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Abstract 

 

How does children’s limited processing capacity affect cultural transmission of 

complex information? We show that over the course of iterated reproduction of two-

dimensional random dot patterns transmission accuracy increased to a similar extent 

in 5- to 8-year-old children and adults whereas algorithmic complexity decreased 

faster in children. Thus, children require more structure to render complex inputs 

learnable. In line with the Less-Is-More hypothesis, we interpret this as evidence that 

children’s processing limitations affecting working memory capacity and executive 

control constrain the ability to represent and generate complexity, which, in turn, 

facilitates emergence of structure. This underscores the importance of investigating 

the role of children in the transmission of complex cultural traits.  

 

 

 

Keywords: cultural transmission, iterated learning, serial reproduction, Less-Is-More, 

random dot patterns, children, algorithmic complexity 
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Introduction 

Cultural traits and social conventions owe not just their survival but also their 

structural characteristics to the process of cultural transmission. Starting with 

experimental studies of iterated reproduction of narratives and drawings (Bartlett, 

1932), a growing line of research investigating technological (Mesoudi & Whiten, 

2008; Whiten, 2011) and communicative (Galantucci & Garrod, 2011) systems 

demonstrates that cultural transmission of information across generations of learners 

reduces entropy, thereby rendering cultural traits functionally relevant (Caldwell & 

Millen, 2009) and suitable to serve as social markers (Matthews, Roberts & Caldwell, 

2012). This issue has received particular attention in research on the evolution of 

language, where it has been suggested that structure emerges because language is 

gradually shaped by the information processing capacity of successive generations of 

learners. Computational (Smith, Kirby & Brighton, 2003; Reali & Griffiths, 2009) 

and experimental (Kirby, Cornish & Smith, 2008; Smith & Wonnacott, 2010) studies 

of iterated language learning show that languages with inconsistent mappings 

between forms and meanings become progressively more learnable and more 

compositional, i.e. they acquire a more systematic and predictable relationship 

between form features and meaning dimensions. Iterated learning amplifies the biases 

that affect learners’ inductive inferences leading to gradual emergence of structure 

(Reali & Griffiths, 2009). Moreover, cultural transmission reveals not just inductive 

biases that operate during iterated learning of artificial languages or even meaningless 

colour sequences (Cornish, Smith & Kirby, 2013) but also general memory biases that 

operate during serial reproduction of information (Xu & Griffiths, 2010).  However, 

experimental studies of cultural transmission have so far only focussed on adult 

learners who generally are at peak cognitive ability, yet many cultural traits and social 
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conventions are learned and transmitted by children whose information processing 

capacity is more limited. To fully understand how processing constraints shape the 

biases that lead to the emergence of structure it is important to compare cultural 

transmission between cognitively and socially mature and immature learners. This is 

the aim of the present study. 

Inspiration for this study comes from the domain of language learning, where 

the existence of regularising biases has been attributed to either language-specific or 

domain-general mechanisms. Language-specific biases imply access to an innate 

Universal Grammar (Bickerton, 1981), often conceived of as an evolved adaptation to 

the requirement of constraining the hypotheses of learners faced with limited input 

(Pinker & Bloom, 1990). Domain-general biases, on the other hand, arise from 

information processing constraints, which – according to the Less-Is-More 

Hypothesis (Newport, 1990) – can facilitate language learning. Several mechanisms 

have been proposed to account for beneficial effects of processing limitations. On the 

one hand, limited working memory capacity may make it easier for children to attend 

to smaller units, e.g. grammatical morphemes, in input sequences, which can go 

unnoticed by adults processing larger input segments. Connectionist simulations using 

recurrent networks (Elman, 1993) and experimental evidence from adult learners 

(Kersten & Earles, 2001) have demonstrated that imposing limitations on working 

memory capacity, or on input complexity, leads to superior outcomes in terms of 

mastery and generalisation of the underlying linguistic structure. On the other hand, 

regularisation and emergence of structure have been linked to immature executive 

control. Hudson Kam and Newport (2005) showed that when inputs contained 

inconsistencies in the use of grammatical forms, adults tried to match the probabilities 

of occurrence of each form, while 5- to 7-year old children regularised the 
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inconsistencies by using predominantly one or the other form. Thus, compared to 

adults, children are less able to inhibit pre-potent responses (Thompson-Schill, 

Ramscar & Chrysikou, 2009), although adults have been found to regularise as well if 

increased input complexity taxes their processing resources (Hudson Kam & 

Newport, 2009; Vouloumanos, 2008). Both of these domain-general mechanisms lead 

to the prediction that structure should emerge more rapidly during cultural 

transmission of information in chains of children than of adults, a prediction that is in 

line with the notion that children play a crucial role in creolisation, e.g. as described 

for the emergence of Nicaraguan Sign Language (Senghas & Coppola, 2001). 

 One of the reasons direct experimental evidence comparing iterated language 

learning between adults and children has not yet been provided may be due to the 

difficulty of administering artificial language learning regimens to large numbers of 

children. During artificial language learning, learners are exposed to multiple 

exemplars one at a time, and rely on frequency of occurrence to make inductive 

probabilistic inferences about the underlying rules that generate these examples. This 

is a time-consuming process difficult to implement in a sufficiently controlled manner 

on a scale large enough to allow for statistical comparison between chains of children 

and of adults. In an attempt to provide proof of concept, the present study therefore 

investigates serial reproduction of visuo-spatial patterns, assuming that similar 

regularising biases operate during transmission of information dispersed not in time 

but in space. We asked learners to recreate patterns of dots distributed randomly on a 

grid by placing the same number of dots into the appropriate cells of an empty grid. 

To ensure task compliance, we used a sticker task –  a familiar and highly enjoyable 

activity for children. As with sequence learning, learning of spatial configurations 

also requires learners to infer rules that can be used to reconstruct patterns for recall. 
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We take this procedural component as being loosely analogous to learning grammar. 

For sequences and for spatial configurations, emergence of structure can be 

conceptualised as reduction in Kolmogorov-Chaitin (or “algorithmic”) complexity, 

which is defined as the length of the shortest program running on a Universal Turing 

Machine, i.e. an abstract general-purpose computing device (Li & Vitányi, 2009), that 

produces the pattern and then halts. It captures the notion of structure in terms of the 

length of the procedure required to generate it – the shorter the algorithm required to 

generate a pattern, the more structured and less complex the pattern is. Unfortunately, 

Kolmogorov-Chaitin complexity is uncomputable (Gauvrit, Soler-Toscano, Zenil & 

Delahaye, 2014). However, the Coding Theorem Method (see below for more details) 

provides a practical way to accurately approximate algorithmic complexity for short 

series (Gauvrit et al., 2014; Soler-Toscano, Zenil, Delahaye & Gauvrit, 2013). This 

approximation is superior to alternative attempts to capture degree of non-randomness 

such as measures based on the mere distribution of outcomes, as it does not focus on 

intuitively plausible biases that may affect randomness generation but rather 

constitutes an objective measure that captures all potential biases. Crucially, if 

processing constraints shape the biases that lead to the emergence of structure, we 

expect that algorithmic complexity will be reduced faster in transmission chains of 

children than of adults.  

 

Method 

Participants: Ninety adults, all undergraduate students, participated in the study, 

comprising nine diffusion chains of 10 generations each. Three randomly generated 

seed patterns were used to start three diffusion chains per seed. Ninety primary school 

pupils aged 5;1 to 8;2 years also participated in the study. 30 children were recruited 
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from grade 1, 30 from grade 2, and 30 from grade 3. There were three diffusion 

chains per grade level, each starting with a different one of the three random seeds. 

 

Materials: We prepared 180 10 × 10 grids comprising an area of 15 × 15 cm, printed 

on A4 paper, and slips containing 12 black round stickers with a diameter of 12 mm 

each. To control for effects of starting conditions across age groups, three seed 

patterns were generated by randomly selecting 12 numbers out of 100 using the Excel 

random number generator, and equally distributed across the adult and the child 

chains, matching for primary school grade level. 

 

Procedure: Participants were given the 12 stickers, and seated at a table with a sheet 

containing the empty 10 × 10 grid in front of them. They were instructed to look at a 

pattern of 12 black dots distributed on the grid for 10 seconds, and to recreate this 

pattern by placing the provided stickers inside the cells of the empty grid. The 

experimenter then placed the random dot pattern (at the beginning of each chain), or 

the dot pattern produced by the previous participant, on top of the empty grid for 10 

seconds, which were timed using a stopwatch. After removal of the target pattern, 

participants placed all 12 stickers onto the empty grid. 

 

Results 

Below we report the analyses of four dependent variables that allowed us to quantify 

learnability, structure and identifiability of the patterns. Each variable was analysed 

using Page’s L trend test for m = 9 chains and n = 10 generations, to identify 

continuous trends over the course of transmission. This test was conducted separately 

for children and for adults. Each variable was also analysed using a 10 × 2 × 3 mixed-
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type ANOVA with Generations (1-10) as repeated measures, and Age (children vs. 

adults) and Random Seed (1-3) as between-subjects factors. This analysis provides 

information about whether there are differences between children and adults, whether 

age differences depend on position in the transmission chain, and whether the initial 

conditions influence the outcome. Following Caldwell & Millen (2009), a second 2 × 

2 × 3 mixed-type ANOVA combined values from early (1-3) and late (4-10) 

generations, to ascertain whether trends that occur over the course of transmission 

interacted with age or initial conditions. The results of all statistical analyses are 

summarised in Table 1. 
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Table 1: Results of the statistical analyses for all dependent variables. 

dependent 

variable 

Page’s L-trend 

test  

(m=9, n= 10) 

ANOVA 1 

10 (Generation) × 2 

(Age) × 3 (Seed) 

ANOVA 2 

2 (EarlyLate) × 2 (Age) × 

3 (Seed) 

Transmission 

Accuracy 

Adults: L = 

3013; p < .001 

Children: L = 

3115; p < .001 

 

Generation:  

F(9,108) = 6.92; p < 

.001 

 

EarlyLate: F(1,12) = 

44.35; p < .001) 

Clustering 

 

Adults: L = 

3200; p < .001 

Children: L = 

3092; p < .001 

Generation: F(9,108) 

= 13.32; p < .001 

Age: F(1,12) = 6.70, p 

< .05 

EarlyLate: F(1,12) = 

41.91 

Age: F(1,12) = 6.30, p < 

.05 

 

Algorithmic 

Complexity 

Adults: L = 

3183; p < .001 

Children: L = 

3354; p < .001 

Generation: F(9,108) 

= 4.53, p < .001 

Age: F(1,12) = 8.07, p 

< .05 

EarlyLate: F(1,12) = 

13.96, p < .01 

Age: F(1,12) = 7.66, p < 

.05. 

 

Identifiability 

 

Adults: L = 

2897, p < .05 

Children: L = 

3073, p < .001 

Generation:  

F(9,108) = 9.07, p < 

001 

EarlyLate:  

F(1,12) = 13.10, p < .01 
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Transmission Accuracy: Transmission accuracy was calculated as the percentage of 

dots correctly placed on cells in the grid, and showed continuous improvement in 

children and in adults (see Figure 1). The ANOVA revealed a significant effect of 

Generations but no effects of Age, Seed or any of the interactions. Combining data for 

the three early and the seven late generations confirmed that transmission accuracy 

increased, an effect that did not interact with Age or Random Seed. Thus, for children 

and adults, transmission accuracy increased at the same rate, independently of the 

specific random pattern presented at the outset. 

 

 

Figure 1: Mean transmission accuracy per generation for adults (solid line) and for 

children (dotted line). Error bars indicate +/- 1 S.E.M. 

 

Clustering: One way in which structure can be imposed on random dot patterns is by 

combining them into clusters of connected dots, a process akin to chunking – a 

mechanism that can reduce memory load, in this case for the spatial positioning of the 

dot clusters (see Cladière, Smith, Kirby & Fagot [2014] for a similar analysis). Here, 

a cluster was defined as any group of dots placed into cells sharing either a side or a 
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corner. Page’s L trend test showed continuous reduction of the number of clusters in 

children and in adults (see Figure 2). The ANOVA revealed significant main effects 

of Generation and Age, but no effect of Seed or of any of the interactions. Combining 

data for the three early and the seven late generations confirmed these main effects. 

Thus, numbers of cluster diminished over the course of transmission with children 

producing fewer cluster than adults from quite early on. 

 

 

Figure 2: Mean number of clusters per generation for adults (solid line) and for 

children (dotted line). Error bars indicate +/- 1 S.E.M. 

 

Algorithmic Complexity: Algorithmic complexity of the two-dimensional patterns 

was computed using the Block Decomposition Method (Zenil, Soler-Toscano, Dingle 

& Louis, 2014). The basic idea behind BDM is to split the target into smaller, 

sometimes overlapping, 4×4 grids. Unlike image compression algorithms, this 

estimate is axially and rotationally invariant. In this study, each 10×10 grid thus 

yielded sixteen 4×4 tiles with a maximum overlap of 2 columns or 2 rows. Given the 

two-dimensional complexity of each tile, we computed an estimation of the pattern 
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complexity using the formula: ∑p(log2(np)+K(p)), where p denotes the different types 

of 4×4 patterns, np the number of occurrences of each type of pattern p, and K(p) the 

complexity of p as computed using the coding theorem method developed by Zenil et 

al. (2012). 

For this measure, Page’s L trend test showed a continuous reduction in 

children and in adults (see Figure 3). The ANOVA revealed significant main effects 

of Generation and Age, but no effect of Random Seed or of any of the interactions. 

Combining the data for the three early and the seven late generations confirmed the 

decrease in complexity, as well as the effect of Age, yet showed no interactions. 

These results indicate that complexity decreased over the course of transmission, and 

that it was lower overall in the children.  

 

 

 

Figure 3: Mean estimated algorithmic complexity per generation for adults (solid line) 

and for children (dotted line). Error bars indicate +/- 1 S.E.M. 
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Identifiability: To maintain consistency in starting conditions across children and 

adults, we had presented identical seeds to both groups. This allowed us to test 

whether initial conditions determined the particular attractor states a given 

transmission chain had settled into, or whether transmission gave rise to uniquely 

identifiable lineages despite identical initial conditions. For each pattern, we 

quantified identifiability by computing the proportion of within-chain similarity 

divided by the sum of within-chain similarity and across-chain similarity (Matthews 

et al., 2012), where across chain similarity was defined as similarity of patterns 

originating from the same seed in a given generation. Values greater than 0.5 indicate 

greater within-chain similarity; values below 0.5 indicate greater similarity with 

patterns of the same generation in the different chains originating from the same seed.  

 As Figure 4 illustrates, from the first chain onwards, each reproduced pattern 

resembled other patterns within the chain more than other patterns of the same 

generation in other chains originating from the same seed. A one-sample Wilcoxon’s 

signed ranks test for each generation showed that for the adults, identifiability was 

significantly greater than the expected chance level of 0.5 for all but generation 1 (all 

Z’s > 2.42, p < .05), and for the children, all generations exceeded the chance level 

(all Z’s > 2.10. p < .05). Thus, even when originating from the same random seed, by 

generation 2 patterns already started forming distinct lineages. Page’s L trend test 

showed that for adults and children, resemblance to other patterns within a chain 

increased over the course of transmission. The lack of effects of Random Seed and 

Age in both ANOVAs indicates that formation of lineages was not contingent upon 

initial conditions, and that children did not differ from adults in terms of how much 

each pattern resembled other patterns within its lineage.  
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Figure 4: Mean identifiability per generation for adults (solid line) and for children 

(dotted line). The dashed line represents chance level. Error bars indicate +/- 1 S.E.M. 

 

 

Discussion 

Our study tested whether children and adults differed in terms of how fast learnability 

improved and structure emerged during transmission of random dot patterns. 

Consistent with findings on iterated learning of artificial languages (Kirby et al., 

2008; Smith & Wonnacott, 2010) and random sequences (Cornish et al., 2013) in 

adults as well as recent findings on cultural transmission of visuo-spatial patterns in 

non-human primates (Cladière et al., 2014) we found that transmission accuracy of 

visuo-spatial patterns increased in children as well, and to a similar extent as in adults. 

However, compared to adults, visual working memory capacity of children is limited, 

and children’s memory representations of visuo-spatial pattern are less stable, 

reaching adult levels of performance in visual working memory tasks only around age 

7 (Simmering, 2012). Given these limitations, it is remarkable that transmission 
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accuracy in 5- to 8-year-old children did not differ from that of adults. How can 

children achieve such a feat? 

Using measures of clustering and algorithmic complexity, we discovered that 

structure emerged more readily in the children, reducing the complexity to a level that 

allowed them to reproduce the patterns as successfully as the adults. The lack of an 

interaction between number of generation and age for these two measures indicates 

that the age differences emerged early on during transmission, as illustrated in Figure 

5. Inspection of individual patterns (see Appendix 1) revealed that in the children, 

more radical innovations in earlier generations created patterns of considerably 

reduced complexity, which converged onto more easily transmissible structures. This 

is compatible with findings that show an inverse relationship between amount of 

information transmitted and rate of change during transmission (Griffiths, 

Lewandowski & Kalish, 2013). How can children’s processing limitations encourage 

such structural innovations? One possible explanation is related to the reconstructive 

nature of memory (Bartlett, 1932): When recalling complex visual patterns, learners 

may be biased by acquired prototypical representations of shapes, and in children, 

these prototypes may be simpler and less numerous. Another possibility is that limited 

executive control makes it more difficult for children to inhibit pre-potent action 

routines. To illustrate this in simple words: having just placed two stickers onto 

adjacent cells of the grid, it may be very tempting to just continue placing stickers on 

the entire row or column of cells as this appears to be an intuitively plausible and 

well-practiced routine to follow. Adults are likely to be more capable of inhibiting 

such pre-potent action routines. Thus, both of these explanations support the notion 

that the cognitive demands of generating and reproducing complexity (Towse & 

Cheshire, 2007) are higher for children than for adults. Crucially, we have 
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demonstrated that because reproducing complexity is less feasible for children it 

makes them more prone to ‘injecting’ structure, which then is amplified over the 

course of cultural transmission. Importantly, the emergence of unique patterns in each 

chain shows that distinct lineages develop because structuring is not contingent upon 

initial conditions but shaped by learner biases. 

 

 

 

 

Figure 5: Example of transmission of random dot patterns in adults and 5-6-year-old 

children, starting from the same random seed (left) and ending in the pattern produced 

by generation 10 (right). 

 

It certainly is a far stretch from simple random dot patterns to complex 

cultural traits such as language. Still, our findings draw attention to the possibility that 

whenever children act as agents of cultural transmission, the structure of the resulting 

traits can be enhanced due to children’s specific processing limitations. Future 

research will have to explore to what extent, at what ages, and in what ways the 

innovative potential that arises from children’s processing limitations affects the 

transmission of the various complex traits and conventions that make up our 

surrounding human culture. 
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Appendix 1: Patterns produced by adults and children for all chains and generations: 
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