On two Thomae-type transformations for hypergeometric series with integral parameter differences

Yong S. Kim ${ }^{1}$, Arjun K. Rathie ${ }^{2}$ and Richard B. Paris ${ }^{3, *}$
${ }^{1}$ Department of Mathematics Education, Wonkwang University, Iksan, Korea
${ }^{2}$ Department of Mathematics, Central University of Kerala, Kasaragad 671 123, Kerala, India
${ }^{3}$ School of Computing, Engineering and Applied Mathematics, University of Abertay Dundee, Dundee DD1 1HG, UK

Received September 9, 2013; accepted January 15, 2014

Abstract

We obtain two new Thomae-type transformations for hypergeometric series with r pairs of numeratorial and denominatorial parameters differing by positive integers. This is achieved by application of the so-called Beta integral method developed by Krattenthaler and Rao [Symposium on Symmetries in Science (ed. B. Gruber), Kluwer (2004)] to two recently obtained Euler-type transformations. Some special cases are given. AMS subject classifications: 33C15, 33C20

Key words: generalized hypergeometric series, Thomae transformations, generalized Eulertype transformations

1. Introduction

The generalized hypergeometric function ${ }_{p} F_{q}(x)$ is defined for complex parameters and argument by the series

$$
\left.{ }_{p} F_{q}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p} \tag{1}\\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right] x\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{x^{k}}{k!} .
$$

When $q \geq p$, this series converges for $|x|<\infty$, but when $q=p-1$, convergence occurs when $|x|<1$ (unless the series terminates). In (1), the Pochhammer symbol or ascending factorial $(a)_{n}$ is given for integer n by

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}1 & (n=0) \\ a(a+1) \ldots(a+n-1) & (n \geq 1)\end{cases}
$$

where Γ is the gamma function. In what follows we shall adopt the convention of writing the finite sequence of parameters $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ simply by $\left(a_{p}\right)$ and the product of p Pochhammer symbols by

$$
\left(\left(a_{p}\right)\right)_{k} \equiv\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k},
$$

*Corresponding author. Email addresses: yspkim@wonkwang.ac.kr (Y.S.Kim), akrathie@cukerala.edu.in (A. K. Rathie), r.paris@abertay.ac.uk (R. B. Paris)
http://www.mathos.hr/mc
© 2014 Department of Mathematics, University of Osijek
where an empty product $p=0$ is interpreted as unity.
Recent work has been carried out on the extension of various summations theorems, such as those of Gauss, Kummer, Bailey and Watson [1, 6, 7], and also of Euler-type transformations to higher-order hypergeometric functions with r pairs of numeratorial and denominatorial parameters differing by positive integers [3, 4]. Our interest in this note is concerned with obtaining similar extensions of the two-term Thomae transformation [8, p. 52]

$$
{ }_{3} F_{2}\left[\begin{array}{c}
a, b, c \\
d, e
\end{array} ; 1\right]=\frac{\Gamma(d) \Gamma(e) \Gamma(\sigma)}{\Gamma(a) \Gamma(b+\sigma) \Gamma(c+\sigma)}{ }_{3} F_{2}\left[\begin{array}{c}
c-a, d-a, \sigma \\
b+\sigma, c+\sigma
\end{array} ; 1\right]
$$

for $\Re(\sigma)>0, \Re(a)>0$, where $\sigma=e+d-a-b-c$ is the parametric excess. Many other results of the above type, including three-term Thomae transformations, are given in [8, pp. 116-121]; see also [9].

The so-called Beta integral method introduced by Krathenthaler and Rao [2] generates new identities for hypergeometric series for some fixed value of the argument (usually 1) from known identities for hypergeometric series with a smaller number of parameters involving the argument $x, 1-x$ or a combination of their powers. The basic idea of this method is to multiply the known hypergeometric identity by the factor $x^{d-1}(1-x)^{e-d-1}$, where e and d are suitable parameters, integrate term by term over $[0,1]$ making use of the beta integral representation

$$
\begin{equation*}
\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \quad(\Re(a)>0, \Re(b)>0) \tag{2}
\end{equation*}
$$

and finally to rewrite the result in terms of a new hypergeometric series. We apply this method to two Euler-type transformations obtained recently in $[3,4]$ to derive two two-term Thomae-type transformations for hypergeometric functions with r pairs of numeratorial and denominatorial parameters differing by positive integers.

2. Extended Thomae-type transformations

Our starting point is the following Euler-type transformations for hypergeometric functions with r pairs of numeratorial and denominatorial parameters differing by positive integers $\left(m_{r}\right)$.
Theorem 1. Let $\left(m_{r}\right)$ be a sequence of positive integers with $m:=m_{1}+\cdots+m_{r}$. Then we have the two Euler-type transformations [3, 4] for $|\arg (1-x)|<\pi$

$$
\left.\begin{array}{rl}
{ }_{r+2} F_{r+1} & {\left[\begin{array}{cc}
a, b, & \left(f_{r}+m_{r}\right) \\
c, & \left(f_{r}\right)
\end{array}\right]} \\
& =(1-x)^{-a}{ }_{m+2} F_{m+1}\left[\begin{array}{cc}
a, c-b-m,\left(\xi_{m}+1\right) \\
c, & \left(\xi_{m}\right)
\end{array}\right] \frac{x}{x-1} \tag{3}
\end{array}\right]
$$

provided $b \neq f_{j}(1 \leq j \leq r),(c-b-m)_{m} \neq 0$ and

$$
\begin{align*}
{ }_{r+2} F_{r+1} & {\left[\begin{array}{cc}
a, b, & \left(f_{r}+m_{r}\right) \\
c, & \left(f_{r}\right)
\end{array}\right] } \\
& =(1-x)^{c-a-b-m}{ }_{m+2} F_{m+1}\left[\begin{array}{cc}
c-a-m, c-b-m, & \left(\eta_{m}+1\right) \\
c, & \left(\eta_{m}\right)
\end{array}\right] \tag{4}
\end{align*}
$$

provided $(c-a-m)_{m} \neq 0,(c-b-m)_{m} \neq 0$. The $\left(\xi_{m}\right)$ and $\left(\eta_{m}\right)$ are respectively the nonvanishing zeros of the associated parametric polynomials $Q_{m}(t)$ and $\hat{Q}_{m}(t)$ defined below.

The parametric polynomials $Q_{m}(t)$ and $\hat{Q}_{m}(t)$, both of degree $m=m_{1}+\cdots+m_{r}$, are given by

$$
\begin{equation*}
Q_{m}(t)=\frac{1}{(\lambda)_{m}} \sum_{k=0}^{m}(b)_{k} C_{k, r}(t)_{k}(\lambda-t)_{m-k} \tag{5}
\end{equation*}
$$

where $\lambda:=b-a-m$, and

$$
\begin{equation*}
\hat{Q}_{m}(t)=\sum_{k=0}^{m} \frac{(-1)^{k} C_{k, r}(a)_{k}(b)_{k}(t)_{k}}{(c-a-m)_{k}(c-b-m)_{k}} G_{m, k}(t) \tag{6}
\end{equation*}
$$

where

$$
G_{m, k}(t):={ }_{3} F_{2}\left[\begin{array}{l}
-m+k, t+k, c-a-b-m \\
c-a-m+k, c-b-m+k
\end{array} ; 1\right] .
$$

The coefficients $C_{k, r}$ are defined for $0 \leq k \leq m$ by

$$
\begin{equation*}
C_{k, r}=\frac{1}{\Lambda} \sum_{j=k}^{m} \sigma_{j} \mathbf{S}_{j}^{(k)}, \quad \Lambda=\left(f_{1}\right)_{m_{1}} \ldots\left(f_{r}\right)_{m_{r}} \tag{7}
\end{equation*}
$$

with $C_{0, r}=1, C_{m, r}=1 / \Lambda$. The $\mathbf{S}_{j}^{(k)}$ denote the Stirling numbers of the second kind and the $\sigma_{j}(0 \leq j \leq m)$ are generated by the relation

$$
\begin{equation*}
\left(f_{1}+x\right)_{m_{1}} \cdots\left(f_{r}+x\right)_{m_{r}}=\sum_{j=0}^{m} \sigma_{j} x^{j} \tag{8}
\end{equation*}
$$

For $0 \leq k \leq m$, the function $G_{m, k}(t)$ is a polynomial in t of degree $m-k$ and both $Q_{m}(t)$ and $\hat{Q}_{m}(t)$ are normalized so that $Q_{m}(0)=\hat{Q}_{m}(0)=1$.

Remark 1. In [5], an alternative representation for the coefficients $C_{k, r}$ is given as the terminating hypergeometric series of unit argument

$$
C_{k, r}=\frac{(-1)^{k}}{k!}{ }_{r+1} F_{r}\left[\begin{array}{c}
-k,\left(f_{r}+m_{r}\right) \\
\left(f_{r}\right)
\end{array} ; 1\right] .
$$

When $r=1$, with $f_{1}=f, m_{1}=m$, Vandermonde's summation theorem [8, p. 243] can be used to show that

$$
\begin{equation*}
C_{k, 1}=\binom{m}{k} \frac{1}{(f)_{k}} \tag{9}
\end{equation*}
$$

We first apply the Beta integral method [2] to the result in (4) to obtain a new hypergeometric identity. Multiplying both sides by $x^{d-1}(1-x)^{e-d-1}$, where e, d are arbitrary parameters satisfying $\Re(e-d)>0, \Re(d)>0$, we integrate over the
interval $[0,1]$. The left-hand side yields

$$
\begin{align*}
\int_{0}^{1} x^{d-1}(1-x)^{e-d-1} & { }_{r+2} F_{r+1}\left[\begin{array}{cc}
a, b, & \left(f_{r}+m_{r}\right) \\
c, & \left(f_{r}\right)
\end{array}\right] d x \\
& =\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} \frac{\left(\left(f_{r}+m_{r}\right)\right)_{k}}{\left(\left(f_{r}\right)\right)_{k}} \int_{0}^{1} x^{d+k-1}(1-x)^{e-d-1} d x \\
& =\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} \frac{\left(\left(f_{r}+m_{r}\right)\right)_{k}}{\left(\left(f_{r}\right)\right)_{k}} \frac{\Gamma(d+k) \Gamma(e-d)}{\Gamma(e+k)} \\
& =\frac{\Gamma(d) \Gamma(e-d)}{\Gamma(e)}{ }_{r+3} F_{r+2}\left[\begin{array}{cc}
a, b, d,\left(f_{r}+m_{r}\right) \\
c, e, & \left(f_{r}\right)
\end{array}\right] \tag{10}
\end{align*}
$$

upon evaluation of the integral by (2) and use of the definition (1) when it is supposed that $\Re(s)>0$, where s is the parametric excess given by

$$
\begin{equation*}
s:=c+e-a-b-d-m . \tag{11}
\end{equation*}
$$

Proceeding in a similar manner with the right-hand side of (4), we obtain

$$
\begin{align*}
& \int_{0}^{1} x^{d-1}(1-x)^{s-1}{ }_{m+2} F_{m+1}\left[\begin{array}{c}
c-a-m, c-b-m,\left(\eta_{m}+1\right) \\
c,
\end{array} \begin{array}{c}
\left(\eta_{m}\right)
\end{array}\right] d x \\
& =\sum_{k=0}^{\infty} \frac{(c-a-m)_{k}(c-b-m)_{k}}{(c)_{k} k!} \frac{\left(\left(\eta_{m}+1\right)\right)_{k}}{\left(\left(\eta_{m}\right)\right)_{k}} \int_{0}^{1} x^{d+k-1}(1-x)^{s-1} d x \\
& =\frac{\Gamma(d) \Gamma(s)}{\Gamma(c+e-a-b-m)} m+3 F_{m+2}\left[\begin{array}{c}
c-a-m, c-b-m, d,\left(\eta_{m}+1\right) \\
c, c+e-a-b-m, \\
\left(\eta_{m}\right)
\end{array}\right] . \tag{12}
\end{align*}
$$

Then by (10) and (12) we obtain the two-term Thomae-type hypergeometric identity given in the following theorem, where the restriction $\Re(d)>0$ can be removed by appeal to analytic continuation:

Theorem 2. Let $\left(m_{r}\right)$ be a sequence of positive integers with $m:=m_{1}+\cdots+m_{r}$. Then

$$
\left.\begin{array}{l}
{ }_{r+3} F_{r+2}\left[\begin{array}{cc}
a, b, d,\left(f_{r}+m_{r}\right) \\
c, e, & \left(f_{r}\right)
\end{array}\right]
\end{array}\right] \begin{gathered}
\Gamma(e) \Gamma(s) \\
\quad=\frac{m+3}{\Gamma(e-d) \Gamma(s+d)} F_{m+2}\left[\begin{array}{c}
c-a-m, c-b-m, d,\left(\eta_{m}+1\right) \\
c, s+d,
\end{array}\right] \tag{13}
\end{gathered}
$$

provided $(c-a-m)_{m} \neq 0,(c-b-m)_{m} \neq 0, \Re(e-d)>0$ and $\Re(s)>0$, where s is defined by (11).

The same procedure can be applied to (3) when the parameter $a=-n$ (to ensure convergence of the resulting integral at $x=1$), where n is a non-negative integer, to
yield the right-hand side of (3) given by

$$
\begin{align*}
& \int_{0}^{1} x^{d-1}(1-x)^{e-d+n-1}{ }_{m+2} F_{m+1}\left[\begin{array}{c}
-n, c-b-m, \\
c, \\
\left(\xi_{m}+1\right) \\
\left(\xi_{m}\right)
\end{array} ; \frac{x}{x-1}\right] d x \\
& \quad=\sum_{k=0}^{n} \frac{(-1)^{k}(-n)_{k}(c-b-m)_{k}}{(c)_{k} k!} \frac{\left(\left(\xi_{m}+1\right)\right)_{k}}{\left(\left(\xi_{m}\right)\right)_{k}} \int_{0}^{1} x^{d+k-1}(1-x)^{e-d+n-k-1} d x \\
& \quad=\frac{\Gamma(d) \Gamma(e-d+n)}{\Gamma(e+n)} \sum_{k=0}^{n} \frac{\left.(-n)_{k}(c-b-m)_{k}(d)\right)_{k}}{(c)_{k}(1-e+d-n)_{k} k!} \frac{\left(\left(\xi_{m}+1\right)\right)_{k}}{\left(\left(\xi_{m}\right)\right)_{k}} \\
& \quad=\frac{\Gamma(d) \Gamma(e-d+n)}{\Gamma(e+n)}{ }_{m+3} F_{m+2}\left[\begin{array}{cc}
-n, c-b-m, d,\left(\xi_{m}+1\right) \\
c, 1-e+a+d, & \left(\xi_{m}\right)
\end{array}\right] \tag{14}
\end{align*}
$$

provided $\Re(e-d)>0, \Re(d)>0$. From (10) and (14), and appeal to analytic continuation to remove the restriction $\Re(d)>0$, we then obtain the finite Thomaetype transformation
Theorem 3. Let $\left(m_{r}\right)$ be a sequence of positive integers with $m:=m_{1}+\cdots+m_{r}$. Then, for non-negative integer n

$$
\left.\begin{array}{rl}
{ }_{r+3} F_{r+2} & {\left[\begin{array}{cc}
-n, b, d,\left(f_{r}+m_{r}\right) \\
c, e, & \left(f_{r}\right)
\end{array}\right]} \\
& =\frac{(e-d)_{n}}{(e)_{n}}{ }_{m+3} F_{m+2}\left[\begin{array}{cc}
-n, c-b-m, d,\left(\xi_{m}+1\right) \\
c, 1-e+d-n, & \left(\xi_{m}\right)
\end{array}\right] \tag{15}
\end{array}\right]
$$

provided $b \neq f_{j}(1 \leq j \leq r),(c-b-m)_{m} \neq 0$ and $\Re(e-d)>0$.

3. Examples

When $r=0$ (with $m=0$), from (13) and (15) we recover the known results [9]

$$
{ }_{3} F_{2}\left[\begin{array}{c}
a, b, d, \\
c, e,
\end{array}, 1\right]=\frac{\Gamma(e) \Gamma(c+e-a-b-d)}{\Gamma(e-d) \Gamma(c+e-a-b)}{ }_{3} F_{2}\left[\begin{array}{c}
c-a, c-b, d \\
c, c+e-a-b
\end{array} ; 1\right]
$$

for $\Re(e-d)>0, \Re(e+c-a-b-d)>0$ and

$$
{ }_{3} F_{2}\left[\begin{array}{c}
-n, b, d, \\
c, e,
\end{array}, 1\right]=\frac{(e-d)_{n}}{(e)_{n}}{ }_{3} F_{2}\left[\begin{array}{c}
-n, c-b, d, \\
c, 1-e+d-n,
\end{array}\right]
$$

for $\Re(e-d)>0$ with n a non-negative integer.
In the particular case $r=1, m_{1}=m=1, f_{1}=f$, we have the parametric polynomial from (5)

$$
Q_{1}(t)=1+\frac{(b-f) t}{(c-b-1) f}
$$

with the nonvanishing zero $\xi_{1}=\xi($ provided $b \neq f, c-b-1 \neq 0)$ given by

$$
\begin{equation*}
\xi=\frac{(c-b-1) f}{f-b} \tag{16}
\end{equation*}
$$

and from (6)

$$
\hat{Q}_{1}(t)=1-\frac{\{(c-a-b-1) f+a b\} t}{(c-a-1)(c-b-1) f}
$$

with the nonvanishing zero $\eta_{1}=\eta$ (provided $\left.c-a-1 \neq 0, c-b-1 \neq 0\right)$ given by

$$
\begin{equation*}
\eta=\frac{(c-a-1)(c-b-1) f}{a b+(c-a-b-1) f} \tag{17}
\end{equation*}
$$

Then from (13) and (15) we have the transformations

$$
{ }_{4} F_{3}\left[\begin{array}{cc}
a, b, d, f+1 \\
c, e, & f
\end{array}\right]=\frac{\Gamma(e) \Gamma(s)}{\Gamma(e-d) \Gamma(s+d)}{ }_{4} F_{3}\left[\begin{array}{c}
c-a-1, c-b-1, d, \eta+1 \\
c, s+d,
\end{array} ; 1\right]
$$

provided $c-a-1 \neq 0, c-b-1 \neq 0, \Re(e-d)>0$ and $\Re(s)>0$, where s is defined by (11) with $m=1$, and

$$
{ }_{4} F_{3}\left[\begin{array}{c}
-n, b, d, f+1 \\
c, e, \quad f
\end{array}\right]=\frac{(e-d)_{n}}{(e)_{n}}{ }_{4} F_{3}\left[\begin{array}{c}
-n, c-b-1, d, \xi+1 \\
c, 1-e+d-n, \quad \xi
\end{array} ; 1\right]
$$

for non-negative integer n and $\Re(e-d)>0$.
In the case $r=1, m_{1}=2, f_{1}=f$, we have $C_{0, r}=1, C_{1, r}=2 / f$ and $C_{2, r}=$ $1 /(f)_{2}$ by (9). From (5) and (6) we obtain after a little algebra the quadratic parametric polynomials $Q_{2}(t)$ (with zeros ξ_{1} and ξ_{2}) and $\hat{Q}_{2}(t)$ (with zeros η_{1} and η_{2}) given by

$$
Q_{2}(t)=1-\frac{2(f-b) t}{(c-b-2) f}+\frac{(f-b)_{2} t(t+1)}{(c-b-2)_{2}(f)_{2}}
$$

and

$$
\hat{Q}_{2}(t)=1-\frac{2 B t}{(c-a-2)(c-b-2)}+\frac{C t(1+t)}{(c-a-2)_{2}(c-b-2)_{2}}
$$

where

$$
B:=\sigma^{\prime}+\frac{a b}{f}, \quad C:=\sigma^{\prime}\left(\sigma^{\prime}+1\right)+\frac{2 a b \sigma^{\prime}}{f}+\frac{(a)_{2}(b)_{2}}{(f)_{2}}, \quad \sigma^{\prime}:=c-a-b-2 .
$$

For example, if $a=\frac{1}{4}, b=\frac{5}{2}, c=\frac{3}{2}$ and $f=\frac{1}{2}$ we have

$$
Q_{2}(t)=1-\frac{8}{3} t+\frac{4}{9} t(1+t), \quad \hat{Q}_{2}(t)=1+\frac{16}{9} t-\frac{68}{27} t(1+t)
$$

whence $\xi_{1}=\frac{1}{2}, \xi_{2}=\frac{9}{2}$ and $\eta_{1}=\frac{1}{2}, \eta_{2}=-\frac{27}{34}$. The transformations in (13) and (15) then yield

$$
{ }_{4} F_{3}\left[\begin{array}{c}
\frac{1}{4}, \frac{5}{2}, d, \frac{5}{2} \tag{18}\\
\frac{3}{2}, e, \frac{1}{2}
\end{array}\right]=\frac{\Gamma(e) \Gamma\left(e-d-\frac{13}{4}\right)}{\Gamma(e-d) \Gamma\left(e-\frac{13}{4}\right)}{ }_{4} F_{3}\left[\begin{array}{l}
-\frac{3}{4},-3, d, \frac{7}{34} \\
e-\frac{13}{4}, \frac{1}{2},-\frac{27}{34}
\end{array}\right]
$$

provided $\Re(e-d)>\frac{13}{4}$, and

$$
\left.{ }_{4} F_{3}\left[\begin{array}{c}
-n, \frac{5}{2}, d, \frac{5}{2} \tag{19}\\
\frac{3}{2}, e, \frac{1}{2}
\end{array} ; 1\right]=\frac{(e-d)_{n}}{(e)_{n}}{ }_{4} F_{3}\left[\begin{array}{c}
-n,-3, d, \frac{11}{2} \\
1-e+d-n, \frac{1}{2}, \frac{9}{2}
\end{array}\right] 1\right]
$$

for non-negative integer n. We remark that a contraction of the order of the hypergeometric functions on the right-hand sides of (18) and (19) has been possible since $c=\xi_{1}+1=\eta_{1}+1=\frac{3}{2}$. In addition, both series on the right-hand sides terminate: the first with summation index $k=3$ and the second with index $k=\min \{n, 3\}$. A final point to mention is that for real parameters a, b, c and f it is possible (when $m \geq 2$) to have complex zeros.

4. Concluding remarks

We have employed the Beta Integral method of Krattenthaler and Rao [2] applied to two recently obtained Euler-type transformations for hypergeometric functions with r pairs of numeratorial and denominatorial parameters differing by positive integers $\left(m_{r}\right)$. By this, we have established two Thomae-type transformations given in Theorems 2 and 3.

In order to write the hypergeometric series in (13) and (15) we require the ze$\operatorname{ros}\left(\eta_{m}\right)$ and $\left(\xi_{m}\right)$ of the parametric polynomials $\hat{Q}_{m}(t)$ and $Q_{m}(t)$, respectively. However, to evaluate the series on the right-hand sides of (13) and (15), it is not necessary to evaluate these zeros. This observation can be understood by reference to the hypergeometric series

$$
F \equiv{ }_{m+2} F_{m+1}\left[\begin{array}{cc}
\alpha, \beta,\left(\xi_{m}+1\right) \\
\gamma, & \left(\xi_{m}\right)
\end{array}\right]=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!}\left(1+\frac{k}{\xi_{1}}\right) \ldots\left(1+\frac{k}{\xi_{m}}\right)
$$

upon use of the fact that $(a+1)_{k} /(a)_{k}=1+(k / a)$. Since the parametric polynomial $Q_{m}(t)$ in (5) can be written as $Q_{m}(t)=\prod_{r=1}^{m}\left\{1-\left(t / \xi_{r}\right)\right\}$, it follows that

$$
F=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} Q_{m}(-k)
$$

Consequently, it is sufficient to know only the parametric polynomial $Q_{m}(t)$. A similar remark applies to the series involving the zeros $\left(\eta_{m}\right)$ with the parametric polynomial $Q_{m}(-k)$ replaced by $\hat{Q}_{m}(-k)$.

Acknowledgement:

Y. S. Kim acknowledges the support of the Wonkwang University Research Fund (2014).

References

[1] Y. S. Kim, M. A. Rakha, A. K. Rathie, Extensions of certain classical summation theorems for the series ${ }_{2} F_{1},{ }_{3} F_{2}$ and ${ }_{4} F_{3}$ with applications in Ramanujan summations, Int. J. Math. Sci. 2010(2010), Article ID 309503.
[2] C. Krattenthaler, K. Srinivasa Rao, On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients, Symmetries in Science XI (2005), 355-375, Kluwer Acad. Publ., Dordrecht, 2004.
[3] A. R. Miller, R. B. Paris, Euler-type transformations for the generalized hypergeometric function ${ }_{r+2} F_{r+1}(x)$, Z. Angew. Math. Phys. 62(2011), 31-45.
[4] A. R. Miller, R. B. Paris, Transformation formulas for the generalized hypergeometric function with integral parameter differences, Rocky Mountain J. Math. 43(2013), 291-327.
[5] A. R. Miller, R. B. Paris, On a result related to transformations and summations of generalized hypergeometric series, Math. Commun. 17(2012), 205-210.
[6] M. A. Rakha, A. K. Rathie, Generalizations of classical summation theorems for the series ${ }_{2} F_{1}$ and ${ }_{3} F_{2}$ with applications, Integral Transforms Spec. Funct. 22(2011), 823840.
[7] A. K. Rathie, R. B. Paris, Extension of some classical summation theorems for the generalized hypergeometric series with inetegral parameter differences, to appear in J. Classical Analysis, 2014.
[8] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[9] S. Wolfram, The Wolfram Functions Site, http://www.functions.wolfram.com/ 07.27.17.0034.01 and 07.27.17.0046.01.

