
Improved Production of ethanol using bagasse from different 
sorghum cultivars 

Muhammad Nasidi, Reginald Agu, Yusuf Deeni, Graeme Walker

NOTICE: this is the author’s version of a work that was accepted for publication 
in Biomass and Bioenergy. Changes resulting from the publishing process, such 
as peer review, editing, corrections, structural formatting, and other quality 
control mechanisms may not be reflected in this document. Changes may have 
been made to this work since it was submitted for publication. A definitive 
version was subsequently published in Biomass and Bioenergy, Vol. 72, (2015). 
DOI: http://dx.doi.org/10.1016/j.biombioe.2014.10.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228177335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Improved Production of ethanol using bagasse from different sorghum 

cultivars  

Muhammad Nasidi a 
Email: 0804821@live.abertay.ac.uk 

Reginald Agu b 
Email: reg.agu@swri.co.uk 

Yusuf Deeni a 
Email: y.deeni@abertay.ac.uk 

Graeme Walker a* 
Email: g.walker@abertay.ac.uk 

aSchool of Contemporary Sciences,  Abertay University, Bell street, Dundee, DD1 
1HG, Scotland. 

bThe Scotch Whisky Research Institute, The Robertson Trust Building, 
Edinburgh, EH14 4AP, Scotland. 

*Corresponding Author; Tel.: +44 1382 308658, Fax: +44 1382 308261
Email: g.walker@ abertay.ac.uk 

Abstract 

For improved production of ethanol from whole sorghum residues, physico-chemical 
compositions and fermentation characteristics of the substrates are important factors 
to consider. In the present study, Nigerian sorghum cultivars SSV2, KSV8 and KSV3 
were grown under rain-fed conditions without chemical fertilization in Kano state, 
Nigeria. On harvest, the whole sorghum residues (bagasse) comprising crushed 
stalks, leaves, panicles and peduncles were collected for further processing. 
Bagasse samples, which had different macromolecular composition and 
carbohydrate pasting properties,  were pre-treated with dilute sulphuric acid at 75oC 
followed by enzymatic hydrolysis and sequential detoxification by Ca(OH)2 over-
liming and charcoal filtration. Hydrolysate samples were subsequently fermented 
with the yeasts, Saccharomyces cerevisiae and Pachysolen tannophilus. Sugar 
consumption, carbon dioxide evolution and ethanol production were shown to vary 
depending on the sorghum cultivar type. While KSV3 yielded most favourable 
biomass of 37 t ha-1 (dry basis), Bagasse from cultivar SSV2 yielded the most 
favourable level of sugars (69 g/100g) after enzymatic hydrolysis, and also 
consistently exhibited improved fermentation performance. Detoxification of pre-
treated sorghum bagasse to remove potential yeast inhibitors resulted in 
improvement in ethanol yield, with  23 g L-1 ethanol (representing 72% of theoretical 
yield) being achieved from SSV2 bagasse following fermentation with P. tannophilus 
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without exogenous nutrient supplementation. Our findings reveal that the choice of 
sorghum cultivar is important when converting bagasse to ethanol, and further that 
pretreatment with dilute acid at moderate temperature followed by detoxification 
improves fermentation kinetics and ethanol yield. 

Keywords: Sorghum bagasse, Fermentation kinetics, Bagasse hydrolysis, 

Detoxification, Carbon dioxide, Bioethanol. 

1.0 Introduction. 

Plant biomass is the conventional sugar source for bioconversion to ethanol by yeast 

[1]. Stalk juice from sugarcane, starch from grains/tubers and lignocellulose from 

crop residues represent valuable fermentable sugar sources for bioethanol destined 

for use as a liquid transportation fuel [2,3]. 

Sorghum is a high biomass yielding cereal which is a water efficient crop that can be 

grown in 2-3 crop cycles per annum [4].Typical lignocellulose residues from sorghum 

harvest comprise crushed stalks (after juice extraction), panicles, peduncles and 

leaves. The sorghum lignocellulosic biomass usually comprises 25-27% 

hemicellulose, 34-44% cellulose and 18-21% lignin [5,6]. Cellulose and 

hemicellulose are polysaccharide polymers intertwined by tough lignin fibre [7]. 

Lignin acts as a barrier to efficient enzymatic hydrolysis of the cellulose and 

hemicellulose polysaccharides [8]. Previous studies [9,10,11,12,13,14] have 

investigated various pre-treatment methods designed to facilitate enzymatic 

hydrolysis of sorghum cellulose and hemicellulose polymers to fermentable sugars 

[6,15,16]. For example, sulphuric acidic pre-treatment appears economically 

attractive as a low cost pre-treatment option for commercial scale cellulosic 

bioethanol production [5,17]. However, the method typically requires high 

temperatures and/or extreme pH levels for effective degradation of lignin [15,18]. 
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Consequently, a range of lignocellulose degradation by-products are generated 

including phenolic compounds from lignin and acetic acid derived from deacetylation 

of hemicellulose xylose side chains. In addition, formic acid is generated from the 

degradation of furfural or 5-hydroxymethyl furfural [19]. The individual or synergistic 

effects of these compounds on yeast include extended fermentation lag time and 

inefficient yeast metabolism resulting in reduced ethanol yield [19,20]. Dilute acid 

pre-treatment has the benefit of being less corrosive to handle and moderate 

hydrolysis temperatures will minimise cost of process energy requirement, in addition 

to preserving the substrate's nitrogenous content. 

In this study, we investigated bioconversion of residues from different Nigerian 

sorghum cultivars for bioethanol production. SSV2, KSV8 and KSV3 are relatively 

high grain yielding sorghum cultivars that have similar numbers of crop cycles per 

year.  Previous work has investigated bioconversion of crushed stalks and/or leaves 

of sorghum to ethanol under various pre-treatments and fermentation conditions 

[21,22]. However, the current study focused on the fermentation characteristics of 

whole sorghum residue (bagasse) after dilute acid pre-treatment at moderate 

temperature and enzymatic hydrolysis. We also investigated the effects of 

detoxifying the resultant bagasse hydrolysates on the fermentation performance with 

the yeast species Saccharomyces cerevisiae and Pachysolen tannophilus. 

2.0 Materials and Methods 

2.1 Sorghum crop cultivation and harvest 

SSV2, KSV8 and KSV3 sorghum cultivars were cultivated in Kano (Nigeria) under 

rain-fed conditions and with only cow dung application as a fertilizer. For maximum 

extractible stalk juice yield, crops were harvested before grains reached 
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physiological maturation (i.e. when grains were at soft-dough stage). Thus, SSV2 

cultivar was harvested 11 weeks after the planting date, when the grains were 

observed to have reached soft-dough maturation. However, KSV8 and KSV3 

cultivars were harvested 16 weeks after planting date, because that was when their 

grains reached soft-dough maturation. The fresh bagasse (comprising crushed 

stalks, leaves, peduncles and panicles) were sun-dried for 2 days followed by oven 

drying at 60oC for 72 h. The dried samples were hammer milled and sieved through 

4 mm screen (Retsch, Germany). Moisture and total lignin contents of samples were 

determined according to National Renewable Energy Laboratory standard analytical 

procedure [23]. Proteins were determined by adding 2 g bagasse (dry wt.) into 

conical flasks containing 2M NaOH solution (50 mL). The mixtures were stirred at 

room temperature for 2 min followed by incubation in a rotary shaker at 120 rpm and 

60oC for 2 h. The final mixtures were centrifuged at 3800 rpm for 10 min. The 

supernatant (containing solubilised proteins) were filtered, diluted (1:10) and 1 mL of 

the solution transferred into 2 mL cuvettes. The protein concentrations were 

determined using Bradford™ reagent (Sigma-Aldrich, UK) according to 

manufacturer's standard protocol. Bagasse samples total starch content was 

determined using K-TSTA total starch kits (Megazymes®, Northern Ireland) 

according to manufacturer's standard procedure. Furthermore, the bagasse samples 

pasting properties were determined courtesy Scotch Whisky Research Institute 

Edinburgh (SWRI). A Rapid Visco-Analyzer equipment (Newport Scientific, Australia) 

was employed for the analysis.  

Hammer milled sample of KSV8 bagasse (2.91 g) was added into canister containing 

distilled water (25.09 g). The suspension was homogenised using the canister 

paddle [24]. The paddle was placed into the canister and then inserted into the Rapid 
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Visco-Analyser for analysis. The typical RVA cycle profile is summarised in Table 1, 

while Fig. 1 shows the typical pasting profile for un-malted cereals. Important 

features of the RVA pasting profile shown in Fig. 1 include the peak viscosity which 

indicates the water binding capacity of the mixture being analysed and it correlates 

with final product quality. It is also indicative of the viscous load to be encountered by 

a mixing cooker. Also, at the hold temperature (95oC), the ability of a sample to 

withstand the heating and shear stress of the RVA run is an important factor for 

many processes. It has been shown that RVA peak and final viscosities are highly 

correlated to ethanol yield [24,25]. The implications of these are discussed later in 

this paper. 

2.2 Bagasse pre-treatment and saccharification 

Bagasse (20 g dry wt.) was added into a conical flask containing 2%v/v dilute H2SO4 

acid (80 mL). The mixture was incubated at 75oC for 3 h with 150 rpm orbital 

shaking. This was followed by the addition of distilled water (30 mL) to the slurry and 

afterwards autoclaved at 121oC for 15 min. Samples were withdrawn for sugar and 

free amino nitrogen analysis. The acidic hydrolysate was then adjusted to pH 5.5 

with anhydrous sodium hydroxide crystals. An enzyme cocktail (Table 2) was added 

into the hydrolysate and the final volume adjusted to 200 mL with distiller water. The 

resultant hydrolysate was incubated at 150 rpm orbital shaking for 20 h at 50oC. 

Finally, the temperature was increased to 60oC for 1 h incubation in order to 

complete the enzymatic hydrolysis. 

2.3 Sorghum bagasse hydrolysate detoxification 

The enzymatic hydrolysate was over-limed to pH 10.0 with anhydrous Ca(OH)2 and 

incubated at 50oC for 15 min with orbital shaking at 120 rpm [9]. Concentrated 
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sulphuric acid was used to adjust the hydrolysate pH to 6.0 and followed by 

centrifugation at 3800 rpm for 10 min. The supernatant (100 mL) was transferred into 

a conical flask and activated charcoal (2.5 g) added. The mixture was mixed at room 

temperature for 3 min followed by incubation with orbital shaking at 150 rpm for 30 

min at 50oC. Afterwards, the mixture was further centrifuged at 3800 rpm for 10 min 

and the supernatant (hydrolysates) filtered through vacuum pump equipped with 

GF/B Whatman glass microfiber filters. Samples (2 mL) were withdrawn from the 

filtrate for sugars, amino acids and FAN determination. 

2.4 Sugars, free amino nitrogen (FAN) and amino aci d analysis 

1. Sugars analysis: glucose, xylose and arabinose were determined by HPLC. The 

hydrolysate (1.0 mL) at 1:10 dilution ratio were filtered through 0.22 µm micro 

syringe filters into 2.0 mL vials containing 1.0 mL meso-erythritol solution (internal 

standard sugar). The final solutions were vortexed and placed in an HPLC auto 

sampler (Spectra-physics, USA). Sugars are separated with a 300 mm × 7.8 mm 

REZEX RPM-monosaccharide Pb+2 (8%) columnTM (Phenomenex, USA) and 

quantified using HPLC software (CSW32 version v.1.4 chromatogram software from 

DataApex®, USA). 

2. Free amino nitrogen (FAN) analysis: FAN was determined by K-Large 02/11™ 

(yeast available nitrogen, YAN) and K-PANOPA 02/11™ (primary amino nitrogen, 

PAN) assay kits according to the manufacturer's standard protocols, respectively 

(Megazymes, Northern Ireland).  

3. Amino acid analysis: Total free amino acids were determined courtesy of ICBD, 

Heriot-Watt University Edinburgh. Charcoal filtered hydrolysates (2 mL) were filtered 

through 0.22 µm filters into HPLC-grade vials. The analysis was performed by 
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gradient elution, high performance liquid chromatography (HPLC), using 

fluorescence as a means of detection [26]. 

2.5 Yeast seed culture preparation 

Yeast seed cultures were prepared separately by inoculating two loop full of strains 

Pachysolen tannophilus NCYC614 and Saccharomyces cerevisiae DCLM (courtesy 

of Kerry Biosciences, Menstrie, Scotland) into two separate 400 mL YEPD media 

respectively. The YEPD media comprised: of Bacteriological peptone (2.5% w/v), 

urea (2.5% w/v), yeast extract (1.0% w/v), glucose (3.0% w/v) and xylose (1.0% w/v) 

respectively. The cultures were incubated at 32oC with orbital shaking at 150 rpm for 

about 28 h. Afterwards, the yeast pellets were washed by suspending in distilled 

water and vortexed, the water was decanted and the procedure repeated twice.  

2.6 Hydrolysate fermentations 

Fermentation progress was monitored by both CO2 evolution and bioethanol 

production rates respectively. 

i. CO2 evolution monitoring: two sets of enzymatic hydrolysate samples (100 

mL) were each added into a 250 mL ANKOMRF glass bottle. P. tannophilus 

and S. cerevisiae (1.0×107 cell/mL) were inoculated into either of the 

fermentation media. The media were incubated at 32oC with 130 rpm orbital 

shaking. Fermentation progress was monitored through automatic 

measurement of cumulative CO2 gas pressure formation after every 20 min by 

the ANKOMRF gas-production system (ANKOM Technology, USA). 

Fermentations were allowed to proceed undisturbed until CO2 gas production 

rates were starting to decline. 
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ii. For Bioethanol monitoring was similar to (i) above, two sets of enzymatic 

hydrolysate samples (100 mL) were each added into a 250 mL Erlenmeyer 

flask. Either of P. tannophilus or S. cerevisiae (cultures) (1.0×107 cell/mL) was 

inoculated into each of the fermentation media. The substrates were 

incubated at 32oC with 130 rpm orbital shaking. Samples were withdrawn 

after every 24 h from media for ethanol determination by FermentoFlash® 

equipment (Funke-GerberTM, Berlin). The fermentations were terminated after 

72 h incubation.  

Similar fermentation experimental set ups were replicated with the over-limed and 

charcoal filtered hydrolysates. 

2.7 Ethanol concentration determination 

Ethanol concentrations were determined using fermentoFlash® (Funke-GerberTM, 

Berlin). Fermentation broth (11 mL) was added into a 20 mL glass beaker. The broth 

sample (10 mL) was moved into the fermentoFlash® measuring cells by means of a 

suction pump (Funke-GerberTM, Berlin). The alcoholic content and density of the 

fermentation broth are automatically measured using thermal measuring effects. 

Constituents such as original and apparent wort extract and osmotic pressure are 

also determined but not reported in this study. 

2.8 Statistical analytical method 

Significant difference between means was tested by ANOVA using the Tukey 

method in Minitab™ 16 statistical software (MINITAB©, USA). Means that do not 

share a superscript letter (a-e) within the same rows are significantly different (p 

≤0.05), based on grouping information of the Tukey method at 95% simultaneous 

confidence interval. 
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3.0 Results and discussion 

3.1 Compositional analysis 

Table 3 shows that KSV3 sorghum grows significantly (p ≤0.05) taller and thicker 

than KSV8 while SSV2 has the least physical size. These results are consistent with 

a corresponding weight of bagasse obtained after harvest. However, SSV2 contains 

a significantly (p ≤0.05) higher starch level followed by KSV3. KSV8 has significantly 

(p ≤0.05) higher lignin content than both SSV2 and KSV3. With regards to pasting 

properties, there is very limited previous literature on sorghum bagasse pasting 

properties published. Pasting property is an important parameter in assisting to 

predict the hydrolysis properties of the substrate [27]. Thus, pasting property of 

substrates depends on their starch composition (i.e. amylose/amylopectin ratio), 

moisture content, degree of paste viscosity and pasting temperature [28,30]. 

Generally, sorghum bagasse comprises cellulose that is similar to amylose, in that 

they both consist of linear crystalline glucose homoploymers. Hemicelluloses are 

branch chained non-crystalline polysaccharides akin to amylopectin. Therefore, 

despite the relatively low starch contents of SSV2, KSV8 and KSV3 bagasse for 

pasting analysis [24], it is conceivable their cellulose and hemicellulose 

polysaccharides exhibit hydrolytic behaviour similar to those of amylose and 

amylopectin [27,31]. Table 3 shows that KSV8 has significantly (p ≤0.05) lower 

starch and higher lignin content than both SSV2 and KSV3. Hence, SSV2 and KSV3 

show viscograms (Fig. 2) that are completely different from that of KSV8 (Fig. 3). 

Furthermore, data in Table 4 shows  that KSV8 had significantly (p ≤0.05) the 

highest peak, setback and final viscosity values respectively Perhaps the combined 

effects of low starch content of KSV8 bagasse and higher lignin interacted with its 

carbohydrates resulting in significantly lower pasting peak times (Table 4). These 
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results suggest that SSV2 and KSV3 may be more favourable substrates for 

hydrolysis than KSV8 in terms of pasting profiles [30,31]. 

3.2  Bagasse hydrolysis and detoxification  

The choice of mild sulphuric acid pre-treatment in this study was principally 

motivated by its economic benefits [15]. Dilute sulphuric acid is a relatively cheap 

chemical that can be used for efficient lignocellulose pretreatment [9]. Additionally, it 

is less corrosive compared to using concentrated acids. However, as previously 

mentioned, dilute or mild acid pretreatment of bagasse is usually accompanied with 

high temperatures, typically above 160oC, and this facilitates formation of furan 

derivatives and weak organic acids that are inhibitory to efficient yeast fermentation 

[32]. Furthermore, denaturation of proteins and Maillard reactions are most likely to 

occur at high hydrolysis temperatures, compromising the availability of amino 

nitrogen nutrients required by yeast for efficient growth and metabolism during 

fermentation [5,33]. This is the reason for the 75oC hydrolysis temperature employed 

in this study aimed to minimise generation of inhibitory compounds whilst 

maintaining efficient bagasse pretreatment. 

Data in Table 5 indicates that acid pretreatment of sorghum bagasse from SSV2, 

KSV8 and KSV3 cultivars liberated more xylose and arabinose than glucose. This 

suggests effective degradation of the hemicellulose polysaccharides, which are 

primarily the sources of pentose sugars [6]. KSV8 sorghum bagasse hydrolysate had 

lower glucose, but higher xylose and arabinose levels, than both SSV2 and KSV3 

(Table 5). In addition to degradation of the polysaccharides, proteins were also 

hydrolysed to liberate free amino nitrogen (FAN) compounds [33] as shown in Table 

7. Table 5 shows levels of total sugars of 21 g/100g (KSV8 bagasse) and 26 g/100g 
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(SSV2 and KSV3 bagasse) that compare favourably with previously reported sugar 

yield results of 18-29 g/100g in sorghum bagasse pretreated with both alkali and acid 

[5]. Similarly, Ban et. al. [34] reported total sugar yields of 30 g/100g of sorghum 

bagasse hydrolysed with 90% of 80 g L-1 phosphoric acid at 120oC for 80 min. 

Following enzymatic hydrolysis, significant increases (p ≤0.05) in total sugar levels in 

the sorghum bagasse hydrolysates were observed, particularly glucose (see Table 

5). This may be attributed to combined activities of cellulases and amylases during 

cellulose and starch hydrolysis. Hemicellulase action liberated xylose and arabinose 

[9,35], but at lower levels than those reported by Phuengjayaem and Teeradakorn [8] 

who employed ammonium explosion (AFEX) pretreatment of sorghum bagasse prior 

to prolonged (7days) enzymolysis. Table 6 compares glucose and xylose sugars 

obtained in this study to those of previously reported studies using different pre-

treatment methods for sorghum stalks and/or leaves. 

We investigated detoxifying sorghum bagasse with over-liming and charcoal filtration 

hydrolysates in an attempt to ameliorate the effects of chemical inhibitors on yeast 

fermentation. Weak organic acids and furan derivatives can be removed by over-

liming to precipitate aliphatic acids as their corresponding salts [19,37]. However, we 

found that 5-7% of sugars and FAN were lost to precipitation following over-liming, 

as shown in Tables 5 and 7 [9,38]. Further de-toxification by charcoal filtration to 

remove phenolic compounds from hydrolysates showed additional 7-10% sugars 

and FAN nutrients were further lost (Tables 5 and 7) [15,17]. 

We analysed individual amino acid profiles in charcoal filtered sorghum bagasse 

hydrolysates (Table 8). Although certain amino acids will failed to be detected using 

the K-LARGE/K-PANOPA assay kit [40],  total amino acid concentrations in the 
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hydrolysates nevertheless appeared to be higher than corresponding FAN levels. 

Sorghum bagasse hydrolysates prepared from SSV2, KSV8 and KSV3 cultivars 

contained Group 1, Group 2 and other group amino acids required for efficient yeast 

metabolism during fermentation [33,41,42]. 

 4.0 Fermentation characteristics. 

Pachysolen tannophilus used in this study was observed to be a xylose/glucose 

fermenting yeast while Saccharomyces cerevisiae is a glucose fermenting yeast. 

Generally, yeast fermentation performance depends on media and growth conditions 

including pH, temperature, sugar and FAN levels as well as alcohol and general 

stress tolerance of the cells [37,43]. Therefore, for effective comparison of 

fermentation performance of SSV2, KSV8 and KSV3 hydrolysates in this study, P. 

tannophilus and S. cerevisiae yeasts that exhibited favourable fermentation 

performance were selected out of five different yeast strains previously investigated 

(not reported here). 

SSV2, KSV8 and KSV3 bagasse hydrolysates contain acetic acid, furan derivatives 

and phenols as by-products of the acid pretreatment [15-17]. Consequently, S. 

cerevisiae fermentation kinetics of these hydrolysates showed a yeast lag phase of 

over 12 h (Fig. 4). This may be associated with the synergetic effects of the inhibitory 

compounds on yeast physiology meaning that cells take time adapt to the relatively 

hostile growth environment. However, SSV2 sorghum bagasse hydrolysate 

comprised relatively higher glucose and FAN levels and this resulted in reduced 

yeast lag times and higher CO2 formation compared with other sorghum cultivars 

(Tables 5 and 7). With P. tannophilus fermentation, bagasse hydrolysate produced 

from KSV8 sorghum cultivar showed the shortest lag time (Fig. 5). These results 
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highlight the likely impact of toxic compound, liberated when bagasse is pretreated, 

on fermentation performance Higher nutrient contents for yeast may not necessarily 

reflect faster fermentation rates since the levels of inhibitory compounds in the media 

are of paramount importance [16,18,37]. 

   
Concerning ethanol production, P. tannophilus performed better than S. cerevisiae in 

sorghum bagasse hydrolysates (Figs. 6 and 7). SSV2 and KSV3 cultivars showed 

similar ethanol yields with S. cerevisiae but exhibited varied ethanol yields with P. 

tannophilus (Figs. 6 and 7), likely due to the ability of the latter yeast to ferment 

xylose. Consequently, while S. cerevisiae showed total sugar utilisations of 43-45% 

for SSV2 and KSV3 substrates, P. tannophilus showed corresponding higher total 

sugar utilisation of 54-57% (from Tables 5, 9 and 10). Thus, with SSV2 and KSV3 

cultivars P. tannophilus fermentation exhibited ethanol of 12-13 g L-1 (Table 11). 

These compares favourably to the 14 g L-1 ethanol yield reported by Ban et al. [34], 

for sorghum bagasse pre-treated with phosphoric acid (80 g L-1 H3PO4) at 120oC for 

80 min. However, KSV8 showed similar sugar utilisations of 35-37% by both S. 

cerevisiae and P. tannophilus fermentations respectively, this corresponds to 7-10 g 

L-1. This is higher than 5-6 g L-1 ethanol yields reported by Ban et al. [34] and Cao et 

al. [11] for sorghum bagasse pre-treated with concentrated phosphoric acid and 

dilute NaOH/H2O2 solutions respectively. 

Following the removal or reduction in the concentration of aliphatic acids in SSV2, 

KSV8 and KSV3 hydrolysates by over-liming [15,22], a notable reduction in yeast lag 

phase was observed after fermentation of the substrates. Particularly, SSV2 showed 

faster fermentation and a higher CO2 evolution rate than KSV8 and KSV3 (Fig. 8). 

However, while KSV8 and KSV3 exhibits relatively similar lag phases by S. 
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cerevisiae fermentations, the latter showed faster fermentation with P. tannophilus 

than the former (Figs. 8 and 9). Furthermore, SSV2 and KSV3 consistently exhibited 

similar total CO2 yields after 60 h fermentation by either of the yeast cultures. With 

regards to yeast performance, P. tannophilus showed higher total CO2 yields (Table 

11) and faster fermentation rates than S. cerevisiae. 

In terms of ethanol production, SSV2, KSV8 and KSV3 over-limed hydrolysates 

showed increased ethanol yields of 29%, 22% and 29% with S. cerevisiae 

fermentation relative to the corresponding non over-limed hydrolysates. Furthermore, 

P. tannophilus showed corresponding increased yields of 24%, 33% and 29% 

respectively (Table 11). Consistent with observed final total CO2 yields of SSV2 and 

KSV3, they also show corresponding similar final ethanol yields by either P. 

tannophilus or S. cerevisiae fermentation (Figs. 10 and11). Compared to the non 

over-limed hydrolysates fermentations, total sugar utilisation of the over-limed 

hydrolysates has increased to 56-68% with the P. tannophilus fermentation (Table 9) 

and 48-57% with the S. cerevisiae fermentation (Table 10). Observed ethanol yields 

of about 17 g L-1 for SSV2 and KSV3 (Table 11) corresponds to 16-19 g L-1 ethanol 

yields previously reported for sorghum bagasse fermented by either co-culture of (S. 

cerevisiae-P. stipitis) or S. cerevisiae alone [11,35,44]. 

 

In addition to weak organic acid removal from SSV2, KSV8 and KSV3 sorghum 

bagasse hydrolysates, further removal of phenolics by charcoal filtration  [6,9] show 

further improved fermentation performance of the substrates (Figs. 12 and 13). For 

example, SSV2, KSV8 and KSV3 show comparatively similar CO2 evolution at the 

onset of fermentation and this reflects a robust exponential cell growth rate [44]. 

Sugar utilisation has further increased to 76-80% with P. tannophilus fermentation 
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and 62-74% with S. cerevisiae i.e. when compared to non-detoxified corresponding 

hydrolysates (Tables 9 and 10). Consistent with previous results, P. tannophilus 

showed the most favourable fermentation performance (in terms of observed CO2 

evolution). SSV2 followed by KSV3 bagasse, are the most favourable fermentation 

substrates. However, Gyalai-Korpos et al. [45] reported a relatively faster 

fermentation rate for detoxified sorghum bagasse hydrolysates (supplemented with 

exogenous yeast nutrients), maximum CO2 evolution was achieved within 4 h of 

fermentation onset while in this study (without nutrient supplementation) maximum 

CO2 evolution was achieved after 12 h of fermentation onset. 

With regards to ethanol production, SSV2 and KSV3 show similar ethanol production 

rates at the onset of fermentation (Figs. 14 and 15). However, as fermentation 

progress beyond 24 h, SSV2 show higher ethanol yields. The faster fermentation 

characteristics of SSV2 and KSV3 is likely related to their having a higher Group 1 

and 2 amino acid content than KSV8 as shown in Table 8 [41]. Furthermore, P. 

tannophilus ethanol yield has significantly increased by about 40-44% for SSV2 and 

KSV3 hydrolysates following charcoal filtration (relative to the non detoxified 

hydrolysates). However, S. cerevisiae shows corresponding 34-43% improved 

ethanol yield (Table 11). While P. tannophilus show 72-74% theoretical ethanol yield 

for SSV2 and KSV3 hydrolysates, S. cerevisiae shows corresponding 61-66% 

theoretical ethanol yield, respectively. Consequently, in this study, P. tannophilus is 

most favourable yeast compared to S. cerevisiae.  Finally, previous studies have 

reported varied ethanol yields obtained for sorghum bagasse pre-treatment and 

fermentation under various conditions. The results obtained in this study are 

compared with other previous investigations and the results are summarised in Table 

12. 
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4.4  Conclusion and recommendation  

We investigated the physico-chemical composition and fermentation characteristics 

of whole sorghum residue (bagasse) as a bioethanol feedstock. Our findings suggest 

that sorghum cultivar KSV3 exhibited the most favourable biomass yield at 37 t ha-1 

(dry basis) while bagasse from SSV2 cultivar provided the most favourable 

fermentation substrate. Dilute sulphuric acid hydrolysis at moderate temperatures 

was a favourable pre-treatment method with SSV2 yielding 69 g/100g bagasse of 

fermentable sugar after enzymatic hydrolysis. Detoxification of hydrolysates 

improved the fermentation kinetics with SSV2 and it exhibited faster fermentation 

kinetics and favourable ethanol yields of 23 g L-1 by P. tannophilus without 

exogenous nutrient supplementation. This represents over a 25% increase on non-

detoxified hydrolysates. The moderately low temperature used for our technique also 

suggests low energy input and utilization in the conversion of the sorghum biomass 

to bioethanol that could reduce greenhouse gas emission. Further improvements in 

ethanol yield per hectare are envisaged through moderate application of 

agrochemicals during crop cultivation and the use of improved cellulolytic enzymes 

and exogenous yeast nutrient supplementation during fermentation. 
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Table 1  The RVA run cycle profile 
Cycle time profile Parameter  Value 

00:00:00 Temperature 50oC 
00:00:00 Speed 960 rpm 
00:00:10 Speed 160 rpm 
00:00:30 Temperature 50oC 
00:04:30 Temperature 98oC 
00:09:00 Temperature 98oC 
00:11:00 Temperature 65oC 
00:15:00 Temperature 65oC 
Note: Idle temp. = 50oC, total cycle time = 15 min, readings interval = 4 s. 

 

 

Table 2 Composition of hydrolytic enzymes 
Enzyme  Activity  Dosage  Source  
Cellic® Ctec  (120 FPU/mL)a 1200 µL Novozymes, Denmark 
Cellic® Htec (1090 FXU/mL)b 200 µL Novozymes, Denmark 
Promalt™ 295 (500 BGµ/mL-

min)c 
30 µL Kerrys Biosciences, Ireland 

Promalt™ 4TR (300 BG µ/mL) 20 µL Kerrys Biosciences, Ireland 
aFilter paper unit.   
bFungal xylanan unit.   
cbetaglucanase unit/mL. 

 

 
 
 
 
 
 
 
 
Table 3  Sorghum bagasse physico-chemical composition 
Parameter                   SSV2                KSV8                KSV3 

Cultivation 11 weeks 16 weeks 16 weeks 

Crop height (m) 1.80a ±0.05 3.20b ±0.07 3.60c ±0.04 

Diameter (cm) 1.95a ±0.10 2.62c ±0.11 2.79c ±0.03 

*Fresh bgs (t ha-1) 41.72a ±3.1 48.31b ±2.6 52.32c ±1.1 

**Dry bgs (t ha-1) 28.60a ±1.1 32.72b ±0.8 36.83c ±1.5 
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Total starch: % 5.14a ±0.54 1.09b ±0.06 3.16c ±0.21 

Total lignin: % 18.40a ±0.3 21.65b ±0.2 18.70a ±0.6 

Total protein %   4.61a ±0.2 3.53b ±0.16 3.24b ±0.12 

SSV2, KSV8 and KSV3 sorghums were cultivated under rain-fed without chemical 
fertilizer application. *Fresh bgs: fresh bagasse (leaves, crushed stalks, peduncles 
and panicle). **Dry bgs: oven dried bagasse. Results are std. means of triplicate 
experiments. Means on the same row that do not share same superscript letter (a-c) 
are significantly different (p ≤0.05) by ANOVA using Tukey grouping method test.  
 

 

 

Table 4  Sorghum bagasse pasting viscosities 
Crop Peak 

viscosity (cP) 

Setback 

viscosity (cP) 

Pasting Temp 

(oC) 

Peak time 

(min) 

Final viscosity 

(cP) 

 SSV2   1771b ± 14    4541b ± 21 49.90a ± 0.2 6.93a ± 0.3   7042a ± 14  

KSV3 1706a ± 11 5861a ± 19 50.45a ± 0.1 7.00a ± 0.4   5756b ± 13  

KSV8   19320c ± 22 16549c ± 20 49.95a ± 0.1 1.20b ± 0.1     22073c ± 17 

Bagasse pasting profile analyzed by Rapid Visco-Analyzer. Means in the same 
column that do not share same superscript letter (a-c) are significantly different (p 
≤0.05) by ANOVA using Tukey grouping method test. 
 

 

 

 

 

 

 

Table 5  Initial sugars of SSV2, KSV8 and KSV3 hydrolysates (g/100g bagasse) 
Bagasse  Hydrolysates  Glucose  Xylose  Arabinose    Total 

sugars 
 
 

SSV2 

Acidic   8.82a 
±1.1 

13.46a ±0.4 3.49a ±0.6     25.77a 
±0.8 

Enzymatic  46.46ab 
±1.1 

17.29ab ±0.5 5.45b ±0.5     69.19c 
±1.1 

Over-limed 43.85af 
±1.0 

15.06cd ±0.9 5.27b ±0.9     64.18ab 
±2.6 

Charcoal filtrate 42.88af 
±1.0 

13.70a ±0.2 5.08b ±1.0     61.66bc 
±2.2 
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KSV8 

Acidic   1.54b 
±0.2 

15.35c ±0.1 4.01c ±0.6     20.89b 
±0.9 

Enzymatic  26.57ad 
±1.2 

21.22ac ±1.1 6.44d ±0.4     54.22e 
±2.8 

Over-limed 23.25cf 
±0.9 

17.87ab ±0.9 6.34d ±0.1     47.46ad 
±1.8 

Charcoal filtrate 22.84cf 
±1.0 

15.80c ±1.2 5.76b ±0.2     44.40fe 
±0.3 

      
      
 Acidic   8.36a 

±0.6 
13.81a ±0.7 3.47a ±0.2     25.64a 

±0.9 
 Enzymatic  44.62ac 

±0.8 
16.94ab ±1.1 5.23b ±0.3     66.79d 

±1.2 
KSV3 Over-limed 42.08af 

±0.9 
15.20c ±0.2 5.06b ±0.6     62.34bc 

±1.7 
 Charcoal filtrate 42.03af 

±0.3 
14.01c ±0.6 4.87b ±0.7     60.88bc 

±1.6 
Sorghum bagasse were pre-treated with dilute H2SO4 acid and followed by 
enzymatic saccharification, over-liming with Ca(OH)2 and charcoal filtration. Sugars 
were determined by HPLC. Corresponding Means in the same column that do not 
share same superscript letter (a-f) are significantly different (p ≤0.05) by ANOVA 
using Tukey grouping method test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6 Comparison of this study bagasse sugar yields to previous literature.  

Sorghum bagasse  
pre-treatment method 

Sugar yields 
(g/100g 
substrate) 

         Reference  

2% (v/v) H2SO4 digestion at 75oC for 2 h 
followed by 24 h enzymatic hydrolysis 
 

Glucose (27-47 g) 
& Xylose (17-20 
g). 

This study 

3% CaOH digestion at 121oC for 1 h 
followed by 24 h enzymatic hydrolysis. 

Glucose (40 g) & 
Xylose (21 g). 

Kim et. al. [32] 
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Microwave assisted ammonium hydroxide 
digestion at 130oC for 1 h 
 

Glucose (42 g). Chen et. al. [16] 

10% (w/w) NaOH digestion at 70oC for 4 h 
followed by 24 h enzymatic hydrolysis. 
 

Glucose (31 g) & 
Xylose (14 g). 

Panagiotopoulos et. 
al. [36] 

3% H2SO4 digestion for 10 min followed by 
96 h enzymatic hydrolysis. 
 

Glucose (37 g) & 
Xylose (21 g). 

Phuengjayaem and 
Teeradakorn [8] 

10%(w/v) NaOH at 121oC for 25 min 
followed by 21% (v/v) H2SO4, digestion at 
70oC for 73 min  
 

Glucose (21 g). Thanapimmetha et. 
al. [5] 

2% NaOH digestion followed by 24 h 
enzymatic hydrolysis 
 

Glucose (26 g). Sathesh-Prabu and 
Murugesan [37] 

Ammonium fibre explosion (AFEX) at 140oC 
for 30 min followed by 72 h enzymatic 
hydrolysis 

Glucose (29 g) & 
Xylose (15 g). 

Li et. al. [10] 

 
 
 
 
 
 
Table 7  Initial free amino nitrogen (FAN) of sorghum bagasse hydrolysates (mg L-1) 
Hydrolysates         SSV2       KSV8         KSV3 
Acidic 130.3a ±3.1   91.9b ±1.9 123.2c ±1.8 
Enzymatic  251.8a ±3.8 180.4b ±2.1 248.0c ±2.6 
Over-limed 238.4a ±3.6 168.0b ±1.9 236.4a ±2.8 
Charcoal filtrate 205.8a ±1.8 146.4b ±2.1 188.0c ±2.7 

Bagasse were pre-treated with dilute H2SO4 acid followed by enzymatic 
saccharification, over-liming with Ca(OH)2 and charcoal filtration. Means on the 
same row that do not share same superscript letter (a-c) are significantly different (p 
≤0.05) by ANOVA using Tukey grouping method test. 
 
 
 
 

Table 8 Initial amino acids of charcoal filtered hydrolysates (µmol mL-1) 

Amino acid  SSV2 KSV8 KSV3 

Group 1    
aspartic 1.492a ±0.001 0.509b ±0.006 0.753c ±0.002 
glutamic  0.240a ±0.003 0.085b ±0.007 0.176c ±0.024 
serine 0.234a ±0.001 0.118d ±0.008 0.135c ±0.018 
arginine 0.099a ±0.001 0.027c ±0.004 0.041c  ±0.011 
threonine 0.157a ±0.002 0.055d ±0.007 0.091c ±0.013 
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lysine 0.113a ±0.001 0.020b ±0.003 0.051c ±0.014 
asparagine *ND *ND *ND 
glutamine *ND *ND *ND 
Sub-total 2.330 ±0.002 0.813 ±0.037 1.241 ±0.021 
    
Group 2     
methionine 0.206a ±0.002 0.081d ±0.002 0.104c ±0.010 
valine 0.237a ±0.001 0.095b ±0.008 0.117b ±0.011 
isoleucine 0.110a ±0.001 0.029b ±0.006 0.052c ±0.007 
leucine 0.350a ±0.000 0.067b ±0.003 0.138c ±0.002 
phenylalanine 0.061a ±0.002 0.016b ±0.004 0.027b ±0.013 
histidine 0.077a ±0.001 0.031e ±0.001 0.040b ±0.016 
Sub-total 1.039 ±0.003 0.319 ±0.003 0.477 ±0.020 
    
Other groups     
glycine 0.335a ±0.004 0.215b ±0.008 0.174c ±0.012 
alanine 1.045a ±0.003 0.279b ±0.008 0.473c ±0.076 
proline 0.335a ±0.001 0.114b ±0.008 0.149c ±0.015 
tyrosine 0.104a ±0.003 0.090a ±0.004 0.065b ±0.010 
tryptophan *ND *ND *ND 
Sub-total 1.818 ±0.003 0.698 ±0.004 0.860 ±0.054 
    
Grand Total 5.186a ±0.008 1.829b ±0.044 2.577c ±0.095 

SSV2, KSV8 and KSV3 Bagasse were pre-treated with dilute H2SO4 acid followed by 
enzymatic saccharification, over-liming with Ca(OH)2 and charcoal filtration. Amino 
acids were determined by GC-MS. Means on the same row that do not share same 
superscript letter (a-e) are significantly different (p ≤0.05) by ANOVA using Tukey 
grouping method test. *ND = Not Detected. 
 
 
 
 
 
 
 
 
 
Table 9  P. tannophilus fermentation residual sugars (g/100g bagasse) 

Bagasse  Hydrolysates  Glucose  Xylose  Arabinose  Total sugars  
 Enzymatic  13.25a 

±0.2 
13.71a 

±0.5 
4.93a ±0.5     31.89a 

±1.2 
SSV2 Ca(OH)2 

Overlimed 
  2.89d 

±0.9 
12.57a 

±1.1 
4.46a ±0.4     19.92b 

±0.6 
 Charcoal filtrate   

*ND 
  8.76bc 

±0.9 
3.65b ±0.3     12.41c 

±1.1 
      
      
 Enzymatic  10.42b 17.67e 5.49c ±0.4     33.58d 



27 
 

±1.2 ±1.1 ±1.9 
KSV8 Ca(OH)2 

Overlimed 
  

*ND 
14.51c 

±0.9 
5.86c ±0.1     20.37b 

±0.9 
 Charcoal filtrate            

*ND 
  7.30b 

±1.2 
3.01d ±0.2     10.31f ±1.3 

      
  

Enzymatic  
 

  9.18c 
±1.2 

 
16.14f ±1.1 

 
3.94b ±0.5 

    
    29.26ab 

±1.7 
KSV3 Ca(OH)2 

Overlimed 
  

*ND 
14.86c 

±0.3 
4.72a ±0.7     20.08b 

±1.0 
 Charcoal filtrate   

*ND 
  9.45bc 

±0.6 
3.08d ±0.1     12.53c 

±0.8 
Residual sugars in sorghum bagasse hydrolysates after 72 h fermentation by P. 
tannophilus without exogenous nutrient supplementation and the sugars were 
determined by HPLC. Corresponding Means in the same column that do not share 
same superscript letter (a-f) are significantly different (p ≤0.05) by ANOVA using 
Tukey grouping method test. *ND = Not Detected. 
 
 
 
 
 
Table 10  S. cerevisiae fermentation residual sugars (g/100g bagasse) 

Bagasse  Hydrolysates  Glucose  Xylose  Arabinose  Total sugars  
 Enzymatic  16.32a 

±1.2 
16.33a 
±0.3 

5.06b ±0.5     37.71a ±2.0 

SSV2 Ca(OH)2 
Overlimed 

  9.40b 
±0.7 

13.88b 
±1.2 

4.63a ±0.5     27.91b ±1.3 

 Charcoal filtrate            *ND 11.20c 
±1.1 

4.71a ±0.8     15.91c ±1.9 

      
      
 Enzymatic   9.58b ±1.2 18.93d 

±1.8 
6.29d ±0.5     34.80f ±2.5 

KSV8 Ca(OH)2 
Overlimed 

          *ND 19.01d 
±1.2 

5.73e ±0.4     24.74d ±1.6 

 Charcoal filtrate           *ND 12.21b 
±1.1 

4.40a ±0.3     16.61c ±1.3 

      
  

Enzymatic  
 
17.42a 
±1.2 

 
15.64a 
±0.9 

 
5.04b ±0.3 

     
    38.10a ±0.6 

KSV3 Ca(OH)2 
Overlimed 

  7.04c 
±0.6 

14.96e 
±1.3 

5.04b ±0.1     27.04b ±1.8 

 Charcoal filtrate           *ND 11.37c 
±1.0 

4.79a ±0.8     16.16c ±1.8 

Residual sugars in sorghum bagasse hydrolysates after 72 h fermentation by S. 
cerevisiae, sugars were determined by HPLC. Corresponding Means in the same column 
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that do not share same superscript letter (a-f) are significantly different (p ≤0.05) by ANOVA using 
Tukey grouping method test. *ND = Not Detected. 
 
 
 
 
Table 11  Fermentation ethanol and CO2 yields 

  P. tannophilus S. cerevisiae 

Bagass
e 

Hydrolysates  Ethanol (g L-

1) 
CO2 gas*  Ethanol (g L-

1) 
CO2 gas*  

 
SSV2 

Enzymatic  13.03a ± 1.1 1423a ± 27 12.15a ± 0.88 1187a ± 23 
Ca(OH)2 Over-
limed 

17.12d ± 0.9 2083b ± 31 16.81b ± 0.67 1930b ± 33 

Charcoal filtrate 23.12ad ± 0.5 3719c ± 24 20.99ff ± 0.94 3050c ± 26 
      
      
 
KSV8 

Enzymatic    9.81b ± 0.6 1142f ± 19   6.55e ± 0.59   754cd ± 
22 

Ca(OH)2 Over-
limed 

14.83f ± 0.8 1433a ± 23   8.60f ± 0.71   888ca ± 
21 

Charcoal filtrate 16.89ab ± 0.3 2383ab ± 
21 

14.34b ± 0.48 2295da ± 
25 

      
 
 

 
Enzymatic  

  
11.84c ± 1.1 

 
1382ef ± 31 

  
12.03a ± 0.87 

 
1124ef ± 21 

KSV3 Ca(OH)2 Over-
limed 

16.87ab ± 0.7 2093b ± 15 16.49b ± 0.64 1923df ± 20 

 Charcoal filtrate 20.18ef ± 0.9 3118df ± 21 19.11ff ± 0.91 2647ae ± 
23 

Ethanol and CO2 gas yields of SSV2, KSV8 and KSV3 sorghum bagasse hydrolysates at three 
treatment levels. Fermentations were by P. tannophilus and S. cerevisiae yeasts (without exogenous 
nutrients supplementation). Corresponding Means in the same column that do not share same 
superscript letter (a-f) are significantly different (p ≤0.05) by ANOVA using Tukey grouping method 
test. *C02 gas (mL/100g dry bagasse). 
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Table 12  Comparison of ethanol yields from this study to previous literatures 

Fermentation condition  Ethanol yield (g 
L-1) 

Reference  

Fermentation by P. tannophilus without 
nutrient supplementation. 
 

17-23 This study 

Fermentation by S. cerevisiae without 
nutrient supplementation. 
 

16-20 This study 

Fermentation by co-culture of S. 
cerevisiae and Issatchenkia orientalis and 
with nutrient supplements. 
 

27 Wan et al. [35] 

Fermentation by P. tannophilus with 
nutrient supplements. 
 

16 Ballesteros et al. 
[13] 

Fermentation by S. cerevisiae with 
nutrient supplementation. 
 

23 Mehmood et al. 
[38] 

Simultaneous saccharification and 
fermentation (SSF) with S. cereviciae (5 g 
L-1 cell density) and nutrient 
supplementation 
 

23 Shen et al. [14] 

Separate hydrolysis and fermentation 
(SHF) with S. cereviciae (3 g L-1 cell 
density) and nutrient supplementation 
 

21 Shen et al. [14] 

Fermentation by co-culture of S. 
cerevisiae and Neurospora crassa with 
nutrient supplementation. 

28 Dogaris et al. [6] 
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Figures captions 
 
 

 

Fig. 1 A typical RVA profile for un-malted cereals 

 

 

 

Fig. 2  SSV2 and KSV3 sorghum bagasse viscograms. Pasting profiles were 
analysed using a Rapid Visco-Analyzer (RVA) in accordance to SWRI standard 
procedure (see materials & Methods). Table 1 provides the RVA cycle run profile. 
Data are std. means of duplicate experiments. 
 
 
Fig. 3  KSV8 sorghum bagasse viscograms. Pasting profile were analysed by Rapid 
Visco-Analyzer (RVA) in accordance to SWRI standard procedure (see Materials & 
Methods). Table 1 provides the RVA cycle run profile. Data are std. means of 
duplicate experiments. 
 
 
 
Fig. 4  SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse was 
pre-treated with dilute H2SO4 followed by enzymatic hydrolysis. Hydrolysates are 
fermented with S. cerevisiae without nutrient supplementation. Fermentation 
progress was monitored by CO2 formation rate using ANKOMRF system. Results are 
mean of duplicates. 
 
  
 
Fig 5  SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse was 
pre-treated with dilute H2SO4 followed by enzymatic hydrolysis. Hydrolysates are 
fermented with P. tannophilus without nutrient supplementation. Fermentation 
progress was monitored by CO2 formation rate using ANKOMRF system. Results are 
mean of duplicates. 
 
 
 
 
Fig 6  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis. Hydrolysates are 
fermented without nutrient supplementation by S. cerevisiae at 32oC and 120 rpm 
orbital shaking. Results are std. means of duplicate experiments.  
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Fig 7  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis. Hydrolysates are 
fermented without nutrient supplementation by P. tannophilus at 32oC and 120 rpm 
orbital shaking. Results are std. means of duplicate experiments. 
 
 
 
Fig. 8  SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse was 
pre-treated with dilute H2SO4 followed by enzymatic hydrolysis and Ca(OH)2 over-
limed. Hydrolysates were fermented with S. cerevisiae without nutrient 
supplementation. Fermentation progress was monitored by CO2 formation rate using 
ANKOMRF system. Results are mean of duplicates. 
 

 
Fig 9 SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse was 
pre-treated with dilute H2SO4 followed by enzymatic hydrolysis and Ca(OH)2 over-
limed. Hydrolysates were fermented with P. tannophilus without nutrient 
supplementation. Fermentation progress was monitored by CO2 formation rate using 
ANKOMRF system. Results are mean of duplicates. 
 
 
Fig. 10  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis and over-liming with 
Ca(OH)2. Hydrolysates are fermented without nutrient supplementation by S. 
cerevisiae at 32oC and 120 rpm orbital shaking. Results are std. means of duplicate 
experiments. 
 

 
Fig. 11  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis and over-liming with 
Ca(OH)2. Hydrolysates are fermented without nutrient supplementation by P. 
tannophilus at 32oC and 120 rpm orbital shaking. Results are std. means of duplicate 
experiments. 
 
 
 
Fig. 12  SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse 
was pre-treated with dilute H2SO4 followed by enzymatic hydrolysis, Ca(OH)2 over-
liming and charcoal filtration. Hydrolysates are fermented with S. cerevisiae without 
nutrient supplementation. Fermentation progress was monitored by CO2 formation 
rate using ANKOMRF system. Data are mean of duplicates. 

 

  

Fig 13  SSV2, KSV8 and KSV3 sorghum bagasse fermentation kinetics. Bagasse 
was pre-treated with dilute H2SO4 followed by enzymatic hydrolysis, Ca(OH)2 over-
liming and charcoal filtration. Hydrolysates are fermented with P. tannophilus without 
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nutrient supplementation. Fermentation progress was monitored by CO2 formation 
rate using ANKOMRF system. Data are mean of duplicates. 
 
 
 
Fig. 14  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis, over-liming with Ca(OH)2 
and charcoal filtration. Hydrolysates were fermented without nutrient 
supplementation by S. cerevisiae at 32oC and 120 rpm orbital shaking. Results are 
std. means of duplicate experiments. 
 

 
Fig. 15  SSV2, KSV8 and KSV3 sorghum bagasse ethanol yields. Bagasse was pre-
treated with dilute H2SO4 followed by enzymatic hydrolysis, over-liming with Ca(OH)2 
and charcoal filtration. Hydrolysates were fermented without nutrient 
supplementation by P. tannophilus at 32oC and 120 rpm orbital shaking. Results are 
std. means of duplicate experiments. 
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