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On two Thomae-type transformations for hypergeometric
series with integral parameter differences
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Abstract. We obtain two new Thomae-type transformations for hypergeometric series
with r pairs of numeratorial and denominatorial parameters differing by positive integers.
This is achieved by application of the so-called Beta integral method developed by Krat-
tenthaler and Rao [Symposium on Symmetries in Science (ed. B. Gruber), Kluwer (2004)]
to two recently obtained Euler-type transformations. Some special cases are given.
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1. Introduction

The generalized hypergeometric function pFq(x) is defined for complex parameters
and argument by the series

pFq

[
a1, a2, . . . , ap
b1, b2, . . . , bq

;x

]
=

∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

xk

k!
. (1)

When q ≥ p, this series converges for |x| < ∞, but when q = p − 1, convergence
occurs when |x| < 1 (unless the series terminates). In (1), the Pochhammer symbol
or ascending factorial (a)n is given for integer n by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1 (n = 0)
a(a+ 1) . . . (a+ n− 1) (n ≥ 1),

where Γ is the gamma function. In what follows we shall adopt the convention
of writing the finite sequence of parameters (a1, a2, . . . , ap) simply by (ap) and the
product of p Pochhammer symbols by

((ap))k ≡ (a1)k . . . (ap)k,
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where an empty product p = 0 is interpreted as unity.
Recent work has been carried out on the extension of various summations the-

orems, such as those of Gauss, Kummer, Bailey and Watson [1, 6, 7], and also of
Euler-type transformations to higher-order hypergeometric functions with r pairs of
numeratorial and denominatorial parameters differing by positive integers [3, 4]. Our
interest in this note is concerned with obtaining similar extensions of the two-term
Thomae transformation [8, p. 52]

3F2

[
a, b, c
d, e

; 1

]
=

Γ(d)Γ(e)Γ(σ)

Γ(a)Γ(b+ σ)Γ(c+ σ)
3F2

[
c− a, d− a, σ
b+ σ, c+ σ

; 1

]
for ℜ(σ) > 0, ℜ(a) > 0, where σ = e+ d− a− b− c is the parametric excess. Many
other results of the above type, including three-term Thomae transformations, are
given in [8, pp. 116-121]; see also [9].

The so-called Beta integral method introduced by Krathenthaler and Rao [2] gen-
erates new identities for hypergeometric series for some fixed value of the argument
(usually 1) from known identities for hypergeometric series with a smaller number
of parameters involving the argument x, 1−x or a combination of their powers. The
basic idea of this method is to multiply the known hypergeometric identity by the
factor xd−1(1 − x)e−d−1, where e and d are suitable parameters, integrate term by
term over [0, 1] making use of the beta integral representation∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
(ℜ(a) > 0, ℜ(b) > 0) (2)

and finally to rewrite the result in terms of a new hypergeometric series. We apply
this method to two Euler-type transformations obtained recently in [3, 4] to derive
two two-term Thomae-type transformations for hypergeometric functions with r
pairs of numeratorial and denominatorial parameters differing by positive integers.

2. Extended Thomae-type transformations

Our starting point is the following Euler-type transformations for hypergeometric
functions with r pairs of numeratorial and denominatorial parameters differing by
positive integers (mr).

Theorem 1. Let (mr) be a sequence of positive integers with m := m1 + · · ·+mr.
Then we have the two Euler-type transformations [3, 4] for | arg (1− x)| < π

r+2Fr+1

[
a, b,
c,

(fr +mr)
(fr)

;x

]
= (1− x)−a

m+2Fm+1

[
a, c−b−m,

c,
(ξm + 1)
(ξm)

;
x

x− 1

]
(3)

provided b ̸= fj (1 ≤ j ≤ r), (c− b−m)m ̸= 0 and

r+2Fr+1

[
a, b,
c,

(fr +mr)
(fr)

;x

]
= (1− x)c−a−b−m m+2Fm+1

[
c−a−m, c−b−m,

c,
(ηm + 1)
(ηm)

;x

]
(4)



On two Thomae-type transformations for hypergeometric series 113

provided (c − a −m)m ̸= 0, (c − b −m)m ̸= 0. The (ξm) and (ηm) are respectively
the nonvanishing zeros of the associated parametric polynomials Qm(t) and Q̂m(t)
defined below.

The parametric polynomials Qm(t) and Q̂m(t), both of degree m = m1+· · ·+mr,
are given by

Qm(t) =
1

(λ)m

m∑
k=0

(b)kCk,r(t)k(λ− t)m−k, (5)

where λ := b− a−m, and

Q̂m(t) =
m∑

k=0

(−1)kCk,r(a)k(b)k(t)k
(c− a−m)k(c− b−m)k

Gm,k(t), (6)

where

Gm,k(t) := 3F2

[
−m+ k, t+ k, c− a− b−m
c− a−m+ k, c− b−m+ k

; 1

]
.

The coefficients Ck,r are defined for 0 ≤ k ≤ m by

Ck,r =
1

Λ

m∑
j=k

σjS
(k)
j , Λ = (f1)m1 . . . (fr)mr , (7)

with C0,r = 1, Cm,r = 1/Λ. The S
(k)
j denote the Stirling numbers of the second

kind and the σj (0 ≤ j ≤ m) are generated by the relation

(f1 + x)m1 · · · (fr + x)mr =

m∑
j=0

σjx
j . (8)

For 0 ≤ k ≤ m, the function Gm,k(t) is a polynomial in t of degree m− k and both

Qm(t) and Q̂m(t) are normalized so that Qm(0) = Q̂m(0) = 1.

Remark 1. In [5], an alternative representation for the coefficients Ck,r is given as
the terminating hypergeometric series of unit argument

Ck,r =
(−1)k

k!
r+1Fr

[
−k, (fr +mr)

(fr)
; 1

]
.

When r = 1, with f1 = f , m1 = m, Vandermonde’s summation theorem [8, p. 243]
can be used to show that

Ck,1 =

(
m
k

)
1

(f)k
. (9)

We first apply the Beta integral method [2] to the result in (4) to obtain a new
hypergeometric identity. Multiplying both sides by xd−1(1 − x)e−d−1, where e, d
are arbitrary parameters satisfying ℜ(e − d) > 0, ℜ(d) > 0, we integrate over the
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interval [0, 1]. The left-hand side yields

∫ 1

0

xd−1(1− x)e−d−1
r+2Fr+1

[
a, b,
c,

(fr +mr)
(fr)

;x

]
dx

=

∞∑
k=0

(a)k(b)k
(c)k k!

((fr +mr))k
((fr))k

∫ 1

0

xd+k−1(1− x)e−d−1dx

=
∞∑
k=0

(a)k(b)k
(c)k k!

((fr +mr))k
((fr))k

Γ(d+ k)Γ(e− d)

Γ(e+ k)

=
Γ(d)Γ(e− d)

Γ(e)
r+3Fr+2

[
a, b, d,
c, e,

(fr +mr)
(fr)

; 1

]
, (10)

upon evaluation of the integral by (2) and use of the definition (1) when it is supposed
that ℜ(s) > 0, where s is the parametric excess given by

s := c+ e− a− b− d−m. (11)

Proceeding in a similar manner with the right-hand side of (4), we obtain

∫ 1

0

xd−1(1− x)s−1
m+2Fm+1

[
c− a−m, c− b−m,

c,
(ηm + 1)
(ηm)

;x

]
dx

=
∞∑
k=0

(c− a−m)k(c− b−m)k
(c)k k!

((ηm + 1))k
((ηm))k

∫ 1

0

xd+k−1(1− x)s−1dx

=
Γ(d)Γ(s)

Γ(c+ e− a− b−m)
m+3Fm+2

[
c− a−m, c− b−m, d,
c, c+ e− a− b−m,

(ηm + 1)
(ηm)

; 1

]
.(12)

Then by (10) and (12) we obtain the two-term Thomae-type hypergeometric identity
given in the following theorem, where the restriction ℜ(d) > 0 can be removed by
appeal to analytic continuation:

Theorem 2. Let (mr) be a sequence of positive integers with m := m1 + · · ·+mr.
Then

r+3Fr+2

[
a, b, d,
c, e,

(fr +mr)
(fr)

; 1

]
=

Γ(e)Γ(s)

Γ(e− d)Γ(s+ d)
m+3Fm+2

[
c− a−m, c− b−m, d,

c, s+ d,
(ηm + 1)
(ηm)

; 1

]
(13)

provided (c− a−m)m ̸= 0, (c− b−m)m ̸= 0, ℜ(e− d) > 0 and ℜ(s) > 0, where s
is defined by (11).

The same procedure can be applied to (3) when the parameter a = −n (to ensure
convergence of the resulting integral at x = 1), where n is a non-negative integer, to



On two Thomae-type transformations for hypergeometric series 115

yield the right-hand side of (3) given by∫ 1

0

xd−1(1− x)e−d+n−1
m+2Fm+1

[
−n, c− b−m,

c,
(ξm + 1)
(ξm)

;
x

x− 1

]
dx

=

n∑
k=0

(−1)k(−n)k(c− b−m)k
(c)k k!

((ξm + 1))k
((ξm))k

∫ 1

0

xd+k−1(1− x)e−d+n−k−1dx

=
Γ(d)Γ(e− d+ n)

Γ(e+ n)

n∑
k=0

(−n)k(c− b−m)k(d)k
(c)k(1− e+ d− n)kk!

((ξm + 1))k
((ξm))k

=
Γ(d)Γ(e− d+ n)

Γ(e+ n)
m+3Fm+2

[
−n, c− b−m, d,
c, 1− e+ a+ d,

(ξm + 1)
(ξm)

; 1

]
(14)

provided ℜ(e − d) > 0, ℜ(d) > 0. From (10) and (14), and appeal to analytic
continuation to remove the restriction ℜ(d) > 0, we then obtain the finite Thomae-
type transformation

Theorem 3. Let (mr) be a sequence of positive integers with m := m1 + · · ·+mr.
Then, for non-negative integer n

r+3Fr+2

[
−n, b, d,

c, e,
(fr +mr)

(fr)
; 1

]
=

(e− d)n
(e)n

m+3Fm+2

[
−n, c− b−m, d,
c, 1− e+ d− n,

(ξm + 1)
(ξm)

; 1

]
(15)

provided b ̸= fj (1 ≤ j ≤ r), (c− b−m)m ̸= 0 and ℜ(e− d) > 0.

3. Examples

When r = 0 (with m = 0), from (13) and (15) we recover the known results [9]

3F2

[
a, b, d,
c, e,

; 1

]
=

Γ(e)Γ(c+ e− a− b− d)

Γ(e− d)Γ(c+ e− a− b)
3F2

[
c− a, c− b, d
c, c+ e− a− b

; 1

]
for ℜ(e− d) > 0, ℜ(e+ c− a− b− d) > 0 and

3F2

[
−n, b, d,

c, e,
; 1

]
=

(e− d)n
(e)n

3F2

[
−n, c− b, d,

c, 1− e+ d− n,
; 1

]
for ℜ(e− d) > 0 with n a non-negative integer.

In the particular case r = 1, m1 = m = 1, f1 = f , we have the parametric
polynomial from (5)

Q1(t) = 1 +
(b− f)t

(c− b− 1)f

with the nonvanishing zero ξ1 = ξ (provided b ̸= f , c− b− 1 ̸= 0) given by

ξ =
(c− b− 1)f

f − b
, (16)
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and from (6)

Q̂1(t) = 1− {(c− a− b− 1)f + ab}t
(c− a− 1)(c− b− 1)f

with the nonvanishing zero η1 = η (provided c− a− 1 ̸= 0, c− b− 1 ̸= 0) given by

η =
(c− a− 1)(c− b− 1)f

ab+ (c− a− b− 1)f
. (17)

Then from (13) and (15) we have the transformations

4F3

[
a, b, d,
c, e,

f + 1
f

; 1

]
=

Γ(e)Γ(s)

Γ(e− d)Γ(s+ d)
4F3

[
c− a− 1, c− b− 1, d,

c, s+ d,
η + 1
η

; 1

]
provided c− a− 1 ̸= 0, c− b− 1 ̸= 0, ℜ(e− d) > 0 and ℜ(s) > 0, where s is defined
by (11) with m = 1, and

4F3

[
−n, b, d,

c, e,
f + 1
f

; 1

]
=

(e− d)n
(e)n

4F3

[
−n, c− b− 1, d,
c, 1− e+ d− n,

ξ + 1
ξ

; 1

]
for non-negative integer n and ℜ(e− d) > 0.

In the case r = 1, m1 = 2, f1 = f , we have C0,r = 1, C1,r = 2/f and C2,r =
1/(f)2 by (9). From (5) and (6) we obtain after a little algebra the quadratic
parametric polynomials Q2(t) (with zeros ξ1 and ξ2) and Q̂2(t) (with zeros η1 and
η2) given by

Q2(t) = 1− 2(f − b)t

(c− b− 2)f
+

(f − b)2t(t+ 1)

(c− b− 2)2(f)2

and

Q̂2(t) = 1− 2Bt

(c− a− 2)(c− b− 2)
+

Ct(1 + t)

(c− a− 2)2(c− b− 2)2
,

where

B := σ′ +
ab

f
, C := σ′(σ′ + 1) +

2abσ′

f
+

(a)2(b)2
(f)2

, σ′ := c− a− b− 2.

For example, if a = 1
4 , b =

5
2 , c =

3
2 and f = 1

2 we have

Q2(t) = 1− 8
3 t+

4
9 t(1 + t), Q̂2(t) = 1 + 16

9 t− 68
27 t(1 + t),

whence ξ1 = 1
2 , ξ2 = 9

2 and η1 = 1
2 , η2 = −27

34 . The transformations in (13) and (15)
then yield

4F3

[
1
4 ,

5
2 , d,

5
2

3
2 , e,

1
2

; 1

]
=

Γ(e)Γ(e− d− 13
4 )

Γ(e− d)Γ(e− 13
4 )

4F3

[
−3

4 , −3, d, 7
34

e− 13
4 , 1

2 , −
27
34

; 1

]
(18)

provided ℜ(e− d) > 13
4 , and

4F3

[
−n, 5

2 , d,
5
2

3
2 , e,

1
2

; 1

]
=

(e− d)n
(e)n

4F3

[
−n, −3, d, 11

2

1− e+ d− n, 1
2 ,

9
2

; 1

]
(19)
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for non-negative integer n. We remark that a contraction of the order of the hyper-
geometric functions on the right-hand sides of (18) and (19) has been possible since
c = ξ1 + 1 = η1 + 1 = 3

2 . In addition, both series on the right-hand sides terminate:
the first with summation index k = 3 and the second with index k = min{n, 3}. A
final point to mention is that for real parameters a, b, c and f it is possible (when
m ≥ 2) to have complex zeros.

4. Concluding remarks

We have employed the Beta Integral method of Krattenthaler and Rao [2] applied
to two recently obtained Euler-type transformations for hypergeometric functions
with r pairs of numeratorial and denominatorial parameters differing by positive
integers (mr). By this, we have established two Thomae-type transformations given
in Theorems 2 and 3.

In order to write the hypergeometric series in (13) and (15) we require the ze-
ros (ηm) and (ξm) of the parametric polynomials Q̂m(t) and Qm(t), respectively.
However, to evaluate the series on the right-hand sides of (13) and (15), it is not
necessary to evaluate these zeros. This observation can be understood by reference
to the hypergeometric series

F ≡ m+2Fm+1

[
α, β,
γ,

(ξm + 1)
(ξm)

; 1

]
=

∞∑
k=0

(α)k(β)k
(γ)k k!

(
1 +

k

ξ1

)
. . .

(
1 +

k

ξm

)
upon use of the fact that (a+1)k/(a)k = 1+(k/a). Since the parametric polynomial
Qm(t) in (5) can be written as Qm(t) =

∏m
r=1{1− (t/ξr)}, it follows that

F =

∞∑
k=0

(α)k(β)k
(γ)k k!

Qm(−k).

Consequently, it is sufficient to know only the parametric polynomial Qm(t). A
similar remark applies to the series involving the zeros (ηm) with the parametric
polynomial Qm(−k) replaced by Q̂m(−k).
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