanh
1

2x
<

1/(2x)

1 + (1/(2x))2

3+ (1/(2x))2

5

=
60x2 + 1

12x(10x2 + 1)
. (5.4)

The proof of the inequality (5.3) make use of the inequality (5.4).
The lower bound in (5.3) is obtained by considering the function f(x) defined for x > 0 by

f(x) = ln Γ(x+ 1)− ln Γ

(

x+
1

2

)

− 1

2
lnx− x ln

(

cosh
1

2x

)

.
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Differentiation yields

f ′(x) = ψ(x + 1)− ψ

(

x+
1

2

)

− 1

2x
− ln

(

cosh
1

2x

)

+
1

2x
tanh

1

2x
(5.5)

and

f ′′(x) = ψ′(x+ 1)− ψ′

(

x+
1

2

)

+
1

2x2
− 1

4x3
+

1

4x3

(

tanh
1

2x

)2

> ψ′(x+ 1)− ψ′

(

x+
1

2

)

+
1

2x2
− 1

4x3
+

1

4x3

(

6x

12x2 + 1

)2

=: g(x),

by applying the left-hand inequality of (5.4). By using the recurrence formula

ψ′(x+ 1) = ψ′(x) − 1

x2
, (5.6)

we find that

g(x)− g(x+ 1) =
h(x)

4x3(12x2 + 1)2(x+ 1)3(2x+ 1)2(12x2 + 24x+ 13)2

with

h(x) = 1540909+ 8983929(x− 1) + 22585735(x− 1)2 + 32006952(x− 1)3

+ 27981444(x− 1)4 + 15459984(x− 1)5 + 5274000(x− 1)6

+ 1016064(x− 1)7 + 84672(x− 1)8.

Hence, for x ≥ 1,

g(x) > g(x+ 1) and g(x) > g(x+ n).

Therefore, for x ≥ 1,

g(x) > lim
n→∞

g(x+ n) = 0 and f ′′(x) > 0.

We then obtain that

f ′(x) < lim
t→∞

f ′(t) = 0 for x ≥ 1. (5.7)

We now show that (5.7) is also valid for 0 < x ≤ 1. It follows from (5.5) that

−f ′(x) = y1(x) + y2(x)

with

y1(x) = ln

(

cosh
1

2x

)

− 1

2x
tanh

1

2x

and

y2(x) = −ψ(x+ 1) + ψ

(

x+
1

2

)

+
1

2x
.

Differentiation yields

y′1(x) =
1

4x3
(

cosh 1
2x

)2 > 0.

Using the following representations:

ψ(x) =

∫ ∞

0

(

e−t

t
− e−xt

1− e−t

)

dt
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in [1, p. 259, 6.3.21] and

1

x
=

∫

∞

0

e−xtdt,

we conclude that

y2(x) =

∫

∞

0

(

1

2
− 1

et/2 + 1

)

e−xtdt

and

y′2(x) = −
∫ ∞

0

(

1

2
− 1

et/2 + 1

)

te−xtdt < 0.

Let 0 ≤ r ≤ x ≤ s ≤ 1. Since y1(x) is increasing and y2(x) is decreasing, we obtain

−f ′(x) ≥ y1(r) + y2(s) =: σ1(r, s).

We divide the interval [0, 1] into 100 subintervals:

[0, 1] =

99
⋃

k=0

[

k

100
,
k + 1

100

]

> 0 for k = 0, 1, 2, . . . , 99.

By direct computation we get

σ1

(

k

100
,
k + 1

100

)

> 0 for k = 0, 1, 2, . . . , 99.

Hence,

−f ′(x) > 0 for x ∈
[

k

100
,
k + 1

100

]

and k = 0, 1, 2, . . . , 99.

This implies that f ′(x) is negative on (0, 1].
We then obtain that for all x > 0,

f(x) > lim
t→∞

f(t) = 0.

This means that the first inequality in (5.3) holds for x > 0.
The upper bound in (5.3) is obtained by considering the function u(x) defined for x > 0 by

u(x) = ln Γ(x+ 1)− ln Γ

(

x+
1

2

)

− 1

2
lnx− x ln

(

cosh
1

2x

)

− ln

(

1 +
7

5760x5

)

.

Differentiation yields

u′(x) = ψ(x + 1)− ψ

(

x+
1

2

)

− 1

2x
− ln

(

cosh
1

2x

)

+
1

2x
tanh

1

2x
+

35

x(5760x5 + 7)
(5.8)

and

u′′(x) = ψ′(x+ 1)− ψ′

(

x+
1

2

)

+
1

2x2
− 1

4x3
+

1

4x3

(

tanh
1

2x

)2

− 35(34560x5 + 7)

x2(5760x5 + 7)2

< ψ′(x+ 1)− ψ′

(

x+
1

2

)

+
1

2x2
− 1

4x3

+
1

4x3

(

60x2 + 1

12x(10x2 + 1)

)2

− 35(34560x5 + 7)

x2(5760x5 + 7)2
=: v(x),
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by applying the right-hand inequality of (5.4). By using the recurrence formula (5.6), we find
that

v(x)− v(x + 1) = − w1(x)

576w2(x)

with

w1(x) = 868270269104794924464036897+ 18765499992969382192107571641(x− 1)

+ · · ·+ 14820540300656640000000(x− 1)30

has all coefficients positive, and

w2(x) = x5(10x2 + 1)2(5760x5 + 7)2(x+ 1)5(2x+ 1)2(10x2 + 20x+ 11)2

× (5760x5 + 28800x4 + 57600x3 + 57600x2 + 28800x+ 5767)2.

Hence, for x ≥ 1,

v(x) < v(x+ 1) and v(x) < v(x+ n).

Therefore, for x ≥ 1,

v(x) < lim
n→∞

v(x+ n) = 0 and u′′(x) < 0.

We then obtain that

u′(x) > lim
t→∞

u′(t) = 0 for x ≥ 1. (5.9)

We now show that (5.9) is also valid for 0 < x ≤ 1. It follows from (5.8) that

u′(x) = y3(x) + y4(x),

where y3(x) = −y2(x) and

y4(x) = − ln

(

cosh
1

2x

)

+
1

2x
tanh

1

2x
+

35

x(5760x5 + 7)
.

Differentiation yields

y′4(x) = − 1

4x3
(

cosh 1
2x

)2 − 35(34560x5 + 7)

x2(5760x5 + 7)2
< 0.

Let 0 ≤ r ≤ x ≤ s ≤ 1. Since y3(x) is increasing and y4(x) is decreasing, we obtain

u′(x) ≥ y3(r) + y4(s) =: σ2(r, s).

The same as above, we divide the interval [0, 1] into 100 subintervals. By direct computation we
get

σ2

(

k

100
,
k + 1

100

)

> 0 for k = 0, 1, 2, . . . , 99.

Hence,

u′(x) > 0 for x ∈
[

k

100
,
k + 1

100

]

and k = 0, 1, 2, . . . , 99.

This implies that u′(x) is positive on (0, 1].
We then obtain that for all x > 0,

u(x) < lim
t→∞

u(t) = 0.

This means that the second inequality in (5.3) holds for x > 0.
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The inequality (5.1) can be written as

θ1 < x5

[

Γ(x+ 1)
√
xΓ
(

x+ 1
2

) (

cosh 1
2x

)x − 1

]

< θ2, x > 0.

We find that

θ1 ≤ lim
x→0+

x5

[

Γ(x+ 1)√
xΓ
(

x+ 1
2

) (

cosh 1
2x

)x − 1

]

= 0

and

lim
x→∞

x5

[

Γ(x+ 1)
√
xΓ
(

x+ 1
2

) (

cosh 1
2x

)x − 1

]

=
7

5760
≤ θ2.

Hence, inequality (5.1) holds with the best possible constants given in equation (5.2). The proof
of Theorem 5 is complete. �

Remark 4. From (5.3), we derive new inequality for the constant π:
(

1√
n
(

cosh 1
2n

)n (
1 + 7

5760n5

)

(2n)!!

(2n− 1)!!

)2

< π <

(

1√
n
(

cosh 1
2n

)n
(2n)!!

(2n− 1)!!

)2

(5.10)

for n ∈ N.

Theorem 6. For x ≥ 1,

√
2π
(x

e

)x
(

2x tanh
1

2x

)x/2(

1− 31

51840x5

)

< Γ

(

x+
1

2

)

<
√
2π
(x

e

)x
(

2x tanh
1

2x

)x/2

.

(5.11)

Proof. From the well-known continued fraction for ψ′ (see [47, p. 373])

ψ′

(

x+
1

2

)

=
1

x+ a1

x+
a2

x+···

, x > 0,

where

ap =
p4

4(2p− 1)(2p+ 1)
, p = 1, 2, . . . ,

we find that x > 0,

20x(84x2 + 71)

3(560x4 + 520x2 + 27)
=

1

x+
1
12

x+
4
15

x+

81
140
x

< ψ′

(

x+
1

2

)

<
1

x+
1
12

x+
4
15
x

=
4(15x2 + 4)

3x(20x2 + 7)
.

(5.12)

The proof of the inequality (5.11) make use of the inequalities (2.22) and (5.12).
The upper bound in (5.11) is obtained by considering the function U(x) defined for x ≥ 1 by

U(x) = ln Γ

(

x+
1

2

)

− ln(
√
2π)− x ln x+ x− x

2
ln(2x)− x

2
ln

(

tanh
1

2x

)

.

Differentiation yields

U ′(x) = ψ

(

x+
1

2

)

− 3

2
lnx− 1

2
− 1

2
ln 2− 1

2
ln

(

tanh
1

2x

)

+
1

2x sinh 1
x

.
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Differentiating U ′(x) and applying the inequalities (2.22) and (5.12) yield

U ′′(x) = ψ′

(

x+
1

2

)

+
cosh 1

x

x3(cosh 2
x − 1)

− 3

2x

<
4(15x2 + 4)

3x(20x2 + 7)
+

1

2x
+

1

12x3
− 7

240x5
+

31

6048x7
− 3

2x

= − 3074x2 − 1085

30240x7(20x2 + 7)
< 0 for x ≥ 1.

We then obtain that for x ≥ 1,

U ′(x) > lim
t→∞

U ′(t) = 0 =⇒ U(x) < lim
t→∞

U(t) = 0.

This means that the second inequality in (5.11) holds for x ≥ 1.
The lower bound in (5.11) is obtained by considering the function F (x) defined for x ≥ 1 by

F (x) = ln Γ

(

x+
1

2

)

− ln(
√
2π)− x ln x+ x− x

2
ln(2x)

− x

2
ln

(

tanh
1

2x

)

− ln

(

1− 31

51840x5

)

.

Differentiation yields

F ′(x) = ψ

(

x+
1

2

)

− 3

2
lnx− 1

2
− 1

2
ln 2− 1

2
ln

(

tanh
1

2x

)

+
1

2x sinh 1
x

− 155

x(51840x5 − 31)
.

Differentiating F ′(x) and applying the inequalities (2.22) and (5.12) yield

F ′′(x) = ψ′

(

x+
1

2

)

+
cosh 1

x

x3(cosh 2
x − 1)

− 8062156800x11 − 96422400x5 − 9642240x6 + 2883x+ 9610

2x2(51840x5 − 31)2

>
20x(84x2 + 71)

3(560x4 + 520x2 + 27)
+

1

2x
+

1

12x3
− 7

240x5
+

31

6048x7
− 127

172800x9

− 8062156800x11 − 96422400x5 − 9642240x6 + 2883x+ 9610

2x2(51840x5 − 31)2

=
G(x)

1209600x9(560x4 + 520x2 + 27)(51840x5 − 31)2
,
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where

G(x) =35836321468874877+ 500332411677183040(x− 1)

+ 3243650443203650720(x− 1)2 + 12942574029209436800(x− 1)3

+ 35510225676993688800(x− 1)4 + 70870406789351495040(x− 1)5

+ 106102603246810676800(x− 1)6 + 121054817642726534400(x− 1)7

+ 105767748316645632000(x− 1)8 + 70425167657151744000(x− 1)9

+ 35177843816429875200(x− 1)10 + 12782474258840064000(x− 1)11

+ 3194045448118272000(x− 1)12 + 491271286947840000(x− 1)13

+ 35090806210560000(x− 1)14.

Hence, F ′′(x) > 0 for x ≥ 1. We then obtain that for x ≥ 1,

F ′(x) < lim
t→∞

F ′(t) = 0 =⇒ F (x) > lim
t→∞

F (t) = 0.

This means that the first inequality in (5.11) holds for x ≥ 1. The proof of Theorem 6 is
complete. �

Remark 5. Some computer experiments indicate that for x > 0,

√
2π
(x

e

)x
(

2x tanh
1

2x

)x/2(

1− ϑ1
x5

)

< Γ

(

x+
1

2

)

<
√
2π
(x

e

)x
(

2x tanh
1

2x

)x/2(

1− ϑ2
x5

)

(5.13)

with the best possible constants ϑ1 = 31
51840 and ϑ2 = 0.

Although the double inequality (5.11) is given only for x ≥ 1, its main utility is in the evaluation

of Γ
(

x+ 1
2

)

for large values of the argument.

References

[1] M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Applied Mathematics Series 55, Ninth printing, National Bureau of Standards, Wash-
ington, D.C., 1972.

[2] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997) 373–389.
[3] H. Alzer, Sharp upper and lower bounds for the gamma function, Proc. Royal Soc. Edinburgh 139A (2009)

709–718.
[4] H. Alzer, C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002)

445–460.
[5] G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook, Part IV, Springer Science Business Media New

York 2013.
[6] P. Beckmann, A History of Pi, St. Martin’s Press, New York, New York, 1971.
[7] L. Berggren, J. Borwein, P. Borwein, eds., Pi: A Source Book, 2nd ed., Springer, New York, 2000.
[8] C.-P. Chen, Unified treatment of several asymptotic formulas for the gamma function, Numer. Algor. 64

(2013) 311–319.
[9] C.-P. Chen, Asymptotic expansions of the gamma function related to Windschitl’s formula, Appl. Math.

Comput. 245 (2014) 174–180.

[10] C.-P. Chen, L. Lin, Remarks on asymptotic expansions for the gamma function, Appl. Math. Lett. 25 (2012)
2322–2326.

[11] C.-P. Chen, F. Qi, The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc. 133 (2005) 397–401.
[12] E.T. Copson. Asymptotic Expansions, Cambridge University Press, 1965.



20 C.-P. CHEN AND R.B. PARIS
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