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Abstract 20 

The recently developed transparent soil consists of particles of Nafion, a polymer with a low 21 

refractive index (RI), which is prepared by milling and chemical treatment for use as a soil 22 

analogue. After the addition of a RI-matched solution, confocal imaging can be carried out in 23 

vivo and without destructive sampling. In a previous study, we showed that the new substrate 24 



2 

provides a good approximation of plant growth conditions found in natural soils. In this 25 

paper, we present further development of the techniques for detailed quantitative analysis of 26 

images of root-microbe interactions in situ. Using this system it was possible for the first time 27 

to analyse bacterial distribution along the roots and in the bulk substrate in vivo. These 28 

findings indicate that the coupling of transparent soil with light microscopy is an important 29 

advance towards the discovery of the mechanisms of microbial colonisation of the 30 

rhizosphere. 31 

32 

TEXT 33 

Plant growth promoting rhizobacteria (PGPR) enhance plant health and yield via complex 34 

interactions with the roots and soil 1-3. Rhizobacteria can offer the plant protection from 35 

pathogenic microorganisms by outcompeting them and through the promotion of plant 36 

growth via the release of plant hormones 4. They can also aid plant uptake of nutrients via the 37 

rhizosphere, for example by releasing iron-scavenging siderophores 4, 5. The spatial and 38 

temporal heterogeneity of soil and the rhizosphere undoubtedly influences the communities 39 

and function of bacteria which inhabit niches where nutrients are available in soil 6. However, 40 

studying the interactions between soil bacteria and their physical habitat is currently very 41 

challenging partly due to the lack of conventional laboratory techniques and protocols. Light 42 

microscopy cannot be used to observe soil in depth because soil is opaque. X-ray imaging 43 

techniques are suitable for studying the soil structure but cannot simultaneously resolve 44 

microorganisms 7. Although many molecular methods can be used to identify the structure of 45 

soil microbial communities 8, most do not provide insight into their spatial arrangements. In 46 

contrast, recent applications of FISH (fluorescent in situ hybridization) have proved 47 

successful to analyse spatial distribution of microorganisms in soil, but the method is not 48 

suitable to study dynamic processes because samples need to be fixed prior to imaging 9. 49 
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Previously, we published a study describing a new transparent soil analogue for imaging plant 50 

roots using optical microscopy 10. It consists of a matrix of solid particles of the low 51 

refractive index (RI) ionomer, Nafion, water with plant nutrients and air. Transparent soil can 52 

be saturated with a RI matched liquid to reveal biological structures within. Further to this 53 

work, we have applied transparent soil to the observation of PGPR spatial interactions with 54 

roots and soil particles non-destructively, in vivo and in situ. Quantitative analysis methods 55 

were developed to study the spatial distribution of PGPR Pseudomonas fluorescens SBW25 56 

in transparent soil, on the surface of Lactuca sativa (lettuce) roots and in the surrounding 57 

transparent soil, in relation to the pore geometry. The effect of substrate parameters on the 58 

colonisation of roots was also tested by varying the substrate particle size. The aims were to 59 

measure the effect of plants and substrate on the abundance of PGPR both on root and on the 60 

surrounding particles. After inoculation of the transparent substrate with a culture of GFP-61 

tagged P. fluorescens, one day old L. sativa seedlings were added to the microcosms. The 62 

microcosms were sealed and incubated for 5 days allowing the plants to grow and the 63 

bacteria to colonise the roots. The transparency of the substrate allowed images to be 64 

captured on a 3D grid using confocal microscopy, thus sampling the microbial abundance at 65 

points along the roots and in the bulk soil at 2 distances from the root (supplementary 66 

information, figure S1). Fluorescent labelling with a range of fluorophores allowed 67 

discrimination of bacteria (GFP), root tissue (calcofluor) and the surfaces of solid Nafion 68 

particles (sulphorhodamine-B) (Figure 1), which facilitated image analysis (Figure 2).  69 

 70 

Bacteria were most abundant on the root surfaces, or rhizoplane, and on the surfaces of 71 

Nafion particles (Figure 1). Colonisation on the root surface was concentrated in the 72 

intercellular junctions of the root epidermal cells (visual observation in 3 samples, e.g. Figure 73 

1C), which was similar to observations of field-grown wheat roots 11. Watt et al. quantified 74 
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the fraction of the volume of soil occupied by Pseudomonas spp. found in wheat 75 

rhizospheres. Results showed that on average 15% 11 of the soil volume was occupied by 76 

Pseudomonas spp. We did not characterise the colonisation of lettuce root by Pseudomonas 77 

spp. in soil, however, the overall mean rhizosphere volume occupied by P. fluorescens in the 78 

present study is of the same order of magnitude (10%) as those measured by Watt et al. 79 

Further studies comparing rhizosphere colonisation with the same plant and bacterial species 80 

in both soil and transparent soil would allow a more accurate comparison of the two 81 

substrates for this application. Bacterial fluorescence was detected in the pore spaces of the 82 

substrate, although at a lower level than on the surfaces (Figures 1, 2A). Image analysis also 83 

revealed that the abundance of bacteria in positions with no roots (Figure 2Bi, positions A1-3 84 

and B1-3), was constant and independent of image position, particle size and whether a plant 85 

was present or not in the chamber. This may indicate that the effect of the plants on soil 86 

microbial abundance could be limited to the substrate directly adjacent (i.e. < 1.5 mm) to the 87 

root. Along the x axis (horizontal), in samples with plants, the number of discrete bacterial 88 

aggregates and the average size of the aggregates was greater on the root (position R) than at 89 

1.5 mm (position A) and 3 mm (position B) from the root, and there was no significant 90 

difference in bacterial abundance or aggregate number between positions A and B (Figure 91 

2Bii). In samples with no plants, there was no difference in bacterial abundance along the X 92 

axis (horizontal positions). Along the Y axis (vertical), the number of bacterial aggregates 93 

was lower at the root tip (position 1, Figure 2Bii) than the two positions further from the tip 94 

(position 2 and 3, Figure 2Bii) but when the percentage area of the image with bacterial 95 

fluorescence was used to quantify abundance, there was no difference along the roots (data 96 

not shown). In samples with no plants present, the average size of bacterial aggregate was 97 

lowest at position 1 and highest at position 3, therefore the points closest to the surface of the 98 

substrate had the largest bacterial aggregates (Figure 2Biii). This could be due to a higher 99 
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concentration of dissolved oxygen closer to the surface, which has been observed in sludge 100 

with better bacterial flocculation at high dissolved oxygen concentrations 12. 101 

102 

Several studies have described the distribution of PGPR on the surface of plant roots with a 103 

range of, and sometimes contrasting results. High bacterial abundance was found on the root 104 

tips 11, 13-15 and at root branching zones 13. Yet other studies reported an absence or scarcity of 105 

bacterial colonisation at the root tips 16-20 perhaps caused by the high turnover of mucilage and 106 

border cell at the root apex 20. It is likely that the choice of the technique used to determine 107 

bacterial numbers along the root has a strong influence on bacterial count estimates. Methods 108 

based on colony forming units (CFU) are inaccurate because they rely on taking samples and 109 

this is difficult on the root tip, and only bacteria that grow well in lab cultures can be quantified. 110 

Microscopy techniques such as SEM are usually limited to detect bacteria embedded within 111 

the mucilage 16, and methods that requires fixing of samples, e.g. FISH, are susceptible to 112 

perturbation for example when washing the roots prior to imaging 11.  The method described 113 

in the current study involved the addition and removal of liquids to and from the substrate. 114 

Although fluxes of water are common in soil due to rainfall or irrigation, the filling of soil 115 

samples by the matching liquid has the potential to induce anaerobic stress in the plant and 116 

bacteria over long periods. This effect was minimised by using fresh aerated solutions and by 117 

limiting the length of time during which the substrate was saturated.  There are numerous 118 

non-destructive methods to image in soil, e.g. X-rays, Neutron and Magnetic Resonance 119 

Imaging 21-23.These do not rely on filling samples in liquid, but the methods are not able to 120 

resolve many micro-organisms, and imaging of biological processes such as gene expression 121 

or cell division is not possible. Molecular methods are developing rapidly, but currently these 122 

are either destructive9, or unable to resolve spatial or temporal processes e.g. T-RFLP 24.  123 

124 



   

6 

 

The rhizosphere hosts large and diverse bacterial communities that establish sophisticated 125 

modes of interactions with plant roots. To date, it has been difficult to characterise such 126 

interactions because observation of roots and bacteria in depth and over time has been limiting 127 

25.  The model system described here overcomes many previous technological limitations. It 128 

combines the ability to grow biological organisms in a physically complex soil-like 129 

environment with optical microscopy 25 and to detect multiple fluorescent signals in situ. The 130 

application of transparent soil microcosms is not limited to the study of roots and soil bacteria 131 

and it holds potential for studying the function of other soil organisms. Future developments 132 

could see the introduction of a diversity of microorganisms such as mycorrhizal fungi, 133 

nematodes, small invertebrates, or the incorporation of bacterial communities composed of 134 

several functional types (e.g. predators and prey).  Exploiting this potential now requires 135 

exploring, testing and analysing biological activity in transparent soil microcosms to better 136 

understand the benefits and limitations of the technology. 137 
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209 

Figure Legends 210 

211 

Figure 1 212 

Maximum projection confocal images of GFP-labelled Pseudomonas fluorescens colonies 213 

(green) on the surface of lettuce root tissues (grey) in situ in transparent soil with Nafion 214 

particles from the substrate labelled with sulphorhodamine B fluorescent dye also visible 215 

(red). (A) The majority of the bacterial fluorescens is associated with the root tissue. Scale 216 

bar = 150 µm. (B) Bacteria are present on the root tip and in this case also the surfaces of 217 

Nafion particles in close proximity to the root have bacterial fluorescens associated with 218 

them. Scale bar = 150 µm. (C) At higher resolution, bacterial colonisation was predominantly 219 

observed in the intercellular junctions of root epithelial cells. Scale bar = 45 µm. 220 

221 
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222 

Figure 2 223 

Quantification of Pseudomonas fluorescens in the rhizosphere. A) Bacteria, Nafion particles 224 

and roots were processed sequentially to allow quantification. (i-ii) Bacterial fluorescence 225 

before and after processing with a median filter and thresholding facilitated measuring the 226 

bacterial abundance. Scale bar = 40 µm. (iii-iv) Original images of particle surfaces were 227 

processed and skeletonised. Grey lines in (iv) represent skeleton of particle surfaces in (iii). It 228 

was then possible to select the volumes inside particles (shown here in blue) to measure them 229 

to correct for available area (pore space). Scale bar = 200 µm. (v-vi) Example image of a 230 

section of lettuce root before and after the application of a median filter and subsequent 231 

thresholding were applied. This allowed the selection of the internal volume of the root for 232 

measurement (shown in blue). Scale bar = 200 µm. B) Quantification of bacterial distribution 233 

in transparent soil with small (500 – 850 µm) and large particles (850 – 1200 µm). The 234 

positions R1 to B3 represent a 3 × 3 grid of points on and around the roots, where R is on the 235 

root and A and B are at intervals perpendicular to the root. 1 is the root tip and 2 and 3 are 236 

closer to the shoot. See Figure S1 for schematic. (i) There was higher bacterial abundance in 237 

images that include a section of plant root. At all other positions, there was a  consistent area 238 

of bacterial fluorescence as a proportion of the area of backgound in images without plant 239 

roots. These values were corrected for available area. (ii) Number and (iii) average size of 240 

bacterial aggregates at the 3 horizontal (X) positions (R, A & B) and at the 3 vertical (Y) 241 

positions (1, 2 & 3) in samples with or without plants. Letters above the bars indicate the 242 

results of Fisher’s protected LSD tests. 243 

244 

Figure S1 245 
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Protocol for the development and imaging of transparent soil microcosms. A) The preparation246 

of the transparent soil material follows three main steps. First, Nafion precursor particles are 247 

milled in liquid nitrogen to obtain suitable particle size distribution. In a second stage, 248 

particles are treated chemically to give them an anionic charge [11, S1]. Finally, the exchange 249 

sites are saturated with the cations from Murashige & Skoog basal plant nutrient medium and 250 

the transparent soil medium water content is adjusted for optimal growth conditions. B) The 251 

culture and imaging of root and bacteria in transparent soil requires several steps. Seedlings 252 

and bacteria are inoculated in the transparent soil substrate at the start of each experiment and 253 

grow for 5 days. Samples are then saturated with half-strength M&S medium containing 254 

1 mg ml-1 fluorescent brightener to stain the root tissue. Immediately before imaging, this 255 

solution was removed and replaced with pure Percoll (Sigma-Aldrich Co.) containing 1 µg 256 

ml-1 sulphorhodamine B (Sigma-Aldrich Co.). C) Purpose-built transparent containers were 257 

constructed for the experiment. Containers were made of a microscope slide and long cover 258 

glass with a 4 mm spacer between them on 3 sides and an opening at the top. D) 27 positions 259 

were imaged in each sample following a 3 by 3 by 3 regular grid. When plants were present, 260 

the origin of the sampling grid is the root tip and the other positions are obtained along and 261 

perpendicular to the roots. In the control samples, the reference point R1 was chosen 262 

arbitrarily. 263 

264 

265 
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