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Abstract

In this note we state (with minor corrections) and give an alternative
proof of a very general hypergeometric transformation formula due to
Slater. As an application, we obtain a new hypergeometric transforma-
tion formula for a 5F4(−1) series with one pair of parameters differing
by unity expressed as a linear combination of two 3F2(1) series.
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1 Introduction

The generalized hypergeometric function with p numeratorial and q denomi-
natorial parameters is defined by the series [7, p. 41]

pFq

[

a1, a2, . . . , ap
b1, b2, . . . , bq

; z

]

=
∞
∑

n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

zn

n!
, (1.1)
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where for nonnegative integer n the Pochhammer symbol (or ascending facto-
rial) is defined by (a)0 = 1 and for n ≥ 1 by (a)n = a(a + 1) . . . (a + n − 1).
When p ≤ q the above series on the right-hand side of (1.1) converges for
|z| < ∞, but when p = q + 1 convergence occurs when |z| < 1 (unless the
series terminates).

By employing Bailey’s transform of double series, Slater [7, p. 60, Eq.
(2.4.10)] derived the following very general hypergeometric transformation for-
mula (written here in corrected form)

∞
∑

n=0

((a))n((d))n((v))2n
((h))n((g))n((f))2n n!

xnynz2n×U+D+V FE+F+G

[

(u), (d) + n, (v) + 2n
(e), (g) + n, (f) + 2n

; xwz

]

=
∞
∑

n=0

((d))n((u))n((v))n
((e))n((f))n((g))n n!

xnwnzn

×A+E+V+1FU+H+F

[

−n, (a), 1− n− (e), (v) + n

(h), 1− n− (u), (f) + n
; (−1)1+E−Uw−1yz

]

, (1.2)

where we have adopted the convention of writing the finite sequence of pa-
rameters (a1, . . . , aA) simply by (a) and the product of Pochhammer symbols
by

((a))n ≡ (a1)n . . . (aA)n,

where an empty product is understood to be unity. The general result (1.2)
contains as special cases very many relationships between generalized hyper-
geometric functions.

Several interesting special cases of (1.2) have been obtained by Exton [1, 2].
In particular, he gave the transformation [2]

∞
∑

n=0

((g))n(c)n(d)n
((h))n(f)2n

xnyn

n!
× 2F1

[

c+ n, d+ n

f + 2n
; x

]

=
∞
∑

n=0

(c)n(d)n
(f)n

xn

n!
× G+1FH+1

[

−n,

f + n,

(g)
(h)

;−y

]

.

(1.3)
This result follows from (1.2) by setting the parameters (e), (g), (u), (v) = 0,
(d) = (c, d), replacing (a) by (g) and letting w = z = 1.

Hypergeometric identities and transformation formulas have wide applica-
tions in numerous areas of mathematics including in series systems of symbolic
computer algebra manipulation. A list of such useful identities and transfor-
mation formulas can be found in Slater’s book [7, Appendix III]. We have the
following known hypergeometric identities:

4F3

[

a, 1 + 1
2
a, b, c

1
2
a, 1 + a− b, 1 + a− c

; 1

]
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=
Γ(1 + a− b)Γ(1 + a− c)Γ(1

2
a+ 1

2
)Γ(1

2
a− b− c+ 1

2
)

Γ(1 + a)Γ(1 + a− b− c)Γ(1
2
a− b+ 1

2
)Γ(1

2
a− c+ 1

2
)

(1.4)

provided ℜ(a− 2b− 2c) > −1, and

5F4

[

a, 1 + 1
2
a, b, c, d

1
2
a, 1 + a− b, 1 + a− c, 1 + a− d

; 1

]

=
Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− b− c− d)

Γ(1 + a)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)
(1.5)

provided ℜ(a − b − c − d) > −1. If we put c = −n in (1.4) and d = −n in
(1.5), where n is a non-negative integer, we have the terminating forms

4F3

[

−n, a, 1 + 1
2
a, b

1
2
a, 1 + a− b, 1 + a− c

; 1

]

=
(1 + a)n(

1
2
+ 1

2
a− b)n

(1
2
+ 1

2
a)n(1 + a− b)n

(1.6)

and

5F4

[

−n, a, 1 + 1
2
a, b, c

1
2
a, 1 + a− b, 1 + a− c, 1 + a− d

; 1

]

=
(1 + a)n(1 + a− b− c)n
(1 + a− b)n(1 + a− c)n

.

(1.7)
Furthermore, by taking x = 1 in (1.3) and making use of Gauss’ summation

theorem, Exton [2] obtained the following transformation formula

G+2FH+2

[

(g),
(h),

c, d

f − c, f − d
; y

]

=
Γ(f − c)Γ(f − d)

Γ(f)Γ(f − c− d)

∞
∑

n=0

(c)n(d)n
(f)nn!

G+1FH+1

[

−n,

f + n,

(g)
(h)

;−y

]

(1.8)

When G = H + 1, this result holds for |y| ≤ 1 when the parameters are
such that the series on the left is defined and is convergent. Using the results
(1.6) and (1.7) in (1.8), he then deduced the following known hypergeometric
identity:

5F4

[

a, 1 + 1
2
a, b, c, d

1
2
a, 1 + a− b, 1 + a− c, 1 + a− d

;−1

]

=
Γ(1 + a− c)Γ(1 + a− d)

Γ(1 + a)Γ(1 + a− c− d)
3F2

[

c, d, 1
2
+ 1

2
a− b

1
2
+ 1

2
a, 1 + a− b

; 1

]

.

(1.9)
Again, it is tacitly assumed that the hypergeometric series in (1.9) is con-
vergent. This requires that the parametric excess s, which is defined as the
difference between the sum of denominator and numerator parameters, should
satisfy ℜ(s) > −1 when y = −1 and ℜ(s) > 0 when y = 1.
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Recently, some progress has been achieved in generalizing various hyperge-
ometric identities; for this we refer to the papers cited in [3, 5]. In 2010, Kim
et al. [3] generalized several well-known identities and in particular obtained
the following result involving one pair of numeratorial and denominatorial pa-
rameters differing by unity:

4F3

[

a, b, c, d+ 1
1 + a− b, 1 + a− c, d

; 1

]

=
Γ(1 + a− b)Γ(1 + a− c)

Γ(1 + a)Γ(1 + a− b− c)

×

{

a

2d

Γ(1
2
+ 1

2
a)Γ(1

2
+ 1

2
a− b− c)

Γ(1
2
+ 1

2
a− b)Γ(1

2
+ 1

2
a− c)

+
(

1−
a

2d

)

Γ(1 + 1
2
a) Γ(1 + 1

2
a− b− c)

Γ(1 + 1
2
a− b)Γ(1 + 1

2
a− c)

}

(1.10)
provided ℜ(a − 2b− 2c) > −1 and d 6= 0,−1,−2, . . . . The result (1.10) may
be regarded as a generalization of (1.5).

The aim in this note is to provide first another method of derivation of
Slater’s general transformation in (1.2) and to point out two significant mis-
prints in [7, p. 60, Eq. (2.4.10)]. As an application, we give a generalization of
the 5F4(−1) summation in (1.9) to the case when a pair of numeratorial and
denominatorial parameters differ by unity. Our result will be established with
the help of Exton’s transformation formula (1.8) and the summation in (1.10).

2 Derivation of (1.2)

In order to derive (1.2) we proceed as follows. Denoting the left-hand side of
(1.2) by S and expressing the hypergeometric functions U+D+V FE+F+G in its
series form, we find after some simplification

S =
∞
∑

n=0

∞
∑

m=0

((a))n((u))m
((h))n((e))m

((d))n+m((v))2n+m

((g))n+m((f))2n+m

xn+mynwmz2n+m

n!m!
,

where we have made use of the elementary identities

((α))n((α) + n)m = ((α))n+m, ((α))2n((α) + 2n)m = ((α))2n+m.

We now replace m by m− n and apply the result [4, p. 56, Lemma 10(1)]

∞
∑

n=0

∞
∑

k=0

A(k, n) =
∞
∑

n=0

n
∑

k=0

A(k, n− k)

for convergent double series, to obtain

S =
∞
∑

m=0

m
∑

n=0

((a))n((u))m−n

((h))n((e))m−n

((d))m((v))n+m

((g))m((f))n+m

xmynwm−nzn+m

n! (m− n)!
.



A hypergeometric transformation formula 221

Employing the identity ((α))n+m = ((α))m((α) +m)n, together with

(α)m−n =
(−1)n(α)m

(1− α−m)n
, (m− n)! =

(−1)nm!

(−m)n
,

we then find

S =
∞
∑

m=0

m
∑

n=0

((d))m((v))m((v) +m)n((a))n((u))m−n

((g))m((f))m((f) +m)n((h))n((e))m−n

xmynwm−nzm+n

n! (m− n)!

=
∞
∑

m=0

((d))m((v))m((u))m
((g)m((f))m((e))m

xmwmzm

m!

×
m
∑

n=0

(−m)n(1− (e)−m)n((a))n((v) +m)n
(1− (u))n((h))n((f) +m)n

(−1)(1+E−U)nw
−nynzn

n!
.

Finally, expressing the inner series as a hypergeometric function, we easily
arrive at the right-hand side of (1.2). This completes the proof of the trans-
formation formula (1.2).

3 A new transformation formula

The transformation formula for the 5F4(1) series with a pair of numeratorial
and denominatorial parameters differing by unity to be established is given by
the following theorem.

Theorem 1. For e 6= 0,−1,−2, . . . , the following summation holds true

5F4

[

a, b, c, d, 1 + e

1 + a− b, 1 + a− c, 1 + a− d, e
;−1

]

=
Γ(1 + a− c)Γ(1 + a− d)

Γ(1 + a)Γ(1 + a− c− d)

{

a

2e
3F2

[

c, d, 1
2
+ 1

2
a− b

1
2
+ 1

2
a, 1 + a− b

; 1

]

+
(

1−
a

2e

)

3F2

[

c, d, 1 + 1
2
a− b

1 + 1
2
a, 1 + a− b

; 1

]}

(3.1)

provided ℜ(a− c− d) > max{−1,ℜ(b)− 3
2
}.

Proof. Our derivation follows in a straightforward manner from Exton’s trans-
formation formula (1.8). If we take y = −1, G = 3, H = 2, g1 = a, g2 = 1+ e,
g3 = b, h1 = e, h2 = 1 + a − b and f = 1 + a in (1.8), we obtain after some
simplification

F ≡ 5F4

[

a, b, c, d, 1 + e

1 + a− b, 1 + a− c, 1 + a− d, e
;−1

]
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=
Γ(1 + a− c)Γ(1 + a− d)

Γ(1 + a)Γ(1 + a− c− d)

∞
∑

n=0

(c)n(d)n
(1 + a)nn!

4F3

[

−n, a, b, 1 + e

1 + a− b, 1 + a+ n, e
; 1

]

.

(3.2)
The terminating 4F3(1) series appearing on the right-hand side of (3.2) can

be evaluated with the help of the summation in (1.10). If we take c = −n in
this latter summation formula, where n is a non-negative integer, we have

4F3

[

−n, a, b, d+ 1
1 + a− b, 1 + a + n, d

; 1

]

=
(1 + a)n

(1 + a− b)n

{

a

2d

(1
2
+ 1

2
a− b)n

(1
2
+ 1

2
a)n

+
(

1−
a

2d

)

(1 + 1
2
a− b)n

(1 + 1
2
a)n

}

. (3.3)

It is of interest to mention parenthetically that, when d = 1
2
a, (1.10) and (3.3)

reduce to (1.4) and (1.6) respectively. Then we find that

F =
Γ(1 + a− c)Γ(1 + a− d)

Γ(1 + a)Γ(1 + a− c− d)

{

a

2e

∞
∑

n=0

(c)n(d)n(
1
2
+ 1

2
a− b)n

(1
2
+ 1

2
a)n(1 + a− b)nn!

+
(

1−
a

2e

) ∞
∑

n=0

(c)n(d)n(1 +
1
2
a− b)n

(1 + 1
2
a)n(1 + a− b)nn!

}

.

Identification of the resulting series on the right-hand side as 3F2(1) series then
leads to the result stated in (3.1). The convergence of the hypergeometric series
appearing on the left and right-hand sides of (3.1) requires ℜ(a−b−c−d) > −3

2

and ℜ(a−c−d) > −1, respectively; combination of these two conditions yields
the stated condition following (3.1). This completes the proof of the theorem.

If we put e = 1
2
a in (3.1), we recover Exton’s result in (1.9). Thus (3.1)

may be regarded as a generalization of (1.9), which we hope may prove to be
of interest.

Further, if d = 1 + a− b in (3.1), we find

3F2

[

a, c, 1 + e

1 + a− c, e
;−1

]

=
Γ(1 + a− c)

Γ(1 + a)

{

a

2e
2F1

[

c, 1
2
+ 1

2
a− b

1
2
+ 1

2
a

; 1

]

+
(

1−
a

2e

)

2F1

[

c, 1 + 1
2
a− b

1 + 1
2
a

; 1

]}

=
Γ(1 + a− c)

Γ(1 + a)

{

a

2e

Γ(1
2
+ 1

2
a)

Γ(1
2
+ 1

2
a− c)

+
(

1−
a

2e

)

Γ(1 + 1
2
a)

Γ(1 + 1
2
a− c)

}

(3.4)

provided ℜ(c) < 1
2
. [We note that in the evaluation of the 2F1(1) series by

Gauss’ theorem we need the dummy condition ℜ(b − c) > 0.] This formula
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has been obtained by different means in [3, Eq. (5.10)] and [6, Eq. (4.7)]. If
e = 1

2
a, (3.4) reduces to the summation formula given in [7, p. 245, III.21]; if,

in addition, c = −n, where n is a non-negative integer, (3.4) reduces to (III.25)
in [7, p. 245].
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